SemaOverload.cpp revision 1eb4433ac451dc16f4133a88af2d002ac26c58ef
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407ImplicitConversionSequence
408Sema::TryImplicitConversion(Expr* From, QualType ToType,
409                            bool SuppressUserConversions,
410                            bool AllowExplicit, bool ForceRValue,
411                            bool InOverloadResolution) {
412  ImplicitConversionSequence ICS;
413  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
414    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
415  else if (getLangOptions().CPlusPlus &&
416           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
417                                   !SuppressUserConversions, AllowExplicit,
418                                   ForceRValue)) {
419    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
420    // C++ [over.ics.user]p4:
421    //   A conversion of an expression of class type to the same class
422    //   type is given Exact Match rank, and a conversion of an
423    //   expression of class type to a base class of that type is
424    //   given Conversion rank, in spite of the fact that a copy
425    //   constructor (i.e., a user-defined conversion function) is
426    //   called for those cases.
427    if (CXXConstructorDecl *Constructor
428          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
429      QualType FromCanon
430        = Context.getCanonicalType(From->getType().getUnqualifiedType());
431      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
432      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
433        // Turn this into a "standard" conversion sequence, so that it
434        // gets ranked with standard conversion sequences.
435        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
436        ICS.Standard.setAsIdentityConversion();
437        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
438        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
439        ICS.Standard.CopyConstructor = Constructor;
440        if (ToCanon != FromCanon)
441          ICS.Standard.Second = ICK_Derived_To_Base;
442      }
443    }
444
445    // C++ [over.best.ics]p4:
446    //   However, when considering the argument of a user-defined
447    //   conversion function that is a candidate by 13.3.1.3 when
448    //   invoked for the copying of the temporary in the second step
449    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
450    //   13.3.1.6 in all cases, only standard conversion sequences and
451    //   ellipsis conversion sequences are allowed.
452    if (SuppressUserConversions &&
453        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
454      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
455  } else
456    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
457
458  return ICS;
459}
460
461/// IsStandardConversion - Determines whether there is a standard
462/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
463/// expression From to the type ToType. Standard conversion sequences
464/// only consider non-class types; for conversions that involve class
465/// types, use TryImplicitConversion. If a conversion exists, SCS will
466/// contain the standard conversion sequence required to perform this
467/// conversion and this routine will return true. Otherwise, this
468/// routine will return false and the value of SCS is unspecified.
469bool
470Sema::IsStandardConversion(Expr* From, QualType ToType,
471                           bool InOverloadResolution,
472                           StandardConversionSequence &SCS) {
473  QualType FromType = From->getType();
474
475  // Standard conversions (C++ [conv])
476  SCS.setAsIdentityConversion();
477  SCS.Deprecated = false;
478  SCS.IncompatibleObjC = false;
479  SCS.FromTypePtr = FromType.getAsOpaquePtr();
480  SCS.CopyConstructor = 0;
481
482  // There are no standard conversions for class types in C++, so
483  // abort early. When overloading in C, however, we do permit
484  if (FromType->isRecordType() || ToType->isRecordType()) {
485    if (getLangOptions().CPlusPlus)
486      return false;
487
488    // When we're overloading in C, we allow, as standard conversions,
489  }
490
491  // The first conversion can be an lvalue-to-rvalue conversion,
492  // array-to-pointer conversion, or function-to-pointer conversion
493  // (C++ 4p1).
494
495  // Lvalue-to-rvalue conversion (C++ 4.1):
496  //   An lvalue (3.10) of a non-function, non-array type T can be
497  //   converted to an rvalue.
498  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
499  if (argIsLvalue == Expr::LV_Valid &&
500      !FromType->isFunctionType() && !FromType->isArrayType() &&
501      Context.getCanonicalType(FromType) != Context.OverloadTy) {
502    SCS.First = ICK_Lvalue_To_Rvalue;
503
504    // If T is a non-class type, the type of the rvalue is the
505    // cv-unqualified version of T. Otherwise, the type of the rvalue
506    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
507    // just strip the qualifiers because they don't matter.
508
509    // FIXME: Doesn't see through to qualifiers behind a typedef!
510    FromType = FromType.getUnqualifiedType();
511  } else if (FromType->isArrayType()) {
512    // Array-to-pointer conversion (C++ 4.2)
513    SCS.First = ICK_Array_To_Pointer;
514
515    // An lvalue or rvalue of type "array of N T" or "array of unknown
516    // bound of T" can be converted to an rvalue of type "pointer to
517    // T" (C++ 4.2p1).
518    FromType = Context.getArrayDecayedType(FromType);
519
520    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
521      // This conversion is deprecated. (C++ D.4).
522      SCS.Deprecated = true;
523
524      // For the purpose of ranking in overload resolution
525      // (13.3.3.1.1), this conversion is considered an
526      // array-to-pointer conversion followed by a qualification
527      // conversion (4.4). (C++ 4.2p2)
528      SCS.Second = ICK_Identity;
529      SCS.Third = ICK_Qualification;
530      SCS.ToTypePtr = ToType.getAsOpaquePtr();
531      return true;
532    }
533  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
534    // Function-to-pointer conversion (C++ 4.3).
535    SCS.First = ICK_Function_To_Pointer;
536
537    // An lvalue of function type T can be converted to an rvalue of
538    // type "pointer to T." The result is a pointer to the
539    // function. (C++ 4.3p1).
540    FromType = Context.getPointerType(FromType);
541  } else if (FunctionDecl *Fn
542             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
543    // Address of overloaded function (C++ [over.over]).
544    SCS.First = ICK_Function_To_Pointer;
545
546    // We were able to resolve the address of the overloaded function,
547    // so we can convert to the type of that function.
548    FromType = Fn->getType();
549    if (ToType->isLValueReferenceType())
550      FromType = Context.getLValueReferenceType(FromType);
551    else if (ToType->isRValueReferenceType())
552      FromType = Context.getRValueReferenceType(FromType);
553    else if (ToType->isMemberPointerType()) {
554      // Resolve address only succeeds if both sides are member pointers,
555      // but it doesn't have to be the same class. See DR 247.
556      // Note that this means that the type of &Derived::fn can be
557      // Ret (Base::*)(Args) if the fn overload actually found is from the
558      // base class, even if it was brought into the derived class via a
559      // using declaration. The standard isn't clear on this issue at all.
560      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
561      FromType = Context.getMemberPointerType(FromType,
562                    Context.getTypeDeclType(M->getParent()).getTypePtr());
563    } else
564      FromType = Context.getPointerType(FromType);
565  } else {
566    // We don't require any conversions for the first step.
567    SCS.First = ICK_Identity;
568  }
569
570  // The second conversion can be an integral promotion, floating
571  // point promotion, integral conversion, floating point conversion,
572  // floating-integral conversion, pointer conversion,
573  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
574  // For overloading in C, this can also be a "compatible-type"
575  // conversion.
576  bool IncompatibleObjC = false;
577  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
578    // The unqualified versions of the types are the same: there's no
579    // conversion to do.
580    SCS.Second = ICK_Identity;
581  } else if (IsIntegralPromotion(From, FromType, ToType)) {
582    // Integral promotion (C++ 4.5).
583    SCS.Second = ICK_Integral_Promotion;
584    FromType = ToType.getUnqualifiedType();
585  } else if (IsFloatingPointPromotion(FromType, ToType)) {
586    // Floating point promotion (C++ 4.6).
587    SCS.Second = ICK_Floating_Promotion;
588    FromType = ToType.getUnqualifiedType();
589  } else if (IsComplexPromotion(FromType, ToType)) {
590    // Complex promotion (Clang extension)
591    SCS.Second = ICK_Complex_Promotion;
592    FromType = ToType.getUnqualifiedType();
593  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
594           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
595    // Integral conversions (C++ 4.7).
596    // FIXME: isIntegralType shouldn't be true for enums in C++.
597    SCS.Second = ICK_Integral_Conversion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
600    // Floating point conversions (C++ 4.8).
601    SCS.Second = ICK_Floating_Conversion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (FromType->isComplexType() && ToType->isComplexType()) {
604    // Complex conversions (C99 6.3.1.6)
605    SCS.Second = ICK_Complex_Conversion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isFloatingType() &&
608              ToType->isIntegralType() && (!ToType->isBooleanType() &&
609                                           !ToType->isEnumeralType())) ||
610             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
611              ToType->isFloatingType())) {
612    // Floating-integral conversions (C++ 4.9).
613    // FIXME: isIntegralType shouldn't be true for enums in C++.
614    SCS.Second = ICK_Floating_Integral;
615    FromType = ToType.getUnqualifiedType();
616  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
617             (ToType->isComplexType() && FromType->isArithmeticType())) {
618    // Complex-real conversions (C99 6.3.1.7)
619    SCS.Second = ICK_Complex_Real;
620    FromType = ToType.getUnqualifiedType();
621  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
622                                 FromType, IncompatibleObjC)) {
623    // Pointer conversions (C++ 4.10).
624    SCS.Second = ICK_Pointer_Conversion;
625    SCS.IncompatibleObjC = IncompatibleObjC;
626  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
627    // Pointer to member conversions (4.11).
628    SCS.Second = ICK_Pointer_Member;
629  } else if (ToType->isBooleanType() &&
630             (FromType->isArithmeticType() ||
631              FromType->isEnumeralType() ||
632              FromType->isPointerType() ||
633              FromType->isBlockPointerType() ||
634              FromType->isMemberPointerType() ||
635              FromType->isNullPtrType())) {
636    // Boolean conversions (C++ 4.12).
637    SCS.Second = ICK_Boolean_Conversion;
638    FromType = Context.BoolTy;
639  } else if (!getLangOptions().CPlusPlus &&
640             Context.typesAreCompatible(ToType, FromType)) {
641    // Compatible conversions (Clang extension for C function overloading)
642    SCS.Second = ICK_Compatible_Conversion;
643  } else {
644    // No second conversion required.
645    SCS.Second = ICK_Identity;
646  }
647
648  QualType CanonFrom;
649  QualType CanonTo;
650  // The third conversion can be a qualification conversion (C++ 4p1).
651  if (IsQualificationConversion(FromType, ToType)) {
652    SCS.Third = ICK_Qualification;
653    FromType = ToType;
654    CanonFrom = Context.getCanonicalType(FromType);
655    CanonTo = Context.getCanonicalType(ToType);
656  } else {
657    // No conversion required
658    SCS.Third = ICK_Identity;
659
660    // C++ [over.best.ics]p6:
661    //   [...] Any difference in top-level cv-qualification is
662    //   subsumed by the initialization itself and does not constitute
663    //   a conversion. [...]
664    CanonFrom = Context.getCanonicalType(FromType);
665    CanonTo = Context.getCanonicalType(ToType);
666    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
667        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
668      FromType = ToType;
669      CanonFrom = CanonTo;
670    }
671  }
672
673  // If we have not converted the argument type to the parameter type,
674  // this is a bad conversion sequence.
675  if (CanonFrom != CanonTo)
676    return false;
677
678  SCS.ToTypePtr = FromType.getAsOpaquePtr();
679  return true;
680}
681
682/// IsIntegralPromotion - Determines whether the conversion from the
683/// expression From (whose potentially-adjusted type is FromType) to
684/// ToType is an integral promotion (C++ 4.5). If so, returns true and
685/// sets PromotedType to the promoted type.
686bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
687  const BuiltinType *To = ToType->getAsBuiltinType();
688  // All integers are built-in.
689  if (!To) {
690    return false;
691  }
692
693  // An rvalue of type char, signed char, unsigned char, short int, or
694  // unsigned short int can be converted to an rvalue of type int if
695  // int can represent all the values of the source type; otherwise,
696  // the source rvalue can be converted to an rvalue of type unsigned
697  // int (C++ 4.5p1).
698  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
699    if (// We can promote any signed, promotable integer type to an int
700        (FromType->isSignedIntegerType() ||
701         // We can promote any unsigned integer type whose size is
702         // less than int to an int.
703         (!FromType->isSignedIntegerType() &&
704          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
705      return To->getKind() == BuiltinType::Int;
706    }
707
708    return To->getKind() == BuiltinType::UInt;
709  }
710
711  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
712  // can be converted to an rvalue of the first of the following types
713  // that can represent all the values of its underlying type: int,
714  // unsigned int, long, or unsigned long (C++ 4.5p2).
715  if ((FromType->isEnumeralType() || FromType->isWideCharType())
716      && ToType->isIntegerType()) {
717    // Determine whether the type we're converting from is signed or
718    // unsigned.
719    bool FromIsSigned;
720    uint64_t FromSize = Context.getTypeSize(FromType);
721    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
722      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
723      FromIsSigned = UnderlyingType->isSignedIntegerType();
724    } else {
725      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
726      FromIsSigned = true;
727    }
728
729    // The types we'll try to promote to, in the appropriate
730    // order. Try each of these types.
731    QualType PromoteTypes[6] = {
732      Context.IntTy, Context.UnsignedIntTy,
733      Context.LongTy, Context.UnsignedLongTy ,
734      Context.LongLongTy, Context.UnsignedLongLongTy
735    };
736    for (int Idx = 0; Idx < 6; ++Idx) {
737      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
738      if (FromSize < ToSize ||
739          (FromSize == ToSize &&
740           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
741        // We found the type that we can promote to. If this is the
742        // type we wanted, we have a promotion. Otherwise, no
743        // promotion.
744        return Context.getCanonicalType(ToType).getUnqualifiedType()
745          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
746      }
747    }
748  }
749
750  // An rvalue for an integral bit-field (9.6) can be converted to an
751  // rvalue of type int if int can represent all the values of the
752  // bit-field; otherwise, it can be converted to unsigned int if
753  // unsigned int can represent all the values of the bit-field. If
754  // the bit-field is larger yet, no integral promotion applies to
755  // it. If the bit-field has an enumerated type, it is treated as any
756  // other value of that type for promotion purposes (C++ 4.5p3).
757  // FIXME: We should delay checking of bit-fields until we actually perform the
758  // conversion.
759  using llvm::APSInt;
760  if (From)
761    if (FieldDecl *MemberDecl = From->getBitField()) {
762      APSInt BitWidth;
763      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
764          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
765        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
766        ToSize = Context.getTypeSize(ToType);
767
768        // Are we promoting to an int from a bitfield that fits in an int?
769        if (BitWidth < ToSize ||
770            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
771          return To->getKind() == BuiltinType::Int;
772        }
773
774        // Are we promoting to an unsigned int from an unsigned bitfield
775        // that fits into an unsigned int?
776        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
777          return To->getKind() == BuiltinType::UInt;
778        }
779
780        return false;
781      }
782    }
783
784  // An rvalue of type bool can be converted to an rvalue of type int,
785  // with false becoming zero and true becoming one (C++ 4.5p4).
786  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
787    return true;
788  }
789
790  return false;
791}
792
793/// IsFloatingPointPromotion - Determines whether the conversion from
794/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
795/// returns true and sets PromotedType to the promoted type.
796bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
797  /// An rvalue of type float can be converted to an rvalue of type
798  /// double. (C++ 4.6p1).
799  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
800    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
801      if (FromBuiltin->getKind() == BuiltinType::Float &&
802          ToBuiltin->getKind() == BuiltinType::Double)
803        return true;
804
805      // C99 6.3.1.5p1:
806      //   When a float is promoted to double or long double, or a
807      //   double is promoted to long double [...].
808      if (!getLangOptions().CPlusPlus &&
809          (FromBuiltin->getKind() == BuiltinType::Float ||
810           FromBuiltin->getKind() == BuiltinType::Double) &&
811          (ToBuiltin->getKind() == BuiltinType::LongDouble))
812        return true;
813    }
814
815  return false;
816}
817
818/// \brief Determine if a conversion is a complex promotion.
819///
820/// A complex promotion is defined as a complex -> complex conversion
821/// where the conversion between the underlying real types is a
822/// floating-point or integral promotion.
823bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
824  const ComplexType *FromComplex = FromType->getAsComplexType();
825  if (!FromComplex)
826    return false;
827
828  const ComplexType *ToComplex = ToType->getAsComplexType();
829  if (!ToComplex)
830    return false;
831
832  return IsFloatingPointPromotion(FromComplex->getElementType(),
833                                  ToComplex->getElementType()) ||
834    IsIntegralPromotion(0, FromComplex->getElementType(),
835                        ToComplex->getElementType());
836}
837
838/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
839/// the pointer type FromPtr to a pointer to type ToPointee, with the
840/// same type qualifiers as FromPtr has on its pointee type. ToType,
841/// if non-empty, will be a pointer to ToType that may or may not have
842/// the right set of qualifiers on its pointee.
843static QualType
844BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
845                                   QualType ToPointee, QualType ToType,
846                                   ASTContext &Context) {
847  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
848  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
849  unsigned Quals = CanonFromPointee.getCVRQualifiers();
850
851  // Exact qualifier match -> return the pointer type we're converting to.
852  if (CanonToPointee.getCVRQualifiers() == Quals) {
853    // ToType is exactly what we need. Return it.
854    if (ToType.getTypePtr())
855      return ToType;
856
857    // Build a pointer to ToPointee. It has the right qualifiers
858    // already.
859    return Context.getPointerType(ToPointee);
860  }
861
862  // Just build a canonical type that has the right qualifiers.
863  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
864}
865
866static bool isNullPointerConstantForConversion(Expr *Expr,
867                                               bool InOverloadResolution,
868                                               ASTContext &Context) {
869  // Handle value-dependent integral null pointer constants correctly.
870  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
871  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
872      Expr->getType()->isIntegralType())
873    return !InOverloadResolution;
874
875  return Expr->isNullPointerConstant(Context);
876}
877
878/// IsPointerConversion - Determines whether the conversion of the
879/// expression From, which has the (possibly adjusted) type FromType,
880/// can be converted to the type ToType via a pointer conversion (C++
881/// 4.10). If so, returns true and places the converted type (that
882/// might differ from ToType in its cv-qualifiers at some level) into
883/// ConvertedType.
884///
885/// This routine also supports conversions to and from block pointers
886/// and conversions with Objective-C's 'id', 'id<protocols...>', and
887/// pointers to interfaces. FIXME: Once we've determined the
888/// appropriate overloading rules for Objective-C, we may want to
889/// split the Objective-C checks into a different routine; however,
890/// GCC seems to consider all of these conversions to be pointer
891/// conversions, so for now they live here. IncompatibleObjC will be
892/// set if the conversion is an allowed Objective-C conversion that
893/// should result in a warning.
894bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
895                               bool InOverloadResolution,
896                               QualType& ConvertedType,
897                               bool &IncompatibleObjC) {
898  IncompatibleObjC = false;
899  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
900    return true;
901
902  // Conversion from a null pointer constant to any Objective-C pointer type.
903  if (ToType->isObjCObjectPointerType() &&
904      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
905    ConvertedType = ToType;
906    return true;
907  }
908
909  // Blocks: Block pointers can be converted to void*.
910  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
911      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
912    ConvertedType = ToType;
913    return true;
914  }
915  // Blocks: A null pointer constant can be converted to a block
916  // pointer type.
917  if (ToType->isBlockPointerType() &&
918      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
919    ConvertedType = ToType;
920    return true;
921  }
922
923  // If the left-hand-side is nullptr_t, the right side can be a null
924  // pointer constant.
925  if (ToType->isNullPtrType() &&
926      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
927    ConvertedType = ToType;
928    return true;
929  }
930
931  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
932  if (!ToTypePtr)
933    return false;
934
935  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
936  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // Beyond this point, both types need to be pointers.
942  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
943  if (!FromTypePtr)
944    return false;
945
946  QualType FromPointeeType = FromTypePtr->getPointeeType();
947  QualType ToPointeeType = ToTypePtr->getPointeeType();
948
949  // An rvalue of type "pointer to cv T," where T is an object type,
950  // can be converted to an rvalue of type "pointer to cv void" (C++
951  // 4.10p2).
952  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
953    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
954                                                       ToPointeeType,
955                                                       ToType, Context);
956    return true;
957  }
958
959  // When we're overloading in C, we allow a special kind of pointer
960  // conversion for compatible-but-not-identical pointee types.
961  if (!getLangOptions().CPlusPlus &&
962      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
963    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
964                                                       ToPointeeType,
965                                                       ToType, Context);
966    return true;
967  }
968
969  // C++ [conv.ptr]p3:
970  //
971  //   An rvalue of type "pointer to cv D," where D is a class type,
972  //   can be converted to an rvalue of type "pointer to cv B," where
973  //   B is a base class (clause 10) of D. If B is an inaccessible
974  //   (clause 11) or ambiguous (10.2) base class of D, a program that
975  //   necessitates this conversion is ill-formed. The result of the
976  //   conversion is a pointer to the base class sub-object of the
977  //   derived class object. The null pointer value is converted to
978  //   the null pointer value of the destination type.
979  //
980  // Note that we do not check for ambiguity or inaccessibility
981  // here. That is handled by CheckPointerConversion.
982  if (getLangOptions().CPlusPlus &&
983      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
984      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
985    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
986                                                       ToPointeeType,
987                                                       ToType, Context);
988    return true;
989  }
990
991  return false;
992}
993
994/// isObjCPointerConversion - Determines whether this is an
995/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
996/// with the same arguments and return values.
997bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
998                                   QualType& ConvertedType,
999                                   bool &IncompatibleObjC) {
1000  if (!getLangOptions().ObjC1)
1001    return false;
1002
1003  // First, we handle all conversions on ObjC object pointer types.
1004  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1005  const ObjCObjectPointerType *FromObjCPtr =
1006    FromType->getAsObjCObjectPointerType();
1007
1008  if (ToObjCPtr && FromObjCPtr) {
1009    // Objective C++: We're able to convert between "id" or "Class" and a
1010    // pointer to any interface (in both directions).
1011    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1012      ConvertedType = ToType;
1013      return true;
1014    }
1015    // Conversions with Objective-C's id<...>.
1016    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1017         ToObjCPtr->isObjCQualifiedIdType()) &&
1018        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1019                                                  /*compare=*/false)) {
1020      ConvertedType = ToType;
1021      return true;
1022    }
1023    // Objective C++: We're able to convert from a pointer to an
1024    // interface to a pointer to a different interface.
1025    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1026      ConvertedType = ToType;
1027      return true;
1028    }
1029
1030    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1031      // Okay: this is some kind of implicit downcast of Objective-C
1032      // interfaces, which is permitted. However, we're going to
1033      // complain about it.
1034      IncompatibleObjC = true;
1035      ConvertedType = FromType;
1036      return true;
1037    }
1038  }
1039  // Beyond this point, both types need to be C pointers or block pointers.
1040  QualType ToPointeeType;
1041  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1042    ToPointeeType = ToCPtr->getPointeeType();
1043  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1044    ToPointeeType = ToBlockPtr->getPointeeType();
1045  else
1046    return false;
1047
1048  QualType FromPointeeType;
1049  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1050    FromPointeeType = FromCPtr->getPointeeType();
1051  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1052    FromPointeeType = FromBlockPtr->getPointeeType();
1053  else
1054    return false;
1055
1056  // If we have pointers to pointers, recursively check whether this
1057  // is an Objective-C conversion.
1058  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1059      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1060                              IncompatibleObjC)) {
1061    // We always complain about this conversion.
1062    IncompatibleObjC = true;
1063    ConvertedType = ToType;
1064    return true;
1065  }
1066  // If we have pointers to functions or blocks, check whether the only
1067  // differences in the argument and result types are in Objective-C
1068  // pointer conversions. If so, we permit the conversion (but
1069  // complain about it).
1070  const FunctionProtoType *FromFunctionType
1071    = FromPointeeType->getAsFunctionProtoType();
1072  const FunctionProtoType *ToFunctionType
1073    = ToPointeeType->getAsFunctionProtoType();
1074  if (FromFunctionType && ToFunctionType) {
1075    // If the function types are exactly the same, this isn't an
1076    // Objective-C pointer conversion.
1077    if (Context.getCanonicalType(FromPointeeType)
1078          == Context.getCanonicalType(ToPointeeType))
1079      return false;
1080
1081    // Perform the quick checks that will tell us whether these
1082    // function types are obviously different.
1083    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1084        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1085        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1086      return false;
1087
1088    bool HasObjCConversion = false;
1089    if (Context.getCanonicalType(FromFunctionType->getResultType())
1090          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1091      // Okay, the types match exactly. Nothing to do.
1092    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1093                                       ToFunctionType->getResultType(),
1094                                       ConvertedType, IncompatibleObjC)) {
1095      // Okay, we have an Objective-C pointer conversion.
1096      HasObjCConversion = true;
1097    } else {
1098      // Function types are too different. Abort.
1099      return false;
1100    }
1101
1102    // Check argument types.
1103    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1104         ArgIdx != NumArgs; ++ArgIdx) {
1105      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1106      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1107      if (Context.getCanonicalType(FromArgType)
1108            == Context.getCanonicalType(ToArgType)) {
1109        // Okay, the types match exactly. Nothing to do.
1110      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1111                                         ConvertedType, IncompatibleObjC)) {
1112        // Okay, we have an Objective-C pointer conversion.
1113        HasObjCConversion = true;
1114      } else {
1115        // Argument types are too different. Abort.
1116        return false;
1117      }
1118    }
1119
1120    if (HasObjCConversion) {
1121      // We had an Objective-C conversion. Allow this pointer
1122      // conversion, but complain about it.
1123      ConvertedType = ToType;
1124      IncompatibleObjC = true;
1125      return true;
1126    }
1127  }
1128
1129  return false;
1130}
1131
1132/// CheckPointerConversion - Check the pointer conversion from the
1133/// expression From to the type ToType. This routine checks for
1134/// ambiguous or inaccessible derived-to-base pointer
1135/// conversions for which IsPointerConversion has already returned
1136/// true. It returns true and produces a diagnostic if there was an
1137/// error, or returns false otherwise.
1138bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1139  QualType FromType = From->getType();
1140
1141  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1142    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1143      QualType FromPointeeType = FromPtrType->getPointeeType(),
1144               ToPointeeType   = ToPtrType->getPointeeType();
1145
1146      if (FromPointeeType->isRecordType() &&
1147          ToPointeeType->isRecordType()) {
1148        // We must have a derived-to-base conversion. Check an
1149        // ambiguous or inaccessible conversion.
1150        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1151                                            From->getExprLoc(),
1152                                            From->getSourceRange());
1153      }
1154    }
1155  if (const ObjCObjectPointerType *FromPtrType =
1156        FromType->getAsObjCObjectPointerType())
1157    if (const ObjCObjectPointerType *ToPtrType =
1158          ToType->getAsObjCObjectPointerType()) {
1159      // Objective-C++ conversions are always okay.
1160      // FIXME: We should have a different class of conversions for the
1161      // Objective-C++ implicit conversions.
1162      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1163        return false;
1164
1165  }
1166  return false;
1167}
1168
1169/// IsMemberPointerConversion - Determines whether the conversion of the
1170/// expression From, which has the (possibly adjusted) type FromType, can be
1171/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1172/// If so, returns true and places the converted type (that might differ from
1173/// ToType in its cv-qualifiers at some level) into ConvertedType.
1174bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1175                                     QualType ToType, QualType &ConvertedType) {
1176  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1177  if (!ToTypePtr)
1178    return false;
1179
1180  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1181  if (From->isNullPointerConstant(Context)) {
1182    ConvertedType = ToType;
1183    return true;
1184  }
1185
1186  // Otherwise, both types have to be member pointers.
1187  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1188  if (!FromTypePtr)
1189    return false;
1190
1191  // A pointer to member of B can be converted to a pointer to member of D,
1192  // where D is derived from B (C++ 4.11p2).
1193  QualType FromClass(FromTypePtr->getClass(), 0);
1194  QualType ToClass(ToTypePtr->getClass(), 0);
1195  // FIXME: What happens when these are dependent? Is this function even called?
1196
1197  if (IsDerivedFrom(ToClass, FromClass)) {
1198    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1199                                                 ToClass.getTypePtr());
1200    return true;
1201  }
1202
1203  return false;
1204}
1205
1206/// CheckMemberPointerConversion - Check the member pointer conversion from the
1207/// expression From to the type ToType. This routine checks for ambiguous or
1208/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1209/// for which IsMemberPointerConversion has already returned true. It returns
1210/// true and produces a diagnostic if there was an error, or returns false
1211/// otherwise.
1212bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1213                                        CastExpr::CastKind &Kind) {
1214  QualType FromType = From->getType();
1215  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1216  if (!FromPtrType) {
1217    // This must be a null pointer to member pointer conversion
1218    assert(From->isNullPointerConstant(Context) &&
1219           "Expr must be null pointer constant!");
1220    Kind = CastExpr::CK_NullToMemberPointer;
1221    return false;
1222  }
1223
1224  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1225  assert(ToPtrType && "No member pointer cast has a target type "
1226                      "that is not a member pointer.");
1227
1228  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1229  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1230
1231  // FIXME: What about dependent types?
1232  assert(FromClass->isRecordType() && "Pointer into non-class.");
1233  assert(ToClass->isRecordType() && "Pointer into non-class.");
1234
1235  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1236                  /*DetectVirtual=*/true);
1237  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1238  assert(DerivationOkay &&
1239         "Should not have been called if derivation isn't OK.");
1240  (void)DerivationOkay;
1241
1242  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1243                                  getUnqualifiedType())) {
1244    // Derivation is ambiguous. Redo the check to find the exact paths.
1245    Paths.clear();
1246    Paths.setRecordingPaths(true);
1247    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1248    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1249    (void)StillOkay;
1250
1251    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1252    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1253      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1254    return true;
1255  }
1256
1257  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1258    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1259      << FromClass << ToClass << QualType(VBase, 0)
1260      << From->getSourceRange();
1261    return true;
1262  }
1263
1264  // Must be a base to derived member conversion.
1265  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1266  return false;
1267}
1268
1269/// IsQualificationConversion - Determines whether the conversion from
1270/// an rvalue of type FromType to ToType is a qualification conversion
1271/// (C++ 4.4).
1272bool
1273Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1274  FromType = Context.getCanonicalType(FromType);
1275  ToType = Context.getCanonicalType(ToType);
1276
1277  // If FromType and ToType are the same type, this is not a
1278  // qualification conversion.
1279  if (FromType == ToType)
1280    return false;
1281
1282  // (C++ 4.4p4):
1283  //   A conversion can add cv-qualifiers at levels other than the first
1284  //   in multi-level pointers, subject to the following rules: [...]
1285  bool PreviousToQualsIncludeConst = true;
1286  bool UnwrappedAnyPointer = false;
1287  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1288    // Within each iteration of the loop, we check the qualifiers to
1289    // determine if this still looks like a qualification
1290    // conversion. Then, if all is well, we unwrap one more level of
1291    // pointers or pointers-to-members and do it all again
1292    // until there are no more pointers or pointers-to-members left to
1293    // unwrap.
1294    UnwrappedAnyPointer = true;
1295
1296    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1297    //      2,j, and similarly for volatile.
1298    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1299      return false;
1300
1301    //   -- if the cv 1,j and cv 2,j are different, then const is in
1302    //      every cv for 0 < k < j.
1303    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1304        && !PreviousToQualsIncludeConst)
1305      return false;
1306
1307    // Keep track of whether all prior cv-qualifiers in the "to" type
1308    // include const.
1309    PreviousToQualsIncludeConst
1310      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1311  }
1312
1313  // We are left with FromType and ToType being the pointee types
1314  // after unwrapping the original FromType and ToType the same number
1315  // of types. If we unwrapped any pointers, and if FromType and
1316  // ToType have the same unqualified type (since we checked
1317  // qualifiers above), then this is a qualification conversion.
1318  return UnwrappedAnyPointer &&
1319    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1320}
1321
1322/// \brief Given a function template or function, extract the function template
1323/// declaration (if any) and the underlying function declaration.
1324template<typename T>
1325static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1326                                   FunctionTemplateDecl *&FunctionTemplate) {
1327  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1328  if (FunctionTemplate)
1329    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1330  else
1331    Function = cast<T>(Orig);
1332}
1333
1334
1335/// Determines whether there is a user-defined conversion sequence
1336/// (C++ [over.ics.user]) that converts expression From to the type
1337/// ToType. If such a conversion exists, User will contain the
1338/// user-defined conversion sequence that performs such a conversion
1339/// and this routine will return true. Otherwise, this routine returns
1340/// false and User is unspecified.
1341///
1342/// \param AllowConversionFunctions true if the conversion should
1343/// consider conversion functions at all. If false, only constructors
1344/// will be considered.
1345///
1346/// \param AllowExplicit  true if the conversion should consider C++0x
1347/// "explicit" conversion functions as well as non-explicit conversion
1348/// functions (C++0x [class.conv.fct]p2).
1349///
1350/// \param ForceRValue  true if the expression should be treated as an rvalue
1351/// for overload resolution.
1352bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1353                                   UserDefinedConversionSequence& User,
1354                                   bool AllowConversionFunctions,
1355                                   bool AllowExplicit, bool ForceRValue) {
1356  OverloadCandidateSet CandidateSet;
1357  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1358    if (CXXRecordDecl *ToRecordDecl
1359          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1360      // C++ [over.match.ctor]p1:
1361      //   When objects of class type are direct-initialized (8.5), or
1362      //   copy-initialized from an expression of the same or a
1363      //   derived class type (8.5), overload resolution selects the
1364      //   constructor. [...] For copy-initialization, the candidate
1365      //   functions are all the converting constructors (12.3.1) of
1366      //   that class. The argument list is the expression-list within
1367      //   the parentheses of the initializer.
1368      DeclarationName ConstructorName
1369        = Context.DeclarationNames.getCXXConstructorName(
1370                          Context.getCanonicalType(ToType).getUnqualifiedType());
1371      DeclContext::lookup_iterator Con, ConEnd;
1372      for (llvm::tie(Con, ConEnd)
1373             = ToRecordDecl->lookup(ConstructorName);
1374           Con != ConEnd; ++Con) {
1375        // Find the constructor (which may be a template).
1376        CXXConstructorDecl *Constructor = 0;
1377        FunctionTemplateDecl *ConstructorTmpl
1378          = dyn_cast<FunctionTemplateDecl>(*Con);
1379        if (ConstructorTmpl)
1380          Constructor
1381            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1382        else
1383          Constructor = cast<CXXConstructorDecl>(*Con);
1384
1385        if (!Constructor->isInvalidDecl() &&
1386            Constructor->isConvertingConstructor(AllowExplicit)) {
1387          if (ConstructorTmpl)
1388            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1389                                         1, CandidateSet,
1390                                         /*SuppressUserConversions=*/true,
1391                                         ForceRValue);
1392          else
1393            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1394                                 /*SuppressUserConversions=*/true, ForceRValue);
1395        }
1396      }
1397    }
1398  }
1399
1400  if (!AllowConversionFunctions) {
1401    // Don't allow any conversion functions to enter the overload set.
1402  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1403                                 PDiag(0)
1404                                   << From->getSourceRange())) {
1405    // No conversion functions from incomplete types.
1406  } else if (const RecordType *FromRecordType
1407               = From->getType()->getAs<RecordType>()) {
1408    if (CXXRecordDecl *FromRecordDecl
1409          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1410      // Add all of the conversion functions as candidates.
1411      // FIXME: Look for conversions in base classes!
1412      OverloadedFunctionDecl *Conversions
1413        = FromRecordDecl->getConversionFunctions();
1414      for (OverloadedFunctionDecl::function_iterator Func
1415             = Conversions->function_begin();
1416           Func != Conversions->function_end(); ++Func) {
1417        CXXConversionDecl *Conv;
1418        FunctionTemplateDecl *ConvTemplate;
1419        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1420        if (ConvTemplate)
1421          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1422        else
1423          Conv = dyn_cast<CXXConversionDecl>(*Func);
1424
1425        if (AllowExplicit || !Conv->isExplicit()) {
1426          if (ConvTemplate)
1427            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1428                                           CandidateSet);
1429          else
1430            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1431        }
1432      }
1433    }
1434  }
1435
1436  OverloadCandidateSet::iterator Best;
1437  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1438    case OR_Success:
1439      // Record the standard conversion we used and the conversion function.
1440      if (CXXConstructorDecl *Constructor
1441            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1442        // C++ [over.ics.user]p1:
1443        //   If the user-defined conversion is specified by a
1444        //   constructor (12.3.1), the initial standard conversion
1445        //   sequence converts the source type to the type required by
1446        //   the argument of the constructor.
1447        //
1448        // FIXME: What about ellipsis conversions?
1449        QualType ThisType = Constructor->getThisType(Context);
1450        User.Before = Best->Conversions[0].Standard;
1451        User.ConversionFunction = Constructor;
1452        User.After.setAsIdentityConversion();
1453        User.After.FromTypePtr
1454          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1455        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1456        return true;
1457      } else if (CXXConversionDecl *Conversion
1458                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1459        // C++ [over.ics.user]p1:
1460        //
1461        //   [...] If the user-defined conversion is specified by a
1462        //   conversion function (12.3.2), the initial standard
1463        //   conversion sequence converts the source type to the
1464        //   implicit object parameter of the conversion function.
1465        User.Before = Best->Conversions[0].Standard;
1466        User.ConversionFunction = Conversion;
1467
1468        // C++ [over.ics.user]p2:
1469        //   The second standard conversion sequence converts the
1470        //   result of the user-defined conversion to the target type
1471        //   for the sequence. Since an implicit conversion sequence
1472        //   is an initialization, the special rules for
1473        //   initialization by user-defined conversion apply when
1474        //   selecting the best user-defined conversion for a
1475        //   user-defined conversion sequence (see 13.3.3 and
1476        //   13.3.3.1).
1477        User.After = Best->FinalConversion;
1478        return true;
1479      } else {
1480        assert(false && "Not a constructor or conversion function?");
1481        return false;
1482      }
1483
1484    case OR_No_Viable_Function:
1485    case OR_Deleted:
1486      // No conversion here! We're done.
1487      return false;
1488
1489    case OR_Ambiguous:
1490      // FIXME: See C++ [over.best.ics]p10 for the handling of
1491      // ambiguous conversion sequences.
1492      return false;
1493    }
1494
1495  return false;
1496}
1497
1498/// CompareImplicitConversionSequences - Compare two implicit
1499/// conversion sequences to determine whether one is better than the
1500/// other or if they are indistinguishable (C++ 13.3.3.2).
1501ImplicitConversionSequence::CompareKind
1502Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1503                                         const ImplicitConversionSequence& ICS2)
1504{
1505  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1506  // conversion sequences (as defined in 13.3.3.1)
1507  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1508  //      conversion sequence than a user-defined conversion sequence or
1509  //      an ellipsis conversion sequence, and
1510  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1511  //      conversion sequence than an ellipsis conversion sequence
1512  //      (13.3.3.1.3).
1513  //
1514  if (ICS1.ConversionKind < ICS2.ConversionKind)
1515    return ImplicitConversionSequence::Better;
1516  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1517    return ImplicitConversionSequence::Worse;
1518
1519  // Two implicit conversion sequences of the same form are
1520  // indistinguishable conversion sequences unless one of the
1521  // following rules apply: (C++ 13.3.3.2p3):
1522  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1523    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1524  else if (ICS1.ConversionKind ==
1525             ImplicitConversionSequence::UserDefinedConversion) {
1526    // User-defined conversion sequence U1 is a better conversion
1527    // sequence than another user-defined conversion sequence U2 if
1528    // they contain the same user-defined conversion function or
1529    // constructor and if the second standard conversion sequence of
1530    // U1 is better than the second standard conversion sequence of
1531    // U2 (C++ 13.3.3.2p3).
1532    if (ICS1.UserDefined.ConversionFunction ==
1533          ICS2.UserDefined.ConversionFunction)
1534      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1535                                                ICS2.UserDefined.After);
1536  }
1537
1538  return ImplicitConversionSequence::Indistinguishable;
1539}
1540
1541/// CompareStandardConversionSequences - Compare two standard
1542/// conversion sequences to determine whether one is better than the
1543/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1544ImplicitConversionSequence::CompareKind
1545Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1546                                         const StandardConversionSequence& SCS2)
1547{
1548  // Standard conversion sequence S1 is a better conversion sequence
1549  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1550
1551  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1552  //     sequences in the canonical form defined by 13.3.3.1.1,
1553  //     excluding any Lvalue Transformation; the identity conversion
1554  //     sequence is considered to be a subsequence of any
1555  //     non-identity conversion sequence) or, if not that,
1556  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1557    // Neither is a proper subsequence of the other. Do nothing.
1558    ;
1559  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1560           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1561           (SCS1.Second == ICK_Identity &&
1562            SCS1.Third == ICK_Identity))
1563    // SCS1 is a proper subsequence of SCS2.
1564    return ImplicitConversionSequence::Better;
1565  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1566           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1567           (SCS2.Second == ICK_Identity &&
1568            SCS2.Third == ICK_Identity))
1569    // SCS2 is a proper subsequence of SCS1.
1570    return ImplicitConversionSequence::Worse;
1571
1572  //  -- the rank of S1 is better than the rank of S2 (by the rules
1573  //     defined below), or, if not that,
1574  ImplicitConversionRank Rank1 = SCS1.getRank();
1575  ImplicitConversionRank Rank2 = SCS2.getRank();
1576  if (Rank1 < Rank2)
1577    return ImplicitConversionSequence::Better;
1578  else if (Rank2 < Rank1)
1579    return ImplicitConversionSequence::Worse;
1580
1581  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1582  // are indistinguishable unless one of the following rules
1583  // applies:
1584
1585  //   A conversion that is not a conversion of a pointer, or
1586  //   pointer to member, to bool is better than another conversion
1587  //   that is such a conversion.
1588  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1589    return SCS2.isPointerConversionToBool()
1590             ? ImplicitConversionSequence::Better
1591             : ImplicitConversionSequence::Worse;
1592
1593  // C++ [over.ics.rank]p4b2:
1594  //
1595  //   If class B is derived directly or indirectly from class A,
1596  //   conversion of B* to A* is better than conversion of B* to
1597  //   void*, and conversion of A* to void* is better than conversion
1598  //   of B* to void*.
1599  bool SCS1ConvertsToVoid
1600    = SCS1.isPointerConversionToVoidPointer(Context);
1601  bool SCS2ConvertsToVoid
1602    = SCS2.isPointerConversionToVoidPointer(Context);
1603  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1604    // Exactly one of the conversion sequences is a conversion to
1605    // a void pointer; it's the worse conversion.
1606    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1607                              : ImplicitConversionSequence::Worse;
1608  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1609    // Neither conversion sequence converts to a void pointer; compare
1610    // their derived-to-base conversions.
1611    if (ImplicitConversionSequence::CompareKind DerivedCK
1612          = CompareDerivedToBaseConversions(SCS1, SCS2))
1613      return DerivedCK;
1614  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1615    // Both conversion sequences are conversions to void
1616    // pointers. Compare the source types to determine if there's an
1617    // inheritance relationship in their sources.
1618    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1619    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1620
1621    // Adjust the types we're converting from via the array-to-pointer
1622    // conversion, if we need to.
1623    if (SCS1.First == ICK_Array_To_Pointer)
1624      FromType1 = Context.getArrayDecayedType(FromType1);
1625    if (SCS2.First == ICK_Array_To_Pointer)
1626      FromType2 = Context.getArrayDecayedType(FromType2);
1627
1628    QualType FromPointee1
1629      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1630    QualType FromPointee2
1631      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1632
1633    if (IsDerivedFrom(FromPointee2, FromPointee1))
1634      return ImplicitConversionSequence::Better;
1635    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1636      return ImplicitConversionSequence::Worse;
1637
1638    // Objective-C++: If one interface is more specific than the
1639    // other, it is the better one.
1640    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1641    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1642    if (FromIface1 && FromIface1) {
1643      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1644        return ImplicitConversionSequence::Better;
1645      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1646        return ImplicitConversionSequence::Worse;
1647    }
1648  }
1649
1650  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1651  // bullet 3).
1652  if (ImplicitConversionSequence::CompareKind QualCK
1653        = CompareQualificationConversions(SCS1, SCS2))
1654    return QualCK;
1655
1656  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1657    // C++0x [over.ics.rank]p3b4:
1658    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1659    //      implicit object parameter of a non-static member function declared
1660    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1661    //      rvalue and S2 binds an lvalue reference.
1662    // FIXME: We don't know if we're dealing with the implicit object parameter,
1663    // or if the member function in this case has a ref qualifier.
1664    // (Of course, we don't have ref qualifiers yet.)
1665    if (SCS1.RRefBinding != SCS2.RRefBinding)
1666      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1667                              : ImplicitConversionSequence::Worse;
1668
1669    // C++ [over.ics.rank]p3b4:
1670    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1671    //      which the references refer are the same type except for
1672    //      top-level cv-qualifiers, and the type to which the reference
1673    //      initialized by S2 refers is more cv-qualified than the type
1674    //      to which the reference initialized by S1 refers.
1675    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1676    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1677    T1 = Context.getCanonicalType(T1);
1678    T2 = Context.getCanonicalType(T2);
1679    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1680      if (T2.isMoreQualifiedThan(T1))
1681        return ImplicitConversionSequence::Better;
1682      else if (T1.isMoreQualifiedThan(T2))
1683        return ImplicitConversionSequence::Worse;
1684    }
1685  }
1686
1687  return ImplicitConversionSequence::Indistinguishable;
1688}
1689
1690/// CompareQualificationConversions - Compares two standard conversion
1691/// sequences to determine whether they can be ranked based on their
1692/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1693ImplicitConversionSequence::CompareKind
1694Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1695                                      const StandardConversionSequence& SCS2) {
1696  // C++ 13.3.3.2p3:
1697  //  -- S1 and S2 differ only in their qualification conversion and
1698  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1699  //     cv-qualification signature of type T1 is a proper subset of
1700  //     the cv-qualification signature of type T2, and S1 is not the
1701  //     deprecated string literal array-to-pointer conversion (4.2).
1702  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1703      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1704    return ImplicitConversionSequence::Indistinguishable;
1705
1706  // FIXME: the example in the standard doesn't use a qualification
1707  // conversion (!)
1708  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1709  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1710  T1 = Context.getCanonicalType(T1);
1711  T2 = Context.getCanonicalType(T2);
1712
1713  // If the types are the same, we won't learn anything by unwrapped
1714  // them.
1715  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1716    return ImplicitConversionSequence::Indistinguishable;
1717
1718  ImplicitConversionSequence::CompareKind Result
1719    = ImplicitConversionSequence::Indistinguishable;
1720  while (UnwrapSimilarPointerTypes(T1, T2)) {
1721    // Within each iteration of the loop, we check the qualifiers to
1722    // determine if this still looks like a qualification
1723    // conversion. Then, if all is well, we unwrap one more level of
1724    // pointers or pointers-to-members and do it all again
1725    // until there are no more pointers or pointers-to-members left
1726    // to unwrap. This essentially mimics what
1727    // IsQualificationConversion does, but here we're checking for a
1728    // strict subset of qualifiers.
1729    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1730      // The qualifiers are the same, so this doesn't tell us anything
1731      // about how the sequences rank.
1732      ;
1733    else if (T2.isMoreQualifiedThan(T1)) {
1734      // T1 has fewer qualifiers, so it could be the better sequence.
1735      if (Result == ImplicitConversionSequence::Worse)
1736        // Neither has qualifiers that are a subset of the other's
1737        // qualifiers.
1738        return ImplicitConversionSequence::Indistinguishable;
1739
1740      Result = ImplicitConversionSequence::Better;
1741    } else if (T1.isMoreQualifiedThan(T2)) {
1742      // T2 has fewer qualifiers, so it could be the better sequence.
1743      if (Result == ImplicitConversionSequence::Better)
1744        // Neither has qualifiers that are a subset of the other's
1745        // qualifiers.
1746        return ImplicitConversionSequence::Indistinguishable;
1747
1748      Result = ImplicitConversionSequence::Worse;
1749    } else {
1750      // Qualifiers are disjoint.
1751      return ImplicitConversionSequence::Indistinguishable;
1752    }
1753
1754    // If the types after this point are equivalent, we're done.
1755    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1756      break;
1757  }
1758
1759  // Check that the winning standard conversion sequence isn't using
1760  // the deprecated string literal array to pointer conversion.
1761  switch (Result) {
1762  case ImplicitConversionSequence::Better:
1763    if (SCS1.Deprecated)
1764      Result = ImplicitConversionSequence::Indistinguishable;
1765    break;
1766
1767  case ImplicitConversionSequence::Indistinguishable:
1768    break;
1769
1770  case ImplicitConversionSequence::Worse:
1771    if (SCS2.Deprecated)
1772      Result = ImplicitConversionSequence::Indistinguishable;
1773    break;
1774  }
1775
1776  return Result;
1777}
1778
1779/// CompareDerivedToBaseConversions - Compares two standard conversion
1780/// sequences to determine whether they can be ranked based on their
1781/// various kinds of derived-to-base conversions (C++
1782/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1783/// conversions between Objective-C interface types.
1784ImplicitConversionSequence::CompareKind
1785Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1786                                      const StandardConversionSequence& SCS2) {
1787  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1788  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1789  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1790  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1791
1792  // Adjust the types we're converting from via the array-to-pointer
1793  // conversion, if we need to.
1794  if (SCS1.First == ICK_Array_To_Pointer)
1795    FromType1 = Context.getArrayDecayedType(FromType1);
1796  if (SCS2.First == ICK_Array_To_Pointer)
1797    FromType2 = Context.getArrayDecayedType(FromType2);
1798
1799  // Canonicalize all of the types.
1800  FromType1 = Context.getCanonicalType(FromType1);
1801  ToType1 = Context.getCanonicalType(ToType1);
1802  FromType2 = Context.getCanonicalType(FromType2);
1803  ToType2 = Context.getCanonicalType(ToType2);
1804
1805  // C++ [over.ics.rank]p4b3:
1806  //
1807  //   If class B is derived directly or indirectly from class A and
1808  //   class C is derived directly or indirectly from B,
1809  //
1810  // For Objective-C, we let A, B, and C also be Objective-C
1811  // interfaces.
1812
1813  // Compare based on pointer conversions.
1814  if (SCS1.Second == ICK_Pointer_Conversion &&
1815      SCS2.Second == ICK_Pointer_Conversion &&
1816      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1817      FromType1->isPointerType() && FromType2->isPointerType() &&
1818      ToType1->isPointerType() && ToType2->isPointerType()) {
1819    QualType FromPointee1
1820      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1821    QualType ToPointee1
1822      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1823    QualType FromPointee2
1824      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1825    QualType ToPointee2
1826      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1827
1828    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1829    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1830    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1831    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1832
1833    //   -- conversion of C* to B* is better than conversion of C* to A*,
1834    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1835      if (IsDerivedFrom(ToPointee1, ToPointee2))
1836        return ImplicitConversionSequence::Better;
1837      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1838        return ImplicitConversionSequence::Worse;
1839
1840      if (ToIface1 && ToIface2) {
1841        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1842          return ImplicitConversionSequence::Better;
1843        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1844          return ImplicitConversionSequence::Worse;
1845      }
1846    }
1847
1848    //   -- conversion of B* to A* is better than conversion of C* to A*,
1849    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1850      if (IsDerivedFrom(FromPointee2, FromPointee1))
1851        return ImplicitConversionSequence::Better;
1852      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1853        return ImplicitConversionSequence::Worse;
1854
1855      if (FromIface1 && FromIface2) {
1856        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1857          return ImplicitConversionSequence::Better;
1858        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1859          return ImplicitConversionSequence::Worse;
1860      }
1861    }
1862  }
1863
1864  // Compare based on reference bindings.
1865  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1866      SCS1.Second == ICK_Derived_To_Base) {
1867    //   -- binding of an expression of type C to a reference of type
1868    //      B& is better than binding an expression of type C to a
1869    //      reference of type A&,
1870    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1871        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1872      if (IsDerivedFrom(ToType1, ToType2))
1873        return ImplicitConversionSequence::Better;
1874      else if (IsDerivedFrom(ToType2, ToType1))
1875        return ImplicitConversionSequence::Worse;
1876    }
1877
1878    //   -- binding of an expression of type B to a reference of type
1879    //      A& is better than binding an expression of type C to a
1880    //      reference of type A&,
1881    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1882        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1883      if (IsDerivedFrom(FromType2, FromType1))
1884        return ImplicitConversionSequence::Better;
1885      else if (IsDerivedFrom(FromType1, FromType2))
1886        return ImplicitConversionSequence::Worse;
1887    }
1888  }
1889
1890
1891  // FIXME: conversion of A::* to B::* is better than conversion of
1892  // A::* to C::*,
1893
1894  // FIXME: conversion of B::* to C::* is better than conversion of
1895  // A::* to C::*, and
1896
1897  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1898      SCS1.Second == ICK_Derived_To_Base) {
1899    //   -- conversion of C to B is better than conversion of C to A,
1900    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1901        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1902      if (IsDerivedFrom(ToType1, ToType2))
1903        return ImplicitConversionSequence::Better;
1904      else if (IsDerivedFrom(ToType2, ToType1))
1905        return ImplicitConversionSequence::Worse;
1906    }
1907
1908    //   -- conversion of B to A is better than conversion of C to A.
1909    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1910        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1911      if (IsDerivedFrom(FromType2, FromType1))
1912        return ImplicitConversionSequence::Better;
1913      else if (IsDerivedFrom(FromType1, FromType2))
1914        return ImplicitConversionSequence::Worse;
1915    }
1916  }
1917
1918  return ImplicitConversionSequence::Indistinguishable;
1919}
1920
1921/// TryCopyInitialization - Try to copy-initialize a value of type
1922/// ToType from the expression From. Return the implicit conversion
1923/// sequence required to pass this argument, which may be a bad
1924/// conversion sequence (meaning that the argument cannot be passed to
1925/// a parameter of this type). If @p SuppressUserConversions, then we
1926/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1927/// then we treat @p From as an rvalue, even if it is an lvalue.
1928ImplicitConversionSequence
1929Sema::TryCopyInitialization(Expr *From, QualType ToType,
1930                            bool SuppressUserConversions, bool ForceRValue,
1931                            bool InOverloadResolution) {
1932  if (ToType->isReferenceType()) {
1933    ImplicitConversionSequence ICS;
1934    CheckReferenceInit(From, ToType,
1935                       SuppressUserConversions,
1936                       /*AllowExplicit=*/false,
1937                       ForceRValue,
1938                       &ICS);
1939    return ICS;
1940  } else {
1941    return TryImplicitConversion(From, ToType,
1942                                 SuppressUserConversions,
1943                                 /*AllowExplicit=*/false,
1944                                 ForceRValue,
1945                                 InOverloadResolution);
1946  }
1947}
1948
1949/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1950/// the expression @p From. Returns true (and emits a diagnostic) if there was
1951/// an error, returns false if the initialization succeeded. Elidable should
1952/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1953/// differently in C++0x for this case.
1954bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1955                                     const char* Flavor, bool Elidable) {
1956  if (!getLangOptions().CPlusPlus) {
1957    // In C, argument passing is the same as performing an assignment.
1958    QualType FromType = From->getType();
1959
1960    AssignConvertType ConvTy =
1961      CheckSingleAssignmentConstraints(ToType, From);
1962    if (ConvTy != Compatible &&
1963        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1964      ConvTy = Compatible;
1965
1966    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1967                                    FromType, From, Flavor);
1968  }
1969
1970  if (ToType->isReferenceType())
1971    return CheckReferenceInit(From, ToType,
1972                              /*SuppressUserConversions=*/false,
1973                              /*AllowExplicit=*/false,
1974                              /*ForceRValue=*/false);
1975
1976  if (!PerformImplicitConversion(From, ToType, Flavor,
1977                                 /*AllowExplicit=*/false, Elidable))
1978    return false;
1979
1980  return Diag(From->getSourceRange().getBegin(),
1981              diag::err_typecheck_convert_incompatible)
1982    << ToType << From->getType() << Flavor << From->getSourceRange();
1983}
1984
1985/// TryObjectArgumentInitialization - Try to initialize the object
1986/// parameter of the given member function (@c Method) from the
1987/// expression @p From.
1988ImplicitConversionSequence
1989Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1990  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1991  unsigned MethodQuals = Method->getTypeQualifiers();
1992  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1993
1994  // Set up the conversion sequence as a "bad" conversion, to allow us
1995  // to exit early.
1996  ImplicitConversionSequence ICS;
1997  ICS.Standard.setAsIdentityConversion();
1998  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1999
2000  // We need to have an object of class type.
2001  QualType FromType = From->getType();
2002  if (const PointerType *PT = FromType->getAs<PointerType>())
2003    FromType = PT->getPointeeType();
2004
2005  assert(FromType->isRecordType());
2006
2007  // The implicit object parmeter is has the type "reference to cv X",
2008  // where X is the class of which the function is a member
2009  // (C++ [over.match.funcs]p4). However, when finding an implicit
2010  // conversion sequence for the argument, we are not allowed to
2011  // create temporaries or perform user-defined conversions
2012  // (C++ [over.match.funcs]p5). We perform a simplified version of
2013  // reference binding here, that allows class rvalues to bind to
2014  // non-constant references.
2015
2016  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2017  // with the implicit object parameter (C++ [over.match.funcs]p5).
2018  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2019  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2020      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2021    return ICS;
2022
2023  // Check that we have either the same type or a derived type. It
2024  // affects the conversion rank.
2025  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2026  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2027    ICS.Standard.Second = ICK_Identity;
2028  else if (IsDerivedFrom(FromType, ClassType))
2029    ICS.Standard.Second = ICK_Derived_To_Base;
2030  else
2031    return ICS;
2032
2033  // Success. Mark this as a reference binding.
2034  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2035  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2036  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2037  ICS.Standard.ReferenceBinding = true;
2038  ICS.Standard.DirectBinding = true;
2039  ICS.Standard.RRefBinding = false;
2040  return ICS;
2041}
2042
2043/// PerformObjectArgumentInitialization - Perform initialization of
2044/// the implicit object parameter for the given Method with the given
2045/// expression.
2046bool
2047Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2048  QualType FromRecordType, DestType;
2049  QualType ImplicitParamRecordType  =
2050    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2051
2052  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2053    FromRecordType = PT->getPointeeType();
2054    DestType = Method->getThisType(Context);
2055  } else {
2056    FromRecordType = From->getType();
2057    DestType = ImplicitParamRecordType;
2058  }
2059
2060  ImplicitConversionSequence ICS
2061    = TryObjectArgumentInitialization(From, Method);
2062  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2063    return Diag(From->getSourceRange().getBegin(),
2064                diag::err_implicit_object_parameter_init)
2065       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2066
2067  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2068      CheckDerivedToBaseConversion(FromRecordType,
2069                                   ImplicitParamRecordType,
2070                                   From->getSourceRange().getBegin(),
2071                                   From->getSourceRange()))
2072    return true;
2073
2074  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2075                    /*isLvalue=*/true);
2076  return false;
2077}
2078
2079/// TryContextuallyConvertToBool - Attempt to contextually convert the
2080/// expression From to bool (C++0x [conv]p3).
2081ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2082  return TryImplicitConversion(From, Context.BoolTy,
2083                               // FIXME: Are these flags correct?
2084                               /*SuppressUserConversions=*/false,
2085                               /*AllowExplicit=*/true,
2086                               /*ForceRValue=*/false,
2087                               /*InOverloadResolution=*/false);
2088}
2089
2090/// PerformContextuallyConvertToBool - Perform a contextual conversion
2091/// of the expression From to bool (C++0x [conv]p3).
2092bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2093  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2094  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2095    return false;
2096
2097  return Diag(From->getSourceRange().getBegin(),
2098              diag::err_typecheck_bool_condition)
2099    << From->getType() << From->getSourceRange();
2100}
2101
2102/// AddOverloadCandidate - Adds the given function to the set of
2103/// candidate functions, using the given function call arguments.  If
2104/// @p SuppressUserConversions, then don't allow user-defined
2105/// conversions via constructors or conversion operators.
2106/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2107/// hacky way to implement the overloading rules for elidable copy
2108/// initialization in C++0x (C++0x 12.8p15).
2109void
2110Sema::AddOverloadCandidate(FunctionDecl *Function,
2111                           Expr **Args, unsigned NumArgs,
2112                           OverloadCandidateSet& CandidateSet,
2113                           bool SuppressUserConversions,
2114                           bool ForceRValue) {
2115  const FunctionProtoType* Proto
2116    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2117  assert(Proto && "Functions without a prototype cannot be overloaded");
2118  assert(!isa<CXXConversionDecl>(Function) &&
2119         "Use AddConversionCandidate for conversion functions");
2120  assert(!Function->getDescribedFunctionTemplate() &&
2121         "Use AddTemplateOverloadCandidate for function templates");
2122
2123  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2124    if (!isa<CXXConstructorDecl>(Method)) {
2125      // If we get here, it's because we're calling a member function
2126      // that is named without a member access expression (e.g.,
2127      // "this->f") that was either written explicitly or created
2128      // implicitly. This can happen with a qualified call to a member
2129      // function, e.g., X::f(). We use a NULL object as the implied
2130      // object argument (C++ [over.call.func]p3).
2131      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2132                         SuppressUserConversions, ForceRValue);
2133      return;
2134    }
2135    // We treat a constructor like a non-member function, since its object
2136    // argument doesn't participate in overload resolution.
2137  }
2138
2139
2140  // Add this candidate
2141  CandidateSet.push_back(OverloadCandidate());
2142  OverloadCandidate& Candidate = CandidateSet.back();
2143  Candidate.Function = Function;
2144  Candidate.Viable = true;
2145  Candidate.IsSurrogate = false;
2146  Candidate.IgnoreObjectArgument = false;
2147
2148  unsigned NumArgsInProto = Proto->getNumArgs();
2149
2150  // (C++ 13.3.2p2): A candidate function having fewer than m
2151  // parameters is viable only if it has an ellipsis in its parameter
2152  // list (8.3.5).
2153  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2154    Candidate.Viable = false;
2155    return;
2156  }
2157
2158  // (C++ 13.3.2p2): A candidate function having more than m parameters
2159  // is viable only if the (m+1)st parameter has a default argument
2160  // (8.3.6). For the purposes of overload resolution, the
2161  // parameter list is truncated on the right, so that there are
2162  // exactly m parameters.
2163  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2164  if (NumArgs < MinRequiredArgs) {
2165    // Not enough arguments.
2166    Candidate.Viable = false;
2167    return;
2168  }
2169
2170  // Determine the implicit conversion sequences for each of the
2171  // arguments.
2172  Candidate.Conversions.resize(NumArgs);
2173  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2174    if (ArgIdx < NumArgsInProto) {
2175      // (C++ 13.3.2p3): for F to be a viable function, there shall
2176      // exist for each argument an implicit conversion sequence
2177      // (13.3.3.1) that converts that argument to the corresponding
2178      // parameter of F.
2179      QualType ParamType = Proto->getArgType(ArgIdx);
2180      Candidate.Conversions[ArgIdx]
2181        = TryCopyInitialization(Args[ArgIdx], ParamType,
2182                                SuppressUserConversions, ForceRValue,
2183                                /*InOverloadResolution=*/true);
2184      if (Candidate.Conversions[ArgIdx].ConversionKind
2185            == ImplicitConversionSequence::BadConversion) {
2186        Candidate.Viable = false;
2187        break;
2188      }
2189    } else {
2190      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2191      // argument for which there is no corresponding parameter is
2192      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2193      Candidate.Conversions[ArgIdx].ConversionKind
2194        = ImplicitConversionSequence::EllipsisConversion;
2195    }
2196  }
2197}
2198
2199/// \brief Add all of the function declarations in the given function set to
2200/// the overload canddiate set.
2201void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2202                                 Expr **Args, unsigned NumArgs,
2203                                 OverloadCandidateSet& CandidateSet,
2204                                 bool SuppressUserConversions) {
2205  for (FunctionSet::const_iterator F = Functions.begin(),
2206                                FEnd = Functions.end();
2207       F != FEnd; ++F) {
2208    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2209      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2210                           SuppressUserConversions);
2211    else
2212      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2213                                   /*FIXME: explicit args */false, 0, 0,
2214                                   Args, NumArgs, CandidateSet,
2215                                   SuppressUserConversions);
2216  }
2217}
2218
2219/// AddMethodCandidate - Adds the given C++ member function to the set
2220/// of candidate functions, using the given function call arguments
2221/// and the object argument (@c Object). For example, in a call
2222/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2223/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2224/// allow user-defined conversions via constructors or conversion
2225/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2226/// a slightly hacky way to implement the overloading rules for elidable copy
2227/// initialization in C++0x (C++0x 12.8p15).
2228void
2229Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2230                         Expr **Args, unsigned NumArgs,
2231                         OverloadCandidateSet& CandidateSet,
2232                         bool SuppressUserConversions, bool ForceRValue) {
2233  const FunctionProtoType* Proto
2234    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2235  assert(Proto && "Methods without a prototype cannot be overloaded");
2236  assert(!isa<CXXConversionDecl>(Method) &&
2237         "Use AddConversionCandidate for conversion functions");
2238  assert(!isa<CXXConstructorDecl>(Method) &&
2239         "Use AddOverloadCandidate for constructors");
2240
2241  // Add this candidate
2242  CandidateSet.push_back(OverloadCandidate());
2243  OverloadCandidate& Candidate = CandidateSet.back();
2244  Candidate.Function = Method;
2245  Candidate.IsSurrogate = false;
2246  Candidate.IgnoreObjectArgument = false;
2247
2248  unsigned NumArgsInProto = Proto->getNumArgs();
2249
2250  // (C++ 13.3.2p2): A candidate function having fewer than m
2251  // parameters is viable only if it has an ellipsis in its parameter
2252  // list (8.3.5).
2253  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2254    Candidate.Viable = false;
2255    return;
2256  }
2257
2258  // (C++ 13.3.2p2): A candidate function having more than m parameters
2259  // is viable only if the (m+1)st parameter has a default argument
2260  // (8.3.6). For the purposes of overload resolution, the
2261  // parameter list is truncated on the right, so that there are
2262  // exactly m parameters.
2263  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2264  if (NumArgs < MinRequiredArgs) {
2265    // Not enough arguments.
2266    Candidate.Viable = false;
2267    return;
2268  }
2269
2270  Candidate.Viable = true;
2271  Candidate.Conversions.resize(NumArgs + 1);
2272
2273  if (Method->isStatic() || !Object)
2274    // The implicit object argument is ignored.
2275    Candidate.IgnoreObjectArgument = true;
2276  else {
2277    // Determine the implicit conversion sequence for the object
2278    // parameter.
2279    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2280    if (Candidate.Conversions[0].ConversionKind
2281          == ImplicitConversionSequence::BadConversion) {
2282      Candidate.Viable = false;
2283      return;
2284    }
2285  }
2286
2287  // Determine the implicit conversion sequences for each of the
2288  // arguments.
2289  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2290    if (ArgIdx < NumArgsInProto) {
2291      // (C++ 13.3.2p3): for F to be a viable function, there shall
2292      // exist for each argument an implicit conversion sequence
2293      // (13.3.3.1) that converts that argument to the corresponding
2294      // parameter of F.
2295      QualType ParamType = Proto->getArgType(ArgIdx);
2296      Candidate.Conversions[ArgIdx + 1]
2297        = TryCopyInitialization(Args[ArgIdx], ParamType,
2298                                SuppressUserConversions, ForceRValue,
2299                                /*InOverloadResolution=*/true);
2300      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2301            == ImplicitConversionSequence::BadConversion) {
2302        Candidate.Viable = false;
2303        break;
2304      }
2305    } else {
2306      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2307      // argument for which there is no corresponding parameter is
2308      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2309      Candidate.Conversions[ArgIdx + 1].ConversionKind
2310        = ImplicitConversionSequence::EllipsisConversion;
2311    }
2312  }
2313}
2314
2315/// \brief Add a C++ member function template as a candidate to the candidate
2316/// set, using template argument deduction to produce an appropriate member
2317/// function template specialization.
2318void
2319Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2320                                 bool HasExplicitTemplateArgs,
2321                                 const TemplateArgument *ExplicitTemplateArgs,
2322                                 unsigned NumExplicitTemplateArgs,
2323                                 Expr *Object, Expr **Args, unsigned NumArgs,
2324                                 OverloadCandidateSet& CandidateSet,
2325                                 bool SuppressUserConversions,
2326                                 bool ForceRValue) {
2327  // C++ [over.match.funcs]p7:
2328  //   In each case where a candidate is a function template, candidate
2329  //   function template specializations are generated using template argument
2330  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2331  //   candidate functions in the usual way.113) A given name can refer to one
2332  //   or more function templates and also to a set of overloaded non-template
2333  //   functions. In such a case, the candidate functions generated from each
2334  //   function template are combined with the set of non-template candidate
2335  //   functions.
2336  TemplateDeductionInfo Info(Context);
2337  FunctionDecl *Specialization = 0;
2338  if (TemplateDeductionResult Result
2339      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2340                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2341                                Args, NumArgs, Specialization, Info)) {
2342        // FIXME: Record what happened with template argument deduction, so
2343        // that we can give the user a beautiful diagnostic.
2344        (void)Result;
2345        return;
2346      }
2347
2348  // Add the function template specialization produced by template argument
2349  // deduction as a candidate.
2350  assert(Specialization && "Missing member function template specialization?");
2351  assert(isa<CXXMethodDecl>(Specialization) &&
2352         "Specialization is not a member function?");
2353  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2354                     CandidateSet, SuppressUserConversions, ForceRValue);
2355}
2356
2357/// \brief Add a C++ function template specialization as a candidate
2358/// in the candidate set, using template argument deduction to produce
2359/// an appropriate function template specialization.
2360void
2361Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2362                                   bool HasExplicitTemplateArgs,
2363                                 const TemplateArgument *ExplicitTemplateArgs,
2364                                   unsigned NumExplicitTemplateArgs,
2365                                   Expr **Args, unsigned NumArgs,
2366                                   OverloadCandidateSet& CandidateSet,
2367                                   bool SuppressUserConversions,
2368                                   bool ForceRValue) {
2369  // C++ [over.match.funcs]p7:
2370  //   In each case where a candidate is a function template, candidate
2371  //   function template specializations are generated using template argument
2372  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2373  //   candidate functions in the usual way.113) A given name can refer to one
2374  //   or more function templates and also to a set of overloaded non-template
2375  //   functions. In such a case, the candidate functions generated from each
2376  //   function template are combined with the set of non-template candidate
2377  //   functions.
2378  TemplateDeductionInfo Info(Context);
2379  FunctionDecl *Specialization = 0;
2380  if (TemplateDeductionResult Result
2381        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2382                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2383                                  Args, NumArgs, Specialization, Info)) {
2384    // FIXME: Record what happened with template argument deduction, so
2385    // that we can give the user a beautiful diagnostic.
2386    (void)Result;
2387    return;
2388  }
2389
2390  // Add the function template specialization produced by template argument
2391  // deduction as a candidate.
2392  assert(Specialization && "Missing function template specialization?");
2393  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2394                       SuppressUserConversions, ForceRValue);
2395}
2396
2397/// AddConversionCandidate - Add a C++ conversion function as a
2398/// candidate in the candidate set (C++ [over.match.conv],
2399/// C++ [over.match.copy]). From is the expression we're converting from,
2400/// and ToType is the type that we're eventually trying to convert to
2401/// (which may or may not be the same type as the type that the
2402/// conversion function produces).
2403void
2404Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2405                             Expr *From, QualType ToType,
2406                             OverloadCandidateSet& CandidateSet) {
2407  assert(!Conversion->getDescribedFunctionTemplate() &&
2408         "Conversion function templates use AddTemplateConversionCandidate");
2409
2410  // Add this candidate
2411  CandidateSet.push_back(OverloadCandidate());
2412  OverloadCandidate& Candidate = CandidateSet.back();
2413  Candidate.Function = Conversion;
2414  Candidate.IsSurrogate = false;
2415  Candidate.IgnoreObjectArgument = false;
2416  Candidate.FinalConversion.setAsIdentityConversion();
2417  Candidate.FinalConversion.FromTypePtr
2418    = Conversion->getConversionType().getAsOpaquePtr();
2419  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2420
2421  // Determine the implicit conversion sequence for the implicit
2422  // object parameter.
2423  Candidate.Viable = true;
2424  Candidate.Conversions.resize(1);
2425  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2426
2427  if (Candidate.Conversions[0].ConversionKind
2428      == ImplicitConversionSequence::BadConversion) {
2429    Candidate.Viable = false;
2430    return;
2431  }
2432
2433  // To determine what the conversion from the result of calling the
2434  // conversion function to the type we're eventually trying to
2435  // convert to (ToType), we need to synthesize a call to the
2436  // conversion function and attempt copy initialization from it. This
2437  // makes sure that we get the right semantics with respect to
2438  // lvalues/rvalues and the type. Fortunately, we can allocate this
2439  // call on the stack and we don't need its arguments to be
2440  // well-formed.
2441  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2442                            SourceLocation());
2443  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2444                                CastExpr::CK_Unknown,
2445                                &ConversionRef, false);
2446
2447  // Note that it is safe to allocate CallExpr on the stack here because
2448  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2449  // allocator).
2450  CallExpr Call(Context, &ConversionFn, 0, 0,
2451                Conversion->getConversionType().getNonReferenceType(),
2452                SourceLocation());
2453  ImplicitConversionSequence ICS =
2454    TryCopyInitialization(&Call, ToType,
2455                          /*SuppressUserConversions=*/true,
2456                          /*ForceRValue=*/false,
2457                          /*InOverloadResolution=*/false);
2458
2459  switch (ICS.ConversionKind) {
2460  case ImplicitConversionSequence::StandardConversion:
2461    Candidate.FinalConversion = ICS.Standard;
2462    break;
2463
2464  case ImplicitConversionSequence::BadConversion:
2465    Candidate.Viable = false;
2466    break;
2467
2468  default:
2469    assert(false &&
2470           "Can only end up with a standard conversion sequence or failure");
2471  }
2472}
2473
2474/// \brief Adds a conversion function template specialization
2475/// candidate to the overload set, using template argument deduction
2476/// to deduce the template arguments of the conversion function
2477/// template from the type that we are converting to (C++
2478/// [temp.deduct.conv]).
2479void
2480Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2481                                     Expr *From, QualType ToType,
2482                                     OverloadCandidateSet &CandidateSet) {
2483  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2484         "Only conversion function templates permitted here");
2485
2486  TemplateDeductionInfo Info(Context);
2487  CXXConversionDecl *Specialization = 0;
2488  if (TemplateDeductionResult Result
2489        = DeduceTemplateArguments(FunctionTemplate, ToType,
2490                                  Specialization, Info)) {
2491    // FIXME: Record what happened with template argument deduction, so
2492    // that we can give the user a beautiful diagnostic.
2493    (void)Result;
2494    return;
2495  }
2496
2497  // Add the conversion function template specialization produced by
2498  // template argument deduction as a candidate.
2499  assert(Specialization && "Missing function template specialization?");
2500  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2501}
2502
2503/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2504/// converts the given @c Object to a function pointer via the
2505/// conversion function @c Conversion, and then attempts to call it
2506/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2507/// the type of function that we'll eventually be calling.
2508void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2509                                 const FunctionProtoType *Proto,
2510                                 Expr *Object, Expr **Args, unsigned NumArgs,
2511                                 OverloadCandidateSet& CandidateSet) {
2512  CandidateSet.push_back(OverloadCandidate());
2513  OverloadCandidate& Candidate = CandidateSet.back();
2514  Candidate.Function = 0;
2515  Candidate.Surrogate = Conversion;
2516  Candidate.Viable = true;
2517  Candidate.IsSurrogate = true;
2518  Candidate.IgnoreObjectArgument = false;
2519  Candidate.Conversions.resize(NumArgs + 1);
2520
2521  // Determine the implicit conversion sequence for the implicit
2522  // object parameter.
2523  ImplicitConversionSequence ObjectInit
2524    = TryObjectArgumentInitialization(Object, Conversion);
2525  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2526    Candidate.Viable = false;
2527    return;
2528  }
2529
2530  // The first conversion is actually a user-defined conversion whose
2531  // first conversion is ObjectInit's standard conversion (which is
2532  // effectively a reference binding). Record it as such.
2533  Candidate.Conversions[0].ConversionKind
2534    = ImplicitConversionSequence::UserDefinedConversion;
2535  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2536  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2537  Candidate.Conversions[0].UserDefined.After
2538    = Candidate.Conversions[0].UserDefined.Before;
2539  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2540
2541  // Find the
2542  unsigned NumArgsInProto = Proto->getNumArgs();
2543
2544  // (C++ 13.3.2p2): A candidate function having fewer than m
2545  // parameters is viable only if it has an ellipsis in its parameter
2546  // list (8.3.5).
2547  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2548    Candidate.Viable = false;
2549    return;
2550  }
2551
2552  // Function types don't have any default arguments, so just check if
2553  // we have enough arguments.
2554  if (NumArgs < NumArgsInProto) {
2555    // Not enough arguments.
2556    Candidate.Viable = false;
2557    return;
2558  }
2559
2560  // Determine the implicit conversion sequences for each of the
2561  // arguments.
2562  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2563    if (ArgIdx < NumArgsInProto) {
2564      // (C++ 13.3.2p3): for F to be a viable function, there shall
2565      // exist for each argument an implicit conversion sequence
2566      // (13.3.3.1) that converts that argument to the corresponding
2567      // parameter of F.
2568      QualType ParamType = Proto->getArgType(ArgIdx);
2569      Candidate.Conversions[ArgIdx + 1]
2570        = TryCopyInitialization(Args[ArgIdx], ParamType,
2571                                /*SuppressUserConversions=*/false,
2572                                /*ForceRValue=*/false,
2573                                /*InOverloadResolution=*/false);
2574      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2575            == ImplicitConversionSequence::BadConversion) {
2576        Candidate.Viable = false;
2577        break;
2578      }
2579    } else {
2580      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2581      // argument for which there is no corresponding parameter is
2582      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2583      Candidate.Conversions[ArgIdx + 1].ConversionKind
2584        = ImplicitConversionSequence::EllipsisConversion;
2585    }
2586  }
2587}
2588
2589// FIXME: This will eventually be removed, once we've migrated all of the
2590// operator overloading logic over to the scheme used by binary operators, which
2591// works for template instantiation.
2592void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2593                                 SourceLocation OpLoc,
2594                                 Expr **Args, unsigned NumArgs,
2595                                 OverloadCandidateSet& CandidateSet,
2596                                 SourceRange OpRange) {
2597
2598  FunctionSet Functions;
2599
2600  QualType T1 = Args[0]->getType();
2601  QualType T2;
2602  if (NumArgs > 1)
2603    T2 = Args[1]->getType();
2604
2605  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2606  if (S)
2607    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2608  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2609  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2610  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2611  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2612}
2613
2614/// \brief Add overload candidates for overloaded operators that are
2615/// member functions.
2616///
2617/// Add the overloaded operator candidates that are member functions
2618/// for the operator Op that was used in an operator expression such
2619/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2620/// CandidateSet will store the added overload candidates. (C++
2621/// [over.match.oper]).
2622void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2623                                       SourceLocation OpLoc,
2624                                       Expr **Args, unsigned NumArgs,
2625                                       OverloadCandidateSet& CandidateSet,
2626                                       SourceRange OpRange) {
2627  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2628
2629  // C++ [over.match.oper]p3:
2630  //   For a unary operator @ with an operand of a type whose
2631  //   cv-unqualified version is T1, and for a binary operator @ with
2632  //   a left operand of a type whose cv-unqualified version is T1 and
2633  //   a right operand of a type whose cv-unqualified version is T2,
2634  //   three sets of candidate functions, designated member
2635  //   candidates, non-member candidates and built-in candidates, are
2636  //   constructed as follows:
2637  QualType T1 = Args[0]->getType();
2638  QualType T2;
2639  if (NumArgs > 1)
2640    T2 = Args[1]->getType();
2641
2642  //     -- If T1 is a class type, the set of member candidates is the
2643  //        result of the qualified lookup of T1::operator@
2644  //        (13.3.1.1.1); otherwise, the set of member candidates is
2645  //        empty.
2646  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2647    // Complete the type if it can be completed. Otherwise, we're done.
2648    if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0)))
2649      return;
2650
2651    LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName,
2652                                                 LookupOrdinaryName, false);
2653    for (LookupResult::iterator Oper = Operators.begin(),
2654                             OperEnd = Operators.end();
2655         Oper != OperEnd;
2656         ++Oper)
2657      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2658                         Args+1, NumArgs - 1, CandidateSet,
2659                         /*SuppressUserConversions=*/false);
2660  }
2661}
2662
2663/// AddBuiltinCandidate - Add a candidate for a built-in
2664/// operator. ResultTy and ParamTys are the result and parameter types
2665/// of the built-in candidate, respectively. Args and NumArgs are the
2666/// arguments being passed to the candidate. IsAssignmentOperator
2667/// should be true when this built-in candidate is an assignment
2668/// operator. NumContextualBoolArguments is the number of arguments
2669/// (at the beginning of the argument list) that will be contextually
2670/// converted to bool.
2671void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2672                               Expr **Args, unsigned NumArgs,
2673                               OverloadCandidateSet& CandidateSet,
2674                               bool IsAssignmentOperator,
2675                               unsigned NumContextualBoolArguments) {
2676  // Add this candidate
2677  CandidateSet.push_back(OverloadCandidate());
2678  OverloadCandidate& Candidate = CandidateSet.back();
2679  Candidate.Function = 0;
2680  Candidate.IsSurrogate = false;
2681  Candidate.IgnoreObjectArgument = false;
2682  Candidate.BuiltinTypes.ResultTy = ResultTy;
2683  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2684    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2685
2686  // Determine the implicit conversion sequences for each of the
2687  // arguments.
2688  Candidate.Viable = true;
2689  Candidate.Conversions.resize(NumArgs);
2690  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2691    // C++ [over.match.oper]p4:
2692    //   For the built-in assignment operators, conversions of the
2693    //   left operand are restricted as follows:
2694    //     -- no temporaries are introduced to hold the left operand, and
2695    //     -- no user-defined conversions are applied to the left
2696    //        operand to achieve a type match with the left-most
2697    //        parameter of a built-in candidate.
2698    //
2699    // We block these conversions by turning off user-defined
2700    // conversions, since that is the only way that initialization of
2701    // a reference to a non-class type can occur from something that
2702    // is not of the same type.
2703    if (ArgIdx < NumContextualBoolArguments) {
2704      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2705             "Contextual conversion to bool requires bool type");
2706      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2707    } else {
2708      Candidate.Conversions[ArgIdx]
2709        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2710                                ArgIdx == 0 && IsAssignmentOperator,
2711                                /*ForceRValue=*/false,
2712                                /*InOverloadResolution=*/false);
2713    }
2714    if (Candidate.Conversions[ArgIdx].ConversionKind
2715        == ImplicitConversionSequence::BadConversion) {
2716      Candidate.Viable = false;
2717      break;
2718    }
2719  }
2720}
2721
2722/// BuiltinCandidateTypeSet - A set of types that will be used for the
2723/// candidate operator functions for built-in operators (C++
2724/// [over.built]). The types are separated into pointer types and
2725/// enumeration types.
2726class BuiltinCandidateTypeSet  {
2727  /// TypeSet - A set of types.
2728  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2729
2730  /// PointerTypes - The set of pointer types that will be used in the
2731  /// built-in candidates.
2732  TypeSet PointerTypes;
2733
2734  /// MemberPointerTypes - The set of member pointer types that will be
2735  /// used in the built-in candidates.
2736  TypeSet MemberPointerTypes;
2737
2738  /// EnumerationTypes - The set of enumeration types that will be
2739  /// used in the built-in candidates.
2740  TypeSet EnumerationTypes;
2741
2742  /// Sema - The semantic analysis instance where we are building the
2743  /// candidate type set.
2744  Sema &SemaRef;
2745
2746  /// Context - The AST context in which we will build the type sets.
2747  ASTContext &Context;
2748
2749  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2750  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2751
2752public:
2753  /// iterator - Iterates through the types that are part of the set.
2754  typedef TypeSet::iterator iterator;
2755
2756  BuiltinCandidateTypeSet(Sema &SemaRef)
2757    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2758
2759  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2760                             bool AllowExplicitConversions);
2761
2762  /// pointer_begin - First pointer type found;
2763  iterator pointer_begin() { return PointerTypes.begin(); }
2764
2765  /// pointer_end - Past the last pointer type found;
2766  iterator pointer_end() { return PointerTypes.end(); }
2767
2768  /// member_pointer_begin - First member pointer type found;
2769  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2770
2771  /// member_pointer_end - Past the last member pointer type found;
2772  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2773
2774  /// enumeration_begin - First enumeration type found;
2775  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2776
2777  /// enumeration_end - Past the last enumeration type found;
2778  iterator enumeration_end() { return EnumerationTypes.end(); }
2779};
2780
2781/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2782/// the set of pointer types along with any more-qualified variants of
2783/// that type. For example, if @p Ty is "int const *", this routine
2784/// will add "int const *", "int const volatile *", "int const
2785/// restrict *", and "int const volatile restrict *" to the set of
2786/// pointer types. Returns true if the add of @p Ty itself succeeded,
2787/// false otherwise.
2788bool
2789BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2790  // Insert this type.
2791  if (!PointerTypes.insert(Ty))
2792    return false;
2793
2794  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2795    QualType PointeeTy = PointerTy->getPointeeType();
2796    // FIXME: Optimize this so that we don't keep trying to add the same types.
2797
2798    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2799    // pointer conversions that don't cast away constness?
2800    if (!PointeeTy.isConstQualified())
2801      AddPointerWithMoreQualifiedTypeVariants
2802        (Context.getPointerType(PointeeTy.withConst()));
2803    if (!PointeeTy.isVolatileQualified())
2804      AddPointerWithMoreQualifiedTypeVariants
2805        (Context.getPointerType(PointeeTy.withVolatile()));
2806    if (!PointeeTy.isRestrictQualified())
2807      AddPointerWithMoreQualifiedTypeVariants
2808        (Context.getPointerType(PointeeTy.withRestrict()));
2809  }
2810
2811  return true;
2812}
2813
2814/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2815/// to the set of pointer types along with any more-qualified variants of
2816/// that type. For example, if @p Ty is "int const *", this routine
2817/// will add "int const *", "int const volatile *", "int const
2818/// restrict *", and "int const volatile restrict *" to the set of
2819/// pointer types. Returns true if the add of @p Ty itself succeeded,
2820/// false otherwise.
2821bool
2822BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2823    QualType Ty) {
2824  // Insert this type.
2825  if (!MemberPointerTypes.insert(Ty))
2826    return false;
2827
2828  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2829    QualType PointeeTy = PointerTy->getPointeeType();
2830    const Type *ClassTy = PointerTy->getClass();
2831    // FIXME: Optimize this so that we don't keep trying to add the same types.
2832
2833    if (!PointeeTy.isConstQualified())
2834      AddMemberPointerWithMoreQualifiedTypeVariants
2835        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2836    if (!PointeeTy.isVolatileQualified())
2837      AddMemberPointerWithMoreQualifiedTypeVariants
2838        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2839    if (!PointeeTy.isRestrictQualified())
2840      AddMemberPointerWithMoreQualifiedTypeVariants
2841        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2842  }
2843
2844  return true;
2845}
2846
2847/// AddTypesConvertedFrom - Add each of the types to which the type @p
2848/// Ty can be implicit converted to the given set of @p Types. We're
2849/// primarily interested in pointer types and enumeration types. We also
2850/// take member pointer types, for the conditional operator.
2851/// AllowUserConversions is true if we should look at the conversion
2852/// functions of a class type, and AllowExplicitConversions if we
2853/// should also include the explicit conversion functions of a class
2854/// type.
2855void
2856BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2857                                               bool AllowUserConversions,
2858                                               bool AllowExplicitConversions) {
2859  // Only deal with canonical types.
2860  Ty = Context.getCanonicalType(Ty);
2861
2862  // Look through reference types; they aren't part of the type of an
2863  // expression for the purposes of conversions.
2864  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2865    Ty = RefTy->getPointeeType();
2866
2867  // We don't care about qualifiers on the type.
2868  Ty = Ty.getUnqualifiedType();
2869
2870  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2871    QualType PointeeTy = PointerTy->getPointeeType();
2872
2873    // Insert our type, and its more-qualified variants, into the set
2874    // of types.
2875    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2876      return;
2877
2878    // Add 'cv void*' to our set of types.
2879    if (!Ty->isVoidType()) {
2880      QualType QualVoid
2881        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2882      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2883    }
2884
2885    // If this is a pointer to a class type, add pointers to its bases
2886    // (with the same level of cv-qualification as the original
2887    // derived class, of course).
2888    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2889      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2890      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2891           Base != ClassDecl->bases_end(); ++Base) {
2892        QualType BaseTy = Context.getCanonicalType(Base->getType());
2893        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2894
2895        // Add the pointer type, recursively, so that we get all of
2896        // the indirect base classes, too.
2897        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2898      }
2899    }
2900  } else if (Ty->isMemberPointerType()) {
2901    // Member pointers are far easier, since the pointee can't be converted.
2902    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2903      return;
2904  } else if (Ty->isEnumeralType()) {
2905    EnumerationTypes.insert(Ty);
2906  } else if (AllowUserConversions) {
2907    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2908      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
2909        // No conversion functions in incomplete types.
2910        return;
2911      }
2912
2913      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2914      // FIXME: Visit conversion functions in the base classes, too.
2915      OverloadedFunctionDecl *Conversions
2916        = ClassDecl->getConversionFunctions();
2917      for (OverloadedFunctionDecl::function_iterator Func
2918             = Conversions->function_begin();
2919           Func != Conversions->function_end(); ++Func) {
2920        CXXConversionDecl *Conv;
2921        FunctionTemplateDecl *ConvTemplate;
2922        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
2923
2924        // Skip conversion function templates; they don't tell us anything
2925        // about which builtin types we can convert to.
2926        if (ConvTemplate)
2927          continue;
2928
2929        if (AllowExplicitConversions || !Conv->isExplicit())
2930          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2931      }
2932    }
2933  }
2934}
2935
2936/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
2937/// the volatile- and non-volatile-qualified assignment operators for the
2938/// given type to the candidate set.
2939static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
2940                                                   QualType T,
2941                                                   Expr **Args,
2942                                                   unsigned NumArgs,
2943                                    OverloadCandidateSet &CandidateSet) {
2944  QualType ParamTypes[2];
2945
2946  // T& operator=(T&, T)
2947  ParamTypes[0] = S.Context.getLValueReferenceType(T);
2948  ParamTypes[1] = T;
2949  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2950                        /*IsAssignmentOperator=*/true);
2951
2952  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
2953    // volatile T& operator=(volatile T&, T)
2954    ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile());
2955    ParamTypes[1] = T;
2956    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2957                          /*IsAssignmentOperator=*/true);
2958  }
2959}
2960
2961/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2962/// operator overloads to the candidate set (C++ [over.built]), based
2963/// on the operator @p Op and the arguments given. For example, if the
2964/// operator is a binary '+', this routine might add "int
2965/// operator+(int, int)" to cover integer addition.
2966void
2967Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2968                                   Expr **Args, unsigned NumArgs,
2969                                   OverloadCandidateSet& CandidateSet) {
2970  // The set of "promoted arithmetic types", which are the arithmetic
2971  // types are that preserved by promotion (C++ [over.built]p2). Note
2972  // that the first few of these types are the promoted integral
2973  // types; these types need to be first.
2974  // FIXME: What about complex?
2975  const unsigned FirstIntegralType = 0;
2976  const unsigned LastIntegralType = 13;
2977  const unsigned FirstPromotedIntegralType = 7,
2978                 LastPromotedIntegralType = 13;
2979  const unsigned FirstPromotedArithmeticType = 7,
2980                 LastPromotedArithmeticType = 16;
2981  const unsigned NumArithmeticTypes = 16;
2982  QualType ArithmeticTypes[NumArithmeticTypes] = {
2983    Context.BoolTy, Context.CharTy, Context.WCharTy,
2984// FIXME:   Context.Char16Ty, Context.Char32Ty,
2985    Context.SignedCharTy, Context.ShortTy,
2986    Context.UnsignedCharTy, Context.UnsignedShortTy,
2987    Context.IntTy, Context.LongTy, Context.LongLongTy,
2988    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2989    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2990  };
2991
2992  // Find all of the types that the arguments can convert to, but only
2993  // if the operator we're looking at has built-in operator candidates
2994  // that make use of these types.
2995  BuiltinCandidateTypeSet CandidateTypes(*this);
2996  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2997      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2998      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2999      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3000      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3001      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3002    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3003      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3004                                           true,
3005                                           (Op == OO_Exclaim ||
3006                                            Op == OO_AmpAmp ||
3007                                            Op == OO_PipePipe));
3008  }
3009
3010  bool isComparison = false;
3011  switch (Op) {
3012  case OO_None:
3013  case NUM_OVERLOADED_OPERATORS:
3014    assert(false && "Expected an overloaded operator");
3015    break;
3016
3017  case OO_Star: // '*' is either unary or binary
3018    if (NumArgs == 1)
3019      goto UnaryStar;
3020    else
3021      goto BinaryStar;
3022    break;
3023
3024  case OO_Plus: // '+' is either unary or binary
3025    if (NumArgs == 1)
3026      goto UnaryPlus;
3027    else
3028      goto BinaryPlus;
3029    break;
3030
3031  case OO_Minus: // '-' is either unary or binary
3032    if (NumArgs == 1)
3033      goto UnaryMinus;
3034    else
3035      goto BinaryMinus;
3036    break;
3037
3038  case OO_Amp: // '&' is either unary or binary
3039    if (NumArgs == 1)
3040      goto UnaryAmp;
3041    else
3042      goto BinaryAmp;
3043
3044  case OO_PlusPlus:
3045  case OO_MinusMinus:
3046    // C++ [over.built]p3:
3047    //
3048    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3049    //   is either volatile or empty, there exist candidate operator
3050    //   functions of the form
3051    //
3052    //       VQ T&      operator++(VQ T&);
3053    //       T          operator++(VQ T&, int);
3054    //
3055    // C++ [over.built]p4:
3056    //
3057    //   For every pair (T, VQ), where T is an arithmetic type other
3058    //   than bool, and VQ is either volatile or empty, there exist
3059    //   candidate operator functions of the form
3060    //
3061    //       VQ T&      operator--(VQ T&);
3062    //       T          operator--(VQ T&, int);
3063    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3064         Arith < NumArithmeticTypes; ++Arith) {
3065      QualType ArithTy = ArithmeticTypes[Arith];
3066      QualType ParamTypes[2]
3067        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3068
3069      // Non-volatile version.
3070      if (NumArgs == 1)
3071        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3072      else
3073        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3074
3075      // Volatile version
3076      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
3077      if (NumArgs == 1)
3078        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3079      else
3080        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3081    }
3082
3083    // C++ [over.built]p5:
3084    //
3085    //   For every pair (T, VQ), where T is a cv-qualified or
3086    //   cv-unqualified object type, and VQ is either volatile or
3087    //   empty, there exist candidate operator functions of the form
3088    //
3089    //       T*VQ&      operator++(T*VQ&);
3090    //       T*VQ&      operator--(T*VQ&);
3091    //       T*         operator++(T*VQ&, int);
3092    //       T*         operator--(T*VQ&, int);
3093    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3094         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3095      // Skip pointer types that aren't pointers to object types.
3096      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3097        continue;
3098
3099      QualType ParamTypes[2] = {
3100        Context.getLValueReferenceType(*Ptr), Context.IntTy
3101      };
3102
3103      // Without volatile
3104      if (NumArgs == 1)
3105        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3106      else
3107        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3108
3109      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3110        // With volatile
3111        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3112        if (NumArgs == 1)
3113          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3114        else
3115          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3116      }
3117    }
3118    break;
3119
3120  UnaryStar:
3121    // C++ [over.built]p6:
3122    //   For every cv-qualified or cv-unqualified object type T, there
3123    //   exist candidate operator functions of the form
3124    //
3125    //       T&         operator*(T*);
3126    //
3127    // C++ [over.built]p7:
3128    //   For every function type T, there exist candidate operator
3129    //   functions of the form
3130    //       T&         operator*(T*);
3131    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3132         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3133      QualType ParamTy = *Ptr;
3134      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3135      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3136                          &ParamTy, Args, 1, CandidateSet);
3137    }
3138    break;
3139
3140  UnaryPlus:
3141    // C++ [over.built]p8:
3142    //   For every type T, there exist candidate operator functions of
3143    //   the form
3144    //
3145    //       T*         operator+(T*);
3146    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3147         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3148      QualType ParamTy = *Ptr;
3149      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3150    }
3151
3152    // Fall through
3153
3154  UnaryMinus:
3155    // C++ [over.built]p9:
3156    //  For every promoted arithmetic type T, there exist candidate
3157    //  operator functions of the form
3158    //
3159    //       T         operator+(T);
3160    //       T         operator-(T);
3161    for (unsigned Arith = FirstPromotedArithmeticType;
3162         Arith < LastPromotedArithmeticType; ++Arith) {
3163      QualType ArithTy = ArithmeticTypes[Arith];
3164      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3165    }
3166    break;
3167
3168  case OO_Tilde:
3169    // C++ [over.built]p10:
3170    //   For every promoted integral type T, there exist candidate
3171    //   operator functions of the form
3172    //
3173    //        T         operator~(T);
3174    for (unsigned Int = FirstPromotedIntegralType;
3175         Int < LastPromotedIntegralType; ++Int) {
3176      QualType IntTy = ArithmeticTypes[Int];
3177      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3178    }
3179    break;
3180
3181  case OO_New:
3182  case OO_Delete:
3183  case OO_Array_New:
3184  case OO_Array_Delete:
3185  case OO_Call:
3186    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3187    break;
3188
3189  case OO_Comma:
3190  UnaryAmp:
3191  case OO_Arrow:
3192    // C++ [over.match.oper]p3:
3193    //   -- For the operator ',', the unary operator '&', or the
3194    //      operator '->', the built-in candidates set is empty.
3195    break;
3196
3197  case OO_EqualEqual:
3198  case OO_ExclaimEqual:
3199    // C++ [over.match.oper]p16:
3200    //   For every pointer to member type T, there exist candidate operator
3201    //   functions of the form
3202    //
3203    //        bool operator==(T,T);
3204    //        bool operator!=(T,T);
3205    for (BuiltinCandidateTypeSet::iterator
3206           MemPtr = CandidateTypes.member_pointer_begin(),
3207           MemPtrEnd = CandidateTypes.member_pointer_end();
3208         MemPtr != MemPtrEnd;
3209         ++MemPtr) {
3210      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3211      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3212    }
3213
3214    // Fall through
3215
3216  case OO_Less:
3217  case OO_Greater:
3218  case OO_LessEqual:
3219  case OO_GreaterEqual:
3220    // C++ [over.built]p15:
3221    //
3222    //   For every pointer or enumeration type T, there exist
3223    //   candidate operator functions of the form
3224    //
3225    //        bool       operator<(T, T);
3226    //        bool       operator>(T, T);
3227    //        bool       operator<=(T, T);
3228    //        bool       operator>=(T, T);
3229    //        bool       operator==(T, T);
3230    //        bool       operator!=(T, T);
3231    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3232         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3233      QualType ParamTypes[2] = { *Ptr, *Ptr };
3234      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3235    }
3236    for (BuiltinCandidateTypeSet::iterator Enum
3237           = CandidateTypes.enumeration_begin();
3238         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3239      QualType ParamTypes[2] = { *Enum, *Enum };
3240      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3241    }
3242
3243    // Fall through.
3244    isComparison = true;
3245
3246  BinaryPlus:
3247  BinaryMinus:
3248    if (!isComparison) {
3249      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3250
3251      // C++ [over.built]p13:
3252      //
3253      //   For every cv-qualified or cv-unqualified object type T
3254      //   there exist candidate operator functions of the form
3255      //
3256      //      T*         operator+(T*, ptrdiff_t);
3257      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3258      //      T*         operator-(T*, ptrdiff_t);
3259      //      T*         operator+(ptrdiff_t, T*);
3260      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3261      //
3262      // C++ [over.built]p14:
3263      //
3264      //   For every T, where T is a pointer to object type, there
3265      //   exist candidate operator functions of the form
3266      //
3267      //      ptrdiff_t  operator-(T, T);
3268      for (BuiltinCandidateTypeSet::iterator Ptr
3269             = CandidateTypes.pointer_begin();
3270           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3271        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3272
3273        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3274        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3275
3276        if (Op == OO_Plus) {
3277          // T* operator+(ptrdiff_t, T*);
3278          ParamTypes[0] = ParamTypes[1];
3279          ParamTypes[1] = *Ptr;
3280          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3281        } else {
3282          // ptrdiff_t operator-(T, T);
3283          ParamTypes[1] = *Ptr;
3284          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3285                              Args, 2, CandidateSet);
3286        }
3287      }
3288    }
3289    // Fall through
3290
3291  case OO_Slash:
3292  BinaryStar:
3293  Conditional:
3294    // C++ [over.built]p12:
3295    //
3296    //   For every pair of promoted arithmetic types L and R, there
3297    //   exist candidate operator functions of the form
3298    //
3299    //        LR         operator*(L, R);
3300    //        LR         operator/(L, R);
3301    //        LR         operator+(L, R);
3302    //        LR         operator-(L, R);
3303    //        bool       operator<(L, R);
3304    //        bool       operator>(L, R);
3305    //        bool       operator<=(L, R);
3306    //        bool       operator>=(L, R);
3307    //        bool       operator==(L, R);
3308    //        bool       operator!=(L, R);
3309    //
3310    //   where LR is the result of the usual arithmetic conversions
3311    //   between types L and R.
3312    //
3313    // C++ [over.built]p24:
3314    //
3315    //   For every pair of promoted arithmetic types L and R, there exist
3316    //   candidate operator functions of the form
3317    //
3318    //        LR       operator?(bool, L, R);
3319    //
3320    //   where LR is the result of the usual arithmetic conversions
3321    //   between types L and R.
3322    // Our candidates ignore the first parameter.
3323    for (unsigned Left = FirstPromotedArithmeticType;
3324         Left < LastPromotedArithmeticType; ++Left) {
3325      for (unsigned Right = FirstPromotedArithmeticType;
3326           Right < LastPromotedArithmeticType; ++Right) {
3327        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3328        QualType Result
3329          = isComparison
3330          ? Context.BoolTy
3331          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3332        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3333      }
3334    }
3335    break;
3336
3337  case OO_Percent:
3338  BinaryAmp:
3339  case OO_Caret:
3340  case OO_Pipe:
3341  case OO_LessLess:
3342  case OO_GreaterGreater:
3343    // C++ [over.built]p17:
3344    //
3345    //   For every pair of promoted integral types L and R, there
3346    //   exist candidate operator functions of the form
3347    //
3348    //      LR         operator%(L, R);
3349    //      LR         operator&(L, R);
3350    //      LR         operator^(L, R);
3351    //      LR         operator|(L, R);
3352    //      L          operator<<(L, R);
3353    //      L          operator>>(L, R);
3354    //
3355    //   where LR is the result of the usual arithmetic conversions
3356    //   between types L and R.
3357    for (unsigned Left = FirstPromotedIntegralType;
3358         Left < LastPromotedIntegralType; ++Left) {
3359      for (unsigned Right = FirstPromotedIntegralType;
3360           Right < LastPromotedIntegralType; ++Right) {
3361        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3362        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3363            ? LandR[0]
3364            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3365        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3366      }
3367    }
3368    break;
3369
3370  case OO_Equal:
3371    // C++ [over.built]p20:
3372    //
3373    //   For every pair (T, VQ), where T is an enumeration or
3374    //   pointer to member type and VQ is either volatile or
3375    //   empty, there exist candidate operator functions of the form
3376    //
3377    //        VQ T&      operator=(VQ T&, T);
3378    for (BuiltinCandidateTypeSet::iterator
3379           Enum = CandidateTypes.enumeration_begin(),
3380           EnumEnd = CandidateTypes.enumeration_end();
3381         Enum != EnumEnd; ++Enum)
3382      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3383                                             CandidateSet);
3384    for (BuiltinCandidateTypeSet::iterator
3385           MemPtr = CandidateTypes.member_pointer_begin(),
3386         MemPtrEnd = CandidateTypes.member_pointer_end();
3387         MemPtr != MemPtrEnd; ++MemPtr)
3388      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3389                                             CandidateSet);
3390      // Fall through.
3391
3392  case OO_PlusEqual:
3393  case OO_MinusEqual:
3394    // C++ [over.built]p19:
3395    //
3396    //   For every pair (T, VQ), where T is any type and VQ is either
3397    //   volatile or empty, there exist candidate operator functions
3398    //   of the form
3399    //
3400    //        T*VQ&      operator=(T*VQ&, T*);
3401    //
3402    // C++ [over.built]p21:
3403    //
3404    //   For every pair (T, VQ), where T is a cv-qualified or
3405    //   cv-unqualified object type and VQ is either volatile or
3406    //   empty, there exist candidate operator functions of the form
3407    //
3408    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3409    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3410    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3411         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3412      QualType ParamTypes[2];
3413      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3414
3415      // non-volatile version
3416      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3417      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3418                          /*IsAssigmentOperator=*/Op == OO_Equal);
3419
3420      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3421        // volatile version
3422        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3423        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3424                            /*IsAssigmentOperator=*/Op == OO_Equal);
3425      }
3426    }
3427    // Fall through.
3428
3429  case OO_StarEqual:
3430  case OO_SlashEqual:
3431    // C++ [over.built]p18:
3432    //
3433    //   For every triple (L, VQ, R), where L is an arithmetic type,
3434    //   VQ is either volatile or empty, and R is a promoted
3435    //   arithmetic type, there exist candidate operator functions of
3436    //   the form
3437    //
3438    //        VQ L&      operator=(VQ L&, R);
3439    //        VQ L&      operator*=(VQ L&, R);
3440    //        VQ L&      operator/=(VQ L&, R);
3441    //        VQ L&      operator+=(VQ L&, R);
3442    //        VQ L&      operator-=(VQ L&, R);
3443    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3444      for (unsigned Right = FirstPromotedArithmeticType;
3445           Right < LastPromotedArithmeticType; ++Right) {
3446        QualType ParamTypes[2];
3447        ParamTypes[1] = ArithmeticTypes[Right];
3448
3449        // Add this built-in operator as a candidate (VQ is empty).
3450        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3451        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3452                            /*IsAssigmentOperator=*/Op == OO_Equal);
3453
3454        // Add this built-in operator as a candidate (VQ is 'volatile').
3455        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3456        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3457        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3458                            /*IsAssigmentOperator=*/Op == OO_Equal);
3459      }
3460    }
3461    break;
3462
3463  case OO_PercentEqual:
3464  case OO_LessLessEqual:
3465  case OO_GreaterGreaterEqual:
3466  case OO_AmpEqual:
3467  case OO_CaretEqual:
3468  case OO_PipeEqual:
3469    // C++ [over.built]p22:
3470    //
3471    //   For every triple (L, VQ, R), where L is an integral type, VQ
3472    //   is either volatile or empty, and R is a promoted integral
3473    //   type, there exist candidate operator functions of the form
3474    //
3475    //        VQ L&       operator%=(VQ L&, R);
3476    //        VQ L&       operator<<=(VQ L&, R);
3477    //        VQ L&       operator>>=(VQ L&, R);
3478    //        VQ L&       operator&=(VQ L&, R);
3479    //        VQ L&       operator^=(VQ L&, R);
3480    //        VQ L&       operator|=(VQ L&, R);
3481    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3482      for (unsigned Right = FirstPromotedIntegralType;
3483           Right < LastPromotedIntegralType; ++Right) {
3484        QualType ParamTypes[2];
3485        ParamTypes[1] = ArithmeticTypes[Right];
3486
3487        // Add this built-in operator as a candidate (VQ is empty).
3488        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3489        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3490
3491        // Add this built-in operator as a candidate (VQ is 'volatile').
3492        ParamTypes[0] = ArithmeticTypes[Left];
3493        ParamTypes[0].addVolatile();
3494        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3495        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3496      }
3497    }
3498    break;
3499
3500  case OO_Exclaim: {
3501    // C++ [over.operator]p23:
3502    //
3503    //   There also exist candidate operator functions of the form
3504    //
3505    //        bool        operator!(bool);
3506    //        bool        operator&&(bool, bool);     [BELOW]
3507    //        bool        operator||(bool, bool);     [BELOW]
3508    QualType ParamTy = Context.BoolTy;
3509    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3510                        /*IsAssignmentOperator=*/false,
3511                        /*NumContextualBoolArguments=*/1);
3512    break;
3513  }
3514
3515  case OO_AmpAmp:
3516  case OO_PipePipe: {
3517    // C++ [over.operator]p23:
3518    //
3519    //   There also exist candidate operator functions of the form
3520    //
3521    //        bool        operator!(bool);            [ABOVE]
3522    //        bool        operator&&(bool, bool);
3523    //        bool        operator||(bool, bool);
3524    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3525    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3526                        /*IsAssignmentOperator=*/false,
3527                        /*NumContextualBoolArguments=*/2);
3528    break;
3529  }
3530
3531  case OO_Subscript:
3532    // C++ [over.built]p13:
3533    //
3534    //   For every cv-qualified or cv-unqualified object type T there
3535    //   exist candidate operator functions of the form
3536    //
3537    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3538    //        T&         operator[](T*, ptrdiff_t);
3539    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3540    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3541    //        T&         operator[](ptrdiff_t, T*);
3542    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3543         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3544      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3545      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3546      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3547
3548      // T& operator[](T*, ptrdiff_t)
3549      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3550
3551      // T& operator[](ptrdiff_t, T*);
3552      ParamTypes[0] = ParamTypes[1];
3553      ParamTypes[1] = *Ptr;
3554      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3555    }
3556    break;
3557
3558  case OO_ArrowStar:
3559    // FIXME: No support for pointer-to-members yet.
3560    break;
3561
3562  case OO_Conditional:
3563    // Note that we don't consider the first argument, since it has been
3564    // contextually converted to bool long ago. The candidates below are
3565    // therefore added as binary.
3566    //
3567    // C++ [over.built]p24:
3568    //   For every type T, where T is a pointer or pointer-to-member type,
3569    //   there exist candidate operator functions of the form
3570    //
3571    //        T        operator?(bool, T, T);
3572    //
3573    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3574         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3575      QualType ParamTypes[2] = { *Ptr, *Ptr };
3576      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3577    }
3578    for (BuiltinCandidateTypeSet::iterator Ptr =
3579           CandidateTypes.member_pointer_begin(),
3580         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3581      QualType ParamTypes[2] = { *Ptr, *Ptr };
3582      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3583    }
3584    goto Conditional;
3585  }
3586}
3587
3588/// \brief Add function candidates found via argument-dependent lookup
3589/// to the set of overloading candidates.
3590///
3591/// This routine performs argument-dependent name lookup based on the
3592/// given function name (which may also be an operator name) and adds
3593/// all of the overload candidates found by ADL to the overload
3594/// candidate set (C++ [basic.lookup.argdep]).
3595void
3596Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3597                                           Expr **Args, unsigned NumArgs,
3598                                           OverloadCandidateSet& CandidateSet) {
3599  FunctionSet Functions;
3600
3601  // Record all of the function candidates that we've already
3602  // added to the overload set, so that we don't add those same
3603  // candidates a second time.
3604  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3605                                   CandEnd = CandidateSet.end();
3606       Cand != CandEnd; ++Cand)
3607    if (Cand->Function) {
3608      Functions.insert(Cand->Function);
3609      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3610        Functions.insert(FunTmpl);
3611    }
3612
3613  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3614
3615  // Erase all of the candidates we already knew about.
3616  // FIXME: This is suboptimal. Is there a better way?
3617  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3618                                   CandEnd = CandidateSet.end();
3619       Cand != CandEnd; ++Cand)
3620    if (Cand->Function) {
3621      Functions.erase(Cand->Function);
3622      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3623        Functions.erase(FunTmpl);
3624    }
3625
3626  // For each of the ADL candidates we found, add it to the overload
3627  // set.
3628  for (FunctionSet::iterator Func = Functions.begin(),
3629                          FuncEnd = Functions.end();
3630       Func != FuncEnd; ++Func) {
3631    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3632      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3633    else
3634      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3635                                   /*FIXME: explicit args */false, 0, 0,
3636                                   Args, NumArgs, CandidateSet);
3637  }
3638}
3639
3640/// isBetterOverloadCandidate - Determines whether the first overload
3641/// candidate is a better candidate than the second (C++ 13.3.3p1).
3642bool
3643Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3644                                const OverloadCandidate& Cand2) {
3645  // Define viable functions to be better candidates than non-viable
3646  // functions.
3647  if (!Cand2.Viable)
3648    return Cand1.Viable;
3649  else if (!Cand1.Viable)
3650    return false;
3651
3652  // C++ [over.match.best]p1:
3653  //
3654  //   -- if F is a static member function, ICS1(F) is defined such
3655  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3656  //      any function G, and, symmetrically, ICS1(G) is neither
3657  //      better nor worse than ICS1(F).
3658  unsigned StartArg = 0;
3659  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3660    StartArg = 1;
3661
3662  // C++ [over.match.best]p1:
3663  //   A viable function F1 is defined to be a better function than another
3664  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3665  //   conversion sequence than ICSi(F2), and then...
3666  unsigned NumArgs = Cand1.Conversions.size();
3667  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3668  bool HasBetterConversion = false;
3669  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3670    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3671                                               Cand2.Conversions[ArgIdx])) {
3672    case ImplicitConversionSequence::Better:
3673      // Cand1 has a better conversion sequence.
3674      HasBetterConversion = true;
3675      break;
3676
3677    case ImplicitConversionSequence::Worse:
3678      // Cand1 can't be better than Cand2.
3679      return false;
3680
3681    case ImplicitConversionSequence::Indistinguishable:
3682      // Do nothing.
3683      break;
3684    }
3685  }
3686
3687  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3688  //       ICSj(F2), or, if not that,
3689  if (HasBetterConversion)
3690    return true;
3691
3692  //     - F1 is a non-template function and F2 is a function template
3693  //       specialization, or, if not that,
3694  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3695      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3696    return true;
3697
3698  //   -- F1 and F2 are function template specializations, and the function
3699  //      template for F1 is more specialized than the template for F2
3700  //      according to the partial ordering rules described in 14.5.5.2, or,
3701  //      if not that,
3702  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3703      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3704    if (FunctionTemplateDecl *BetterTemplate
3705          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3706                                       Cand2.Function->getPrimaryTemplate(),
3707                                       true))
3708      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3709
3710  //   -- the context is an initialization by user-defined conversion
3711  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3712  //      from the return type of F1 to the destination type (i.e.,
3713  //      the type of the entity being initialized) is a better
3714  //      conversion sequence than the standard conversion sequence
3715  //      from the return type of F2 to the destination type.
3716  if (Cand1.Function && Cand2.Function &&
3717      isa<CXXConversionDecl>(Cand1.Function) &&
3718      isa<CXXConversionDecl>(Cand2.Function)) {
3719    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3720                                               Cand2.FinalConversion)) {
3721    case ImplicitConversionSequence::Better:
3722      // Cand1 has a better conversion sequence.
3723      return true;
3724
3725    case ImplicitConversionSequence::Worse:
3726      // Cand1 can't be better than Cand2.
3727      return false;
3728
3729    case ImplicitConversionSequence::Indistinguishable:
3730      // Do nothing
3731      break;
3732    }
3733  }
3734
3735  return false;
3736}
3737
3738/// \brief Computes the best viable function (C++ 13.3.3)
3739/// within an overload candidate set.
3740///
3741/// \param CandidateSet the set of candidate functions.
3742///
3743/// \param Loc the location of the function name (or operator symbol) for
3744/// which overload resolution occurs.
3745///
3746/// \param Best f overload resolution was successful or found a deleted
3747/// function, Best points to the candidate function found.
3748///
3749/// \returns The result of overload resolution.
3750Sema::OverloadingResult
3751Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3752                         SourceLocation Loc,
3753                         OverloadCandidateSet::iterator& Best) {
3754  // Find the best viable function.
3755  Best = CandidateSet.end();
3756  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3757       Cand != CandidateSet.end(); ++Cand) {
3758    if (Cand->Viable) {
3759      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3760        Best = Cand;
3761    }
3762  }
3763
3764  // If we didn't find any viable functions, abort.
3765  if (Best == CandidateSet.end())
3766    return OR_No_Viable_Function;
3767
3768  // Make sure that this function is better than every other viable
3769  // function. If not, we have an ambiguity.
3770  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3771       Cand != CandidateSet.end(); ++Cand) {
3772    if (Cand->Viable &&
3773        Cand != Best &&
3774        !isBetterOverloadCandidate(*Best, *Cand)) {
3775      Best = CandidateSet.end();
3776      return OR_Ambiguous;
3777    }
3778  }
3779
3780  // Best is the best viable function.
3781  if (Best->Function &&
3782      (Best->Function->isDeleted() ||
3783       Best->Function->getAttr<UnavailableAttr>()))
3784    return OR_Deleted;
3785
3786  // C++ [basic.def.odr]p2:
3787  //   An overloaded function is used if it is selected by overload resolution
3788  //   when referred to from a potentially-evaluated expression. [Note: this
3789  //   covers calls to named functions (5.2.2), operator overloading
3790  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3791  //   placement new (5.3.4), as well as non-default initialization (8.5).
3792  if (Best->Function)
3793    MarkDeclarationReferenced(Loc, Best->Function);
3794  return OR_Success;
3795}
3796
3797/// PrintOverloadCandidates - When overload resolution fails, prints
3798/// diagnostic messages containing the candidates in the candidate
3799/// set. If OnlyViable is true, only viable candidates will be printed.
3800void
3801Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3802                              bool OnlyViable) {
3803  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3804                             LastCand = CandidateSet.end();
3805  for (; Cand != LastCand; ++Cand) {
3806    if (Cand->Viable || !OnlyViable) {
3807      if (Cand->Function) {
3808        if (Cand->Function->isDeleted() ||
3809            Cand->Function->getAttr<UnavailableAttr>()) {
3810          // Deleted or "unavailable" function.
3811          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3812            << Cand->Function->isDeleted();
3813        } else {
3814          // Normal function
3815          // FIXME: Give a better reason!
3816          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3817        }
3818      } else if (Cand->IsSurrogate) {
3819        // Desugar the type of the surrogate down to a function type,
3820        // retaining as many typedefs as possible while still showing
3821        // the function type (and, therefore, its parameter types).
3822        QualType FnType = Cand->Surrogate->getConversionType();
3823        bool isLValueReference = false;
3824        bool isRValueReference = false;
3825        bool isPointer = false;
3826        if (const LValueReferenceType *FnTypeRef =
3827              FnType->getAs<LValueReferenceType>()) {
3828          FnType = FnTypeRef->getPointeeType();
3829          isLValueReference = true;
3830        } else if (const RValueReferenceType *FnTypeRef =
3831                     FnType->getAs<RValueReferenceType>()) {
3832          FnType = FnTypeRef->getPointeeType();
3833          isRValueReference = true;
3834        }
3835        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3836          FnType = FnTypePtr->getPointeeType();
3837          isPointer = true;
3838        }
3839        // Desugar down to a function type.
3840        FnType = QualType(FnType->getAsFunctionType(), 0);
3841        // Reconstruct the pointer/reference as appropriate.
3842        if (isPointer) FnType = Context.getPointerType(FnType);
3843        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3844        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3845
3846        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3847          << FnType;
3848      } else {
3849        // FIXME: We need to get the identifier in here
3850        // FIXME: Do we want the error message to point at the operator?
3851        // (built-ins won't have a location)
3852        QualType FnType
3853          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3854                                    Cand->BuiltinTypes.ParamTypes,
3855                                    Cand->Conversions.size(),
3856                                    false, 0);
3857
3858        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3859      }
3860    }
3861  }
3862}
3863
3864/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3865/// an overloaded function (C++ [over.over]), where @p From is an
3866/// expression with overloaded function type and @p ToType is the type
3867/// we're trying to resolve to. For example:
3868///
3869/// @code
3870/// int f(double);
3871/// int f(int);
3872///
3873/// int (*pfd)(double) = f; // selects f(double)
3874/// @endcode
3875///
3876/// This routine returns the resulting FunctionDecl if it could be
3877/// resolved, and NULL otherwise. When @p Complain is true, this
3878/// routine will emit diagnostics if there is an error.
3879FunctionDecl *
3880Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3881                                         bool Complain) {
3882  QualType FunctionType = ToType;
3883  bool IsMember = false;
3884  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3885    FunctionType = ToTypePtr->getPointeeType();
3886  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3887    FunctionType = ToTypeRef->getPointeeType();
3888  else if (const MemberPointerType *MemTypePtr =
3889                    ToType->getAs<MemberPointerType>()) {
3890    FunctionType = MemTypePtr->getPointeeType();
3891    IsMember = true;
3892  }
3893
3894  // We only look at pointers or references to functions.
3895  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3896  if (!FunctionType->isFunctionType())
3897    return 0;
3898
3899  // Find the actual overloaded function declaration.
3900  OverloadedFunctionDecl *Ovl = 0;
3901
3902  // C++ [over.over]p1:
3903  //   [...] [Note: any redundant set of parentheses surrounding the
3904  //   overloaded function name is ignored (5.1). ]
3905  Expr *OvlExpr = From->IgnoreParens();
3906
3907  // C++ [over.over]p1:
3908  //   [...] The overloaded function name can be preceded by the &
3909  //   operator.
3910  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3911    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3912      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3913  }
3914
3915  // Try to dig out the overloaded function.
3916  FunctionTemplateDecl *FunctionTemplate = 0;
3917  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3918    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3919    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3920  }
3921
3922  // If there's no overloaded function declaration or function template,
3923  // we're done.
3924  if (!Ovl && !FunctionTemplate)
3925    return 0;
3926
3927  OverloadIterator Fun;
3928  if (Ovl)
3929    Fun = Ovl;
3930  else
3931    Fun = FunctionTemplate;
3932
3933  // Look through all of the overloaded functions, searching for one
3934  // whose type matches exactly.
3935  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3936
3937  bool FoundNonTemplateFunction = false;
3938  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3939    // C++ [over.over]p3:
3940    //   Non-member functions and static member functions match
3941    //   targets of type "pointer-to-function" or "reference-to-function."
3942    //   Nonstatic member functions match targets of
3943    //   type "pointer-to-member-function."
3944    // Note that according to DR 247, the containing class does not matter.
3945
3946    if (FunctionTemplateDecl *FunctionTemplate
3947          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3948      if (CXXMethodDecl *Method
3949            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3950        // Skip non-static function templates when converting to pointer, and
3951        // static when converting to member pointer.
3952        if (Method->isStatic() == IsMember)
3953          continue;
3954      } else if (IsMember)
3955        continue;
3956
3957      // C++ [over.over]p2:
3958      //   If the name is a function template, template argument deduction is
3959      //   done (14.8.2.2), and if the argument deduction succeeds, the
3960      //   resulting template argument list is used to generate a single
3961      //   function template specialization, which is added to the set of
3962      //   overloaded functions considered.
3963      FunctionDecl *Specialization = 0;
3964      TemplateDeductionInfo Info(Context);
3965      if (TemplateDeductionResult Result
3966            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3967                                      /*FIXME:*/0, /*FIXME:*/0,
3968                                      FunctionType, Specialization, Info)) {
3969        // FIXME: make a note of the failed deduction for diagnostics.
3970        (void)Result;
3971      } else {
3972        assert(FunctionType
3973                 == Context.getCanonicalType(Specialization->getType()));
3974        Matches.insert(
3975                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3976      }
3977    }
3978
3979    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3980      // Skip non-static functions when converting to pointer, and static
3981      // when converting to member pointer.
3982      if (Method->isStatic() == IsMember)
3983        continue;
3984    } else if (IsMember)
3985      continue;
3986
3987    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3988      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3989        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3990        FoundNonTemplateFunction = true;
3991      }
3992    }
3993  }
3994
3995  // If there were 0 or 1 matches, we're done.
3996  if (Matches.empty())
3997    return 0;
3998  else if (Matches.size() == 1)
3999    return *Matches.begin();
4000
4001  // C++ [over.over]p4:
4002  //   If more than one function is selected, [...]
4003  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4004  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4005  if (FoundNonTemplateFunction) {
4006    //   [...] any function template specializations in the set are
4007    //   eliminated if the set also contains a non-template function, [...]
4008    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4009      if ((*M)->getPrimaryTemplate() == 0)
4010        RemainingMatches.push_back(*M);
4011  } else {
4012    //   [...] and any given function template specialization F1 is
4013    //   eliminated if the set contains a second function template
4014    //   specialization whose function template is more specialized
4015    //   than the function template of F1 according to the partial
4016    //   ordering rules of 14.5.5.2.
4017
4018    // The algorithm specified above is quadratic. We instead use a
4019    // two-pass algorithm (similar to the one used to identify the
4020    // best viable function in an overload set) that identifies the
4021    // best function template (if it exists).
4022    MatchIter Best = Matches.begin();
4023    MatchIter M = Best, MEnd = Matches.end();
4024    // Find the most specialized function.
4025    for (++M; M != MEnd; ++M)
4026      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4027                                     (*Best)->getPrimaryTemplate(),
4028                                     false)
4029            == (*M)->getPrimaryTemplate())
4030        Best = M;
4031
4032    // Determine whether this function template is more specialized
4033    // that all of the others.
4034    bool Ambiguous = false;
4035    for (M = Matches.begin(); M != MEnd; ++M) {
4036      if (M != Best &&
4037          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4038                                     (*Best)->getPrimaryTemplate(),
4039                                     false)
4040           != (*Best)->getPrimaryTemplate()) {
4041        Ambiguous = true;
4042        break;
4043      }
4044    }
4045
4046    // If one function template was more specialized than all of the
4047    // others, return it.
4048    if (!Ambiguous)
4049      return *Best;
4050
4051    // We could not find a most-specialized function template, which
4052    // is equivalent to having a set of function templates with more
4053    // than one such template. So, we place all of the function
4054    // templates into the set of remaining matches and produce a
4055    // diagnostic below. FIXME: we could perform the quadratic
4056    // algorithm here, pruning the result set to limit the number of
4057    // candidates output later.
4058     RemainingMatches.append(Matches.begin(), Matches.end());
4059  }
4060
4061  // [...] After such eliminations, if any, there shall remain exactly one
4062  // selected function.
4063  if (RemainingMatches.size() == 1)
4064    return RemainingMatches.front();
4065
4066  // FIXME: We should probably return the same thing that BestViableFunction
4067  // returns (even if we issue the diagnostics here).
4068  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4069    << RemainingMatches[0]->getDeclName();
4070  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4071    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4072  return 0;
4073}
4074
4075/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4076/// (which eventually refers to the declaration Func) and the call
4077/// arguments Args/NumArgs, attempt to resolve the function call down
4078/// to a specific function. If overload resolution succeeds, returns
4079/// the function declaration produced by overload
4080/// resolution. Otherwise, emits diagnostics, deletes all of the
4081/// arguments and Fn, and returns NULL.
4082FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4083                                            DeclarationName UnqualifiedName,
4084                                            bool HasExplicitTemplateArgs,
4085                                 const TemplateArgument *ExplicitTemplateArgs,
4086                                            unsigned NumExplicitTemplateArgs,
4087                                            SourceLocation LParenLoc,
4088                                            Expr **Args, unsigned NumArgs,
4089                                            SourceLocation *CommaLocs,
4090                                            SourceLocation RParenLoc,
4091                                            bool &ArgumentDependentLookup) {
4092  OverloadCandidateSet CandidateSet;
4093
4094  // Add the functions denoted by Callee to the set of candidate
4095  // functions. While we're doing so, track whether argument-dependent
4096  // lookup still applies, per:
4097  //
4098  // C++0x [basic.lookup.argdep]p3:
4099  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4100  //   and let Y be the lookup set produced by argument dependent
4101  //   lookup (defined as follows). If X contains
4102  //
4103  //     -- a declaration of a class member, or
4104  //
4105  //     -- a block-scope function declaration that is not a
4106  //        using-declaration, or
4107  //
4108  //     -- a declaration that is neither a function or a function
4109  //        template
4110  //
4111  //   then Y is empty.
4112  if (OverloadedFunctionDecl *Ovl
4113        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
4114    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4115                                                FuncEnd = Ovl->function_end();
4116         Func != FuncEnd; ++Func) {
4117      DeclContext *Ctx = 0;
4118      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
4119        if (HasExplicitTemplateArgs)
4120          continue;
4121
4122        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
4123        Ctx = FunDecl->getDeclContext();
4124      } else {
4125        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
4126        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
4127                                     ExplicitTemplateArgs,
4128                                     NumExplicitTemplateArgs,
4129                                     Args, NumArgs, CandidateSet);
4130        Ctx = FunTmpl->getDeclContext();
4131      }
4132
4133
4134      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
4135        ArgumentDependentLookup = false;
4136    }
4137  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
4138    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4139    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
4140
4141    if (Func->getDeclContext()->isRecord() ||
4142        Func->getDeclContext()->isFunctionOrMethod())
4143      ArgumentDependentLookup = false;
4144  } else if (FunctionTemplateDecl *FuncTemplate
4145               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
4146    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4147                                 ExplicitTemplateArgs,
4148                                 NumExplicitTemplateArgs,
4149                                 Args, NumArgs, CandidateSet);
4150
4151    if (FuncTemplate->getDeclContext()->isRecord())
4152      ArgumentDependentLookup = false;
4153  }
4154
4155  if (Callee)
4156    UnqualifiedName = Callee->getDeclName();
4157
4158  // FIXME: Pass explicit template arguments through for ADL
4159  if (ArgumentDependentLookup)
4160    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4161                                         CandidateSet);
4162
4163  OverloadCandidateSet::iterator Best;
4164  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4165  case OR_Success:
4166    return Best->Function;
4167
4168  case OR_No_Viable_Function:
4169    Diag(Fn->getSourceRange().getBegin(),
4170         diag::err_ovl_no_viable_function_in_call)
4171      << UnqualifiedName << Fn->getSourceRange();
4172    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4173    break;
4174
4175  case OR_Ambiguous:
4176    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4177      << UnqualifiedName << Fn->getSourceRange();
4178    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4179    break;
4180
4181  case OR_Deleted:
4182    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4183      << Best->Function->isDeleted()
4184      << UnqualifiedName
4185      << Fn->getSourceRange();
4186    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4187    break;
4188  }
4189
4190  // Overload resolution failed. Destroy all of the subexpressions and
4191  // return NULL.
4192  Fn->Destroy(Context);
4193  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4194    Args[Arg]->Destroy(Context);
4195  return 0;
4196}
4197
4198/// \brief Create a unary operation that may resolve to an overloaded
4199/// operator.
4200///
4201/// \param OpLoc The location of the operator itself (e.g., '*').
4202///
4203/// \param OpcIn The UnaryOperator::Opcode that describes this
4204/// operator.
4205///
4206/// \param Functions The set of non-member functions that will be
4207/// considered by overload resolution. The caller needs to build this
4208/// set based on the context using, e.g.,
4209/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4210/// set should not contain any member functions; those will be added
4211/// by CreateOverloadedUnaryOp().
4212///
4213/// \param input The input argument.
4214Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4215                                                     unsigned OpcIn,
4216                                                     FunctionSet &Functions,
4217                                                     ExprArg input) {
4218  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4219  Expr *Input = (Expr *)input.get();
4220
4221  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4222  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4223  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4224
4225  Expr *Args[2] = { Input, 0 };
4226  unsigned NumArgs = 1;
4227
4228  // For post-increment and post-decrement, add the implicit '0' as
4229  // the second argument, so that we know this is a post-increment or
4230  // post-decrement.
4231  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4232    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4233    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4234                                           SourceLocation());
4235    NumArgs = 2;
4236  }
4237
4238  if (Input->isTypeDependent()) {
4239    OverloadedFunctionDecl *Overloads
4240      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4241    for (FunctionSet::iterator Func = Functions.begin(),
4242                            FuncEnd = Functions.end();
4243         Func != FuncEnd; ++Func)
4244      Overloads->addOverload(*Func);
4245
4246    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4247                                                OpLoc, false, false);
4248
4249    input.release();
4250    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4251                                                   &Args[0], NumArgs,
4252                                                   Context.DependentTy,
4253                                                   OpLoc));
4254  }
4255
4256  // Build an empty overload set.
4257  OverloadCandidateSet CandidateSet;
4258
4259  // Add the candidates from the given function set.
4260  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4261
4262  // Add operator candidates that are member functions.
4263  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4264
4265  // Add builtin operator candidates.
4266  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4267
4268  // Perform overload resolution.
4269  OverloadCandidateSet::iterator Best;
4270  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4271  case OR_Success: {
4272    // We found a built-in operator or an overloaded operator.
4273    FunctionDecl *FnDecl = Best->Function;
4274
4275    if (FnDecl) {
4276      // We matched an overloaded operator. Build a call to that
4277      // operator.
4278
4279      // Convert the arguments.
4280      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4281        if (PerformObjectArgumentInitialization(Input, Method))
4282          return ExprError();
4283      } else {
4284        // Convert the arguments.
4285        if (PerformCopyInitialization(Input,
4286                                      FnDecl->getParamDecl(0)->getType(),
4287                                      "passing"))
4288          return ExprError();
4289      }
4290
4291      // Determine the result type
4292      QualType ResultTy
4293        = FnDecl->getType()->getAsFunctionType()->getResultType();
4294      ResultTy = ResultTy.getNonReferenceType();
4295
4296      // Build the actual expression node.
4297      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4298                                               SourceLocation());
4299      UsualUnaryConversions(FnExpr);
4300
4301      input.release();
4302
4303      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4304                                                   &Input, 1, ResultTy, OpLoc);
4305      return MaybeBindToTemporary(CE);
4306    } else {
4307      // We matched a built-in operator. Convert the arguments, then
4308      // break out so that we will build the appropriate built-in
4309      // operator node.
4310        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4311                                      Best->Conversions[0], "passing"))
4312          return ExprError();
4313
4314        break;
4315      }
4316    }
4317
4318    case OR_No_Viable_Function:
4319      // No viable function; fall through to handling this as a
4320      // built-in operator, which will produce an error message for us.
4321      break;
4322
4323    case OR_Ambiguous:
4324      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4325          << UnaryOperator::getOpcodeStr(Opc)
4326          << Input->getSourceRange();
4327      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4328      return ExprError();
4329
4330    case OR_Deleted:
4331      Diag(OpLoc, diag::err_ovl_deleted_oper)
4332        << Best->Function->isDeleted()
4333        << UnaryOperator::getOpcodeStr(Opc)
4334        << Input->getSourceRange();
4335      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4336      return ExprError();
4337    }
4338
4339  // Either we found no viable overloaded operator or we matched a
4340  // built-in operator. In either case, fall through to trying to
4341  // build a built-in operation.
4342  input.release();
4343  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4344}
4345
4346/// \brief Create a binary operation that may resolve to an overloaded
4347/// operator.
4348///
4349/// \param OpLoc The location of the operator itself (e.g., '+').
4350///
4351/// \param OpcIn The BinaryOperator::Opcode that describes this
4352/// operator.
4353///
4354/// \param Functions The set of non-member functions that will be
4355/// considered by overload resolution. The caller needs to build this
4356/// set based on the context using, e.g.,
4357/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4358/// set should not contain any member functions; those will be added
4359/// by CreateOverloadedBinOp().
4360///
4361/// \param LHS Left-hand argument.
4362/// \param RHS Right-hand argument.
4363Sema::OwningExprResult
4364Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4365                            unsigned OpcIn,
4366                            FunctionSet &Functions,
4367                            Expr *LHS, Expr *RHS) {
4368  Expr *Args[2] = { LHS, RHS };
4369  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4370
4371  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4372  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4373  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4374
4375  // If either side is type-dependent, create an appropriate dependent
4376  // expression.
4377  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4378    // .* cannot be overloaded.
4379    if (Opc == BinaryOperator::PtrMemD)
4380      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4381                                                Context.DependentTy, OpLoc));
4382
4383    OverloadedFunctionDecl *Overloads
4384      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4385    for (FunctionSet::iterator Func = Functions.begin(),
4386                            FuncEnd = Functions.end();
4387         Func != FuncEnd; ++Func)
4388      Overloads->addOverload(*Func);
4389
4390    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4391                                                OpLoc, false, false);
4392
4393    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4394                                                   Args, 2,
4395                                                   Context.DependentTy,
4396                                                   OpLoc));
4397  }
4398
4399  // If this is the .* operator, which is not overloadable, just
4400  // create a built-in binary operator.
4401  if (Opc == BinaryOperator::PtrMemD)
4402    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4403
4404  // If this is one of the assignment operators, we only perform
4405  // overload resolution if the left-hand side is a class or
4406  // enumeration type (C++ [expr.ass]p3).
4407  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4408      !Args[0]->getType()->isOverloadableType())
4409    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4410
4411  // Build an empty overload set.
4412  OverloadCandidateSet CandidateSet;
4413
4414  // Add the candidates from the given function set.
4415  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4416
4417  // Add operator candidates that are member functions.
4418  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4419
4420  // Add builtin operator candidates.
4421  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4422
4423  // Perform overload resolution.
4424  OverloadCandidateSet::iterator Best;
4425  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4426    case OR_Success: {
4427      // We found a built-in operator or an overloaded operator.
4428      FunctionDecl *FnDecl = Best->Function;
4429
4430      if (FnDecl) {
4431        // We matched an overloaded operator. Build a call to that
4432        // operator.
4433
4434        // Convert the arguments.
4435        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4436          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4437              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4438                                        "passing"))
4439            return ExprError();
4440        } else {
4441          // Convert the arguments.
4442          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4443                                        "passing") ||
4444              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4445                                        "passing"))
4446            return ExprError();
4447        }
4448
4449        // Determine the result type
4450        QualType ResultTy
4451          = FnDecl->getType()->getAsFunctionType()->getResultType();
4452        ResultTy = ResultTy.getNonReferenceType();
4453
4454        // Build the actual expression node.
4455        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4456                                                 OpLoc);
4457        UsualUnaryConversions(FnExpr);
4458
4459        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4460                                                     Args, 2, ResultTy, OpLoc);
4461        return MaybeBindToTemporary(CE);
4462      } else {
4463        // We matched a built-in operator. Convert the arguments, then
4464        // break out so that we will build the appropriate built-in
4465        // operator node.
4466        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4467                                      Best->Conversions[0], "passing") ||
4468            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4469                                      Best->Conversions[1], "passing"))
4470          return ExprError();
4471
4472        break;
4473      }
4474    }
4475
4476    case OR_No_Viable_Function:
4477      // For class as left operand for assignment or compound assigment operator
4478      // do not fall through to handling in built-in, but report that no overloaded
4479      // assignment operator found
4480      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4481        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4482             << BinaryOperator::getOpcodeStr(Opc)
4483             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4484        return ExprError();
4485      }
4486      // No viable function; fall through to handling this as a
4487      // built-in operator, which will produce an error message for us.
4488      break;
4489
4490    case OR_Ambiguous:
4491      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4492          << BinaryOperator::getOpcodeStr(Opc)
4493          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4494      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4495      return ExprError();
4496
4497    case OR_Deleted:
4498      Diag(OpLoc, diag::err_ovl_deleted_oper)
4499        << Best->Function->isDeleted()
4500        << BinaryOperator::getOpcodeStr(Opc)
4501        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4502      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4503      return ExprError();
4504    }
4505
4506  // Either we found no viable overloaded operator or we matched a
4507  // built-in operator. In either case, try to build a built-in
4508  // operation.
4509  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4510}
4511
4512/// BuildCallToMemberFunction - Build a call to a member
4513/// function. MemExpr is the expression that refers to the member
4514/// function (and includes the object parameter), Args/NumArgs are the
4515/// arguments to the function call (not including the object
4516/// parameter). The caller needs to validate that the member
4517/// expression refers to a member function or an overloaded member
4518/// function.
4519Sema::ExprResult
4520Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4521                                SourceLocation LParenLoc, Expr **Args,
4522                                unsigned NumArgs, SourceLocation *CommaLocs,
4523                                SourceLocation RParenLoc) {
4524  // Dig out the member expression. This holds both the object
4525  // argument and the member function we're referring to.
4526  MemberExpr *MemExpr = 0;
4527  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4528    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4529  else
4530    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4531  assert(MemExpr && "Building member call without member expression");
4532
4533  // Extract the object argument.
4534  Expr *ObjectArg = MemExpr->getBase();
4535
4536  CXXMethodDecl *Method = 0;
4537  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4538      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4539    // Add overload candidates
4540    OverloadCandidateSet CandidateSet;
4541    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4542
4543    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4544         Func != FuncEnd; ++Func) {
4545      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4546        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4547                           /*SuppressUserConversions=*/false);
4548      else
4549        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4550                                   MemExpr->hasExplicitTemplateArgumentList(),
4551                                   MemExpr->getTemplateArgs(),
4552                                   MemExpr->getNumTemplateArgs(),
4553                                   ObjectArg, Args, NumArgs,
4554                                   CandidateSet,
4555                                   /*SuppressUsedConversions=*/false);
4556    }
4557
4558    OverloadCandidateSet::iterator Best;
4559    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4560    case OR_Success:
4561      Method = cast<CXXMethodDecl>(Best->Function);
4562      break;
4563
4564    case OR_No_Viable_Function:
4565      Diag(MemExpr->getSourceRange().getBegin(),
4566           diag::err_ovl_no_viable_member_function_in_call)
4567        << DeclName << MemExprE->getSourceRange();
4568      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4569      // FIXME: Leaking incoming expressions!
4570      return true;
4571
4572    case OR_Ambiguous:
4573      Diag(MemExpr->getSourceRange().getBegin(),
4574           diag::err_ovl_ambiguous_member_call)
4575        << DeclName << MemExprE->getSourceRange();
4576      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4577      // FIXME: Leaking incoming expressions!
4578      return true;
4579
4580    case OR_Deleted:
4581      Diag(MemExpr->getSourceRange().getBegin(),
4582           diag::err_ovl_deleted_member_call)
4583        << Best->Function->isDeleted()
4584        << DeclName << MemExprE->getSourceRange();
4585      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4586      // FIXME: Leaking incoming expressions!
4587      return true;
4588    }
4589
4590    FixOverloadedFunctionReference(MemExpr, Method);
4591  } else {
4592    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4593  }
4594
4595  assert(Method && "Member call to something that isn't a method?");
4596  ExprOwningPtr<CXXMemberCallExpr>
4597    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4598                                                  NumArgs,
4599                                  Method->getResultType().getNonReferenceType(),
4600                                  RParenLoc));
4601
4602  // Convert the object argument (for a non-static member function call).
4603  if (!Method->isStatic() &&
4604      PerformObjectArgumentInitialization(ObjectArg, Method))
4605    return true;
4606  MemExpr->setBase(ObjectArg);
4607
4608  // Convert the rest of the arguments
4609  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4610  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4611                              RParenLoc))
4612    return true;
4613
4614  if (CheckFunctionCall(Method, TheCall.get()))
4615    return true;
4616
4617  return MaybeBindToTemporary(TheCall.release()).release();
4618}
4619
4620/// BuildCallToObjectOfClassType - Build a call to an object of class
4621/// type (C++ [over.call.object]), which can end up invoking an
4622/// overloaded function call operator (@c operator()) or performing a
4623/// user-defined conversion on the object argument.
4624Sema::ExprResult
4625Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4626                                   SourceLocation LParenLoc,
4627                                   Expr **Args, unsigned NumArgs,
4628                                   SourceLocation *CommaLocs,
4629                                   SourceLocation RParenLoc) {
4630  assert(Object->getType()->isRecordType() && "Requires object type argument");
4631  const RecordType *Record = Object->getType()->getAs<RecordType>();
4632
4633  // C++ [over.call.object]p1:
4634  //  If the primary-expression E in the function call syntax
4635  //  evaluates to a class object of type "cv T", then the set of
4636  //  candidate functions includes at least the function call
4637  //  operators of T. The function call operators of T are obtained by
4638  //  ordinary lookup of the name operator() in the context of
4639  //  (E).operator().
4640  OverloadCandidateSet CandidateSet;
4641  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4642  DeclContext::lookup_const_iterator Oper, OperEnd;
4643  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4644       Oper != OperEnd; ++Oper)
4645    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4646                       CandidateSet, /*SuppressUserConversions=*/false);
4647
4648  // C++ [over.call.object]p2:
4649  //   In addition, for each conversion function declared in T of the
4650  //   form
4651  //
4652  //        operator conversion-type-id () cv-qualifier;
4653  //
4654  //   where cv-qualifier is the same cv-qualification as, or a
4655  //   greater cv-qualification than, cv, and where conversion-type-id
4656  //   denotes the type "pointer to function of (P1,...,Pn) returning
4657  //   R", or the type "reference to pointer to function of
4658  //   (P1,...,Pn) returning R", or the type "reference to function
4659  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4660  //   is also considered as a candidate function. Similarly,
4661  //   surrogate call functions are added to the set of candidate
4662  //   functions for each conversion function declared in an
4663  //   accessible base class provided the function is not hidden
4664  //   within T by another intervening declaration.
4665
4666  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
4667    // FIXME: Look in base classes for more conversion operators!
4668    OverloadedFunctionDecl *Conversions
4669      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4670    for (OverloadedFunctionDecl::function_iterator
4671           Func = Conversions->function_begin(),
4672           FuncEnd = Conversions->function_end();
4673         Func != FuncEnd; ++Func) {
4674      CXXConversionDecl *Conv;
4675      FunctionTemplateDecl *ConvTemplate;
4676      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
4677
4678      // Skip over templated conversion functions; they aren't
4679      // surrogates.
4680      if (ConvTemplate)
4681        continue;
4682
4683      // Strip the reference type (if any) and then the pointer type (if
4684      // any) to get down to what might be a function type.
4685      QualType ConvType = Conv->getConversionType().getNonReferenceType();
4686      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4687        ConvType = ConvPtrType->getPointeeType();
4688
4689      if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4690        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4691    }
4692  }
4693
4694  // Perform overload resolution.
4695  OverloadCandidateSet::iterator Best;
4696  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4697  case OR_Success:
4698    // Overload resolution succeeded; we'll build the appropriate call
4699    // below.
4700    break;
4701
4702  case OR_No_Viable_Function:
4703    Diag(Object->getSourceRange().getBegin(),
4704         diag::err_ovl_no_viable_object_call)
4705      << Object->getType() << Object->getSourceRange();
4706    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4707    break;
4708
4709  case OR_Ambiguous:
4710    Diag(Object->getSourceRange().getBegin(),
4711         diag::err_ovl_ambiguous_object_call)
4712      << Object->getType() << Object->getSourceRange();
4713    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4714    break;
4715
4716  case OR_Deleted:
4717    Diag(Object->getSourceRange().getBegin(),
4718         diag::err_ovl_deleted_object_call)
4719      << Best->Function->isDeleted()
4720      << Object->getType() << Object->getSourceRange();
4721    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4722    break;
4723  }
4724
4725  if (Best == CandidateSet.end()) {
4726    // We had an error; delete all of the subexpressions and return
4727    // the error.
4728    Object->Destroy(Context);
4729    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4730      Args[ArgIdx]->Destroy(Context);
4731    return true;
4732  }
4733
4734  if (Best->Function == 0) {
4735    // Since there is no function declaration, this is one of the
4736    // surrogate candidates. Dig out the conversion function.
4737    CXXConversionDecl *Conv
4738      = cast<CXXConversionDecl>(
4739                         Best->Conversions[0].UserDefined.ConversionFunction);
4740
4741    // We selected one of the surrogate functions that converts the
4742    // object parameter to a function pointer. Perform the conversion
4743    // on the object argument, then let ActOnCallExpr finish the job.
4744    // FIXME: Represent the user-defined conversion in the AST!
4745    ImpCastExprToType(Object,
4746                      Conv->getConversionType().getNonReferenceType(),
4747                      CastExpr::CK_Unknown,
4748                      Conv->getConversionType()->isLValueReferenceType());
4749    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4750                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4751                         CommaLocs, RParenLoc).release();
4752  }
4753
4754  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4755  // that calls this method, using Object for the implicit object
4756  // parameter and passing along the remaining arguments.
4757  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4758  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4759
4760  unsigned NumArgsInProto = Proto->getNumArgs();
4761  unsigned NumArgsToCheck = NumArgs;
4762
4763  // Build the full argument list for the method call (the
4764  // implicit object parameter is placed at the beginning of the
4765  // list).
4766  Expr **MethodArgs;
4767  if (NumArgs < NumArgsInProto) {
4768    NumArgsToCheck = NumArgsInProto;
4769    MethodArgs = new Expr*[NumArgsInProto + 1];
4770  } else {
4771    MethodArgs = new Expr*[NumArgs + 1];
4772  }
4773  MethodArgs[0] = Object;
4774  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4775    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4776
4777  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4778                                          SourceLocation());
4779  UsualUnaryConversions(NewFn);
4780
4781  // Once we've built TheCall, all of the expressions are properly
4782  // owned.
4783  QualType ResultTy = Method->getResultType().getNonReferenceType();
4784  ExprOwningPtr<CXXOperatorCallExpr>
4785    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4786                                                    MethodArgs, NumArgs + 1,
4787                                                    ResultTy, RParenLoc));
4788  delete [] MethodArgs;
4789
4790  // We may have default arguments. If so, we need to allocate more
4791  // slots in the call for them.
4792  if (NumArgs < NumArgsInProto)
4793    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4794  else if (NumArgs > NumArgsInProto)
4795    NumArgsToCheck = NumArgsInProto;
4796
4797  bool IsError = false;
4798
4799  // Initialize the implicit object parameter.
4800  IsError |= PerformObjectArgumentInitialization(Object, Method);
4801  TheCall->setArg(0, Object);
4802
4803
4804  // Check the argument types.
4805  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4806    Expr *Arg;
4807    if (i < NumArgs) {
4808      Arg = Args[i];
4809
4810      // Pass the argument.
4811      QualType ProtoArgType = Proto->getArgType(i);
4812      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4813    } else {
4814      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4815    }
4816
4817    TheCall->setArg(i + 1, Arg);
4818  }
4819
4820  // If this is a variadic call, handle args passed through "...".
4821  if (Proto->isVariadic()) {
4822    // Promote the arguments (C99 6.5.2.2p7).
4823    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4824      Expr *Arg = Args[i];
4825      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4826      TheCall->setArg(i + 1, Arg);
4827    }
4828  }
4829
4830  if (IsError) return true;
4831
4832  if (CheckFunctionCall(Method, TheCall.get()))
4833    return true;
4834
4835  return MaybeBindToTemporary(TheCall.release()).release();
4836}
4837
4838/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4839///  (if one exists), where @c Base is an expression of class type and
4840/// @c Member is the name of the member we're trying to find.
4841Sema::OwningExprResult
4842Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4843  Expr *Base = static_cast<Expr *>(BaseIn.get());
4844  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4845
4846  // C++ [over.ref]p1:
4847  //
4848  //   [...] An expression x->m is interpreted as (x.operator->())->m
4849  //   for a class object x of type T if T::operator->() exists and if
4850  //   the operator is selected as the best match function by the
4851  //   overload resolution mechanism (13.3).
4852  // FIXME: look in base classes.
4853  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4854  OverloadCandidateSet CandidateSet;
4855  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4856
4857  DeclContext::lookup_const_iterator Oper, OperEnd;
4858  for (llvm::tie(Oper, OperEnd)
4859         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4860    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4861                       /*SuppressUserConversions=*/false);
4862
4863  // Perform overload resolution.
4864  OverloadCandidateSet::iterator Best;
4865  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4866  case OR_Success:
4867    // Overload resolution succeeded; we'll build the call below.
4868    break;
4869
4870  case OR_No_Viable_Function:
4871    if (CandidateSet.empty())
4872      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4873        << Base->getType() << Base->getSourceRange();
4874    else
4875      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4876        << "operator->" << Base->getSourceRange();
4877    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4878    return ExprError();
4879
4880  case OR_Ambiguous:
4881    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4882      << "operator->" << Base->getSourceRange();
4883    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4884    return ExprError();
4885
4886  case OR_Deleted:
4887    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4888      << Best->Function->isDeleted()
4889      << "operator->" << Base->getSourceRange();
4890    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4891    return ExprError();
4892  }
4893
4894  // Convert the object parameter.
4895  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4896  if (PerformObjectArgumentInitialization(Base, Method))
4897    return ExprError();
4898
4899  // No concerns about early exits now.
4900  BaseIn.release();
4901
4902  // Build the operator call.
4903  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4904                                           SourceLocation());
4905  UsualUnaryConversions(FnExpr);
4906  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4907                                 Method->getResultType().getNonReferenceType(),
4908                                 OpLoc);
4909  return Owned(Base);
4910}
4911
4912/// FixOverloadedFunctionReference - E is an expression that refers to
4913/// a C++ overloaded function (possibly with some parentheses and
4914/// perhaps a '&' around it). We have resolved the overloaded function
4915/// to the function declaration Fn, so patch up the expression E to
4916/// refer (possibly indirectly) to Fn.
4917void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4918  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4919    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4920    E->setType(PE->getSubExpr()->getType());
4921  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4922    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4923           "Can only take the address of an overloaded function");
4924    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4925      if (Method->isStatic()) {
4926        // Do nothing: static member functions aren't any different
4927        // from non-member functions.
4928      } else if (QualifiedDeclRefExpr *DRE
4929                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4930        // We have taken the address of a pointer to member
4931        // function. Perform the computation here so that we get the
4932        // appropriate pointer to member type.
4933        DRE->setDecl(Fn);
4934        DRE->setType(Fn->getType());
4935        QualType ClassType
4936          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4937        E->setType(Context.getMemberPointerType(Fn->getType(),
4938                                                ClassType.getTypePtr()));
4939        return;
4940      }
4941    }
4942    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4943    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4944  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4945    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4946            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4947           "Expected overloaded function or function template");
4948    DR->setDecl(Fn);
4949    E->setType(Fn->getType());
4950  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4951    MemExpr->setMemberDecl(Fn);
4952    E->setType(Fn->getType());
4953  } else {
4954    assert(false && "Invalid reference to overloaded function");
4955  }
4956}
4957
4958} // end namespace clang
4959