SemaOverload.cpp revision 1a8cf73a825ef35917eede448817237b5fd47b05
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              ForceRValue, UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (From->getType() == Context.OverloadTy) {
617    if (FunctionDecl *Fn
618          = ResolveAddressOfOverloadedFunction(From, ToType, false,
619                                               AccessPair)) {
620      // Address of overloaded function (C++ [over.over]).
621      SCS.First = ICK_Function_To_Pointer;
622
623      // We were able to resolve the address of the overloaded function,
624      // so we can convert to the type of that function.
625      FromType = Fn->getType();
626      if (ToType->isLValueReferenceType())
627        FromType = Context.getLValueReferenceType(FromType);
628      else if (ToType->isRValueReferenceType())
629        FromType = Context.getRValueReferenceType(FromType);
630      else if (ToType->isMemberPointerType()) {
631        // Resolve address only succeeds if both sides are member pointers,
632        // but it doesn't have to be the same class. See DR 247.
633        // Note that this means that the type of &Derived::fn can be
634        // Ret (Base::*)(Args) if the fn overload actually found is from the
635        // base class, even if it was brought into the derived class via a
636        // using declaration. The standard isn't clear on this issue at all.
637        CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
638        FromType = Context.getMemberPointerType(FromType,
639                      Context.getTypeDeclType(M->getParent()).getTypePtr());
640      } else {
641        FromType = Context.getPointerType(FromType);
642      }
643    } else {
644      return false;
645    }
646  } else {
647    // We don't require any conversions for the first step.
648    SCS.First = ICK_Identity;
649  }
650  SCS.setToType(0, FromType);
651
652  // The second conversion can be an integral promotion, floating
653  // point promotion, integral conversion, floating point conversion,
654  // floating-integral conversion, pointer conversion,
655  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
656  // For overloading in C, this can also be a "compatible-type"
657  // conversion.
658  bool IncompatibleObjC = false;
659  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
660    // The unqualified versions of the types are the same: there's no
661    // conversion to do.
662    SCS.Second = ICK_Identity;
663  } else if (IsIntegralPromotion(From, FromType, ToType)) {
664    // Integral promotion (C++ 4.5).
665    SCS.Second = ICK_Integral_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if (IsFloatingPointPromotion(FromType, ToType)) {
668    // Floating point promotion (C++ 4.6).
669    SCS.Second = ICK_Floating_Promotion;
670    FromType = ToType.getUnqualifiedType();
671  } else if (IsComplexPromotion(FromType, ToType)) {
672    // Complex promotion (Clang extension)
673    SCS.Second = ICK_Complex_Promotion;
674    FromType = ToType.getUnqualifiedType();
675  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
676           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
677    // Integral conversions (C++ 4.7).
678    SCS.Second = ICK_Integral_Conversion;
679    FromType = ToType.getUnqualifiedType();
680  } else if (FromType->isComplexType() && ToType->isComplexType()) {
681    // Complex conversions (C99 6.3.1.6)
682    SCS.Second = ICK_Complex_Conversion;
683    FromType = ToType.getUnqualifiedType();
684  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
685             (ToType->isComplexType() && FromType->isArithmeticType())) {
686    // Complex-real conversions (C99 6.3.1.7)
687    SCS.Second = ICK_Complex_Real;
688    FromType = ToType.getUnqualifiedType();
689  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
690    // Floating point conversions (C++ 4.8).
691    SCS.Second = ICK_Floating_Conversion;
692    FromType = ToType.getUnqualifiedType();
693  } else if ((FromType->isFloatingType() &&
694              ToType->isIntegralType() && (!ToType->isBooleanType() &&
695                                           !ToType->isEnumeralType())) ||
696             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
697              ToType->isFloatingType())) {
698    // Floating-integral conversions (C++ 4.9).
699    SCS.Second = ICK_Floating_Integral;
700    FromType = ToType.getUnqualifiedType();
701  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
702                                 FromType, IncompatibleObjC)) {
703    // Pointer conversions (C++ 4.10).
704    SCS.Second = ICK_Pointer_Conversion;
705    SCS.IncompatibleObjC = IncompatibleObjC;
706  } else if (IsMemberPointerConversion(From, FromType, ToType,
707                                       InOverloadResolution, FromType)) {
708    // Pointer to member conversions (4.11).
709    SCS.Second = ICK_Pointer_Member;
710  } else if (ToType->isBooleanType() &&
711             (FromType->isArithmeticType() ||
712              FromType->isEnumeralType() ||
713              FromType->isAnyPointerType() ||
714              FromType->isBlockPointerType() ||
715              FromType->isMemberPointerType() ||
716              FromType->isNullPtrType())) {
717    // Boolean conversions (C++ 4.12).
718    SCS.Second = ICK_Boolean_Conversion;
719    FromType = Context.BoolTy;
720  } else if (!getLangOptions().CPlusPlus &&
721             Context.typesAreCompatible(ToType, FromType)) {
722    // Compatible conversions (Clang extension for C function overloading)
723    SCS.Second = ICK_Compatible_Conversion;
724  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
725    // Treat a conversion that strips "noreturn" as an identity conversion.
726    SCS.Second = ICK_NoReturn_Adjustment;
727  } else {
728    // No second conversion required.
729    SCS.Second = ICK_Identity;
730  }
731  SCS.setToType(1, FromType);
732
733  QualType CanonFrom;
734  QualType CanonTo;
735  // The third conversion can be a qualification conversion (C++ 4p1).
736  if (IsQualificationConversion(FromType, ToType)) {
737    SCS.Third = ICK_Qualification;
738    FromType = ToType;
739    CanonFrom = Context.getCanonicalType(FromType);
740    CanonTo = Context.getCanonicalType(ToType);
741  } else {
742    // No conversion required
743    SCS.Third = ICK_Identity;
744
745    // C++ [over.best.ics]p6:
746    //   [...] Any difference in top-level cv-qualification is
747    //   subsumed by the initialization itself and does not constitute
748    //   a conversion. [...]
749    CanonFrom = Context.getCanonicalType(FromType);
750    CanonTo = Context.getCanonicalType(ToType);
751    if (CanonFrom.getLocalUnqualifiedType()
752                                       == CanonTo.getLocalUnqualifiedType() &&
753        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
754      FromType = ToType;
755      CanonFrom = CanonTo;
756    }
757  }
758  SCS.setToType(2, FromType);
759
760  // If we have not converted the argument type to the parameter type,
761  // this is a bad conversion sequence.
762  if (CanonFrom != CanonTo)
763    return false;
764
765  return true;
766}
767
768/// IsIntegralPromotion - Determines whether the conversion from the
769/// expression From (whose potentially-adjusted type is FromType) to
770/// ToType is an integral promotion (C++ 4.5). If so, returns true and
771/// sets PromotedType to the promoted type.
772bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
773  const BuiltinType *To = ToType->getAs<BuiltinType>();
774  // All integers are built-in.
775  if (!To) {
776    return false;
777  }
778
779  // An rvalue of type char, signed char, unsigned char, short int, or
780  // unsigned short int can be converted to an rvalue of type int if
781  // int can represent all the values of the source type; otherwise,
782  // the source rvalue can be converted to an rvalue of type unsigned
783  // int (C++ 4.5p1).
784  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
785      !FromType->isEnumeralType()) {
786    if (// We can promote any signed, promotable integer type to an int
787        (FromType->isSignedIntegerType() ||
788         // We can promote any unsigned integer type whose size is
789         // less than int to an int.
790         (!FromType->isSignedIntegerType() &&
791          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
792      return To->getKind() == BuiltinType::Int;
793    }
794
795    return To->getKind() == BuiltinType::UInt;
796  }
797
798  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
799  // can be converted to an rvalue of the first of the following types
800  // that can represent all the values of its underlying type: int,
801  // unsigned int, long, or unsigned long (C++ 4.5p2).
802
803  // We pre-calculate the promotion type for enum types.
804  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
805    if (ToType->isIntegerType())
806      return Context.hasSameUnqualifiedType(ToType,
807                                FromEnumType->getDecl()->getPromotionType());
808
809  if (FromType->isWideCharType() && ToType->isIntegerType()) {
810    // Determine whether the type we're converting from is signed or
811    // unsigned.
812    bool FromIsSigned;
813    uint64_t FromSize = Context.getTypeSize(FromType);
814
815    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
816    FromIsSigned = true;
817
818    // The types we'll try to promote to, in the appropriate
819    // order. Try each of these types.
820    QualType PromoteTypes[6] = {
821      Context.IntTy, Context.UnsignedIntTy,
822      Context.LongTy, Context.UnsignedLongTy ,
823      Context.LongLongTy, Context.UnsignedLongLongTy
824    };
825    for (int Idx = 0; Idx < 6; ++Idx) {
826      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
827      if (FromSize < ToSize ||
828          (FromSize == ToSize &&
829           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
830        // We found the type that we can promote to. If this is the
831        // type we wanted, we have a promotion. Otherwise, no
832        // promotion.
833        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
834      }
835    }
836  }
837
838  // An rvalue for an integral bit-field (9.6) can be converted to an
839  // rvalue of type int if int can represent all the values of the
840  // bit-field; otherwise, it can be converted to unsigned int if
841  // unsigned int can represent all the values of the bit-field. If
842  // the bit-field is larger yet, no integral promotion applies to
843  // it. If the bit-field has an enumerated type, it is treated as any
844  // other value of that type for promotion purposes (C++ 4.5p3).
845  // FIXME: We should delay checking of bit-fields until we actually perform the
846  // conversion.
847  using llvm::APSInt;
848  if (From)
849    if (FieldDecl *MemberDecl = From->getBitField()) {
850      APSInt BitWidth;
851      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
852          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
853        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
854        ToSize = Context.getTypeSize(ToType);
855
856        // Are we promoting to an int from a bitfield that fits in an int?
857        if (BitWidth < ToSize ||
858            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
859          return To->getKind() == BuiltinType::Int;
860        }
861
862        // Are we promoting to an unsigned int from an unsigned bitfield
863        // that fits into an unsigned int?
864        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
865          return To->getKind() == BuiltinType::UInt;
866        }
867
868        return false;
869      }
870    }
871
872  // An rvalue of type bool can be converted to an rvalue of type int,
873  // with false becoming zero and true becoming one (C++ 4.5p4).
874  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
875    return true;
876  }
877
878  return false;
879}
880
881/// IsFloatingPointPromotion - Determines whether the conversion from
882/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
883/// returns true and sets PromotedType to the promoted type.
884bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
885  /// An rvalue of type float can be converted to an rvalue of type
886  /// double. (C++ 4.6p1).
887  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
888    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
889      if (FromBuiltin->getKind() == BuiltinType::Float &&
890          ToBuiltin->getKind() == BuiltinType::Double)
891        return true;
892
893      // C99 6.3.1.5p1:
894      //   When a float is promoted to double or long double, or a
895      //   double is promoted to long double [...].
896      if (!getLangOptions().CPlusPlus &&
897          (FromBuiltin->getKind() == BuiltinType::Float ||
898           FromBuiltin->getKind() == BuiltinType::Double) &&
899          (ToBuiltin->getKind() == BuiltinType::LongDouble))
900        return true;
901    }
902
903  return false;
904}
905
906/// \brief Determine if a conversion is a complex promotion.
907///
908/// A complex promotion is defined as a complex -> complex conversion
909/// where the conversion between the underlying real types is a
910/// floating-point or integral promotion.
911bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
912  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
913  if (!FromComplex)
914    return false;
915
916  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
917  if (!ToComplex)
918    return false;
919
920  return IsFloatingPointPromotion(FromComplex->getElementType(),
921                                  ToComplex->getElementType()) ||
922    IsIntegralPromotion(0, FromComplex->getElementType(),
923                        ToComplex->getElementType());
924}
925
926/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
927/// the pointer type FromPtr to a pointer to type ToPointee, with the
928/// same type qualifiers as FromPtr has on its pointee type. ToType,
929/// if non-empty, will be a pointer to ToType that may or may not have
930/// the right set of qualifiers on its pointee.
931static QualType
932BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
933                                   QualType ToPointee, QualType ToType,
934                                   ASTContext &Context) {
935  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
936  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
937  Qualifiers Quals = CanonFromPointee.getQualifiers();
938
939  // Exact qualifier match -> return the pointer type we're converting to.
940  if (CanonToPointee.getLocalQualifiers() == Quals) {
941    // ToType is exactly what we need. Return it.
942    if (!ToType.isNull())
943      return ToType;
944
945    // Build a pointer to ToPointee. It has the right qualifiers
946    // already.
947    return Context.getPointerType(ToPointee);
948  }
949
950  // Just build a canonical type that has the right qualifiers.
951  return Context.getPointerType(
952         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
953                                  Quals));
954}
955
956/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
957/// the FromType, which is an objective-c pointer, to ToType, which may or may
958/// not have the right set of qualifiers.
959static QualType
960BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
961                                             QualType ToType,
962                                             ASTContext &Context) {
963  QualType CanonFromType = Context.getCanonicalType(FromType);
964  QualType CanonToType = Context.getCanonicalType(ToType);
965  Qualifiers Quals = CanonFromType.getQualifiers();
966
967  // Exact qualifier match -> return the pointer type we're converting to.
968  if (CanonToType.getLocalQualifiers() == Quals)
969    return ToType;
970
971  // Just build a canonical type that has the right qualifiers.
972  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
973}
974
975static bool isNullPointerConstantForConversion(Expr *Expr,
976                                               bool InOverloadResolution,
977                                               ASTContext &Context) {
978  // Handle value-dependent integral null pointer constants correctly.
979  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
980  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
981      Expr->getType()->isIntegralType())
982    return !InOverloadResolution;
983
984  return Expr->isNullPointerConstant(Context,
985                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
986                                        : Expr::NPC_ValueDependentIsNull);
987}
988
989/// IsPointerConversion - Determines whether the conversion of the
990/// expression From, which has the (possibly adjusted) type FromType,
991/// can be converted to the type ToType via a pointer conversion (C++
992/// 4.10). If so, returns true and places the converted type (that
993/// might differ from ToType in its cv-qualifiers at some level) into
994/// ConvertedType.
995///
996/// This routine also supports conversions to and from block pointers
997/// and conversions with Objective-C's 'id', 'id<protocols...>', and
998/// pointers to interfaces. FIXME: Once we've determined the
999/// appropriate overloading rules for Objective-C, we may want to
1000/// split the Objective-C checks into a different routine; however,
1001/// GCC seems to consider all of these conversions to be pointer
1002/// conversions, so for now they live here. IncompatibleObjC will be
1003/// set if the conversion is an allowed Objective-C conversion that
1004/// should result in a warning.
1005bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1006                               bool InOverloadResolution,
1007                               QualType& ConvertedType,
1008                               bool &IncompatibleObjC) {
1009  IncompatibleObjC = false;
1010  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1011    return true;
1012
1013  // Conversion from a null pointer constant to any Objective-C pointer type.
1014  if (ToType->isObjCObjectPointerType() &&
1015      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1016    ConvertedType = ToType;
1017    return true;
1018  }
1019
1020  // Blocks: Block pointers can be converted to void*.
1021  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1022      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1023    ConvertedType = ToType;
1024    return true;
1025  }
1026  // Blocks: A null pointer constant can be converted to a block
1027  // pointer type.
1028  if (ToType->isBlockPointerType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  // If the left-hand-side is nullptr_t, the right side can be a null
1035  // pointer constant.
1036  if (ToType->isNullPtrType() &&
1037      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1038    ConvertedType = ToType;
1039    return true;
1040  }
1041
1042  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1043  if (!ToTypePtr)
1044    return false;
1045
1046  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1047  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1048    ConvertedType = ToType;
1049    return true;
1050  }
1051
1052  // Beyond this point, both types need to be pointers
1053  // , including objective-c pointers.
1054  QualType ToPointeeType = ToTypePtr->getPointeeType();
1055  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1056    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1057                                                       ToType, Context);
1058    return true;
1059
1060  }
1061  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1062  if (!FromTypePtr)
1063    return false;
1064
1065  QualType FromPointeeType = FromTypePtr->getPointeeType();
1066
1067  // An rvalue of type "pointer to cv T," where T is an object type,
1068  // can be converted to an rvalue of type "pointer to cv void" (C++
1069  // 4.10p2).
1070  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1071    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1072                                                       ToPointeeType,
1073                                                       ToType, Context);
1074    return true;
1075  }
1076
1077  // When we're overloading in C, we allow a special kind of pointer
1078  // conversion for compatible-but-not-identical pointee types.
1079  if (!getLangOptions().CPlusPlus &&
1080      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1081    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1082                                                       ToPointeeType,
1083                                                       ToType, Context);
1084    return true;
1085  }
1086
1087  // C++ [conv.ptr]p3:
1088  //
1089  //   An rvalue of type "pointer to cv D," where D is a class type,
1090  //   can be converted to an rvalue of type "pointer to cv B," where
1091  //   B is a base class (clause 10) of D. If B is an inaccessible
1092  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1093  //   necessitates this conversion is ill-formed. The result of the
1094  //   conversion is a pointer to the base class sub-object of the
1095  //   derived class object. The null pointer value is converted to
1096  //   the null pointer value of the destination type.
1097  //
1098  // Note that we do not check for ambiguity or inaccessibility
1099  // here. That is handled by CheckPointerConversion.
1100  if (getLangOptions().CPlusPlus &&
1101      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1102      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1103      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1104      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1105    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1106                                                       ToPointeeType,
1107                                                       ToType, Context);
1108    return true;
1109  }
1110
1111  return false;
1112}
1113
1114/// isObjCPointerConversion - Determines whether this is an
1115/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1116/// with the same arguments and return values.
1117bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1118                                   QualType& ConvertedType,
1119                                   bool &IncompatibleObjC) {
1120  if (!getLangOptions().ObjC1)
1121    return false;
1122
1123  // First, we handle all conversions on ObjC object pointer types.
1124  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1125  const ObjCObjectPointerType *FromObjCPtr =
1126    FromType->getAs<ObjCObjectPointerType>();
1127
1128  if (ToObjCPtr && FromObjCPtr) {
1129    // Objective C++: We're able to convert between "id" or "Class" and a
1130    // pointer to any interface (in both directions).
1131    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Conversions with Objective-C's id<...>.
1136    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1137         ToObjCPtr->isObjCQualifiedIdType()) &&
1138        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1139                                                  /*compare=*/false)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143    // Objective C++: We're able to convert from a pointer to an
1144    // interface to a pointer to a different interface.
1145    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1146      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1147      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1148      if (getLangOptions().CPlusPlus && LHS && RHS &&
1149          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1150                                                FromObjCPtr->getPointeeType()))
1151        return false;
1152      ConvertedType = ToType;
1153      return true;
1154    }
1155
1156    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1157      // Okay: this is some kind of implicit downcast of Objective-C
1158      // interfaces, which is permitted. However, we're going to
1159      // complain about it.
1160      IncompatibleObjC = true;
1161      ConvertedType = FromType;
1162      return true;
1163    }
1164  }
1165  // Beyond this point, both types need to be C pointers or block pointers.
1166  QualType ToPointeeType;
1167  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1168    ToPointeeType = ToCPtr->getPointeeType();
1169  else if (const BlockPointerType *ToBlockPtr =
1170            ToType->getAs<BlockPointerType>()) {
1171    // Objective C++: We're able to convert from a pointer to any object
1172    // to a block pointer type.
1173    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1174      ConvertedType = ToType;
1175      return true;
1176    }
1177    ToPointeeType = ToBlockPtr->getPointeeType();
1178  }
1179  else if (FromType->getAs<BlockPointerType>() &&
1180           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1181    // Objective C++: We're able to convert from a block pointer type to a
1182    // pointer to any object.
1183    ConvertedType = ToType;
1184    return true;
1185  }
1186  else
1187    return false;
1188
1189  QualType FromPointeeType;
1190  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1191    FromPointeeType = FromCPtr->getPointeeType();
1192  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1193    FromPointeeType = FromBlockPtr->getPointeeType();
1194  else
1195    return false;
1196
1197  // If we have pointers to pointers, recursively check whether this
1198  // is an Objective-C conversion.
1199  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1200      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1201                              IncompatibleObjC)) {
1202    // We always complain about this conversion.
1203    IncompatibleObjC = true;
1204    ConvertedType = ToType;
1205    return true;
1206  }
1207  // Allow conversion of pointee being objective-c pointer to another one;
1208  // as in I* to id.
1209  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1210      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1211      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1212                              IncompatibleObjC)) {
1213    ConvertedType = ToType;
1214    return true;
1215  }
1216
1217  // If we have pointers to functions or blocks, check whether the only
1218  // differences in the argument and result types are in Objective-C
1219  // pointer conversions. If so, we permit the conversion (but
1220  // complain about it).
1221  const FunctionProtoType *FromFunctionType
1222    = FromPointeeType->getAs<FunctionProtoType>();
1223  const FunctionProtoType *ToFunctionType
1224    = ToPointeeType->getAs<FunctionProtoType>();
1225  if (FromFunctionType && ToFunctionType) {
1226    // If the function types are exactly the same, this isn't an
1227    // Objective-C pointer conversion.
1228    if (Context.getCanonicalType(FromPointeeType)
1229          == Context.getCanonicalType(ToPointeeType))
1230      return false;
1231
1232    // Perform the quick checks that will tell us whether these
1233    // function types are obviously different.
1234    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1235        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1236        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1237      return false;
1238
1239    bool HasObjCConversion = false;
1240    if (Context.getCanonicalType(FromFunctionType->getResultType())
1241          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1242      // Okay, the types match exactly. Nothing to do.
1243    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1244                                       ToFunctionType->getResultType(),
1245                                       ConvertedType, IncompatibleObjC)) {
1246      // Okay, we have an Objective-C pointer conversion.
1247      HasObjCConversion = true;
1248    } else {
1249      // Function types are too different. Abort.
1250      return false;
1251    }
1252
1253    // Check argument types.
1254    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1255         ArgIdx != NumArgs; ++ArgIdx) {
1256      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1257      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1258      if (Context.getCanonicalType(FromArgType)
1259            == Context.getCanonicalType(ToArgType)) {
1260        // Okay, the types match exactly. Nothing to do.
1261      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1262                                         ConvertedType, IncompatibleObjC)) {
1263        // Okay, we have an Objective-C pointer conversion.
1264        HasObjCConversion = true;
1265      } else {
1266        // Argument types are too different. Abort.
1267        return false;
1268      }
1269    }
1270
1271    if (HasObjCConversion) {
1272      // We had an Objective-C conversion. Allow this pointer
1273      // conversion, but complain about it.
1274      ConvertedType = ToType;
1275      IncompatibleObjC = true;
1276      return true;
1277    }
1278  }
1279
1280  return false;
1281}
1282
1283/// CheckPointerConversion - Check the pointer conversion from the
1284/// expression From to the type ToType. This routine checks for
1285/// ambiguous or inaccessible derived-to-base pointer
1286/// conversions for which IsPointerConversion has already returned
1287/// true. It returns true and produces a diagnostic if there was an
1288/// error, or returns false otherwise.
1289bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1290                                  CastExpr::CastKind &Kind,
1291                                  bool IgnoreBaseAccess) {
1292  QualType FromType = From->getType();
1293
1294  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1295    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1296      QualType FromPointeeType = FromPtrType->getPointeeType(),
1297               ToPointeeType   = ToPtrType->getPointeeType();
1298
1299      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1300          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1301        // We must have a derived-to-base conversion. Check an
1302        // ambiguous or inaccessible conversion.
1303        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1304                                         From->getExprLoc(),
1305                                         From->getSourceRange(),
1306                                         IgnoreBaseAccess))
1307          return true;
1308
1309        // The conversion was successful.
1310        Kind = CastExpr::CK_DerivedToBase;
1311      }
1312    }
1313  if (const ObjCObjectPointerType *FromPtrType =
1314        FromType->getAs<ObjCObjectPointerType>())
1315    if (const ObjCObjectPointerType *ToPtrType =
1316          ToType->getAs<ObjCObjectPointerType>()) {
1317      // Objective-C++ conversions are always okay.
1318      // FIXME: We should have a different class of conversions for the
1319      // Objective-C++ implicit conversions.
1320      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1321        return false;
1322
1323  }
1324  return false;
1325}
1326
1327/// IsMemberPointerConversion - Determines whether the conversion of the
1328/// expression From, which has the (possibly adjusted) type FromType, can be
1329/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1330/// If so, returns true and places the converted type (that might differ from
1331/// ToType in its cv-qualifiers at some level) into ConvertedType.
1332bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1333                                     QualType ToType,
1334                                     bool InOverloadResolution,
1335                                     QualType &ConvertedType) {
1336  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1337  if (!ToTypePtr)
1338    return false;
1339
1340  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1341  if (From->isNullPointerConstant(Context,
1342                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1343                                        : Expr::NPC_ValueDependentIsNull)) {
1344    ConvertedType = ToType;
1345    return true;
1346  }
1347
1348  // Otherwise, both types have to be member pointers.
1349  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1350  if (!FromTypePtr)
1351    return false;
1352
1353  // A pointer to member of B can be converted to a pointer to member of D,
1354  // where D is derived from B (C++ 4.11p2).
1355  QualType FromClass(FromTypePtr->getClass(), 0);
1356  QualType ToClass(ToTypePtr->getClass(), 0);
1357  // FIXME: What happens when these are dependent? Is this function even called?
1358
1359  if (IsDerivedFrom(ToClass, FromClass)) {
1360    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1361                                                 ToClass.getTypePtr());
1362    return true;
1363  }
1364
1365  return false;
1366}
1367
1368/// CheckMemberPointerConversion - Check the member pointer conversion from the
1369/// expression From to the type ToType. This routine checks for ambiguous or
1370/// virtual or inaccessible base-to-derived member pointer conversions
1371/// for which IsMemberPointerConversion has already returned true. It returns
1372/// true and produces a diagnostic if there was an error, or returns false
1373/// otherwise.
1374bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1375                                        CastExpr::CastKind &Kind,
1376                                        bool IgnoreBaseAccess) {
1377  QualType FromType = From->getType();
1378  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1379  if (!FromPtrType) {
1380    // This must be a null pointer to member pointer conversion
1381    assert(From->isNullPointerConstant(Context,
1382                                       Expr::NPC_ValueDependentIsNull) &&
1383           "Expr must be null pointer constant!");
1384    Kind = CastExpr::CK_NullToMemberPointer;
1385    return false;
1386  }
1387
1388  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1389  assert(ToPtrType && "No member pointer cast has a target type "
1390                      "that is not a member pointer.");
1391
1392  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1393  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1394
1395  // FIXME: What about dependent types?
1396  assert(FromClass->isRecordType() && "Pointer into non-class.");
1397  assert(ToClass->isRecordType() && "Pointer into non-class.");
1398
1399  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1400                     /*DetectVirtual=*/true);
1401  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1402  assert(DerivationOkay &&
1403         "Should not have been called if derivation isn't OK.");
1404  (void)DerivationOkay;
1405
1406  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1407                                  getUnqualifiedType())) {
1408    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1409    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1410      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1411    return true;
1412  }
1413
1414  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1415    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1416      << FromClass << ToClass << QualType(VBase, 0)
1417      << From->getSourceRange();
1418    return true;
1419  }
1420
1421  if (!IgnoreBaseAccess)
1422    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1423                         Paths.front(),
1424                         diag::err_downcast_from_inaccessible_base);
1425
1426  // Must be a base to derived member conversion.
1427  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1428  return false;
1429}
1430
1431/// IsQualificationConversion - Determines whether the conversion from
1432/// an rvalue of type FromType to ToType is a qualification conversion
1433/// (C++ 4.4).
1434bool
1435Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1436  FromType = Context.getCanonicalType(FromType);
1437  ToType = Context.getCanonicalType(ToType);
1438
1439  // If FromType and ToType are the same type, this is not a
1440  // qualification conversion.
1441  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1442    return false;
1443
1444  // (C++ 4.4p4):
1445  //   A conversion can add cv-qualifiers at levels other than the first
1446  //   in multi-level pointers, subject to the following rules: [...]
1447  bool PreviousToQualsIncludeConst = true;
1448  bool UnwrappedAnyPointer = false;
1449  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1450    // Within each iteration of the loop, we check the qualifiers to
1451    // determine if this still looks like a qualification
1452    // conversion. Then, if all is well, we unwrap one more level of
1453    // pointers or pointers-to-members and do it all again
1454    // until there are no more pointers or pointers-to-members left to
1455    // unwrap.
1456    UnwrappedAnyPointer = true;
1457
1458    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1459    //      2,j, and similarly for volatile.
1460    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1461      return false;
1462
1463    //   -- if the cv 1,j and cv 2,j are different, then const is in
1464    //      every cv for 0 < k < j.
1465    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1466        && !PreviousToQualsIncludeConst)
1467      return false;
1468
1469    // Keep track of whether all prior cv-qualifiers in the "to" type
1470    // include const.
1471    PreviousToQualsIncludeConst
1472      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1473  }
1474
1475  // We are left with FromType and ToType being the pointee types
1476  // after unwrapping the original FromType and ToType the same number
1477  // of types. If we unwrapped any pointers, and if FromType and
1478  // ToType have the same unqualified type (since we checked
1479  // qualifiers above), then this is a qualification conversion.
1480  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1481}
1482
1483/// Determines whether there is a user-defined conversion sequence
1484/// (C++ [over.ics.user]) that converts expression From to the type
1485/// ToType. If such a conversion exists, User will contain the
1486/// user-defined conversion sequence that performs such a conversion
1487/// and this routine will return true. Otherwise, this routine returns
1488/// false and User is unspecified.
1489///
1490/// \param AllowConversionFunctions true if the conversion should
1491/// consider conversion functions at all. If false, only constructors
1492/// will be considered.
1493///
1494/// \param AllowExplicit  true if the conversion should consider C++0x
1495/// "explicit" conversion functions as well as non-explicit conversion
1496/// functions (C++0x [class.conv.fct]p2).
1497///
1498/// \param ForceRValue  true if the expression should be treated as an rvalue
1499/// for overload resolution.
1500/// \param UserCast true if looking for user defined conversion for a static
1501/// cast.
1502OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1503                                          UserDefinedConversionSequence& User,
1504                                            OverloadCandidateSet& CandidateSet,
1505                                                bool AllowConversionFunctions,
1506                                                bool AllowExplicit,
1507                                                bool ForceRValue,
1508                                                bool UserCast) {
1509  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1510    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1511      // We're not going to find any constructors.
1512    } else if (CXXRecordDecl *ToRecordDecl
1513                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1514      // C++ [over.match.ctor]p1:
1515      //   When objects of class type are direct-initialized (8.5), or
1516      //   copy-initialized from an expression of the same or a
1517      //   derived class type (8.5), overload resolution selects the
1518      //   constructor. [...] For copy-initialization, the candidate
1519      //   functions are all the converting constructors (12.3.1) of
1520      //   that class. The argument list is the expression-list within
1521      //   the parentheses of the initializer.
1522      bool SuppressUserConversions = !UserCast;
1523      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1524          IsDerivedFrom(From->getType(), ToType)) {
1525        SuppressUserConversions = false;
1526        AllowConversionFunctions = false;
1527      }
1528
1529      DeclarationName ConstructorName
1530        = Context.DeclarationNames.getCXXConstructorName(
1531                          Context.getCanonicalType(ToType).getUnqualifiedType());
1532      DeclContext::lookup_iterator Con, ConEnd;
1533      for (llvm::tie(Con, ConEnd)
1534             = ToRecordDecl->lookup(ConstructorName);
1535           Con != ConEnd; ++Con) {
1536        NamedDecl *D = *Con;
1537        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1538
1539        // Find the constructor (which may be a template).
1540        CXXConstructorDecl *Constructor = 0;
1541        FunctionTemplateDecl *ConstructorTmpl
1542          = dyn_cast<FunctionTemplateDecl>(D);
1543        if (ConstructorTmpl)
1544          Constructor
1545            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1546        else
1547          Constructor = cast<CXXConstructorDecl>(D);
1548
1549        if (!Constructor->isInvalidDecl() &&
1550            Constructor->isConvertingConstructor(AllowExplicit)) {
1551          if (ConstructorTmpl)
1552            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1553                                         /*ExplicitArgs*/ 0,
1554                                         &From, 1, CandidateSet,
1555                                         SuppressUserConversions, ForceRValue);
1556          else
1557            // Allow one user-defined conversion when user specifies a
1558            // From->ToType conversion via an static cast (c-style, etc).
1559            AddOverloadCandidate(Constructor, FoundDecl,
1560                                 &From, 1, CandidateSet,
1561                                 SuppressUserConversions, ForceRValue);
1562        }
1563      }
1564    }
1565  }
1566
1567  if (!AllowConversionFunctions) {
1568    // Don't allow any conversion functions to enter the overload set.
1569  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1570                                 PDiag(0)
1571                                   << From->getSourceRange())) {
1572    // No conversion functions from incomplete types.
1573  } else if (const RecordType *FromRecordType
1574               = From->getType()->getAs<RecordType>()) {
1575    if (CXXRecordDecl *FromRecordDecl
1576         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1577      // Add all of the conversion functions as candidates.
1578      const UnresolvedSetImpl *Conversions
1579        = FromRecordDecl->getVisibleConversionFunctions();
1580      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1581             E = Conversions->end(); I != E; ++I) {
1582        DeclAccessPair FoundDecl = I.getPair();
1583        NamedDecl *D = FoundDecl.getDecl();
1584        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1585        if (isa<UsingShadowDecl>(D))
1586          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1587
1588        CXXConversionDecl *Conv;
1589        FunctionTemplateDecl *ConvTemplate;
1590        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1591          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1592        else
1593          Conv = cast<CXXConversionDecl>(D);
1594
1595        if (AllowExplicit || !Conv->isExplicit()) {
1596          if (ConvTemplate)
1597            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1598                                           ActingContext, From, ToType,
1599                                           CandidateSet);
1600          else
1601            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1602                                   From, ToType, CandidateSet);
1603        }
1604      }
1605    }
1606  }
1607
1608  OverloadCandidateSet::iterator Best;
1609  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1610    case OR_Success:
1611      // Record the standard conversion we used and the conversion function.
1612      if (CXXConstructorDecl *Constructor
1613            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1614        // C++ [over.ics.user]p1:
1615        //   If the user-defined conversion is specified by a
1616        //   constructor (12.3.1), the initial standard conversion
1617        //   sequence converts the source type to the type required by
1618        //   the argument of the constructor.
1619        //
1620        QualType ThisType = Constructor->getThisType(Context);
1621        if (Best->Conversions[0].isEllipsis())
1622          User.EllipsisConversion = true;
1623        else {
1624          User.Before = Best->Conversions[0].Standard;
1625          User.EllipsisConversion = false;
1626        }
1627        User.ConversionFunction = Constructor;
1628        User.After.setAsIdentityConversion();
1629        User.After.setFromType(
1630          ThisType->getAs<PointerType>()->getPointeeType());
1631        User.After.setAllToTypes(ToType);
1632        return OR_Success;
1633      } else if (CXXConversionDecl *Conversion
1634                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1635        // C++ [over.ics.user]p1:
1636        //
1637        //   [...] If the user-defined conversion is specified by a
1638        //   conversion function (12.3.2), the initial standard
1639        //   conversion sequence converts the source type to the
1640        //   implicit object parameter of the conversion function.
1641        User.Before = Best->Conversions[0].Standard;
1642        User.ConversionFunction = Conversion;
1643        User.EllipsisConversion = false;
1644
1645        // C++ [over.ics.user]p2:
1646        //   The second standard conversion sequence converts the
1647        //   result of the user-defined conversion to the target type
1648        //   for the sequence. Since an implicit conversion sequence
1649        //   is an initialization, the special rules for
1650        //   initialization by user-defined conversion apply when
1651        //   selecting the best user-defined conversion for a
1652        //   user-defined conversion sequence (see 13.3.3 and
1653        //   13.3.3.1).
1654        User.After = Best->FinalConversion;
1655        return OR_Success;
1656      } else {
1657        assert(false && "Not a constructor or conversion function?");
1658        return OR_No_Viable_Function;
1659      }
1660
1661    case OR_No_Viable_Function:
1662      return OR_No_Viable_Function;
1663    case OR_Deleted:
1664      // No conversion here! We're done.
1665      return OR_Deleted;
1666
1667    case OR_Ambiguous:
1668      return OR_Ambiguous;
1669    }
1670
1671  return OR_No_Viable_Function;
1672}
1673
1674bool
1675Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1676  ImplicitConversionSequence ICS;
1677  OverloadCandidateSet CandidateSet(From->getExprLoc());
1678  OverloadingResult OvResult =
1679    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1680                            CandidateSet, true, false, false);
1681  if (OvResult == OR_Ambiguous)
1682    Diag(From->getSourceRange().getBegin(),
1683         diag::err_typecheck_ambiguous_condition)
1684          << From->getType() << ToType << From->getSourceRange();
1685  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1686    Diag(From->getSourceRange().getBegin(),
1687         diag::err_typecheck_nonviable_condition)
1688    << From->getType() << ToType << From->getSourceRange();
1689  else
1690    return false;
1691  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1692  return true;
1693}
1694
1695/// CompareImplicitConversionSequences - Compare two implicit
1696/// conversion sequences to determine whether one is better than the
1697/// other or if they are indistinguishable (C++ 13.3.3.2).
1698ImplicitConversionSequence::CompareKind
1699Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1700                                         const ImplicitConversionSequence& ICS2)
1701{
1702  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1703  // conversion sequences (as defined in 13.3.3.1)
1704  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1705  //      conversion sequence than a user-defined conversion sequence or
1706  //      an ellipsis conversion sequence, and
1707  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1708  //      conversion sequence than an ellipsis conversion sequence
1709  //      (13.3.3.1.3).
1710  //
1711  // C++0x [over.best.ics]p10:
1712  //   For the purpose of ranking implicit conversion sequences as
1713  //   described in 13.3.3.2, the ambiguous conversion sequence is
1714  //   treated as a user-defined sequence that is indistinguishable
1715  //   from any other user-defined conversion sequence.
1716  if (ICS1.getKind() < ICS2.getKind()) {
1717    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1718      return ImplicitConversionSequence::Better;
1719  } else if (ICS2.getKind() < ICS1.getKind()) {
1720    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1721      return ImplicitConversionSequence::Worse;
1722  }
1723
1724  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1725    return ImplicitConversionSequence::Indistinguishable;
1726
1727  // Two implicit conversion sequences of the same form are
1728  // indistinguishable conversion sequences unless one of the
1729  // following rules apply: (C++ 13.3.3.2p3):
1730  if (ICS1.isStandard())
1731    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1732  else if (ICS1.isUserDefined()) {
1733    // User-defined conversion sequence U1 is a better conversion
1734    // sequence than another user-defined conversion sequence U2 if
1735    // they contain the same user-defined conversion function or
1736    // constructor and if the second standard conversion sequence of
1737    // U1 is better than the second standard conversion sequence of
1738    // U2 (C++ 13.3.3.2p3).
1739    if (ICS1.UserDefined.ConversionFunction ==
1740          ICS2.UserDefined.ConversionFunction)
1741      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1742                                                ICS2.UserDefined.After);
1743  }
1744
1745  return ImplicitConversionSequence::Indistinguishable;
1746}
1747
1748// Per 13.3.3.2p3, compare the given standard conversion sequences to
1749// determine if one is a proper subset of the other.
1750static ImplicitConversionSequence::CompareKind
1751compareStandardConversionSubsets(ASTContext &Context,
1752                                 const StandardConversionSequence& SCS1,
1753                                 const StandardConversionSequence& SCS2) {
1754  ImplicitConversionSequence::CompareKind Result
1755    = ImplicitConversionSequence::Indistinguishable;
1756
1757  if (SCS1.Second != SCS2.Second) {
1758    if (SCS1.Second == ICK_Identity)
1759      Result = ImplicitConversionSequence::Better;
1760    else if (SCS2.Second == ICK_Identity)
1761      Result = ImplicitConversionSequence::Worse;
1762    else
1763      return ImplicitConversionSequence::Indistinguishable;
1764  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1765    return ImplicitConversionSequence::Indistinguishable;
1766
1767  if (SCS1.Third == SCS2.Third) {
1768    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1769                             : ImplicitConversionSequence::Indistinguishable;
1770  }
1771
1772  if (SCS1.Third == ICK_Identity)
1773    return Result == ImplicitConversionSequence::Worse
1774             ? ImplicitConversionSequence::Indistinguishable
1775             : ImplicitConversionSequence::Better;
1776
1777  if (SCS2.Third == ICK_Identity)
1778    return Result == ImplicitConversionSequence::Better
1779             ? ImplicitConversionSequence::Indistinguishable
1780             : ImplicitConversionSequence::Worse;
1781
1782  return ImplicitConversionSequence::Indistinguishable;
1783}
1784
1785/// CompareStandardConversionSequences - Compare two standard
1786/// conversion sequences to determine whether one is better than the
1787/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1788ImplicitConversionSequence::CompareKind
1789Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1790                                         const StandardConversionSequence& SCS2)
1791{
1792  // Standard conversion sequence S1 is a better conversion sequence
1793  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1794
1795  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1796  //     sequences in the canonical form defined by 13.3.3.1.1,
1797  //     excluding any Lvalue Transformation; the identity conversion
1798  //     sequence is considered to be a subsequence of any
1799  //     non-identity conversion sequence) or, if not that,
1800  if (ImplicitConversionSequence::CompareKind CK
1801        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1802    return CK;
1803
1804  //  -- the rank of S1 is better than the rank of S2 (by the rules
1805  //     defined below), or, if not that,
1806  ImplicitConversionRank Rank1 = SCS1.getRank();
1807  ImplicitConversionRank Rank2 = SCS2.getRank();
1808  if (Rank1 < Rank2)
1809    return ImplicitConversionSequence::Better;
1810  else if (Rank2 < Rank1)
1811    return ImplicitConversionSequence::Worse;
1812
1813  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1814  // are indistinguishable unless one of the following rules
1815  // applies:
1816
1817  //   A conversion that is not a conversion of a pointer, or
1818  //   pointer to member, to bool is better than another conversion
1819  //   that is such a conversion.
1820  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1821    return SCS2.isPointerConversionToBool()
1822             ? ImplicitConversionSequence::Better
1823             : ImplicitConversionSequence::Worse;
1824
1825  // C++ [over.ics.rank]p4b2:
1826  //
1827  //   If class B is derived directly or indirectly from class A,
1828  //   conversion of B* to A* is better than conversion of B* to
1829  //   void*, and conversion of A* to void* is better than conversion
1830  //   of B* to void*.
1831  bool SCS1ConvertsToVoid
1832    = SCS1.isPointerConversionToVoidPointer(Context);
1833  bool SCS2ConvertsToVoid
1834    = SCS2.isPointerConversionToVoidPointer(Context);
1835  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1836    // Exactly one of the conversion sequences is a conversion to
1837    // a void pointer; it's the worse conversion.
1838    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1839                              : ImplicitConversionSequence::Worse;
1840  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1841    // Neither conversion sequence converts to a void pointer; compare
1842    // their derived-to-base conversions.
1843    if (ImplicitConversionSequence::CompareKind DerivedCK
1844          = CompareDerivedToBaseConversions(SCS1, SCS2))
1845      return DerivedCK;
1846  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1847    // Both conversion sequences are conversions to void
1848    // pointers. Compare the source types to determine if there's an
1849    // inheritance relationship in their sources.
1850    QualType FromType1 = SCS1.getFromType();
1851    QualType FromType2 = SCS2.getFromType();
1852
1853    // Adjust the types we're converting from via the array-to-pointer
1854    // conversion, if we need to.
1855    if (SCS1.First == ICK_Array_To_Pointer)
1856      FromType1 = Context.getArrayDecayedType(FromType1);
1857    if (SCS2.First == ICK_Array_To_Pointer)
1858      FromType2 = Context.getArrayDecayedType(FromType2);
1859
1860    QualType FromPointee1
1861      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1862    QualType FromPointee2
1863      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1864
1865    if (IsDerivedFrom(FromPointee2, FromPointee1))
1866      return ImplicitConversionSequence::Better;
1867    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1868      return ImplicitConversionSequence::Worse;
1869
1870    // Objective-C++: If one interface is more specific than the
1871    // other, it is the better one.
1872    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1873    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1874    if (FromIface1 && FromIface1) {
1875      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1876        return ImplicitConversionSequence::Better;
1877      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1878        return ImplicitConversionSequence::Worse;
1879    }
1880  }
1881
1882  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1883  // bullet 3).
1884  if (ImplicitConversionSequence::CompareKind QualCK
1885        = CompareQualificationConversions(SCS1, SCS2))
1886    return QualCK;
1887
1888  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1889    // C++0x [over.ics.rank]p3b4:
1890    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1891    //      implicit object parameter of a non-static member function declared
1892    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1893    //      rvalue and S2 binds an lvalue reference.
1894    // FIXME: We don't know if we're dealing with the implicit object parameter,
1895    // or if the member function in this case has a ref qualifier.
1896    // (Of course, we don't have ref qualifiers yet.)
1897    if (SCS1.RRefBinding != SCS2.RRefBinding)
1898      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1899                              : ImplicitConversionSequence::Worse;
1900
1901    // C++ [over.ics.rank]p3b4:
1902    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1903    //      which the references refer are the same type except for
1904    //      top-level cv-qualifiers, and the type to which the reference
1905    //      initialized by S2 refers is more cv-qualified than the type
1906    //      to which the reference initialized by S1 refers.
1907    QualType T1 = SCS1.getToType(2);
1908    QualType T2 = SCS2.getToType(2);
1909    T1 = Context.getCanonicalType(T1);
1910    T2 = Context.getCanonicalType(T2);
1911    Qualifiers T1Quals, T2Quals;
1912    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1913    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1914    if (UnqualT1 == UnqualT2) {
1915      // If the type is an array type, promote the element qualifiers to the type
1916      // for comparison.
1917      if (isa<ArrayType>(T1) && T1Quals)
1918        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1919      if (isa<ArrayType>(T2) && T2Quals)
1920        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1921      if (T2.isMoreQualifiedThan(T1))
1922        return ImplicitConversionSequence::Better;
1923      else if (T1.isMoreQualifiedThan(T2))
1924        return ImplicitConversionSequence::Worse;
1925    }
1926  }
1927
1928  return ImplicitConversionSequence::Indistinguishable;
1929}
1930
1931/// CompareQualificationConversions - Compares two standard conversion
1932/// sequences to determine whether they can be ranked based on their
1933/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1934ImplicitConversionSequence::CompareKind
1935Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1936                                      const StandardConversionSequence& SCS2) {
1937  // C++ 13.3.3.2p3:
1938  //  -- S1 and S2 differ only in their qualification conversion and
1939  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1940  //     cv-qualification signature of type T1 is a proper subset of
1941  //     the cv-qualification signature of type T2, and S1 is not the
1942  //     deprecated string literal array-to-pointer conversion (4.2).
1943  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1944      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1945    return ImplicitConversionSequence::Indistinguishable;
1946
1947  // FIXME: the example in the standard doesn't use a qualification
1948  // conversion (!)
1949  QualType T1 = SCS1.getToType(2);
1950  QualType T2 = SCS2.getToType(2);
1951  T1 = Context.getCanonicalType(T1);
1952  T2 = Context.getCanonicalType(T2);
1953  Qualifiers T1Quals, T2Quals;
1954  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1955  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1956
1957  // If the types are the same, we won't learn anything by unwrapped
1958  // them.
1959  if (UnqualT1 == UnqualT2)
1960    return ImplicitConversionSequence::Indistinguishable;
1961
1962  // If the type is an array type, promote the element qualifiers to the type
1963  // for comparison.
1964  if (isa<ArrayType>(T1) && T1Quals)
1965    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1966  if (isa<ArrayType>(T2) && T2Quals)
1967    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1968
1969  ImplicitConversionSequence::CompareKind Result
1970    = ImplicitConversionSequence::Indistinguishable;
1971  while (UnwrapSimilarPointerTypes(T1, T2)) {
1972    // Within each iteration of the loop, we check the qualifiers to
1973    // determine if this still looks like a qualification
1974    // conversion. Then, if all is well, we unwrap one more level of
1975    // pointers or pointers-to-members and do it all again
1976    // until there are no more pointers or pointers-to-members left
1977    // to unwrap. This essentially mimics what
1978    // IsQualificationConversion does, but here we're checking for a
1979    // strict subset of qualifiers.
1980    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1981      // The qualifiers are the same, so this doesn't tell us anything
1982      // about how the sequences rank.
1983      ;
1984    else if (T2.isMoreQualifiedThan(T1)) {
1985      // T1 has fewer qualifiers, so it could be the better sequence.
1986      if (Result == ImplicitConversionSequence::Worse)
1987        // Neither has qualifiers that are a subset of the other's
1988        // qualifiers.
1989        return ImplicitConversionSequence::Indistinguishable;
1990
1991      Result = ImplicitConversionSequence::Better;
1992    } else if (T1.isMoreQualifiedThan(T2)) {
1993      // T2 has fewer qualifiers, so it could be the better sequence.
1994      if (Result == ImplicitConversionSequence::Better)
1995        // Neither has qualifiers that are a subset of the other's
1996        // qualifiers.
1997        return ImplicitConversionSequence::Indistinguishable;
1998
1999      Result = ImplicitConversionSequence::Worse;
2000    } else {
2001      // Qualifiers are disjoint.
2002      return ImplicitConversionSequence::Indistinguishable;
2003    }
2004
2005    // If the types after this point are equivalent, we're done.
2006    if (Context.hasSameUnqualifiedType(T1, T2))
2007      break;
2008  }
2009
2010  // Check that the winning standard conversion sequence isn't using
2011  // the deprecated string literal array to pointer conversion.
2012  switch (Result) {
2013  case ImplicitConversionSequence::Better:
2014    if (SCS1.DeprecatedStringLiteralToCharPtr)
2015      Result = ImplicitConversionSequence::Indistinguishable;
2016    break;
2017
2018  case ImplicitConversionSequence::Indistinguishable:
2019    break;
2020
2021  case ImplicitConversionSequence::Worse:
2022    if (SCS2.DeprecatedStringLiteralToCharPtr)
2023      Result = ImplicitConversionSequence::Indistinguishable;
2024    break;
2025  }
2026
2027  return Result;
2028}
2029
2030/// CompareDerivedToBaseConversions - Compares two standard conversion
2031/// sequences to determine whether they can be ranked based on their
2032/// various kinds of derived-to-base conversions (C++
2033/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2034/// conversions between Objective-C interface types.
2035ImplicitConversionSequence::CompareKind
2036Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2037                                      const StandardConversionSequence& SCS2) {
2038  QualType FromType1 = SCS1.getFromType();
2039  QualType ToType1 = SCS1.getToType(1);
2040  QualType FromType2 = SCS2.getFromType();
2041  QualType ToType2 = SCS2.getToType(1);
2042
2043  // Adjust the types we're converting from via the array-to-pointer
2044  // conversion, if we need to.
2045  if (SCS1.First == ICK_Array_To_Pointer)
2046    FromType1 = Context.getArrayDecayedType(FromType1);
2047  if (SCS2.First == ICK_Array_To_Pointer)
2048    FromType2 = Context.getArrayDecayedType(FromType2);
2049
2050  // Canonicalize all of the types.
2051  FromType1 = Context.getCanonicalType(FromType1);
2052  ToType1 = Context.getCanonicalType(ToType1);
2053  FromType2 = Context.getCanonicalType(FromType2);
2054  ToType2 = Context.getCanonicalType(ToType2);
2055
2056  // C++ [over.ics.rank]p4b3:
2057  //
2058  //   If class B is derived directly or indirectly from class A and
2059  //   class C is derived directly or indirectly from B,
2060  //
2061  // For Objective-C, we let A, B, and C also be Objective-C
2062  // interfaces.
2063
2064  // Compare based on pointer conversions.
2065  if (SCS1.Second == ICK_Pointer_Conversion &&
2066      SCS2.Second == ICK_Pointer_Conversion &&
2067      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2068      FromType1->isPointerType() && FromType2->isPointerType() &&
2069      ToType1->isPointerType() && ToType2->isPointerType()) {
2070    QualType FromPointee1
2071      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2072    QualType ToPointee1
2073      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2074    QualType FromPointee2
2075      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2076    QualType ToPointee2
2077      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2078
2079    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2080    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2081    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2082    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2083
2084    //   -- conversion of C* to B* is better than conversion of C* to A*,
2085    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2086      if (IsDerivedFrom(ToPointee1, ToPointee2))
2087        return ImplicitConversionSequence::Better;
2088      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2089        return ImplicitConversionSequence::Worse;
2090
2091      if (ToIface1 && ToIface2) {
2092        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2093          return ImplicitConversionSequence::Better;
2094        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2095          return ImplicitConversionSequence::Worse;
2096      }
2097    }
2098
2099    //   -- conversion of B* to A* is better than conversion of C* to A*,
2100    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2101      if (IsDerivedFrom(FromPointee2, FromPointee1))
2102        return ImplicitConversionSequence::Better;
2103      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2104        return ImplicitConversionSequence::Worse;
2105
2106      if (FromIface1 && FromIface2) {
2107        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2108          return ImplicitConversionSequence::Better;
2109        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2110          return ImplicitConversionSequence::Worse;
2111      }
2112    }
2113  }
2114
2115  // Ranking of member-pointer types.
2116  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2117      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2118      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2119    const MemberPointerType * FromMemPointer1 =
2120                                        FromType1->getAs<MemberPointerType>();
2121    const MemberPointerType * ToMemPointer1 =
2122                                          ToType1->getAs<MemberPointerType>();
2123    const MemberPointerType * FromMemPointer2 =
2124                                          FromType2->getAs<MemberPointerType>();
2125    const MemberPointerType * ToMemPointer2 =
2126                                          ToType2->getAs<MemberPointerType>();
2127    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2128    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2129    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2130    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2131    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2132    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2133    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2134    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2135    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2136    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2137      if (IsDerivedFrom(ToPointee1, ToPointee2))
2138        return ImplicitConversionSequence::Worse;
2139      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2140        return ImplicitConversionSequence::Better;
2141    }
2142    // conversion of B::* to C::* is better than conversion of A::* to C::*
2143    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2144      if (IsDerivedFrom(FromPointee1, FromPointee2))
2145        return ImplicitConversionSequence::Better;
2146      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2147        return ImplicitConversionSequence::Worse;
2148    }
2149  }
2150
2151  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2152      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2153      SCS1.Second == ICK_Derived_To_Base) {
2154    //   -- conversion of C to B is better than conversion of C to A,
2155    //   -- binding of an expression of type C to a reference of type
2156    //      B& is better than binding an expression of type C to a
2157    //      reference of type A&,
2158    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2159        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2160      if (IsDerivedFrom(ToType1, ToType2))
2161        return ImplicitConversionSequence::Better;
2162      else if (IsDerivedFrom(ToType2, ToType1))
2163        return ImplicitConversionSequence::Worse;
2164    }
2165
2166    //   -- conversion of B to A is better than conversion of C to A.
2167    //   -- binding of an expression of type B to a reference of type
2168    //      A& is better than binding an expression of type C to a
2169    //      reference of type A&,
2170    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2171        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2172      if (IsDerivedFrom(FromType2, FromType1))
2173        return ImplicitConversionSequence::Better;
2174      else if (IsDerivedFrom(FromType1, FromType2))
2175        return ImplicitConversionSequence::Worse;
2176    }
2177  }
2178
2179  return ImplicitConversionSequence::Indistinguishable;
2180}
2181
2182/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2183/// determine whether they are reference-related,
2184/// reference-compatible, reference-compatible with added
2185/// qualification, or incompatible, for use in C++ initialization by
2186/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2187/// type, and the first type (T1) is the pointee type of the reference
2188/// type being initialized.
2189Sema::ReferenceCompareResult
2190Sema::CompareReferenceRelationship(SourceLocation Loc,
2191                                   QualType OrigT1, QualType OrigT2,
2192                                   bool& DerivedToBase) {
2193  assert(!OrigT1->isReferenceType() &&
2194    "T1 must be the pointee type of the reference type");
2195  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2196
2197  QualType T1 = Context.getCanonicalType(OrigT1);
2198  QualType T2 = Context.getCanonicalType(OrigT2);
2199  Qualifiers T1Quals, T2Quals;
2200  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2201  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2202
2203  // C++ [dcl.init.ref]p4:
2204  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2205  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2206  //   T1 is a base class of T2.
2207  if (UnqualT1 == UnqualT2)
2208    DerivedToBase = false;
2209  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2210           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2211           IsDerivedFrom(UnqualT2, UnqualT1))
2212    DerivedToBase = true;
2213  else
2214    return Ref_Incompatible;
2215
2216  // At this point, we know that T1 and T2 are reference-related (at
2217  // least).
2218
2219  // If the type is an array type, promote the element qualifiers to the type
2220  // for comparison.
2221  if (isa<ArrayType>(T1) && T1Quals)
2222    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2223  if (isa<ArrayType>(T2) && T2Quals)
2224    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2225
2226  // C++ [dcl.init.ref]p4:
2227  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2228  //   reference-related to T2 and cv1 is the same cv-qualification
2229  //   as, or greater cv-qualification than, cv2. For purposes of
2230  //   overload resolution, cases for which cv1 is greater
2231  //   cv-qualification than cv2 are identified as
2232  //   reference-compatible with added qualification (see 13.3.3.2).
2233  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2234    return Ref_Compatible;
2235  else if (T1.isMoreQualifiedThan(T2))
2236    return Ref_Compatible_With_Added_Qualification;
2237  else
2238    return Ref_Related;
2239}
2240
2241/// \brief Compute an implicit conversion sequence for reference
2242/// initialization.
2243static ImplicitConversionSequence
2244TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2245                 SourceLocation DeclLoc,
2246                 bool SuppressUserConversions,
2247                 bool AllowExplicit, bool ForceRValue) {
2248  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2249
2250  // Most paths end in a failed conversion.
2251  ImplicitConversionSequence ICS;
2252  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2253
2254  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2255  QualType T2 = Init->getType();
2256
2257  // If the initializer is the address of an overloaded function, try
2258  // to resolve the overloaded function. If all goes well, T2 is the
2259  // type of the resulting function.
2260  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2261    DeclAccessPair Found;
2262    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2263                                                                false, Found))
2264      T2 = Fn->getType();
2265  }
2266
2267  // Compute some basic properties of the types and the initializer.
2268  bool isRValRef = DeclType->isRValueReferenceType();
2269  bool DerivedToBase = false;
2270  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2271                                                  Init->isLvalue(S.Context);
2272  Sema::ReferenceCompareResult RefRelationship
2273    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2274
2275  // C++ [dcl.init.ref]p5:
2276  //   A reference to type "cv1 T1" is initialized by an expression
2277  //   of type "cv2 T2" as follows:
2278
2279  //     -- If the initializer expression
2280
2281  // C++ [over.ics.ref]p3:
2282  //   Except for an implicit object parameter, for which see 13.3.1,
2283  //   a standard conversion sequence cannot be formed if it requires
2284  //   binding an lvalue reference to non-const to an rvalue or
2285  //   binding an rvalue reference to an lvalue.
2286  if (isRValRef && InitLvalue == Expr::LV_Valid)
2287    return ICS;
2288
2289  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2290  //          reference-compatible with "cv2 T2," or
2291  //
2292  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2293  if (InitLvalue == Expr::LV_Valid &&
2294      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2295    // C++ [over.ics.ref]p1:
2296    //   When a parameter of reference type binds directly (8.5.3)
2297    //   to an argument expression, the implicit conversion sequence
2298    //   is the identity conversion, unless the argument expression
2299    //   has a type that is a derived class of the parameter type,
2300    //   in which case the implicit conversion sequence is a
2301    //   derived-to-base Conversion (13.3.3.1).
2302    ICS.setStandard();
2303    ICS.Standard.First = ICK_Identity;
2304    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2305    ICS.Standard.Third = ICK_Identity;
2306    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2307    ICS.Standard.setToType(0, T2);
2308    ICS.Standard.setToType(1, T1);
2309    ICS.Standard.setToType(2, T1);
2310    ICS.Standard.ReferenceBinding = true;
2311    ICS.Standard.DirectBinding = true;
2312    ICS.Standard.RRefBinding = false;
2313    ICS.Standard.CopyConstructor = 0;
2314
2315    // Nothing more to do: the inaccessibility/ambiguity check for
2316    // derived-to-base conversions is suppressed when we're
2317    // computing the implicit conversion sequence (C++
2318    // [over.best.ics]p2).
2319    return ICS;
2320  }
2321
2322  //       -- has a class type (i.e., T2 is a class type), where T1 is
2323  //          not reference-related to T2, and can be implicitly
2324  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2325  //          is reference-compatible with "cv3 T3" 92) (this
2326  //          conversion is selected by enumerating the applicable
2327  //          conversion functions (13.3.1.6) and choosing the best
2328  //          one through overload resolution (13.3)),
2329  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2330      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2331      RefRelationship == Sema::Ref_Incompatible) {
2332    CXXRecordDecl *T2RecordDecl
2333      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2334
2335    OverloadCandidateSet CandidateSet(DeclLoc);
2336    const UnresolvedSetImpl *Conversions
2337      = T2RecordDecl->getVisibleConversionFunctions();
2338    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2339           E = Conversions->end(); I != E; ++I) {
2340      NamedDecl *D = *I;
2341      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2342      if (isa<UsingShadowDecl>(D))
2343        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2344
2345      FunctionTemplateDecl *ConvTemplate
2346        = dyn_cast<FunctionTemplateDecl>(D);
2347      CXXConversionDecl *Conv;
2348      if (ConvTemplate)
2349        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2350      else
2351        Conv = cast<CXXConversionDecl>(D);
2352
2353      // If the conversion function doesn't return a reference type,
2354      // it can't be considered for this conversion.
2355      if (Conv->getConversionType()->isLValueReferenceType() &&
2356          (AllowExplicit || !Conv->isExplicit())) {
2357        if (ConvTemplate)
2358          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2359                                         Init, DeclType, CandidateSet);
2360        else
2361          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2362                                 DeclType, CandidateSet);
2363      }
2364    }
2365
2366    OverloadCandidateSet::iterator Best;
2367    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2368    case OR_Success:
2369      // C++ [over.ics.ref]p1:
2370      //
2371      //   [...] If the parameter binds directly to the result of
2372      //   applying a conversion function to the argument
2373      //   expression, the implicit conversion sequence is a
2374      //   user-defined conversion sequence (13.3.3.1.2), with the
2375      //   second standard conversion sequence either an identity
2376      //   conversion or, if the conversion function returns an
2377      //   entity of a type that is a derived class of the parameter
2378      //   type, a derived-to-base Conversion.
2379      if (!Best->FinalConversion.DirectBinding)
2380        break;
2381
2382      ICS.setUserDefined();
2383      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2384      ICS.UserDefined.After = Best->FinalConversion;
2385      ICS.UserDefined.ConversionFunction = Best->Function;
2386      ICS.UserDefined.EllipsisConversion = false;
2387      assert(ICS.UserDefined.After.ReferenceBinding &&
2388             ICS.UserDefined.After.DirectBinding &&
2389             "Expected a direct reference binding!");
2390      return ICS;
2391
2392    case OR_Ambiguous:
2393      ICS.setAmbiguous();
2394      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2395           Cand != CandidateSet.end(); ++Cand)
2396        if (Cand->Viable)
2397          ICS.Ambiguous.addConversion(Cand->Function);
2398      return ICS;
2399
2400    case OR_No_Viable_Function:
2401    case OR_Deleted:
2402      // There was no suitable conversion, or we found a deleted
2403      // conversion; continue with other checks.
2404      break;
2405    }
2406  }
2407
2408  //     -- Otherwise, the reference shall be to a non-volatile const
2409  //        type (i.e., cv1 shall be const), or the reference shall be an
2410  //        rvalue reference and the initializer expression shall be an rvalue.
2411  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const)
2412    return ICS;
2413
2414  //       -- If the initializer expression is an rvalue, with T2 a
2415  //          class type, and "cv1 T1" is reference-compatible with
2416  //          "cv2 T2," the reference is bound in one of the
2417  //          following ways (the choice is implementation-defined):
2418  //
2419  //          -- The reference is bound to the object represented by
2420  //             the rvalue (see 3.10) or to a sub-object within that
2421  //             object.
2422  //
2423  //          -- A temporary of type "cv1 T2" [sic] is created, and
2424  //             a constructor is called to copy the entire rvalue
2425  //             object into the temporary. The reference is bound to
2426  //             the temporary or to a sub-object within the
2427  //             temporary.
2428  //
2429  //          The constructor that would be used to make the copy
2430  //          shall be callable whether or not the copy is actually
2431  //          done.
2432  //
2433  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2434  // freedom, so we will always take the first option and never build
2435  // a temporary in this case.
2436  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2437      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2438    ICS.setStandard();
2439    ICS.Standard.First = ICK_Identity;
2440    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2441    ICS.Standard.Third = ICK_Identity;
2442    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2443    ICS.Standard.setToType(0, T2);
2444    ICS.Standard.setToType(1, T1);
2445    ICS.Standard.setToType(2, T1);
2446    ICS.Standard.ReferenceBinding = true;
2447    ICS.Standard.DirectBinding = false;
2448    ICS.Standard.RRefBinding = isRValRef;
2449    ICS.Standard.CopyConstructor = 0;
2450    return ICS;
2451  }
2452
2453  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2454  //          initialized from the initializer expression using the
2455  //          rules for a non-reference copy initialization (8.5). The
2456  //          reference is then bound to the temporary. If T1 is
2457  //          reference-related to T2, cv1 must be the same
2458  //          cv-qualification as, or greater cv-qualification than,
2459  //          cv2; otherwise, the program is ill-formed.
2460  if (RefRelationship == Sema::Ref_Related) {
2461    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2462    // we would be reference-compatible or reference-compatible with
2463    // added qualification. But that wasn't the case, so the reference
2464    // initialization fails.
2465    return ICS;
2466  }
2467
2468  // If at least one of the types is a class type, the types are not
2469  // related, and we aren't allowed any user conversions, the
2470  // reference binding fails. This case is important for breaking
2471  // recursion, since TryImplicitConversion below will attempt to
2472  // create a temporary through the use of a copy constructor.
2473  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2474      (T1->isRecordType() || T2->isRecordType()))
2475    return ICS;
2476
2477  // C++ [over.ics.ref]p2:
2478  //
2479  //   When a parameter of reference type is not bound directly to
2480  //   an argument expression, the conversion sequence is the one
2481  //   required to convert the argument expression to the
2482  //   underlying type of the reference according to
2483  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2484  //   to copy-initializing a temporary of the underlying type with
2485  //   the argument expression. Any difference in top-level
2486  //   cv-qualification is subsumed by the initialization itself
2487  //   and does not constitute a conversion.
2488  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2489                                /*AllowExplicit=*/false,
2490                                /*ForceRValue=*/false,
2491                                /*InOverloadResolution=*/false);
2492
2493  // Of course, that's still a reference binding.
2494  if (ICS.isStandard()) {
2495    ICS.Standard.ReferenceBinding = true;
2496    ICS.Standard.RRefBinding = isRValRef;
2497  } else if (ICS.isUserDefined()) {
2498    ICS.UserDefined.After.ReferenceBinding = true;
2499    ICS.UserDefined.After.RRefBinding = isRValRef;
2500  }
2501  return ICS;
2502}
2503
2504/// TryCopyInitialization - Try to copy-initialize a value of type
2505/// ToType from the expression From. Return the implicit conversion
2506/// sequence required to pass this argument, which may be a bad
2507/// conversion sequence (meaning that the argument cannot be passed to
2508/// a parameter of this type). If @p SuppressUserConversions, then we
2509/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2510/// then we treat @p From as an rvalue, even if it is an lvalue.
2511ImplicitConversionSequence
2512Sema::TryCopyInitialization(Expr *From, QualType ToType,
2513                            bool SuppressUserConversions, bool ForceRValue,
2514                            bool InOverloadResolution) {
2515  if (ToType->isReferenceType())
2516    return TryReferenceInit(*this, From, ToType,
2517                            /*FIXME:*/From->getLocStart(),
2518                            SuppressUserConversions,
2519                            /*AllowExplicit=*/false,
2520                            ForceRValue);
2521
2522  return TryImplicitConversion(From, ToType,
2523                               SuppressUserConversions,
2524                               /*AllowExplicit=*/false,
2525                               ForceRValue,
2526                               InOverloadResolution);
2527}
2528
2529/// TryObjectArgumentInitialization - Try to initialize the object
2530/// parameter of the given member function (@c Method) from the
2531/// expression @p From.
2532ImplicitConversionSequence
2533Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2534                                      CXXMethodDecl *Method,
2535                                      CXXRecordDecl *ActingContext) {
2536  QualType ClassType = Context.getTypeDeclType(ActingContext);
2537  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2538  //                 const volatile object.
2539  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2540    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2541  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2542
2543  // Set up the conversion sequence as a "bad" conversion, to allow us
2544  // to exit early.
2545  ImplicitConversionSequence ICS;
2546
2547  // We need to have an object of class type.
2548  QualType FromType = OrigFromType;
2549  if (const PointerType *PT = FromType->getAs<PointerType>())
2550    FromType = PT->getPointeeType();
2551
2552  assert(FromType->isRecordType());
2553
2554  // The implicit object parameter is has the type "reference to cv X",
2555  // where X is the class of which the function is a member
2556  // (C++ [over.match.funcs]p4). However, when finding an implicit
2557  // conversion sequence for the argument, we are not allowed to
2558  // create temporaries or perform user-defined conversions
2559  // (C++ [over.match.funcs]p5). We perform a simplified version of
2560  // reference binding here, that allows class rvalues to bind to
2561  // non-constant references.
2562
2563  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2564  // with the implicit object parameter (C++ [over.match.funcs]p5).
2565  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2566  if (ImplicitParamType.getCVRQualifiers()
2567                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2568      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2569    ICS.setBad(BadConversionSequence::bad_qualifiers,
2570               OrigFromType, ImplicitParamType);
2571    return ICS;
2572  }
2573
2574  // Check that we have either the same type or a derived type. It
2575  // affects the conversion rank.
2576  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2577  ImplicitConversionKind SecondKind;
2578  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2579    SecondKind = ICK_Identity;
2580  } else if (IsDerivedFrom(FromType, ClassType))
2581    SecondKind = ICK_Derived_To_Base;
2582  else {
2583    ICS.setBad(BadConversionSequence::unrelated_class,
2584               FromType, ImplicitParamType);
2585    return ICS;
2586  }
2587
2588  // Success. Mark this as a reference binding.
2589  ICS.setStandard();
2590  ICS.Standard.setAsIdentityConversion();
2591  ICS.Standard.Second = SecondKind;
2592  ICS.Standard.setFromType(FromType);
2593  ICS.Standard.setAllToTypes(ImplicitParamType);
2594  ICS.Standard.ReferenceBinding = true;
2595  ICS.Standard.DirectBinding = true;
2596  ICS.Standard.RRefBinding = false;
2597  return ICS;
2598}
2599
2600/// PerformObjectArgumentInitialization - Perform initialization of
2601/// the implicit object parameter for the given Method with the given
2602/// expression.
2603bool
2604Sema::PerformObjectArgumentInitialization(Expr *&From,
2605                                          NestedNameSpecifier *Qualifier,
2606                                          NamedDecl *FoundDecl,
2607                                          CXXMethodDecl *Method) {
2608  QualType FromRecordType, DestType;
2609  QualType ImplicitParamRecordType  =
2610    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2611
2612  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2613    FromRecordType = PT->getPointeeType();
2614    DestType = Method->getThisType(Context);
2615  } else {
2616    FromRecordType = From->getType();
2617    DestType = ImplicitParamRecordType;
2618  }
2619
2620  // Note that we always use the true parent context when performing
2621  // the actual argument initialization.
2622  ImplicitConversionSequence ICS
2623    = TryObjectArgumentInitialization(From->getType(), Method,
2624                                      Method->getParent());
2625  if (ICS.isBad())
2626    return Diag(From->getSourceRange().getBegin(),
2627                diag::err_implicit_object_parameter_init)
2628       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2629
2630  if (ICS.Standard.Second == ICK_Derived_To_Base)
2631    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2632
2633  if (!Context.hasSameType(From->getType(), DestType))
2634    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2635                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2636  return false;
2637}
2638
2639/// TryContextuallyConvertToBool - Attempt to contextually convert the
2640/// expression From to bool (C++0x [conv]p3).
2641ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2642  return TryImplicitConversion(From, Context.BoolTy,
2643                               // FIXME: Are these flags correct?
2644                               /*SuppressUserConversions=*/false,
2645                               /*AllowExplicit=*/true,
2646                               /*ForceRValue=*/false,
2647                               /*InOverloadResolution=*/false);
2648}
2649
2650/// PerformContextuallyConvertToBool - Perform a contextual conversion
2651/// of the expression From to bool (C++0x [conv]p3).
2652bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2653  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2654  if (!ICS.isBad())
2655    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2656
2657  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2658    return  Diag(From->getSourceRange().getBegin(),
2659                 diag::err_typecheck_bool_condition)
2660                  << From->getType() << From->getSourceRange();
2661  return true;
2662}
2663
2664/// AddOverloadCandidate - Adds the given function to the set of
2665/// candidate functions, using the given function call arguments.  If
2666/// @p SuppressUserConversions, then don't allow user-defined
2667/// conversions via constructors or conversion operators.
2668/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2669/// hacky way to implement the overloading rules for elidable copy
2670/// initialization in C++0x (C++0x 12.8p15).
2671///
2672/// \para PartialOverloading true if we are performing "partial" overloading
2673/// based on an incomplete set of function arguments. This feature is used by
2674/// code completion.
2675void
2676Sema::AddOverloadCandidate(FunctionDecl *Function,
2677                           DeclAccessPair FoundDecl,
2678                           Expr **Args, unsigned NumArgs,
2679                           OverloadCandidateSet& CandidateSet,
2680                           bool SuppressUserConversions,
2681                           bool ForceRValue,
2682                           bool PartialOverloading) {
2683  const FunctionProtoType* Proto
2684    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2685  assert(Proto && "Functions without a prototype cannot be overloaded");
2686  assert(!Function->getDescribedFunctionTemplate() &&
2687         "Use AddTemplateOverloadCandidate for function templates");
2688
2689  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2690    if (!isa<CXXConstructorDecl>(Method)) {
2691      // If we get here, it's because we're calling a member function
2692      // that is named without a member access expression (e.g.,
2693      // "this->f") that was either written explicitly or created
2694      // implicitly. This can happen with a qualified call to a member
2695      // function, e.g., X::f(). We use an empty type for the implied
2696      // object argument (C++ [over.call.func]p3), and the acting context
2697      // is irrelevant.
2698      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2699                         QualType(), Args, NumArgs, CandidateSet,
2700                         SuppressUserConversions, ForceRValue);
2701      return;
2702    }
2703    // We treat a constructor like a non-member function, since its object
2704    // argument doesn't participate in overload resolution.
2705  }
2706
2707  if (!CandidateSet.isNewCandidate(Function))
2708    return;
2709
2710  // Overload resolution is always an unevaluated context.
2711  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2712
2713  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2714    // C++ [class.copy]p3:
2715    //   A member function template is never instantiated to perform the copy
2716    //   of a class object to an object of its class type.
2717    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2718    if (NumArgs == 1 &&
2719        Constructor->isCopyConstructorLikeSpecialization() &&
2720        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2721         IsDerivedFrom(Args[0]->getType(), ClassType)))
2722      return;
2723  }
2724
2725  // Add this candidate
2726  CandidateSet.push_back(OverloadCandidate());
2727  OverloadCandidate& Candidate = CandidateSet.back();
2728  Candidate.FoundDecl = FoundDecl;
2729  Candidate.Function = Function;
2730  Candidate.Viable = true;
2731  Candidate.IsSurrogate = false;
2732  Candidate.IgnoreObjectArgument = false;
2733
2734  unsigned NumArgsInProto = Proto->getNumArgs();
2735
2736  // (C++ 13.3.2p2): A candidate function having fewer than m
2737  // parameters is viable only if it has an ellipsis in its parameter
2738  // list (8.3.5).
2739  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2740      !Proto->isVariadic()) {
2741    Candidate.Viable = false;
2742    Candidate.FailureKind = ovl_fail_too_many_arguments;
2743    return;
2744  }
2745
2746  // (C++ 13.3.2p2): A candidate function having more than m parameters
2747  // is viable only if the (m+1)st parameter has a default argument
2748  // (8.3.6). For the purposes of overload resolution, the
2749  // parameter list is truncated on the right, so that there are
2750  // exactly m parameters.
2751  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2752  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2753    // Not enough arguments.
2754    Candidate.Viable = false;
2755    Candidate.FailureKind = ovl_fail_too_few_arguments;
2756    return;
2757  }
2758
2759  // Determine the implicit conversion sequences for each of the
2760  // arguments.
2761  Candidate.Conversions.resize(NumArgs);
2762  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2763    if (ArgIdx < NumArgsInProto) {
2764      // (C++ 13.3.2p3): for F to be a viable function, there shall
2765      // exist for each argument an implicit conversion sequence
2766      // (13.3.3.1) that converts that argument to the corresponding
2767      // parameter of F.
2768      QualType ParamType = Proto->getArgType(ArgIdx);
2769      Candidate.Conversions[ArgIdx]
2770        = TryCopyInitialization(Args[ArgIdx], ParamType,
2771                                SuppressUserConversions, ForceRValue,
2772                                /*InOverloadResolution=*/true);
2773      if (Candidate.Conversions[ArgIdx].isBad()) {
2774        Candidate.Viable = false;
2775        Candidate.FailureKind = ovl_fail_bad_conversion;
2776        break;
2777      }
2778    } else {
2779      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2780      // argument for which there is no corresponding parameter is
2781      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2782      Candidate.Conversions[ArgIdx].setEllipsis();
2783    }
2784  }
2785}
2786
2787/// \brief Add all of the function declarations in the given function set to
2788/// the overload canddiate set.
2789void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2790                                 Expr **Args, unsigned NumArgs,
2791                                 OverloadCandidateSet& CandidateSet,
2792                                 bool SuppressUserConversions) {
2793  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2794    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2795    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2796      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2797        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2798                           cast<CXXMethodDecl>(FD)->getParent(),
2799                           Args[0]->getType(), Args + 1, NumArgs - 1,
2800                           CandidateSet, SuppressUserConversions);
2801      else
2802        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2803                             SuppressUserConversions);
2804    } else {
2805      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2806      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2807          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2808        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2809                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2810                                   /*FIXME: explicit args */ 0,
2811                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2812                                   CandidateSet,
2813                                   SuppressUserConversions);
2814      else
2815        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2816                                     /*FIXME: explicit args */ 0,
2817                                     Args, NumArgs, CandidateSet,
2818                                     SuppressUserConversions);
2819    }
2820  }
2821}
2822
2823/// AddMethodCandidate - Adds a named decl (which is some kind of
2824/// method) as a method candidate to the given overload set.
2825void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2826                              QualType ObjectType,
2827                              Expr **Args, unsigned NumArgs,
2828                              OverloadCandidateSet& CandidateSet,
2829                              bool SuppressUserConversions, bool ForceRValue) {
2830  NamedDecl *Decl = FoundDecl.getDecl();
2831  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2832
2833  if (isa<UsingShadowDecl>(Decl))
2834    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2835
2836  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2837    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2838           "Expected a member function template");
2839    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2840                               /*ExplicitArgs*/ 0,
2841                               ObjectType, Args, NumArgs,
2842                               CandidateSet,
2843                               SuppressUserConversions,
2844                               ForceRValue);
2845  } else {
2846    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2847                       ObjectType, Args, NumArgs,
2848                       CandidateSet, SuppressUserConversions, ForceRValue);
2849  }
2850}
2851
2852/// AddMethodCandidate - Adds the given C++ member function to the set
2853/// of candidate functions, using the given function call arguments
2854/// and the object argument (@c Object). For example, in a call
2855/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2856/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2857/// allow user-defined conversions via constructors or conversion
2858/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2859/// a slightly hacky way to implement the overloading rules for elidable copy
2860/// initialization in C++0x (C++0x 12.8p15).
2861void
2862Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2863                         CXXRecordDecl *ActingContext, QualType ObjectType,
2864                         Expr **Args, unsigned NumArgs,
2865                         OverloadCandidateSet& CandidateSet,
2866                         bool SuppressUserConversions, bool ForceRValue) {
2867  const FunctionProtoType* Proto
2868    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2869  assert(Proto && "Methods without a prototype cannot be overloaded");
2870  assert(!isa<CXXConstructorDecl>(Method) &&
2871         "Use AddOverloadCandidate for constructors");
2872
2873  if (!CandidateSet.isNewCandidate(Method))
2874    return;
2875
2876  // Overload resolution is always an unevaluated context.
2877  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2878
2879  // Add this candidate
2880  CandidateSet.push_back(OverloadCandidate());
2881  OverloadCandidate& Candidate = CandidateSet.back();
2882  Candidate.FoundDecl = FoundDecl;
2883  Candidate.Function = Method;
2884  Candidate.IsSurrogate = false;
2885  Candidate.IgnoreObjectArgument = false;
2886
2887  unsigned NumArgsInProto = Proto->getNumArgs();
2888
2889  // (C++ 13.3.2p2): A candidate function having fewer than m
2890  // parameters is viable only if it has an ellipsis in its parameter
2891  // list (8.3.5).
2892  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2893    Candidate.Viable = false;
2894    Candidate.FailureKind = ovl_fail_too_many_arguments;
2895    return;
2896  }
2897
2898  // (C++ 13.3.2p2): A candidate function having more than m parameters
2899  // is viable only if the (m+1)st parameter has a default argument
2900  // (8.3.6). For the purposes of overload resolution, the
2901  // parameter list is truncated on the right, so that there are
2902  // exactly m parameters.
2903  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2904  if (NumArgs < MinRequiredArgs) {
2905    // Not enough arguments.
2906    Candidate.Viable = false;
2907    Candidate.FailureKind = ovl_fail_too_few_arguments;
2908    return;
2909  }
2910
2911  Candidate.Viable = true;
2912  Candidate.Conversions.resize(NumArgs + 1);
2913
2914  if (Method->isStatic() || ObjectType.isNull())
2915    // The implicit object argument is ignored.
2916    Candidate.IgnoreObjectArgument = true;
2917  else {
2918    // Determine the implicit conversion sequence for the object
2919    // parameter.
2920    Candidate.Conversions[0]
2921      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2922    if (Candidate.Conversions[0].isBad()) {
2923      Candidate.Viable = false;
2924      Candidate.FailureKind = ovl_fail_bad_conversion;
2925      return;
2926    }
2927  }
2928
2929  // Determine the implicit conversion sequences for each of the
2930  // arguments.
2931  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2932    if (ArgIdx < NumArgsInProto) {
2933      // (C++ 13.3.2p3): for F to be a viable function, there shall
2934      // exist for each argument an implicit conversion sequence
2935      // (13.3.3.1) that converts that argument to the corresponding
2936      // parameter of F.
2937      QualType ParamType = Proto->getArgType(ArgIdx);
2938      Candidate.Conversions[ArgIdx + 1]
2939        = TryCopyInitialization(Args[ArgIdx], ParamType,
2940                                SuppressUserConversions, ForceRValue,
2941                                /*InOverloadResolution=*/true);
2942      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2943        Candidate.Viable = false;
2944        Candidate.FailureKind = ovl_fail_bad_conversion;
2945        break;
2946      }
2947    } else {
2948      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2949      // argument for which there is no corresponding parameter is
2950      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2951      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2952    }
2953  }
2954}
2955
2956/// \brief Add a C++ member function template as a candidate to the candidate
2957/// set, using template argument deduction to produce an appropriate member
2958/// function template specialization.
2959void
2960Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2961                                 DeclAccessPair FoundDecl,
2962                                 CXXRecordDecl *ActingContext,
2963                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2964                                 QualType ObjectType,
2965                                 Expr **Args, unsigned NumArgs,
2966                                 OverloadCandidateSet& CandidateSet,
2967                                 bool SuppressUserConversions,
2968                                 bool ForceRValue) {
2969  if (!CandidateSet.isNewCandidate(MethodTmpl))
2970    return;
2971
2972  // C++ [over.match.funcs]p7:
2973  //   In each case where a candidate is a function template, candidate
2974  //   function template specializations are generated using template argument
2975  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2976  //   candidate functions in the usual way.113) A given name can refer to one
2977  //   or more function templates and also to a set of overloaded non-template
2978  //   functions. In such a case, the candidate functions generated from each
2979  //   function template are combined with the set of non-template candidate
2980  //   functions.
2981  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2982  FunctionDecl *Specialization = 0;
2983  if (TemplateDeductionResult Result
2984      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2985                                Args, NumArgs, Specialization, Info)) {
2986        // FIXME: Record what happened with template argument deduction, so
2987        // that we can give the user a beautiful diagnostic.
2988        (void)Result;
2989        return;
2990      }
2991
2992  // Add the function template specialization produced by template argument
2993  // deduction as a candidate.
2994  assert(Specialization && "Missing member function template specialization?");
2995  assert(isa<CXXMethodDecl>(Specialization) &&
2996         "Specialization is not a member function?");
2997  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2998                     ActingContext, ObjectType, Args, NumArgs,
2999                     CandidateSet, SuppressUserConversions, ForceRValue);
3000}
3001
3002/// \brief Add a C++ function template specialization as a candidate
3003/// in the candidate set, using template argument deduction to produce
3004/// an appropriate function template specialization.
3005void
3006Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3007                                   DeclAccessPair FoundDecl,
3008                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3009                                   Expr **Args, unsigned NumArgs,
3010                                   OverloadCandidateSet& CandidateSet,
3011                                   bool SuppressUserConversions,
3012                                   bool ForceRValue) {
3013  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3014    return;
3015
3016  // C++ [over.match.funcs]p7:
3017  //   In each case where a candidate is a function template, candidate
3018  //   function template specializations are generated using template argument
3019  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3020  //   candidate functions in the usual way.113) A given name can refer to one
3021  //   or more function templates and also to a set of overloaded non-template
3022  //   functions. In such a case, the candidate functions generated from each
3023  //   function template are combined with the set of non-template candidate
3024  //   functions.
3025  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3026  FunctionDecl *Specialization = 0;
3027  if (TemplateDeductionResult Result
3028        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3029                                  Args, NumArgs, Specialization, Info)) {
3030    CandidateSet.push_back(OverloadCandidate());
3031    OverloadCandidate &Candidate = CandidateSet.back();
3032    Candidate.FoundDecl = FoundDecl;
3033    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3034    Candidate.Viable = false;
3035    Candidate.FailureKind = ovl_fail_bad_deduction;
3036    Candidate.IsSurrogate = false;
3037    Candidate.IgnoreObjectArgument = false;
3038
3039    // TODO: record more information about failed template arguments
3040    Candidate.DeductionFailure.Result = Result;
3041    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3042    return;
3043  }
3044
3045  // Add the function template specialization produced by template argument
3046  // deduction as a candidate.
3047  assert(Specialization && "Missing function template specialization?");
3048  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3049                       SuppressUserConversions, ForceRValue);
3050}
3051
3052/// AddConversionCandidate - Add a C++ conversion function as a
3053/// candidate in the candidate set (C++ [over.match.conv],
3054/// C++ [over.match.copy]). From is the expression we're converting from,
3055/// and ToType is the type that we're eventually trying to convert to
3056/// (which may or may not be the same type as the type that the
3057/// conversion function produces).
3058void
3059Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3060                             DeclAccessPair FoundDecl,
3061                             CXXRecordDecl *ActingContext,
3062                             Expr *From, QualType ToType,
3063                             OverloadCandidateSet& CandidateSet) {
3064  assert(!Conversion->getDescribedFunctionTemplate() &&
3065         "Conversion function templates use AddTemplateConversionCandidate");
3066
3067  if (!CandidateSet.isNewCandidate(Conversion))
3068    return;
3069
3070  // Overload resolution is always an unevaluated context.
3071  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3072
3073  // Add this candidate
3074  CandidateSet.push_back(OverloadCandidate());
3075  OverloadCandidate& Candidate = CandidateSet.back();
3076  Candidate.FoundDecl = FoundDecl;
3077  Candidate.Function = Conversion;
3078  Candidate.IsSurrogate = false;
3079  Candidate.IgnoreObjectArgument = false;
3080  Candidate.FinalConversion.setAsIdentityConversion();
3081  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
3082  Candidate.FinalConversion.setAllToTypes(ToType);
3083
3084  // Determine the implicit conversion sequence for the implicit
3085  // object parameter.
3086  Candidate.Viable = true;
3087  Candidate.Conversions.resize(1);
3088  Candidate.Conversions[0]
3089    = TryObjectArgumentInitialization(From->getType(), Conversion,
3090                                      ActingContext);
3091  // Conversion functions to a different type in the base class is visible in
3092  // the derived class.  So, a derived to base conversion should not participate
3093  // in overload resolution.
3094  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3095    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3096  if (Candidate.Conversions[0].isBad()) {
3097    Candidate.Viable = false;
3098    Candidate.FailureKind = ovl_fail_bad_conversion;
3099    return;
3100  }
3101
3102  // We won't go through a user-define type conversion function to convert a
3103  // derived to base as such conversions are given Conversion Rank. They only
3104  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3105  QualType FromCanon
3106    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3107  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3108  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3109    Candidate.Viable = false;
3110    Candidate.FailureKind = ovl_fail_trivial_conversion;
3111    return;
3112  }
3113
3114
3115  // To determine what the conversion from the result of calling the
3116  // conversion function to the type we're eventually trying to
3117  // convert to (ToType), we need to synthesize a call to the
3118  // conversion function and attempt copy initialization from it. This
3119  // makes sure that we get the right semantics with respect to
3120  // lvalues/rvalues and the type. Fortunately, we can allocate this
3121  // call on the stack and we don't need its arguments to be
3122  // well-formed.
3123  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3124                            From->getLocStart());
3125  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3126                                CastExpr::CK_FunctionToPointerDecay,
3127                                &ConversionRef, false);
3128
3129  // Note that it is safe to allocate CallExpr on the stack here because
3130  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3131  // allocator).
3132  CallExpr Call(Context, &ConversionFn, 0, 0,
3133                Conversion->getConversionType().getNonReferenceType(),
3134                From->getLocStart());
3135  ImplicitConversionSequence ICS =
3136    TryCopyInitialization(&Call, ToType,
3137                          /*SuppressUserConversions=*/true,
3138                          /*ForceRValue=*/false,
3139                          /*InOverloadResolution=*/false);
3140
3141  switch (ICS.getKind()) {
3142  case ImplicitConversionSequence::StandardConversion:
3143    Candidate.FinalConversion = ICS.Standard;
3144
3145    // C++ [over.ics.user]p3:
3146    //   If the user-defined conversion is specified by a specialization of a
3147    //   conversion function template, the second standard conversion sequence
3148    //   shall have exact match rank.
3149    if (Conversion->getPrimaryTemplate() &&
3150        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3151      Candidate.Viable = false;
3152      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3153    }
3154
3155    break;
3156
3157  case ImplicitConversionSequence::BadConversion:
3158    Candidate.Viable = false;
3159    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3160    break;
3161
3162  default:
3163    assert(false &&
3164           "Can only end up with a standard conversion sequence or failure");
3165  }
3166}
3167
3168/// \brief Adds a conversion function template specialization
3169/// candidate to the overload set, using template argument deduction
3170/// to deduce the template arguments of the conversion function
3171/// template from the type that we are converting to (C++
3172/// [temp.deduct.conv]).
3173void
3174Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3175                                     DeclAccessPair FoundDecl,
3176                                     CXXRecordDecl *ActingDC,
3177                                     Expr *From, QualType ToType,
3178                                     OverloadCandidateSet &CandidateSet) {
3179  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3180         "Only conversion function templates permitted here");
3181
3182  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3183    return;
3184
3185  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3186  CXXConversionDecl *Specialization = 0;
3187  if (TemplateDeductionResult Result
3188        = DeduceTemplateArguments(FunctionTemplate, ToType,
3189                                  Specialization, Info)) {
3190    // FIXME: Record what happened with template argument deduction, so
3191    // that we can give the user a beautiful diagnostic.
3192    (void)Result;
3193    return;
3194  }
3195
3196  // Add the conversion function template specialization produced by
3197  // template argument deduction as a candidate.
3198  assert(Specialization && "Missing function template specialization?");
3199  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3200                         CandidateSet);
3201}
3202
3203/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3204/// converts the given @c Object to a function pointer via the
3205/// conversion function @c Conversion, and then attempts to call it
3206/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3207/// the type of function that we'll eventually be calling.
3208void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3209                                 DeclAccessPair FoundDecl,
3210                                 CXXRecordDecl *ActingContext,
3211                                 const FunctionProtoType *Proto,
3212                                 QualType ObjectType,
3213                                 Expr **Args, unsigned NumArgs,
3214                                 OverloadCandidateSet& CandidateSet) {
3215  if (!CandidateSet.isNewCandidate(Conversion))
3216    return;
3217
3218  // Overload resolution is always an unevaluated context.
3219  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3220
3221  CandidateSet.push_back(OverloadCandidate());
3222  OverloadCandidate& Candidate = CandidateSet.back();
3223  Candidate.FoundDecl = FoundDecl;
3224  Candidate.Function = 0;
3225  Candidate.Surrogate = Conversion;
3226  Candidate.Viable = true;
3227  Candidate.IsSurrogate = true;
3228  Candidate.IgnoreObjectArgument = false;
3229  Candidate.Conversions.resize(NumArgs + 1);
3230
3231  // Determine the implicit conversion sequence for the implicit
3232  // object parameter.
3233  ImplicitConversionSequence ObjectInit
3234    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3235  if (ObjectInit.isBad()) {
3236    Candidate.Viable = false;
3237    Candidate.FailureKind = ovl_fail_bad_conversion;
3238    Candidate.Conversions[0] = ObjectInit;
3239    return;
3240  }
3241
3242  // The first conversion is actually a user-defined conversion whose
3243  // first conversion is ObjectInit's standard conversion (which is
3244  // effectively a reference binding). Record it as such.
3245  Candidate.Conversions[0].setUserDefined();
3246  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3247  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3248  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3249  Candidate.Conversions[0].UserDefined.After
3250    = Candidate.Conversions[0].UserDefined.Before;
3251  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3252
3253  // Find the
3254  unsigned NumArgsInProto = Proto->getNumArgs();
3255
3256  // (C++ 13.3.2p2): A candidate function having fewer than m
3257  // parameters is viable only if it has an ellipsis in its parameter
3258  // list (8.3.5).
3259  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3260    Candidate.Viable = false;
3261    Candidate.FailureKind = ovl_fail_too_many_arguments;
3262    return;
3263  }
3264
3265  // Function types don't have any default arguments, so just check if
3266  // we have enough arguments.
3267  if (NumArgs < NumArgsInProto) {
3268    // Not enough arguments.
3269    Candidate.Viable = false;
3270    Candidate.FailureKind = ovl_fail_too_few_arguments;
3271    return;
3272  }
3273
3274  // Determine the implicit conversion sequences for each of the
3275  // arguments.
3276  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3277    if (ArgIdx < NumArgsInProto) {
3278      // (C++ 13.3.2p3): for F to be a viable function, there shall
3279      // exist for each argument an implicit conversion sequence
3280      // (13.3.3.1) that converts that argument to the corresponding
3281      // parameter of F.
3282      QualType ParamType = Proto->getArgType(ArgIdx);
3283      Candidate.Conversions[ArgIdx + 1]
3284        = TryCopyInitialization(Args[ArgIdx], ParamType,
3285                                /*SuppressUserConversions=*/false,
3286                                /*ForceRValue=*/false,
3287                                /*InOverloadResolution=*/false);
3288      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3289        Candidate.Viable = false;
3290        Candidate.FailureKind = ovl_fail_bad_conversion;
3291        break;
3292      }
3293    } else {
3294      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3295      // argument for which there is no corresponding parameter is
3296      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3297      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3298    }
3299  }
3300}
3301
3302// FIXME: This will eventually be removed, once we've migrated all of the
3303// operator overloading logic over to the scheme used by binary operators, which
3304// works for template instantiation.
3305void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3306                                 SourceLocation OpLoc,
3307                                 Expr **Args, unsigned NumArgs,
3308                                 OverloadCandidateSet& CandidateSet,
3309                                 SourceRange OpRange) {
3310  UnresolvedSet<16> Fns;
3311
3312  QualType T1 = Args[0]->getType();
3313  QualType T2;
3314  if (NumArgs > 1)
3315    T2 = Args[1]->getType();
3316
3317  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3318  if (S)
3319    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3320  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3321  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3322                                       CandidateSet);
3323  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3324  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3325}
3326
3327/// \brief Add overload candidates for overloaded operators that are
3328/// member functions.
3329///
3330/// Add the overloaded operator candidates that are member functions
3331/// for the operator Op that was used in an operator expression such
3332/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3333/// CandidateSet will store the added overload candidates. (C++
3334/// [over.match.oper]).
3335void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3336                                       SourceLocation OpLoc,
3337                                       Expr **Args, unsigned NumArgs,
3338                                       OverloadCandidateSet& CandidateSet,
3339                                       SourceRange OpRange) {
3340  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3341
3342  // C++ [over.match.oper]p3:
3343  //   For a unary operator @ with an operand of a type whose
3344  //   cv-unqualified version is T1, and for a binary operator @ with
3345  //   a left operand of a type whose cv-unqualified version is T1 and
3346  //   a right operand of a type whose cv-unqualified version is T2,
3347  //   three sets of candidate functions, designated member
3348  //   candidates, non-member candidates and built-in candidates, are
3349  //   constructed as follows:
3350  QualType T1 = Args[0]->getType();
3351  QualType T2;
3352  if (NumArgs > 1)
3353    T2 = Args[1]->getType();
3354
3355  //     -- If T1 is a class type, the set of member candidates is the
3356  //        result of the qualified lookup of T1::operator@
3357  //        (13.3.1.1.1); otherwise, the set of member candidates is
3358  //        empty.
3359  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3360    // Complete the type if it can be completed. Otherwise, we're done.
3361    if (RequireCompleteType(OpLoc, T1, PDiag()))
3362      return;
3363
3364    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3365    LookupQualifiedName(Operators, T1Rec->getDecl());
3366    Operators.suppressDiagnostics();
3367
3368    for (LookupResult::iterator Oper = Operators.begin(),
3369                             OperEnd = Operators.end();
3370         Oper != OperEnd;
3371         ++Oper)
3372      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3373                         Args + 1, NumArgs - 1, CandidateSet,
3374                         /* SuppressUserConversions = */ false);
3375  }
3376}
3377
3378/// AddBuiltinCandidate - Add a candidate for a built-in
3379/// operator. ResultTy and ParamTys are the result and parameter types
3380/// of the built-in candidate, respectively. Args and NumArgs are the
3381/// arguments being passed to the candidate. IsAssignmentOperator
3382/// should be true when this built-in candidate is an assignment
3383/// operator. NumContextualBoolArguments is the number of arguments
3384/// (at the beginning of the argument list) that will be contextually
3385/// converted to bool.
3386void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3387                               Expr **Args, unsigned NumArgs,
3388                               OverloadCandidateSet& CandidateSet,
3389                               bool IsAssignmentOperator,
3390                               unsigned NumContextualBoolArguments) {
3391  // Overload resolution is always an unevaluated context.
3392  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3393
3394  // Add this candidate
3395  CandidateSet.push_back(OverloadCandidate());
3396  OverloadCandidate& Candidate = CandidateSet.back();
3397  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3398  Candidate.Function = 0;
3399  Candidate.IsSurrogate = false;
3400  Candidate.IgnoreObjectArgument = false;
3401  Candidate.BuiltinTypes.ResultTy = ResultTy;
3402  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3403    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3404
3405  // Determine the implicit conversion sequences for each of the
3406  // arguments.
3407  Candidate.Viable = true;
3408  Candidate.Conversions.resize(NumArgs);
3409  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3410    // C++ [over.match.oper]p4:
3411    //   For the built-in assignment operators, conversions of the
3412    //   left operand are restricted as follows:
3413    //     -- no temporaries are introduced to hold the left operand, and
3414    //     -- no user-defined conversions are applied to the left
3415    //        operand to achieve a type match with the left-most
3416    //        parameter of a built-in candidate.
3417    //
3418    // We block these conversions by turning off user-defined
3419    // conversions, since that is the only way that initialization of
3420    // a reference to a non-class type can occur from something that
3421    // is not of the same type.
3422    if (ArgIdx < NumContextualBoolArguments) {
3423      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3424             "Contextual conversion to bool requires bool type");
3425      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3426    } else {
3427      Candidate.Conversions[ArgIdx]
3428        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3429                                ArgIdx == 0 && IsAssignmentOperator,
3430                                /*ForceRValue=*/false,
3431                                /*InOverloadResolution=*/false);
3432    }
3433    if (Candidate.Conversions[ArgIdx].isBad()) {
3434      Candidate.Viable = false;
3435      Candidate.FailureKind = ovl_fail_bad_conversion;
3436      break;
3437    }
3438  }
3439}
3440
3441/// BuiltinCandidateTypeSet - A set of types that will be used for the
3442/// candidate operator functions for built-in operators (C++
3443/// [over.built]). The types are separated into pointer types and
3444/// enumeration types.
3445class BuiltinCandidateTypeSet  {
3446  /// TypeSet - A set of types.
3447  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3448
3449  /// PointerTypes - The set of pointer types that will be used in the
3450  /// built-in candidates.
3451  TypeSet PointerTypes;
3452
3453  /// MemberPointerTypes - The set of member pointer types that will be
3454  /// used in the built-in candidates.
3455  TypeSet MemberPointerTypes;
3456
3457  /// EnumerationTypes - The set of enumeration types that will be
3458  /// used in the built-in candidates.
3459  TypeSet EnumerationTypes;
3460
3461  /// Sema - The semantic analysis instance where we are building the
3462  /// candidate type set.
3463  Sema &SemaRef;
3464
3465  /// Context - The AST context in which we will build the type sets.
3466  ASTContext &Context;
3467
3468  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3469                                               const Qualifiers &VisibleQuals);
3470  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3471
3472public:
3473  /// iterator - Iterates through the types that are part of the set.
3474  typedef TypeSet::iterator iterator;
3475
3476  BuiltinCandidateTypeSet(Sema &SemaRef)
3477    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3478
3479  void AddTypesConvertedFrom(QualType Ty,
3480                             SourceLocation Loc,
3481                             bool AllowUserConversions,
3482                             bool AllowExplicitConversions,
3483                             const Qualifiers &VisibleTypeConversionsQuals);
3484
3485  /// pointer_begin - First pointer type found;
3486  iterator pointer_begin() { return PointerTypes.begin(); }
3487
3488  /// pointer_end - Past the last pointer type found;
3489  iterator pointer_end() { return PointerTypes.end(); }
3490
3491  /// member_pointer_begin - First member pointer type found;
3492  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3493
3494  /// member_pointer_end - Past the last member pointer type found;
3495  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3496
3497  /// enumeration_begin - First enumeration type found;
3498  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3499
3500  /// enumeration_end - Past the last enumeration type found;
3501  iterator enumeration_end() { return EnumerationTypes.end(); }
3502};
3503
3504/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3505/// the set of pointer types along with any more-qualified variants of
3506/// that type. For example, if @p Ty is "int const *", this routine
3507/// will add "int const *", "int const volatile *", "int const
3508/// restrict *", and "int const volatile restrict *" to the set of
3509/// pointer types. Returns true if the add of @p Ty itself succeeded,
3510/// false otherwise.
3511///
3512/// FIXME: what to do about extended qualifiers?
3513bool
3514BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3515                                             const Qualifiers &VisibleQuals) {
3516
3517  // Insert this type.
3518  if (!PointerTypes.insert(Ty))
3519    return false;
3520
3521  const PointerType *PointerTy = Ty->getAs<PointerType>();
3522  assert(PointerTy && "type was not a pointer type!");
3523
3524  QualType PointeeTy = PointerTy->getPointeeType();
3525  // Don't add qualified variants of arrays. For one, they're not allowed
3526  // (the qualifier would sink to the element type), and for another, the
3527  // only overload situation where it matters is subscript or pointer +- int,
3528  // and those shouldn't have qualifier variants anyway.
3529  if (PointeeTy->isArrayType())
3530    return true;
3531  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3532  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3533    BaseCVR = Array->getElementType().getCVRQualifiers();
3534  bool hasVolatile = VisibleQuals.hasVolatile();
3535  bool hasRestrict = VisibleQuals.hasRestrict();
3536
3537  // Iterate through all strict supersets of BaseCVR.
3538  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3539    if ((CVR | BaseCVR) != CVR) continue;
3540    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3541    // in the types.
3542    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3543    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3544    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3545    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3546  }
3547
3548  return true;
3549}
3550
3551/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3552/// to the set of pointer types along with any more-qualified variants of
3553/// that type. For example, if @p Ty is "int const *", this routine
3554/// will add "int const *", "int const volatile *", "int const
3555/// restrict *", and "int const volatile restrict *" to the set of
3556/// pointer types. Returns true if the add of @p Ty itself succeeded,
3557/// false otherwise.
3558///
3559/// FIXME: what to do about extended qualifiers?
3560bool
3561BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3562    QualType Ty) {
3563  // Insert this type.
3564  if (!MemberPointerTypes.insert(Ty))
3565    return false;
3566
3567  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3568  assert(PointerTy && "type was not a member pointer type!");
3569
3570  QualType PointeeTy = PointerTy->getPointeeType();
3571  // Don't add qualified variants of arrays. For one, they're not allowed
3572  // (the qualifier would sink to the element type), and for another, the
3573  // only overload situation where it matters is subscript or pointer +- int,
3574  // and those shouldn't have qualifier variants anyway.
3575  if (PointeeTy->isArrayType())
3576    return true;
3577  const Type *ClassTy = PointerTy->getClass();
3578
3579  // Iterate through all strict supersets of the pointee type's CVR
3580  // qualifiers.
3581  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3582  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3583    if ((CVR | BaseCVR) != CVR) continue;
3584
3585    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3586    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3587  }
3588
3589  return true;
3590}
3591
3592/// AddTypesConvertedFrom - Add each of the types to which the type @p
3593/// Ty can be implicit converted to the given set of @p Types. We're
3594/// primarily interested in pointer types and enumeration types. We also
3595/// take member pointer types, for the conditional operator.
3596/// AllowUserConversions is true if we should look at the conversion
3597/// functions of a class type, and AllowExplicitConversions if we
3598/// should also include the explicit conversion functions of a class
3599/// type.
3600void
3601BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3602                                               SourceLocation Loc,
3603                                               bool AllowUserConversions,
3604                                               bool AllowExplicitConversions,
3605                                               const Qualifiers &VisibleQuals) {
3606  // Only deal with canonical types.
3607  Ty = Context.getCanonicalType(Ty);
3608
3609  // Look through reference types; they aren't part of the type of an
3610  // expression for the purposes of conversions.
3611  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3612    Ty = RefTy->getPointeeType();
3613
3614  // We don't care about qualifiers on the type.
3615  Ty = Ty.getLocalUnqualifiedType();
3616
3617  // If we're dealing with an array type, decay to the pointer.
3618  if (Ty->isArrayType())
3619    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3620
3621  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3622    QualType PointeeTy = PointerTy->getPointeeType();
3623
3624    // Insert our type, and its more-qualified variants, into the set
3625    // of types.
3626    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3627      return;
3628  } else if (Ty->isMemberPointerType()) {
3629    // Member pointers are far easier, since the pointee can't be converted.
3630    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3631      return;
3632  } else if (Ty->isEnumeralType()) {
3633    EnumerationTypes.insert(Ty);
3634  } else if (AllowUserConversions) {
3635    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3636      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3637        // No conversion functions in incomplete types.
3638        return;
3639      }
3640
3641      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3642      const UnresolvedSetImpl *Conversions
3643        = ClassDecl->getVisibleConversionFunctions();
3644      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3645             E = Conversions->end(); I != E; ++I) {
3646        NamedDecl *D = I.getDecl();
3647        if (isa<UsingShadowDecl>(D))
3648          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3649
3650        // Skip conversion function templates; they don't tell us anything
3651        // about which builtin types we can convert to.
3652        if (isa<FunctionTemplateDecl>(D))
3653          continue;
3654
3655        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3656        if (AllowExplicitConversions || !Conv->isExplicit()) {
3657          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3658                                VisibleQuals);
3659        }
3660      }
3661    }
3662  }
3663}
3664
3665/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3666/// the volatile- and non-volatile-qualified assignment operators for the
3667/// given type to the candidate set.
3668static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3669                                                   QualType T,
3670                                                   Expr **Args,
3671                                                   unsigned NumArgs,
3672                                    OverloadCandidateSet &CandidateSet) {
3673  QualType ParamTypes[2];
3674
3675  // T& operator=(T&, T)
3676  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3677  ParamTypes[1] = T;
3678  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3679                        /*IsAssignmentOperator=*/true);
3680
3681  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3682    // volatile T& operator=(volatile T&, T)
3683    ParamTypes[0]
3684      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3685    ParamTypes[1] = T;
3686    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3687                          /*IsAssignmentOperator=*/true);
3688  }
3689}
3690
3691/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3692/// if any, found in visible type conversion functions found in ArgExpr's type.
3693static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3694    Qualifiers VRQuals;
3695    const RecordType *TyRec;
3696    if (const MemberPointerType *RHSMPType =
3697        ArgExpr->getType()->getAs<MemberPointerType>())
3698      TyRec = cast<RecordType>(RHSMPType->getClass());
3699    else
3700      TyRec = ArgExpr->getType()->getAs<RecordType>();
3701    if (!TyRec) {
3702      // Just to be safe, assume the worst case.
3703      VRQuals.addVolatile();
3704      VRQuals.addRestrict();
3705      return VRQuals;
3706    }
3707
3708    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3709    if (!ClassDecl->hasDefinition())
3710      return VRQuals;
3711
3712    const UnresolvedSetImpl *Conversions =
3713      ClassDecl->getVisibleConversionFunctions();
3714
3715    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3716           E = Conversions->end(); I != E; ++I) {
3717      NamedDecl *D = I.getDecl();
3718      if (isa<UsingShadowDecl>(D))
3719        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3720      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3721        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3722        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3723          CanTy = ResTypeRef->getPointeeType();
3724        // Need to go down the pointer/mempointer chain and add qualifiers
3725        // as see them.
3726        bool done = false;
3727        while (!done) {
3728          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3729            CanTy = ResTypePtr->getPointeeType();
3730          else if (const MemberPointerType *ResTypeMPtr =
3731                CanTy->getAs<MemberPointerType>())
3732            CanTy = ResTypeMPtr->getPointeeType();
3733          else
3734            done = true;
3735          if (CanTy.isVolatileQualified())
3736            VRQuals.addVolatile();
3737          if (CanTy.isRestrictQualified())
3738            VRQuals.addRestrict();
3739          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3740            return VRQuals;
3741        }
3742      }
3743    }
3744    return VRQuals;
3745}
3746
3747/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3748/// operator overloads to the candidate set (C++ [over.built]), based
3749/// on the operator @p Op and the arguments given. For example, if the
3750/// operator is a binary '+', this routine might add "int
3751/// operator+(int, int)" to cover integer addition.
3752void
3753Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3754                                   SourceLocation OpLoc,
3755                                   Expr **Args, unsigned NumArgs,
3756                                   OverloadCandidateSet& CandidateSet) {
3757  // The set of "promoted arithmetic types", which are the arithmetic
3758  // types are that preserved by promotion (C++ [over.built]p2). Note
3759  // that the first few of these types are the promoted integral
3760  // types; these types need to be first.
3761  // FIXME: What about complex?
3762  const unsigned FirstIntegralType = 0;
3763  const unsigned LastIntegralType = 13;
3764  const unsigned FirstPromotedIntegralType = 7,
3765                 LastPromotedIntegralType = 13;
3766  const unsigned FirstPromotedArithmeticType = 7,
3767                 LastPromotedArithmeticType = 16;
3768  const unsigned NumArithmeticTypes = 16;
3769  QualType ArithmeticTypes[NumArithmeticTypes] = {
3770    Context.BoolTy, Context.CharTy, Context.WCharTy,
3771// FIXME:   Context.Char16Ty, Context.Char32Ty,
3772    Context.SignedCharTy, Context.ShortTy,
3773    Context.UnsignedCharTy, Context.UnsignedShortTy,
3774    Context.IntTy, Context.LongTy, Context.LongLongTy,
3775    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3776    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3777  };
3778  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3779         "Invalid first promoted integral type");
3780  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3781           == Context.UnsignedLongLongTy &&
3782         "Invalid last promoted integral type");
3783  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3784         "Invalid first promoted arithmetic type");
3785  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3786            == Context.LongDoubleTy &&
3787         "Invalid last promoted arithmetic type");
3788
3789  // Find all of the types that the arguments can convert to, but only
3790  // if the operator we're looking at has built-in operator candidates
3791  // that make use of these types.
3792  Qualifiers VisibleTypeConversionsQuals;
3793  VisibleTypeConversionsQuals.addConst();
3794  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3795    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3796
3797  BuiltinCandidateTypeSet CandidateTypes(*this);
3798  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3799      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3800      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3801      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3802      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3803      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3804    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3805      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3806                                           OpLoc,
3807                                           true,
3808                                           (Op == OO_Exclaim ||
3809                                            Op == OO_AmpAmp ||
3810                                            Op == OO_PipePipe),
3811                                           VisibleTypeConversionsQuals);
3812  }
3813
3814  bool isComparison = false;
3815  switch (Op) {
3816  case OO_None:
3817  case NUM_OVERLOADED_OPERATORS:
3818    assert(false && "Expected an overloaded operator");
3819    break;
3820
3821  case OO_Star: // '*' is either unary or binary
3822    if (NumArgs == 1)
3823      goto UnaryStar;
3824    else
3825      goto BinaryStar;
3826    break;
3827
3828  case OO_Plus: // '+' is either unary or binary
3829    if (NumArgs == 1)
3830      goto UnaryPlus;
3831    else
3832      goto BinaryPlus;
3833    break;
3834
3835  case OO_Minus: // '-' is either unary or binary
3836    if (NumArgs == 1)
3837      goto UnaryMinus;
3838    else
3839      goto BinaryMinus;
3840    break;
3841
3842  case OO_Amp: // '&' is either unary or binary
3843    if (NumArgs == 1)
3844      goto UnaryAmp;
3845    else
3846      goto BinaryAmp;
3847
3848  case OO_PlusPlus:
3849  case OO_MinusMinus:
3850    // C++ [over.built]p3:
3851    //
3852    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3853    //   is either volatile or empty, there exist candidate operator
3854    //   functions of the form
3855    //
3856    //       VQ T&      operator++(VQ T&);
3857    //       T          operator++(VQ T&, int);
3858    //
3859    // C++ [over.built]p4:
3860    //
3861    //   For every pair (T, VQ), where T is an arithmetic type other
3862    //   than bool, and VQ is either volatile or empty, there exist
3863    //   candidate operator functions of the form
3864    //
3865    //       VQ T&      operator--(VQ T&);
3866    //       T          operator--(VQ T&, int);
3867    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3868         Arith < NumArithmeticTypes; ++Arith) {
3869      QualType ArithTy = ArithmeticTypes[Arith];
3870      QualType ParamTypes[2]
3871        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3872
3873      // Non-volatile version.
3874      if (NumArgs == 1)
3875        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3876      else
3877        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3878      // heuristic to reduce number of builtin candidates in the set.
3879      // Add volatile version only if there are conversions to a volatile type.
3880      if (VisibleTypeConversionsQuals.hasVolatile()) {
3881        // Volatile version
3882        ParamTypes[0]
3883          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3884        if (NumArgs == 1)
3885          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3886        else
3887          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3888      }
3889    }
3890
3891    // C++ [over.built]p5:
3892    //
3893    //   For every pair (T, VQ), where T is a cv-qualified or
3894    //   cv-unqualified object type, and VQ is either volatile or
3895    //   empty, there exist candidate operator functions of the form
3896    //
3897    //       T*VQ&      operator++(T*VQ&);
3898    //       T*VQ&      operator--(T*VQ&);
3899    //       T*         operator++(T*VQ&, int);
3900    //       T*         operator--(T*VQ&, int);
3901    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3902         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3903      // Skip pointer types that aren't pointers to object types.
3904      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3905        continue;
3906
3907      QualType ParamTypes[2] = {
3908        Context.getLValueReferenceType(*Ptr), Context.IntTy
3909      };
3910
3911      // Without volatile
3912      if (NumArgs == 1)
3913        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3914      else
3915        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3916
3917      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3918          VisibleTypeConversionsQuals.hasVolatile()) {
3919        // With volatile
3920        ParamTypes[0]
3921          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3922        if (NumArgs == 1)
3923          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3924        else
3925          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3926      }
3927    }
3928    break;
3929
3930  UnaryStar:
3931    // C++ [over.built]p6:
3932    //   For every cv-qualified or cv-unqualified object type T, there
3933    //   exist candidate operator functions of the form
3934    //
3935    //       T&         operator*(T*);
3936    //
3937    // C++ [over.built]p7:
3938    //   For every function type T, there exist candidate operator
3939    //   functions of the form
3940    //       T&         operator*(T*);
3941    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3942         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3943      QualType ParamTy = *Ptr;
3944      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3945      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3946                          &ParamTy, Args, 1, CandidateSet);
3947    }
3948    break;
3949
3950  UnaryPlus:
3951    // C++ [over.built]p8:
3952    //   For every type T, there exist candidate operator functions of
3953    //   the form
3954    //
3955    //       T*         operator+(T*);
3956    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3957         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3958      QualType ParamTy = *Ptr;
3959      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3960    }
3961
3962    // Fall through
3963
3964  UnaryMinus:
3965    // C++ [over.built]p9:
3966    //  For every promoted arithmetic type T, there exist candidate
3967    //  operator functions of the form
3968    //
3969    //       T         operator+(T);
3970    //       T         operator-(T);
3971    for (unsigned Arith = FirstPromotedArithmeticType;
3972         Arith < LastPromotedArithmeticType; ++Arith) {
3973      QualType ArithTy = ArithmeticTypes[Arith];
3974      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3975    }
3976    break;
3977
3978  case OO_Tilde:
3979    // C++ [over.built]p10:
3980    //   For every promoted integral type T, there exist candidate
3981    //   operator functions of the form
3982    //
3983    //        T         operator~(T);
3984    for (unsigned Int = FirstPromotedIntegralType;
3985         Int < LastPromotedIntegralType; ++Int) {
3986      QualType IntTy = ArithmeticTypes[Int];
3987      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3988    }
3989    break;
3990
3991  case OO_New:
3992  case OO_Delete:
3993  case OO_Array_New:
3994  case OO_Array_Delete:
3995  case OO_Call:
3996    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3997    break;
3998
3999  case OO_Comma:
4000  UnaryAmp:
4001  case OO_Arrow:
4002    // C++ [over.match.oper]p3:
4003    //   -- For the operator ',', the unary operator '&', or the
4004    //      operator '->', the built-in candidates set is empty.
4005    break;
4006
4007  case OO_EqualEqual:
4008  case OO_ExclaimEqual:
4009    // C++ [over.match.oper]p16:
4010    //   For every pointer to member type T, there exist candidate operator
4011    //   functions of the form
4012    //
4013    //        bool operator==(T,T);
4014    //        bool operator!=(T,T);
4015    for (BuiltinCandidateTypeSet::iterator
4016           MemPtr = CandidateTypes.member_pointer_begin(),
4017           MemPtrEnd = CandidateTypes.member_pointer_end();
4018         MemPtr != MemPtrEnd;
4019         ++MemPtr) {
4020      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4021      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4022    }
4023
4024    // Fall through
4025
4026  case OO_Less:
4027  case OO_Greater:
4028  case OO_LessEqual:
4029  case OO_GreaterEqual:
4030    // C++ [over.built]p15:
4031    //
4032    //   For every pointer or enumeration type T, there exist
4033    //   candidate operator functions of the form
4034    //
4035    //        bool       operator<(T, T);
4036    //        bool       operator>(T, T);
4037    //        bool       operator<=(T, T);
4038    //        bool       operator>=(T, T);
4039    //        bool       operator==(T, T);
4040    //        bool       operator!=(T, T);
4041    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4042         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4043      QualType ParamTypes[2] = { *Ptr, *Ptr };
4044      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4045    }
4046    for (BuiltinCandidateTypeSet::iterator Enum
4047           = CandidateTypes.enumeration_begin();
4048         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4049      QualType ParamTypes[2] = { *Enum, *Enum };
4050      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4051    }
4052
4053    // Fall through.
4054    isComparison = true;
4055
4056  BinaryPlus:
4057  BinaryMinus:
4058    if (!isComparison) {
4059      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4060
4061      // C++ [over.built]p13:
4062      //
4063      //   For every cv-qualified or cv-unqualified object type T
4064      //   there exist candidate operator functions of the form
4065      //
4066      //      T*         operator+(T*, ptrdiff_t);
4067      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4068      //      T*         operator-(T*, ptrdiff_t);
4069      //      T*         operator+(ptrdiff_t, T*);
4070      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4071      //
4072      // C++ [over.built]p14:
4073      //
4074      //   For every T, where T is a pointer to object type, there
4075      //   exist candidate operator functions of the form
4076      //
4077      //      ptrdiff_t  operator-(T, T);
4078      for (BuiltinCandidateTypeSet::iterator Ptr
4079             = CandidateTypes.pointer_begin();
4080           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4081        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4082
4083        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4084        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4085
4086        if (Op == OO_Plus) {
4087          // T* operator+(ptrdiff_t, T*);
4088          ParamTypes[0] = ParamTypes[1];
4089          ParamTypes[1] = *Ptr;
4090          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4091        } else {
4092          // ptrdiff_t operator-(T, T);
4093          ParamTypes[1] = *Ptr;
4094          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4095                              Args, 2, CandidateSet);
4096        }
4097      }
4098    }
4099    // Fall through
4100
4101  case OO_Slash:
4102  BinaryStar:
4103  Conditional:
4104    // C++ [over.built]p12:
4105    //
4106    //   For every pair of promoted arithmetic types L and R, there
4107    //   exist candidate operator functions of the form
4108    //
4109    //        LR         operator*(L, R);
4110    //        LR         operator/(L, R);
4111    //        LR         operator+(L, R);
4112    //        LR         operator-(L, R);
4113    //        bool       operator<(L, R);
4114    //        bool       operator>(L, R);
4115    //        bool       operator<=(L, R);
4116    //        bool       operator>=(L, R);
4117    //        bool       operator==(L, R);
4118    //        bool       operator!=(L, R);
4119    //
4120    //   where LR is the result of the usual arithmetic conversions
4121    //   between types L and R.
4122    //
4123    // C++ [over.built]p24:
4124    //
4125    //   For every pair of promoted arithmetic types L and R, there exist
4126    //   candidate operator functions of the form
4127    //
4128    //        LR       operator?(bool, L, R);
4129    //
4130    //   where LR is the result of the usual arithmetic conversions
4131    //   between types L and R.
4132    // Our candidates ignore the first parameter.
4133    for (unsigned Left = FirstPromotedArithmeticType;
4134         Left < LastPromotedArithmeticType; ++Left) {
4135      for (unsigned Right = FirstPromotedArithmeticType;
4136           Right < LastPromotedArithmeticType; ++Right) {
4137        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4138        QualType Result
4139          = isComparison
4140          ? Context.BoolTy
4141          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4142        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4143      }
4144    }
4145    break;
4146
4147  case OO_Percent:
4148  BinaryAmp:
4149  case OO_Caret:
4150  case OO_Pipe:
4151  case OO_LessLess:
4152  case OO_GreaterGreater:
4153    // C++ [over.built]p17:
4154    //
4155    //   For every pair of promoted integral types L and R, there
4156    //   exist candidate operator functions of the form
4157    //
4158    //      LR         operator%(L, R);
4159    //      LR         operator&(L, R);
4160    //      LR         operator^(L, R);
4161    //      LR         operator|(L, R);
4162    //      L          operator<<(L, R);
4163    //      L          operator>>(L, R);
4164    //
4165    //   where LR is the result of the usual arithmetic conversions
4166    //   between types L and R.
4167    for (unsigned Left = FirstPromotedIntegralType;
4168         Left < LastPromotedIntegralType; ++Left) {
4169      for (unsigned Right = FirstPromotedIntegralType;
4170           Right < LastPromotedIntegralType; ++Right) {
4171        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4172        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4173            ? LandR[0]
4174            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4175        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4176      }
4177    }
4178    break;
4179
4180  case OO_Equal:
4181    // C++ [over.built]p20:
4182    //
4183    //   For every pair (T, VQ), where T is an enumeration or
4184    //   pointer to member type and VQ is either volatile or
4185    //   empty, there exist candidate operator functions of the form
4186    //
4187    //        VQ T&      operator=(VQ T&, T);
4188    for (BuiltinCandidateTypeSet::iterator
4189           Enum = CandidateTypes.enumeration_begin(),
4190           EnumEnd = CandidateTypes.enumeration_end();
4191         Enum != EnumEnd; ++Enum)
4192      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4193                                             CandidateSet);
4194    for (BuiltinCandidateTypeSet::iterator
4195           MemPtr = CandidateTypes.member_pointer_begin(),
4196         MemPtrEnd = CandidateTypes.member_pointer_end();
4197         MemPtr != MemPtrEnd; ++MemPtr)
4198      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4199                                             CandidateSet);
4200      // Fall through.
4201
4202  case OO_PlusEqual:
4203  case OO_MinusEqual:
4204    // C++ [over.built]p19:
4205    //
4206    //   For every pair (T, VQ), where T is any type and VQ is either
4207    //   volatile or empty, there exist candidate operator functions
4208    //   of the form
4209    //
4210    //        T*VQ&      operator=(T*VQ&, T*);
4211    //
4212    // C++ [over.built]p21:
4213    //
4214    //   For every pair (T, VQ), where T is a cv-qualified or
4215    //   cv-unqualified object type and VQ is either volatile or
4216    //   empty, there exist candidate operator functions of the form
4217    //
4218    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4219    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4220    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4221         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4222      QualType ParamTypes[2];
4223      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4224
4225      // non-volatile version
4226      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4227      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4228                          /*IsAssigmentOperator=*/Op == OO_Equal);
4229
4230      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4231          VisibleTypeConversionsQuals.hasVolatile()) {
4232        // volatile version
4233        ParamTypes[0]
4234          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4235        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4236                            /*IsAssigmentOperator=*/Op == OO_Equal);
4237      }
4238    }
4239    // Fall through.
4240
4241  case OO_StarEqual:
4242  case OO_SlashEqual:
4243    // C++ [over.built]p18:
4244    //
4245    //   For every triple (L, VQ, R), where L is an arithmetic type,
4246    //   VQ is either volatile or empty, and R is a promoted
4247    //   arithmetic type, there exist candidate operator functions of
4248    //   the form
4249    //
4250    //        VQ L&      operator=(VQ L&, R);
4251    //        VQ L&      operator*=(VQ L&, R);
4252    //        VQ L&      operator/=(VQ L&, R);
4253    //        VQ L&      operator+=(VQ L&, R);
4254    //        VQ L&      operator-=(VQ L&, R);
4255    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4256      for (unsigned Right = FirstPromotedArithmeticType;
4257           Right < LastPromotedArithmeticType; ++Right) {
4258        QualType ParamTypes[2];
4259        ParamTypes[1] = ArithmeticTypes[Right];
4260
4261        // Add this built-in operator as a candidate (VQ is empty).
4262        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4263        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4264                            /*IsAssigmentOperator=*/Op == OO_Equal);
4265
4266        // Add this built-in operator as a candidate (VQ is 'volatile').
4267        if (VisibleTypeConversionsQuals.hasVolatile()) {
4268          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4269          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4270          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4271                              /*IsAssigmentOperator=*/Op == OO_Equal);
4272        }
4273      }
4274    }
4275    break;
4276
4277  case OO_PercentEqual:
4278  case OO_LessLessEqual:
4279  case OO_GreaterGreaterEqual:
4280  case OO_AmpEqual:
4281  case OO_CaretEqual:
4282  case OO_PipeEqual:
4283    // C++ [over.built]p22:
4284    //
4285    //   For every triple (L, VQ, R), where L is an integral type, VQ
4286    //   is either volatile or empty, and R is a promoted integral
4287    //   type, there exist candidate operator functions of the form
4288    //
4289    //        VQ L&       operator%=(VQ L&, R);
4290    //        VQ L&       operator<<=(VQ L&, R);
4291    //        VQ L&       operator>>=(VQ L&, R);
4292    //        VQ L&       operator&=(VQ L&, R);
4293    //        VQ L&       operator^=(VQ L&, R);
4294    //        VQ L&       operator|=(VQ L&, R);
4295    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4296      for (unsigned Right = FirstPromotedIntegralType;
4297           Right < LastPromotedIntegralType; ++Right) {
4298        QualType ParamTypes[2];
4299        ParamTypes[1] = ArithmeticTypes[Right];
4300
4301        // Add this built-in operator as a candidate (VQ is empty).
4302        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4303        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4304        if (VisibleTypeConversionsQuals.hasVolatile()) {
4305          // Add this built-in operator as a candidate (VQ is 'volatile').
4306          ParamTypes[0] = ArithmeticTypes[Left];
4307          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4308          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4309          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4310        }
4311      }
4312    }
4313    break;
4314
4315  case OO_Exclaim: {
4316    // C++ [over.operator]p23:
4317    //
4318    //   There also exist candidate operator functions of the form
4319    //
4320    //        bool        operator!(bool);
4321    //        bool        operator&&(bool, bool);     [BELOW]
4322    //        bool        operator||(bool, bool);     [BELOW]
4323    QualType ParamTy = Context.BoolTy;
4324    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4325                        /*IsAssignmentOperator=*/false,
4326                        /*NumContextualBoolArguments=*/1);
4327    break;
4328  }
4329
4330  case OO_AmpAmp:
4331  case OO_PipePipe: {
4332    // C++ [over.operator]p23:
4333    //
4334    //   There also exist candidate operator functions of the form
4335    //
4336    //        bool        operator!(bool);            [ABOVE]
4337    //        bool        operator&&(bool, bool);
4338    //        bool        operator||(bool, bool);
4339    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4340    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4341                        /*IsAssignmentOperator=*/false,
4342                        /*NumContextualBoolArguments=*/2);
4343    break;
4344  }
4345
4346  case OO_Subscript:
4347    // C++ [over.built]p13:
4348    //
4349    //   For every cv-qualified or cv-unqualified object type T there
4350    //   exist candidate operator functions of the form
4351    //
4352    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4353    //        T&         operator[](T*, ptrdiff_t);
4354    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4355    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4356    //        T&         operator[](ptrdiff_t, T*);
4357    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4358         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4359      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4360      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4361      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4362
4363      // T& operator[](T*, ptrdiff_t)
4364      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4365
4366      // T& operator[](ptrdiff_t, T*);
4367      ParamTypes[0] = ParamTypes[1];
4368      ParamTypes[1] = *Ptr;
4369      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4370    }
4371    break;
4372
4373  case OO_ArrowStar:
4374    // C++ [over.built]p11:
4375    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4376    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4377    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4378    //    there exist candidate operator functions of the form
4379    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4380    //    where CV12 is the union of CV1 and CV2.
4381    {
4382      for (BuiltinCandidateTypeSet::iterator Ptr =
4383             CandidateTypes.pointer_begin();
4384           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4385        QualType C1Ty = (*Ptr);
4386        QualType C1;
4387        QualifierCollector Q1;
4388        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4389          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4390          if (!isa<RecordType>(C1))
4391            continue;
4392          // heuristic to reduce number of builtin candidates in the set.
4393          // Add volatile/restrict version only if there are conversions to a
4394          // volatile/restrict type.
4395          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4396            continue;
4397          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4398            continue;
4399        }
4400        for (BuiltinCandidateTypeSet::iterator
4401             MemPtr = CandidateTypes.member_pointer_begin(),
4402             MemPtrEnd = CandidateTypes.member_pointer_end();
4403             MemPtr != MemPtrEnd; ++MemPtr) {
4404          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4405          QualType C2 = QualType(mptr->getClass(), 0);
4406          C2 = C2.getUnqualifiedType();
4407          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4408            break;
4409          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4410          // build CV12 T&
4411          QualType T = mptr->getPointeeType();
4412          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4413              T.isVolatileQualified())
4414            continue;
4415          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4416              T.isRestrictQualified())
4417            continue;
4418          T = Q1.apply(T);
4419          QualType ResultTy = Context.getLValueReferenceType(T);
4420          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4421        }
4422      }
4423    }
4424    break;
4425
4426  case OO_Conditional:
4427    // Note that we don't consider the first argument, since it has been
4428    // contextually converted to bool long ago. The candidates below are
4429    // therefore added as binary.
4430    //
4431    // C++ [over.built]p24:
4432    //   For every type T, where T is a pointer or pointer-to-member type,
4433    //   there exist candidate operator functions of the form
4434    //
4435    //        T        operator?(bool, T, T);
4436    //
4437    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4438         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4439      QualType ParamTypes[2] = { *Ptr, *Ptr };
4440      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4441    }
4442    for (BuiltinCandidateTypeSet::iterator Ptr =
4443           CandidateTypes.member_pointer_begin(),
4444         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4445      QualType ParamTypes[2] = { *Ptr, *Ptr };
4446      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4447    }
4448    goto Conditional;
4449  }
4450}
4451
4452/// \brief Add function candidates found via argument-dependent lookup
4453/// to the set of overloading candidates.
4454///
4455/// This routine performs argument-dependent name lookup based on the
4456/// given function name (which may also be an operator name) and adds
4457/// all of the overload candidates found by ADL to the overload
4458/// candidate set (C++ [basic.lookup.argdep]).
4459void
4460Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4461                                           bool Operator,
4462                                           Expr **Args, unsigned NumArgs,
4463                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4464                                           OverloadCandidateSet& CandidateSet,
4465                                           bool PartialOverloading) {
4466  ADLResult Fns;
4467
4468  // FIXME: This approach for uniquing ADL results (and removing
4469  // redundant candidates from the set) relies on pointer-equality,
4470  // which means we need to key off the canonical decl.  However,
4471  // always going back to the canonical decl might not get us the
4472  // right set of default arguments.  What default arguments are
4473  // we supposed to consider on ADL candidates, anyway?
4474
4475  // FIXME: Pass in the explicit template arguments?
4476  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4477
4478  // Erase all of the candidates we already knew about.
4479  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4480                                   CandEnd = CandidateSet.end();
4481       Cand != CandEnd; ++Cand)
4482    if (Cand->Function) {
4483      Fns.erase(Cand->Function);
4484      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4485        Fns.erase(FunTmpl);
4486    }
4487
4488  // For each of the ADL candidates we found, add it to the overload
4489  // set.
4490  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4491    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4492    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4493      if (ExplicitTemplateArgs)
4494        continue;
4495
4496      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4497                           false, false, PartialOverloading);
4498    } else
4499      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4500                                   FoundDecl, ExplicitTemplateArgs,
4501                                   Args, NumArgs, CandidateSet);
4502  }
4503}
4504
4505/// isBetterOverloadCandidate - Determines whether the first overload
4506/// candidate is a better candidate than the second (C++ 13.3.3p1).
4507bool
4508Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4509                                const OverloadCandidate& Cand2,
4510                                SourceLocation Loc) {
4511  // Define viable functions to be better candidates than non-viable
4512  // functions.
4513  if (!Cand2.Viable)
4514    return Cand1.Viable;
4515  else if (!Cand1.Viable)
4516    return false;
4517
4518  // C++ [over.match.best]p1:
4519  //
4520  //   -- if F is a static member function, ICS1(F) is defined such
4521  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4522  //      any function G, and, symmetrically, ICS1(G) is neither
4523  //      better nor worse than ICS1(F).
4524  unsigned StartArg = 0;
4525  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4526    StartArg = 1;
4527
4528  // C++ [over.match.best]p1:
4529  //   A viable function F1 is defined to be a better function than another
4530  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4531  //   conversion sequence than ICSi(F2), and then...
4532  unsigned NumArgs = Cand1.Conversions.size();
4533  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4534  bool HasBetterConversion = false;
4535  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4536    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4537                                               Cand2.Conversions[ArgIdx])) {
4538    case ImplicitConversionSequence::Better:
4539      // Cand1 has a better conversion sequence.
4540      HasBetterConversion = true;
4541      break;
4542
4543    case ImplicitConversionSequence::Worse:
4544      // Cand1 can't be better than Cand2.
4545      return false;
4546
4547    case ImplicitConversionSequence::Indistinguishable:
4548      // Do nothing.
4549      break;
4550    }
4551  }
4552
4553  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4554  //       ICSj(F2), or, if not that,
4555  if (HasBetterConversion)
4556    return true;
4557
4558  //     - F1 is a non-template function and F2 is a function template
4559  //       specialization, or, if not that,
4560  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4561      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4562    return true;
4563
4564  //   -- F1 and F2 are function template specializations, and the function
4565  //      template for F1 is more specialized than the template for F2
4566  //      according to the partial ordering rules described in 14.5.5.2, or,
4567  //      if not that,
4568  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4569      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4570    if (FunctionTemplateDecl *BetterTemplate
4571          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4572                                       Cand2.Function->getPrimaryTemplate(),
4573                                       Loc,
4574                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4575                                                             : TPOC_Call))
4576      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4577
4578  //   -- the context is an initialization by user-defined conversion
4579  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4580  //      from the return type of F1 to the destination type (i.e.,
4581  //      the type of the entity being initialized) is a better
4582  //      conversion sequence than the standard conversion sequence
4583  //      from the return type of F2 to the destination type.
4584  if (Cand1.Function && Cand2.Function &&
4585      isa<CXXConversionDecl>(Cand1.Function) &&
4586      isa<CXXConversionDecl>(Cand2.Function)) {
4587    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4588                                               Cand2.FinalConversion)) {
4589    case ImplicitConversionSequence::Better:
4590      // Cand1 has a better conversion sequence.
4591      return true;
4592
4593    case ImplicitConversionSequence::Worse:
4594      // Cand1 can't be better than Cand2.
4595      return false;
4596
4597    case ImplicitConversionSequence::Indistinguishable:
4598      // Do nothing
4599      break;
4600    }
4601  }
4602
4603  return false;
4604}
4605
4606/// \brief Computes the best viable function (C++ 13.3.3)
4607/// within an overload candidate set.
4608///
4609/// \param CandidateSet the set of candidate functions.
4610///
4611/// \param Loc the location of the function name (or operator symbol) for
4612/// which overload resolution occurs.
4613///
4614/// \param Best f overload resolution was successful or found a deleted
4615/// function, Best points to the candidate function found.
4616///
4617/// \returns The result of overload resolution.
4618OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4619                                           SourceLocation Loc,
4620                                        OverloadCandidateSet::iterator& Best) {
4621  // Find the best viable function.
4622  Best = CandidateSet.end();
4623  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4624       Cand != CandidateSet.end(); ++Cand) {
4625    if (Cand->Viable) {
4626      if (Best == CandidateSet.end() ||
4627          isBetterOverloadCandidate(*Cand, *Best, Loc))
4628        Best = Cand;
4629    }
4630  }
4631
4632  // If we didn't find any viable functions, abort.
4633  if (Best == CandidateSet.end())
4634    return OR_No_Viable_Function;
4635
4636  // Make sure that this function is better than every other viable
4637  // function. If not, we have an ambiguity.
4638  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4639       Cand != CandidateSet.end(); ++Cand) {
4640    if (Cand->Viable &&
4641        Cand != Best &&
4642        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4643      Best = CandidateSet.end();
4644      return OR_Ambiguous;
4645    }
4646  }
4647
4648  // Best is the best viable function.
4649  if (Best->Function &&
4650      (Best->Function->isDeleted() ||
4651       Best->Function->getAttr<UnavailableAttr>()))
4652    return OR_Deleted;
4653
4654  // C++ [basic.def.odr]p2:
4655  //   An overloaded function is used if it is selected by overload resolution
4656  //   when referred to from a potentially-evaluated expression. [Note: this
4657  //   covers calls to named functions (5.2.2), operator overloading
4658  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4659  //   placement new (5.3.4), as well as non-default initialization (8.5).
4660  if (Best->Function)
4661    MarkDeclarationReferenced(Loc, Best->Function);
4662  return OR_Success;
4663}
4664
4665namespace {
4666
4667enum OverloadCandidateKind {
4668  oc_function,
4669  oc_method,
4670  oc_constructor,
4671  oc_function_template,
4672  oc_method_template,
4673  oc_constructor_template,
4674  oc_implicit_default_constructor,
4675  oc_implicit_copy_constructor,
4676  oc_implicit_copy_assignment
4677};
4678
4679OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4680                                                FunctionDecl *Fn,
4681                                                std::string &Description) {
4682  bool isTemplate = false;
4683
4684  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4685    isTemplate = true;
4686    Description = S.getTemplateArgumentBindingsText(
4687      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4688  }
4689
4690  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4691    if (!Ctor->isImplicit())
4692      return isTemplate ? oc_constructor_template : oc_constructor;
4693
4694    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4695                                     : oc_implicit_default_constructor;
4696  }
4697
4698  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4699    // This actually gets spelled 'candidate function' for now, but
4700    // it doesn't hurt to split it out.
4701    if (!Meth->isImplicit())
4702      return isTemplate ? oc_method_template : oc_method;
4703
4704    assert(Meth->isCopyAssignment()
4705           && "implicit method is not copy assignment operator?");
4706    return oc_implicit_copy_assignment;
4707  }
4708
4709  return isTemplate ? oc_function_template : oc_function;
4710}
4711
4712} // end anonymous namespace
4713
4714// Notes the location of an overload candidate.
4715void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4716  std::string FnDesc;
4717  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4718  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4719    << (unsigned) K << FnDesc;
4720}
4721
4722/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4723/// "lead" diagnostic; it will be given two arguments, the source and
4724/// target types of the conversion.
4725void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4726                                       SourceLocation CaretLoc,
4727                                       const PartialDiagnostic &PDiag) {
4728  Diag(CaretLoc, PDiag)
4729    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4730  for (AmbiguousConversionSequence::const_iterator
4731         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4732    NoteOverloadCandidate(*I);
4733  }
4734}
4735
4736namespace {
4737
4738void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4739  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4740  assert(Conv.isBad());
4741  assert(Cand->Function && "for now, candidate must be a function");
4742  FunctionDecl *Fn = Cand->Function;
4743
4744  // There's a conversion slot for the object argument if this is a
4745  // non-constructor method.  Note that 'I' corresponds the
4746  // conversion-slot index.
4747  bool isObjectArgument = false;
4748  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4749    if (I == 0)
4750      isObjectArgument = true;
4751    else
4752      I--;
4753  }
4754
4755  std::string FnDesc;
4756  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4757
4758  Expr *FromExpr = Conv.Bad.FromExpr;
4759  QualType FromTy = Conv.Bad.getFromType();
4760  QualType ToTy = Conv.Bad.getToType();
4761
4762  if (FromTy == S.Context.OverloadTy) {
4763    assert(FromExpr && "overload set argument came from implicit argument?");
4764    Expr *E = FromExpr->IgnoreParens();
4765    if (isa<UnaryOperator>(E))
4766      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4767    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4768
4769    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4770      << (unsigned) FnKind << FnDesc
4771      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4772      << ToTy << Name << I+1;
4773    return;
4774  }
4775
4776  // Do some hand-waving analysis to see if the non-viability is due
4777  // to a qualifier mismatch.
4778  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4779  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4780  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4781    CToTy = RT->getPointeeType();
4782  else {
4783    // TODO: detect and diagnose the full richness of const mismatches.
4784    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4785      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4786        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4787  }
4788
4789  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4790      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4791    // It is dumb that we have to do this here.
4792    while (isa<ArrayType>(CFromTy))
4793      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4794    while (isa<ArrayType>(CToTy))
4795      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4796
4797    Qualifiers FromQs = CFromTy.getQualifiers();
4798    Qualifiers ToQs = CToTy.getQualifiers();
4799
4800    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4801      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4802        << (unsigned) FnKind << FnDesc
4803        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4804        << FromTy
4805        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4806        << (unsigned) isObjectArgument << I+1;
4807      return;
4808    }
4809
4810    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4811    assert(CVR && "unexpected qualifiers mismatch");
4812
4813    if (isObjectArgument) {
4814      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4815        << (unsigned) FnKind << FnDesc
4816        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4817        << FromTy << (CVR - 1);
4818    } else {
4819      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4820        << (unsigned) FnKind << FnDesc
4821        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4822        << FromTy << (CVR - 1) << I+1;
4823    }
4824    return;
4825  }
4826
4827  // Diagnose references or pointers to incomplete types differently,
4828  // since it's far from impossible that the incompleteness triggered
4829  // the failure.
4830  QualType TempFromTy = FromTy.getNonReferenceType();
4831  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4832    TempFromTy = PTy->getPointeeType();
4833  if (TempFromTy->isIncompleteType()) {
4834    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4835      << (unsigned) FnKind << FnDesc
4836      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4837      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4838    return;
4839  }
4840
4841  // TODO: specialize more based on the kind of mismatch
4842  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4843    << (unsigned) FnKind << FnDesc
4844    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4845    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4846}
4847
4848void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4849                           unsigned NumFormalArgs) {
4850  // TODO: treat calls to a missing default constructor as a special case
4851
4852  FunctionDecl *Fn = Cand->Function;
4853  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4854
4855  unsigned MinParams = Fn->getMinRequiredArguments();
4856
4857  // at least / at most / exactly
4858  unsigned mode, modeCount;
4859  if (NumFormalArgs < MinParams) {
4860    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4861    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4862      mode = 0; // "at least"
4863    else
4864      mode = 2; // "exactly"
4865    modeCount = MinParams;
4866  } else {
4867    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4868    if (MinParams != FnTy->getNumArgs())
4869      mode = 1; // "at most"
4870    else
4871      mode = 2; // "exactly"
4872    modeCount = FnTy->getNumArgs();
4873  }
4874
4875  std::string Description;
4876  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4877
4878  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4879    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4880}
4881
4882/// Diagnose a failed template-argument deduction.
4883void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4884                          Expr **Args, unsigned NumArgs) {
4885  FunctionDecl *Fn = Cand->Function; // pattern
4886
4887  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4888                                   Cand->DeductionFailure.TemplateParameter);
4889
4890  switch (Cand->DeductionFailure.Result) {
4891  case Sema::TDK_Success:
4892    llvm_unreachable("TDK_success while diagnosing bad deduction");
4893
4894  case Sema::TDK_Incomplete: {
4895    NamedDecl *ParamD;
4896    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4897    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4898    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4899    assert(ParamD && "no parameter found for incomplete deduction result");
4900    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4901      << ParamD->getDeclName();
4902    return;
4903  }
4904
4905  // TODO: diagnose these individually, then kill off
4906  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4907  case Sema::TDK_InstantiationDepth:
4908  case Sema::TDK_Inconsistent:
4909  case Sema::TDK_InconsistentQuals:
4910  case Sema::TDK_SubstitutionFailure:
4911  case Sema::TDK_NonDeducedMismatch:
4912  case Sema::TDK_TooManyArguments:
4913  case Sema::TDK_TooFewArguments:
4914  case Sema::TDK_InvalidExplicitArguments:
4915  case Sema::TDK_FailedOverloadResolution:
4916    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4917    return;
4918  }
4919}
4920
4921/// Generates a 'note' diagnostic for an overload candidate.  We've
4922/// already generated a primary error at the call site.
4923///
4924/// It really does need to be a single diagnostic with its caret
4925/// pointed at the candidate declaration.  Yes, this creates some
4926/// major challenges of technical writing.  Yes, this makes pointing
4927/// out problems with specific arguments quite awkward.  It's still
4928/// better than generating twenty screens of text for every failed
4929/// overload.
4930///
4931/// It would be great to be able to express per-candidate problems
4932/// more richly for those diagnostic clients that cared, but we'd
4933/// still have to be just as careful with the default diagnostics.
4934void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4935                           Expr **Args, unsigned NumArgs) {
4936  FunctionDecl *Fn = Cand->Function;
4937
4938  // Note deleted candidates, but only if they're viable.
4939  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4940    std::string FnDesc;
4941    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4942
4943    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4944      << FnKind << FnDesc << Fn->isDeleted();
4945    return;
4946  }
4947
4948  // We don't really have anything else to say about viable candidates.
4949  if (Cand->Viable) {
4950    S.NoteOverloadCandidate(Fn);
4951    return;
4952  }
4953
4954  switch (Cand->FailureKind) {
4955  case ovl_fail_too_many_arguments:
4956  case ovl_fail_too_few_arguments:
4957    return DiagnoseArityMismatch(S, Cand, NumArgs);
4958
4959  case ovl_fail_bad_deduction:
4960    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4961
4962  case ovl_fail_trivial_conversion:
4963  case ovl_fail_bad_final_conversion:
4964  case ovl_fail_final_conversion_not_exact:
4965    return S.NoteOverloadCandidate(Fn);
4966
4967  case ovl_fail_bad_conversion: {
4968    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4969    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4970      if (Cand->Conversions[I].isBad())
4971        return DiagnoseBadConversion(S, Cand, I);
4972
4973    // FIXME: this currently happens when we're called from SemaInit
4974    // when user-conversion overload fails.  Figure out how to handle
4975    // those conditions and diagnose them well.
4976    return S.NoteOverloadCandidate(Fn);
4977  }
4978  }
4979}
4980
4981void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4982  // Desugar the type of the surrogate down to a function type,
4983  // retaining as many typedefs as possible while still showing
4984  // the function type (and, therefore, its parameter types).
4985  QualType FnType = Cand->Surrogate->getConversionType();
4986  bool isLValueReference = false;
4987  bool isRValueReference = false;
4988  bool isPointer = false;
4989  if (const LValueReferenceType *FnTypeRef =
4990        FnType->getAs<LValueReferenceType>()) {
4991    FnType = FnTypeRef->getPointeeType();
4992    isLValueReference = true;
4993  } else if (const RValueReferenceType *FnTypeRef =
4994               FnType->getAs<RValueReferenceType>()) {
4995    FnType = FnTypeRef->getPointeeType();
4996    isRValueReference = true;
4997  }
4998  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4999    FnType = FnTypePtr->getPointeeType();
5000    isPointer = true;
5001  }
5002  // Desugar down to a function type.
5003  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5004  // Reconstruct the pointer/reference as appropriate.
5005  if (isPointer) FnType = S.Context.getPointerType(FnType);
5006  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5007  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5008
5009  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5010    << FnType;
5011}
5012
5013void NoteBuiltinOperatorCandidate(Sema &S,
5014                                  const char *Opc,
5015                                  SourceLocation OpLoc,
5016                                  OverloadCandidate *Cand) {
5017  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5018  std::string TypeStr("operator");
5019  TypeStr += Opc;
5020  TypeStr += "(";
5021  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5022  if (Cand->Conversions.size() == 1) {
5023    TypeStr += ")";
5024    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5025  } else {
5026    TypeStr += ", ";
5027    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5028    TypeStr += ")";
5029    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5030  }
5031}
5032
5033void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5034                                  OverloadCandidate *Cand) {
5035  unsigned NoOperands = Cand->Conversions.size();
5036  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5037    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5038    if (ICS.isBad()) break; // all meaningless after first invalid
5039    if (!ICS.isAmbiguous()) continue;
5040
5041    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5042                              S.PDiag(diag::note_ambiguous_type_conversion));
5043  }
5044}
5045
5046SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5047  if (Cand->Function)
5048    return Cand->Function->getLocation();
5049  if (Cand->IsSurrogate)
5050    return Cand->Surrogate->getLocation();
5051  return SourceLocation();
5052}
5053
5054struct CompareOverloadCandidatesForDisplay {
5055  Sema &S;
5056  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5057
5058  bool operator()(const OverloadCandidate *L,
5059                  const OverloadCandidate *R) {
5060    // Fast-path this check.
5061    if (L == R) return false;
5062
5063    // Order first by viability.
5064    if (L->Viable) {
5065      if (!R->Viable) return true;
5066
5067      // TODO: introduce a tri-valued comparison for overload
5068      // candidates.  Would be more worthwhile if we had a sort
5069      // that could exploit it.
5070      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5071      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5072    } else if (R->Viable)
5073      return false;
5074
5075    assert(L->Viable == R->Viable);
5076
5077    // Criteria by which we can sort non-viable candidates:
5078    if (!L->Viable) {
5079      // 1. Arity mismatches come after other candidates.
5080      if (L->FailureKind == ovl_fail_too_many_arguments ||
5081          L->FailureKind == ovl_fail_too_few_arguments)
5082        return false;
5083      if (R->FailureKind == ovl_fail_too_many_arguments ||
5084          R->FailureKind == ovl_fail_too_few_arguments)
5085        return true;
5086
5087      // 2. Bad conversions come first and are ordered by the number
5088      // of bad conversions and quality of good conversions.
5089      if (L->FailureKind == ovl_fail_bad_conversion) {
5090        if (R->FailureKind != ovl_fail_bad_conversion)
5091          return true;
5092
5093        // If there's any ordering between the defined conversions...
5094        // FIXME: this might not be transitive.
5095        assert(L->Conversions.size() == R->Conversions.size());
5096
5097        int leftBetter = 0;
5098        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5099        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5100          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5101                                                       R->Conversions[I])) {
5102          case ImplicitConversionSequence::Better:
5103            leftBetter++;
5104            break;
5105
5106          case ImplicitConversionSequence::Worse:
5107            leftBetter--;
5108            break;
5109
5110          case ImplicitConversionSequence::Indistinguishable:
5111            break;
5112          }
5113        }
5114        if (leftBetter > 0) return true;
5115        if (leftBetter < 0) return false;
5116
5117      } else if (R->FailureKind == ovl_fail_bad_conversion)
5118        return false;
5119
5120      // TODO: others?
5121    }
5122
5123    // Sort everything else by location.
5124    SourceLocation LLoc = GetLocationForCandidate(L);
5125    SourceLocation RLoc = GetLocationForCandidate(R);
5126
5127    // Put candidates without locations (e.g. builtins) at the end.
5128    if (LLoc.isInvalid()) return false;
5129    if (RLoc.isInvalid()) return true;
5130
5131    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5132  }
5133};
5134
5135/// CompleteNonViableCandidate - Normally, overload resolution only
5136/// computes up to the first
5137void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5138                                Expr **Args, unsigned NumArgs) {
5139  assert(!Cand->Viable);
5140
5141  // Don't do anything on failures other than bad conversion.
5142  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5143
5144  // Skip forward to the first bad conversion.
5145  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5146  unsigned ConvCount = Cand->Conversions.size();
5147  while (true) {
5148    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5149    ConvIdx++;
5150    if (Cand->Conversions[ConvIdx - 1].isBad())
5151      break;
5152  }
5153
5154  if (ConvIdx == ConvCount)
5155    return;
5156
5157  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5158         "remaining conversion is initialized?");
5159
5160  // FIXME: these should probably be preserved from the overload
5161  // operation somehow.
5162  bool SuppressUserConversions = false;
5163  bool ForceRValue = false;
5164
5165  const FunctionProtoType* Proto;
5166  unsigned ArgIdx = ConvIdx;
5167
5168  if (Cand->IsSurrogate) {
5169    QualType ConvType
5170      = Cand->Surrogate->getConversionType().getNonReferenceType();
5171    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5172      ConvType = ConvPtrType->getPointeeType();
5173    Proto = ConvType->getAs<FunctionProtoType>();
5174    ArgIdx--;
5175  } else if (Cand->Function) {
5176    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5177    if (isa<CXXMethodDecl>(Cand->Function) &&
5178        !isa<CXXConstructorDecl>(Cand->Function))
5179      ArgIdx--;
5180  } else {
5181    // Builtin binary operator with a bad first conversion.
5182    assert(ConvCount <= 3);
5183    for (; ConvIdx != ConvCount; ++ConvIdx)
5184      Cand->Conversions[ConvIdx]
5185        = S.TryCopyInitialization(Args[ConvIdx],
5186                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
5187                                  SuppressUserConversions, ForceRValue,
5188                                  /*InOverloadResolution*/ true);
5189    return;
5190  }
5191
5192  // Fill in the rest of the conversions.
5193  unsigned NumArgsInProto = Proto->getNumArgs();
5194  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5195    if (ArgIdx < NumArgsInProto)
5196      Cand->Conversions[ConvIdx]
5197        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
5198                                  SuppressUserConversions, ForceRValue,
5199                                  /*InOverloadResolution=*/true);
5200    else
5201      Cand->Conversions[ConvIdx].setEllipsis();
5202  }
5203}
5204
5205} // end anonymous namespace
5206
5207/// PrintOverloadCandidates - When overload resolution fails, prints
5208/// diagnostic messages containing the candidates in the candidate
5209/// set.
5210void
5211Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5212                              OverloadCandidateDisplayKind OCD,
5213                              Expr **Args, unsigned NumArgs,
5214                              const char *Opc,
5215                              SourceLocation OpLoc) {
5216  // Sort the candidates by viability and position.  Sorting directly would
5217  // be prohibitive, so we make a set of pointers and sort those.
5218  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5219  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5220  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5221                                  LastCand = CandidateSet.end();
5222       Cand != LastCand; ++Cand) {
5223    if (Cand->Viable)
5224      Cands.push_back(Cand);
5225    else if (OCD == OCD_AllCandidates) {
5226      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5227      Cands.push_back(Cand);
5228    }
5229  }
5230
5231  std::sort(Cands.begin(), Cands.end(),
5232            CompareOverloadCandidatesForDisplay(*this));
5233
5234  bool ReportedAmbiguousConversions = false;
5235
5236  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5237  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5238    OverloadCandidate *Cand = *I;
5239
5240    if (Cand->Function)
5241      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5242    else if (Cand->IsSurrogate)
5243      NoteSurrogateCandidate(*this, Cand);
5244
5245    // This a builtin candidate.  We do not, in general, want to list
5246    // every possible builtin candidate.
5247    else if (Cand->Viable) {
5248      // Generally we only see ambiguities including viable builtin
5249      // operators if overload resolution got screwed up by an
5250      // ambiguous user-defined conversion.
5251      //
5252      // FIXME: It's quite possible for different conversions to see
5253      // different ambiguities, though.
5254      if (!ReportedAmbiguousConversions) {
5255        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5256        ReportedAmbiguousConversions = true;
5257      }
5258
5259      // If this is a viable builtin, print it.
5260      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5261    }
5262  }
5263}
5264
5265static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5266  if (isa<UnresolvedLookupExpr>(E))
5267    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5268
5269  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5270}
5271
5272/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5273/// an overloaded function (C++ [over.over]), where @p From is an
5274/// expression with overloaded function type and @p ToType is the type
5275/// we're trying to resolve to. For example:
5276///
5277/// @code
5278/// int f(double);
5279/// int f(int);
5280///
5281/// int (*pfd)(double) = f; // selects f(double)
5282/// @endcode
5283///
5284/// This routine returns the resulting FunctionDecl if it could be
5285/// resolved, and NULL otherwise. When @p Complain is true, this
5286/// routine will emit diagnostics if there is an error.
5287FunctionDecl *
5288Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5289                                         bool Complain,
5290                                         DeclAccessPair &FoundResult) {
5291  QualType FunctionType = ToType;
5292  bool IsMember = false;
5293  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5294    FunctionType = ToTypePtr->getPointeeType();
5295  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5296    FunctionType = ToTypeRef->getPointeeType();
5297  else if (const MemberPointerType *MemTypePtr =
5298                    ToType->getAs<MemberPointerType>()) {
5299    FunctionType = MemTypePtr->getPointeeType();
5300    IsMember = true;
5301  }
5302
5303  // C++ [over.over]p1:
5304  //   [...] [Note: any redundant set of parentheses surrounding the
5305  //   overloaded function name is ignored (5.1). ]
5306  // C++ [over.over]p1:
5307  //   [...] The overloaded function name can be preceded by the &
5308  //   operator.
5309  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5310  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5311  if (OvlExpr->hasExplicitTemplateArgs()) {
5312    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5313    ExplicitTemplateArgs = &ETABuffer;
5314  }
5315
5316  // We expect a pointer or reference to function, or a function pointer.
5317  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5318  if (!FunctionType->isFunctionType()) {
5319    if (Complain)
5320      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5321        << OvlExpr->getName() << ToType;
5322
5323    return 0;
5324  }
5325
5326  assert(From->getType() == Context.OverloadTy);
5327
5328  // Look through all of the overloaded functions, searching for one
5329  // whose type matches exactly.
5330  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5331  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5332
5333  bool FoundNonTemplateFunction = false;
5334  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5335         E = OvlExpr->decls_end(); I != E; ++I) {
5336    // Look through any using declarations to find the underlying function.
5337    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5338
5339    // C++ [over.over]p3:
5340    //   Non-member functions and static member functions match
5341    //   targets of type "pointer-to-function" or "reference-to-function."
5342    //   Nonstatic member functions match targets of
5343    //   type "pointer-to-member-function."
5344    // Note that according to DR 247, the containing class does not matter.
5345
5346    if (FunctionTemplateDecl *FunctionTemplate
5347          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5348      if (CXXMethodDecl *Method
5349            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5350        // Skip non-static function templates when converting to pointer, and
5351        // static when converting to member pointer.
5352        if (Method->isStatic() == IsMember)
5353          continue;
5354      } else if (IsMember)
5355        continue;
5356
5357      // C++ [over.over]p2:
5358      //   If the name is a function template, template argument deduction is
5359      //   done (14.8.2.2), and if the argument deduction succeeds, the
5360      //   resulting template argument list is used to generate a single
5361      //   function template specialization, which is added to the set of
5362      //   overloaded functions considered.
5363      // FIXME: We don't really want to build the specialization here, do we?
5364      FunctionDecl *Specialization = 0;
5365      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5366      if (TemplateDeductionResult Result
5367            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5368                                      FunctionType, Specialization, Info)) {
5369        // FIXME: make a note of the failed deduction for diagnostics.
5370        (void)Result;
5371      } else {
5372        // FIXME: If the match isn't exact, shouldn't we just drop this as
5373        // a candidate? Find a testcase before changing the code.
5374        assert(FunctionType
5375                 == Context.getCanonicalType(Specialization->getType()));
5376        Matches.push_back(std::make_pair(I.getPair(),
5377                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5378      }
5379
5380      continue;
5381    }
5382
5383    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5384      // Skip non-static functions when converting to pointer, and static
5385      // when converting to member pointer.
5386      if (Method->isStatic() == IsMember)
5387        continue;
5388
5389      // If we have explicit template arguments, skip non-templates.
5390      if (OvlExpr->hasExplicitTemplateArgs())
5391        continue;
5392    } else if (IsMember)
5393      continue;
5394
5395    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5396      QualType ResultTy;
5397      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5398          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5399                               ResultTy)) {
5400        Matches.push_back(std::make_pair(I.getPair(),
5401                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5402        FoundNonTemplateFunction = true;
5403      }
5404    }
5405  }
5406
5407  // If there were 0 or 1 matches, we're done.
5408  if (Matches.empty()) {
5409    if (Complain) {
5410      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5411        << OvlExpr->getName() << FunctionType;
5412      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5413                                 E = OvlExpr->decls_end();
5414           I != E; ++I)
5415        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5416          NoteOverloadCandidate(F);
5417    }
5418
5419    return 0;
5420  } else if (Matches.size() == 1) {
5421    FunctionDecl *Result = Matches[0].second;
5422    FoundResult = Matches[0].first;
5423    MarkDeclarationReferenced(From->getLocStart(), Result);
5424    if (Complain)
5425      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5426    return Result;
5427  }
5428
5429  // C++ [over.over]p4:
5430  //   If more than one function is selected, [...]
5431  if (!FoundNonTemplateFunction) {
5432    //   [...] and any given function template specialization F1 is
5433    //   eliminated if the set contains a second function template
5434    //   specialization whose function template is more specialized
5435    //   than the function template of F1 according to the partial
5436    //   ordering rules of 14.5.5.2.
5437
5438    // The algorithm specified above is quadratic. We instead use a
5439    // two-pass algorithm (similar to the one used to identify the
5440    // best viable function in an overload set) that identifies the
5441    // best function template (if it exists).
5442
5443    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5444    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5445      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5446
5447    UnresolvedSetIterator Result =
5448        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5449                           TPOC_Other, From->getLocStart(),
5450                           PDiag(),
5451                           PDiag(diag::err_addr_ovl_ambiguous)
5452                               << Matches[0].second->getDeclName(),
5453                           PDiag(diag::note_ovl_candidate)
5454                               << (unsigned) oc_function_template);
5455    assert(Result != MatchesCopy.end() && "no most-specialized template");
5456    MarkDeclarationReferenced(From->getLocStart(), *Result);
5457    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5458    if (Complain)
5459      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5460    return cast<FunctionDecl>(*Result);
5461  }
5462
5463  //   [...] any function template specializations in the set are
5464  //   eliminated if the set also contains a non-template function, [...]
5465  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5466    if (Matches[I].second->getPrimaryTemplate() == 0)
5467      ++I;
5468    else {
5469      Matches[I] = Matches[--N];
5470      Matches.set_size(N);
5471    }
5472  }
5473
5474  // [...] After such eliminations, if any, there shall remain exactly one
5475  // selected function.
5476  if (Matches.size() == 1) {
5477    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5478    FoundResult = Matches[0].first;
5479    if (Complain)
5480      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5481    return cast<FunctionDecl>(Matches[0].second);
5482  }
5483
5484  // FIXME: We should probably return the same thing that BestViableFunction
5485  // returns (even if we issue the diagnostics here).
5486  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5487    << Matches[0].second->getDeclName();
5488  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5489    NoteOverloadCandidate(Matches[I].second);
5490  return 0;
5491}
5492
5493/// \brief Given an expression that refers to an overloaded function, try to
5494/// resolve that overloaded function expression down to a single function.
5495///
5496/// This routine can only resolve template-ids that refer to a single function
5497/// template, where that template-id refers to a single template whose template
5498/// arguments are either provided by the template-id or have defaults,
5499/// as described in C++0x [temp.arg.explicit]p3.
5500FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5501  // C++ [over.over]p1:
5502  //   [...] [Note: any redundant set of parentheses surrounding the
5503  //   overloaded function name is ignored (5.1). ]
5504  // C++ [over.over]p1:
5505  //   [...] The overloaded function name can be preceded by the &
5506  //   operator.
5507
5508  if (From->getType() != Context.OverloadTy)
5509    return 0;
5510
5511  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5512
5513  // If we didn't actually find any template-ids, we're done.
5514  if (!OvlExpr->hasExplicitTemplateArgs())
5515    return 0;
5516
5517  TemplateArgumentListInfo ExplicitTemplateArgs;
5518  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5519
5520  // Look through all of the overloaded functions, searching for one
5521  // whose type matches exactly.
5522  FunctionDecl *Matched = 0;
5523  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5524         E = OvlExpr->decls_end(); I != E; ++I) {
5525    // C++0x [temp.arg.explicit]p3:
5526    //   [...] In contexts where deduction is done and fails, or in contexts
5527    //   where deduction is not done, if a template argument list is
5528    //   specified and it, along with any default template arguments,
5529    //   identifies a single function template specialization, then the
5530    //   template-id is an lvalue for the function template specialization.
5531    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5532
5533    // C++ [over.over]p2:
5534    //   If the name is a function template, template argument deduction is
5535    //   done (14.8.2.2), and if the argument deduction succeeds, the
5536    //   resulting template argument list is used to generate a single
5537    //   function template specialization, which is added to the set of
5538    //   overloaded functions considered.
5539    FunctionDecl *Specialization = 0;
5540    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5541    if (TemplateDeductionResult Result
5542          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5543                                    Specialization, Info)) {
5544      // FIXME: make a note of the failed deduction for diagnostics.
5545      (void)Result;
5546      continue;
5547    }
5548
5549    // Multiple matches; we can't resolve to a single declaration.
5550    if (Matched)
5551      return 0;
5552
5553    Matched = Specialization;
5554  }
5555
5556  return Matched;
5557}
5558
5559/// \brief Add a single candidate to the overload set.
5560static void AddOverloadedCallCandidate(Sema &S,
5561                                       DeclAccessPair FoundDecl,
5562                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5563                                       Expr **Args, unsigned NumArgs,
5564                                       OverloadCandidateSet &CandidateSet,
5565                                       bool PartialOverloading) {
5566  NamedDecl *Callee = FoundDecl.getDecl();
5567  if (isa<UsingShadowDecl>(Callee))
5568    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5569
5570  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5571    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5572    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5573                           false, false, PartialOverloading);
5574    return;
5575  }
5576
5577  if (FunctionTemplateDecl *FuncTemplate
5578      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5579    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5580                                   ExplicitTemplateArgs,
5581                                   Args, NumArgs, CandidateSet);
5582    return;
5583  }
5584
5585  assert(false && "unhandled case in overloaded call candidate");
5586
5587  // do nothing?
5588}
5589
5590/// \brief Add the overload candidates named by callee and/or found by argument
5591/// dependent lookup to the given overload set.
5592void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5593                                       Expr **Args, unsigned NumArgs,
5594                                       OverloadCandidateSet &CandidateSet,
5595                                       bool PartialOverloading) {
5596
5597#ifndef NDEBUG
5598  // Verify that ArgumentDependentLookup is consistent with the rules
5599  // in C++0x [basic.lookup.argdep]p3:
5600  //
5601  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5602  //   and let Y be the lookup set produced by argument dependent
5603  //   lookup (defined as follows). If X contains
5604  //
5605  //     -- a declaration of a class member, or
5606  //
5607  //     -- a block-scope function declaration that is not a
5608  //        using-declaration, or
5609  //
5610  //     -- a declaration that is neither a function or a function
5611  //        template
5612  //
5613  //   then Y is empty.
5614
5615  if (ULE->requiresADL()) {
5616    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5617           E = ULE->decls_end(); I != E; ++I) {
5618      assert(!(*I)->getDeclContext()->isRecord());
5619      assert(isa<UsingShadowDecl>(*I) ||
5620             !(*I)->getDeclContext()->isFunctionOrMethod());
5621      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5622    }
5623  }
5624#endif
5625
5626  // It would be nice to avoid this copy.
5627  TemplateArgumentListInfo TABuffer;
5628  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5629  if (ULE->hasExplicitTemplateArgs()) {
5630    ULE->copyTemplateArgumentsInto(TABuffer);
5631    ExplicitTemplateArgs = &TABuffer;
5632  }
5633
5634  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5635         E = ULE->decls_end(); I != E; ++I)
5636    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5637                               Args, NumArgs, CandidateSet,
5638                               PartialOverloading);
5639
5640  if (ULE->requiresADL())
5641    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5642                                         Args, NumArgs,
5643                                         ExplicitTemplateArgs,
5644                                         CandidateSet,
5645                                         PartialOverloading);
5646}
5647
5648static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5649                                      Expr **Args, unsigned NumArgs) {
5650  Fn->Destroy(SemaRef.Context);
5651  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5652    Args[Arg]->Destroy(SemaRef.Context);
5653  return SemaRef.ExprError();
5654}
5655
5656/// Attempts to recover from a call where no functions were found.
5657///
5658/// Returns true if new candidates were found.
5659static Sema::OwningExprResult
5660BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5661                      UnresolvedLookupExpr *ULE,
5662                      SourceLocation LParenLoc,
5663                      Expr **Args, unsigned NumArgs,
5664                      SourceLocation *CommaLocs,
5665                      SourceLocation RParenLoc) {
5666
5667  CXXScopeSpec SS;
5668  if (ULE->getQualifier()) {
5669    SS.setScopeRep(ULE->getQualifier());
5670    SS.setRange(ULE->getQualifierRange());
5671  }
5672
5673  TemplateArgumentListInfo TABuffer;
5674  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5675  if (ULE->hasExplicitTemplateArgs()) {
5676    ULE->copyTemplateArgumentsInto(TABuffer);
5677    ExplicitTemplateArgs = &TABuffer;
5678  }
5679
5680  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5681                 Sema::LookupOrdinaryName);
5682  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5683    return Destroy(SemaRef, Fn, Args, NumArgs);
5684
5685  assert(!R.empty() && "lookup results empty despite recovery");
5686
5687  // Build an implicit member call if appropriate.  Just drop the
5688  // casts and such from the call, we don't really care.
5689  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5690  if ((*R.begin())->isCXXClassMember())
5691    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5692  else if (ExplicitTemplateArgs)
5693    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5694  else
5695    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5696
5697  if (NewFn.isInvalid())
5698    return Destroy(SemaRef, Fn, Args, NumArgs);
5699
5700  Fn->Destroy(SemaRef.Context);
5701
5702  // This shouldn't cause an infinite loop because we're giving it
5703  // an expression with non-empty lookup results, which should never
5704  // end up here.
5705  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5706                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5707                               CommaLocs, RParenLoc);
5708}
5709
5710/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5711/// (which eventually refers to the declaration Func) and the call
5712/// arguments Args/NumArgs, attempt to resolve the function call down
5713/// to a specific function. If overload resolution succeeds, returns
5714/// the function declaration produced by overload
5715/// resolution. Otherwise, emits diagnostics, deletes all of the
5716/// arguments and Fn, and returns NULL.
5717Sema::OwningExprResult
5718Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5719                              SourceLocation LParenLoc,
5720                              Expr **Args, unsigned NumArgs,
5721                              SourceLocation *CommaLocs,
5722                              SourceLocation RParenLoc) {
5723#ifndef NDEBUG
5724  if (ULE->requiresADL()) {
5725    // To do ADL, we must have found an unqualified name.
5726    assert(!ULE->getQualifier() && "qualified name with ADL");
5727
5728    // We don't perform ADL for implicit declarations of builtins.
5729    // Verify that this was correctly set up.
5730    FunctionDecl *F;
5731    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5732        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5733        F->getBuiltinID() && F->isImplicit())
5734      assert(0 && "performing ADL for builtin");
5735
5736    // We don't perform ADL in C.
5737    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5738  }
5739#endif
5740
5741  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5742
5743  // Add the functions denoted by the callee to the set of candidate
5744  // functions, including those from argument-dependent lookup.
5745  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5746
5747  // If we found nothing, try to recover.
5748  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5749  // bailout out if it fails.
5750  if (CandidateSet.empty())
5751    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5752                                 CommaLocs, RParenLoc);
5753
5754  OverloadCandidateSet::iterator Best;
5755  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5756  case OR_Success: {
5757    FunctionDecl *FDecl = Best->Function;
5758    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5759    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5760    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5761  }
5762
5763  case OR_No_Viable_Function:
5764    Diag(Fn->getSourceRange().getBegin(),
5765         diag::err_ovl_no_viable_function_in_call)
5766      << ULE->getName() << Fn->getSourceRange();
5767    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5768    break;
5769
5770  case OR_Ambiguous:
5771    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5772      << ULE->getName() << Fn->getSourceRange();
5773    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5774    break;
5775
5776  case OR_Deleted:
5777    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5778      << Best->Function->isDeleted()
5779      << ULE->getName()
5780      << Fn->getSourceRange();
5781    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5782    break;
5783  }
5784
5785  // Overload resolution failed. Destroy all of the subexpressions and
5786  // return NULL.
5787  Fn->Destroy(Context);
5788  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5789    Args[Arg]->Destroy(Context);
5790  return ExprError();
5791}
5792
5793static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5794  return Functions.size() > 1 ||
5795    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5796}
5797
5798/// \brief Create a unary operation that may resolve to an overloaded
5799/// operator.
5800///
5801/// \param OpLoc The location of the operator itself (e.g., '*').
5802///
5803/// \param OpcIn The UnaryOperator::Opcode that describes this
5804/// operator.
5805///
5806/// \param Functions The set of non-member functions that will be
5807/// considered by overload resolution. The caller needs to build this
5808/// set based on the context using, e.g.,
5809/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5810/// set should not contain any member functions; those will be added
5811/// by CreateOverloadedUnaryOp().
5812///
5813/// \param input The input argument.
5814Sema::OwningExprResult
5815Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5816                              const UnresolvedSetImpl &Fns,
5817                              ExprArg input) {
5818  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5819  Expr *Input = (Expr *)input.get();
5820
5821  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5822  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5823  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5824
5825  Expr *Args[2] = { Input, 0 };
5826  unsigned NumArgs = 1;
5827
5828  // For post-increment and post-decrement, add the implicit '0' as
5829  // the second argument, so that we know this is a post-increment or
5830  // post-decrement.
5831  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5832    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5833    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5834                                           SourceLocation());
5835    NumArgs = 2;
5836  }
5837
5838  if (Input->isTypeDependent()) {
5839    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5840    UnresolvedLookupExpr *Fn
5841      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5842                                     0, SourceRange(), OpName, OpLoc,
5843                                     /*ADL*/ true, IsOverloaded(Fns));
5844    Fn->addDecls(Fns.begin(), Fns.end());
5845
5846    input.release();
5847    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5848                                                   &Args[0], NumArgs,
5849                                                   Context.DependentTy,
5850                                                   OpLoc));
5851  }
5852
5853  // Build an empty overload set.
5854  OverloadCandidateSet CandidateSet(OpLoc);
5855
5856  // Add the candidates from the given function set.
5857  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5858
5859  // Add operator candidates that are member functions.
5860  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5861
5862  // Add candidates from ADL.
5863  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5864                                       Args, NumArgs,
5865                                       /*ExplicitTemplateArgs*/ 0,
5866                                       CandidateSet);
5867
5868  // Add builtin operator candidates.
5869  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5870
5871  // Perform overload resolution.
5872  OverloadCandidateSet::iterator Best;
5873  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5874  case OR_Success: {
5875    // We found a built-in operator or an overloaded operator.
5876    FunctionDecl *FnDecl = Best->Function;
5877
5878    if (FnDecl) {
5879      // We matched an overloaded operator. Build a call to that
5880      // operator.
5881
5882      // Convert the arguments.
5883      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5884        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5885
5886        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5887                                                Best->FoundDecl, Method))
5888          return ExprError();
5889      } else {
5890        // Convert the arguments.
5891        OwningExprResult InputInit
5892          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5893                                                      FnDecl->getParamDecl(0)),
5894                                      SourceLocation(),
5895                                      move(input));
5896        if (InputInit.isInvalid())
5897          return ExprError();
5898
5899        input = move(InputInit);
5900        Input = (Expr *)input.get();
5901      }
5902
5903      // Determine the result type
5904      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5905
5906      // Build the actual expression node.
5907      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5908                                               SourceLocation());
5909      UsualUnaryConversions(FnExpr);
5910
5911      input.release();
5912      Args[0] = Input;
5913      ExprOwningPtr<CallExpr> TheCall(this,
5914        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5915                                          Args, NumArgs, ResultTy, OpLoc));
5916
5917      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5918                              FnDecl))
5919        return ExprError();
5920
5921      return MaybeBindToTemporary(TheCall.release());
5922    } else {
5923      // We matched a built-in operator. Convert the arguments, then
5924      // break out so that we will build the appropriate built-in
5925      // operator node.
5926        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5927                                      Best->Conversions[0], AA_Passing))
5928          return ExprError();
5929
5930        break;
5931      }
5932    }
5933
5934    case OR_No_Viable_Function:
5935      // No viable function; fall through to handling this as a
5936      // built-in operator, which will produce an error message for us.
5937      break;
5938
5939    case OR_Ambiguous:
5940      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5941          << UnaryOperator::getOpcodeStr(Opc)
5942          << Input->getSourceRange();
5943      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5944                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5945      return ExprError();
5946
5947    case OR_Deleted:
5948      Diag(OpLoc, diag::err_ovl_deleted_oper)
5949        << Best->Function->isDeleted()
5950        << UnaryOperator::getOpcodeStr(Opc)
5951        << Input->getSourceRange();
5952      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5953      return ExprError();
5954    }
5955
5956  // Either we found no viable overloaded operator or we matched a
5957  // built-in operator. In either case, fall through to trying to
5958  // build a built-in operation.
5959  input.release();
5960  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5961}
5962
5963/// \brief Create a binary operation that may resolve to an overloaded
5964/// operator.
5965///
5966/// \param OpLoc The location of the operator itself (e.g., '+').
5967///
5968/// \param OpcIn The BinaryOperator::Opcode that describes this
5969/// operator.
5970///
5971/// \param Functions The set of non-member functions that will be
5972/// considered by overload resolution. The caller needs to build this
5973/// set based on the context using, e.g.,
5974/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5975/// set should not contain any member functions; those will be added
5976/// by CreateOverloadedBinOp().
5977///
5978/// \param LHS Left-hand argument.
5979/// \param RHS Right-hand argument.
5980Sema::OwningExprResult
5981Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5982                            unsigned OpcIn,
5983                            const UnresolvedSetImpl &Fns,
5984                            Expr *LHS, Expr *RHS) {
5985  Expr *Args[2] = { LHS, RHS };
5986  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5987
5988  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5989  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5990  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5991
5992  // If either side is type-dependent, create an appropriate dependent
5993  // expression.
5994  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5995    if (Fns.empty()) {
5996      // If there are no functions to store, just build a dependent
5997      // BinaryOperator or CompoundAssignment.
5998      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5999        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6000                                                  Context.DependentTy, OpLoc));
6001
6002      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6003                                                        Context.DependentTy,
6004                                                        Context.DependentTy,
6005                                                        Context.DependentTy,
6006                                                        OpLoc));
6007    }
6008
6009    // FIXME: save results of ADL from here?
6010    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6011    UnresolvedLookupExpr *Fn
6012      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6013                                     0, SourceRange(), OpName, OpLoc,
6014                                     /*ADL*/ true, IsOverloaded(Fns));
6015
6016    Fn->addDecls(Fns.begin(), Fns.end());
6017    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6018                                                   Args, 2,
6019                                                   Context.DependentTy,
6020                                                   OpLoc));
6021  }
6022
6023  // If this is the .* operator, which is not overloadable, just
6024  // create a built-in binary operator.
6025  if (Opc == BinaryOperator::PtrMemD)
6026    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6027
6028  // If this is the assignment operator, we only perform overload resolution
6029  // if the left-hand side is a class or enumeration type. This is actually
6030  // a hack. The standard requires that we do overload resolution between the
6031  // various built-in candidates, but as DR507 points out, this can lead to
6032  // problems. So we do it this way, which pretty much follows what GCC does.
6033  // Note that we go the traditional code path for compound assignment forms.
6034  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6035    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6036
6037  // Build an empty overload set.
6038  OverloadCandidateSet CandidateSet(OpLoc);
6039
6040  // Add the candidates from the given function set.
6041  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6042
6043  // Add operator candidates that are member functions.
6044  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6045
6046  // Add candidates from ADL.
6047  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6048                                       Args, 2,
6049                                       /*ExplicitTemplateArgs*/ 0,
6050                                       CandidateSet);
6051
6052  // Add builtin operator candidates.
6053  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6054
6055  // Perform overload resolution.
6056  OverloadCandidateSet::iterator Best;
6057  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6058    case OR_Success: {
6059      // We found a built-in operator or an overloaded operator.
6060      FunctionDecl *FnDecl = Best->Function;
6061
6062      if (FnDecl) {
6063        // We matched an overloaded operator. Build a call to that
6064        // operator.
6065
6066        // Convert the arguments.
6067        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6068          // Best->Access is only meaningful for class members.
6069          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6070
6071          OwningExprResult Arg1
6072            = PerformCopyInitialization(
6073                                        InitializedEntity::InitializeParameter(
6074                                                        FnDecl->getParamDecl(0)),
6075                                        SourceLocation(),
6076                                        Owned(Args[1]));
6077          if (Arg1.isInvalid())
6078            return ExprError();
6079
6080          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6081                                                  Best->FoundDecl, Method))
6082            return ExprError();
6083
6084          Args[1] = RHS = Arg1.takeAs<Expr>();
6085        } else {
6086          // Convert the arguments.
6087          OwningExprResult Arg0
6088            = PerformCopyInitialization(
6089                                        InitializedEntity::InitializeParameter(
6090                                                        FnDecl->getParamDecl(0)),
6091                                        SourceLocation(),
6092                                        Owned(Args[0]));
6093          if (Arg0.isInvalid())
6094            return ExprError();
6095
6096          OwningExprResult Arg1
6097            = PerformCopyInitialization(
6098                                        InitializedEntity::InitializeParameter(
6099                                                        FnDecl->getParamDecl(1)),
6100                                        SourceLocation(),
6101                                        Owned(Args[1]));
6102          if (Arg1.isInvalid())
6103            return ExprError();
6104          Args[0] = LHS = Arg0.takeAs<Expr>();
6105          Args[1] = RHS = Arg1.takeAs<Expr>();
6106        }
6107
6108        // Determine the result type
6109        QualType ResultTy
6110          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6111        ResultTy = ResultTy.getNonReferenceType();
6112
6113        // Build the actual expression node.
6114        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6115                                                 OpLoc);
6116        UsualUnaryConversions(FnExpr);
6117
6118        ExprOwningPtr<CXXOperatorCallExpr>
6119          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6120                                                          Args, 2, ResultTy,
6121                                                          OpLoc));
6122
6123        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6124                                FnDecl))
6125          return ExprError();
6126
6127        return MaybeBindToTemporary(TheCall.release());
6128      } else {
6129        // We matched a built-in operator. Convert the arguments, then
6130        // break out so that we will build the appropriate built-in
6131        // operator node.
6132        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6133                                      Best->Conversions[0], AA_Passing) ||
6134            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6135                                      Best->Conversions[1], AA_Passing))
6136          return ExprError();
6137
6138        break;
6139      }
6140    }
6141
6142    case OR_No_Viable_Function: {
6143      // C++ [over.match.oper]p9:
6144      //   If the operator is the operator , [...] and there are no
6145      //   viable functions, then the operator is assumed to be the
6146      //   built-in operator and interpreted according to clause 5.
6147      if (Opc == BinaryOperator::Comma)
6148        break;
6149
6150      // For class as left operand for assignment or compound assigment operator
6151      // do not fall through to handling in built-in, but report that no overloaded
6152      // assignment operator found
6153      OwningExprResult Result = ExprError();
6154      if (Args[0]->getType()->isRecordType() &&
6155          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6156        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6157             << BinaryOperator::getOpcodeStr(Opc)
6158             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6159      } else {
6160        // No viable function; try to create a built-in operation, which will
6161        // produce an error. Then, show the non-viable candidates.
6162        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6163      }
6164      assert(Result.isInvalid() &&
6165             "C++ binary operator overloading is missing candidates!");
6166      if (Result.isInvalid())
6167        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6168                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6169      return move(Result);
6170    }
6171
6172    case OR_Ambiguous:
6173      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6174          << BinaryOperator::getOpcodeStr(Opc)
6175          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6176      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6177                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6178      return ExprError();
6179
6180    case OR_Deleted:
6181      Diag(OpLoc, diag::err_ovl_deleted_oper)
6182        << Best->Function->isDeleted()
6183        << BinaryOperator::getOpcodeStr(Opc)
6184        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6185      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6186      return ExprError();
6187  }
6188
6189  // We matched a built-in operator; build it.
6190  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6191}
6192
6193Action::OwningExprResult
6194Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6195                                         SourceLocation RLoc,
6196                                         ExprArg Base, ExprArg Idx) {
6197  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6198                    static_cast<Expr*>(Idx.get()) };
6199  DeclarationName OpName =
6200      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6201
6202  // If either side is type-dependent, create an appropriate dependent
6203  // expression.
6204  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6205
6206    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6207    UnresolvedLookupExpr *Fn
6208      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6209                                     0, SourceRange(), OpName, LLoc,
6210                                     /*ADL*/ true, /*Overloaded*/ false);
6211    // Can't add any actual overloads yet
6212
6213    Base.release();
6214    Idx.release();
6215    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6216                                                   Args, 2,
6217                                                   Context.DependentTy,
6218                                                   RLoc));
6219  }
6220
6221  // Build an empty overload set.
6222  OverloadCandidateSet CandidateSet(LLoc);
6223
6224  // Subscript can only be overloaded as a member function.
6225
6226  // Add operator candidates that are member functions.
6227  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6228
6229  // Add builtin operator candidates.
6230  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6231
6232  // Perform overload resolution.
6233  OverloadCandidateSet::iterator Best;
6234  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6235    case OR_Success: {
6236      // We found a built-in operator or an overloaded operator.
6237      FunctionDecl *FnDecl = Best->Function;
6238
6239      if (FnDecl) {
6240        // We matched an overloaded operator. Build a call to that
6241        // operator.
6242
6243        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6244
6245        // Convert the arguments.
6246        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6247        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6248                                                Best->FoundDecl, Method))
6249          return ExprError();
6250
6251        // Convert the arguments.
6252        OwningExprResult InputInit
6253          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6254                                                      FnDecl->getParamDecl(0)),
6255                                      SourceLocation(),
6256                                      Owned(Args[1]));
6257        if (InputInit.isInvalid())
6258          return ExprError();
6259
6260        Args[1] = InputInit.takeAs<Expr>();
6261
6262        // Determine the result type
6263        QualType ResultTy
6264          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6265        ResultTy = ResultTy.getNonReferenceType();
6266
6267        // Build the actual expression node.
6268        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6269                                                 LLoc);
6270        UsualUnaryConversions(FnExpr);
6271
6272        Base.release();
6273        Idx.release();
6274        ExprOwningPtr<CXXOperatorCallExpr>
6275          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6276                                                          FnExpr, Args, 2,
6277                                                          ResultTy, RLoc));
6278
6279        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6280                                FnDecl))
6281          return ExprError();
6282
6283        return MaybeBindToTemporary(TheCall.release());
6284      } else {
6285        // We matched a built-in operator. Convert the arguments, then
6286        // break out so that we will build the appropriate built-in
6287        // operator node.
6288        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6289                                      Best->Conversions[0], AA_Passing) ||
6290            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6291                                      Best->Conversions[1], AA_Passing))
6292          return ExprError();
6293
6294        break;
6295      }
6296    }
6297
6298    case OR_No_Viable_Function: {
6299      if (CandidateSet.empty())
6300        Diag(LLoc, diag::err_ovl_no_oper)
6301          << Args[0]->getType() << /*subscript*/ 0
6302          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6303      else
6304        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6305          << Args[0]->getType()
6306          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6307      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6308                              "[]", LLoc);
6309      return ExprError();
6310    }
6311
6312    case OR_Ambiguous:
6313      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6314          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6315      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6316                              "[]", LLoc);
6317      return ExprError();
6318
6319    case OR_Deleted:
6320      Diag(LLoc, diag::err_ovl_deleted_oper)
6321        << Best->Function->isDeleted() << "[]"
6322        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6323      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6324                              "[]", LLoc);
6325      return ExprError();
6326    }
6327
6328  // We matched a built-in operator; build it.
6329  Base.release();
6330  Idx.release();
6331  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6332                                         Owned(Args[1]), RLoc);
6333}
6334
6335/// BuildCallToMemberFunction - Build a call to a member
6336/// function. MemExpr is the expression that refers to the member
6337/// function (and includes the object parameter), Args/NumArgs are the
6338/// arguments to the function call (not including the object
6339/// parameter). The caller needs to validate that the member
6340/// expression refers to a member function or an overloaded member
6341/// function.
6342Sema::OwningExprResult
6343Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6344                                SourceLocation LParenLoc, Expr **Args,
6345                                unsigned NumArgs, SourceLocation *CommaLocs,
6346                                SourceLocation RParenLoc) {
6347  // Dig out the member expression. This holds both the object
6348  // argument and the member function we're referring to.
6349  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6350
6351  MemberExpr *MemExpr;
6352  CXXMethodDecl *Method = 0;
6353  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6354  NestedNameSpecifier *Qualifier = 0;
6355  if (isa<MemberExpr>(NakedMemExpr)) {
6356    MemExpr = cast<MemberExpr>(NakedMemExpr);
6357    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6358    FoundDecl = MemExpr->getFoundDecl();
6359    Qualifier = MemExpr->getQualifier();
6360  } else {
6361    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6362    Qualifier = UnresExpr->getQualifier();
6363
6364    QualType ObjectType = UnresExpr->getBaseType();
6365
6366    // Add overload candidates
6367    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6368
6369    // FIXME: avoid copy.
6370    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6371    if (UnresExpr->hasExplicitTemplateArgs()) {
6372      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6373      TemplateArgs = &TemplateArgsBuffer;
6374    }
6375
6376    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6377           E = UnresExpr->decls_end(); I != E; ++I) {
6378
6379      NamedDecl *Func = *I;
6380      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6381      if (isa<UsingShadowDecl>(Func))
6382        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6383
6384      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6385        // If explicit template arguments were provided, we can't call a
6386        // non-template member function.
6387        if (TemplateArgs)
6388          continue;
6389
6390        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6391                           Args, NumArgs,
6392                           CandidateSet, /*SuppressUserConversions=*/false);
6393      } else {
6394        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6395                                   I.getPair(), ActingDC, TemplateArgs,
6396                                   ObjectType, Args, NumArgs,
6397                                   CandidateSet,
6398                                   /*SuppressUsedConversions=*/false);
6399      }
6400    }
6401
6402    DeclarationName DeclName = UnresExpr->getMemberName();
6403
6404    OverloadCandidateSet::iterator Best;
6405    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6406    case OR_Success:
6407      Method = cast<CXXMethodDecl>(Best->Function);
6408      FoundDecl = Best->FoundDecl;
6409      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6410      break;
6411
6412    case OR_No_Viable_Function:
6413      Diag(UnresExpr->getMemberLoc(),
6414           diag::err_ovl_no_viable_member_function_in_call)
6415        << DeclName << MemExprE->getSourceRange();
6416      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6417      // FIXME: Leaking incoming expressions!
6418      return ExprError();
6419
6420    case OR_Ambiguous:
6421      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6422        << DeclName << MemExprE->getSourceRange();
6423      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6424      // FIXME: Leaking incoming expressions!
6425      return ExprError();
6426
6427    case OR_Deleted:
6428      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6429        << Best->Function->isDeleted()
6430        << DeclName << MemExprE->getSourceRange();
6431      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6432      // FIXME: Leaking incoming expressions!
6433      return ExprError();
6434    }
6435
6436    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6437
6438    // If overload resolution picked a static member, build a
6439    // non-member call based on that function.
6440    if (Method->isStatic()) {
6441      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6442                                   Args, NumArgs, RParenLoc);
6443    }
6444
6445    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6446  }
6447
6448  assert(Method && "Member call to something that isn't a method?");
6449  ExprOwningPtr<CXXMemberCallExpr>
6450    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6451                                                  NumArgs,
6452                                  Method->getResultType().getNonReferenceType(),
6453                                  RParenLoc));
6454
6455  // Check for a valid return type.
6456  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6457                          TheCall.get(), Method))
6458    return ExprError();
6459
6460  // Convert the object argument (for a non-static member function call).
6461  // We only need to do this if there was actually an overload; otherwise
6462  // it was done at lookup.
6463  Expr *ObjectArg = MemExpr->getBase();
6464  if (!Method->isStatic() &&
6465      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6466                                          FoundDecl, Method))
6467    return ExprError();
6468  MemExpr->setBase(ObjectArg);
6469
6470  // Convert the rest of the arguments
6471  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6472  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6473                              RParenLoc))
6474    return ExprError();
6475
6476  if (CheckFunctionCall(Method, TheCall.get()))
6477    return ExprError();
6478
6479  return MaybeBindToTemporary(TheCall.release());
6480}
6481
6482/// BuildCallToObjectOfClassType - Build a call to an object of class
6483/// type (C++ [over.call.object]), which can end up invoking an
6484/// overloaded function call operator (@c operator()) or performing a
6485/// user-defined conversion on the object argument.
6486Sema::ExprResult
6487Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6488                                   SourceLocation LParenLoc,
6489                                   Expr **Args, unsigned NumArgs,
6490                                   SourceLocation *CommaLocs,
6491                                   SourceLocation RParenLoc) {
6492  assert(Object->getType()->isRecordType() && "Requires object type argument");
6493  const RecordType *Record = Object->getType()->getAs<RecordType>();
6494
6495  // C++ [over.call.object]p1:
6496  //  If the primary-expression E in the function call syntax
6497  //  evaluates to a class object of type "cv T", then the set of
6498  //  candidate functions includes at least the function call
6499  //  operators of T. The function call operators of T are obtained by
6500  //  ordinary lookup of the name operator() in the context of
6501  //  (E).operator().
6502  OverloadCandidateSet CandidateSet(LParenLoc);
6503  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6504
6505  if (RequireCompleteType(LParenLoc, Object->getType(),
6506                          PDiag(diag::err_incomplete_object_call)
6507                          << Object->getSourceRange()))
6508    return true;
6509
6510  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6511  LookupQualifiedName(R, Record->getDecl());
6512  R.suppressDiagnostics();
6513
6514  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6515       Oper != OperEnd; ++Oper) {
6516    AddMethodCandidate(Oper.getPair(), Object->getType(),
6517                       Args, NumArgs, CandidateSet,
6518                       /*SuppressUserConversions=*/ false);
6519  }
6520
6521  // C++ [over.call.object]p2:
6522  //   In addition, for each conversion function declared in T of the
6523  //   form
6524  //
6525  //        operator conversion-type-id () cv-qualifier;
6526  //
6527  //   where cv-qualifier is the same cv-qualification as, or a
6528  //   greater cv-qualification than, cv, and where conversion-type-id
6529  //   denotes the type "pointer to function of (P1,...,Pn) returning
6530  //   R", or the type "reference to pointer to function of
6531  //   (P1,...,Pn) returning R", or the type "reference to function
6532  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6533  //   is also considered as a candidate function. Similarly,
6534  //   surrogate call functions are added to the set of candidate
6535  //   functions for each conversion function declared in an
6536  //   accessible base class provided the function is not hidden
6537  //   within T by another intervening declaration.
6538  const UnresolvedSetImpl *Conversions
6539    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6540  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6541         E = Conversions->end(); I != E; ++I) {
6542    NamedDecl *D = *I;
6543    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6544    if (isa<UsingShadowDecl>(D))
6545      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6546
6547    // Skip over templated conversion functions; they aren't
6548    // surrogates.
6549    if (isa<FunctionTemplateDecl>(D))
6550      continue;
6551
6552    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6553
6554    // Strip the reference type (if any) and then the pointer type (if
6555    // any) to get down to what might be a function type.
6556    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6557    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6558      ConvType = ConvPtrType->getPointeeType();
6559
6560    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6561      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6562                            Object->getType(), Args, NumArgs,
6563                            CandidateSet);
6564  }
6565
6566  // Perform overload resolution.
6567  OverloadCandidateSet::iterator Best;
6568  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6569  case OR_Success:
6570    // Overload resolution succeeded; we'll build the appropriate call
6571    // below.
6572    break;
6573
6574  case OR_No_Viable_Function:
6575    if (CandidateSet.empty())
6576      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6577        << Object->getType() << /*call*/ 1
6578        << Object->getSourceRange();
6579    else
6580      Diag(Object->getSourceRange().getBegin(),
6581           diag::err_ovl_no_viable_object_call)
6582        << Object->getType() << Object->getSourceRange();
6583    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6584    break;
6585
6586  case OR_Ambiguous:
6587    Diag(Object->getSourceRange().getBegin(),
6588         diag::err_ovl_ambiguous_object_call)
6589      << Object->getType() << Object->getSourceRange();
6590    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6591    break;
6592
6593  case OR_Deleted:
6594    Diag(Object->getSourceRange().getBegin(),
6595         diag::err_ovl_deleted_object_call)
6596      << Best->Function->isDeleted()
6597      << Object->getType() << Object->getSourceRange();
6598    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6599    break;
6600  }
6601
6602  if (Best == CandidateSet.end()) {
6603    // We had an error; delete all of the subexpressions and return
6604    // the error.
6605    Object->Destroy(Context);
6606    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6607      Args[ArgIdx]->Destroy(Context);
6608    return true;
6609  }
6610
6611  if (Best->Function == 0) {
6612    // Since there is no function declaration, this is one of the
6613    // surrogate candidates. Dig out the conversion function.
6614    CXXConversionDecl *Conv
6615      = cast<CXXConversionDecl>(
6616                         Best->Conversions[0].UserDefined.ConversionFunction);
6617
6618    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6619
6620    // We selected one of the surrogate functions that converts the
6621    // object parameter to a function pointer. Perform the conversion
6622    // on the object argument, then let ActOnCallExpr finish the job.
6623
6624    // Create an implicit member expr to refer to the conversion operator.
6625    // and then call it.
6626    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6627                                                   Conv);
6628
6629    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6630                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6631                         CommaLocs, RParenLoc).result();
6632  }
6633
6634  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6635
6636  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6637  // that calls this method, using Object for the implicit object
6638  // parameter and passing along the remaining arguments.
6639  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6640  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6641
6642  unsigned NumArgsInProto = Proto->getNumArgs();
6643  unsigned NumArgsToCheck = NumArgs;
6644
6645  // Build the full argument list for the method call (the
6646  // implicit object parameter is placed at the beginning of the
6647  // list).
6648  Expr **MethodArgs;
6649  if (NumArgs < NumArgsInProto) {
6650    NumArgsToCheck = NumArgsInProto;
6651    MethodArgs = new Expr*[NumArgsInProto + 1];
6652  } else {
6653    MethodArgs = new Expr*[NumArgs + 1];
6654  }
6655  MethodArgs[0] = Object;
6656  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6657    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6658
6659  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6660                                          SourceLocation());
6661  UsualUnaryConversions(NewFn);
6662
6663  // Once we've built TheCall, all of the expressions are properly
6664  // owned.
6665  QualType ResultTy = Method->getResultType().getNonReferenceType();
6666  ExprOwningPtr<CXXOperatorCallExpr>
6667    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6668                                                    MethodArgs, NumArgs + 1,
6669                                                    ResultTy, RParenLoc));
6670  delete [] MethodArgs;
6671
6672  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6673                          Method))
6674    return true;
6675
6676  // We may have default arguments. If so, we need to allocate more
6677  // slots in the call for them.
6678  if (NumArgs < NumArgsInProto)
6679    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6680  else if (NumArgs > NumArgsInProto)
6681    NumArgsToCheck = NumArgsInProto;
6682
6683  bool IsError = false;
6684
6685  // Initialize the implicit object parameter.
6686  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6687                                                 Best->FoundDecl, Method);
6688  TheCall->setArg(0, Object);
6689
6690
6691  // Check the argument types.
6692  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6693    Expr *Arg;
6694    if (i < NumArgs) {
6695      Arg = Args[i];
6696
6697      // Pass the argument.
6698
6699      OwningExprResult InputInit
6700        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6701                                                    Method->getParamDecl(i)),
6702                                    SourceLocation(), Owned(Arg));
6703
6704      IsError |= InputInit.isInvalid();
6705      Arg = InputInit.takeAs<Expr>();
6706    } else {
6707      OwningExprResult DefArg
6708        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6709      if (DefArg.isInvalid()) {
6710        IsError = true;
6711        break;
6712      }
6713
6714      Arg = DefArg.takeAs<Expr>();
6715    }
6716
6717    TheCall->setArg(i + 1, Arg);
6718  }
6719
6720  // If this is a variadic call, handle args passed through "...".
6721  if (Proto->isVariadic()) {
6722    // Promote the arguments (C99 6.5.2.2p7).
6723    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6724      Expr *Arg = Args[i];
6725      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6726      TheCall->setArg(i + 1, Arg);
6727    }
6728  }
6729
6730  if (IsError) return true;
6731
6732  if (CheckFunctionCall(Method, TheCall.get()))
6733    return true;
6734
6735  return MaybeBindToTemporary(TheCall.release()).result();
6736}
6737
6738/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6739///  (if one exists), where @c Base is an expression of class type and
6740/// @c Member is the name of the member we're trying to find.
6741Sema::OwningExprResult
6742Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6743  Expr *Base = static_cast<Expr *>(BaseIn.get());
6744  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6745
6746  SourceLocation Loc = Base->getExprLoc();
6747
6748  // C++ [over.ref]p1:
6749  //
6750  //   [...] An expression x->m is interpreted as (x.operator->())->m
6751  //   for a class object x of type T if T::operator->() exists and if
6752  //   the operator is selected as the best match function by the
6753  //   overload resolution mechanism (13.3).
6754  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6755  OverloadCandidateSet CandidateSet(Loc);
6756  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6757
6758  if (RequireCompleteType(Loc, Base->getType(),
6759                          PDiag(diag::err_typecheck_incomplete_tag)
6760                            << Base->getSourceRange()))
6761    return ExprError();
6762
6763  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6764  LookupQualifiedName(R, BaseRecord->getDecl());
6765  R.suppressDiagnostics();
6766
6767  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6768       Oper != OperEnd; ++Oper) {
6769    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6770                       /*SuppressUserConversions=*/false);
6771  }
6772
6773  // Perform overload resolution.
6774  OverloadCandidateSet::iterator Best;
6775  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6776  case OR_Success:
6777    // Overload resolution succeeded; we'll build the call below.
6778    break;
6779
6780  case OR_No_Viable_Function:
6781    if (CandidateSet.empty())
6782      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6783        << Base->getType() << Base->getSourceRange();
6784    else
6785      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6786        << "operator->" << Base->getSourceRange();
6787    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6788    return ExprError();
6789
6790  case OR_Ambiguous:
6791    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6792      << "->" << Base->getSourceRange();
6793    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6794    return ExprError();
6795
6796  case OR_Deleted:
6797    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6798      << Best->Function->isDeleted()
6799      << "->" << Base->getSourceRange();
6800    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6801    return ExprError();
6802  }
6803
6804  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6805
6806  // Convert the object parameter.
6807  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6808  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6809                                          Best->FoundDecl, Method))
6810    return ExprError();
6811
6812  // No concerns about early exits now.
6813  BaseIn.release();
6814
6815  // Build the operator call.
6816  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6817                                           SourceLocation());
6818  UsualUnaryConversions(FnExpr);
6819
6820  QualType ResultTy = Method->getResultType().getNonReferenceType();
6821  ExprOwningPtr<CXXOperatorCallExpr>
6822    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6823                                                    &Base, 1, ResultTy, OpLoc));
6824
6825  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6826                          Method))
6827          return ExprError();
6828  return move(TheCall);
6829}
6830
6831/// FixOverloadedFunctionReference - E is an expression that refers to
6832/// a C++ overloaded function (possibly with some parentheses and
6833/// perhaps a '&' around it). We have resolved the overloaded function
6834/// to the function declaration Fn, so patch up the expression E to
6835/// refer (possibly indirectly) to Fn. Returns the new expr.
6836Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6837                                           FunctionDecl *Fn) {
6838  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6839    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6840                                                   Found, Fn);
6841    if (SubExpr == PE->getSubExpr())
6842      return PE->Retain();
6843
6844    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6845  }
6846
6847  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6848    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6849                                                   Found, Fn);
6850    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6851                               SubExpr->getType()) &&
6852           "Implicit cast type cannot be determined from overload");
6853    if (SubExpr == ICE->getSubExpr())
6854      return ICE->Retain();
6855
6856    return new (Context) ImplicitCastExpr(ICE->getType(),
6857                                          ICE->getCastKind(),
6858                                          SubExpr,
6859                                          ICE->isLvalueCast());
6860  }
6861
6862  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6863    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6864           "Can only take the address of an overloaded function");
6865    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6866      if (Method->isStatic()) {
6867        // Do nothing: static member functions aren't any different
6868        // from non-member functions.
6869      } else {
6870        // Fix the sub expression, which really has to be an
6871        // UnresolvedLookupExpr holding an overloaded member function
6872        // or template.
6873        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6874                                                       Found, Fn);
6875        if (SubExpr == UnOp->getSubExpr())
6876          return UnOp->Retain();
6877
6878        assert(isa<DeclRefExpr>(SubExpr)
6879               && "fixed to something other than a decl ref");
6880        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6881               && "fixed to a member ref with no nested name qualifier");
6882
6883        // We have taken the address of a pointer to member
6884        // function. Perform the computation here so that we get the
6885        // appropriate pointer to member type.
6886        QualType ClassType
6887          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6888        QualType MemPtrType
6889          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6890
6891        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6892                                           MemPtrType, UnOp->getOperatorLoc());
6893      }
6894    }
6895    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6896                                                   Found, Fn);
6897    if (SubExpr == UnOp->getSubExpr())
6898      return UnOp->Retain();
6899
6900    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6901                                     Context.getPointerType(SubExpr->getType()),
6902                                       UnOp->getOperatorLoc());
6903  }
6904
6905  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6906    // FIXME: avoid copy.
6907    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6908    if (ULE->hasExplicitTemplateArgs()) {
6909      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6910      TemplateArgs = &TemplateArgsBuffer;
6911    }
6912
6913    return DeclRefExpr::Create(Context,
6914                               ULE->getQualifier(),
6915                               ULE->getQualifierRange(),
6916                               Fn,
6917                               ULE->getNameLoc(),
6918                               Fn->getType(),
6919                               TemplateArgs);
6920  }
6921
6922  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6923    // FIXME: avoid copy.
6924    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6925    if (MemExpr->hasExplicitTemplateArgs()) {
6926      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6927      TemplateArgs = &TemplateArgsBuffer;
6928    }
6929
6930    Expr *Base;
6931
6932    // If we're filling in
6933    if (MemExpr->isImplicitAccess()) {
6934      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6935        return DeclRefExpr::Create(Context,
6936                                   MemExpr->getQualifier(),
6937                                   MemExpr->getQualifierRange(),
6938                                   Fn,
6939                                   MemExpr->getMemberLoc(),
6940                                   Fn->getType(),
6941                                   TemplateArgs);
6942      } else {
6943        SourceLocation Loc = MemExpr->getMemberLoc();
6944        if (MemExpr->getQualifier())
6945          Loc = MemExpr->getQualifierRange().getBegin();
6946        Base = new (Context) CXXThisExpr(Loc,
6947                                         MemExpr->getBaseType(),
6948                                         /*isImplicit=*/true);
6949      }
6950    } else
6951      Base = MemExpr->getBase()->Retain();
6952
6953    return MemberExpr::Create(Context, Base,
6954                              MemExpr->isArrow(),
6955                              MemExpr->getQualifier(),
6956                              MemExpr->getQualifierRange(),
6957                              Fn,
6958                              Found,
6959                              MemExpr->getMemberLoc(),
6960                              TemplateArgs,
6961                              Fn->getType());
6962  }
6963
6964  assert(false && "Invalid reference to overloaded function");
6965  return E->Retain();
6966}
6967
6968Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6969                                                          DeclAccessPair Found,
6970                                                            FunctionDecl *Fn) {
6971  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6972}
6973
6974} // end namespace clang
6975