SemaOverload.cpp revision 25aaff9cf8a66bc236e5ccaf6183d11c14674cd3
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44                                                 VK_LValue, Loc, LocInfo);
45  if (HadMultipleCandidates)
46    DRE->setHadMultipleCandidates(true);
47  ExprResult E = S.Owned(DRE);
48  E = S.DefaultFunctionArrayConversion(E.take());
49  if (E.isInvalid())
50    return ExprError();
51  return move(E);
52}
53
54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
55                                 bool InOverloadResolution,
56                                 StandardConversionSequence &SCS,
57                                 bool CStyle,
58                                 bool AllowObjCWritebackConversion);
59
60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
61                                                 QualType &ToType,
62                                                 bool InOverloadResolution,
63                                                 StandardConversionSequence &SCS,
64                                                 bool CStyle);
65static OverloadingResult
66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
67                        UserDefinedConversionSequence& User,
68                        OverloadCandidateSet& Conversions,
69                        bool AllowExplicit);
70
71
72static ImplicitConversionSequence::CompareKind
73CompareStandardConversionSequences(Sema &S,
74                                   const StandardConversionSequence& SCS1,
75                                   const StandardConversionSequence& SCS2);
76
77static ImplicitConversionSequence::CompareKind
78CompareQualificationConversions(Sema &S,
79                                const StandardConversionSequence& SCS1,
80                                const StandardConversionSequence& SCS2);
81
82static ImplicitConversionSequence::CompareKind
83CompareDerivedToBaseConversions(Sema &S,
84                                const StandardConversionSequence& SCS1,
85                                const StandardConversionSequence& SCS2);
86
87
88
89/// GetConversionCategory - Retrieve the implicit conversion
90/// category corresponding to the given implicit conversion kind.
91ImplicitConversionCategory
92GetConversionCategory(ImplicitConversionKind Kind) {
93  static const ImplicitConversionCategory
94    Category[(int)ICK_Num_Conversion_Kinds] = {
95    ICC_Identity,
96    ICC_Lvalue_Transformation,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Identity,
100    ICC_Qualification_Adjustment,
101    ICC_Promotion,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion
117  };
118  return Category[(int)Kind];
119}
120
121/// GetConversionRank - Retrieve the implicit conversion rank
122/// corresponding to the given implicit conversion kind.
123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
124  static const ImplicitConversionRank
125    Rank[(int)ICK_Num_Conversion_Kinds] = {
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Promotion,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Complex_Real_Conversion,
147    ICR_Conversion,
148    ICR_Conversion,
149    ICR_Writeback_Conversion
150  };
151  return Rank[(int)Kind];
152}
153
154/// GetImplicitConversionName - Return the name of this kind of
155/// implicit conversion.
156const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158    "No conversion",
159    "Lvalue-to-rvalue",
160    "Array-to-pointer",
161    "Function-to-pointer",
162    "Noreturn adjustment",
163    "Qualification",
164    "Integral promotion",
165    "Floating point promotion",
166    "Complex promotion",
167    "Integral conversion",
168    "Floating conversion",
169    "Complex conversion",
170    "Floating-integral conversion",
171    "Pointer conversion",
172    "Pointer-to-member conversion",
173    "Boolean conversion",
174    "Compatible-types conversion",
175    "Derived-to-base conversion",
176    "Vector conversion",
177    "Vector splat",
178    "Complex-real conversion",
179    "Block Pointer conversion",
180    "Transparent Union Conversion"
181    "Writeback conversion"
182  };
183  return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189  First = ICK_Identity;
190  Second = ICK_Identity;
191  Third = ICK_Identity;
192  DeprecatedStringLiteralToCharPtr = false;
193  QualificationIncludesObjCLifetime = false;
194  ReferenceBinding = false;
195  DirectBinding = false;
196  IsLvalueReference = true;
197  BindsToFunctionLvalue = false;
198  BindsToRvalue = false;
199  BindsImplicitObjectArgumentWithoutRefQualifier = false;
200  ObjCLifetimeConversionBinding = false;
201  CopyConstructor = 0;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208  ImplicitConversionRank Rank = ICR_Exact_Match;
209  if  (GetConversionRank(First) > Rank)
210    Rank = GetConversionRank(First);
211  if  (GetConversionRank(Second) > Rank)
212    Rank = GetConversionRank(Second);
213  if  (GetConversionRank(Third) > Rank)
214    Rank = GetConversionRank(Third);
215  return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer or function-to-pointer implicit conversions, so
225  // check for their presence as well as checking whether FromType is
226  // a pointer.
227  if (getToType(1)->isBooleanType() &&
228      (getFromType()->isPointerType() ||
229       getFromType()->isObjCObjectPointerType() ||
230       getFromType()->isBlockPointerType() ||
231       getFromType()->isNullPtrType() ||
232       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
233    return true;
234
235  return false;
236}
237
238/// isPointerConversionToVoidPointer - Determines whether this
239/// conversion is a conversion of a pointer to a void pointer. This is
240/// used as part of the ranking of standard conversion sequences (C++
241/// 13.3.3.2p4).
242bool
243StandardConversionSequence::
244isPointerConversionToVoidPointer(ASTContext& Context) const {
245  QualType FromType = getFromType();
246  QualType ToType = getToType(1);
247
248  // Note that FromType has not necessarily been transformed by the
249  // array-to-pointer implicit conversion, so check for its presence
250  // and redo the conversion to get a pointer.
251  if (First == ICK_Array_To_Pointer)
252    FromType = Context.getArrayDecayedType(FromType);
253
254  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
255    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
256      return ToPtrType->getPointeeType()->isVoidType();
257
258  return false;
259}
260
261/// DebugPrint - Print this standard conversion sequence to standard
262/// error. Useful for debugging overloading issues.
263void StandardConversionSequence::DebugPrint() const {
264  raw_ostream &OS = llvm::errs();
265  bool PrintedSomething = false;
266  if (First != ICK_Identity) {
267    OS << GetImplicitConversionName(First);
268    PrintedSomething = true;
269  }
270
271  if (Second != ICK_Identity) {
272    if (PrintedSomething) {
273      OS << " -> ";
274    }
275    OS << GetImplicitConversionName(Second);
276
277    if (CopyConstructor) {
278      OS << " (by copy constructor)";
279    } else if (DirectBinding) {
280      OS << " (direct reference binding)";
281    } else if (ReferenceBinding) {
282      OS << " (reference binding)";
283    }
284    PrintedSomething = true;
285  }
286
287  if (Third != ICK_Identity) {
288    if (PrintedSomething) {
289      OS << " -> ";
290    }
291    OS << GetImplicitConversionName(Third);
292    PrintedSomething = true;
293  }
294
295  if (!PrintedSomething) {
296    OS << "No conversions required";
297  }
298}
299
300/// DebugPrint - Print this user-defined conversion sequence to standard
301/// error. Useful for debugging overloading issues.
302void UserDefinedConversionSequence::DebugPrint() const {
303  raw_ostream &OS = llvm::errs();
304  if (Before.First || Before.Second || Before.Third) {
305    Before.DebugPrint();
306    OS << " -> ";
307  }
308  OS << '\'' << ConversionFunction << '\'';
309  if (After.First || After.Second || After.Third) {
310    OS << " -> ";
311    After.DebugPrint();
312  }
313}
314
315/// DebugPrint - Print this implicit conversion sequence to standard
316/// error. Useful for debugging overloading issues.
317void ImplicitConversionSequence::DebugPrint() const {
318  raw_ostream &OS = llvm::errs();
319  switch (ConversionKind) {
320  case StandardConversion:
321    OS << "Standard conversion: ";
322    Standard.DebugPrint();
323    break;
324  case UserDefinedConversion:
325    OS << "User-defined conversion: ";
326    UserDefined.DebugPrint();
327    break;
328  case EllipsisConversion:
329    OS << "Ellipsis conversion";
330    break;
331  case AmbiguousConversion:
332    OS << "Ambiguous conversion";
333    break;
334  case BadConversion:
335    OS << "Bad conversion";
336    break;
337  }
338
339  OS << "\n";
340}
341
342void AmbiguousConversionSequence::construct() {
343  new (&conversions()) ConversionSet();
344}
345
346void AmbiguousConversionSequence::destruct() {
347  conversions().~ConversionSet();
348}
349
350void
351AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
352  FromTypePtr = O.FromTypePtr;
353  ToTypePtr = O.ToTypePtr;
354  new (&conversions()) ConversionSet(O.conversions());
355}
356
357namespace {
358  // Structure used by OverloadCandidate::DeductionFailureInfo to store
359  // template parameter and template argument information.
360  struct DFIParamWithArguments {
361    TemplateParameter Param;
362    TemplateArgument FirstArg;
363    TemplateArgument SecondArg;
364  };
365}
366
367/// \brief Convert from Sema's representation of template deduction information
368/// to the form used in overload-candidate information.
369OverloadCandidate::DeductionFailureInfo
370static MakeDeductionFailureInfo(ASTContext &Context,
371                                Sema::TemplateDeductionResult TDK,
372                                TemplateDeductionInfo &Info) {
373  OverloadCandidate::DeductionFailureInfo Result;
374  Result.Result = static_cast<unsigned>(TDK);
375  Result.Data = 0;
376  switch (TDK) {
377  case Sema::TDK_Success:
378  case Sema::TDK_InstantiationDepth:
379  case Sema::TDK_TooManyArguments:
380  case Sema::TDK_TooFewArguments:
381    break;
382
383  case Sema::TDK_Incomplete:
384  case Sema::TDK_InvalidExplicitArguments:
385    Result.Data = Info.Param.getOpaqueValue();
386    break;
387
388  case Sema::TDK_Inconsistent:
389  case Sema::TDK_Underqualified: {
390    // FIXME: Should allocate from normal heap so that we can free this later.
391    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
392    Saved->Param = Info.Param;
393    Saved->FirstArg = Info.FirstArg;
394    Saved->SecondArg = Info.SecondArg;
395    Result.Data = Saved;
396    break;
397  }
398
399  case Sema::TDK_SubstitutionFailure:
400    Result.Data = Info.take();
401    break;
402
403  case Sema::TDK_NonDeducedMismatch:
404  case Sema::TDK_FailedOverloadResolution:
405    break;
406  }
407
408  return Result;
409}
410
411void OverloadCandidate::DeductionFailureInfo::Destroy() {
412  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
413  case Sema::TDK_Success:
414  case Sema::TDK_InstantiationDepth:
415  case Sema::TDK_Incomplete:
416  case Sema::TDK_TooManyArguments:
417  case Sema::TDK_TooFewArguments:
418  case Sema::TDK_InvalidExplicitArguments:
419    break;
420
421  case Sema::TDK_Inconsistent:
422  case Sema::TDK_Underqualified:
423    // FIXME: Destroy the data?
424    Data = 0;
425    break;
426
427  case Sema::TDK_SubstitutionFailure:
428    // FIXME: Destroy the template arugment list?
429    Data = 0;
430    break;
431
432  // Unhandled
433  case Sema::TDK_NonDeducedMismatch:
434  case Sema::TDK_FailedOverloadResolution:
435    break;
436  }
437}
438
439TemplateParameter
440OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
441  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
442  case Sema::TDK_Success:
443  case Sema::TDK_InstantiationDepth:
444  case Sema::TDK_TooManyArguments:
445  case Sema::TDK_TooFewArguments:
446  case Sema::TDK_SubstitutionFailure:
447    return TemplateParameter();
448
449  case Sema::TDK_Incomplete:
450  case Sema::TDK_InvalidExplicitArguments:
451    return TemplateParameter::getFromOpaqueValue(Data);
452
453  case Sema::TDK_Inconsistent:
454  case Sema::TDK_Underqualified:
455    return static_cast<DFIParamWithArguments*>(Data)->Param;
456
457  // Unhandled
458  case Sema::TDK_NonDeducedMismatch:
459  case Sema::TDK_FailedOverloadResolution:
460    break;
461  }
462
463  return TemplateParameter();
464}
465
466TemplateArgumentList *
467OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
468  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
469    case Sema::TDK_Success:
470    case Sema::TDK_InstantiationDepth:
471    case Sema::TDK_TooManyArguments:
472    case Sema::TDK_TooFewArguments:
473    case Sema::TDK_Incomplete:
474    case Sema::TDK_InvalidExplicitArguments:
475    case Sema::TDK_Inconsistent:
476    case Sema::TDK_Underqualified:
477      return 0;
478
479    case Sema::TDK_SubstitutionFailure:
480      return static_cast<TemplateArgumentList*>(Data);
481
482    // Unhandled
483    case Sema::TDK_NonDeducedMismatch:
484    case Sema::TDK_FailedOverloadResolution:
485      break;
486  }
487
488  return 0;
489}
490
491const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
492  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
493  case Sema::TDK_Success:
494  case Sema::TDK_InstantiationDepth:
495  case Sema::TDK_Incomplete:
496  case Sema::TDK_TooManyArguments:
497  case Sema::TDK_TooFewArguments:
498  case Sema::TDK_InvalidExplicitArguments:
499  case Sema::TDK_SubstitutionFailure:
500    return 0;
501
502  case Sema::TDK_Inconsistent:
503  case Sema::TDK_Underqualified:
504    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
505
506  // Unhandled
507  case Sema::TDK_NonDeducedMismatch:
508  case Sema::TDK_FailedOverloadResolution:
509    break;
510  }
511
512  return 0;
513}
514
515const TemplateArgument *
516OverloadCandidate::DeductionFailureInfo::getSecondArg() {
517  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
518  case Sema::TDK_Success:
519  case Sema::TDK_InstantiationDepth:
520  case Sema::TDK_Incomplete:
521  case Sema::TDK_TooManyArguments:
522  case Sema::TDK_TooFewArguments:
523  case Sema::TDK_InvalidExplicitArguments:
524  case Sema::TDK_SubstitutionFailure:
525    return 0;
526
527  case Sema::TDK_Inconsistent:
528  case Sema::TDK_Underqualified:
529    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
530
531  // Unhandled
532  case Sema::TDK_NonDeducedMismatch:
533  case Sema::TDK_FailedOverloadResolution:
534    break;
535  }
536
537  return 0;
538}
539
540void OverloadCandidateSet::clear() {
541  inherited::clear();
542  Functions.clear();
543}
544
545// IsOverload - Determine whether the given New declaration is an
546// overload of the declarations in Old. This routine returns false if
547// New and Old cannot be overloaded, e.g., if New has the same
548// signature as some function in Old (C++ 1.3.10) or if the Old
549// declarations aren't functions (or function templates) at all. When
550// it does return false, MatchedDecl will point to the decl that New
551// cannot be overloaded with.  This decl may be a UsingShadowDecl on
552// top of the underlying declaration.
553//
554// Example: Given the following input:
555//
556//   void f(int, float); // #1
557//   void f(int, int); // #2
558//   int f(int, int); // #3
559//
560// When we process #1, there is no previous declaration of "f",
561// so IsOverload will not be used.
562//
563// When we process #2, Old contains only the FunctionDecl for #1.  By
564// comparing the parameter types, we see that #1 and #2 are overloaded
565// (since they have different signatures), so this routine returns
566// false; MatchedDecl is unchanged.
567//
568// When we process #3, Old is an overload set containing #1 and #2. We
569// compare the signatures of #3 to #1 (they're overloaded, so we do
570// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
571// identical (return types of functions are not part of the
572// signature), IsOverload returns false and MatchedDecl will be set to
573// point to the FunctionDecl for #2.
574//
575// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
576// into a class by a using declaration.  The rules for whether to hide
577// shadow declarations ignore some properties which otherwise figure
578// into a function template's signature.
579Sema::OverloadKind
580Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
581                    NamedDecl *&Match, bool NewIsUsingDecl) {
582  for (LookupResult::iterator I = Old.begin(), E = Old.end();
583         I != E; ++I) {
584    NamedDecl *OldD = *I;
585
586    bool OldIsUsingDecl = false;
587    if (isa<UsingShadowDecl>(OldD)) {
588      OldIsUsingDecl = true;
589
590      // We can always introduce two using declarations into the same
591      // context, even if they have identical signatures.
592      if (NewIsUsingDecl) continue;
593
594      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
595    }
596
597    // If either declaration was introduced by a using declaration,
598    // we'll need to use slightly different rules for matching.
599    // Essentially, these rules are the normal rules, except that
600    // function templates hide function templates with different
601    // return types or template parameter lists.
602    bool UseMemberUsingDeclRules =
603      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
604
605    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
606      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
607        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
608          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
609          continue;
610        }
611
612        Match = *I;
613        return Ovl_Match;
614      }
615    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
616      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
617        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
618          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
619          continue;
620        }
621
622        Match = *I;
623        return Ovl_Match;
624      }
625    } else if (isa<UsingDecl>(OldD)) {
626      // We can overload with these, which can show up when doing
627      // redeclaration checks for UsingDecls.
628      assert(Old.getLookupKind() == LookupUsingDeclName);
629    } else if (isa<TagDecl>(OldD)) {
630      // We can always overload with tags by hiding them.
631    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
632      // Optimistically assume that an unresolved using decl will
633      // overload; if it doesn't, we'll have to diagnose during
634      // template instantiation.
635    } else {
636      // (C++ 13p1):
637      //   Only function declarations can be overloaded; object and type
638      //   declarations cannot be overloaded.
639      Match = *I;
640      return Ovl_NonFunction;
641    }
642  }
643
644  return Ovl_Overload;
645}
646
647bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
648                      bool UseUsingDeclRules) {
649  // If both of the functions are extern "C", then they are not
650  // overloads.
651  if (Old->isExternC() && New->isExternC())
652    return false;
653
654  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
655  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
656
657  // C++ [temp.fct]p2:
658  //   A function template can be overloaded with other function templates
659  //   and with normal (non-template) functions.
660  if ((OldTemplate == 0) != (NewTemplate == 0))
661    return true;
662
663  // Is the function New an overload of the function Old?
664  QualType OldQType = Context.getCanonicalType(Old->getType());
665  QualType NewQType = Context.getCanonicalType(New->getType());
666
667  // Compare the signatures (C++ 1.3.10) of the two functions to
668  // determine whether they are overloads. If we find any mismatch
669  // in the signature, they are overloads.
670
671  // If either of these functions is a K&R-style function (no
672  // prototype), then we consider them to have matching signatures.
673  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
674      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
675    return false;
676
677  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
678  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
679
680  // The signature of a function includes the types of its
681  // parameters (C++ 1.3.10), which includes the presence or absence
682  // of the ellipsis; see C++ DR 357).
683  if (OldQType != NewQType &&
684      (OldType->getNumArgs() != NewType->getNumArgs() ||
685       OldType->isVariadic() != NewType->isVariadic() ||
686       !FunctionArgTypesAreEqual(OldType, NewType)))
687    return true;
688
689  // C++ [temp.over.link]p4:
690  //   The signature of a function template consists of its function
691  //   signature, its return type and its template parameter list. The names
692  //   of the template parameters are significant only for establishing the
693  //   relationship between the template parameters and the rest of the
694  //   signature.
695  //
696  // We check the return type and template parameter lists for function
697  // templates first; the remaining checks follow.
698  //
699  // However, we don't consider either of these when deciding whether
700  // a member introduced by a shadow declaration is hidden.
701  if (!UseUsingDeclRules && NewTemplate &&
702      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
703                                       OldTemplate->getTemplateParameters(),
704                                       false, TPL_TemplateMatch) ||
705       OldType->getResultType() != NewType->getResultType()))
706    return true;
707
708  // If the function is a class member, its signature includes the
709  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
710  //
711  // As part of this, also check whether one of the member functions
712  // is static, in which case they are not overloads (C++
713  // 13.1p2). While not part of the definition of the signature,
714  // this check is important to determine whether these functions
715  // can be overloaded.
716  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
717  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
718  if (OldMethod && NewMethod &&
719      !OldMethod->isStatic() && !NewMethod->isStatic() &&
720      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
721       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
722    if (!UseUsingDeclRules &&
723        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
724        (OldMethod->getRefQualifier() == RQ_None ||
725         NewMethod->getRefQualifier() == RQ_None)) {
726      // C++0x [over.load]p2:
727      //   - Member function declarations with the same name and the same
728      //     parameter-type-list as well as member function template
729      //     declarations with the same name, the same parameter-type-list, and
730      //     the same template parameter lists cannot be overloaded if any of
731      //     them, but not all, have a ref-qualifier (8.3.5).
732      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
733        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
734      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
735    }
736
737    return true;
738  }
739
740  // The signatures match; this is not an overload.
741  return false;
742}
743
744/// \brief Checks availability of the function depending on the current
745/// function context. Inside an unavailable function, unavailability is ignored.
746///
747/// \returns true if \arg FD is unavailable and current context is inside
748/// an available function, false otherwise.
749bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
750  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
751}
752
753/// TryImplicitConversion - Attempt to perform an implicit conversion
754/// from the given expression (Expr) to the given type (ToType). This
755/// function returns an implicit conversion sequence that can be used
756/// to perform the initialization. Given
757///
758///   void f(float f);
759///   void g(int i) { f(i); }
760///
761/// this routine would produce an implicit conversion sequence to
762/// describe the initialization of f from i, which will be a standard
763/// conversion sequence containing an lvalue-to-rvalue conversion (C++
764/// 4.1) followed by a floating-integral conversion (C++ 4.9).
765//
766/// Note that this routine only determines how the conversion can be
767/// performed; it does not actually perform the conversion. As such,
768/// it will not produce any diagnostics if no conversion is available,
769/// but will instead return an implicit conversion sequence of kind
770/// "BadConversion".
771///
772/// If @p SuppressUserConversions, then user-defined conversions are
773/// not permitted.
774/// If @p AllowExplicit, then explicit user-defined conversions are
775/// permitted.
776///
777/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
778/// writeback conversion, which allows __autoreleasing id* parameters to
779/// be initialized with __strong id* or __weak id* arguments.
780static ImplicitConversionSequence
781TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
782                      bool SuppressUserConversions,
783                      bool AllowExplicit,
784                      bool InOverloadResolution,
785                      bool CStyle,
786                      bool AllowObjCWritebackConversion) {
787  ImplicitConversionSequence ICS;
788  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
789                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
790    ICS.setStandard();
791    return ICS;
792  }
793
794  if (!S.getLangOptions().CPlusPlus) {
795    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
796    return ICS;
797  }
798
799  // C++ [over.ics.user]p4:
800  //   A conversion of an expression of class type to the same class
801  //   type is given Exact Match rank, and a conversion of an
802  //   expression of class type to a base class of that type is
803  //   given Conversion rank, in spite of the fact that a copy/move
804  //   constructor (i.e., a user-defined conversion function) is
805  //   called for those cases.
806  QualType FromType = From->getType();
807  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
808      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
809       S.IsDerivedFrom(FromType, ToType))) {
810    ICS.setStandard();
811    ICS.Standard.setAsIdentityConversion();
812    ICS.Standard.setFromType(FromType);
813    ICS.Standard.setAllToTypes(ToType);
814
815    // We don't actually check at this point whether there is a valid
816    // copy/move constructor, since overloading just assumes that it
817    // exists. When we actually perform initialization, we'll find the
818    // appropriate constructor to copy the returned object, if needed.
819    ICS.Standard.CopyConstructor = 0;
820
821    // Determine whether this is considered a derived-to-base conversion.
822    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
823      ICS.Standard.Second = ICK_Derived_To_Base;
824
825    return ICS;
826  }
827
828  if (SuppressUserConversions) {
829    // We're not in the case above, so there is no conversion that
830    // we can perform.
831    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
832    return ICS;
833  }
834
835  // Attempt user-defined conversion.
836  OverloadCandidateSet Conversions(From->getExprLoc());
837  OverloadingResult UserDefResult
838    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
839                              AllowExplicit);
840
841  if (UserDefResult == OR_Success) {
842    ICS.setUserDefined();
843    // C++ [over.ics.user]p4:
844    //   A conversion of an expression of class type to the same class
845    //   type is given Exact Match rank, and a conversion of an
846    //   expression of class type to a base class of that type is
847    //   given Conversion rank, in spite of the fact that a copy
848    //   constructor (i.e., a user-defined conversion function) is
849    //   called for those cases.
850    if (CXXConstructorDecl *Constructor
851          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
852      QualType FromCanon
853        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
854      QualType ToCanon
855        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
856      if (Constructor->isCopyConstructor() &&
857          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
858        // Turn this into a "standard" conversion sequence, so that it
859        // gets ranked with standard conversion sequences.
860        ICS.setStandard();
861        ICS.Standard.setAsIdentityConversion();
862        ICS.Standard.setFromType(From->getType());
863        ICS.Standard.setAllToTypes(ToType);
864        ICS.Standard.CopyConstructor = Constructor;
865        if (ToCanon != FromCanon)
866          ICS.Standard.Second = ICK_Derived_To_Base;
867      }
868    }
869
870    // C++ [over.best.ics]p4:
871    //   However, when considering the argument of a user-defined
872    //   conversion function that is a candidate by 13.3.1.3 when
873    //   invoked for the copying of the temporary in the second step
874    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
875    //   13.3.1.6 in all cases, only standard conversion sequences and
876    //   ellipsis conversion sequences are allowed.
877    if (SuppressUserConversions && ICS.isUserDefined()) {
878      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
879    }
880  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
881    ICS.setAmbiguous();
882    ICS.Ambiguous.setFromType(From->getType());
883    ICS.Ambiguous.setToType(ToType);
884    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
885         Cand != Conversions.end(); ++Cand)
886      if (Cand->Viable)
887        ICS.Ambiguous.addConversion(Cand->Function);
888  } else {
889    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
890  }
891
892  return ICS;
893}
894
895ImplicitConversionSequence
896Sema::TryImplicitConversion(Expr *From, QualType ToType,
897                            bool SuppressUserConversions,
898                            bool AllowExplicit,
899                            bool InOverloadResolution,
900                            bool CStyle,
901                            bool AllowObjCWritebackConversion) {
902  return clang::TryImplicitConversion(*this, From, ToType,
903                                      SuppressUserConversions, AllowExplicit,
904                                      InOverloadResolution, CStyle,
905                                      AllowObjCWritebackConversion);
906}
907
908/// PerformImplicitConversion - Perform an implicit conversion of the
909/// expression From to the type ToType. Returns the
910/// converted expression. Flavor is the kind of conversion we're
911/// performing, used in the error message. If @p AllowExplicit,
912/// explicit user-defined conversions are permitted.
913ExprResult
914Sema::PerformImplicitConversion(Expr *From, QualType ToType,
915                                AssignmentAction Action, bool AllowExplicit,
916                                bool Diagnose) {
917  ImplicitConversionSequence ICS;
918  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS,
919                                   Diagnose);
920}
921
922ExprResult
923Sema::PerformImplicitConversion(Expr *From, QualType ToType,
924                                AssignmentAction Action, bool AllowExplicit,
925                                ImplicitConversionSequence& ICS,
926                                bool Diagnose) {
927  // Objective-C ARC: Determine whether we will allow the writeback conversion.
928  bool AllowObjCWritebackConversion
929    = getLangOptions().ObjCAutoRefCount &&
930      (Action == AA_Passing || Action == AA_Sending);
931
932  ICS = clang::TryImplicitConversion(*this, From, ToType,
933                                     /*SuppressUserConversions=*/false,
934                                     AllowExplicit,
935                                     /*InOverloadResolution=*/false,
936                                     /*CStyle=*/false,
937                                     AllowObjCWritebackConversion);
938  if (!Diagnose && ICS.isFailure())
939    return ExprError();
940  return PerformImplicitConversion(From, ToType, ICS, Action);
941}
942
943/// \brief Determine whether the conversion from FromType to ToType is a valid
944/// conversion that strips "noreturn" off the nested function type.
945bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
946                                QualType &ResultTy) {
947  if (Context.hasSameUnqualifiedType(FromType, ToType))
948    return false;
949
950  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
951  // where F adds one of the following at most once:
952  //   - a pointer
953  //   - a member pointer
954  //   - a block pointer
955  CanQualType CanTo = Context.getCanonicalType(ToType);
956  CanQualType CanFrom = Context.getCanonicalType(FromType);
957  Type::TypeClass TyClass = CanTo->getTypeClass();
958  if (TyClass != CanFrom->getTypeClass()) return false;
959  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
960    if (TyClass == Type::Pointer) {
961      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
962      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
963    } else if (TyClass == Type::BlockPointer) {
964      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
965      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
966    } else if (TyClass == Type::MemberPointer) {
967      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
968      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
969    } else {
970      return false;
971    }
972
973    TyClass = CanTo->getTypeClass();
974    if (TyClass != CanFrom->getTypeClass()) return false;
975    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
976      return false;
977  }
978
979  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
980  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
981  if (!EInfo.getNoReturn()) return false;
982
983  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
984  assert(QualType(FromFn, 0).isCanonical());
985  if (QualType(FromFn, 0) != CanTo) return false;
986
987  ResultTy = ToType;
988  return true;
989}
990
991/// \brief Determine whether the conversion from FromType to ToType is a valid
992/// vector conversion.
993///
994/// \param ICK Will be set to the vector conversion kind, if this is a vector
995/// conversion.
996static bool IsVectorConversion(ASTContext &Context, QualType FromType,
997                               QualType ToType, ImplicitConversionKind &ICK) {
998  // We need at least one of these types to be a vector type to have a vector
999  // conversion.
1000  if (!ToType->isVectorType() && !FromType->isVectorType())
1001    return false;
1002
1003  // Identical types require no conversions.
1004  if (Context.hasSameUnqualifiedType(FromType, ToType))
1005    return false;
1006
1007  // There are no conversions between extended vector types, only identity.
1008  if (ToType->isExtVectorType()) {
1009    // There are no conversions between extended vector types other than the
1010    // identity conversion.
1011    if (FromType->isExtVectorType())
1012      return false;
1013
1014    // Vector splat from any arithmetic type to a vector.
1015    if (FromType->isArithmeticType()) {
1016      ICK = ICK_Vector_Splat;
1017      return true;
1018    }
1019  }
1020
1021  // We can perform the conversion between vector types in the following cases:
1022  // 1)vector types are equivalent AltiVec and GCC vector types
1023  // 2)lax vector conversions are permitted and the vector types are of the
1024  //   same size
1025  if (ToType->isVectorType() && FromType->isVectorType()) {
1026    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1027        (Context.getLangOptions().LaxVectorConversions &&
1028         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1029      ICK = ICK_Vector_Conversion;
1030      return true;
1031    }
1032  }
1033
1034  return false;
1035}
1036
1037/// IsStandardConversion - Determines whether there is a standard
1038/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1039/// expression From to the type ToType. Standard conversion sequences
1040/// only consider non-class types; for conversions that involve class
1041/// types, use TryImplicitConversion. If a conversion exists, SCS will
1042/// contain the standard conversion sequence required to perform this
1043/// conversion and this routine will return true. Otherwise, this
1044/// routine will return false and the value of SCS is unspecified.
1045static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1046                                 bool InOverloadResolution,
1047                                 StandardConversionSequence &SCS,
1048                                 bool CStyle,
1049                                 bool AllowObjCWritebackConversion) {
1050  QualType FromType = From->getType();
1051
1052  // Standard conversions (C++ [conv])
1053  SCS.setAsIdentityConversion();
1054  SCS.DeprecatedStringLiteralToCharPtr = false;
1055  SCS.IncompatibleObjC = false;
1056  SCS.setFromType(FromType);
1057  SCS.CopyConstructor = 0;
1058
1059  // There are no standard conversions for class types in C++, so
1060  // abort early. When overloading in C, however, we do permit
1061  if (FromType->isRecordType() || ToType->isRecordType()) {
1062    if (S.getLangOptions().CPlusPlus)
1063      return false;
1064
1065    // When we're overloading in C, we allow, as standard conversions,
1066  }
1067
1068  // The first conversion can be an lvalue-to-rvalue conversion,
1069  // array-to-pointer conversion, or function-to-pointer conversion
1070  // (C++ 4p1).
1071
1072  if (FromType == S.Context.OverloadTy) {
1073    DeclAccessPair AccessPair;
1074    if (FunctionDecl *Fn
1075          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1076                                                 AccessPair)) {
1077      // We were able to resolve the address of the overloaded function,
1078      // so we can convert to the type of that function.
1079      FromType = Fn->getType();
1080
1081      // we can sometimes resolve &foo<int> regardless of ToType, so check
1082      // if the type matches (identity) or we are converting to bool
1083      if (!S.Context.hasSameUnqualifiedType(
1084                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1085        QualType resultTy;
1086        // if the function type matches except for [[noreturn]], it's ok
1087        if (!S.IsNoReturnConversion(FromType,
1088              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1089          // otherwise, only a boolean conversion is standard
1090          if (!ToType->isBooleanType())
1091            return false;
1092      }
1093
1094      // Check if the "from" expression is taking the address of an overloaded
1095      // function and recompute the FromType accordingly. Take advantage of the
1096      // fact that non-static member functions *must* have such an address-of
1097      // expression.
1098      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1099      if (Method && !Method->isStatic()) {
1100        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1101               "Non-unary operator on non-static member address");
1102        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1103               == UO_AddrOf &&
1104               "Non-address-of operator on non-static member address");
1105        const Type *ClassType
1106          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1107        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1108      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1109        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1110               UO_AddrOf &&
1111               "Non-address-of operator for overloaded function expression");
1112        FromType = S.Context.getPointerType(FromType);
1113      }
1114
1115      // Check that we've computed the proper type after overload resolution.
1116      assert(S.Context.hasSameType(
1117        FromType,
1118        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1119    } else {
1120      return false;
1121    }
1122  }
1123  // Lvalue-to-rvalue conversion (C++11 4.1):
1124  //   A glvalue (3.10) of a non-function, non-array type T can
1125  //   be converted to a prvalue.
1126  bool argIsLValue = From->isGLValue();
1127  if (argIsLValue &&
1128      !FromType->isFunctionType() && !FromType->isArrayType() &&
1129      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1130    SCS.First = ICK_Lvalue_To_Rvalue;
1131
1132    // If T is a non-class type, the type of the rvalue is the
1133    // cv-unqualified version of T. Otherwise, the type of the rvalue
1134    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1135    // just strip the qualifiers because they don't matter.
1136    FromType = FromType.getUnqualifiedType();
1137  } else if (FromType->isArrayType()) {
1138    // Array-to-pointer conversion (C++ 4.2)
1139    SCS.First = ICK_Array_To_Pointer;
1140
1141    // An lvalue or rvalue of type "array of N T" or "array of unknown
1142    // bound of T" can be converted to an rvalue of type "pointer to
1143    // T" (C++ 4.2p1).
1144    FromType = S.Context.getArrayDecayedType(FromType);
1145
1146    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1147      // This conversion is deprecated. (C++ D.4).
1148      SCS.DeprecatedStringLiteralToCharPtr = true;
1149
1150      // For the purpose of ranking in overload resolution
1151      // (13.3.3.1.1), this conversion is considered an
1152      // array-to-pointer conversion followed by a qualification
1153      // conversion (4.4). (C++ 4.2p2)
1154      SCS.Second = ICK_Identity;
1155      SCS.Third = ICK_Qualification;
1156      SCS.QualificationIncludesObjCLifetime = false;
1157      SCS.setAllToTypes(FromType);
1158      return true;
1159    }
1160  } else if (FromType->isFunctionType() && argIsLValue) {
1161    // Function-to-pointer conversion (C++ 4.3).
1162    SCS.First = ICK_Function_To_Pointer;
1163
1164    // An lvalue of function type T can be converted to an rvalue of
1165    // type "pointer to T." The result is a pointer to the
1166    // function. (C++ 4.3p1).
1167    FromType = S.Context.getPointerType(FromType);
1168  } else {
1169    // We don't require any conversions for the first step.
1170    SCS.First = ICK_Identity;
1171  }
1172  SCS.setToType(0, FromType);
1173
1174  // The second conversion can be an integral promotion, floating
1175  // point promotion, integral conversion, floating point conversion,
1176  // floating-integral conversion, pointer conversion,
1177  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1178  // For overloading in C, this can also be a "compatible-type"
1179  // conversion.
1180  bool IncompatibleObjC = false;
1181  ImplicitConversionKind SecondICK = ICK_Identity;
1182  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1183    // The unqualified versions of the types are the same: there's no
1184    // conversion to do.
1185    SCS.Second = ICK_Identity;
1186  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1187    // Integral promotion (C++ 4.5).
1188    SCS.Second = ICK_Integral_Promotion;
1189    FromType = ToType.getUnqualifiedType();
1190  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1191    // Floating point promotion (C++ 4.6).
1192    SCS.Second = ICK_Floating_Promotion;
1193    FromType = ToType.getUnqualifiedType();
1194  } else if (S.IsComplexPromotion(FromType, ToType)) {
1195    // Complex promotion (Clang extension)
1196    SCS.Second = ICK_Complex_Promotion;
1197    FromType = ToType.getUnqualifiedType();
1198  } else if (ToType->isBooleanType() &&
1199             (FromType->isArithmeticType() ||
1200              FromType->isAnyPointerType() ||
1201              FromType->isBlockPointerType() ||
1202              FromType->isMemberPointerType() ||
1203              FromType->isNullPtrType())) {
1204    // Boolean conversions (C++ 4.12).
1205    SCS.Second = ICK_Boolean_Conversion;
1206    FromType = S.Context.BoolTy;
1207  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1208             ToType->isIntegralType(S.Context)) {
1209    // Integral conversions (C++ 4.7).
1210    SCS.Second = ICK_Integral_Conversion;
1211    FromType = ToType.getUnqualifiedType();
1212  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1213    // Complex conversions (C99 6.3.1.6)
1214    SCS.Second = ICK_Complex_Conversion;
1215    FromType = ToType.getUnqualifiedType();
1216  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1217             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1218    // Complex-real conversions (C99 6.3.1.7)
1219    SCS.Second = ICK_Complex_Real;
1220    FromType = ToType.getUnqualifiedType();
1221  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1222    // Floating point conversions (C++ 4.8).
1223    SCS.Second = ICK_Floating_Conversion;
1224    FromType = ToType.getUnqualifiedType();
1225  } else if ((FromType->isRealFloatingType() &&
1226              ToType->isIntegralType(S.Context)) ||
1227             (FromType->isIntegralOrUnscopedEnumerationType() &&
1228              ToType->isRealFloatingType())) {
1229    // Floating-integral conversions (C++ 4.9).
1230    SCS.Second = ICK_Floating_Integral;
1231    FromType = ToType.getUnqualifiedType();
1232  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1233    SCS.Second = ICK_Block_Pointer_Conversion;
1234  } else if (AllowObjCWritebackConversion &&
1235             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1236    SCS.Second = ICK_Writeback_Conversion;
1237  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1238                                   FromType, IncompatibleObjC)) {
1239    // Pointer conversions (C++ 4.10).
1240    SCS.Second = ICK_Pointer_Conversion;
1241    SCS.IncompatibleObjC = IncompatibleObjC;
1242    FromType = FromType.getUnqualifiedType();
1243  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1244                                         InOverloadResolution, FromType)) {
1245    // Pointer to member conversions (4.11).
1246    SCS.Second = ICK_Pointer_Member;
1247  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1248    SCS.Second = SecondICK;
1249    FromType = ToType.getUnqualifiedType();
1250  } else if (!S.getLangOptions().CPlusPlus &&
1251             S.Context.typesAreCompatible(ToType, FromType)) {
1252    // Compatible conversions (Clang extension for C function overloading)
1253    SCS.Second = ICK_Compatible_Conversion;
1254    FromType = ToType.getUnqualifiedType();
1255  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1256    // Treat a conversion that strips "noreturn" as an identity conversion.
1257    SCS.Second = ICK_NoReturn_Adjustment;
1258  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1259                                             InOverloadResolution,
1260                                             SCS, CStyle)) {
1261    SCS.Second = ICK_TransparentUnionConversion;
1262    FromType = ToType;
1263  } else {
1264    // No second conversion required.
1265    SCS.Second = ICK_Identity;
1266  }
1267  SCS.setToType(1, FromType);
1268
1269  QualType CanonFrom;
1270  QualType CanonTo;
1271  // The third conversion can be a qualification conversion (C++ 4p1).
1272  bool ObjCLifetimeConversion;
1273  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1274                                  ObjCLifetimeConversion)) {
1275    SCS.Third = ICK_Qualification;
1276    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1277    FromType = ToType;
1278    CanonFrom = S.Context.getCanonicalType(FromType);
1279    CanonTo = S.Context.getCanonicalType(ToType);
1280  } else {
1281    // No conversion required
1282    SCS.Third = ICK_Identity;
1283
1284    // C++ [over.best.ics]p6:
1285    //   [...] Any difference in top-level cv-qualification is
1286    //   subsumed by the initialization itself and does not constitute
1287    //   a conversion. [...]
1288    CanonFrom = S.Context.getCanonicalType(FromType);
1289    CanonTo = S.Context.getCanonicalType(ToType);
1290    if (CanonFrom.getLocalUnqualifiedType()
1291                                       == CanonTo.getLocalUnqualifiedType() &&
1292        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1293         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1294         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1295      FromType = ToType;
1296      CanonFrom = CanonTo;
1297    }
1298  }
1299  SCS.setToType(2, FromType);
1300
1301  // If we have not converted the argument type to the parameter type,
1302  // this is a bad conversion sequence.
1303  if (CanonFrom != CanonTo)
1304    return false;
1305
1306  return true;
1307}
1308
1309static bool
1310IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1311                                     QualType &ToType,
1312                                     bool InOverloadResolution,
1313                                     StandardConversionSequence &SCS,
1314                                     bool CStyle) {
1315
1316  const RecordType *UT = ToType->getAsUnionType();
1317  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1318    return false;
1319  // The field to initialize within the transparent union.
1320  RecordDecl *UD = UT->getDecl();
1321  // It's compatible if the expression matches any of the fields.
1322  for (RecordDecl::field_iterator it = UD->field_begin(),
1323       itend = UD->field_end();
1324       it != itend; ++it) {
1325    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1326                             CStyle, /*ObjCWritebackConversion=*/false)) {
1327      ToType = it->getType();
1328      return true;
1329    }
1330  }
1331  return false;
1332}
1333
1334/// IsIntegralPromotion - Determines whether the conversion from the
1335/// expression From (whose potentially-adjusted type is FromType) to
1336/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1337/// sets PromotedType to the promoted type.
1338bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1339  const BuiltinType *To = ToType->getAs<BuiltinType>();
1340  // All integers are built-in.
1341  if (!To) {
1342    return false;
1343  }
1344
1345  // An rvalue of type char, signed char, unsigned char, short int, or
1346  // unsigned short int can be converted to an rvalue of type int if
1347  // int can represent all the values of the source type; otherwise,
1348  // the source rvalue can be converted to an rvalue of type unsigned
1349  // int (C++ 4.5p1).
1350  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1351      !FromType->isEnumeralType()) {
1352    if (// We can promote any signed, promotable integer type to an int
1353        (FromType->isSignedIntegerType() ||
1354         // We can promote any unsigned integer type whose size is
1355         // less than int to an int.
1356         (!FromType->isSignedIntegerType() &&
1357          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1358      return To->getKind() == BuiltinType::Int;
1359    }
1360
1361    return To->getKind() == BuiltinType::UInt;
1362  }
1363
1364  // C++0x [conv.prom]p3:
1365  //   A prvalue of an unscoped enumeration type whose underlying type is not
1366  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1367  //   following types that can represent all the values of the enumeration
1368  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1369  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1370  //   long long int. If none of the types in that list can represent all the
1371  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1372  //   type can be converted to an rvalue a prvalue of the extended integer type
1373  //   with lowest integer conversion rank (4.13) greater than the rank of long
1374  //   long in which all the values of the enumeration can be represented. If
1375  //   there are two such extended types, the signed one is chosen.
1376  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1377    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1378    // provided for a scoped enumeration.
1379    if (FromEnumType->getDecl()->isScoped())
1380      return false;
1381
1382    // We have already pre-calculated the promotion type, so this is trivial.
1383    if (ToType->isIntegerType() &&
1384        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1385      return Context.hasSameUnqualifiedType(ToType,
1386                                FromEnumType->getDecl()->getPromotionType());
1387  }
1388
1389  // C++0x [conv.prom]p2:
1390  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1391  //   to an rvalue a prvalue of the first of the following types that can
1392  //   represent all the values of its underlying type: int, unsigned int,
1393  //   long int, unsigned long int, long long int, or unsigned long long int.
1394  //   If none of the types in that list can represent all the values of its
1395  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1396  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1397  //   type.
1398  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1399      ToType->isIntegerType()) {
1400    // Determine whether the type we're converting from is signed or
1401    // unsigned.
1402    bool FromIsSigned = FromType->isSignedIntegerType();
1403    uint64_t FromSize = Context.getTypeSize(FromType);
1404
1405    // The types we'll try to promote to, in the appropriate
1406    // order. Try each of these types.
1407    QualType PromoteTypes[6] = {
1408      Context.IntTy, Context.UnsignedIntTy,
1409      Context.LongTy, Context.UnsignedLongTy ,
1410      Context.LongLongTy, Context.UnsignedLongLongTy
1411    };
1412    for (int Idx = 0; Idx < 6; ++Idx) {
1413      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1414      if (FromSize < ToSize ||
1415          (FromSize == ToSize &&
1416           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1417        // We found the type that we can promote to. If this is the
1418        // type we wanted, we have a promotion. Otherwise, no
1419        // promotion.
1420        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1421      }
1422    }
1423  }
1424
1425  // An rvalue for an integral bit-field (9.6) can be converted to an
1426  // rvalue of type int if int can represent all the values of the
1427  // bit-field; otherwise, it can be converted to unsigned int if
1428  // unsigned int can represent all the values of the bit-field. If
1429  // the bit-field is larger yet, no integral promotion applies to
1430  // it. If the bit-field has an enumerated type, it is treated as any
1431  // other value of that type for promotion purposes (C++ 4.5p3).
1432  // FIXME: We should delay checking of bit-fields until we actually perform the
1433  // conversion.
1434  using llvm::APSInt;
1435  if (From)
1436    if (FieldDecl *MemberDecl = From->getBitField()) {
1437      APSInt BitWidth;
1438      if (FromType->isIntegralType(Context) &&
1439          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1440        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1441        ToSize = Context.getTypeSize(ToType);
1442
1443        // Are we promoting to an int from a bitfield that fits in an int?
1444        if (BitWidth < ToSize ||
1445            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1446          return To->getKind() == BuiltinType::Int;
1447        }
1448
1449        // Are we promoting to an unsigned int from an unsigned bitfield
1450        // that fits into an unsigned int?
1451        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1452          return To->getKind() == BuiltinType::UInt;
1453        }
1454
1455        return false;
1456      }
1457    }
1458
1459  // An rvalue of type bool can be converted to an rvalue of type int,
1460  // with false becoming zero and true becoming one (C++ 4.5p4).
1461  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1462    return true;
1463  }
1464
1465  return false;
1466}
1467
1468/// IsFloatingPointPromotion - Determines whether the conversion from
1469/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1470/// returns true and sets PromotedType to the promoted type.
1471bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1472  /// An rvalue of type float can be converted to an rvalue of type
1473  /// double. (C++ 4.6p1).
1474  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1475    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1476      if (FromBuiltin->getKind() == BuiltinType::Float &&
1477          ToBuiltin->getKind() == BuiltinType::Double)
1478        return true;
1479
1480      // C99 6.3.1.5p1:
1481      //   When a float is promoted to double or long double, or a
1482      //   double is promoted to long double [...].
1483      if (!getLangOptions().CPlusPlus &&
1484          (FromBuiltin->getKind() == BuiltinType::Float ||
1485           FromBuiltin->getKind() == BuiltinType::Double) &&
1486          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1487        return true;
1488    }
1489
1490  return false;
1491}
1492
1493/// \brief Determine if a conversion is a complex promotion.
1494///
1495/// A complex promotion is defined as a complex -> complex conversion
1496/// where the conversion between the underlying real types is a
1497/// floating-point or integral promotion.
1498bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1499  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1500  if (!FromComplex)
1501    return false;
1502
1503  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1504  if (!ToComplex)
1505    return false;
1506
1507  return IsFloatingPointPromotion(FromComplex->getElementType(),
1508                                  ToComplex->getElementType()) ||
1509    IsIntegralPromotion(0, FromComplex->getElementType(),
1510                        ToComplex->getElementType());
1511}
1512
1513/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1514/// the pointer type FromPtr to a pointer to type ToPointee, with the
1515/// same type qualifiers as FromPtr has on its pointee type. ToType,
1516/// if non-empty, will be a pointer to ToType that may or may not have
1517/// the right set of qualifiers on its pointee.
1518///
1519static QualType
1520BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1521                                   QualType ToPointee, QualType ToType,
1522                                   ASTContext &Context,
1523                                   bool StripObjCLifetime = false) {
1524  assert((FromPtr->getTypeClass() == Type::Pointer ||
1525          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1526         "Invalid similarly-qualified pointer type");
1527
1528  /// Conversions to 'id' subsume cv-qualifier conversions.
1529  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1530    return ToType.getUnqualifiedType();
1531
1532  QualType CanonFromPointee
1533    = Context.getCanonicalType(FromPtr->getPointeeType());
1534  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1535  Qualifiers Quals = CanonFromPointee.getQualifiers();
1536
1537  if (StripObjCLifetime)
1538    Quals.removeObjCLifetime();
1539
1540  // Exact qualifier match -> return the pointer type we're converting to.
1541  if (CanonToPointee.getLocalQualifiers() == Quals) {
1542    // ToType is exactly what we need. Return it.
1543    if (!ToType.isNull())
1544      return ToType.getUnqualifiedType();
1545
1546    // Build a pointer to ToPointee. It has the right qualifiers
1547    // already.
1548    if (isa<ObjCObjectPointerType>(ToType))
1549      return Context.getObjCObjectPointerType(ToPointee);
1550    return Context.getPointerType(ToPointee);
1551  }
1552
1553  // Just build a canonical type that has the right qualifiers.
1554  QualType QualifiedCanonToPointee
1555    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1556
1557  if (isa<ObjCObjectPointerType>(ToType))
1558    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1559  return Context.getPointerType(QualifiedCanonToPointee);
1560}
1561
1562static bool isNullPointerConstantForConversion(Expr *Expr,
1563                                               bool InOverloadResolution,
1564                                               ASTContext &Context) {
1565  // Handle value-dependent integral null pointer constants correctly.
1566  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1567  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1568      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1569    return !InOverloadResolution;
1570
1571  return Expr->isNullPointerConstant(Context,
1572                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1573                                        : Expr::NPC_ValueDependentIsNull);
1574}
1575
1576/// IsPointerConversion - Determines whether the conversion of the
1577/// expression From, which has the (possibly adjusted) type FromType,
1578/// can be converted to the type ToType via a pointer conversion (C++
1579/// 4.10). If so, returns true and places the converted type (that
1580/// might differ from ToType in its cv-qualifiers at some level) into
1581/// ConvertedType.
1582///
1583/// This routine also supports conversions to and from block pointers
1584/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1585/// pointers to interfaces. FIXME: Once we've determined the
1586/// appropriate overloading rules for Objective-C, we may want to
1587/// split the Objective-C checks into a different routine; however,
1588/// GCC seems to consider all of these conversions to be pointer
1589/// conversions, so for now they live here. IncompatibleObjC will be
1590/// set if the conversion is an allowed Objective-C conversion that
1591/// should result in a warning.
1592bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1593                               bool InOverloadResolution,
1594                               QualType& ConvertedType,
1595                               bool &IncompatibleObjC) {
1596  IncompatibleObjC = false;
1597  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1598                              IncompatibleObjC))
1599    return true;
1600
1601  // Conversion from a null pointer constant to any Objective-C pointer type.
1602  if (ToType->isObjCObjectPointerType() &&
1603      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1604    ConvertedType = ToType;
1605    return true;
1606  }
1607
1608  // Blocks: Block pointers can be converted to void*.
1609  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1610      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1611    ConvertedType = ToType;
1612    return true;
1613  }
1614  // Blocks: A null pointer constant can be converted to a block
1615  // pointer type.
1616  if (ToType->isBlockPointerType() &&
1617      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1618    ConvertedType = ToType;
1619    return true;
1620  }
1621
1622  // If the left-hand-side is nullptr_t, the right side can be a null
1623  // pointer constant.
1624  if (ToType->isNullPtrType() &&
1625      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1626    ConvertedType = ToType;
1627    return true;
1628  }
1629
1630  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1631  if (!ToTypePtr)
1632    return false;
1633
1634  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1635  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1636    ConvertedType = ToType;
1637    return true;
1638  }
1639
1640  // Beyond this point, both types need to be pointers
1641  // , including objective-c pointers.
1642  QualType ToPointeeType = ToTypePtr->getPointeeType();
1643  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1644      !getLangOptions().ObjCAutoRefCount) {
1645    ConvertedType = BuildSimilarlyQualifiedPointerType(
1646                                      FromType->getAs<ObjCObjectPointerType>(),
1647                                                       ToPointeeType,
1648                                                       ToType, Context);
1649    return true;
1650  }
1651  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1652  if (!FromTypePtr)
1653    return false;
1654
1655  QualType FromPointeeType = FromTypePtr->getPointeeType();
1656
1657  // If the unqualified pointee types are the same, this can't be a
1658  // pointer conversion, so don't do all of the work below.
1659  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1660    return false;
1661
1662  // An rvalue of type "pointer to cv T," where T is an object type,
1663  // can be converted to an rvalue of type "pointer to cv void" (C++
1664  // 4.10p2).
1665  if (FromPointeeType->isIncompleteOrObjectType() &&
1666      ToPointeeType->isVoidType()) {
1667    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1668                                                       ToPointeeType,
1669                                                       ToType, Context,
1670                                                   /*StripObjCLifetime=*/true);
1671    return true;
1672  }
1673
1674  // MSVC allows implicit function to void* type conversion.
1675  if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() &&
1676      ToPointeeType->isVoidType()) {
1677    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1678                                                       ToPointeeType,
1679                                                       ToType, Context);
1680    return true;
1681  }
1682
1683  // When we're overloading in C, we allow a special kind of pointer
1684  // conversion for compatible-but-not-identical pointee types.
1685  if (!getLangOptions().CPlusPlus &&
1686      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1687    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1688                                                       ToPointeeType,
1689                                                       ToType, Context);
1690    return true;
1691  }
1692
1693  // C++ [conv.ptr]p3:
1694  //
1695  //   An rvalue of type "pointer to cv D," where D is a class type,
1696  //   can be converted to an rvalue of type "pointer to cv B," where
1697  //   B is a base class (clause 10) of D. If B is an inaccessible
1698  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1699  //   necessitates this conversion is ill-formed. The result of the
1700  //   conversion is a pointer to the base class sub-object of the
1701  //   derived class object. The null pointer value is converted to
1702  //   the null pointer value of the destination type.
1703  //
1704  // Note that we do not check for ambiguity or inaccessibility
1705  // here. That is handled by CheckPointerConversion.
1706  if (getLangOptions().CPlusPlus &&
1707      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1708      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1709      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1710      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1711    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1712                                                       ToPointeeType,
1713                                                       ToType, Context);
1714    return true;
1715  }
1716
1717  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1718      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1719    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1720                                                       ToPointeeType,
1721                                                       ToType, Context);
1722    return true;
1723  }
1724
1725  return false;
1726}
1727
1728/// \brief Adopt the given qualifiers for the given type.
1729static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1730  Qualifiers TQs = T.getQualifiers();
1731
1732  // Check whether qualifiers already match.
1733  if (TQs == Qs)
1734    return T;
1735
1736  if (Qs.compatiblyIncludes(TQs))
1737    return Context.getQualifiedType(T, Qs);
1738
1739  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1740}
1741
1742/// isObjCPointerConversion - Determines whether this is an
1743/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1744/// with the same arguments and return values.
1745bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1746                                   QualType& ConvertedType,
1747                                   bool &IncompatibleObjC) {
1748  if (!getLangOptions().ObjC1)
1749    return false;
1750
1751  // The set of qualifiers on the type we're converting from.
1752  Qualifiers FromQualifiers = FromType.getQualifiers();
1753
1754  // First, we handle all conversions on ObjC object pointer types.
1755  const ObjCObjectPointerType* ToObjCPtr =
1756    ToType->getAs<ObjCObjectPointerType>();
1757  const ObjCObjectPointerType *FromObjCPtr =
1758    FromType->getAs<ObjCObjectPointerType>();
1759
1760  if (ToObjCPtr && FromObjCPtr) {
1761    // If the pointee types are the same (ignoring qualifications),
1762    // then this is not a pointer conversion.
1763    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1764                                       FromObjCPtr->getPointeeType()))
1765      return false;
1766
1767    // Check for compatible
1768    // Objective C++: We're able to convert between "id" or "Class" and a
1769    // pointer to any interface (in both directions).
1770    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1771      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1772      return true;
1773    }
1774    // Conversions with Objective-C's id<...>.
1775    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1776         ToObjCPtr->isObjCQualifiedIdType()) &&
1777        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1778                                                  /*compare=*/false)) {
1779      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1780      return true;
1781    }
1782    // Objective C++: We're able to convert from a pointer to an
1783    // interface to a pointer to a different interface.
1784    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1785      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1786      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1787      if (getLangOptions().CPlusPlus && LHS && RHS &&
1788          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1789                                                FromObjCPtr->getPointeeType()))
1790        return false;
1791      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1792                                                   ToObjCPtr->getPointeeType(),
1793                                                         ToType, Context);
1794      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1795      return true;
1796    }
1797
1798    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1799      // Okay: this is some kind of implicit downcast of Objective-C
1800      // interfaces, which is permitted. However, we're going to
1801      // complain about it.
1802      IncompatibleObjC = true;
1803      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1804                                                   ToObjCPtr->getPointeeType(),
1805                                                         ToType, Context);
1806      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1807      return true;
1808    }
1809  }
1810  // Beyond this point, both types need to be C pointers or block pointers.
1811  QualType ToPointeeType;
1812  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1813    ToPointeeType = ToCPtr->getPointeeType();
1814  else if (const BlockPointerType *ToBlockPtr =
1815            ToType->getAs<BlockPointerType>()) {
1816    // Objective C++: We're able to convert from a pointer to any object
1817    // to a block pointer type.
1818    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1819      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1820      return true;
1821    }
1822    ToPointeeType = ToBlockPtr->getPointeeType();
1823  }
1824  else if (FromType->getAs<BlockPointerType>() &&
1825           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1826    // Objective C++: We're able to convert from a block pointer type to a
1827    // pointer to any object.
1828    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1829    return true;
1830  }
1831  else
1832    return false;
1833
1834  QualType FromPointeeType;
1835  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1836    FromPointeeType = FromCPtr->getPointeeType();
1837  else if (const BlockPointerType *FromBlockPtr =
1838           FromType->getAs<BlockPointerType>())
1839    FromPointeeType = FromBlockPtr->getPointeeType();
1840  else
1841    return false;
1842
1843  // If we have pointers to pointers, recursively check whether this
1844  // is an Objective-C conversion.
1845  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1846      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1847                              IncompatibleObjC)) {
1848    // We always complain about this conversion.
1849    IncompatibleObjC = true;
1850    ConvertedType = Context.getPointerType(ConvertedType);
1851    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1852    return true;
1853  }
1854  // Allow conversion of pointee being objective-c pointer to another one;
1855  // as in I* to id.
1856  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1857      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1858      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1859                              IncompatibleObjC)) {
1860
1861    ConvertedType = Context.getPointerType(ConvertedType);
1862    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1863    return true;
1864  }
1865
1866  // If we have pointers to functions or blocks, check whether the only
1867  // differences in the argument and result types are in Objective-C
1868  // pointer conversions. If so, we permit the conversion (but
1869  // complain about it).
1870  const FunctionProtoType *FromFunctionType
1871    = FromPointeeType->getAs<FunctionProtoType>();
1872  const FunctionProtoType *ToFunctionType
1873    = ToPointeeType->getAs<FunctionProtoType>();
1874  if (FromFunctionType && ToFunctionType) {
1875    // If the function types are exactly the same, this isn't an
1876    // Objective-C pointer conversion.
1877    if (Context.getCanonicalType(FromPointeeType)
1878          == Context.getCanonicalType(ToPointeeType))
1879      return false;
1880
1881    // Perform the quick checks that will tell us whether these
1882    // function types are obviously different.
1883    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1884        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1885        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1886      return false;
1887
1888    bool HasObjCConversion = false;
1889    if (Context.getCanonicalType(FromFunctionType->getResultType())
1890          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1891      // Okay, the types match exactly. Nothing to do.
1892    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1893                                       ToFunctionType->getResultType(),
1894                                       ConvertedType, IncompatibleObjC)) {
1895      // Okay, we have an Objective-C pointer conversion.
1896      HasObjCConversion = true;
1897    } else {
1898      // Function types are too different. Abort.
1899      return false;
1900    }
1901
1902    // Check argument types.
1903    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1904         ArgIdx != NumArgs; ++ArgIdx) {
1905      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1906      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1907      if (Context.getCanonicalType(FromArgType)
1908            == Context.getCanonicalType(ToArgType)) {
1909        // Okay, the types match exactly. Nothing to do.
1910      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1911                                         ConvertedType, IncompatibleObjC)) {
1912        // Okay, we have an Objective-C pointer conversion.
1913        HasObjCConversion = true;
1914      } else {
1915        // Argument types are too different. Abort.
1916        return false;
1917      }
1918    }
1919
1920    if (HasObjCConversion) {
1921      // We had an Objective-C conversion. Allow this pointer
1922      // conversion, but complain about it.
1923      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1924      IncompatibleObjC = true;
1925      return true;
1926    }
1927  }
1928
1929  return false;
1930}
1931
1932/// \brief Determine whether this is an Objective-C writeback conversion,
1933/// used for parameter passing when performing automatic reference counting.
1934///
1935/// \param FromType The type we're converting form.
1936///
1937/// \param ToType The type we're converting to.
1938///
1939/// \param ConvertedType The type that will be produced after applying
1940/// this conversion.
1941bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
1942                                     QualType &ConvertedType) {
1943  if (!getLangOptions().ObjCAutoRefCount ||
1944      Context.hasSameUnqualifiedType(FromType, ToType))
1945    return false;
1946
1947  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
1948  QualType ToPointee;
1949  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
1950    ToPointee = ToPointer->getPointeeType();
1951  else
1952    return false;
1953
1954  Qualifiers ToQuals = ToPointee.getQualifiers();
1955  if (!ToPointee->isObjCLifetimeType() ||
1956      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
1957      !ToQuals.withoutObjCGLifetime().empty())
1958    return false;
1959
1960  // Argument must be a pointer to __strong to __weak.
1961  QualType FromPointee;
1962  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
1963    FromPointee = FromPointer->getPointeeType();
1964  else
1965    return false;
1966
1967  Qualifiers FromQuals = FromPointee.getQualifiers();
1968  if (!FromPointee->isObjCLifetimeType() ||
1969      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
1970       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
1971    return false;
1972
1973  // Make sure that we have compatible qualifiers.
1974  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
1975  if (!ToQuals.compatiblyIncludes(FromQuals))
1976    return false;
1977
1978  // Remove qualifiers from the pointee type we're converting from; they
1979  // aren't used in the compatibility check belong, and we'll be adding back
1980  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
1981  FromPointee = FromPointee.getUnqualifiedType();
1982
1983  // The unqualified form of the pointee types must be compatible.
1984  ToPointee = ToPointee.getUnqualifiedType();
1985  bool IncompatibleObjC;
1986  if (Context.typesAreCompatible(FromPointee, ToPointee))
1987    FromPointee = ToPointee;
1988  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
1989                                    IncompatibleObjC))
1990    return false;
1991
1992  /// \brief Construct the type we're converting to, which is a pointer to
1993  /// __autoreleasing pointee.
1994  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
1995  ConvertedType = Context.getPointerType(FromPointee);
1996  return true;
1997}
1998
1999bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2000                                    QualType& ConvertedType) {
2001  QualType ToPointeeType;
2002  if (const BlockPointerType *ToBlockPtr =
2003        ToType->getAs<BlockPointerType>())
2004    ToPointeeType = ToBlockPtr->getPointeeType();
2005  else
2006    return false;
2007
2008  QualType FromPointeeType;
2009  if (const BlockPointerType *FromBlockPtr =
2010      FromType->getAs<BlockPointerType>())
2011    FromPointeeType = FromBlockPtr->getPointeeType();
2012  else
2013    return false;
2014  // We have pointer to blocks, check whether the only
2015  // differences in the argument and result types are in Objective-C
2016  // pointer conversions. If so, we permit the conversion.
2017
2018  const FunctionProtoType *FromFunctionType
2019    = FromPointeeType->getAs<FunctionProtoType>();
2020  const FunctionProtoType *ToFunctionType
2021    = ToPointeeType->getAs<FunctionProtoType>();
2022
2023  if (!FromFunctionType || !ToFunctionType)
2024    return false;
2025
2026  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2027    return true;
2028
2029  // Perform the quick checks that will tell us whether these
2030  // function types are obviously different.
2031  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2032      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2033    return false;
2034
2035  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2036  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2037  if (FromEInfo != ToEInfo)
2038    return false;
2039
2040  bool IncompatibleObjC = false;
2041  if (Context.hasSameType(FromFunctionType->getResultType(),
2042                          ToFunctionType->getResultType())) {
2043    // Okay, the types match exactly. Nothing to do.
2044  } else {
2045    QualType RHS = FromFunctionType->getResultType();
2046    QualType LHS = ToFunctionType->getResultType();
2047    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2048        !RHS.hasQualifiers() && LHS.hasQualifiers())
2049       LHS = LHS.getUnqualifiedType();
2050
2051     if (Context.hasSameType(RHS,LHS)) {
2052       // OK exact match.
2053     } else if (isObjCPointerConversion(RHS, LHS,
2054                                        ConvertedType, IncompatibleObjC)) {
2055     if (IncompatibleObjC)
2056       return false;
2057     // Okay, we have an Objective-C pointer conversion.
2058     }
2059     else
2060       return false;
2061   }
2062
2063   // Check argument types.
2064   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2065        ArgIdx != NumArgs; ++ArgIdx) {
2066     IncompatibleObjC = false;
2067     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2068     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2069     if (Context.hasSameType(FromArgType, ToArgType)) {
2070       // Okay, the types match exactly. Nothing to do.
2071     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2072                                        ConvertedType, IncompatibleObjC)) {
2073       if (IncompatibleObjC)
2074         return false;
2075       // Okay, we have an Objective-C pointer conversion.
2076     } else
2077       // Argument types are too different. Abort.
2078       return false;
2079   }
2080   if (LangOpts.ObjCAutoRefCount &&
2081       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2082                                                    ToFunctionType))
2083     return false;
2084
2085   ConvertedType = ToType;
2086   return true;
2087}
2088
2089/// FunctionArgTypesAreEqual - This routine checks two function proto types
2090/// for equlity of their argument types. Caller has already checked that
2091/// they have same number of arguments. This routine assumes that Objective-C
2092/// pointer types which only differ in their protocol qualifiers are equal.
2093bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2094                                    const FunctionProtoType *NewType) {
2095  if (!getLangOptions().ObjC1)
2096    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
2097                      NewType->arg_type_begin());
2098
2099  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2100       N = NewType->arg_type_begin(),
2101       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2102    QualType ToType = (*O);
2103    QualType FromType = (*N);
2104    if (ToType != FromType) {
2105      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2106        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2107          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2108               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2109              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2110               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2111            continue;
2112      }
2113      else if (const ObjCObjectPointerType *PTTo =
2114                 ToType->getAs<ObjCObjectPointerType>()) {
2115        if (const ObjCObjectPointerType *PTFr =
2116              FromType->getAs<ObjCObjectPointerType>())
2117          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
2118            continue;
2119      }
2120      return false;
2121    }
2122  }
2123  return true;
2124}
2125
2126/// CheckPointerConversion - Check the pointer conversion from the
2127/// expression From to the type ToType. This routine checks for
2128/// ambiguous or inaccessible derived-to-base pointer
2129/// conversions for which IsPointerConversion has already returned
2130/// true. It returns true and produces a diagnostic if there was an
2131/// error, or returns false otherwise.
2132bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2133                                  CastKind &Kind,
2134                                  CXXCastPath& BasePath,
2135                                  bool IgnoreBaseAccess) {
2136  QualType FromType = From->getType();
2137  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2138
2139  Kind = CK_BitCast;
2140
2141  if (!IsCStyleOrFunctionalCast &&
2142      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2143      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2144    DiagRuntimeBehavior(From->getExprLoc(), From,
2145                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2146                          << ToType << From->getSourceRange());
2147
2148  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2149    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2150      QualType FromPointeeType = FromPtrType->getPointeeType(),
2151               ToPointeeType   = ToPtrType->getPointeeType();
2152
2153      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2154          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2155        // We must have a derived-to-base conversion. Check an
2156        // ambiguous or inaccessible conversion.
2157        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2158                                         From->getExprLoc(),
2159                                         From->getSourceRange(), &BasePath,
2160                                         IgnoreBaseAccess))
2161          return true;
2162
2163        // The conversion was successful.
2164        Kind = CK_DerivedToBase;
2165      }
2166    }
2167  } else if (const ObjCObjectPointerType *ToPtrType =
2168               ToType->getAs<ObjCObjectPointerType>()) {
2169    if (const ObjCObjectPointerType *FromPtrType =
2170          FromType->getAs<ObjCObjectPointerType>()) {
2171      // Objective-C++ conversions are always okay.
2172      // FIXME: We should have a different class of conversions for the
2173      // Objective-C++ implicit conversions.
2174      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2175        return false;
2176    } else if (FromType->isBlockPointerType()) {
2177      Kind = CK_BlockPointerToObjCPointerCast;
2178    } else {
2179      Kind = CK_CPointerToObjCPointerCast;
2180    }
2181  } else if (ToType->isBlockPointerType()) {
2182    if (!FromType->isBlockPointerType())
2183      Kind = CK_AnyPointerToBlockPointerCast;
2184  }
2185
2186  // We shouldn't fall into this case unless it's valid for other
2187  // reasons.
2188  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2189    Kind = CK_NullToPointer;
2190
2191  return false;
2192}
2193
2194/// IsMemberPointerConversion - Determines whether the conversion of the
2195/// expression From, which has the (possibly adjusted) type FromType, can be
2196/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2197/// If so, returns true and places the converted type (that might differ from
2198/// ToType in its cv-qualifiers at some level) into ConvertedType.
2199bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2200                                     QualType ToType,
2201                                     bool InOverloadResolution,
2202                                     QualType &ConvertedType) {
2203  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2204  if (!ToTypePtr)
2205    return false;
2206
2207  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2208  if (From->isNullPointerConstant(Context,
2209                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2210                                        : Expr::NPC_ValueDependentIsNull)) {
2211    ConvertedType = ToType;
2212    return true;
2213  }
2214
2215  // Otherwise, both types have to be member pointers.
2216  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2217  if (!FromTypePtr)
2218    return false;
2219
2220  // A pointer to member of B can be converted to a pointer to member of D,
2221  // where D is derived from B (C++ 4.11p2).
2222  QualType FromClass(FromTypePtr->getClass(), 0);
2223  QualType ToClass(ToTypePtr->getClass(), 0);
2224
2225  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2226      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2227      IsDerivedFrom(ToClass, FromClass)) {
2228    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2229                                                 ToClass.getTypePtr());
2230    return true;
2231  }
2232
2233  return false;
2234}
2235
2236/// CheckMemberPointerConversion - Check the member pointer conversion from the
2237/// expression From to the type ToType. This routine checks for ambiguous or
2238/// virtual or inaccessible base-to-derived member pointer conversions
2239/// for which IsMemberPointerConversion has already returned true. It returns
2240/// true and produces a diagnostic if there was an error, or returns false
2241/// otherwise.
2242bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2243                                        CastKind &Kind,
2244                                        CXXCastPath &BasePath,
2245                                        bool IgnoreBaseAccess) {
2246  QualType FromType = From->getType();
2247  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2248  if (!FromPtrType) {
2249    // This must be a null pointer to member pointer conversion
2250    assert(From->isNullPointerConstant(Context,
2251                                       Expr::NPC_ValueDependentIsNull) &&
2252           "Expr must be null pointer constant!");
2253    Kind = CK_NullToMemberPointer;
2254    return false;
2255  }
2256
2257  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2258  assert(ToPtrType && "No member pointer cast has a target type "
2259                      "that is not a member pointer.");
2260
2261  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2262  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2263
2264  // FIXME: What about dependent types?
2265  assert(FromClass->isRecordType() && "Pointer into non-class.");
2266  assert(ToClass->isRecordType() && "Pointer into non-class.");
2267
2268  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2269                     /*DetectVirtual=*/true);
2270  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2271  assert(DerivationOkay &&
2272         "Should not have been called if derivation isn't OK.");
2273  (void)DerivationOkay;
2274
2275  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2276                                  getUnqualifiedType())) {
2277    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2278    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2279      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2280    return true;
2281  }
2282
2283  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2284    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2285      << FromClass << ToClass << QualType(VBase, 0)
2286      << From->getSourceRange();
2287    return true;
2288  }
2289
2290  if (!IgnoreBaseAccess)
2291    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2292                         Paths.front(),
2293                         diag::err_downcast_from_inaccessible_base);
2294
2295  // Must be a base to derived member conversion.
2296  BuildBasePathArray(Paths, BasePath);
2297  Kind = CK_BaseToDerivedMemberPointer;
2298  return false;
2299}
2300
2301/// IsQualificationConversion - Determines whether the conversion from
2302/// an rvalue of type FromType to ToType is a qualification conversion
2303/// (C++ 4.4).
2304///
2305/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2306/// when the qualification conversion involves a change in the Objective-C
2307/// object lifetime.
2308bool
2309Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2310                                bool CStyle, bool &ObjCLifetimeConversion) {
2311  FromType = Context.getCanonicalType(FromType);
2312  ToType = Context.getCanonicalType(ToType);
2313  ObjCLifetimeConversion = false;
2314
2315  // If FromType and ToType are the same type, this is not a
2316  // qualification conversion.
2317  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2318    return false;
2319
2320  // (C++ 4.4p4):
2321  //   A conversion can add cv-qualifiers at levels other than the first
2322  //   in multi-level pointers, subject to the following rules: [...]
2323  bool PreviousToQualsIncludeConst = true;
2324  bool UnwrappedAnyPointer = false;
2325  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2326    // Within each iteration of the loop, we check the qualifiers to
2327    // determine if this still looks like a qualification
2328    // conversion. Then, if all is well, we unwrap one more level of
2329    // pointers or pointers-to-members and do it all again
2330    // until there are no more pointers or pointers-to-members left to
2331    // unwrap.
2332    UnwrappedAnyPointer = true;
2333
2334    Qualifiers FromQuals = FromType.getQualifiers();
2335    Qualifiers ToQuals = ToType.getQualifiers();
2336
2337    // Objective-C ARC:
2338    //   Check Objective-C lifetime conversions.
2339    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2340        UnwrappedAnyPointer) {
2341      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2342        ObjCLifetimeConversion = true;
2343        FromQuals.removeObjCLifetime();
2344        ToQuals.removeObjCLifetime();
2345      } else {
2346        // Qualification conversions cannot cast between different
2347        // Objective-C lifetime qualifiers.
2348        return false;
2349      }
2350    }
2351
2352    // Allow addition/removal of GC attributes but not changing GC attributes.
2353    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2354        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2355      FromQuals.removeObjCGCAttr();
2356      ToQuals.removeObjCGCAttr();
2357    }
2358
2359    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2360    //      2,j, and similarly for volatile.
2361    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2362      return false;
2363
2364    //   -- if the cv 1,j and cv 2,j are different, then const is in
2365    //      every cv for 0 < k < j.
2366    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2367        && !PreviousToQualsIncludeConst)
2368      return false;
2369
2370    // Keep track of whether all prior cv-qualifiers in the "to" type
2371    // include const.
2372    PreviousToQualsIncludeConst
2373      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2374  }
2375
2376  // We are left with FromType and ToType being the pointee types
2377  // after unwrapping the original FromType and ToType the same number
2378  // of types. If we unwrapped any pointers, and if FromType and
2379  // ToType have the same unqualified type (since we checked
2380  // qualifiers above), then this is a qualification conversion.
2381  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2382}
2383
2384/// Determines whether there is a user-defined conversion sequence
2385/// (C++ [over.ics.user]) that converts expression From to the type
2386/// ToType. If such a conversion exists, User will contain the
2387/// user-defined conversion sequence that performs such a conversion
2388/// and this routine will return true. Otherwise, this routine returns
2389/// false and User is unspecified.
2390///
2391/// \param AllowExplicit  true if the conversion should consider C++0x
2392/// "explicit" conversion functions as well as non-explicit conversion
2393/// functions (C++0x [class.conv.fct]p2).
2394static OverloadingResult
2395IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2396                        UserDefinedConversionSequence& User,
2397                        OverloadCandidateSet& CandidateSet,
2398                        bool AllowExplicit) {
2399  // Whether we will only visit constructors.
2400  bool ConstructorsOnly = false;
2401
2402  // If the type we are conversion to is a class type, enumerate its
2403  // constructors.
2404  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2405    // C++ [over.match.ctor]p1:
2406    //   When objects of class type are direct-initialized (8.5), or
2407    //   copy-initialized from an expression of the same or a
2408    //   derived class type (8.5), overload resolution selects the
2409    //   constructor. [...] For copy-initialization, the candidate
2410    //   functions are all the converting constructors (12.3.1) of
2411    //   that class. The argument list is the expression-list within
2412    //   the parentheses of the initializer.
2413    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2414        (From->getType()->getAs<RecordType>() &&
2415         S.IsDerivedFrom(From->getType(), ToType)))
2416      ConstructorsOnly = true;
2417
2418    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2419    // RequireCompleteType may have returned true due to some invalid decl
2420    // during template instantiation, but ToType may be complete enough now
2421    // to try to recover.
2422    if (ToType->isIncompleteType()) {
2423      // We're not going to find any constructors.
2424    } else if (CXXRecordDecl *ToRecordDecl
2425                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2426      DeclContext::lookup_iterator Con, ConEnd;
2427      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2428           Con != ConEnd; ++Con) {
2429        NamedDecl *D = *Con;
2430        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2431
2432        // Find the constructor (which may be a template).
2433        CXXConstructorDecl *Constructor = 0;
2434        FunctionTemplateDecl *ConstructorTmpl
2435          = dyn_cast<FunctionTemplateDecl>(D);
2436        if (ConstructorTmpl)
2437          Constructor
2438            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2439        else
2440          Constructor = cast<CXXConstructorDecl>(D);
2441
2442        if (!Constructor->isInvalidDecl() &&
2443            Constructor->isConvertingConstructor(AllowExplicit)) {
2444          if (ConstructorTmpl)
2445            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2446                                           /*ExplicitArgs*/ 0,
2447                                           &From, 1, CandidateSet,
2448                                           /*SuppressUserConversions=*/
2449                                             !ConstructorsOnly);
2450          else
2451            // Allow one user-defined conversion when user specifies a
2452            // From->ToType conversion via an static cast (c-style, etc).
2453            S.AddOverloadCandidate(Constructor, FoundDecl,
2454                                   &From, 1, CandidateSet,
2455                                   /*SuppressUserConversions=*/
2456                                     !ConstructorsOnly);
2457        }
2458      }
2459    }
2460  }
2461
2462  // Enumerate conversion functions, if we're allowed to.
2463  if (ConstructorsOnly) {
2464  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2465                                   S.PDiag(0) << From->getSourceRange())) {
2466    // No conversion functions from incomplete types.
2467  } else if (const RecordType *FromRecordType
2468                                   = From->getType()->getAs<RecordType>()) {
2469    if (CXXRecordDecl *FromRecordDecl
2470         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2471      // Add all of the conversion functions as candidates.
2472      const UnresolvedSetImpl *Conversions
2473        = FromRecordDecl->getVisibleConversionFunctions();
2474      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2475             E = Conversions->end(); I != E; ++I) {
2476        DeclAccessPair FoundDecl = I.getPair();
2477        NamedDecl *D = FoundDecl.getDecl();
2478        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2479        if (isa<UsingShadowDecl>(D))
2480          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2481
2482        CXXConversionDecl *Conv;
2483        FunctionTemplateDecl *ConvTemplate;
2484        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2485          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2486        else
2487          Conv = cast<CXXConversionDecl>(D);
2488
2489        if (AllowExplicit || !Conv->isExplicit()) {
2490          if (ConvTemplate)
2491            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2492                                             ActingContext, From, ToType,
2493                                             CandidateSet);
2494          else
2495            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2496                                     From, ToType, CandidateSet);
2497        }
2498      }
2499    }
2500  }
2501
2502  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2503
2504  OverloadCandidateSet::iterator Best;
2505  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2506  case OR_Success:
2507    // Record the standard conversion we used and the conversion function.
2508    if (CXXConstructorDecl *Constructor
2509          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2510      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2511
2512      // C++ [over.ics.user]p1:
2513      //   If the user-defined conversion is specified by a
2514      //   constructor (12.3.1), the initial standard conversion
2515      //   sequence converts the source type to the type required by
2516      //   the argument of the constructor.
2517      //
2518      QualType ThisType = Constructor->getThisType(S.Context);
2519      if (Best->Conversions[0].isEllipsis())
2520        User.EllipsisConversion = true;
2521      else {
2522        User.Before = Best->Conversions[0].Standard;
2523        User.EllipsisConversion = false;
2524      }
2525      User.HadMultipleCandidates = HadMultipleCandidates;
2526      User.ConversionFunction = Constructor;
2527      User.FoundConversionFunction = Best->FoundDecl;
2528      User.After.setAsIdentityConversion();
2529      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2530      User.After.setAllToTypes(ToType);
2531      return OR_Success;
2532    } else if (CXXConversionDecl *Conversion
2533                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2534      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2535
2536      // C++ [over.ics.user]p1:
2537      //
2538      //   [...] If the user-defined conversion is specified by a
2539      //   conversion function (12.3.2), the initial standard
2540      //   conversion sequence converts the source type to the
2541      //   implicit object parameter of the conversion function.
2542      User.Before = Best->Conversions[0].Standard;
2543      User.HadMultipleCandidates = HadMultipleCandidates;
2544      User.ConversionFunction = Conversion;
2545      User.FoundConversionFunction = Best->FoundDecl;
2546      User.EllipsisConversion = false;
2547
2548      // C++ [over.ics.user]p2:
2549      //   The second standard conversion sequence converts the
2550      //   result of the user-defined conversion to the target type
2551      //   for the sequence. Since an implicit conversion sequence
2552      //   is an initialization, the special rules for
2553      //   initialization by user-defined conversion apply when
2554      //   selecting the best user-defined conversion for a
2555      //   user-defined conversion sequence (see 13.3.3 and
2556      //   13.3.3.1).
2557      User.After = Best->FinalConversion;
2558      return OR_Success;
2559    } else {
2560      llvm_unreachable("Not a constructor or conversion function?");
2561      return OR_No_Viable_Function;
2562    }
2563
2564  case OR_No_Viable_Function:
2565    return OR_No_Viable_Function;
2566  case OR_Deleted:
2567    // No conversion here! We're done.
2568    return OR_Deleted;
2569
2570  case OR_Ambiguous:
2571    return OR_Ambiguous;
2572  }
2573
2574  return OR_No_Viable_Function;
2575}
2576
2577bool
2578Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2579  ImplicitConversionSequence ICS;
2580  OverloadCandidateSet CandidateSet(From->getExprLoc());
2581  OverloadingResult OvResult =
2582    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2583                            CandidateSet, false);
2584  if (OvResult == OR_Ambiguous)
2585    Diag(From->getSourceRange().getBegin(),
2586         diag::err_typecheck_ambiguous_condition)
2587          << From->getType() << ToType << From->getSourceRange();
2588  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2589    Diag(From->getSourceRange().getBegin(),
2590         diag::err_typecheck_nonviable_condition)
2591    << From->getType() << ToType << From->getSourceRange();
2592  else
2593    return false;
2594  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2595  return true;
2596}
2597
2598/// CompareImplicitConversionSequences - Compare two implicit
2599/// conversion sequences to determine whether one is better than the
2600/// other or if they are indistinguishable (C++ 13.3.3.2).
2601static ImplicitConversionSequence::CompareKind
2602CompareImplicitConversionSequences(Sema &S,
2603                                   const ImplicitConversionSequence& ICS1,
2604                                   const ImplicitConversionSequence& ICS2)
2605{
2606  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2607  // conversion sequences (as defined in 13.3.3.1)
2608  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2609  //      conversion sequence than a user-defined conversion sequence or
2610  //      an ellipsis conversion sequence, and
2611  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2612  //      conversion sequence than an ellipsis conversion sequence
2613  //      (13.3.3.1.3).
2614  //
2615  // C++0x [over.best.ics]p10:
2616  //   For the purpose of ranking implicit conversion sequences as
2617  //   described in 13.3.3.2, the ambiguous conversion sequence is
2618  //   treated as a user-defined sequence that is indistinguishable
2619  //   from any other user-defined conversion sequence.
2620  if (ICS1.getKindRank() < ICS2.getKindRank())
2621    return ImplicitConversionSequence::Better;
2622  else if (ICS2.getKindRank() < ICS1.getKindRank())
2623    return ImplicitConversionSequence::Worse;
2624
2625  // The following checks require both conversion sequences to be of
2626  // the same kind.
2627  if (ICS1.getKind() != ICS2.getKind())
2628    return ImplicitConversionSequence::Indistinguishable;
2629
2630  // Two implicit conversion sequences of the same form are
2631  // indistinguishable conversion sequences unless one of the
2632  // following rules apply: (C++ 13.3.3.2p3):
2633  if (ICS1.isStandard())
2634    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2635  else if (ICS1.isUserDefined()) {
2636    // User-defined conversion sequence U1 is a better conversion
2637    // sequence than another user-defined conversion sequence U2 if
2638    // they contain the same user-defined conversion function or
2639    // constructor and if the second standard conversion sequence of
2640    // U1 is better than the second standard conversion sequence of
2641    // U2 (C++ 13.3.3.2p3).
2642    if (ICS1.UserDefined.ConversionFunction ==
2643          ICS2.UserDefined.ConversionFunction)
2644      return CompareStandardConversionSequences(S,
2645                                                ICS1.UserDefined.After,
2646                                                ICS2.UserDefined.After);
2647  }
2648
2649  return ImplicitConversionSequence::Indistinguishable;
2650}
2651
2652static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2653  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2654    Qualifiers Quals;
2655    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2656    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2657  }
2658
2659  return Context.hasSameUnqualifiedType(T1, T2);
2660}
2661
2662// Per 13.3.3.2p3, compare the given standard conversion sequences to
2663// determine if one is a proper subset of the other.
2664static ImplicitConversionSequence::CompareKind
2665compareStandardConversionSubsets(ASTContext &Context,
2666                                 const StandardConversionSequence& SCS1,
2667                                 const StandardConversionSequence& SCS2) {
2668  ImplicitConversionSequence::CompareKind Result
2669    = ImplicitConversionSequence::Indistinguishable;
2670
2671  // the identity conversion sequence is considered to be a subsequence of
2672  // any non-identity conversion sequence
2673  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2674    return ImplicitConversionSequence::Better;
2675  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2676    return ImplicitConversionSequence::Worse;
2677
2678  if (SCS1.Second != SCS2.Second) {
2679    if (SCS1.Second == ICK_Identity)
2680      Result = ImplicitConversionSequence::Better;
2681    else if (SCS2.Second == ICK_Identity)
2682      Result = ImplicitConversionSequence::Worse;
2683    else
2684      return ImplicitConversionSequence::Indistinguishable;
2685  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2686    return ImplicitConversionSequence::Indistinguishable;
2687
2688  if (SCS1.Third == SCS2.Third) {
2689    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2690                             : ImplicitConversionSequence::Indistinguishable;
2691  }
2692
2693  if (SCS1.Third == ICK_Identity)
2694    return Result == ImplicitConversionSequence::Worse
2695             ? ImplicitConversionSequence::Indistinguishable
2696             : ImplicitConversionSequence::Better;
2697
2698  if (SCS2.Third == ICK_Identity)
2699    return Result == ImplicitConversionSequence::Better
2700             ? ImplicitConversionSequence::Indistinguishable
2701             : ImplicitConversionSequence::Worse;
2702
2703  return ImplicitConversionSequence::Indistinguishable;
2704}
2705
2706/// \brief Determine whether one of the given reference bindings is better
2707/// than the other based on what kind of bindings they are.
2708static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2709                                       const StandardConversionSequence &SCS2) {
2710  // C++0x [over.ics.rank]p3b4:
2711  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2712  //      implicit object parameter of a non-static member function declared
2713  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2714  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2715  //      lvalue reference to a function lvalue and S2 binds an rvalue
2716  //      reference*.
2717  //
2718  // FIXME: Rvalue references. We're going rogue with the above edits,
2719  // because the semantics in the current C++0x working paper (N3225 at the
2720  // time of this writing) break the standard definition of std::forward
2721  // and std::reference_wrapper when dealing with references to functions.
2722  // Proposed wording changes submitted to CWG for consideration.
2723  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2724      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2725    return false;
2726
2727  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2728          SCS2.IsLvalueReference) ||
2729         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2730          !SCS2.IsLvalueReference);
2731}
2732
2733/// CompareStandardConversionSequences - Compare two standard
2734/// conversion sequences to determine whether one is better than the
2735/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2736static ImplicitConversionSequence::CompareKind
2737CompareStandardConversionSequences(Sema &S,
2738                                   const StandardConversionSequence& SCS1,
2739                                   const StandardConversionSequence& SCS2)
2740{
2741  // Standard conversion sequence S1 is a better conversion sequence
2742  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2743
2744  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2745  //     sequences in the canonical form defined by 13.3.3.1.1,
2746  //     excluding any Lvalue Transformation; the identity conversion
2747  //     sequence is considered to be a subsequence of any
2748  //     non-identity conversion sequence) or, if not that,
2749  if (ImplicitConversionSequence::CompareKind CK
2750        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2751    return CK;
2752
2753  //  -- the rank of S1 is better than the rank of S2 (by the rules
2754  //     defined below), or, if not that,
2755  ImplicitConversionRank Rank1 = SCS1.getRank();
2756  ImplicitConversionRank Rank2 = SCS2.getRank();
2757  if (Rank1 < Rank2)
2758    return ImplicitConversionSequence::Better;
2759  else if (Rank2 < Rank1)
2760    return ImplicitConversionSequence::Worse;
2761
2762  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2763  // are indistinguishable unless one of the following rules
2764  // applies:
2765
2766  //   A conversion that is not a conversion of a pointer, or
2767  //   pointer to member, to bool is better than another conversion
2768  //   that is such a conversion.
2769  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2770    return SCS2.isPointerConversionToBool()
2771             ? ImplicitConversionSequence::Better
2772             : ImplicitConversionSequence::Worse;
2773
2774  // C++ [over.ics.rank]p4b2:
2775  //
2776  //   If class B is derived directly or indirectly from class A,
2777  //   conversion of B* to A* is better than conversion of B* to
2778  //   void*, and conversion of A* to void* is better than conversion
2779  //   of B* to void*.
2780  bool SCS1ConvertsToVoid
2781    = SCS1.isPointerConversionToVoidPointer(S.Context);
2782  bool SCS2ConvertsToVoid
2783    = SCS2.isPointerConversionToVoidPointer(S.Context);
2784  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2785    // Exactly one of the conversion sequences is a conversion to
2786    // a void pointer; it's the worse conversion.
2787    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2788                              : ImplicitConversionSequence::Worse;
2789  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2790    // Neither conversion sequence converts to a void pointer; compare
2791    // their derived-to-base conversions.
2792    if (ImplicitConversionSequence::CompareKind DerivedCK
2793          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2794      return DerivedCK;
2795  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
2796             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
2797    // Both conversion sequences are conversions to void
2798    // pointers. Compare the source types to determine if there's an
2799    // inheritance relationship in their sources.
2800    QualType FromType1 = SCS1.getFromType();
2801    QualType FromType2 = SCS2.getFromType();
2802
2803    // Adjust the types we're converting from via the array-to-pointer
2804    // conversion, if we need to.
2805    if (SCS1.First == ICK_Array_To_Pointer)
2806      FromType1 = S.Context.getArrayDecayedType(FromType1);
2807    if (SCS2.First == ICK_Array_To_Pointer)
2808      FromType2 = S.Context.getArrayDecayedType(FromType2);
2809
2810    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
2811    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
2812
2813    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2814      return ImplicitConversionSequence::Better;
2815    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2816      return ImplicitConversionSequence::Worse;
2817
2818    // Objective-C++: If one interface is more specific than the
2819    // other, it is the better one.
2820    const ObjCObjectPointerType* FromObjCPtr1
2821      = FromType1->getAs<ObjCObjectPointerType>();
2822    const ObjCObjectPointerType* FromObjCPtr2
2823      = FromType2->getAs<ObjCObjectPointerType>();
2824    if (FromObjCPtr1 && FromObjCPtr2) {
2825      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
2826                                                          FromObjCPtr2);
2827      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
2828                                                           FromObjCPtr1);
2829      if (AssignLeft != AssignRight) {
2830        return AssignLeft? ImplicitConversionSequence::Better
2831                         : ImplicitConversionSequence::Worse;
2832      }
2833    }
2834  }
2835
2836  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2837  // bullet 3).
2838  if (ImplicitConversionSequence::CompareKind QualCK
2839        = CompareQualificationConversions(S, SCS1, SCS2))
2840    return QualCK;
2841
2842  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2843    // Check for a better reference binding based on the kind of bindings.
2844    if (isBetterReferenceBindingKind(SCS1, SCS2))
2845      return ImplicitConversionSequence::Better;
2846    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2847      return ImplicitConversionSequence::Worse;
2848
2849    // C++ [over.ics.rank]p3b4:
2850    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2851    //      which the references refer are the same type except for
2852    //      top-level cv-qualifiers, and the type to which the reference
2853    //      initialized by S2 refers is more cv-qualified than the type
2854    //      to which the reference initialized by S1 refers.
2855    QualType T1 = SCS1.getToType(2);
2856    QualType T2 = SCS2.getToType(2);
2857    T1 = S.Context.getCanonicalType(T1);
2858    T2 = S.Context.getCanonicalType(T2);
2859    Qualifiers T1Quals, T2Quals;
2860    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2861    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2862    if (UnqualT1 == UnqualT2) {
2863      // Objective-C++ ARC: If the references refer to objects with different
2864      // lifetimes, prefer bindings that don't change lifetime.
2865      if (SCS1.ObjCLifetimeConversionBinding !=
2866                                          SCS2.ObjCLifetimeConversionBinding) {
2867        return SCS1.ObjCLifetimeConversionBinding
2868                                           ? ImplicitConversionSequence::Worse
2869                                           : ImplicitConversionSequence::Better;
2870      }
2871
2872      // If the type is an array type, promote the element qualifiers to the
2873      // type for comparison.
2874      if (isa<ArrayType>(T1) && T1Quals)
2875        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2876      if (isa<ArrayType>(T2) && T2Quals)
2877        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2878      if (T2.isMoreQualifiedThan(T1))
2879        return ImplicitConversionSequence::Better;
2880      else if (T1.isMoreQualifiedThan(T2))
2881        return ImplicitConversionSequence::Worse;
2882    }
2883  }
2884
2885  // In Microsoft mode, prefer an integral conversion to a
2886  // floating-to-integral conversion if the integral conversion
2887  // is between types of the same size.
2888  // For example:
2889  // void f(float);
2890  // void f(int);
2891  // int main {
2892  //    long a;
2893  //    f(a);
2894  // }
2895  // Here, MSVC will call f(int) instead of generating a compile error
2896  // as clang will do in standard mode.
2897  if (S.getLangOptions().MicrosoftMode &&
2898      SCS1.Second == ICK_Integral_Conversion &&
2899      SCS2.Second == ICK_Floating_Integral &&
2900      S.Context.getTypeSize(SCS1.getFromType()) ==
2901      S.Context.getTypeSize(SCS1.getToType(2)))
2902    return ImplicitConversionSequence::Better;
2903
2904  return ImplicitConversionSequence::Indistinguishable;
2905}
2906
2907/// CompareQualificationConversions - Compares two standard conversion
2908/// sequences to determine whether they can be ranked based on their
2909/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2910ImplicitConversionSequence::CompareKind
2911CompareQualificationConversions(Sema &S,
2912                                const StandardConversionSequence& SCS1,
2913                                const StandardConversionSequence& SCS2) {
2914  // C++ 13.3.3.2p3:
2915  //  -- S1 and S2 differ only in their qualification conversion and
2916  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2917  //     cv-qualification signature of type T1 is a proper subset of
2918  //     the cv-qualification signature of type T2, and S1 is not the
2919  //     deprecated string literal array-to-pointer conversion (4.2).
2920  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2921      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2922    return ImplicitConversionSequence::Indistinguishable;
2923
2924  // FIXME: the example in the standard doesn't use a qualification
2925  // conversion (!)
2926  QualType T1 = SCS1.getToType(2);
2927  QualType T2 = SCS2.getToType(2);
2928  T1 = S.Context.getCanonicalType(T1);
2929  T2 = S.Context.getCanonicalType(T2);
2930  Qualifiers T1Quals, T2Quals;
2931  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2932  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2933
2934  // If the types are the same, we won't learn anything by unwrapped
2935  // them.
2936  if (UnqualT1 == UnqualT2)
2937    return ImplicitConversionSequence::Indistinguishable;
2938
2939  // If the type is an array type, promote the element qualifiers to the type
2940  // for comparison.
2941  if (isa<ArrayType>(T1) && T1Quals)
2942    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2943  if (isa<ArrayType>(T2) && T2Quals)
2944    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2945
2946  ImplicitConversionSequence::CompareKind Result
2947    = ImplicitConversionSequence::Indistinguishable;
2948
2949  // Objective-C++ ARC:
2950  //   Prefer qualification conversions not involving a change in lifetime
2951  //   to qualification conversions that do not change lifetime.
2952  if (SCS1.QualificationIncludesObjCLifetime !=
2953                                      SCS2.QualificationIncludesObjCLifetime) {
2954    Result = SCS1.QualificationIncludesObjCLifetime
2955               ? ImplicitConversionSequence::Worse
2956               : ImplicitConversionSequence::Better;
2957  }
2958
2959  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2960    // Within each iteration of the loop, we check the qualifiers to
2961    // determine if this still looks like a qualification
2962    // conversion. Then, if all is well, we unwrap one more level of
2963    // pointers or pointers-to-members and do it all again
2964    // until there are no more pointers or pointers-to-members left
2965    // to unwrap. This essentially mimics what
2966    // IsQualificationConversion does, but here we're checking for a
2967    // strict subset of qualifiers.
2968    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2969      // The qualifiers are the same, so this doesn't tell us anything
2970      // about how the sequences rank.
2971      ;
2972    else if (T2.isMoreQualifiedThan(T1)) {
2973      // T1 has fewer qualifiers, so it could be the better sequence.
2974      if (Result == ImplicitConversionSequence::Worse)
2975        // Neither has qualifiers that are a subset of the other's
2976        // qualifiers.
2977        return ImplicitConversionSequence::Indistinguishable;
2978
2979      Result = ImplicitConversionSequence::Better;
2980    } else if (T1.isMoreQualifiedThan(T2)) {
2981      // T2 has fewer qualifiers, so it could be the better sequence.
2982      if (Result == ImplicitConversionSequence::Better)
2983        // Neither has qualifiers that are a subset of the other's
2984        // qualifiers.
2985        return ImplicitConversionSequence::Indistinguishable;
2986
2987      Result = ImplicitConversionSequence::Worse;
2988    } else {
2989      // Qualifiers are disjoint.
2990      return ImplicitConversionSequence::Indistinguishable;
2991    }
2992
2993    // If the types after this point are equivalent, we're done.
2994    if (S.Context.hasSameUnqualifiedType(T1, T2))
2995      break;
2996  }
2997
2998  // Check that the winning standard conversion sequence isn't using
2999  // the deprecated string literal array to pointer conversion.
3000  switch (Result) {
3001  case ImplicitConversionSequence::Better:
3002    if (SCS1.DeprecatedStringLiteralToCharPtr)
3003      Result = ImplicitConversionSequence::Indistinguishable;
3004    break;
3005
3006  case ImplicitConversionSequence::Indistinguishable:
3007    break;
3008
3009  case ImplicitConversionSequence::Worse:
3010    if (SCS2.DeprecatedStringLiteralToCharPtr)
3011      Result = ImplicitConversionSequence::Indistinguishable;
3012    break;
3013  }
3014
3015  return Result;
3016}
3017
3018/// CompareDerivedToBaseConversions - Compares two standard conversion
3019/// sequences to determine whether they can be ranked based on their
3020/// various kinds of derived-to-base conversions (C++
3021/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3022/// conversions between Objective-C interface types.
3023ImplicitConversionSequence::CompareKind
3024CompareDerivedToBaseConversions(Sema &S,
3025                                const StandardConversionSequence& SCS1,
3026                                const StandardConversionSequence& SCS2) {
3027  QualType FromType1 = SCS1.getFromType();
3028  QualType ToType1 = SCS1.getToType(1);
3029  QualType FromType2 = SCS2.getFromType();
3030  QualType ToType2 = SCS2.getToType(1);
3031
3032  // Adjust the types we're converting from via the array-to-pointer
3033  // conversion, if we need to.
3034  if (SCS1.First == ICK_Array_To_Pointer)
3035    FromType1 = S.Context.getArrayDecayedType(FromType1);
3036  if (SCS2.First == ICK_Array_To_Pointer)
3037    FromType2 = S.Context.getArrayDecayedType(FromType2);
3038
3039  // Canonicalize all of the types.
3040  FromType1 = S.Context.getCanonicalType(FromType1);
3041  ToType1 = S.Context.getCanonicalType(ToType1);
3042  FromType2 = S.Context.getCanonicalType(FromType2);
3043  ToType2 = S.Context.getCanonicalType(ToType2);
3044
3045  // C++ [over.ics.rank]p4b3:
3046  //
3047  //   If class B is derived directly or indirectly from class A and
3048  //   class C is derived directly or indirectly from B,
3049  //
3050  // Compare based on pointer conversions.
3051  if (SCS1.Second == ICK_Pointer_Conversion &&
3052      SCS2.Second == ICK_Pointer_Conversion &&
3053      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3054      FromType1->isPointerType() && FromType2->isPointerType() &&
3055      ToType1->isPointerType() && ToType2->isPointerType()) {
3056    QualType FromPointee1
3057      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3058    QualType ToPointee1
3059      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3060    QualType FromPointee2
3061      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3062    QualType ToPointee2
3063      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3064
3065    //   -- conversion of C* to B* is better than conversion of C* to A*,
3066    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3067      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3068        return ImplicitConversionSequence::Better;
3069      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3070        return ImplicitConversionSequence::Worse;
3071    }
3072
3073    //   -- conversion of B* to A* is better than conversion of C* to A*,
3074    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3075      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3076        return ImplicitConversionSequence::Better;
3077      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3078        return ImplicitConversionSequence::Worse;
3079    }
3080  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3081             SCS2.Second == ICK_Pointer_Conversion) {
3082    const ObjCObjectPointerType *FromPtr1
3083      = FromType1->getAs<ObjCObjectPointerType>();
3084    const ObjCObjectPointerType *FromPtr2
3085      = FromType2->getAs<ObjCObjectPointerType>();
3086    const ObjCObjectPointerType *ToPtr1
3087      = ToType1->getAs<ObjCObjectPointerType>();
3088    const ObjCObjectPointerType *ToPtr2
3089      = ToType2->getAs<ObjCObjectPointerType>();
3090
3091    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3092      // Apply the same conversion ranking rules for Objective-C pointer types
3093      // that we do for C++ pointers to class types. However, we employ the
3094      // Objective-C pseudo-subtyping relationship used for assignment of
3095      // Objective-C pointer types.
3096      bool FromAssignLeft
3097        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3098      bool FromAssignRight
3099        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3100      bool ToAssignLeft
3101        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3102      bool ToAssignRight
3103        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3104
3105      // A conversion to an a non-id object pointer type or qualified 'id'
3106      // type is better than a conversion to 'id'.
3107      if (ToPtr1->isObjCIdType() &&
3108          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3109        return ImplicitConversionSequence::Worse;
3110      if (ToPtr2->isObjCIdType() &&
3111          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3112        return ImplicitConversionSequence::Better;
3113
3114      // A conversion to a non-id object pointer type is better than a
3115      // conversion to a qualified 'id' type
3116      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3117        return ImplicitConversionSequence::Worse;
3118      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3119        return ImplicitConversionSequence::Better;
3120
3121      // A conversion to an a non-Class object pointer type or qualified 'Class'
3122      // type is better than a conversion to 'Class'.
3123      if (ToPtr1->isObjCClassType() &&
3124          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3125        return ImplicitConversionSequence::Worse;
3126      if (ToPtr2->isObjCClassType() &&
3127          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3128        return ImplicitConversionSequence::Better;
3129
3130      // A conversion to a non-Class object pointer type is better than a
3131      // conversion to a qualified 'Class' type.
3132      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3133        return ImplicitConversionSequence::Worse;
3134      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3135        return ImplicitConversionSequence::Better;
3136
3137      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3138      if (S.Context.hasSameType(FromType1, FromType2) &&
3139          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3140          (ToAssignLeft != ToAssignRight))
3141        return ToAssignLeft? ImplicitConversionSequence::Worse
3142                           : ImplicitConversionSequence::Better;
3143
3144      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3145      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3146          (FromAssignLeft != FromAssignRight))
3147        return FromAssignLeft? ImplicitConversionSequence::Better
3148        : ImplicitConversionSequence::Worse;
3149    }
3150  }
3151
3152  // Ranking of member-pointer types.
3153  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3154      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3155      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3156    const MemberPointerType * FromMemPointer1 =
3157                                        FromType1->getAs<MemberPointerType>();
3158    const MemberPointerType * ToMemPointer1 =
3159                                          ToType1->getAs<MemberPointerType>();
3160    const MemberPointerType * FromMemPointer2 =
3161                                          FromType2->getAs<MemberPointerType>();
3162    const MemberPointerType * ToMemPointer2 =
3163                                          ToType2->getAs<MemberPointerType>();
3164    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3165    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3166    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3167    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3168    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3169    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3170    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3171    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3172    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3173    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3174      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3175        return ImplicitConversionSequence::Worse;
3176      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3177        return ImplicitConversionSequence::Better;
3178    }
3179    // conversion of B::* to C::* is better than conversion of A::* to C::*
3180    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3181      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3182        return ImplicitConversionSequence::Better;
3183      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3184        return ImplicitConversionSequence::Worse;
3185    }
3186  }
3187
3188  if (SCS1.Second == ICK_Derived_To_Base) {
3189    //   -- conversion of C to B is better than conversion of C to A,
3190    //   -- binding of an expression of type C to a reference of type
3191    //      B& is better than binding an expression of type C to a
3192    //      reference of type A&,
3193    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3194        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3195      if (S.IsDerivedFrom(ToType1, ToType2))
3196        return ImplicitConversionSequence::Better;
3197      else if (S.IsDerivedFrom(ToType2, ToType1))
3198        return ImplicitConversionSequence::Worse;
3199    }
3200
3201    //   -- conversion of B to A is better than conversion of C to A.
3202    //   -- binding of an expression of type B to a reference of type
3203    //      A& is better than binding an expression of type C to a
3204    //      reference of type A&,
3205    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3206        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3207      if (S.IsDerivedFrom(FromType2, FromType1))
3208        return ImplicitConversionSequence::Better;
3209      else if (S.IsDerivedFrom(FromType1, FromType2))
3210        return ImplicitConversionSequence::Worse;
3211    }
3212  }
3213
3214  return ImplicitConversionSequence::Indistinguishable;
3215}
3216
3217/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3218/// determine whether they are reference-related,
3219/// reference-compatible, reference-compatible with added
3220/// qualification, or incompatible, for use in C++ initialization by
3221/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3222/// type, and the first type (T1) is the pointee type of the reference
3223/// type being initialized.
3224Sema::ReferenceCompareResult
3225Sema::CompareReferenceRelationship(SourceLocation Loc,
3226                                   QualType OrigT1, QualType OrigT2,
3227                                   bool &DerivedToBase,
3228                                   bool &ObjCConversion,
3229                                   bool &ObjCLifetimeConversion) {
3230  assert(!OrigT1->isReferenceType() &&
3231    "T1 must be the pointee type of the reference type");
3232  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3233
3234  QualType T1 = Context.getCanonicalType(OrigT1);
3235  QualType T2 = Context.getCanonicalType(OrigT2);
3236  Qualifiers T1Quals, T2Quals;
3237  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3238  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3239
3240  // C++ [dcl.init.ref]p4:
3241  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3242  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3243  //   T1 is a base class of T2.
3244  DerivedToBase = false;
3245  ObjCConversion = false;
3246  ObjCLifetimeConversion = false;
3247  if (UnqualT1 == UnqualT2) {
3248    // Nothing to do.
3249  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3250           IsDerivedFrom(UnqualT2, UnqualT1))
3251    DerivedToBase = true;
3252  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3253           UnqualT2->isObjCObjectOrInterfaceType() &&
3254           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3255    ObjCConversion = true;
3256  else
3257    return Ref_Incompatible;
3258
3259  // At this point, we know that T1 and T2 are reference-related (at
3260  // least).
3261
3262  // If the type is an array type, promote the element qualifiers to the type
3263  // for comparison.
3264  if (isa<ArrayType>(T1) && T1Quals)
3265    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3266  if (isa<ArrayType>(T2) && T2Quals)
3267    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3268
3269  // C++ [dcl.init.ref]p4:
3270  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3271  //   reference-related to T2 and cv1 is the same cv-qualification
3272  //   as, or greater cv-qualification than, cv2. For purposes of
3273  //   overload resolution, cases for which cv1 is greater
3274  //   cv-qualification than cv2 are identified as
3275  //   reference-compatible with added qualification (see 13.3.3.2).
3276  //
3277  // Note that we also require equivalence of Objective-C GC and address-space
3278  // qualifiers when performing these computations, so that e.g., an int in
3279  // address space 1 is not reference-compatible with an int in address
3280  // space 2.
3281  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3282      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3283    T1Quals.removeObjCLifetime();
3284    T2Quals.removeObjCLifetime();
3285    ObjCLifetimeConversion = true;
3286  }
3287
3288  if (T1Quals == T2Quals)
3289    return Ref_Compatible;
3290  else if (T1Quals.compatiblyIncludes(T2Quals))
3291    return Ref_Compatible_With_Added_Qualification;
3292  else
3293    return Ref_Related;
3294}
3295
3296/// \brief Look for a user-defined conversion to an value reference-compatible
3297///        with DeclType. Return true if something definite is found.
3298static bool
3299FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3300                         QualType DeclType, SourceLocation DeclLoc,
3301                         Expr *Init, QualType T2, bool AllowRvalues,
3302                         bool AllowExplicit) {
3303  assert(T2->isRecordType() && "Can only find conversions of record types.");
3304  CXXRecordDecl *T2RecordDecl
3305    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3306
3307  OverloadCandidateSet CandidateSet(DeclLoc);
3308  const UnresolvedSetImpl *Conversions
3309    = T2RecordDecl->getVisibleConversionFunctions();
3310  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3311         E = Conversions->end(); I != E; ++I) {
3312    NamedDecl *D = *I;
3313    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3314    if (isa<UsingShadowDecl>(D))
3315      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3316
3317    FunctionTemplateDecl *ConvTemplate
3318      = dyn_cast<FunctionTemplateDecl>(D);
3319    CXXConversionDecl *Conv;
3320    if (ConvTemplate)
3321      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3322    else
3323      Conv = cast<CXXConversionDecl>(D);
3324
3325    // If this is an explicit conversion, and we're not allowed to consider
3326    // explicit conversions, skip it.
3327    if (!AllowExplicit && Conv->isExplicit())
3328      continue;
3329
3330    if (AllowRvalues) {
3331      bool DerivedToBase = false;
3332      bool ObjCConversion = false;
3333      bool ObjCLifetimeConversion = false;
3334
3335      // If we are initializing an rvalue reference, don't permit conversion
3336      // functions that return lvalues.
3337      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3338        const ReferenceType *RefType
3339          = Conv->getConversionType()->getAs<LValueReferenceType>();
3340        if (RefType && !RefType->getPointeeType()->isFunctionType())
3341          continue;
3342      }
3343
3344      if (!ConvTemplate &&
3345          S.CompareReferenceRelationship(
3346            DeclLoc,
3347            Conv->getConversionType().getNonReferenceType()
3348              .getUnqualifiedType(),
3349            DeclType.getNonReferenceType().getUnqualifiedType(),
3350            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3351          Sema::Ref_Incompatible)
3352        continue;
3353    } else {
3354      // If the conversion function doesn't return a reference type,
3355      // it can't be considered for this conversion. An rvalue reference
3356      // is only acceptable if its referencee is a function type.
3357
3358      const ReferenceType *RefType =
3359        Conv->getConversionType()->getAs<ReferenceType>();
3360      if (!RefType ||
3361          (!RefType->isLValueReferenceType() &&
3362           !RefType->getPointeeType()->isFunctionType()))
3363        continue;
3364    }
3365
3366    if (ConvTemplate)
3367      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3368                                       Init, DeclType, CandidateSet);
3369    else
3370      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3371                               DeclType, CandidateSet);
3372  }
3373
3374  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3375
3376  OverloadCandidateSet::iterator Best;
3377  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3378  case OR_Success:
3379    // C++ [over.ics.ref]p1:
3380    //
3381    //   [...] If the parameter binds directly to the result of
3382    //   applying a conversion function to the argument
3383    //   expression, the implicit conversion sequence is a
3384    //   user-defined conversion sequence (13.3.3.1.2), with the
3385    //   second standard conversion sequence either an identity
3386    //   conversion or, if the conversion function returns an
3387    //   entity of a type that is a derived class of the parameter
3388    //   type, a derived-to-base Conversion.
3389    if (!Best->FinalConversion.DirectBinding)
3390      return false;
3391
3392    if (Best->Function)
3393      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3394    ICS.setUserDefined();
3395    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3396    ICS.UserDefined.After = Best->FinalConversion;
3397    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
3398    ICS.UserDefined.ConversionFunction = Best->Function;
3399    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
3400    ICS.UserDefined.EllipsisConversion = false;
3401    assert(ICS.UserDefined.After.ReferenceBinding &&
3402           ICS.UserDefined.After.DirectBinding &&
3403           "Expected a direct reference binding!");
3404    return true;
3405
3406  case OR_Ambiguous:
3407    ICS.setAmbiguous();
3408    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3409         Cand != CandidateSet.end(); ++Cand)
3410      if (Cand->Viable)
3411        ICS.Ambiguous.addConversion(Cand->Function);
3412    return true;
3413
3414  case OR_No_Viable_Function:
3415  case OR_Deleted:
3416    // There was no suitable conversion, or we found a deleted
3417    // conversion; continue with other checks.
3418    return false;
3419  }
3420
3421  return false;
3422}
3423
3424/// \brief Compute an implicit conversion sequence for reference
3425/// initialization.
3426static ImplicitConversionSequence
3427TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3428                 SourceLocation DeclLoc,
3429                 bool SuppressUserConversions,
3430                 bool AllowExplicit) {
3431  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3432
3433  // Most paths end in a failed conversion.
3434  ImplicitConversionSequence ICS;
3435  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3436
3437  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3438  QualType T2 = Init->getType();
3439
3440  // If the initializer is the address of an overloaded function, try
3441  // to resolve the overloaded function. If all goes well, T2 is the
3442  // type of the resulting function.
3443  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3444    DeclAccessPair Found;
3445    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3446                                                                false, Found))
3447      T2 = Fn->getType();
3448  }
3449
3450  // Compute some basic properties of the types and the initializer.
3451  bool isRValRef = DeclType->isRValueReferenceType();
3452  bool DerivedToBase = false;
3453  bool ObjCConversion = false;
3454  bool ObjCLifetimeConversion = false;
3455  Expr::Classification InitCategory = Init->Classify(S.Context);
3456  Sema::ReferenceCompareResult RefRelationship
3457    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3458                                     ObjCConversion, ObjCLifetimeConversion);
3459
3460
3461  // C++0x [dcl.init.ref]p5:
3462  //   A reference to type "cv1 T1" is initialized by an expression
3463  //   of type "cv2 T2" as follows:
3464
3465  //     -- If reference is an lvalue reference and the initializer expression
3466  if (!isRValRef) {
3467    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3468    //        reference-compatible with "cv2 T2," or
3469    //
3470    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3471    if (InitCategory.isLValue() &&
3472        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3473      // C++ [over.ics.ref]p1:
3474      //   When a parameter of reference type binds directly (8.5.3)
3475      //   to an argument expression, the implicit conversion sequence
3476      //   is the identity conversion, unless the argument expression
3477      //   has a type that is a derived class of the parameter type,
3478      //   in which case the implicit conversion sequence is a
3479      //   derived-to-base Conversion (13.3.3.1).
3480      ICS.setStandard();
3481      ICS.Standard.First = ICK_Identity;
3482      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3483                         : ObjCConversion? ICK_Compatible_Conversion
3484                         : ICK_Identity;
3485      ICS.Standard.Third = ICK_Identity;
3486      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3487      ICS.Standard.setToType(0, T2);
3488      ICS.Standard.setToType(1, T1);
3489      ICS.Standard.setToType(2, T1);
3490      ICS.Standard.ReferenceBinding = true;
3491      ICS.Standard.DirectBinding = true;
3492      ICS.Standard.IsLvalueReference = !isRValRef;
3493      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3494      ICS.Standard.BindsToRvalue = false;
3495      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3496      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3497      ICS.Standard.CopyConstructor = 0;
3498
3499      // Nothing more to do: the inaccessibility/ambiguity check for
3500      // derived-to-base conversions is suppressed when we're
3501      // computing the implicit conversion sequence (C++
3502      // [over.best.ics]p2).
3503      return ICS;
3504    }
3505
3506    //       -- has a class type (i.e., T2 is a class type), where T1 is
3507    //          not reference-related to T2, and can be implicitly
3508    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3509    //          is reference-compatible with "cv3 T3" 92) (this
3510    //          conversion is selected by enumerating the applicable
3511    //          conversion functions (13.3.1.6) and choosing the best
3512    //          one through overload resolution (13.3)),
3513    if (!SuppressUserConversions && T2->isRecordType() &&
3514        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3515        RefRelationship == Sema::Ref_Incompatible) {
3516      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3517                                   Init, T2, /*AllowRvalues=*/false,
3518                                   AllowExplicit))
3519        return ICS;
3520    }
3521  }
3522
3523  //     -- Otherwise, the reference shall be an lvalue reference to a
3524  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3525  //        shall be an rvalue reference.
3526  //
3527  // We actually handle one oddity of C++ [over.ics.ref] at this
3528  // point, which is that, due to p2 (which short-circuits reference
3529  // binding by only attempting a simple conversion for non-direct
3530  // bindings) and p3's strange wording, we allow a const volatile
3531  // reference to bind to an rvalue. Hence the check for the presence
3532  // of "const" rather than checking for "const" being the only
3533  // qualifier.
3534  // This is also the point where rvalue references and lvalue inits no longer
3535  // go together.
3536  if (!isRValRef && !T1.isConstQualified())
3537    return ICS;
3538
3539  //       -- If the initializer expression
3540  //
3541  //            -- is an xvalue, class prvalue, array prvalue or function
3542  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3543  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3544      (InitCategory.isXValue() ||
3545      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3546      (InitCategory.isLValue() && T2->isFunctionType()))) {
3547    ICS.setStandard();
3548    ICS.Standard.First = ICK_Identity;
3549    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3550                      : ObjCConversion? ICK_Compatible_Conversion
3551                      : ICK_Identity;
3552    ICS.Standard.Third = ICK_Identity;
3553    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3554    ICS.Standard.setToType(0, T2);
3555    ICS.Standard.setToType(1, T1);
3556    ICS.Standard.setToType(2, T1);
3557    ICS.Standard.ReferenceBinding = true;
3558    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3559    // binding unless we're binding to a class prvalue.
3560    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3561    // allow the use of rvalue references in C++98/03 for the benefit of
3562    // standard library implementors; therefore, we need the xvalue check here.
3563    ICS.Standard.DirectBinding =
3564      S.getLangOptions().CPlusPlus0x ||
3565      (InitCategory.isPRValue() && !T2->isRecordType());
3566    ICS.Standard.IsLvalueReference = !isRValRef;
3567    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3568    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3569    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3570    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3571    ICS.Standard.CopyConstructor = 0;
3572    return ICS;
3573  }
3574
3575  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3576  //               reference-related to T2, and can be implicitly converted to
3577  //               an xvalue, class prvalue, or function lvalue of type
3578  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3579  //               "cv3 T3",
3580  //
3581  //          then the reference is bound to the value of the initializer
3582  //          expression in the first case and to the result of the conversion
3583  //          in the second case (or, in either case, to an appropriate base
3584  //          class subobject).
3585  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3586      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3587      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3588                               Init, T2, /*AllowRvalues=*/true,
3589                               AllowExplicit)) {
3590    // In the second case, if the reference is an rvalue reference
3591    // and the second standard conversion sequence of the
3592    // user-defined conversion sequence includes an lvalue-to-rvalue
3593    // conversion, the program is ill-formed.
3594    if (ICS.isUserDefined() && isRValRef &&
3595        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3596      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3597
3598    return ICS;
3599  }
3600
3601  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3602  //          initialized from the initializer expression using the
3603  //          rules for a non-reference copy initialization (8.5). The
3604  //          reference is then bound to the temporary. If T1 is
3605  //          reference-related to T2, cv1 must be the same
3606  //          cv-qualification as, or greater cv-qualification than,
3607  //          cv2; otherwise, the program is ill-formed.
3608  if (RefRelationship == Sema::Ref_Related) {
3609    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3610    // we would be reference-compatible or reference-compatible with
3611    // added qualification. But that wasn't the case, so the reference
3612    // initialization fails.
3613    //
3614    // Note that we only want to check address spaces and cvr-qualifiers here.
3615    // ObjC GC and lifetime qualifiers aren't important.
3616    Qualifiers T1Quals = T1.getQualifiers();
3617    Qualifiers T2Quals = T2.getQualifiers();
3618    T1Quals.removeObjCGCAttr();
3619    T1Quals.removeObjCLifetime();
3620    T2Quals.removeObjCGCAttr();
3621    T2Quals.removeObjCLifetime();
3622    if (!T1Quals.compatiblyIncludes(T2Quals))
3623      return ICS;
3624  }
3625
3626  // If at least one of the types is a class type, the types are not
3627  // related, and we aren't allowed any user conversions, the
3628  // reference binding fails. This case is important for breaking
3629  // recursion, since TryImplicitConversion below will attempt to
3630  // create a temporary through the use of a copy constructor.
3631  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3632      (T1->isRecordType() || T2->isRecordType()))
3633    return ICS;
3634
3635  // If T1 is reference-related to T2 and the reference is an rvalue
3636  // reference, the initializer expression shall not be an lvalue.
3637  if (RefRelationship >= Sema::Ref_Related &&
3638      isRValRef && Init->Classify(S.Context).isLValue())
3639    return ICS;
3640
3641  // C++ [over.ics.ref]p2:
3642  //   When a parameter of reference type is not bound directly to
3643  //   an argument expression, the conversion sequence is the one
3644  //   required to convert the argument expression to the
3645  //   underlying type of the reference according to
3646  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3647  //   to copy-initializing a temporary of the underlying type with
3648  //   the argument expression. Any difference in top-level
3649  //   cv-qualification is subsumed by the initialization itself
3650  //   and does not constitute a conversion.
3651  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3652                              /*AllowExplicit=*/false,
3653                              /*InOverloadResolution=*/false,
3654                              /*CStyle=*/false,
3655                              /*AllowObjCWritebackConversion=*/false);
3656
3657  // Of course, that's still a reference binding.
3658  if (ICS.isStandard()) {
3659    ICS.Standard.ReferenceBinding = true;
3660    ICS.Standard.IsLvalueReference = !isRValRef;
3661    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3662    ICS.Standard.BindsToRvalue = true;
3663    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3664    ICS.Standard.ObjCLifetimeConversionBinding = false;
3665  } else if (ICS.isUserDefined()) {
3666    // Don't allow rvalue references to bind to lvalues.
3667    if (DeclType->isRValueReferenceType()) {
3668      if (const ReferenceType *RefType
3669            = ICS.UserDefined.ConversionFunction->getResultType()
3670                ->getAs<LValueReferenceType>()) {
3671        if (!RefType->getPointeeType()->isFunctionType()) {
3672          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
3673                     DeclType);
3674          return ICS;
3675        }
3676      }
3677    }
3678
3679    ICS.UserDefined.After.ReferenceBinding = true;
3680    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
3681    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
3682    ICS.UserDefined.After.BindsToRvalue = true;
3683    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3684    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
3685  }
3686
3687  return ICS;
3688}
3689
3690/// TryCopyInitialization - Try to copy-initialize a value of type
3691/// ToType from the expression From. Return the implicit conversion
3692/// sequence required to pass this argument, which may be a bad
3693/// conversion sequence (meaning that the argument cannot be passed to
3694/// a parameter of this type). If @p SuppressUserConversions, then we
3695/// do not permit any user-defined conversion sequences.
3696static ImplicitConversionSequence
3697TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3698                      bool SuppressUserConversions,
3699                      bool InOverloadResolution,
3700                      bool AllowObjCWritebackConversion) {
3701  if (ToType->isReferenceType())
3702    return TryReferenceInit(S, From, ToType,
3703                            /*FIXME:*/From->getLocStart(),
3704                            SuppressUserConversions,
3705                            /*AllowExplicit=*/false);
3706
3707  return TryImplicitConversion(S, From, ToType,
3708                               SuppressUserConversions,
3709                               /*AllowExplicit=*/false,
3710                               InOverloadResolution,
3711                               /*CStyle=*/false,
3712                               AllowObjCWritebackConversion);
3713}
3714
3715static bool TryCopyInitialization(const CanQualType FromQTy,
3716                                  const CanQualType ToQTy,
3717                                  Sema &S,
3718                                  SourceLocation Loc,
3719                                  ExprValueKind FromVK) {
3720  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
3721  ImplicitConversionSequence ICS =
3722    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
3723
3724  return !ICS.isBad();
3725}
3726
3727/// TryObjectArgumentInitialization - Try to initialize the object
3728/// parameter of the given member function (@c Method) from the
3729/// expression @p From.
3730static ImplicitConversionSequence
3731TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3732                                Expr::Classification FromClassification,
3733                                CXXMethodDecl *Method,
3734                                CXXRecordDecl *ActingContext) {
3735  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3736  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3737  //                 const volatile object.
3738  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3739    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3740  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3741
3742  // Set up the conversion sequence as a "bad" conversion, to allow us
3743  // to exit early.
3744  ImplicitConversionSequence ICS;
3745
3746  // We need to have an object of class type.
3747  QualType FromType = OrigFromType;
3748  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3749    FromType = PT->getPointeeType();
3750
3751    // When we had a pointer, it's implicitly dereferenced, so we
3752    // better have an lvalue.
3753    assert(FromClassification.isLValue());
3754  }
3755
3756  assert(FromType->isRecordType());
3757
3758  // C++0x [over.match.funcs]p4:
3759  //   For non-static member functions, the type of the implicit object
3760  //   parameter is
3761  //
3762  //     - "lvalue reference to cv X" for functions declared without a
3763  //        ref-qualifier or with the & ref-qualifier
3764  //     - "rvalue reference to cv X" for functions declared with the &&
3765  //        ref-qualifier
3766  //
3767  // where X is the class of which the function is a member and cv is the
3768  // cv-qualification on the member function declaration.
3769  //
3770  // However, when finding an implicit conversion sequence for the argument, we
3771  // are not allowed to create temporaries or perform user-defined conversions
3772  // (C++ [over.match.funcs]p5). We perform a simplified version of
3773  // reference binding here, that allows class rvalues to bind to
3774  // non-constant references.
3775
3776  // First check the qualifiers.
3777  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3778  if (ImplicitParamType.getCVRQualifiers()
3779                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3780      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3781    ICS.setBad(BadConversionSequence::bad_qualifiers,
3782               OrigFromType, ImplicitParamType);
3783    return ICS;
3784  }
3785
3786  // Check that we have either the same type or a derived type. It
3787  // affects the conversion rank.
3788  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3789  ImplicitConversionKind SecondKind;
3790  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3791    SecondKind = ICK_Identity;
3792  } else if (S.IsDerivedFrom(FromType, ClassType))
3793    SecondKind = ICK_Derived_To_Base;
3794  else {
3795    ICS.setBad(BadConversionSequence::unrelated_class,
3796               FromType, ImplicitParamType);
3797    return ICS;
3798  }
3799
3800  // Check the ref-qualifier.
3801  switch (Method->getRefQualifier()) {
3802  case RQ_None:
3803    // Do nothing; we don't care about lvalueness or rvalueness.
3804    break;
3805
3806  case RQ_LValue:
3807    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3808      // non-const lvalue reference cannot bind to an rvalue
3809      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3810                 ImplicitParamType);
3811      return ICS;
3812    }
3813    break;
3814
3815  case RQ_RValue:
3816    if (!FromClassification.isRValue()) {
3817      // rvalue reference cannot bind to an lvalue
3818      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3819                 ImplicitParamType);
3820      return ICS;
3821    }
3822    break;
3823  }
3824
3825  // Success. Mark this as a reference binding.
3826  ICS.setStandard();
3827  ICS.Standard.setAsIdentityConversion();
3828  ICS.Standard.Second = SecondKind;
3829  ICS.Standard.setFromType(FromType);
3830  ICS.Standard.setAllToTypes(ImplicitParamType);
3831  ICS.Standard.ReferenceBinding = true;
3832  ICS.Standard.DirectBinding = true;
3833  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3834  ICS.Standard.BindsToFunctionLvalue = false;
3835  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
3836  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
3837    = (Method->getRefQualifier() == RQ_None);
3838  return ICS;
3839}
3840
3841/// PerformObjectArgumentInitialization - Perform initialization of
3842/// the implicit object parameter for the given Method with the given
3843/// expression.
3844ExprResult
3845Sema::PerformObjectArgumentInitialization(Expr *From,
3846                                          NestedNameSpecifier *Qualifier,
3847                                          NamedDecl *FoundDecl,
3848                                          CXXMethodDecl *Method) {
3849  QualType FromRecordType, DestType;
3850  QualType ImplicitParamRecordType  =
3851    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3852
3853  Expr::Classification FromClassification;
3854  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3855    FromRecordType = PT->getPointeeType();
3856    DestType = Method->getThisType(Context);
3857    FromClassification = Expr::Classification::makeSimpleLValue();
3858  } else {
3859    FromRecordType = From->getType();
3860    DestType = ImplicitParamRecordType;
3861    FromClassification = From->Classify(Context);
3862  }
3863
3864  // Note that we always use the true parent context when performing
3865  // the actual argument initialization.
3866  ImplicitConversionSequence ICS
3867    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3868                                      Method, Method->getParent());
3869  if (ICS.isBad()) {
3870    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3871      Qualifiers FromQs = FromRecordType.getQualifiers();
3872      Qualifiers ToQs = DestType.getQualifiers();
3873      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3874      if (CVR) {
3875        Diag(From->getSourceRange().getBegin(),
3876             diag::err_member_function_call_bad_cvr)
3877          << Method->getDeclName() << FromRecordType << (CVR - 1)
3878          << From->getSourceRange();
3879        Diag(Method->getLocation(), diag::note_previous_decl)
3880          << Method->getDeclName();
3881        return ExprError();
3882      }
3883    }
3884
3885    return Diag(From->getSourceRange().getBegin(),
3886                diag::err_implicit_object_parameter_init)
3887       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3888  }
3889
3890  if (ICS.Standard.Second == ICK_Derived_To_Base) {
3891    ExprResult FromRes =
3892      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3893    if (FromRes.isInvalid())
3894      return ExprError();
3895    From = FromRes.take();
3896  }
3897
3898  if (!Context.hasSameType(From->getType(), DestType))
3899    From = ImpCastExprToType(From, DestType, CK_NoOp,
3900                      From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
3901  return Owned(From);
3902}
3903
3904/// TryContextuallyConvertToBool - Attempt to contextually convert the
3905/// expression From to bool (C++0x [conv]p3).
3906static ImplicitConversionSequence
3907TryContextuallyConvertToBool(Sema &S, Expr *From) {
3908  // FIXME: This is pretty broken.
3909  return TryImplicitConversion(S, From, S.Context.BoolTy,
3910                               // FIXME: Are these flags correct?
3911                               /*SuppressUserConversions=*/false,
3912                               /*AllowExplicit=*/true,
3913                               /*InOverloadResolution=*/false,
3914                               /*CStyle=*/false,
3915                               /*AllowObjCWritebackConversion=*/false);
3916}
3917
3918/// PerformContextuallyConvertToBool - Perform a contextual conversion
3919/// of the expression From to bool (C++0x [conv]p3).
3920ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
3921  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3922  if (!ICS.isBad())
3923    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3924
3925  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3926    return Diag(From->getSourceRange().getBegin(),
3927                diag::err_typecheck_bool_condition)
3928                  << From->getType() << From->getSourceRange();
3929  return ExprError();
3930}
3931
3932/// dropPointerConversions - If the given standard conversion sequence
3933/// involves any pointer conversions, remove them.  This may change
3934/// the result type of the conversion sequence.
3935static void dropPointerConversion(StandardConversionSequence &SCS) {
3936  if (SCS.Second == ICK_Pointer_Conversion) {
3937    SCS.Second = ICK_Identity;
3938    SCS.Third = ICK_Identity;
3939    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
3940  }
3941}
3942
3943/// TryContextuallyConvertToObjCPointer - Attempt to contextually
3944/// convert the expression From to an Objective-C pointer type.
3945static ImplicitConversionSequence
3946TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
3947  // Do an implicit conversion to 'id'.
3948  QualType Ty = S.Context.getObjCIdType();
3949  ImplicitConversionSequence ICS
3950    = TryImplicitConversion(S, From, Ty,
3951                            // FIXME: Are these flags correct?
3952                            /*SuppressUserConversions=*/false,
3953                            /*AllowExplicit=*/true,
3954                            /*InOverloadResolution=*/false,
3955                            /*CStyle=*/false,
3956                            /*AllowObjCWritebackConversion=*/false);
3957
3958  // Strip off any final conversions to 'id'.
3959  switch (ICS.getKind()) {
3960  case ImplicitConversionSequence::BadConversion:
3961  case ImplicitConversionSequence::AmbiguousConversion:
3962  case ImplicitConversionSequence::EllipsisConversion:
3963    break;
3964
3965  case ImplicitConversionSequence::UserDefinedConversion:
3966    dropPointerConversion(ICS.UserDefined.After);
3967    break;
3968
3969  case ImplicitConversionSequence::StandardConversion:
3970    dropPointerConversion(ICS.Standard);
3971    break;
3972  }
3973
3974  return ICS;
3975}
3976
3977/// PerformContextuallyConvertToObjCPointer - Perform a contextual
3978/// conversion of the expression From to an Objective-C pointer type.
3979ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
3980  QualType Ty = Context.getObjCIdType();
3981  ImplicitConversionSequence ICS =
3982    TryContextuallyConvertToObjCPointer(*this, From);
3983  if (!ICS.isBad())
3984    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3985  return ExprError();
3986}
3987
3988/// \brief Attempt to convert the given expression to an integral or
3989/// enumeration type.
3990///
3991/// This routine will attempt to convert an expression of class type to an
3992/// integral or enumeration type, if that class type only has a single
3993/// conversion to an integral or enumeration type.
3994///
3995/// \param Loc The source location of the construct that requires the
3996/// conversion.
3997///
3998/// \param FromE The expression we're converting from.
3999///
4000/// \param NotIntDiag The diagnostic to be emitted if the expression does not
4001/// have integral or enumeration type.
4002///
4003/// \param IncompleteDiag The diagnostic to be emitted if the expression has
4004/// incomplete class type.
4005///
4006/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
4007/// explicit conversion function (because no implicit conversion functions
4008/// were available). This is a recovery mode.
4009///
4010/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
4011/// showing which conversion was picked.
4012///
4013/// \param AmbigDiag The diagnostic to be emitted if there is more than one
4014/// conversion function that could convert to integral or enumeration type.
4015///
4016/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
4017/// usable conversion function.
4018///
4019/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
4020/// function, which may be an extension in this case.
4021///
4022/// \returns The expression, converted to an integral or enumeration type if
4023/// successful.
4024ExprResult
4025Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
4026                                         const PartialDiagnostic &NotIntDiag,
4027                                       const PartialDiagnostic &IncompleteDiag,
4028                                     const PartialDiagnostic &ExplicitConvDiag,
4029                                     const PartialDiagnostic &ExplicitConvNote,
4030                                         const PartialDiagnostic &AmbigDiag,
4031                                         const PartialDiagnostic &AmbigNote,
4032                                         const PartialDiagnostic &ConvDiag) {
4033  // We can't perform any more checking for type-dependent expressions.
4034  if (From->isTypeDependent())
4035    return Owned(From);
4036
4037  // If the expression already has integral or enumeration type, we're golden.
4038  QualType T = From->getType();
4039  if (T->isIntegralOrEnumerationType())
4040    return Owned(From);
4041
4042  // FIXME: Check for missing '()' if T is a function type?
4043
4044  // If we don't have a class type in C++, there's no way we can get an
4045  // expression of integral or enumeration type.
4046  const RecordType *RecordTy = T->getAs<RecordType>();
4047  if (!RecordTy || !getLangOptions().CPlusPlus) {
4048    Diag(Loc, NotIntDiag)
4049      << T << From->getSourceRange();
4050    return Owned(From);
4051  }
4052
4053  // We must have a complete class type.
4054  if (RequireCompleteType(Loc, T, IncompleteDiag))
4055    return Owned(From);
4056
4057  // Look for a conversion to an integral or enumeration type.
4058  UnresolvedSet<4> ViableConversions;
4059  UnresolvedSet<4> ExplicitConversions;
4060  const UnresolvedSetImpl *Conversions
4061    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
4062
4063  bool HadMultipleCandidates = (Conversions->size() > 1);
4064
4065  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4066                                   E = Conversions->end();
4067       I != E;
4068       ++I) {
4069    if (CXXConversionDecl *Conversion
4070          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
4071      if (Conversion->getConversionType().getNonReferenceType()
4072            ->isIntegralOrEnumerationType()) {
4073        if (Conversion->isExplicit())
4074          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
4075        else
4076          ViableConversions.addDecl(I.getDecl(), I.getAccess());
4077      }
4078  }
4079
4080  switch (ViableConversions.size()) {
4081  case 0:
4082    if (ExplicitConversions.size() == 1) {
4083      DeclAccessPair Found = ExplicitConversions[0];
4084      CXXConversionDecl *Conversion
4085        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4086
4087      // The user probably meant to invoke the given explicit
4088      // conversion; use it.
4089      QualType ConvTy
4090        = Conversion->getConversionType().getNonReferenceType();
4091      std::string TypeStr;
4092      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
4093
4094      Diag(Loc, ExplicitConvDiag)
4095        << T << ConvTy
4096        << FixItHint::CreateInsertion(From->getLocStart(),
4097                                      "static_cast<" + TypeStr + ">(")
4098        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
4099                                      ")");
4100      Diag(Conversion->getLocation(), ExplicitConvNote)
4101        << ConvTy->isEnumeralType() << ConvTy;
4102
4103      // If we aren't in a SFINAE context, build a call to the
4104      // explicit conversion function.
4105      if (isSFINAEContext())
4106        return ExprError();
4107
4108      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4109      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4110                                                 HadMultipleCandidates);
4111      if (Result.isInvalid())
4112        return ExprError();
4113
4114      From = Result.get();
4115    }
4116
4117    // We'll complain below about a non-integral condition type.
4118    break;
4119
4120  case 1: {
4121    // Apply this conversion.
4122    DeclAccessPair Found = ViableConversions[0];
4123    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4124
4125    CXXConversionDecl *Conversion
4126      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4127    QualType ConvTy
4128      = Conversion->getConversionType().getNonReferenceType();
4129    if (ConvDiag.getDiagID()) {
4130      if (isSFINAEContext())
4131        return ExprError();
4132
4133      Diag(Loc, ConvDiag)
4134        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4135    }
4136
4137    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4138                                               HadMultipleCandidates);
4139    if (Result.isInvalid())
4140      return ExprError();
4141
4142    From = Result.get();
4143    break;
4144  }
4145
4146  default:
4147    Diag(Loc, AmbigDiag)
4148      << T << From->getSourceRange();
4149    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4150      CXXConversionDecl *Conv
4151        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4152      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4153      Diag(Conv->getLocation(), AmbigNote)
4154        << ConvTy->isEnumeralType() << ConvTy;
4155    }
4156    return Owned(From);
4157  }
4158
4159  if (!From->getType()->isIntegralOrEnumerationType())
4160    Diag(Loc, NotIntDiag)
4161      << From->getType() << From->getSourceRange();
4162
4163  return Owned(From);
4164}
4165
4166/// AddOverloadCandidate - Adds the given function to the set of
4167/// candidate functions, using the given function call arguments.  If
4168/// @p SuppressUserConversions, then don't allow user-defined
4169/// conversions via constructors or conversion operators.
4170///
4171/// \para PartialOverloading true if we are performing "partial" overloading
4172/// based on an incomplete set of function arguments. This feature is used by
4173/// code completion.
4174void
4175Sema::AddOverloadCandidate(FunctionDecl *Function,
4176                           DeclAccessPair FoundDecl,
4177                           Expr **Args, unsigned NumArgs,
4178                           OverloadCandidateSet& CandidateSet,
4179                           bool SuppressUserConversions,
4180                           bool PartialOverloading) {
4181  const FunctionProtoType* Proto
4182    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4183  assert(Proto && "Functions without a prototype cannot be overloaded");
4184  assert(!Function->getDescribedFunctionTemplate() &&
4185         "Use AddTemplateOverloadCandidate for function templates");
4186
4187  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4188    if (!isa<CXXConstructorDecl>(Method)) {
4189      // If we get here, it's because we're calling a member function
4190      // that is named without a member access expression (e.g.,
4191      // "this->f") that was either written explicitly or created
4192      // implicitly. This can happen with a qualified call to a member
4193      // function, e.g., X::f(). We use an empty type for the implied
4194      // object argument (C++ [over.call.func]p3), and the acting context
4195      // is irrelevant.
4196      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
4197                         QualType(), Expr::Classification::makeSimpleLValue(),
4198                         Args, NumArgs, CandidateSet,
4199                         SuppressUserConversions);
4200      return;
4201    }
4202    // We treat a constructor like a non-member function, since its object
4203    // argument doesn't participate in overload resolution.
4204  }
4205
4206  if (!CandidateSet.isNewCandidate(Function))
4207    return;
4208
4209  // Overload resolution is always an unevaluated context.
4210  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4211
4212  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
4213    // C++ [class.copy]p3:
4214    //   A member function template is never instantiated to perform the copy
4215    //   of a class object to an object of its class type.
4216    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
4217    if (NumArgs == 1 &&
4218        Constructor->isSpecializationCopyingObject() &&
4219        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
4220         IsDerivedFrom(Args[0]->getType(), ClassType)))
4221      return;
4222  }
4223
4224  // Add this candidate
4225  CandidateSet.push_back(OverloadCandidate());
4226  OverloadCandidate& Candidate = CandidateSet.back();
4227  Candidate.FoundDecl = FoundDecl;
4228  Candidate.Function = Function;
4229  Candidate.Viable = true;
4230  Candidate.IsSurrogate = false;
4231  Candidate.IgnoreObjectArgument = false;
4232  Candidate.ExplicitCallArguments = NumArgs;
4233
4234  unsigned NumArgsInProto = Proto->getNumArgs();
4235
4236  // (C++ 13.3.2p2): A candidate function having fewer than m
4237  // parameters is viable only if it has an ellipsis in its parameter
4238  // list (8.3.5).
4239  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
4240      !Proto->isVariadic()) {
4241    Candidate.Viable = false;
4242    Candidate.FailureKind = ovl_fail_too_many_arguments;
4243    return;
4244  }
4245
4246  // (C++ 13.3.2p2): A candidate function having more than m parameters
4247  // is viable only if the (m+1)st parameter has a default argument
4248  // (8.3.6). For the purposes of overload resolution, the
4249  // parameter list is truncated on the right, so that there are
4250  // exactly m parameters.
4251  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
4252  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
4253    // Not enough arguments.
4254    Candidate.Viable = false;
4255    Candidate.FailureKind = ovl_fail_too_few_arguments;
4256    return;
4257  }
4258
4259  // (CUDA B.1): Check for invalid calls between targets.
4260  if (getLangOptions().CUDA)
4261    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
4262      if (CheckCUDATarget(Caller, Function)) {
4263        Candidate.Viable = false;
4264        Candidate.FailureKind = ovl_fail_bad_target;
4265        return;
4266      }
4267
4268  // Determine the implicit conversion sequences for each of the
4269  // arguments.
4270  Candidate.Conversions.resize(NumArgs);
4271  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4272    if (ArgIdx < NumArgsInProto) {
4273      // (C++ 13.3.2p3): for F to be a viable function, there shall
4274      // exist for each argument an implicit conversion sequence
4275      // (13.3.3.1) that converts that argument to the corresponding
4276      // parameter of F.
4277      QualType ParamType = Proto->getArgType(ArgIdx);
4278      Candidate.Conversions[ArgIdx]
4279        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4280                                SuppressUserConversions,
4281                                /*InOverloadResolution=*/true,
4282                                /*AllowObjCWritebackConversion=*/
4283                                  getLangOptions().ObjCAutoRefCount);
4284      if (Candidate.Conversions[ArgIdx].isBad()) {
4285        Candidate.Viable = false;
4286        Candidate.FailureKind = ovl_fail_bad_conversion;
4287        break;
4288      }
4289    } else {
4290      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4291      // argument for which there is no corresponding parameter is
4292      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4293      Candidate.Conversions[ArgIdx].setEllipsis();
4294    }
4295  }
4296}
4297
4298/// \brief Add all of the function declarations in the given function set to
4299/// the overload canddiate set.
4300void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
4301                                 Expr **Args, unsigned NumArgs,
4302                                 OverloadCandidateSet& CandidateSet,
4303                                 bool SuppressUserConversions) {
4304  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
4305    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
4306    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4307      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
4308        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
4309                           cast<CXXMethodDecl>(FD)->getParent(),
4310                           Args[0]->getType(), Args[0]->Classify(Context),
4311                           Args + 1, NumArgs - 1,
4312                           CandidateSet, SuppressUserConversions);
4313      else
4314        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
4315                             SuppressUserConversions);
4316    } else {
4317      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
4318      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
4319          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
4320        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
4321                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
4322                                   /*FIXME: explicit args */ 0,
4323                                   Args[0]->getType(),
4324                                   Args[0]->Classify(Context),
4325                                   Args + 1, NumArgs - 1,
4326                                   CandidateSet,
4327                                   SuppressUserConversions);
4328      else
4329        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
4330                                     /*FIXME: explicit args */ 0,
4331                                     Args, NumArgs, CandidateSet,
4332                                     SuppressUserConversions);
4333    }
4334  }
4335}
4336
4337/// AddMethodCandidate - Adds a named decl (which is some kind of
4338/// method) as a method candidate to the given overload set.
4339void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
4340                              QualType ObjectType,
4341                              Expr::Classification ObjectClassification,
4342                              Expr **Args, unsigned NumArgs,
4343                              OverloadCandidateSet& CandidateSet,
4344                              bool SuppressUserConversions) {
4345  NamedDecl *Decl = FoundDecl.getDecl();
4346  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4347
4348  if (isa<UsingShadowDecl>(Decl))
4349    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4350
4351  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4352    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4353           "Expected a member function template");
4354    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4355                               /*ExplicitArgs*/ 0,
4356                               ObjectType, ObjectClassification, Args, NumArgs,
4357                               CandidateSet,
4358                               SuppressUserConversions);
4359  } else {
4360    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4361                       ObjectType, ObjectClassification, Args, NumArgs,
4362                       CandidateSet, SuppressUserConversions);
4363  }
4364}
4365
4366/// AddMethodCandidate - Adds the given C++ member function to the set
4367/// of candidate functions, using the given function call arguments
4368/// and the object argument (@c Object). For example, in a call
4369/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4370/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4371/// allow user-defined conversions via constructors or conversion
4372/// operators.
4373void
4374Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4375                         CXXRecordDecl *ActingContext, QualType ObjectType,
4376                         Expr::Classification ObjectClassification,
4377                         Expr **Args, unsigned NumArgs,
4378                         OverloadCandidateSet& CandidateSet,
4379                         bool SuppressUserConversions) {
4380  const FunctionProtoType* Proto
4381    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4382  assert(Proto && "Methods without a prototype cannot be overloaded");
4383  assert(!isa<CXXConstructorDecl>(Method) &&
4384         "Use AddOverloadCandidate for constructors");
4385
4386  if (!CandidateSet.isNewCandidate(Method))
4387    return;
4388
4389  // Overload resolution is always an unevaluated context.
4390  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4391
4392  // Add this candidate
4393  CandidateSet.push_back(OverloadCandidate());
4394  OverloadCandidate& Candidate = CandidateSet.back();
4395  Candidate.FoundDecl = FoundDecl;
4396  Candidate.Function = Method;
4397  Candidate.IsSurrogate = false;
4398  Candidate.IgnoreObjectArgument = false;
4399  Candidate.ExplicitCallArguments = NumArgs;
4400
4401  unsigned NumArgsInProto = Proto->getNumArgs();
4402
4403  // (C++ 13.3.2p2): A candidate function having fewer than m
4404  // parameters is viable only if it has an ellipsis in its parameter
4405  // list (8.3.5).
4406  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4407    Candidate.Viable = false;
4408    Candidate.FailureKind = ovl_fail_too_many_arguments;
4409    return;
4410  }
4411
4412  // (C++ 13.3.2p2): A candidate function having more than m parameters
4413  // is viable only if the (m+1)st parameter has a default argument
4414  // (8.3.6). For the purposes of overload resolution, the
4415  // parameter list is truncated on the right, so that there are
4416  // exactly m parameters.
4417  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4418  if (NumArgs < MinRequiredArgs) {
4419    // Not enough arguments.
4420    Candidate.Viable = false;
4421    Candidate.FailureKind = ovl_fail_too_few_arguments;
4422    return;
4423  }
4424
4425  Candidate.Viable = true;
4426  Candidate.Conversions.resize(NumArgs + 1);
4427
4428  if (Method->isStatic() || ObjectType.isNull())
4429    // The implicit object argument is ignored.
4430    Candidate.IgnoreObjectArgument = true;
4431  else {
4432    // Determine the implicit conversion sequence for the object
4433    // parameter.
4434    Candidate.Conversions[0]
4435      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4436                                        Method, ActingContext);
4437    if (Candidate.Conversions[0].isBad()) {
4438      Candidate.Viable = false;
4439      Candidate.FailureKind = ovl_fail_bad_conversion;
4440      return;
4441    }
4442  }
4443
4444  // Determine the implicit conversion sequences for each of the
4445  // arguments.
4446  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4447    if (ArgIdx < NumArgsInProto) {
4448      // (C++ 13.3.2p3): for F to be a viable function, there shall
4449      // exist for each argument an implicit conversion sequence
4450      // (13.3.3.1) that converts that argument to the corresponding
4451      // parameter of F.
4452      QualType ParamType = Proto->getArgType(ArgIdx);
4453      Candidate.Conversions[ArgIdx + 1]
4454        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4455                                SuppressUserConversions,
4456                                /*InOverloadResolution=*/true,
4457                                /*AllowObjCWritebackConversion=*/
4458                                  getLangOptions().ObjCAutoRefCount);
4459      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4460        Candidate.Viable = false;
4461        Candidate.FailureKind = ovl_fail_bad_conversion;
4462        break;
4463      }
4464    } else {
4465      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4466      // argument for which there is no corresponding parameter is
4467      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4468      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4469    }
4470  }
4471}
4472
4473/// \brief Add a C++ member function template as a candidate to the candidate
4474/// set, using template argument deduction to produce an appropriate member
4475/// function template specialization.
4476void
4477Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4478                                 DeclAccessPair FoundDecl,
4479                                 CXXRecordDecl *ActingContext,
4480                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4481                                 QualType ObjectType,
4482                                 Expr::Classification ObjectClassification,
4483                                 Expr **Args, unsigned NumArgs,
4484                                 OverloadCandidateSet& CandidateSet,
4485                                 bool SuppressUserConversions) {
4486  if (!CandidateSet.isNewCandidate(MethodTmpl))
4487    return;
4488
4489  // C++ [over.match.funcs]p7:
4490  //   In each case where a candidate is a function template, candidate
4491  //   function template specializations are generated using template argument
4492  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4493  //   candidate functions in the usual way.113) A given name can refer to one
4494  //   or more function templates and also to a set of overloaded non-template
4495  //   functions. In such a case, the candidate functions generated from each
4496  //   function template are combined with the set of non-template candidate
4497  //   functions.
4498  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4499  FunctionDecl *Specialization = 0;
4500  if (TemplateDeductionResult Result
4501      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4502                                Args, NumArgs, Specialization, Info)) {
4503    CandidateSet.push_back(OverloadCandidate());
4504    OverloadCandidate &Candidate = CandidateSet.back();
4505    Candidate.FoundDecl = FoundDecl;
4506    Candidate.Function = MethodTmpl->getTemplatedDecl();
4507    Candidate.Viable = false;
4508    Candidate.FailureKind = ovl_fail_bad_deduction;
4509    Candidate.IsSurrogate = false;
4510    Candidate.IgnoreObjectArgument = false;
4511    Candidate.ExplicitCallArguments = NumArgs;
4512    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4513                                                          Info);
4514    return;
4515  }
4516
4517  // Add the function template specialization produced by template argument
4518  // deduction as a candidate.
4519  assert(Specialization && "Missing member function template specialization?");
4520  assert(isa<CXXMethodDecl>(Specialization) &&
4521         "Specialization is not a member function?");
4522  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4523                     ActingContext, ObjectType, ObjectClassification,
4524                     Args, NumArgs, CandidateSet, SuppressUserConversions);
4525}
4526
4527/// \brief Add a C++ function template specialization as a candidate
4528/// in the candidate set, using template argument deduction to produce
4529/// an appropriate function template specialization.
4530void
4531Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4532                                   DeclAccessPair FoundDecl,
4533                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4534                                   Expr **Args, unsigned NumArgs,
4535                                   OverloadCandidateSet& CandidateSet,
4536                                   bool SuppressUserConversions) {
4537  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4538    return;
4539
4540  // C++ [over.match.funcs]p7:
4541  //   In each case where a candidate is a function template, candidate
4542  //   function template specializations are generated using template argument
4543  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4544  //   candidate functions in the usual way.113) A given name can refer to one
4545  //   or more function templates and also to a set of overloaded non-template
4546  //   functions. In such a case, the candidate functions generated from each
4547  //   function template are combined with the set of non-template candidate
4548  //   functions.
4549  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4550  FunctionDecl *Specialization = 0;
4551  if (TemplateDeductionResult Result
4552        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4553                                  Args, NumArgs, Specialization, Info)) {
4554    CandidateSet.push_back(OverloadCandidate());
4555    OverloadCandidate &Candidate = CandidateSet.back();
4556    Candidate.FoundDecl = FoundDecl;
4557    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4558    Candidate.Viable = false;
4559    Candidate.FailureKind = ovl_fail_bad_deduction;
4560    Candidate.IsSurrogate = false;
4561    Candidate.IgnoreObjectArgument = false;
4562    Candidate.ExplicitCallArguments = NumArgs;
4563    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4564                                                          Info);
4565    return;
4566  }
4567
4568  // Add the function template specialization produced by template argument
4569  // deduction as a candidate.
4570  assert(Specialization && "Missing function template specialization?");
4571  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4572                       SuppressUserConversions);
4573}
4574
4575/// AddConversionCandidate - Add a C++ conversion function as a
4576/// candidate in the candidate set (C++ [over.match.conv],
4577/// C++ [over.match.copy]). From is the expression we're converting from,
4578/// and ToType is the type that we're eventually trying to convert to
4579/// (which may or may not be the same type as the type that the
4580/// conversion function produces).
4581void
4582Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4583                             DeclAccessPair FoundDecl,
4584                             CXXRecordDecl *ActingContext,
4585                             Expr *From, QualType ToType,
4586                             OverloadCandidateSet& CandidateSet) {
4587  assert(!Conversion->getDescribedFunctionTemplate() &&
4588         "Conversion function templates use AddTemplateConversionCandidate");
4589  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4590  if (!CandidateSet.isNewCandidate(Conversion))
4591    return;
4592
4593  // Overload resolution is always an unevaluated context.
4594  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4595
4596  // Add this candidate
4597  CandidateSet.push_back(OverloadCandidate());
4598  OverloadCandidate& Candidate = CandidateSet.back();
4599  Candidate.FoundDecl = FoundDecl;
4600  Candidate.Function = Conversion;
4601  Candidate.IsSurrogate = false;
4602  Candidate.IgnoreObjectArgument = false;
4603  Candidate.FinalConversion.setAsIdentityConversion();
4604  Candidate.FinalConversion.setFromType(ConvType);
4605  Candidate.FinalConversion.setAllToTypes(ToType);
4606  Candidate.Viable = true;
4607  Candidate.Conversions.resize(1);
4608  Candidate.ExplicitCallArguments = 1;
4609
4610  // C++ [over.match.funcs]p4:
4611  //   For conversion functions, the function is considered to be a member of
4612  //   the class of the implicit implied object argument for the purpose of
4613  //   defining the type of the implicit object parameter.
4614  //
4615  // Determine the implicit conversion sequence for the implicit
4616  // object parameter.
4617  QualType ImplicitParamType = From->getType();
4618  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4619    ImplicitParamType = FromPtrType->getPointeeType();
4620  CXXRecordDecl *ConversionContext
4621    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4622
4623  Candidate.Conversions[0]
4624    = TryObjectArgumentInitialization(*this, From->getType(),
4625                                      From->Classify(Context),
4626                                      Conversion, ConversionContext);
4627
4628  if (Candidate.Conversions[0].isBad()) {
4629    Candidate.Viable = false;
4630    Candidate.FailureKind = ovl_fail_bad_conversion;
4631    return;
4632  }
4633
4634  // We won't go through a user-define type conversion function to convert a
4635  // derived to base as such conversions are given Conversion Rank. They only
4636  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4637  QualType FromCanon
4638    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4639  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4640  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4641    Candidate.Viable = false;
4642    Candidate.FailureKind = ovl_fail_trivial_conversion;
4643    return;
4644  }
4645
4646  // To determine what the conversion from the result of calling the
4647  // conversion function to the type we're eventually trying to
4648  // convert to (ToType), we need to synthesize a call to the
4649  // conversion function and attempt copy initialization from it. This
4650  // makes sure that we get the right semantics with respect to
4651  // lvalues/rvalues and the type. Fortunately, we can allocate this
4652  // call on the stack and we don't need its arguments to be
4653  // well-formed.
4654  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4655                            VK_LValue, From->getLocStart());
4656  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4657                                Context.getPointerType(Conversion->getType()),
4658                                CK_FunctionToPointerDecay,
4659                                &ConversionRef, VK_RValue);
4660
4661  QualType ConversionType = Conversion->getConversionType();
4662  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
4663    Candidate.Viable = false;
4664    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4665    return;
4666  }
4667
4668  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
4669
4670  // Note that it is safe to allocate CallExpr on the stack here because
4671  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4672  // allocator).
4673  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
4674  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4675                From->getLocStart());
4676  ImplicitConversionSequence ICS =
4677    TryCopyInitialization(*this, &Call, ToType,
4678                          /*SuppressUserConversions=*/true,
4679                          /*InOverloadResolution=*/false,
4680                          /*AllowObjCWritebackConversion=*/false);
4681
4682  switch (ICS.getKind()) {
4683  case ImplicitConversionSequence::StandardConversion:
4684    Candidate.FinalConversion = ICS.Standard;
4685
4686    // C++ [over.ics.user]p3:
4687    //   If the user-defined conversion is specified by a specialization of a
4688    //   conversion function template, the second standard conversion sequence
4689    //   shall have exact match rank.
4690    if (Conversion->getPrimaryTemplate() &&
4691        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4692      Candidate.Viable = false;
4693      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4694    }
4695
4696    // C++0x [dcl.init.ref]p5:
4697    //    In the second case, if the reference is an rvalue reference and
4698    //    the second standard conversion sequence of the user-defined
4699    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4700    //    program is ill-formed.
4701    if (ToType->isRValueReferenceType() &&
4702        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4703      Candidate.Viable = false;
4704      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4705    }
4706    break;
4707
4708  case ImplicitConversionSequence::BadConversion:
4709    Candidate.Viable = false;
4710    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4711    break;
4712
4713  default:
4714    llvm_unreachable(
4715           "Can only end up with a standard conversion sequence or failure");
4716  }
4717}
4718
4719/// \brief Adds a conversion function template specialization
4720/// candidate to the overload set, using template argument deduction
4721/// to deduce the template arguments of the conversion function
4722/// template from the type that we are converting to (C++
4723/// [temp.deduct.conv]).
4724void
4725Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4726                                     DeclAccessPair FoundDecl,
4727                                     CXXRecordDecl *ActingDC,
4728                                     Expr *From, QualType ToType,
4729                                     OverloadCandidateSet &CandidateSet) {
4730  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4731         "Only conversion function templates permitted here");
4732
4733  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4734    return;
4735
4736  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4737  CXXConversionDecl *Specialization = 0;
4738  if (TemplateDeductionResult Result
4739        = DeduceTemplateArguments(FunctionTemplate, ToType,
4740                                  Specialization, Info)) {
4741    CandidateSet.push_back(OverloadCandidate());
4742    OverloadCandidate &Candidate = CandidateSet.back();
4743    Candidate.FoundDecl = FoundDecl;
4744    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4745    Candidate.Viable = false;
4746    Candidate.FailureKind = ovl_fail_bad_deduction;
4747    Candidate.IsSurrogate = false;
4748    Candidate.IgnoreObjectArgument = false;
4749    Candidate.ExplicitCallArguments = 1;
4750    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4751                                                          Info);
4752    return;
4753  }
4754
4755  // Add the conversion function template specialization produced by
4756  // template argument deduction as a candidate.
4757  assert(Specialization && "Missing function template specialization?");
4758  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4759                         CandidateSet);
4760}
4761
4762/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4763/// converts the given @c Object to a function pointer via the
4764/// conversion function @c Conversion, and then attempts to call it
4765/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4766/// the type of function that we'll eventually be calling.
4767void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4768                                 DeclAccessPair FoundDecl,
4769                                 CXXRecordDecl *ActingContext,
4770                                 const FunctionProtoType *Proto,
4771                                 Expr *Object,
4772                                 Expr **Args, unsigned NumArgs,
4773                                 OverloadCandidateSet& CandidateSet) {
4774  if (!CandidateSet.isNewCandidate(Conversion))
4775    return;
4776
4777  // Overload resolution is always an unevaluated context.
4778  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4779
4780  CandidateSet.push_back(OverloadCandidate());
4781  OverloadCandidate& Candidate = CandidateSet.back();
4782  Candidate.FoundDecl = FoundDecl;
4783  Candidate.Function = 0;
4784  Candidate.Surrogate = Conversion;
4785  Candidate.Viable = true;
4786  Candidate.IsSurrogate = true;
4787  Candidate.IgnoreObjectArgument = false;
4788  Candidate.Conversions.resize(NumArgs + 1);
4789  Candidate.ExplicitCallArguments = NumArgs;
4790
4791  // Determine the implicit conversion sequence for the implicit
4792  // object parameter.
4793  ImplicitConversionSequence ObjectInit
4794    = TryObjectArgumentInitialization(*this, Object->getType(),
4795                                      Object->Classify(Context),
4796                                      Conversion, ActingContext);
4797  if (ObjectInit.isBad()) {
4798    Candidate.Viable = false;
4799    Candidate.FailureKind = ovl_fail_bad_conversion;
4800    Candidate.Conversions[0] = ObjectInit;
4801    return;
4802  }
4803
4804  // The first conversion is actually a user-defined conversion whose
4805  // first conversion is ObjectInit's standard conversion (which is
4806  // effectively a reference binding). Record it as such.
4807  Candidate.Conversions[0].setUserDefined();
4808  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4809  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4810  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
4811  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4812  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
4813  Candidate.Conversions[0].UserDefined.After
4814    = Candidate.Conversions[0].UserDefined.Before;
4815  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4816
4817  // Find the
4818  unsigned NumArgsInProto = Proto->getNumArgs();
4819
4820  // (C++ 13.3.2p2): A candidate function having fewer than m
4821  // parameters is viable only if it has an ellipsis in its parameter
4822  // list (8.3.5).
4823  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4824    Candidate.Viable = false;
4825    Candidate.FailureKind = ovl_fail_too_many_arguments;
4826    return;
4827  }
4828
4829  // Function types don't have any default arguments, so just check if
4830  // we have enough arguments.
4831  if (NumArgs < NumArgsInProto) {
4832    // Not enough arguments.
4833    Candidate.Viable = false;
4834    Candidate.FailureKind = ovl_fail_too_few_arguments;
4835    return;
4836  }
4837
4838  // Determine the implicit conversion sequences for each of the
4839  // arguments.
4840  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4841    if (ArgIdx < NumArgsInProto) {
4842      // (C++ 13.3.2p3): for F to be a viable function, there shall
4843      // exist for each argument an implicit conversion sequence
4844      // (13.3.3.1) that converts that argument to the corresponding
4845      // parameter of F.
4846      QualType ParamType = Proto->getArgType(ArgIdx);
4847      Candidate.Conversions[ArgIdx + 1]
4848        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4849                                /*SuppressUserConversions=*/false,
4850                                /*InOverloadResolution=*/false,
4851                                /*AllowObjCWritebackConversion=*/
4852                                  getLangOptions().ObjCAutoRefCount);
4853      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4854        Candidate.Viable = false;
4855        Candidate.FailureKind = ovl_fail_bad_conversion;
4856        break;
4857      }
4858    } else {
4859      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4860      // argument for which there is no corresponding parameter is
4861      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4862      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4863    }
4864  }
4865}
4866
4867/// \brief Add overload candidates for overloaded operators that are
4868/// member functions.
4869///
4870/// Add the overloaded operator candidates that are member functions
4871/// for the operator Op that was used in an operator expression such
4872/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4873/// CandidateSet will store the added overload candidates. (C++
4874/// [over.match.oper]).
4875void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4876                                       SourceLocation OpLoc,
4877                                       Expr **Args, unsigned NumArgs,
4878                                       OverloadCandidateSet& CandidateSet,
4879                                       SourceRange OpRange) {
4880  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4881
4882  // C++ [over.match.oper]p3:
4883  //   For a unary operator @ with an operand of a type whose
4884  //   cv-unqualified version is T1, and for a binary operator @ with
4885  //   a left operand of a type whose cv-unqualified version is T1 and
4886  //   a right operand of a type whose cv-unqualified version is T2,
4887  //   three sets of candidate functions, designated member
4888  //   candidates, non-member candidates and built-in candidates, are
4889  //   constructed as follows:
4890  QualType T1 = Args[0]->getType();
4891
4892  //     -- If T1 is a class type, the set of member candidates is the
4893  //        result of the qualified lookup of T1::operator@
4894  //        (13.3.1.1.1); otherwise, the set of member candidates is
4895  //        empty.
4896  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4897    // Complete the type if it can be completed. Otherwise, we're done.
4898    if (RequireCompleteType(OpLoc, T1, PDiag()))
4899      return;
4900
4901    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4902    LookupQualifiedName(Operators, T1Rec->getDecl());
4903    Operators.suppressDiagnostics();
4904
4905    for (LookupResult::iterator Oper = Operators.begin(),
4906                             OperEnd = Operators.end();
4907         Oper != OperEnd;
4908         ++Oper)
4909      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4910                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4911                         CandidateSet,
4912                         /* SuppressUserConversions = */ false);
4913  }
4914}
4915
4916/// AddBuiltinCandidate - Add a candidate for a built-in
4917/// operator. ResultTy and ParamTys are the result and parameter types
4918/// of the built-in candidate, respectively. Args and NumArgs are the
4919/// arguments being passed to the candidate. IsAssignmentOperator
4920/// should be true when this built-in candidate is an assignment
4921/// operator. NumContextualBoolArguments is the number of arguments
4922/// (at the beginning of the argument list) that will be contextually
4923/// converted to bool.
4924void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4925                               Expr **Args, unsigned NumArgs,
4926                               OverloadCandidateSet& CandidateSet,
4927                               bool IsAssignmentOperator,
4928                               unsigned NumContextualBoolArguments) {
4929  // Overload resolution is always an unevaluated context.
4930  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4931
4932  // Add this candidate
4933  CandidateSet.push_back(OverloadCandidate());
4934  OverloadCandidate& Candidate = CandidateSet.back();
4935  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4936  Candidate.Function = 0;
4937  Candidate.IsSurrogate = false;
4938  Candidate.IgnoreObjectArgument = false;
4939  Candidate.BuiltinTypes.ResultTy = ResultTy;
4940  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4941    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4942
4943  // Determine the implicit conversion sequences for each of the
4944  // arguments.
4945  Candidate.Viable = true;
4946  Candidate.Conversions.resize(NumArgs);
4947  Candidate.ExplicitCallArguments = NumArgs;
4948  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4949    // C++ [over.match.oper]p4:
4950    //   For the built-in assignment operators, conversions of the
4951    //   left operand are restricted as follows:
4952    //     -- no temporaries are introduced to hold the left operand, and
4953    //     -- no user-defined conversions are applied to the left
4954    //        operand to achieve a type match with the left-most
4955    //        parameter of a built-in candidate.
4956    //
4957    // We block these conversions by turning off user-defined
4958    // conversions, since that is the only way that initialization of
4959    // a reference to a non-class type can occur from something that
4960    // is not of the same type.
4961    if (ArgIdx < NumContextualBoolArguments) {
4962      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4963             "Contextual conversion to bool requires bool type");
4964      Candidate.Conversions[ArgIdx]
4965        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4966    } else {
4967      Candidate.Conversions[ArgIdx]
4968        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4969                                ArgIdx == 0 && IsAssignmentOperator,
4970                                /*InOverloadResolution=*/false,
4971                                /*AllowObjCWritebackConversion=*/
4972                                  getLangOptions().ObjCAutoRefCount);
4973    }
4974    if (Candidate.Conversions[ArgIdx].isBad()) {
4975      Candidate.Viable = false;
4976      Candidate.FailureKind = ovl_fail_bad_conversion;
4977      break;
4978    }
4979  }
4980}
4981
4982/// BuiltinCandidateTypeSet - A set of types that will be used for the
4983/// candidate operator functions for built-in operators (C++
4984/// [over.built]). The types are separated into pointer types and
4985/// enumeration types.
4986class BuiltinCandidateTypeSet  {
4987  /// TypeSet - A set of types.
4988  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4989
4990  /// PointerTypes - The set of pointer types that will be used in the
4991  /// built-in candidates.
4992  TypeSet PointerTypes;
4993
4994  /// MemberPointerTypes - The set of member pointer types that will be
4995  /// used in the built-in candidates.
4996  TypeSet MemberPointerTypes;
4997
4998  /// EnumerationTypes - The set of enumeration types that will be
4999  /// used in the built-in candidates.
5000  TypeSet EnumerationTypes;
5001
5002  /// \brief The set of vector types that will be used in the built-in
5003  /// candidates.
5004  TypeSet VectorTypes;
5005
5006  /// \brief A flag indicating non-record types are viable candidates
5007  bool HasNonRecordTypes;
5008
5009  /// \brief A flag indicating whether either arithmetic or enumeration types
5010  /// were present in the candidate set.
5011  bool HasArithmeticOrEnumeralTypes;
5012
5013  /// \brief A flag indicating whether the nullptr type was present in the
5014  /// candidate set.
5015  bool HasNullPtrType;
5016
5017  /// Sema - The semantic analysis instance where we are building the
5018  /// candidate type set.
5019  Sema &SemaRef;
5020
5021  /// Context - The AST context in which we will build the type sets.
5022  ASTContext &Context;
5023
5024  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5025                                               const Qualifiers &VisibleQuals);
5026  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
5027
5028public:
5029  /// iterator - Iterates through the types that are part of the set.
5030  typedef TypeSet::iterator iterator;
5031
5032  BuiltinCandidateTypeSet(Sema &SemaRef)
5033    : HasNonRecordTypes(false),
5034      HasArithmeticOrEnumeralTypes(false),
5035      HasNullPtrType(false),
5036      SemaRef(SemaRef),
5037      Context(SemaRef.Context) { }
5038
5039  void AddTypesConvertedFrom(QualType Ty,
5040                             SourceLocation Loc,
5041                             bool AllowUserConversions,
5042                             bool AllowExplicitConversions,
5043                             const Qualifiers &VisibleTypeConversionsQuals);
5044
5045  /// pointer_begin - First pointer type found;
5046  iterator pointer_begin() { return PointerTypes.begin(); }
5047
5048  /// pointer_end - Past the last pointer type found;
5049  iterator pointer_end() { return PointerTypes.end(); }
5050
5051  /// member_pointer_begin - First member pointer type found;
5052  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
5053
5054  /// member_pointer_end - Past the last member pointer type found;
5055  iterator member_pointer_end() { return MemberPointerTypes.end(); }
5056
5057  /// enumeration_begin - First enumeration type found;
5058  iterator enumeration_begin() { return EnumerationTypes.begin(); }
5059
5060  /// enumeration_end - Past the last enumeration type found;
5061  iterator enumeration_end() { return EnumerationTypes.end(); }
5062
5063  iterator vector_begin() { return VectorTypes.begin(); }
5064  iterator vector_end() { return VectorTypes.end(); }
5065
5066  bool hasNonRecordTypes() { return HasNonRecordTypes; }
5067  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
5068  bool hasNullPtrType() const { return HasNullPtrType; }
5069};
5070
5071/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
5072/// the set of pointer types along with any more-qualified variants of
5073/// that type. For example, if @p Ty is "int const *", this routine
5074/// will add "int const *", "int const volatile *", "int const
5075/// restrict *", and "int const volatile restrict *" to the set of
5076/// pointer types. Returns true if the add of @p Ty itself succeeded,
5077/// false otherwise.
5078///
5079/// FIXME: what to do about extended qualifiers?
5080bool
5081BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5082                                             const Qualifiers &VisibleQuals) {
5083
5084  // Insert this type.
5085  if (!PointerTypes.insert(Ty))
5086    return false;
5087
5088  QualType PointeeTy;
5089  const PointerType *PointerTy = Ty->getAs<PointerType>();
5090  bool buildObjCPtr = false;
5091  if (!PointerTy) {
5092    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
5093      PointeeTy = PTy->getPointeeType();
5094      buildObjCPtr = true;
5095    }
5096    else
5097      llvm_unreachable("type was not a pointer type!");
5098  }
5099  else
5100    PointeeTy = PointerTy->getPointeeType();
5101
5102  // Don't add qualified variants of arrays. For one, they're not allowed
5103  // (the qualifier would sink to the element type), and for another, the
5104  // only overload situation where it matters is subscript or pointer +- int,
5105  // and those shouldn't have qualifier variants anyway.
5106  if (PointeeTy->isArrayType())
5107    return true;
5108  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5109  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
5110    BaseCVR = Array->getElementType().getCVRQualifiers();
5111  bool hasVolatile = VisibleQuals.hasVolatile();
5112  bool hasRestrict = VisibleQuals.hasRestrict();
5113
5114  // Iterate through all strict supersets of BaseCVR.
5115  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5116    if ((CVR | BaseCVR) != CVR) continue;
5117    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
5118    // in the types.
5119    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
5120    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5121    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5122    if (!buildObjCPtr)
5123      PointerTypes.insert(Context.getPointerType(QPointeeTy));
5124    else
5125      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5126  }
5127
5128  return true;
5129}
5130
5131/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5132/// to the set of pointer types along with any more-qualified variants of
5133/// that type. For example, if @p Ty is "int const *", this routine
5134/// will add "int const *", "int const volatile *", "int const
5135/// restrict *", and "int const volatile restrict *" to the set of
5136/// pointer types. Returns true if the add of @p Ty itself succeeded,
5137/// false otherwise.
5138///
5139/// FIXME: what to do about extended qualifiers?
5140bool
5141BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5142    QualType Ty) {
5143  // Insert this type.
5144  if (!MemberPointerTypes.insert(Ty))
5145    return false;
5146
5147  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5148  assert(PointerTy && "type was not a member pointer type!");
5149
5150  QualType PointeeTy = PointerTy->getPointeeType();
5151  // Don't add qualified variants of arrays. For one, they're not allowed
5152  // (the qualifier would sink to the element type), and for another, the
5153  // only overload situation where it matters is subscript or pointer +- int,
5154  // and those shouldn't have qualifier variants anyway.
5155  if (PointeeTy->isArrayType())
5156    return true;
5157  const Type *ClassTy = PointerTy->getClass();
5158
5159  // Iterate through all strict supersets of the pointee type's CVR
5160  // qualifiers.
5161  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5162  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5163    if ((CVR | BaseCVR) != CVR) continue;
5164
5165    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5166    MemberPointerTypes.insert(
5167      Context.getMemberPointerType(QPointeeTy, ClassTy));
5168  }
5169
5170  return true;
5171}
5172
5173/// AddTypesConvertedFrom - Add each of the types to which the type @p
5174/// Ty can be implicit converted to the given set of @p Types. We're
5175/// primarily interested in pointer types and enumeration types. We also
5176/// take member pointer types, for the conditional operator.
5177/// AllowUserConversions is true if we should look at the conversion
5178/// functions of a class type, and AllowExplicitConversions if we
5179/// should also include the explicit conversion functions of a class
5180/// type.
5181void
5182BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5183                                               SourceLocation Loc,
5184                                               bool AllowUserConversions,
5185                                               bool AllowExplicitConversions,
5186                                               const Qualifiers &VisibleQuals) {
5187  // Only deal with canonical types.
5188  Ty = Context.getCanonicalType(Ty);
5189
5190  // Look through reference types; they aren't part of the type of an
5191  // expression for the purposes of conversions.
5192  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5193    Ty = RefTy->getPointeeType();
5194
5195  // If we're dealing with an array type, decay to the pointer.
5196  if (Ty->isArrayType())
5197    Ty = SemaRef.Context.getArrayDecayedType(Ty);
5198
5199  // Otherwise, we don't care about qualifiers on the type.
5200  Ty = Ty.getLocalUnqualifiedType();
5201
5202  // Flag if we ever add a non-record type.
5203  const RecordType *TyRec = Ty->getAs<RecordType>();
5204  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5205
5206  // Flag if we encounter an arithmetic type.
5207  HasArithmeticOrEnumeralTypes =
5208    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
5209
5210  if (Ty->isObjCIdType() || Ty->isObjCClassType())
5211    PointerTypes.insert(Ty);
5212  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
5213    // Insert our type, and its more-qualified variants, into the set
5214    // of types.
5215    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
5216      return;
5217  } else if (Ty->isMemberPointerType()) {
5218    // Member pointers are far easier, since the pointee can't be converted.
5219    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
5220      return;
5221  } else if (Ty->isEnumeralType()) {
5222    HasArithmeticOrEnumeralTypes = true;
5223    EnumerationTypes.insert(Ty);
5224  } else if (Ty->isVectorType()) {
5225    // We treat vector types as arithmetic types in many contexts as an
5226    // extension.
5227    HasArithmeticOrEnumeralTypes = true;
5228    VectorTypes.insert(Ty);
5229  } else if (Ty->isNullPtrType()) {
5230    HasNullPtrType = true;
5231  } else if (AllowUserConversions && TyRec) {
5232    // No conversion functions in incomplete types.
5233    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
5234      return;
5235
5236    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5237    const UnresolvedSetImpl *Conversions
5238      = ClassDecl->getVisibleConversionFunctions();
5239    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5240           E = Conversions->end(); I != E; ++I) {
5241      NamedDecl *D = I.getDecl();
5242      if (isa<UsingShadowDecl>(D))
5243        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5244
5245      // Skip conversion function templates; they don't tell us anything
5246      // about which builtin types we can convert to.
5247      if (isa<FunctionTemplateDecl>(D))
5248        continue;
5249
5250      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5251      if (AllowExplicitConversions || !Conv->isExplicit()) {
5252        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
5253                              VisibleQuals);
5254      }
5255    }
5256  }
5257}
5258
5259/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
5260/// the volatile- and non-volatile-qualified assignment operators for the
5261/// given type to the candidate set.
5262static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
5263                                                   QualType T,
5264                                                   Expr **Args,
5265                                                   unsigned NumArgs,
5266                                    OverloadCandidateSet &CandidateSet) {
5267  QualType ParamTypes[2];
5268
5269  // T& operator=(T&, T)
5270  ParamTypes[0] = S.Context.getLValueReferenceType(T);
5271  ParamTypes[1] = T;
5272  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5273                        /*IsAssignmentOperator=*/true);
5274
5275  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
5276    // volatile T& operator=(volatile T&, T)
5277    ParamTypes[0]
5278      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
5279    ParamTypes[1] = T;
5280    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5281                          /*IsAssignmentOperator=*/true);
5282  }
5283}
5284
5285/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
5286/// if any, found in visible type conversion functions found in ArgExpr's type.
5287static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
5288    Qualifiers VRQuals;
5289    const RecordType *TyRec;
5290    if (const MemberPointerType *RHSMPType =
5291        ArgExpr->getType()->getAs<MemberPointerType>())
5292      TyRec = RHSMPType->getClass()->getAs<RecordType>();
5293    else
5294      TyRec = ArgExpr->getType()->getAs<RecordType>();
5295    if (!TyRec) {
5296      // Just to be safe, assume the worst case.
5297      VRQuals.addVolatile();
5298      VRQuals.addRestrict();
5299      return VRQuals;
5300    }
5301
5302    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5303    if (!ClassDecl->hasDefinition())
5304      return VRQuals;
5305
5306    const UnresolvedSetImpl *Conversions =
5307      ClassDecl->getVisibleConversionFunctions();
5308
5309    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5310           E = Conversions->end(); I != E; ++I) {
5311      NamedDecl *D = I.getDecl();
5312      if (isa<UsingShadowDecl>(D))
5313        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5314      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
5315        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
5316        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
5317          CanTy = ResTypeRef->getPointeeType();
5318        // Need to go down the pointer/mempointer chain and add qualifiers
5319        // as see them.
5320        bool done = false;
5321        while (!done) {
5322          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
5323            CanTy = ResTypePtr->getPointeeType();
5324          else if (const MemberPointerType *ResTypeMPtr =
5325                CanTy->getAs<MemberPointerType>())
5326            CanTy = ResTypeMPtr->getPointeeType();
5327          else
5328            done = true;
5329          if (CanTy.isVolatileQualified())
5330            VRQuals.addVolatile();
5331          if (CanTy.isRestrictQualified())
5332            VRQuals.addRestrict();
5333          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
5334            return VRQuals;
5335        }
5336      }
5337    }
5338    return VRQuals;
5339}
5340
5341namespace {
5342
5343/// \brief Helper class to manage the addition of builtin operator overload
5344/// candidates. It provides shared state and utility methods used throughout
5345/// the process, as well as a helper method to add each group of builtin
5346/// operator overloads from the standard to a candidate set.
5347class BuiltinOperatorOverloadBuilder {
5348  // Common instance state available to all overload candidate addition methods.
5349  Sema &S;
5350  Expr **Args;
5351  unsigned NumArgs;
5352  Qualifiers VisibleTypeConversionsQuals;
5353  bool HasArithmeticOrEnumeralCandidateType;
5354  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
5355  OverloadCandidateSet &CandidateSet;
5356
5357  // Define some constants used to index and iterate over the arithemetic types
5358  // provided via the getArithmeticType() method below.
5359  // The "promoted arithmetic types" are the arithmetic
5360  // types are that preserved by promotion (C++ [over.built]p2).
5361  static const unsigned FirstIntegralType = 3;
5362  static const unsigned LastIntegralType = 18;
5363  static const unsigned FirstPromotedIntegralType = 3,
5364                        LastPromotedIntegralType = 9;
5365  static const unsigned FirstPromotedArithmeticType = 0,
5366                        LastPromotedArithmeticType = 9;
5367  static const unsigned NumArithmeticTypes = 18;
5368
5369  /// \brief Get the canonical type for a given arithmetic type index.
5370  CanQualType getArithmeticType(unsigned index) {
5371    assert(index < NumArithmeticTypes);
5372    static CanQualType ASTContext::* const
5373      ArithmeticTypes[NumArithmeticTypes] = {
5374      // Start of promoted types.
5375      &ASTContext::FloatTy,
5376      &ASTContext::DoubleTy,
5377      &ASTContext::LongDoubleTy,
5378
5379      // Start of integral types.
5380      &ASTContext::IntTy,
5381      &ASTContext::LongTy,
5382      &ASTContext::LongLongTy,
5383      &ASTContext::UnsignedIntTy,
5384      &ASTContext::UnsignedLongTy,
5385      &ASTContext::UnsignedLongLongTy,
5386      // End of promoted types.
5387
5388      &ASTContext::BoolTy,
5389      &ASTContext::CharTy,
5390      &ASTContext::WCharTy,
5391      &ASTContext::Char16Ty,
5392      &ASTContext::Char32Ty,
5393      &ASTContext::SignedCharTy,
5394      &ASTContext::ShortTy,
5395      &ASTContext::UnsignedCharTy,
5396      &ASTContext::UnsignedShortTy,
5397      // End of integral types.
5398      // FIXME: What about complex?
5399    };
5400    return S.Context.*ArithmeticTypes[index];
5401  }
5402
5403  /// \brief Gets the canonical type resulting from the usual arithemetic
5404  /// converions for the given arithmetic types.
5405  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5406    // Accelerator table for performing the usual arithmetic conversions.
5407    // The rules are basically:
5408    //   - if either is floating-point, use the wider floating-point
5409    //   - if same signedness, use the higher rank
5410    //   - if same size, use unsigned of the higher rank
5411    //   - use the larger type
5412    // These rules, together with the axiom that higher ranks are
5413    // never smaller, are sufficient to precompute all of these results
5414    // *except* when dealing with signed types of higher rank.
5415    // (we could precompute SLL x UI for all known platforms, but it's
5416    // better not to make any assumptions).
5417    enum PromotedType {
5418                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
5419    };
5420    static PromotedType ConversionsTable[LastPromotedArithmeticType]
5421                                        [LastPromotedArithmeticType] = {
5422      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
5423      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
5424      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5425      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
5426      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
5427      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
5428      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
5429      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
5430      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
5431    };
5432
5433    assert(L < LastPromotedArithmeticType);
5434    assert(R < LastPromotedArithmeticType);
5435    int Idx = ConversionsTable[L][R];
5436
5437    // Fast path: the table gives us a concrete answer.
5438    if (Idx != Dep) return getArithmeticType(Idx);
5439
5440    // Slow path: we need to compare widths.
5441    // An invariant is that the signed type has higher rank.
5442    CanQualType LT = getArithmeticType(L),
5443                RT = getArithmeticType(R);
5444    unsigned LW = S.Context.getIntWidth(LT),
5445             RW = S.Context.getIntWidth(RT);
5446
5447    // If they're different widths, use the signed type.
5448    if (LW > RW) return LT;
5449    else if (LW < RW) return RT;
5450
5451    // Otherwise, use the unsigned type of the signed type's rank.
5452    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5453    assert(L == SLL || R == SLL);
5454    return S.Context.UnsignedLongLongTy;
5455  }
5456
5457  /// \brief Helper method to factor out the common pattern of adding overloads
5458  /// for '++' and '--' builtin operators.
5459  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5460                                           bool HasVolatile) {
5461    QualType ParamTypes[2] = {
5462      S.Context.getLValueReferenceType(CandidateTy),
5463      S.Context.IntTy
5464    };
5465
5466    // Non-volatile version.
5467    if (NumArgs == 1)
5468      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5469    else
5470      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5471
5472    // Use a heuristic to reduce number of builtin candidates in the set:
5473    // add volatile version only if there are conversions to a volatile type.
5474    if (HasVolatile) {
5475      ParamTypes[0] =
5476        S.Context.getLValueReferenceType(
5477          S.Context.getVolatileType(CandidateTy));
5478      if (NumArgs == 1)
5479        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5480      else
5481        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5482    }
5483  }
5484
5485public:
5486  BuiltinOperatorOverloadBuilder(
5487    Sema &S, Expr **Args, unsigned NumArgs,
5488    Qualifiers VisibleTypeConversionsQuals,
5489    bool HasArithmeticOrEnumeralCandidateType,
5490    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5491    OverloadCandidateSet &CandidateSet)
5492    : S(S), Args(Args), NumArgs(NumArgs),
5493      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5494      HasArithmeticOrEnumeralCandidateType(
5495        HasArithmeticOrEnumeralCandidateType),
5496      CandidateTypes(CandidateTypes),
5497      CandidateSet(CandidateSet) {
5498    // Validate some of our static helper constants in debug builds.
5499    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5500           "Invalid first promoted integral type");
5501    assert(getArithmeticType(LastPromotedIntegralType - 1)
5502             == S.Context.UnsignedLongLongTy &&
5503           "Invalid last promoted integral type");
5504    assert(getArithmeticType(FirstPromotedArithmeticType)
5505             == S.Context.FloatTy &&
5506           "Invalid first promoted arithmetic type");
5507    assert(getArithmeticType(LastPromotedArithmeticType - 1)
5508             == S.Context.UnsignedLongLongTy &&
5509           "Invalid last promoted arithmetic type");
5510  }
5511
5512  // C++ [over.built]p3:
5513  //
5514  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
5515  //   is either volatile or empty, there exist candidate operator
5516  //   functions of the form
5517  //
5518  //       VQ T&      operator++(VQ T&);
5519  //       T          operator++(VQ T&, int);
5520  //
5521  // C++ [over.built]p4:
5522  //
5523  //   For every pair (T, VQ), where T is an arithmetic type other
5524  //   than bool, and VQ is either volatile or empty, there exist
5525  //   candidate operator functions of the form
5526  //
5527  //       VQ T&      operator--(VQ T&);
5528  //       T          operator--(VQ T&, int);
5529  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5530    if (!HasArithmeticOrEnumeralCandidateType)
5531      return;
5532
5533    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5534         Arith < NumArithmeticTypes; ++Arith) {
5535      addPlusPlusMinusMinusStyleOverloads(
5536        getArithmeticType(Arith),
5537        VisibleTypeConversionsQuals.hasVolatile());
5538    }
5539  }
5540
5541  // C++ [over.built]p5:
5542  //
5543  //   For every pair (T, VQ), where T is a cv-qualified or
5544  //   cv-unqualified object type, and VQ is either volatile or
5545  //   empty, there exist candidate operator functions of the form
5546  //
5547  //       T*VQ&      operator++(T*VQ&);
5548  //       T*VQ&      operator--(T*VQ&);
5549  //       T*         operator++(T*VQ&, int);
5550  //       T*         operator--(T*VQ&, int);
5551  void addPlusPlusMinusMinusPointerOverloads() {
5552    for (BuiltinCandidateTypeSet::iterator
5553              Ptr = CandidateTypes[0].pointer_begin(),
5554           PtrEnd = CandidateTypes[0].pointer_end();
5555         Ptr != PtrEnd; ++Ptr) {
5556      // Skip pointer types that aren't pointers to object types.
5557      if (!(*Ptr)->getPointeeType()->isObjectType())
5558        continue;
5559
5560      addPlusPlusMinusMinusStyleOverloads(*Ptr,
5561        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5562         VisibleTypeConversionsQuals.hasVolatile()));
5563    }
5564  }
5565
5566  // C++ [over.built]p6:
5567  //   For every cv-qualified or cv-unqualified object type T, there
5568  //   exist candidate operator functions of the form
5569  //
5570  //       T&         operator*(T*);
5571  //
5572  // C++ [over.built]p7:
5573  //   For every function type T that does not have cv-qualifiers or a
5574  //   ref-qualifier, there exist candidate operator functions of the form
5575  //       T&         operator*(T*);
5576  void addUnaryStarPointerOverloads() {
5577    for (BuiltinCandidateTypeSet::iterator
5578              Ptr = CandidateTypes[0].pointer_begin(),
5579           PtrEnd = CandidateTypes[0].pointer_end();
5580         Ptr != PtrEnd; ++Ptr) {
5581      QualType ParamTy = *Ptr;
5582      QualType PointeeTy = ParamTy->getPointeeType();
5583      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5584        continue;
5585
5586      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5587        if (Proto->getTypeQuals() || Proto->getRefQualifier())
5588          continue;
5589
5590      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5591                            &ParamTy, Args, 1, CandidateSet);
5592    }
5593  }
5594
5595  // C++ [over.built]p9:
5596  //  For every promoted arithmetic type T, there exist candidate
5597  //  operator functions of the form
5598  //
5599  //       T         operator+(T);
5600  //       T         operator-(T);
5601  void addUnaryPlusOrMinusArithmeticOverloads() {
5602    if (!HasArithmeticOrEnumeralCandidateType)
5603      return;
5604
5605    for (unsigned Arith = FirstPromotedArithmeticType;
5606         Arith < LastPromotedArithmeticType; ++Arith) {
5607      QualType ArithTy = getArithmeticType(Arith);
5608      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5609    }
5610
5611    // Extension: We also add these operators for vector types.
5612    for (BuiltinCandidateTypeSet::iterator
5613              Vec = CandidateTypes[0].vector_begin(),
5614           VecEnd = CandidateTypes[0].vector_end();
5615         Vec != VecEnd; ++Vec) {
5616      QualType VecTy = *Vec;
5617      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5618    }
5619  }
5620
5621  // C++ [over.built]p8:
5622  //   For every type T, there exist candidate operator functions of
5623  //   the form
5624  //
5625  //       T*         operator+(T*);
5626  void addUnaryPlusPointerOverloads() {
5627    for (BuiltinCandidateTypeSet::iterator
5628              Ptr = CandidateTypes[0].pointer_begin(),
5629           PtrEnd = CandidateTypes[0].pointer_end();
5630         Ptr != PtrEnd; ++Ptr) {
5631      QualType ParamTy = *Ptr;
5632      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5633    }
5634  }
5635
5636  // C++ [over.built]p10:
5637  //   For every promoted integral type T, there exist candidate
5638  //   operator functions of the form
5639  //
5640  //        T         operator~(T);
5641  void addUnaryTildePromotedIntegralOverloads() {
5642    if (!HasArithmeticOrEnumeralCandidateType)
5643      return;
5644
5645    for (unsigned Int = FirstPromotedIntegralType;
5646         Int < LastPromotedIntegralType; ++Int) {
5647      QualType IntTy = getArithmeticType(Int);
5648      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5649    }
5650
5651    // Extension: We also add this operator for vector types.
5652    for (BuiltinCandidateTypeSet::iterator
5653              Vec = CandidateTypes[0].vector_begin(),
5654           VecEnd = CandidateTypes[0].vector_end();
5655         Vec != VecEnd; ++Vec) {
5656      QualType VecTy = *Vec;
5657      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5658    }
5659  }
5660
5661  // C++ [over.match.oper]p16:
5662  //   For every pointer to member type T, there exist candidate operator
5663  //   functions of the form
5664  //
5665  //        bool operator==(T,T);
5666  //        bool operator!=(T,T);
5667  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5668    /// Set of (canonical) types that we've already handled.
5669    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5670
5671    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5672      for (BuiltinCandidateTypeSet::iterator
5673                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5674             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5675           MemPtr != MemPtrEnd;
5676           ++MemPtr) {
5677        // Don't add the same builtin candidate twice.
5678        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5679          continue;
5680
5681        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5682        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5683                              CandidateSet);
5684      }
5685    }
5686  }
5687
5688  // C++ [over.built]p15:
5689  //
5690  //   For every T, where T is an enumeration type, a pointer type, or
5691  //   std::nullptr_t, there exist candidate operator functions of the form
5692  //
5693  //        bool       operator<(T, T);
5694  //        bool       operator>(T, T);
5695  //        bool       operator<=(T, T);
5696  //        bool       operator>=(T, T);
5697  //        bool       operator==(T, T);
5698  //        bool       operator!=(T, T);
5699  void addRelationalPointerOrEnumeralOverloads() {
5700    // C++ [over.built]p1:
5701    //   If there is a user-written candidate with the same name and parameter
5702    //   types as a built-in candidate operator function, the built-in operator
5703    //   function is hidden and is not included in the set of candidate
5704    //   functions.
5705    //
5706    // The text is actually in a note, but if we don't implement it then we end
5707    // up with ambiguities when the user provides an overloaded operator for
5708    // an enumeration type. Note that only enumeration types have this problem,
5709    // so we track which enumeration types we've seen operators for. Also, the
5710    // only other overloaded operator with enumeration argumenst, operator=,
5711    // cannot be overloaded for enumeration types, so this is the only place
5712    // where we must suppress candidates like this.
5713    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5714      UserDefinedBinaryOperators;
5715
5716    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5717      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5718          CandidateTypes[ArgIdx].enumeration_end()) {
5719        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5720                                         CEnd = CandidateSet.end();
5721             C != CEnd; ++C) {
5722          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5723            continue;
5724
5725          QualType FirstParamType =
5726            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5727          QualType SecondParamType =
5728            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5729
5730          // Skip if either parameter isn't of enumeral type.
5731          if (!FirstParamType->isEnumeralType() ||
5732              !SecondParamType->isEnumeralType())
5733            continue;
5734
5735          // Add this operator to the set of known user-defined operators.
5736          UserDefinedBinaryOperators.insert(
5737            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5738                           S.Context.getCanonicalType(SecondParamType)));
5739        }
5740      }
5741    }
5742
5743    /// Set of (canonical) types that we've already handled.
5744    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5745
5746    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5747      for (BuiltinCandidateTypeSet::iterator
5748                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5749             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5750           Ptr != PtrEnd; ++Ptr) {
5751        // Don't add the same builtin candidate twice.
5752        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5753          continue;
5754
5755        QualType ParamTypes[2] = { *Ptr, *Ptr };
5756        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5757                              CandidateSet);
5758      }
5759      for (BuiltinCandidateTypeSet::iterator
5760                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5761             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5762           Enum != EnumEnd; ++Enum) {
5763        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5764
5765        // Don't add the same builtin candidate twice, or if a user defined
5766        // candidate exists.
5767        if (!AddedTypes.insert(CanonType) ||
5768            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5769                                                            CanonType)))
5770          continue;
5771
5772        QualType ParamTypes[2] = { *Enum, *Enum };
5773        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5774                              CandidateSet);
5775      }
5776
5777      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
5778        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
5779        if (AddedTypes.insert(NullPtrTy) &&
5780            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
5781                                                             NullPtrTy))) {
5782          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
5783          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5784                                CandidateSet);
5785        }
5786      }
5787    }
5788  }
5789
5790  // C++ [over.built]p13:
5791  //
5792  //   For every cv-qualified or cv-unqualified object type T
5793  //   there exist candidate operator functions of the form
5794  //
5795  //      T*         operator+(T*, ptrdiff_t);
5796  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5797  //      T*         operator-(T*, ptrdiff_t);
5798  //      T*         operator+(ptrdiff_t, T*);
5799  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5800  //
5801  // C++ [over.built]p14:
5802  //
5803  //   For every T, where T is a pointer to object type, there
5804  //   exist candidate operator functions of the form
5805  //
5806  //      ptrdiff_t  operator-(T, T);
5807  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5808    /// Set of (canonical) types that we've already handled.
5809    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5810
5811    for (int Arg = 0; Arg < 2; ++Arg) {
5812      QualType AsymetricParamTypes[2] = {
5813        S.Context.getPointerDiffType(),
5814        S.Context.getPointerDiffType(),
5815      };
5816      for (BuiltinCandidateTypeSet::iterator
5817                Ptr = CandidateTypes[Arg].pointer_begin(),
5818             PtrEnd = CandidateTypes[Arg].pointer_end();
5819           Ptr != PtrEnd; ++Ptr) {
5820        QualType PointeeTy = (*Ptr)->getPointeeType();
5821        if (!PointeeTy->isObjectType())
5822          continue;
5823
5824        AsymetricParamTypes[Arg] = *Ptr;
5825        if (Arg == 0 || Op == OO_Plus) {
5826          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5827          // T* operator+(ptrdiff_t, T*);
5828          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5829                                CandidateSet);
5830        }
5831        if (Op == OO_Minus) {
5832          // ptrdiff_t operator-(T, T);
5833          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5834            continue;
5835
5836          QualType ParamTypes[2] = { *Ptr, *Ptr };
5837          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5838                                Args, 2, CandidateSet);
5839        }
5840      }
5841    }
5842  }
5843
5844  // C++ [over.built]p12:
5845  //
5846  //   For every pair of promoted arithmetic types L and R, there
5847  //   exist candidate operator functions of the form
5848  //
5849  //        LR         operator*(L, R);
5850  //        LR         operator/(L, R);
5851  //        LR         operator+(L, R);
5852  //        LR         operator-(L, R);
5853  //        bool       operator<(L, R);
5854  //        bool       operator>(L, R);
5855  //        bool       operator<=(L, R);
5856  //        bool       operator>=(L, R);
5857  //        bool       operator==(L, R);
5858  //        bool       operator!=(L, R);
5859  //
5860  //   where LR is the result of the usual arithmetic conversions
5861  //   between types L and R.
5862  //
5863  // C++ [over.built]p24:
5864  //
5865  //   For every pair of promoted arithmetic types L and R, there exist
5866  //   candidate operator functions of the form
5867  //
5868  //        LR       operator?(bool, L, R);
5869  //
5870  //   where LR is the result of the usual arithmetic conversions
5871  //   between types L and R.
5872  // Our candidates ignore the first parameter.
5873  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5874    if (!HasArithmeticOrEnumeralCandidateType)
5875      return;
5876
5877    for (unsigned Left = FirstPromotedArithmeticType;
5878         Left < LastPromotedArithmeticType; ++Left) {
5879      for (unsigned Right = FirstPromotedArithmeticType;
5880           Right < LastPromotedArithmeticType; ++Right) {
5881        QualType LandR[2] = { getArithmeticType(Left),
5882                              getArithmeticType(Right) };
5883        QualType Result =
5884          isComparison ? S.Context.BoolTy
5885                       : getUsualArithmeticConversions(Left, Right);
5886        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5887      }
5888    }
5889
5890    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5891    // conditional operator for vector types.
5892    for (BuiltinCandidateTypeSet::iterator
5893              Vec1 = CandidateTypes[0].vector_begin(),
5894           Vec1End = CandidateTypes[0].vector_end();
5895         Vec1 != Vec1End; ++Vec1) {
5896      for (BuiltinCandidateTypeSet::iterator
5897                Vec2 = CandidateTypes[1].vector_begin(),
5898             Vec2End = CandidateTypes[1].vector_end();
5899           Vec2 != Vec2End; ++Vec2) {
5900        QualType LandR[2] = { *Vec1, *Vec2 };
5901        QualType Result = S.Context.BoolTy;
5902        if (!isComparison) {
5903          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5904            Result = *Vec1;
5905          else
5906            Result = *Vec2;
5907        }
5908
5909        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5910      }
5911    }
5912  }
5913
5914  // C++ [over.built]p17:
5915  //
5916  //   For every pair of promoted integral types L and R, there
5917  //   exist candidate operator functions of the form
5918  //
5919  //      LR         operator%(L, R);
5920  //      LR         operator&(L, R);
5921  //      LR         operator^(L, R);
5922  //      LR         operator|(L, R);
5923  //      L          operator<<(L, R);
5924  //      L          operator>>(L, R);
5925  //
5926  //   where LR is the result of the usual arithmetic conversions
5927  //   between types L and R.
5928  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5929    if (!HasArithmeticOrEnumeralCandidateType)
5930      return;
5931
5932    for (unsigned Left = FirstPromotedIntegralType;
5933         Left < LastPromotedIntegralType; ++Left) {
5934      for (unsigned Right = FirstPromotedIntegralType;
5935           Right < LastPromotedIntegralType; ++Right) {
5936        QualType LandR[2] = { getArithmeticType(Left),
5937                              getArithmeticType(Right) };
5938        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5939            ? LandR[0]
5940            : getUsualArithmeticConversions(Left, Right);
5941        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5942      }
5943    }
5944  }
5945
5946  // C++ [over.built]p20:
5947  //
5948  //   For every pair (T, VQ), where T is an enumeration or
5949  //   pointer to member type and VQ is either volatile or
5950  //   empty, there exist candidate operator functions of the form
5951  //
5952  //        VQ T&      operator=(VQ T&, T);
5953  void addAssignmentMemberPointerOrEnumeralOverloads() {
5954    /// Set of (canonical) types that we've already handled.
5955    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5956
5957    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5958      for (BuiltinCandidateTypeSet::iterator
5959                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5960             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5961           Enum != EnumEnd; ++Enum) {
5962        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5963          continue;
5964
5965        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5966                                               CandidateSet);
5967      }
5968
5969      for (BuiltinCandidateTypeSet::iterator
5970                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5971             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5972           MemPtr != MemPtrEnd; ++MemPtr) {
5973        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5974          continue;
5975
5976        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5977                                               CandidateSet);
5978      }
5979    }
5980  }
5981
5982  // C++ [over.built]p19:
5983  //
5984  //   For every pair (T, VQ), where T is any type and VQ is either
5985  //   volatile or empty, there exist candidate operator functions
5986  //   of the form
5987  //
5988  //        T*VQ&      operator=(T*VQ&, T*);
5989  //
5990  // C++ [over.built]p21:
5991  //
5992  //   For every pair (T, VQ), where T is a cv-qualified or
5993  //   cv-unqualified object type and VQ is either volatile or
5994  //   empty, there exist candidate operator functions of the form
5995  //
5996  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5997  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5998  void addAssignmentPointerOverloads(bool isEqualOp) {
5999    /// Set of (canonical) types that we've already handled.
6000    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6001
6002    for (BuiltinCandidateTypeSet::iterator
6003              Ptr = CandidateTypes[0].pointer_begin(),
6004           PtrEnd = CandidateTypes[0].pointer_end();
6005         Ptr != PtrEnd; ++Ptr) {
6006      // If this is operator=, keep track of the builtin candidates we added.
6007      if (isEqualOp)
6008        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
6009      else if (!(*Ptr)->getPointeeType()->isObjectType())
6010        continue;
6011
6012      // non-volatile version
6013      QualType ParamTypes[2] = {
6014        S.Context.getLValueReferenceType(*Ptr),
6015        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
6016      };
6017      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6018                            /*IsAssigmentOperator=*/ isEqualOp);
6019
6020      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6021          VisibleTypeConversionsQuals.hasVolatile()) {
6022        // volatile version
6023        ParamTypes[0] =
6024          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6025        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6026                              /*IsAssigmentOperator=*/isEqualOp);
6027      }
6028    }
6029
6030    if (isEqualOp) {
6031      for (BuiltinCandidateTypeSet::iterator
6032                Ptr = CandidateTypes[1].pointer_begin(),
6033             PtrEnd = CandidateTypes[1].pointer_end();
6034           Ptr != PtrEnd; ++Ptr) {
6035        // Make sure we don't add the same candidate twice.
6036        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6037          continue;
6038
6039        QualType ParamTypes[2] = {
6040          S.Context.getLValueReferenceType(*Ptr),
6041          *Ptr,
6042        };
6043
6044        // non-volatile version
6045        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6046                              /*IsAssigmentOperator=*/true);
6047
6048        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6049            VisibleTypeConversionsQuals.hasVolatile()) {
6050          // volatile version
6051          ParamTypes[0] =
6052            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6053          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6054                                CandidateSet, /*IsAssigmentOperator=*/true);
6055        }
6056      }
6057    }
6058  }
6059
6060  // C++ [over.built]p18:
6061  //
6062  //   For every triple (L, VQ, R), where L is an arithmetic type,
6063  //   VQ is either volatile or empty, and R is a promoted
6064  //   arithmetic type, there exist candidate operator functions of
6065  //   the form
6066  //
6067  //        VQ L&      operator=(VQ L&, R);
6068  //        VQ L&      operator*=(VQ L&, R);
6069  //        VQ L&      operator/=(VQ L&, R);
6070  //        VQ L&      operator+=(VQ L&, R);
6071  //        VQ L&      operator-=(VQ L&, R);
6072  void addAssignmentArithmeticOverloads(bool isEqualOp) {
6073    if (!HasArithmeticOrEnumeralCandidateType)
6074      return;
6075
6076    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
6077      for (unsigned Right = FirstPromotedArithmeticType;
6078           Right < LastPromotedArithmeticType; ++Right) {
6079        QualType ParamTypes[2];
6080        ParamTypes[1] = getArithmeticType(Right);
6081
6082        // Add this built-in operator as a candidate (VQ is empty).
6083        ParamTypes[0] =
6084          S.Context.getLValueReferenceType(getArithmeticType(Left));
6085        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6086                              /*IsAssigmentOperator=*/isEqualOp);
6087
6088        // Add this built-in operator as a candidate (VQ is 'volatile').
6089        if (VisibleTypeConversionsQuals.hasVolatile()) {
6090          ParamTypes[0] =
6091            S.Context.getVolatileType(getArithmeticType(Left));
6092          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6093          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6094                                CandidateSet,
6095                                /*IsAssigmentOperator=*/isEqualOp);
6096        }
6097      }
6098    }
6099
6100    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
6101    for (BuiltinCandidateTypeSet::iterator
6102              Vec1 = CandidateTypes[0].vector_begin(),
6103           Vec1End = CandidateTypes[0].vector_end();
6104         Vec1 != Vec1End; ++Vec1) {
6105      for (BuiltinCandidateTypeSet::iterator
6106                Vec2 = CandidateTypes[1].vector_begin(),
6107             Vec2End = CandidateTypes[1].vector_end();
6108           Vec2 != Vec2End; ++Vec2) {
6109        QualType ParamTypes[2];
6110        ParamTypes[1] = *Vec2;
6111        // Add this built-in operator as a candidate (VQ is empty).
6112        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
6113        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6114                              /*IsAssigmentOperator=*/isEqualOp);
6115
6116        // Add this built-in operator as a candidate (VQ is 'volatile').
6117        if (VisibleTypeConversionsQuals.hasVolatile()) {
6118          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
6119          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6120          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6121                                CandidateSet,
6122                                /*IsAssigmentOperator=*/isEqualOp);
6123        }
6124      }
6125    }
6126  }
6127
6128  // C++ [over.built]p22:
6129  //
6130  //   For every triple (L, VQ, R), where L is an integral type, VQ
6131  //   is either volatile or empty, and R is a promoted integral
6132  //   type, there exist candidate operator functions of the form
6133  //
6134  //        VQ L&       operator%=(VQ L&, R);
6135  //        VQ L&       operator<<=(VQ L&, R);
6136  //        VQ L&       operator>>=(VQ L&, R);
6137  //        VQ L&       operator&=(VQ L&, R);
6138  //        VQ L&       operator^=(VQ L&, R);
6139  //        VQ L&       operator|=(VQ L&, R);
6140  void addAssignmentIntegralOverloads() {
6141    if (!HasArithmeticOrEnumeralCandidateType)
6142      return;
6143
6144    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6145      for (unsigned Right = FirstPromotedIntegralType;
6146           Right < LastPromotedIntegralType; ++Right) {
6147        QualType ParamTypes[2];
6148        ParamTypes[1] = getArithmeticType(Right);
6149
6150        // Add this built-in operator as a candidate (VQ is empty).
6151        ParamTypes[0] =
6152          S.Context.getLValueReferenceType(getArithmeticType(Left));
6153        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6154        if (VisibleTypeConversionsQuals.hasVolatile()) {
6155          // Add this built-in operator as a candidate (VQ is 'volatile').
6156          ParamTypes[0] = getArithmeticType(Left);
6157          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6158          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6159          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6160                                CandidateSet);
6161        }
6162      }
6163    }
6164  }
6165
6166  // C++ [over.operator]p23:
6167  //
6168  //   There also exist candidate operator functions of the form
6169  //
6170  //        bool        operator!(bool);
6171  //        bool        operator&&(bool, bool);
6172  //        bool        operator||(bool, bool);
6173  void addExclaimOverload() {
6174    QualType ParamTy = S.Context.BoolTy;
6175    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6176                          /*IsAssignmentOperator=*/false,
6177                          /*NumContextualBoolArguments=*/1);
6178  }
6179  void addAmpAmpOrPipePipeOverload() {
6180    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6181    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6182                          /*IsAssignmentOperator=*/false,
6183                          /*NumContextualBoolArguments=*/2);
6184  }
6185
6186  // C++ [over.built]p13:
6187  //
6188  //   For every cv-qualified or cv-unqualified object type T there
6189  //   exist candidate operator functions of the form
6190  //
6191  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
6192  //        T&         operator[](T*, ptrdiff_t);
6193  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
6194  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
6195  //        T&         operator[](ptrdiff_t, T*);
6196  void addSubscriptOverloads() {
6197    for (BuiltinCandidateTypeSet::iterator
6198              Ptr = CandidateTypes[0].pointer_begin(),
6199           PtrEnd = CandidateTypes[0].pointer_end();
6200         Ptr != PtrEnd; ++Ptr) {
6201      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6202      QualType PointeeType = (*Ptr)->getPointeeType();
6203      if (!PointeeType->isObjectType())
6204        continue;
6205
6206      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6207
6208      // T& operator[](T*, ptrdiff_t)
6209      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6210    }
6211
6212    for (BuiltinCandidateTypeSet::iterator
6213              Ptr = CandidateTypes[1].pointer_begin(),
6214           PtrEnd = CandidateTypes[1].pointer_end();
6215         Ptr != PtrEnd; ++Ptr) {
6216      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
6217      QualType PointeeType = (*Ptr)->getPointeeType();
6218      if (!PointeeType->isObjectType())
6219        continue;
6220
6221      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6222
6223      // T& operator[](ptrdiff_t, T*)
6224      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6225    }
6226  }
6227
6228  // C++ [over.built]p11:
6229  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
6230  //    C1 is the same type as C2 or is a derived class of C2, T is an object
6231  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
6232  //    there exist candidate operator functions of the form
6233  //
6234  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
6235  //
6236  //    where CV12 is the union of CV1 and CV2.
6237  void addArrowStarOverloads() {
6238    for (BuiltinCandidateTypeSet::iterator
6239             Ptr = CandidateTypes[0].pointer_begin(),
6240           PtrEnd = CandidateTypes[0].pointer_end();
6241         Ptr != PtrEnd; ++Ptr) {
6242      QualType C1Ty = (*Ptr);
6243      QualType C1;
6244      QualifierCollector Q1;
6245      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
6246      if (!isa<RecordType>(C1))
6247        continue;
6248      // heuristic to reduce number of builtin candidates in the set.
6249      // Add volatile/restrict version only if there are conversions to a
6250      // volatile/restrict type.
6251      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
6252        continue;
6253      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
6254        continue;
6255      for (BuiltinCandidateTypeSet::iterator
6256                MemPtr = CandidateTypes[1].member_pointer_begin(),
6257             MemPtrEnd = CandidateTypes[1].member_pointer_end();
6258           MemPtr != MemPtrEnd; ++MemPtr) {
6259        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
6260        QualType C2 = QualType(mptr->getClass(), 0);
6261        C2 = C2.getUnqualifiedType();
6262        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
6263          break;
6264        QualType ParamTypes[2] = { *Ptr, *MemPtr };
6265        // build CV12 T&
6266        QualType T = mptr->getPointeeType();
6267        if (!VisibleTypeConversionsQuals.hasVolatile() &&
6268            T.isVolatileQualified())
6269          continue;
6270        if (!VisibleTypeConversionsQuals.hasRestrict() &&
6271            T.isRestrictQualified())
6272          continue;
6273        T = Q1.apply(S.Context, T);
6274        QualType ResultTy = S.Context.getLValueReferenceType(T);
6275        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6276      }
6277    }
6278  }
6279
6280  // Note that we don't consider the first argument, since it has been
6281  // contextually converted to bool long ago. The candidates below are
6282  // therefore added as binary.
6283  //
6284  // C++ [over.built]p25:
6285  //   For every type T, where T is a pointer, pointer-to-member, or scoped
6286  //   enumeration type, there exist candidate operator functions of the form
6287  //
6288  //        T        operator?(bool, T, T);
6289  //
6290  void addConditionalOperatorOverloads() {
6291    /// Set of (canonical) types that we've already handled.
6292    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6293
6294    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6295      for (BuiltinCandidateTypeSet::iterator
6296                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6297             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6298           Ptr != PtrEnd; ++Ptr) {
6299        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6300          continue;
6301
6302        QualType ParamTypes[2] = { *Ptr, *Ptr };
6303        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
6304      }
6305
6306      for (BuiltinCandidateTypeSet::iterator
6307                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6308             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6309           MemPtr != MemPtrEnd; ++MemPtr) {
6310        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6311          continue;
6312
6313        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6314        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
6315      }
6316
6317      if (S.getLangOptions().CPlusPlus0x) {
6318        for (BuiltinCandidateTypeSet::iterator
6319                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6320               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6321             Enum != EnumEnd; ++Enum) {
6322          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
6323            continue;
6324
6325          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6326            continue;
6327
6328          QualType ParamTypes[2] = { *Enum, *Enum };
6329          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
6330        }
6331      }
6332    }
6333  }
6334};
6335
6336} // end anonymous namespace
6337
6338/// AddBuiltinOperatorCandidates - Add the appropriate built-in
6339/// operator overloads to the candidate set (C++ [over.built]), based
6340/// on the operator @p Op and the arguments given. For example, if the
6341/// operator is a binary '+', this routine might add "int
6342/// operator+(int, int)" to cover integer addition.
6343void
6344Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
6345                                   SourceLocation OpLoc,
6346                                   Expr **Args, unsigned NumArgs,
6347                                   OverloadCandidateSet& CandidateSet) {
6348  // Find all of the types that the arguments can convert to, but only
6349  // if the operator we're looking at has built-in operator candidates
6350  // that make use of these types. Also record whether we encounter non-record
6351  // candidate types or either arithmetic or enumeral candidate types.
6352  Qualifiers VisibleTypeConversionsQuals;
6353  VisibleTypeConversionsQuals.addConst();
6354  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6355    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
6356
6357  bool HasNonRecordCandidateType = false;
6358  bool HasArithmeticOrEnumeralCandidateType = false;
6359  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
6360  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6361    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
6362    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
6363                                                 OpLoc,
6364                                                 true,
6365                                                 (Op == OO_Exclaim ||
6366                                                  Op == OO_AmpAmp ||
6367                                                  Op == OO_PipePipe),
6368                                                 VisibleTypeConversionsQuals);
6369    HasNonRecordCandidateType = HasNonRecordCandidateType ||
6370        CandidateTypes[ArgIdx].hasNonRecordTypes();
6371    HasArithmeticOrEnumeralCandidateType =
6372        HasArithmeticOrEnumeralCandidateType ||
6373        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6374  }
6375
6376  // Exit early when no non-record types have been added to the candidate set
6377  // for any of the arguments to the operator.
6378  //
6379  // We can't exit early for !, ||, or &&, since there we have always have
6380  // 'bool' overloads.
6381  if (!HasNonRecordCandidateType &&
6382      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
6383    return;
6384
6385  // Setup an object to manage the common state for building overloads.
6386  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6387                                           VisibleTypeConversionsQuals,
6388                                           HasArithmeticOrEnumeralCandidateType,
6389                                           CandidateTypes, CandidateSet);
6390
6391  // Dispatch over the operation to add in only those overloads which apply.
6392  switch (Op) {
6393  case OO_None:
6394  case NUM_OVERLOADED_OPERATORS:
6395    llvm_unreachable("Expected an overloaded operator");
6396
6397  case OO_New:
6398  case OO_Delete:
6399  case OO_Array_New:
6400  case OO_Array_Delete:
6401  case OO_Call:
6402    llvm_unreachable(
6403                    "Special operators don't use AddBuiltinOperatorCandidates");
6404
6405  case OO_Comma:
6406  case OO_Arrow:
6407    // C++ [over.match.oper]p3:
6408    //   -- For the operator ',', the unary operator '&', or the
6409    //      operator '->', the built-in candidates set is empty.
6410    break;
6411
6412  case OO_Plus: // '+' is either unary or binary
6413    if (NumArgs == 1)
6414      OpBuilder.addUnaryPlusPointerOverloads();
6415    // Fall through.
6416
6417  case OO_Minus: // '-' is either unary or binary
6418    if (NumArgs == 1) {
6419      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6420    } else {
6421      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6422      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6423    }
6424    break;
6425
6426  case OO_Star: // '*' is either unary or binary
6427    if (NumArgs == 1)
6428      OpBuilder.addUnaryStarPointerOverloads();
6429    else
6430      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6431    break;
6432
6433  case OO_Slash:
6434    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6435    break;
6436
6437  case OO_PlusPlus:
6438  case OO_MinusMinus:
6439    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6440    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6441    break;
6442
6443  case OO_EqualEqual:
6444  case OO_ExclaimEqual:
6445    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6446    // Fall through.
6447
6448  case OO_Less:
6449  case OO_Greater:
6450  case OO_LessEqual:
6451  case OO_GreaterEqual:
6452    OpBuilder.addRelationalPointerOrEnumeralOverloads();
6453    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6454    break;
6455
6456  case OO_Percent:
6457  case OO_Caret:
6458  case OO_Pipe:
6459  case OO_LessLess:
6460  case OO_GreaterGreater:
6461    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6462    break;
6463
6464  case OO_Amp: // '&' is either unary or binary
6465    if (NumArgs == 1)
6466      // C++ [over.match.oper]p3:
6467      //   -- For the operator ',', the unary operator '&', or the
6468      //      operator '->', the built-in candidates set is empty.
6469      break;
6470
6471    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6472    break;
6473
6474  case OO_Tilde:
6475    OpBuilder.addUnaryTildePromotedIntegralOverloads();
6476    break;
6477
6478  case OO_Equal:
6479    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6480    // Fall through.
6481
6482  case OO_PlusEqual:
6483  case OO_MinusEqual:
6484    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6485    // Fall through.
6486
6487  case OO_StarEqual:
6488  case OO_SlashEqual:
6489    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6490    break;
6491
6492  case OO_PercentEqual:
6493  case OO_LessLessEqual:
6494  case OO_GreaterGreaterEqual:
6495  case OO_AmpEqual:
6496  case OO_CaretEqual:
6497  case OO_PipeEqual:
6498    OpBuilder.addAssignmentIntegralOverloads();
6499    break;
6500
6501  case OO_Exclaim:
6502    OpBuilder.addExclaimOverload();
6503    break;
6504
6505  case OO_AmpAmp:
6506  case OO_PipePipe:
6507    OpBuilder.addAmpAmpOrPipePipeOverload();
6508    break;
6509
6510  case OO_Subscript:
6511    OpBuilder.addSubscriptOverloads();
6512    break;
6513
6514  case OO_ArrowStar:
6515    OpBuilder.addArrowStarOverloads();
6516    break;
6517
6518  case OO_Conditional:
6519    OpBuilder.addConditionalOperatorOverloads();
6520    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6521    break;
6522  }
6523}
6524
6525/// \brief Add function candidates found via argument-dependent lookup
6526/// to the set of overloading candidates.
6527///
6528/// This routine performs argument-dependent name lookup based on the
6529/// given function name (which may also be an operator name) and adds
6530/// all of the overload candidates found by ADL to the overload
6531/// candidate set (C++ [basic.lookup.argdep]).
6532void
6533Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6534                                           bool Operator,
6535                                           Expr **Args, unsigned NumArgs,
6536                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
6537                                           OverloadCandidateSet& CandidateSet,
6538                                           bool PartialOverloading,
6539                                           bool StdNamespaceIsAssociated) {
6540  ADLResult Fns;
6541
6542  // FIXME: This approach for uniquing ADL results (and removing
6543  // redundant candidates from the set) relies on pointer-equality,
6544  // which means we need to key off the canonical decl.  However,
6545  // always going back to the canonical decl might not get us the
6546  // right set of default arguments.  What default arguments are
6547  // we supposed to consider on ADL candidates, anyway?
6548
6549  // FIXME: Pass in the explicit template arguments?
6550  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6551                          StdNamespaceIsAssociated);
6552
6553  // Erase all of the candidates we already knew about.
6554  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6555                                   CandEnd = CandidateSet.end();
6556       Cand != CandEnd; ++Cand)
6557    if (Cand->Function) {
6558      Fns.erase(Cand->Function);
6559      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6560        Fns.erase(FunTmpl);
6561    }
6562
6563  // For each of the ADL candidates we found, add it to the overload
6564  // set.
6565  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6566    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6567    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6568      if (ExplicitTemplateArgs)
6569        continue;
6570
6571      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6572                           false, PartialOverloading);
6573    } else
6574      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6575                                   FoundDecl, ExplicitTemplateArgs,
6576                                   Args, NumArgs, CandidateSet);
6577  }
6578}
6579
6580/// isBetterOverloadCandidate - Determines whether the first overload
6581/// candidate is a better candidate than the second (C++ 13.3.3p1).
6582bool
6583isBetterOverloadCandidate(Sema &S,
6584                          const OverloadCandidate &Cand1,
6585                          const OverloadCandidate &Cand2,
6586                          SourceLocation Loc,
6587                          bool UserDefinedConversion) {
6588  // Define viable functions to be better candidates than non-viable
6589  // functions.
6590  if (!Cand2.Viable)
6591    return Cand1.Viable;
6592  else if (!Cand1.Viable)
6593    return false;
6594
6595  // C++ [over.match.best]p1:
6596  //
6597  //   -- if F is a static member function, ICS1(F) is defined such
6598  //      that ICS1(F) is neither better nor worse than ICS1(G) for
6599  //      any function G, and, symmetrically, ICS1(G) is neither
6600  //      better nor worse than ICS1(F).
6601  unsigned StartArg = 0;
6602  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6603    StartArg = 1;
6604
6605  // C++ [over.match.best]p1:
6606  //   A viable function F1 is defined to be a better function than another
6607  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
6608  //   conversion sequence than ICSi(F2), and then...
6609  unsigned NumArgs = Cand1.Conversions.size();
6610  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6611  bool HasBetterConversion = false;
6612  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6613    switch (CompareImplicitConversionSequences(S,
6614                                               Cand1.Conversions[ArgIdx],
6615                                               Cand2.Conversions[ArgIdx])) {
6616    case ImplicitConversionSequence::Better:
6617      // Cand1 has a better conversion sequence.
6618      HasBetterConversion = true;
6619      break;
6620
6621    case ImplicitConversionSequence::Worse:
6622      // Cand1 can't be better than Cand2.
6623      return false;
6624
6625    case ImplicitConversionSequence::Indistinguishable:
6626      // Do nothing.
6627      break;
6628    }
6629  }
6630
6631  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6632  //       ICSj(F2), or, if not that,
6633  if (HasBetterConversion)
6634    return true;
6635
6636  //     - F1 is a non-template function and F2 is a function template
6637  //       specialization, or, if not that,
6638  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6639      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6640    return true;
6641
6642  //   -- F1 and F2 are function template specializations, and the function
6643  //      template for F1 is more specialized than the template for F2
6644  //      according to the partial ordering rules described in 14.5.5.2, or,
6645  //      if not that,
6646  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6647      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6648    if (FunctionTemplateDecl *BetterTemplate
6649          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6650                                         Cand2.Function->getPrimaryTemplate(),
6651                                         Loc,
6652                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6653                                                             : TPOC_Call,
6654                                         Cand1.ExplicitCallArguments))
6655      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6656  }
6657
6658  //   -- the context is an initialization by user-defined conversion
6659  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6660  //      from the return type of F1 to the destination type (i.e.,
6661  //      the type of the entity being initialized) is a better
6662  //      conversion sequence than the standard conversion sequence
6663  //      from the return type of F2 to the destination type.
6664  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6665      isa<CXXConversionDecl>(Cand1.Function) &&
6666      isa<CXXConversionDecl>(Cand2.Function)) {
6667    switch (CompareStandardConversionSequences(S,
6668                                               Cand1.FinalConversion,
6669                                               Cand2.FinalConversion)) {
6670    case ImplicitConversionSequence::Better:
6671      // Cand1 has a better conversion sequence.
6672      return true;
6673
6674    case ImplicitConversionSequence::Worse:
6675      // Cand1 can't be better than Cand2.
6676      return false;
6677
6678    case ImplicitConversionSequence::Indistinguishable:
6679      // Do nothing
6680      break;
6681    }
6682  }
6683
6684  return false;
6685}
6686
6687/// \brief Computes the best viable function (C++ 13.3.3)
6688/// within an overload candidate set.
6689///
6690/// \param CandidateSet the set of candidate functions.
6691///
6692/// \param Loc the location of the function name (or operator symbol) for
6693/// which overload resolution occurs.
6694///
6695/// \param Best f overload resolution was successful or found a deleted
6696/// function, Best points to the candidate function found.
6697///
6698/// \returns The result of overload resolution.
6699OverloadingResult
6700OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6701                                         iterator &Best,
6702                                         bool UserDefinedConversion) {
6703  // Find the best viable function.
6704  Best = end();
6705  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6706    if (Cand->Viable)
6707      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6708                                                     UserDefinedConversion))
6709        Best = Cand;
6710  }
6711
6712  // If we didn't find any viable functions, abort.
6713  if (Best == end())
6714    return OR_No_Viable_Function;
6715
6716  // Make sure that this function is better than every other viable
6717  // function. If not, we have an ambiguity.
6718  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6719    if (Cand->Viable &&
6720        Cand != Best &&
6721        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6722                                   UserDefinedConversion)) {
6723      Best = end();
6724      return OR_Ambiguous;
6725    }
6726  }
6727
6728  // Best is the best viable function.
6729  if (Best->Function &&
6730      (Best->Function->isDeleted() ||
6731       S.isFunctionConsideredUnavailable(Best->Function)))
6732    return OR_Deleted;
6733
6734  return OR_Success;
6735}
6736
6737namespace {
6738
6739enum OverloadCandidateKind {
6740  oc_function,
6741  oc_method,
6742  oc_constructor,
6743  oc_function_template,
6744  oc_method_template,
6745  oc_constructor_template,
6746  oc_implicit_default_constructor,
6747  oc_implicit_copy_constructor,
6748  oc_implicit_move_constructor,
6749  oc_implicit_copy_assignment,
6750  oc_implicit_move_assignment,
6751  oc_implicit_inherited_constructor
6752};
6753
6754OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6755                                                FunctionDecl *Fn,
6756                                                std::string &Description) {
6757  bool isTemplate = false;
6758
6759  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6760    isTemplate = true;
6761    Description = S.getTemplateArgumentBindingsText(
6762      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6763  }
6764
6765  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6766    if (!Ctor->isImplicit())
6767      return isTemplate ? oc_constructor_template : oc_constructor;
6768
6769    if (Ctor->getInheritedConstructor())
6770      return oc_implicit_inherited_constructor;
6771
6772    if (Ctor->isDefaultConstructor())
6773      return oc_implicit_default_constructor;
6774
6775    if (Ctor->isMoveConstructor())
6776      return oc_implicit_move_constructor;
6777
6778    assert(Ctor->isCopyConstructor() &&
6779           "unexpected sort of implicit constructor");
6780    return oc_implicit_copy_constructor;
6781  }
6782
6783  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6784    // This actually gets spelled 'candidate function' for now, but
6785    // it doesn't hurt to split it out.
6786    if (!Meth->isImplicit())
6787      return isTemplate ? oc_method_template : oc_method;
6788
6789    if (Meth->isMoveAssignmentOperator())
6790      return oc_implicit_move_assignment;
6791
6792    assert(Meth->isCopyAssignmentOperator()
6793           && "implicit method is not copy assignment operator?");
6794    return oc_implicit_copy_assignment;
6795  }
6796
6797  return isTemplate ? oc_function_template : oc_function;
6798}
6799
6800void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
6801  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
6802  if (!Ctor) return;
6803
6804  Ctor = Ctor->getInheritedConstructor();
6805  if (!Ctor) return;
6806
6807  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
6808}
6809
6810} // end anonymous namespace
6811
6812// Notes the location of an overload candidate.
6813void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6814  std::string FnDesc;
6815  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6816  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6817    << (unsigned) K << FnDesc;
6818  MaybeEmitInheritedConstructorNote(*this, Fn);
6819}
6820
6821//Notes the location of all overload candidates designated through
6822// OverloadedExpr
6823void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
6824  assert(OverloadedExpr->getType() == Context.OverloadTy);
6825
6826  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
6827  OverloadExpr *OvlExpr = Ovl.Expression;
6828
6829  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6830                            IEnd = OvlExpr->decls_end();
6831       I != IEnd; ++I) {
6832    if (FunctionTemplateDecl *FunTmpl =
6833                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6834      NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
6835    } else if (FunctionDecl *Fun
6836                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
6837      NoteOverloadCandidate(Fun);
6838    }
6839  }
6840}
6841
6842/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6843/// "lead" diagnostic; it will be given two arguments, the source and
6844/// target types of the conversion.
6845void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6846                                 Sema &S,
6847                                 SourceLocation CaretLoc,
6848                                 const PartialDiagnostic &PDiag) const {
6849  S.Diag(CaretLoc, PDiag)
6850    << Ambiguous.getFromType() << Ambiguous.getToType();
6851  for (AmbiguousConversionSequence::const_iterator
6852         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6853    S.NoteOverloadCandidate(*I);
6854  }
6855}
6856
6857namespace {
6858
6859void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6860  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6861  assert(Conv.isBad());
6862  assert(Cand->Function && "for now, candidate must be a function");
6863  FunctionDecl *Fn = Cand->Function;
6864
6865  // There's a conversion slot for the object argument if this is a
6866  // non-constructor method.  Note that 'I' corresponds the
6867  // conversion-slot index.
6868  bool isObjectArgument = false;
6869  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6870    if (I == 0)
6871      isObjectArgument = true;
6872    else
6873      I--;
6874  }
6875
6876  std::string FnDesc;
6877  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6878
6879  Expr *FromExpr = Conv.Bad.FromExpr;
6880  QualType FromTy = Conv.Bad.getFromType();
6881  QualType ToTy = Conv.Bad.getToType();
6882
6883  if (FromTy == S.Context.OverloadTy) {
6884    assert(FromExpr && "overload set argument came from implicit argument?");
6885    Expr *E = FromExpr->IgnoreParens();
6886    if (isa<UnaryOperator>(E))
6887      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6888    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6889
6890    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6891      << (unsigned) FnKind << FnDesc
6892      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6893      << ToTy << Name << I+1;
6894    MaybeEmitInheritedConstructorNote(S, Fn);
6895    return;
6896  }
6897
6898  // Do some hand-waving analysis to see if the non-viability is due
6899  // to a qualifier mismatch.
6900  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6901  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6902  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6903    CToTy = RT->getPointeeType();
6904  else {
6905    // TODO: detect and diagnose the full richness of const mismatches.
6906    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6907      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6908        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6909  }
6910
6911  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6912      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6913    // It is dumb that we have to do this here.
6914    while (isa<ArrayType>(CFromTy))
6915      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6916    while (isa<ArrayType>(CToTy))
6917      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6918
6919    Qualifiers FromQs = CFromTy.getQualifiers();
6920    Qualifiers ToQs = CToTy.getQualifiers();
6921
6922    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6923      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6924        << (unsigned) FnKind << FnDesc
6925        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6926        << FromTy
6927        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6928        << (unsigned) isObjectArgument << I+1;
6929      MaybeEmitInheritedConstructorNote(S, Fn);
6930      return;
6931    }
6932
6933    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
6934      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
6935        << (unsigned) FnKind << FnDesc
6936        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6937        << FromTy
6938        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
6939        << (unsigned) isObjectArgument << I+1;
6940      MaybeEmitInheritedConstructorNote(S, Fn);
6941      return;
6942    }
6943
6944    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
6945      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
6946      << (unsigned) FnKind << FnDesc
6947      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6948      << FromTy
6949      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
6950      << (unsigned) isObjectArgument << I+1;
6951      MaybeEmitInheritedConstructorNote(S, Fn);
6952      return;
6953    }
6954
6955    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6956    assert(CVR && "unexpected qualifiers mismatch");
6957
6958    if (isObjectArgument) {
6959      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6960        << (unsigned) FnKind << FnDesc
6961        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6962        << FromTy << (CVR - 1);
6963    } else {
6964      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6965        << (unsigned) FnKind << FnDesc
6966        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6967        << FromTy << (CVR - 1) << I+1;
6968    }
6969    MaybeEmitInheritedConstructorNote(S, Fn);
6970    return;
6971  }
6972
6973  // Special diagnostic for failure to convert an initializer list, since
6974  // telling the user that it has type void is not useful.
6975  if (FromExpr && isa<InitListExpr>(FromExpr)) {
6976    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
6977      << (unsigned) FnKind << FnDesc
6978      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6979      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6980    MaybeEmitInheritedConstructorNote(S, Fn);
6981    return;
6982  }
6983
6984  // Diagnose references or pointers to incomplete types differently,
6985  // since it's far from impossible that the incompleteness triggered
6986  // the failure.
6987  QualType TempFromTy = FromTy.getNonReferenceType();
6988  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6989    TempFromTy = PTy->getPointeeType();
6990  if (TempFromTy->isIncompleteType()) {
6991    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6992      << (unsigned) FnKind << FnDesc
6993      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6994      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6995    MaybeEmitInheritedConstructorNote(S, Fn);
6996    return;
6997  }
6998
6999  // Diagnose base -> derived pointer conversions.
7000  unsigned BaseToDerivedConversion = 0;
7001  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
7002    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
7003      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7004                                               FromPtrTy->getPointeeType()) &&
7005          !FromPtrTy->getPointeeType()->isIncompleteType() &&
7006          !ToPtrTy->getPointeeType()->isIncompleteType() &&
7007          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
7008                          FromPtrTy->getPointeeType()))
7009        BaseToDerivedConversion = 1;
7010    }
7011  } else if (const ObjCObjectPointerType *FromPtrTy
7012                                    = FromTy->getAs<ObjCObjectPointerType>()) {
7013    if (const ObjCObjectPointerType *ToPtrTy
7014                                        = ToTy->getAs<ObjCObjectPointerType>())
7015      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
7016        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
7017          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7018                                                FromPtrTy->getPointeeType()) &&
7019              FromIface->isSuperClassOf(ToIface))
7020            BaseToDerivedConversion = 2;
7021  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
7022      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
7023          !FromTy->isIncompleteType() &&
7024          !ToRefTy->getPointeeType()->isIncompleteType() &&
7025          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
7026        BaseToDerivedConversion = 3;
7027    }
7028
7029  if (BaseToDerivedConversion) {
7030    S.Diag(Fn->getLocation(),
7031           diag::note_ovl_candidate_bad_base_to_derived_conv)
7032      << (unsigned) FnKind << FnDesc
7033      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7034      << (BaseToDerivedConversion - 1)
7035      << FromTy << ToTy << I+1;
7036    MaybeEmitInheritedConstructorNote(S, Fn);
7037    return;
7038  }
7039
7040  if (isa<ObjCObjectPointerType>(CFromTy) &&
7041      isa<PointerType>(CToTy)) {
7042      Qualifiers FromQs = CFromTy.getQualifiers();
7043      Qualifiers ToQs = CToTy.getQualifiers();
7044      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7045        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
7046        << (unsigned) FnKind << FnDesc
7047        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7048        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7049        MaybeEmitInheritedConstructorNote(S, Fn);
7050        return;
7051      }
7052  }
7053
7054  // Emit the generic diagnostic and, optionally, add the hints to it.
7055  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
7056  FDiag << (unsigned) FnKind << FnDesc
7057    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7058    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
7059    << (unsigned) (Cand->Fix.Kind);
7060
7061  // If we can fix the conversion, suggest the FixIts.
7062  for (SmallVector<FixItHint, 1>::iterator
7063      HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end();
7064      HI != HE; ++HI)
7065    FDiag << *HI;
7066  S.Diag(Fn->getLocation(), FDiag);
7067
7068  MaybeEmitInheritedConstructorNote(S, Fn);
7069}
7070
7071void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
7072                           unsigned NumFormalArgs) {
7073  // TODO: treat calls to a missing default constructor as a special case
7074
7075  FunctionDecl *Fn = Cand->Function;
7076  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
7077
7078  unsigned MinParams = Fn->getMinRequiredArguments();
7079
7080  // With invalid overloaded operators, it's possible that we think we
7081  // have an arity mismatch when it fact it looks like we have the
7082  // right number of arguments, because only overloaded operators have
7083  // the weird behavior of overloading member and non-member functions.
7084  // Just don't report anything.
7085  if (Fn->isInvalidDecl() &&
7086      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
7087    return;
7088
7089  // at least / at most / exactly
7090  unsigned mode, modeCount;
7091  if (NumFormalArgs < MinParams) {
7092    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
7093           (Cand->FailureKind == ovl_fail_bad_deduction &&
7094            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
7095    if (MinParams != FnTy->getNumArgs() ||
7096        FnTy->isVariadic() || FnTy->isTemplateVariadic())
7097      mode = 0; // "at least"
7098    else
7099      mode = 2; // "exactly"
7100    modeCount = MinParams;
7101  } else {
7102    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
7103           (Cand->FailureKind == ovl_fail_bad_deduction &&
7104            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
7105    if (MinParams != FnTy->getNumArgs())
7106      mode = 1; // "at most"
7107    else
7108      mode = 2; // "exactly"
7109    modeCount = FnTy->getNumArgs();
7110  }
7111
7112  std::string Description;
7113  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
7114
7115  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
7116    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
7117    << modeCount << NumFormalArgs;
7118  MaybeEmitInheritedConstructorNote(S, Fn);
7119}
7120
7121/// Diagnose a failed template-argument deduction.
7122void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
7123                          Expr **Args, unsigned NumArgs) {
7124  FunctionDecl *Fn = Cand->Function; // pattern
7125
7126  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7127  NamedDecl *ParamD;
7128  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7129  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7130  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7131  switch (Cand->DeductionFailure.Result) {
7132  case Sema::TDK_Success:
7133    llvm_unreachable("TDK_success while diagnosing bad deduction");
7134
7135  case Sema::TDK_Incomplete: {
7136    assert(ParamD && "no parameter found for incomplete deduction result");
7137    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7138      << ParamD->getDeclName();
7139    MaybeEmitInheritedConstructorNote(S, Fn);
7140    return;
7141  }
7142
7143  case Sema::TDK_Underqualified: {
7144    assert(ParamD && "no parameter found for bad qualifiers deduction result");
7145    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7146
7147    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7148
7149    // Param will have been canonicalized, but it should just be a
7150    // qualified version of ParamD, so move the qualifiers to that.
7151    QualifierCollector Qs;
7152    Qs.strip(Param);
7153    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7154    assert(S.Context.hasSameType(Param, NonCanonParam));
7155
7156    // Arg has also been canonicalized, but there's nothing we can do
7157    // about that.  It also doesn't matter as much, because it won't
7158    // have any template parameters in it (because deduction isn't
7159    // done on dependent types).
7160    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7161
7162    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7163      << ParamD->getDeclName() << Arg << NonCanonParam;
7164    MaybeEmitInheritedConstructorNote(S, Fn);
7165    return;
7166  }
7167
7168  case Sema::TDK_Inconsistent: {
7169    assert(ParamD && "no parameter found for inconsistent deduction result");
7170    int which = 0;
7171    if (isa<TemplateTypeParmDecl>(ParamD))
7172      which = 0;
7173    else if (isa<NonTypeTemplateParmDecl>(ParamD))
7174      which = 1;
7175    else {
7176      which = 2;
7177    }
7178
7179    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7180      << which << ParamD->getDeclName()
7181      << *Cand->DeductionFailure.getFirstArg()
7182      << *Cand->DeductionFailure.getSecondArg();
7183    MaybeEmitInheritedConstructorNote(S, Fn);
7184    return;
7185  }
7186
7187  case Sema::TDK_InvalidExplicitArguments:
7188    assert(ParamD && "no parameter found for invalid explicit arguments");
7189    if (ParamD->getDeclName())
7190      S.Diag(Fn->getLocation(),
7191             diag::note_ovl_candidate_explicit_arg_mismatch_named)
7192        << ParamD->getDeclName();
7193    else {
7194      int index = 0;
7195      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7196        index = TTP->getIndex();
7197      else if (NonTypeTemplateParmDecl *NTTP
7198                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7199        index = NTTP->getIndex();
7200      else
7201        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7202      S.Diag(Fn->getLocation(),
7203             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7204        << (index + 1);
7205    }
7206    MaybeEmitInheritedConstructorNote(S, Fn);
7207    return;
7208
7209  case Sema::TDK_TooManyArguments:
7210  case Sema::TDK_TooFewArguments:
7211    DiagnoseArityMismatch(S, Cand, NumArgs);
7212    return;
7213
7214  case Sema::TDK_InstantiationDepth:
7215    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
7216    MaybeEmitInheritedConstructorNote(S, Fn);
7217    return;
7218
7219  case Sema::TDK_SubstitutionFailure: {
7220    std::string ArgString;
7221    if (TemplateArgumentList *Args
7222                            = Cand->DeductionFailure.getTemplateArgumentList())
7223      ArgString = S.getTemplateArgumentBindingsText(
7224                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
7225                                                    *Args);
7226    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
7227      << ArgString;
7228    MaybeEmitInheritedConstructorNote(S, Fn);
7229    return;
7230  }
7231
7232  // TODO: diagnose these individually, then kill off
7233  // note_ovl_candidate_bad_deduction, which is uselessly vague.
7234  case Sema::TDK_NonDeducedMismatch:
7235  case Sema::TDK_FailedOverloadResolution:
7236    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
7237    MaybeEmitInheritedConstructorNote(S, Fn);
7238    return;
7239  }
7240}
7241
7242/// CUDA: diagnose an invalid call across targets.
7243void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
7244  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
7245  FunctionDecl *Callee = Cand->Function;
7246
7247  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
7248                           CalleeTarget = S.IdentifyCUDATarget(Callee);
7249
7250  std::string FnDesc;
7251  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
7252
7253  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
7254      << (unsigned) FnKind << CalleeTarget << CallerTarget;
7255}
7256
7257/// Generates a 'note' diagnostic for an overload candidate.  We've
7258/// already generated a primary error at the call site.
7259///
7260/// It really does need to be a single diagnostic with its caret
7261/// pointed at the candidate declaration.  Yes, this creates some
7262/// major challenges of technical writing.  Yes, this makes pointing
7263/// out problems with specific arguments quite awkward.  It's still
7264/// better than generating twenty screens of text for every failed
7265/// overload.
7266///
7267/// It would be great to be able to express per-candidate problems
7268/// more richly for those diagnostic clients that cared, but we'd
7269/// still have to be just as careful with the default diagnostics.
7270void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
7271                           Expr **Args, unsigned NumArgs) {
7272  FunctionDecl *Fn = Cand->Function;
7273
7274  // Note deleted candidates, but only if they're viable.
7275  if (Cand->Viable && (Fn->isDeleted() ||
7276      S.isFunctionConsideredUnavailable(Fn))) {
7277    std::string FnDesc;
7278    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7279
7280    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
7281      << FnKind << FnDesc << Fn->isDeleted();
7282    MaybeEmitInheritedConstructorNote(S, Fn);
7283    return;
7284  }
7285
7286  // We don't really have anything else to say about viable candidates.
7287  if (Cand->Viable) {
7288    S.NoteOverloadCandidate(Fn);
7289    return;
7290  }
7291
7292  switch (Cand->FailureKind) {
7293  case ovl_fail_too_many_arguments:
7294  case ovl_fail_too_few_arguments:
7295    return DiagnoseArityMismatch(S, Cand, NumArgs);
7296
7297  case ovl_fail_bad_deduction:
7298    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
7299
7300  case ovl_fail_trivial_conversion:
7301  case ovl_fail_bad_final_conversion:
7302  case ovl_fail_final_conversion_not_exact:
7303    return S.NoteOverloadCandidate(Fn);
7304
7305  case ovl_fail_bad_conversion: {
7306    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
7307    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
7308      if (Cand->Conversions[I].isBad())
7309        return DiagnoseBadConversion(S, Cand, I);
7310
7311    // FIXME: this currently happens when we're called from SemaInit
7312    // when user-conversion overload fails.  Figure out how to handle
7313    // those conditions and diagnose them well.
7314    return S.NoteOverloadCandidate(Fn);
7315  }
7316
7317  case ovl_fail_bad_target:
7318    return DiagnoseBadTarget(S, Cand);
7319  }
7320}
7321
7322void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
7323  // Desugar the type of the surrogate down to a function type,
7324  // retaining as many typedefs as possible while still showing
7325  // the function type (and, therefore, its parameter types).
7326  QualType FnType = Cand->Surrogate->getConversionType();
7327  bool isLValueReference = false;
7328  bool isRValueReference = false;
7329  bool isPointer = false;
7330  if (const LValueReferenceType *FnTypeRef =
7331        FnType->getAs<LValueReferenceType>()) {
7332    FnType = FnTypeRef->getPointeeType();
7333    isLValueReference = true;
7334  } else if (const RValueReferenceType *FnTypeRef =
7335               FnType->getAs<RValueReferenceType>()) {
7336    FnType = FnTypeRef->getPointeeType();
7337    isRValueReference = true;
7338  }
7339  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
7340    FnType = FnTypePtr->getPointeeType();
7341    isPointer = true;
7342  }
7343  // Desugar down to a function type.
7344  FnType = QualType(FnType->getAs<FunctionType>(), 0);
7345  // Reconstruct the pointer/reference as appropriate.
7346  if (isPointer) FnType = S.Context.getPointerType(FnType);
7347  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
7348  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
7349
7350  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
7351    << FnType;
7352  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
7353}
7354
7355void NoteBuiltinOperatorCandidate(Sema &S,
7356                                  const char *Opc,
7357                                  SourceLocation OpLoc,
7358                                  OverloadCandidate *Cand) {
7359  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
7360  std::string TypeStr("operator");
7361  TypeStr += Opc;
7362  TypeStr += "(";
7363  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
7364  if (Cand->Conversions.size() == 1) {
7365    TypeStr += ")";
7366    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
7367  } else {
7368    TypeStr += ", ";
7369    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
7370    TypeStr += ")";
7371    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
7372  }
7373}
7374
7375void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
7376                                  OverloadCandidate *Cand) {
7377  unsigned NoOperands = Cand->Conversions.size();
7378  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
7379    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
7380    if (ICS.isBad()) break; // all meaningless after first invalid
7381    if (!ICS.isAmbiguous()) continue;
7382
7383    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
7384                              S.PDiag(diag::note_ambiguous_type_conversion));
7385  }
7386}
7387
7388SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
7389  if (Cand->Function)
7390    return Cand->Function->getLocation();
7391  if (Cand->IsSurrogate)
7392    return Cand->Surrogate->getLocation();
7393  return SourceLocation();
7394}
7395
7396static unsigned
7397RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
7398  switch ((Sema::TemplateDeductionResult)DFI.Result) {
7399  case Sema::TDK_Success:
7400    llvm_unreachable("TDK_success while diagnosing bad deduction");
7401
7402  case Sema::TDK_Incomplete:
7403    return 1;
7404
7405  case Sema::TDK_Underqualified:
7406  case Sema::TDK_Inconsistent:
7407    return 2;
7408
7409  case Sema::TDK_SubstitutionFailure:
7410  case Sema::TDK_NonDeducedMismatch:
7411    return 3;
7412
7413  case Sema::TDK_InstantiationDepth:
7414  case Sema::TDK_FailedOverloadResolution:
7415    return 4;
7416
7417  case Sema::TDK_InvalidExplicitArguments:
7418    return 5;
7419
7420  case Sema::TDK_TooManyArguments:
7421  case Sema::TDK_TooFewArguments:
7422    return 6;
7423  }
7424  llvm_unreachable("Unhandled deduction result");
7425}
7426
7427struct CompareOverloadCandidatesForDisplay {
7428  Sema &S;
7429  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
7430
7431  bool operator()(const OverloadCandidate *L,
7432                  const OverloadCandidate *R) {
7433    // Fast-path this check.
7434    if (L == R) return false;
7435
7436    // Order first by viability.
7437    if (L->Viable) {
7438      if (!R->Viable) return true;
7439
7440      // TODO: introduce a tri-valued comparison for overload
7441      // candidates.  Would be more worthwhile if we had a sort
7442      // that could exploit it.
7443      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
7444      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
7445    } else if (R->Viable)
7446      return false;
7447
7448    assert(L->Viable == R->Viable);
7449
7450    // Criteria by which we can sort non-viable candidates:
7451    if (!L->Viable) {
7452      // 1. Arity mismatches come after other candidates.
7453      if (L->FailureKind == ovl_fail_too_many_arguments ||
7454          L->FailureKind == ovl_fail_too_few_arguments)
7455        return false;
7456      if (R->FailureKind == ovl_fail_too_many_arguments ||
7457          R->FailureKind == ovl_fail_too_few_arguments)
7458        return true;
7459
7460      // 2. Bad conversions come first and are ordered by the number
7461      // of bad conversions and quality of good conversions.
7462      if (L->FailureKind == ovl_fail_bad_conversion) {
7463        if (R->FailureKind != ovl_fail_bad_conversion)
7464          return true;
7465
7466        // The conversion that can be fixed with a smaller number of changes,
7467        // comes first.
7468        unsigned numLFixes = L->Fix.NumConversionsFixed;
7469        unsigned numRFixes = R->Fix.NumConversionsFixed;
7470        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
7471        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
7472        if (numLFixes != numRFixes) {
7473          if (numLFixes < numRFixes)
7474            return true;
7475          else
7476            return false;
7477        }
7478
7479        // If there's any ordering between the defined conversions...
7480        // FIXME: this might not be transitive.
7481        assert(L->Conversions.size() == R->Conversions.size());
7482
7483        int leftBetter = 0;
7484        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
7485        for (unsigned E = L->Conversions.size(); I != E; ++I) {
7486          switch (CompareImplicitConversionSequences(S,
7487                                                     L->Conversions[I],
7488                                                     R->Conversions[I])) {
7489          case ImplicitConversionSequence::Better:
7490            leftBetter++;
7491            break;
7492
7493          case ImplicitConversionSequence::Worse:
7494            leftBetter--;
7495            break;
7496
7497          case ImplicitConversionSequence::Indistinguishable:
7498            break;
7499          }
7500        }
7501        if (leftBetter > 0) return true;
7502        if (leftBetter < 0) return false;
7503
7504      } else if (R->FailureKind == ovl_fail_bad_conversion)
7505        return false;
7506
7507      if (L->FailureKind == ovl_fail_bad_deduction) {
7508        if (R->FailureKind != ovl_fail_bad_deduction)
7509          return true;
7510
7511        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
7512          return RankDeductionFailure(L->DeductionFailure)
7513              <= RankDeductionFailure(R->DeductionFailure);
7514      }
7515
7516      // TODO: others?
7517    }
7518
7519    // Sort everything else by location.
7520    SourceLocation LLoc = GetLocationForCandidate(L);
7521    SourceLocation RLoc = GetLocationForCandidate(R);
7522
7523    // Put candidates without locations (e.g. builtins) at the end.
7524    if (LLoc.isInvalid()) return false;
7525    if (RLoc.isInvalid()) return true;
7526
7527    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7528  }
7529};
7530
7531/// CompleteNonViableCandidate - Normally, overload resolution only
7532/// computes up to the first. Produces the FixIt set if possible.
7533void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7534                                Expr **Args, unsigned NumArgs) {
7535  assert(!Cand->Viable);
7536
7537  // Don't do anything on failures other than bad conversion.
7538  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7539
7540  // We only want the FixIts if all the arguments can be corrected.
7541  bool Unfixable = false;
7542  // Use a implicit copy initialization to check conversion fixes.
7543  Cand->Fix.setConversionChecker(TryCopyInitialization);
7544
7545  // Skip forward to the first bad conversion.
7546  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7547  unsigned ConvCount = Cand->Conversions.size();
7548  while (true) {
7549    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7550    ConvIdx++;
7551    if (Cand->Conversions[ConvIdx - 1].isBad()) {
7552      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
7553      break;
7554    }
7555  }
7556
7557  if (ConvIdx == ConvCount)
7558    return;
7559
7560  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7561         "remaining conversion is initialized?");
7562
7563  // FIXME: this should probably be preserved from the overload
7564  // operation somehow.
7565  bool SuppressUserConversions = false;
7566
7567  const FunctionProtoType* Proto;
7568  unsigned ArgIdx = ConvIdx;
7569
7570  if (Cand->IsSurrogate) {
7571    QualType ConvType
7572      = Cand->Surrogate->getConversionType().getNonReferenceType();
7573    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7574      ConvType = ConvPtrType->getPointeeType();
7575    Proto = ConvType->getAs<FunctionProtoType>();
7576    ArgIdx--;
7577  } else if (Cand->Function) {
7578    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7579    if (isa<CXXMethodDecl>(Cand->Function) &&
7580        !isa<CXXConstructorDecl>(Cand->Function))
7581      ArgIdx--;
7582  } else {
7583    // Builtin binary operator with a bad first conversion.
7584    assert(ConvCount <= 3);
7585    for (; ConvIdx != ConvCount; ++ConvIdx)
7586      Cand->Conversions[ConvIdx]
7587        = TryCopyInitialization(S, Args[ConvIdx],
7588                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
7589                                SuppressUserConversions,
7590                                /*InOverloadResolution*/ true,
7591                                /*AllowObjCWritebackConversion=*/
7592                                  S.getLangOptions().ObjCAutoRefCount);
7593    return;
7594  }
7595
7596  // Fill in the rest of the conversions.
7597  unsigned NumArgsInProto = Proto->getNumArgs();
7598  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7599    if (ArgIdx < NumArgsInProto) {
7600      Cand->Conversions[ConvIdx]
7601        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7602                                SuppressUserConversions,
7603                                /*InOverloadResolution=*/true,
7604                                /*AllowObjCWritebackConversion=*/
7605                                  S.getLangOptions().ObjCAutoRefCount);
7606      // Store the FixIt in the candidate if it exists.
7607      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
7608        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
7609    }
7610    else
7611      Cand->Conversions[ConvIdx].setEllipsis();
7612  }
7613}
7614
7615} // end anonymous namespace
7616
7617/// PrintOverloadCandidates - When overload resolution fails, prints
7618/// diagnostic messages containing the candidates in the candidate
7619/// set.
7620void OverloadCandidateSet::NoteCandidates(Sema &S,
7621                                          OverloadCandidateDisplayKind OCD,
7622                                          Expr **Args, unsigned NumArgs,
7623                                          const char *Opc,
7624                                          SourceLocation OpLoc) {
7625  // Sort the candidates by viability and position.  Sorting directly would
7626  // be prohibitive, so we make a set of pointers and sort those.
7627  SmallVector<OverloadCandidate*, 32> Cands;
7628  if (OCD == OCD_AllCandidates) Cands.reserve(size());
7629  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7630    if (Cand->Viable)
7631      Cands.push_back(Cand);
7632    else if (OCD == OCD_AllCandidates) {
7633      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7634      if (Cand->Function || Cand->IsSurrogate)
7635        Cands.push_back(Cand);
7636      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
7637      // want to list every possible builtin candidate.
7638    }
7639  }
7640
7641  std::sort(Cands.begin(), Cands.end(),
7642            CompareOverloadCandidatesForDisplay(S));
7643
7644  bool ReportedAmbiguousConversions = false;
7645
7646  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7647  const DiagnosticsEngine::OverloadsShown ShowOverloads =
7648      S.Diags.getShowOverloads();
7649  unsigned CandsShown = 0;
7650  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7651    OverloadCandidate *Cand = *I;
7652
7653    // Set an arbitrary limit on the number of candidate functions we'll spam
7654    // the user with.  FIXME: This limit should depend on details of the
7655    // candidate list.
7656    if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
7657      break;
7658    }
7659    ++CandsShown;
7660
7661    if (Cand->Function)
7662      NoteFunctionCandidate(S, Cand, Args, NumArgs);
7663    else if (Cand->IsSurrogate)
7664      NoteSurrogateCandidate(S, Cand);
7665    else {
7666      assert(Cand->Viable &&
7667             "Non-viable built-in candidates are not added to Cands.");
7668      // Generally we only see ambiguities including viable builtin
7669      // operators if overload resolution got screwed up by an
7670      // ambiguous user-defined conversion.
7671      //
7672      // FIXME: It's quite possible for different conversions to see
7673      // different ambiguities, though.
7674      if (!ReportedAmbiguousConversions) {
7675        NoteAmbiguousUserConversions(S, OpLoc, Cand);
7676        ReportedAmbiguousConversions = true;
7677      }
7678
7679      // If this is a viable builtin, print it.
7680      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7681    }
7682  }
7683
7684  if (I != E)
7685    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7686}
7687
7688// [PossiblyAFunctionType]  -->   [Return]
7689// NonFunctionType --> NonFunctionType
7690// R (A) --> R(A)
7691// R (*)(A) --> R (A)
7692// R (&)(A) --> R (A)
7693// R (S::*)(A) --> R (A)
7694QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7695  QualType Ret = PossiblyAFunctionType;
7696  if (const PointerType *ToTypePtr =
7697    PossiblyAFunctionType->getAs<PointerType>())
7698    Ret = ToTypePtr->getPointeeType();
7699  else if (const ReferenceType *ToTypeRef =
7700    PossiblyAFunctionType->getAs<ReferenceType>())
7701    Ret = ToTypeRef->getPointeeType();
7702  else if (const MemberPointerType *MemTypePtr =
7703    PossiblyAFunctionType->getAs<MemberPointerType>())
7704    Ret = MemTypePtr->getPointeeType();
7705  Ret =
7706    Context.getCanonicalType(Ret).getUnqualifiedType();
7707  return Ret;
7708}
7709
7710// A helper class to help with address of function resolution
7711// - allows us to avoid passing around all those ugly parameters
7712class AddressOfFunctionResolver
7713{
7714  Sema& S;
7715  Expr* SourceExpr;
7716  const QualType& TargetType;
7717  QualType TargetFunctionType; // Extracted function type from target type
7718
7719  bool Complain;
7720  //DeclAccessPair& ResultFunctionAccessPair;
7721  ASTContext& Context;
7722
7723  bool TargetTypeIsNonStaticMemberFunction;
7724  bool FoundNonTemplateFunction;
7725
7726  OverloadExpr::FindResult OvlExprInfo;
7727  OverloadExpr *OvlExpr;
7728  TemplateArgumentListInfo OvlExplicitTemplateArgs;
7729  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7730
7731public:
7732  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7733                            const QualType& TargetType, bool Complain)
7734    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7735      Complain(Complain), Context(S.getASTContext()),
7736      TargetTypeIsNonStaticMemberFunction(
7737                                    !!TargetType->getAs<MemberPointerType>()),
7738      FoundNonTemplateFunction(false),
7739      OvlExprInfo(OverloadExpr::find(SourceExpr)),
7740      OvlExpr(OvlExprInfo.Expression)
7741  {
7742    ExtractUnqualifiedFunctionTypeFromTargetType();
7743
7744    if (!TargetFunctionType->isFunctionType()) {
7745      if (OvlExpr->hasExplicitTemplateArgs()) {
7746        DeclAccessPair dap;
7747        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7748                                            OvlExpr, false, &dap) ) {
7749
7750          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7751            if (!Method->isStatic()) {
7752              // If the target type is a non-function type and the function
7753              // found is a non-static member function, pretend as if that was
7754              // the target, it's the only possible type to end up with.
7755              TargetTypeIsNonStaticMemberFunction = true;
7756
7757              // And skip adding the function if its not in the proper form.
7758              // We'll diagnose this due to an empty set of functions.
7759              if (!OvlExprInfo.HasFormOfMemberPointer)
7760                return;
7761            }
7762          }
7763
7764          Matches.push_back(std::make_pair(dap,Fn));
7765        }
7766      }
7767      return;
7768    }
7769
7770    if (OvlExpr->hasExplicitTemplateArgs())
7771      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7772
7773    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7774      // C++ [over.over]p4:
7775      //   If more than one function is selected, [...]
7776      if (Matches.size() > 1) {
7777        if (FoundNonTemplateFunction)
7778          EliminateAllTemplateMatches();
7779        else
7780          EliminateAllExceptMostSpecializedTemplate();
7781      }
7782    }
7783  }
7784
7785private:
7786  bool isTargetTypeAFunction() const {
7787    return TargetFunctionType->isFunctionType();
7788  }
7789
7790  // [ToType]     [Return]
7791
7792  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7793  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7794  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
7795  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7796    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7797  }
7798
7799  // return true if any matching specializations were found
7800  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
7801                                   const DeclAccessPair& CurAccessFunPair) {
7802    if (CXXMethodDecl *Method
7803              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
7804      // Skip non-static function templates when converting to pointer, and
7805      // static when converting to member pointer.
7806      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7807        return false;
7808    }
7809    else if (TargetTypeIsNonStaticMemberFunction)
7810      return false;
7811
7812    // C++ [over.over]p2:
7813    //   If the name is a function template, template argument deduction is
7814    //   done (14.8.2.2), and if the argument deduction succeeds, the
7815    //   resulting template argument list is used to generate a single
7816    //   function template specialization, which is added to the set of
7817    //   overloaded functions considered.
7818    FunctionDecl *Specialization = 0;
7819    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7820    if (Sema::TemplateDeductionResult Result
7821          = S.DeduceTemplateArguments(FunctionTemplate,
7822                                      &OvlExplicitTemplateArgs,
7823                                      TargetFunctionType, Specialization,
7824                                      Info)) {
7825      // FIXME: make a note of the failed deduction for diagnostics.
7826      (void)Result;
7827      return false;
7828    }
7829
7830    // Template argument deduction ensures that we have an exact match.
7831    // This function template specicalization works.
7832    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
7833    assert(TargetFunctionType
7834                      == Context.getCanonicalType(Specialization->getType()));
7835    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
7836    return true;
7837  }
7838
7839  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
7840                                      const DeclAccessPair& CurAccessFunPair) {
7841    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7842      // Skip non-static functions when converting to pointer, and static
7843      // when converting to member pointer.
7844      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7845        return false;
7846    }
7847    else if (TargetTypeIsNonStaticMemberFunction)
7848      return false;
7849
7850    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
7851      if (S.getLangOptions().CUDA)
7852        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
7853          if (S.CheckCUDATarget(Caller, FunDecl))
7854            return false;
7855
7856      QualType ResultTy;
7857      if (Context.hasSameUnqualifiedType(TargetFunctionType,
7858                                         FunDecl->getType()) ||
7859          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
7860                                 ResultTy)) {
7861        Matches.push_back(std::make_pair(CurAccessFunPair,
7862          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7863        FoundNonTemplateFunction = true;
7864        return true;
7865      }
7866    }
7867
7868    return false;
7869  }
7870
7871  bool FindAllFunctionsThatMatchTargetTypeExactly() {
7872    bool Ret = false;
7873
7874    // If the overload expression doesn't have the form of a pointer to
7875    // member, don't try to convert it to a pointer-to-member type.
7876    if (IsInvalidFormOfPointerToMemberFunction())
7877      return false;
7878
7879    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7880                               E = OvlExpr->decls_end();
7881         I != E; ++I) {
7882      // Look through any using declarations to find the underlying function.
7883      NamedDecl *Fn = (*I)->getUnderlyingDecl();
7884
7885      // C++ [over.over]p3:
7886      //   Non-member functions and static member functions match
7887      //   targets of type "pointer-to-function" or "reference-to-function."
7888      //   Nonstatic member functions match targets of
7889      //   type "pointer-to-member-function."
7890      // Note that according to DR 247, the containing class does not matter.
7891      if (FunctionTemplateDecl *FunctionTemplate
7892                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
7893        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
7894          Ret = true;
7895      }
7896      // If we have explicit template arguments supplied, skip non-templates.
7897      else if (!OvlExpr->hasExplicitTemplateArgs() &&
7898               AddMatchingNonTemplateFunction(Fn, I.getPair()))
7899        Ret = true;
7900    }
7901    assert(Ret || Matches.empty());
7902    return Ret;
7903  }
7904
7905  void EliminateAllExceptMostSpecializedTemplate() {
7906    //   [...] and any given function template specialization F1 is
7907    //   eliminated if the set contains a second function template
7908    //   specialization whose function template is more specialized
7909    //   than the function template of F1 according to the partial
7910    //   ordering rules of 14.5.5.2.
7911
7912    // The algorithm specified above is quadratic. We instead use a
7913    // two-pass algorithm (similar to the one used to identify the
7914    // best viable function in an overload set) that identifies the
7915    // best function template (if it exists).
7916
7917    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7918    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7919      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7920
7921    UnresolvedSetIterator Result =
7922      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7923                           TPOC_Other, 0, SourceExpr->getLocStart(),
7924                           S.PDiag(),
7925                           S.PDiag(diag::err_addr_ovl_ambiguous)
7926                             << Matches[0].second->getDeclName(),
7927                           S.PDiag(diag::note_ovl_candidate)
7928                             << (unsigned) oc_function_template,
7929                           Complain);
7930
7931    if (Result != MatchesCopy.end()) {
7932      // Make it the first and only element
7933      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
7934      Matches[0].second = cast<FunctionDecl>(*Result);
7935      Matches.resize(1);
7936    }
7937  }
7938
7939  void EliminateAllTemplateMatches() {
7940    //   [...] any function template specializations in the set are
7941    //   eliminated if the set also contains a non-template function, [...]
7942    for (unsigned I = 0, N = Matches.size(); I != N; ) {
7943      if (Matches[I].second->getPrimaryTemplate() == 0)
7944        ++I;
7945      else {
7946        Matches[I] = Matches[--N];
7947        Matches.set_size(N);
7948      }
7949    }
7950  }
7951
7952public:
7953  void ComplainNoMatchesFound() const {
7954    assert(Matches.empty());
7955    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
7956        << OvlExpr->getName() << TargetFunctionType
7957        << OvlExpr->getSourceRange();
7958    S.NoteAllOverloadCandidates(OvlExpr);
7959  }
7960
7961  bool IsInvalidFormOfPointerToMemberFunction() const {
7962    return TargetTypeIsNonStaticMemberFunction &&
7963      !OvlExprInfo.HasFormOfMemberPointer;
7964  }
7965
7966  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
7967      // TODO: Should we condition this on whether any functions might
7968      // have matched, or is it more appropriate to do that in callers?
7969      // TODO: a fixit wouldn't hurt.
7970      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
7971        << TargetType << OvlExpr->getSourceRange();
7972  }
7973
7974  void ComplainOfInvalidConversion() const {
7975    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
7976      << OvlExpr->getName() << TargetType;
7977  }
7978
7979  void ComplainMultipleMatchesFound() const {
7980    assert(Matches.size() > 1);
7981    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
7982      << OvlExpr->getName()
7983      << OvlExpr->getSourceRange();
7984    S.NoteAllOverloadCandidates(OvlExpr);
7985  }
7986
7987  int getNumMatches() const { return Matches.size(); }
7988
7989  FunctionDecl* getMatchingFunctionDecl() const {
7990    if (Matches.size() != 1) return 0;
7991    return Matches[0].second;
7992  }
7993
7994  const DeclAccessPair* getMatchingFunctionAccessPair() const {
7995    if (Matches.size() != 1) return 0;
7996    return &Matches[0].first;
7997  }
7998};
7999
8000/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
8001/// an overloaded function (C++ [over.over]), where @p From is an
8002/// expression with overloaded function type and @p ToType is the type
8003/// we're trying to resolve to. For example:
8004///
8005/// @code
8006/// int f(double);
8007/// int f(int);
8008///
8009/// int (*pfd)(double) = f; // selects f(double)
8010/// @endcode
8011///
8012/// This routine returns the resulting FunctionDecl if it could be
8013/// resolved, and NULL otherwise. When @p Complain is true, this
8014/// routine will emit diagnostics if there is an error.
8015FunctionDecl *
8016Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
8017                                    bool Complain,
8018                                    DeclAccessPair &FoundResult) {
8019
8020  assert(AddressOfExpr->getType() == Context.OverloadTy);
8021
8022  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
8023  int NumMatches = Resolver.getNumMatches();
8024  FunctionDecl* Fn = 0;
8025  if ( NumMatches == 0 && Complain) {
8026    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
8027      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
8028    else
8029      Resolver.ComplainNoMatchesFound();
8030  }
8031  else if (NumMatches > 1 && Complain)
8032    Resolver.ComplainMultipleMatchesFound();
8033  else if (NumMatches == 1) {
8034    Fn = Resolver.getMatchingFunctionDecl();
8035    assert(Fn);
8036    FoundResult = *Resolver.getMatchingFunctionAccessPair();
8037    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
8038    if (Complain)
8039      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
8040  }
8041
8042  return Fn;
8043}
8044
8045/// \brief Given an expression that refers to an overloaded function, try to
8046/// resolve that overloaded function expression down to a single function.
8047///
8048/// This routine can only resolve template-ids that refer to a single function
8049/// template, where that template-id refers to a single template whose template
8050/// arguments are either provided by the template-id or have defaults,
8051/// as described in C++0x [temp.arg.explicit]p3.
8052FunctionDecl *
8053Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
8054                                                  bool Complain,
8055                                                  DeclAccessPair *FoundResult) {
8056  // C++ [over.over]p1:
8057  //   [...] [Note: any redundant set of parentheses surrounding the
8058  //   overloaded function name is ignored (5.1). ]
8059  // C++ [over.over]p1:
8060  //   [...] The overloaded function name can be preceded by the &
8061  //   operator.
8062
8063  // If we didn't actually find any template-ids, we're done.
8064  if (!ovl->hasExplicitTemplateArgs())
8065    return 0;
8066
8067  TemplateArgumentListInfo ExplicitTemplateArgs;
8068  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
8069
8070  // Look through all of the overloaded functions, searching for one
8071  // whose type matches exactly.
8072  FunctionDecl *Matched = 0;
8073  for (UnresolvedSetIterator I = ovl->decls_begin(),
8074         E = ovl->decls_end(); I != E; ++I) {
8075    // C++0x [temp.arg.explicit]p3:
8076    //   [...] In contexts where deduction is done and fails, or in contexts
8077    //   where deduction is not done, if a template argument list is
8078    //   specified and it, along with any default template arguments,
8079    //   identifies a single function template specialization, then the
8080    //   template-id is an lvalue for the function template specialization.
8081    FunctionTemplateDecl *FunctionTemplate
8082      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
8083
8084    // C++ [over.over]p2:
8085    //   If the name is a function template, template argument deduction is
8086    //   done (14.8.2.2), and if the argument deduction succeeds, the
8087    //   resulting template argument list is used to generate a single
8088    //   function template specialization, which is added to the set of
8089    //   overloaded functions considered.
8090    FunctionDecl *Specialization = 0;
8091    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
8092    if (TemplateDeductionResult Result
8093          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
8094                                    Specialization, Info)) {
8095      // FIXME: make a note of the failed deduction for diagnostics.
8096      (void)Result;
8097      continue;
8098    }
8099
8100    assert(Specialization && "no specialization and no error?");
8101
8102    // Multiple matches; we can't resolve to a single declaration.
8103    if (Matched) {
8104      if (Complain) {
8105        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
8106          << ovl->getName();
8107        NoteAllOverloadCandidates(ovl);
8108      }
8109      return 0;
8110    }
8111
8112    Matched = Specialization;
8113    if (FoundResult) *FoundResult = I.getPair();
8114  }
8115
8116  return Matched;
8117}
8118
8119
8120
8121
8122// Resolve and fix an overloaded expression that
8123// can be resolved because it identifies a single function
8124// template specialization
8125// Last three arguments should only be supplied if Complain = true
8126ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
8127             Expr *SrcExpr, bool doFunctionPointerConverion, bool complain,
8128                                  const SourceRange& OpRangeForComplaining,
8129                                           QualType DestTypeForComplaining,
8130                                            unsigned DiagIDForComplaining) {
8131  assert(SrcExpr->getType() == Context.OverloadTy);
8132
8133  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr);
8134
8135  DeclAccessPair found;
8136  ExprResult SingleFunctionExpression;
8137  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
8138                           ovl.Expression, /*complain*/ false, &found)) {
8139    if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin()))
8140      return ExprError();
8141
8142    // It is only correct to resolve to an instance method if we're
8143    // resolving a form that's permitted to be a pointer to member.
8144    // Otherwise we'll end up making a bound member expression, which
8145    // is illegal in all the contexts we resolve like this.
8146    if (!ovl.HasFormOfMemberPointer &&
8147        isa<CXXMethodDecl>(fn) &&
8148        cast<CXXMethodDecl>(fn)->isInstance()) {
8149      if (complain) {
8150        Diag(ovl.Expression->getExprLoc(),
8151             diag::err_invalid_use_of_bound_member_func)
8152          << ovl.Expression->getSourceRange();
8153        // TODO: I believe we only end up here if there's a mix of
8154        // static and non-static candidates (otherwise the expression
8155        // would have 'bound member' type, not 'overload' type).
8156        // Ideally we would note which candidate was chosen and why
8157        // the static candidates were rejected.
8158      }
8159
8160      return ExprError();
8161    }
8162
8163    // Fix the expresion to refer to 'fn'.
8164    SingleFunctionExpression =
8165      Owned(FixOverloadedFunctionReference(SrcExpr, found, fn));
8166
8167    // If desired, do function-to-pointer decay.
8168    if (doFunctionPointerConverion)
8169      SingleFunctionExpression =
8170        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
8171  }
8172
8173  if (!SingleFunctionExpression.isUsable()) {
8174    if (complain) {
8175      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
8176        << ovl.Expression->getName()
8177        << DestTypeForComplaining
8178        << OpRangeForComplaining
8179        << ovl.Expression->getQualifierLoc().getSourceRange();
8180      NoteAllOverloadCandidates(SrcExpr);
8181    }
8182    return ExprError();
8183  }
8184
8185  return SingleFunctionExpression;
8186}
8187
8188/// \brief Add a single candidate to the overload set.
8189static void AddOverloadedCallCandidate(Sema &S,
8190                                       DeclAccessPair FoundDecl,
8191                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
8192                                       Expr **Args, unsigned NumArgs,
8193                                       OverloadCandidateSet &CandidateSet,
8194                                       bool PartialOverloading,
8195                                       bool KnownValid) {
8196  NamedDecl *Callee = FoundDecl.getDecl();
8197  if (isa<UsingShadowDecl>(Callee))
8198    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
8199
8200  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
8201    if (ExplicitTemplateArgs) {
8202      assert(!KnownValid && "Explicit template arguments?");
8203      return;
8204    }
8205    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
8206                           false, PartialOverloading);
8207    return;
8208  }
8209
8210  if (FunctionTemplateDecl *FuncTemplate
8211      = dyn_cast<FunctionTemplateDecl>(Callee)) {
8212    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
8213                                   ExplicitTemplateArgs,
8214                                   Args, NumArgs, CandidateSet);
8215    return;
8216  }
8217
8218  assert(!KnownValid && "unhandled case in overloaded call candidate");
8219}
8220
8221/// \brief Add the overload candidates named by callee and/or found by argument
8222/// dependent lookup to the given overload set.
8223void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
8224                                       Expr **Args, unsigned NumArgs,
8225                                       OverloadCandidateSet &CandidateSet,
8226                                       bool PartialOverloading) {
8227
8228#ifndef NDEBUG
8229  // Verify that ArgumentDependentLookup is consistent with the rules
8230  // in C++0x [basic.lookup.argdep]p3:
8231  //
8232  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
8233  //   and let Y be the lookup set produced by argument dependent
8234  //   lookup (defined as follows). If X contains
8235  //
8236  //     -- a declaration of a class member, or
8237  //
8238  //     -- a block-scope function declaration that is not a
8239  //        using-declaration, or
8240  //
8241  //     -- a declaration that is neither a function or a function
8242  //        template
8243  //
8244  //   then Y is empty.
8245
8246  if (ULE->requiresADL()) {
8247    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8248           E = ULE->decls_end(); I != E; ++I) {
8249      assert(!(*I)->getDeclContext()->isRecord());
8250      assert(isa<UsingShadowDecl>(*I) ||
8251             !(*I)->getDeclContext()->isFunctionOrMethod());
8252      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
8253    }
8254  }
8255#endif
8256
8257  // It would be nice to avoid this copy.
8258  TemplateArgumentListInfo TABuffer;
8259  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8260  if (ULE->hasExplicitTemplateArgs()) {
8261    ULE->copyTemplateArgumentsInto(TABuffer);
8262    ExplicitTemplateArgs = &TABuffer;
8263  }
8264
8265  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8266         E = ULE->decls_end(); I != E; ++I)
8267    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
8268                               Args, NumArgs, CandidateSet,
8269                               PartialOverloading, /*KnownValid*/ true);
8270
8271  if (ULE->requiresADL())
8272    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
8273                                         Args, NumArgs,
8274                                         ExplicitTemplateArgs,
8275                                         CandidateSet,
8276                                         PartialOverloading,
8277                                         ULE->isStdAssociatedNamespace());
8278}
8279
8280/// Attempt to recover from an ill-formed use of a non-dependent name in a
8281/// template, where the non-dependent name was declared after the template
8282/// was defined. This is common in code written for a compilers which do not
8283/// correctly implement two-stage name lookup.
8284///
8285/// Returns true if a viable candidate was found and a diagnostic was issued.
8286static bool
8287DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
8288                       const CXXScopeSpec &SS, LookupResult &R,
8289                       TemplateArgumentListInfo *ExplicitTemplateArgs,
8290                       Expr **Args, unsigned NumArgs) {
8291  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
8292    return false;
8293
8294  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
8295    SemaRef.LookupQualifiedName(R, DC);
8296
8297    if (!R.empty()) {
8298      R.suppressDiagnostics();
8299
8300      if (isa<CXXRecordDecl>(DC)) {
8301        // Don't diagnose names we find in classes; we get much better
8302        // diagnostics for these from DiagnoseEmptyLookup.
8303        R.clear();
8304        return false;
8305      }
8306
8307      OverloadCandidateSet Candidates(FnLoc);
8308      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8309        AddOverloadedCallCandidate(SemaRef, I.getPair(),
8310                                   ExplicitTemplateArgs, Args, NumArgs,
8311                                   Candidates, false, /*KnownValid*/ false);
8312
8313      OverloadCandidateSet::iterator Best;
8314      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
8315        // No viable functions. Don't bother the user with notes for functions
8316        // which don't work and shouldn't be found anyway.
8317        R.clear();
8318        return false;
8319      }
8320
8321      // Find the namespaces where ADL would have looked, and suggest
8322      // declaring the function there instead.
8323      Sema::AssociatedNamespaceSet AssociatedNamespaces;
8324      Sema::AssociatedClassSet AssociatedClasses;
8325      SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
8326                                                 AssociatedNamespaces,
8327                                                 AssociatedClasses);
8328      // Never suggest declaring a function within namespace 'std'.
8329      Sema::AssociatedNamespaceSet SuggestedNamespaces;
8330      if (DeclContext *Std = SemaRef.getStdNamespace()) {
8331        for (Sema::AssociatedNamespaceSet::iterator
8332               it = AssociatedNamespaces.begin(),
8333               end = AssociatedNamespaces.end(); it != end; ++it) {
8334          if (!Std->Encloses(*it))
8335            SuggestedNamespaces.insert(*it);
8336        }
8337      } else {
8338        // Lacking the 'std::' namespace, use all of the associated namespaces.
8339        SuggestedNamespaces = AssociatedNamespaces;
8340      }
8341
8342      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
8343        << R.getLookupName();
8344      if (SuggestedNamespaces.empty()) {
8345        SemaRef.Diag(Best->Function->getLocation(),
8346                     diag::note_not_found_by_two_phase_lookup)
8347          << R.getLookupName() << 0;
8348      } else if (SuggestedNamespaces.size() == 1) {
8349        SemaRef.Diag(Best->Function->getLocation(),
8350                     diag::note_not_found_by_two_phase_lookup)
8351          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
8352      } else {
8353        // FIXME: It would be useful to list the associated namespaces here,
8354        // but the diagnostics infrastructure doesn't provide a way to produce
8355        // a localized representation of a list of items.
8356        SemaRef.Diag(Best->Function->getLocation(),
8357                     diag::note_not_found_by_two_phase_lookup)
8358          << R.getLookupName() << 2;
8359      }
8360
8361      // Try to recover by calling this function.
8362      return true;
8363    }
8364
8365    R.clear();
8366  }
8367
8368  return false;
8369}
8370
8371/// Attempt to recover from ill-formed use of a non-dependent operator in a
8372/// template, where the non-dependent operator was declared after the template
8373/// was defined.
8374///
8375/// Returns true if a viable candidate was found and a diagnostic was issued.
8376static bool
8377DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
8378                               SourceLocation OpLoc,
8379                               Expr **Args, unsigned NumArgs) {
8380  DeclarationName OpName =
8381    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
8382  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
8383  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
8384                                /*ExplicitTemplateArgs=*/0, Args, NumArgs);
8385}
8386
8387/// Attempts to recover from a call where no functions were found.
8388///
8389/// Returns true if new candidates were found.
8390static ExprResult
8391BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
8392                      UnresolvedLookupExpr *ULE,
8393                      SourceLocation LParenLoc,
8394                      Expr **Args, unsigned NumArgs,
8395                      SourceLocation RParenLoc,
8396                      bool EmptyLookup) {
8397
8398  CXXScopeSpec SS;
8399  SS.Adopt(ULE->getQualifierLoc());
8400
8401  TemplateArgumentListInfo TABuffer;
8402  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8403  if (ULE->hasExplicitTemplateArgs()) {
8404    ULE->copyTemplateArgumentsInto(TABuffer);
8405    ExplicitTemplateArgs = &TABuffer;
8406  }
8407
8408  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
8409                 Sema::LookupOrdinaryName);
8410  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
8411                              ExplicitTemplateArgs, Args, NumArgs) &&
8412      (!EmptyLookup ||
8413       SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression,
8414                                   ExplicitTemplateArgs, Args, NumArgs)))
8415    return ExprError();
8416
8417  assert(!R.empty() && "lookup results empty despite recovery");
8418
8419  // Build an implicit member call if appropriate.  Just drop the
8420  // casts and such from the call, we don't really care.
8421  ExprResult NewFn = ExprError();
8422  if ((*R.begin())->isCXXClassMember())
8423    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
8424                                                    ExplicitTemplateArgs);
8425  else if (ExplicitTemplateArgs)
8426    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
8427  else
8428    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
8429
8430  if (NewFn.isInvalid())
8431    return ExprError();
8432
8433  // This shouldn't cause an infinite loop because we're giving it
8434  // an expression with viable lookup results, which should never
8435  // end up here.
8436  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
8437                               MultiExprArg(Args, NumArgs), RParenLoc);
8438}
8439
8440/// ResolveOverloadedCallFn - Given the call expression that calls Fn
8441/// (which eventually refers to the declaration Func) and the call
8442/// arguments Args/NumArgs, attempt to resolve the function call down
8443/// to a specific function. If overload resolution succeeds, returns
8444/// the function declaration produced by overload
8445/// resolution. Otherwise, emits diagnostics, deletes all of the
8446/// arguments and Fn, and returns NULL.
8447ExprResult
8448Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
8449                              SourceLocation LParenLoc,
8450                              Expr **Args, unsigned NumArgs,
8451                              SourceLocation RParenLoc,
8452                              Expr *ExecConfig) {
8453#ifndef NDEBUG
8454  if (ULE->requiresADL()) {
8455    // To do ADL, we must have found an unqualified name.
8456    assert(!ULE->getQualifier() && "qualified name with ADL");
8457
8458    // We don't perform ADL for implicit declarations of builtins.
8459    // Verify that this was correctly set up.
8460    FunctionDecl *F;
8461    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
8462        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
8463        F->getBuiltinID() && F->isImplicit())
8464      llvm_unreachable("performing ADL for builtin");
8465
8466    // We don't perform ADL in C.
8467    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
8468  } else
8469    assert(!ULE->isStdAssociatedNamespace() &&
8470           "std is associated namespace but not doing ADL");
8471#endif
8472
8473  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
8474
8475  // Add the functions denoted by the callee to the set of candidate
8476  // functions, including those from argument-dependent lookup.
8477  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
8478
8479  // If we found nothing, try to recover.
8480  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
8481  // out if it fails.
8482  if (CandidateSet.empty()) {
8483    // In Microsoft mode, if we are inside a template class member function then
8484    // create a type dependent CallExpr. The goal is to postpone name lookup
8485    // to instantiation time to be able to search into type dependent base
8486    // classes.
8487    if (getLangOptions().MicrosoftExt && CurContext->isDependentContext() &&
8488        isa<CXXMethodDecl>(CurContext)) {
8489      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
8490                                          Context.DependentTy, VK_RValue,
8491                                          RParenLoc);
8492      CE->setTypeDependent(true);
8493      return Owned(CE);
8494    }
8495    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
8496                                 RParenLoc, /*EmptyLookup=*/true);
8497  }
8498
8499  OverloadCandidateSet::iterator Best;
8500  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
8501  case OR_Success: {
8502    FunctionDecl *FDecl = Best->Function;
8503    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
8504    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
8505    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
8506                      ULE->getNameLoc());
8507    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
8508    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
8509                                 ExecConfig);
8510  }
8511
8512  case OR_No_Viable_Function: {
8513    // Try to recover by looking for viable functions which the user might
8514    // have meant to call.
8515    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
8516                                                Args, NumArgs, RParenLoc,
8517                                                /*EmptyLookup=*/false);
8518    if (!Recovery.isInvalid())
8519      return Recovery;
8520
8521    Diag(Fn->getSourceRange().getBegin(),
8522         diag::err_ovl_no_viable_function_in_call)
8523      << ULE->getName() << Fn->getSourceRange();
8524    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8525    break;
8526  }
8527
8528  case OR_Ambiguous:
8529    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
8530      << ULE->getName() << Fn->getSourceRange();
8531    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8532    break;
8533
8534  case OR_Deleted:
8535    {
8536      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
8537        << Best->Function->isDeleted()
8538        << ULE->getName()
8539        << getDeletedOrUnavailableSuffix(Best->Function)
8540        << Fn->getSourceRange();
8541      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8542    }
8543    break;
8544  }
8545
8546  // Overload resolution failed.
8547  return ExprError();
8548}
8549
8550static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
8551  return Functions.size() > 1 ||
8552    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
8553}
8554
8555/// \brief Create a unary operation that may resolve to an overloaded
8556/// operator.
8557///
8558/// \param OpLoc The location of the operator itself (e.g., '*').
8559///
8560/// \param OpcIn The UnaryOperator::Opcode that describes this
8561/// operator.
8562///
8563/// \param Functions The set of non-member functions that will be
8564/// considered by overload resolution. The caller needs to build this
8565/// set based on the context using, e.g.,
8566/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8567/// set should not contain any member functions; those will be added
8568/// by CreateOverloadedUnaryOp().
8569///
8570/// \param input The input argument.
8571ExprResult
8572Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
8573                              const UnresolvedSetImpl &Fns,
8574                              Expr *Input) {
8575  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
8576
8577  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
8578  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
8579  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8580  // TODO: provide better source location info.
8581  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8582
8583  if (Input->getObjectKind() == OK_ObjCProperty) {
8584    ExprResult Result = ConvertPropertyForRValue(Input);
8585    if (Result.isInvalid())
8586      return ExprError();
8587    Input = Result.take();
8588  }
8589
8590  Expr *Args[2] = { Input, 0 };
8591  unsigned NumArgs = 1;
8592
8593  // For post-increment and post-decrement, add the implicit '0' as
8594  // the second argument, so that we know this is a post-increment or
8595  // post-decrement.
8596  if (Opc == UO_PostInc || Opc == UO_PostDec) {
8597    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
8598    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
8599                                     SourceLocation());
8600    NumArgs = 2;
8601  }
8602
8603  if (Input->isTypeDependent()) {
8604    if (Fns.empty())
8605      return Owned(new (Context) UnaryOperator(Input,
8606                                               Opc,
8607                                               Context.DependentTy,
8608                                               VK_RValue, OK_Ordinary,
8609                                               OpLoc));
8610
8611    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8612    UnresolvedLookupExpr *Fn
8613      = UnresolvedLookupExpr::Create(Context, NamingClass,
8614                                     NestedNameSpecifierLoc(), OpNameInfo,
8615                                     /*ADL*/ true, IsOverloaded(Fns),
8616                                     Fns.begin(), Fns.end());
8617    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8618                                                  &Args[0], NumArgs,
8619                                                   Context.DependentTy,
8620                                                   VK_RValue,
8621                                                   OpLoc));
8622  }
8623
8624  // Build an empty overload set.
8625  OverloadCandidateSet CandidateSet(OpLoc);
8626
8627  // Add the candidates from the given function set.
8628  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
8629
8630  // Add operator candidates that are member functions.
8631  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8632
8633  // Add candidates from ADL.
8634  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8635                                       Args, NumArgs,
8636                                       /*ExplicitTemplateArgs*/ 0,
8637                                       CandidateSet);
8638
8639  // Add builtin operator candidates.
8640  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8641
8642  bool HadMultipleCandidates = (CandidateSet.size() > 1);
8643
8644  // Perform overload resolution.
8645  OverloadCandidateSet::iterator Best;
8646  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8647  case OR_Success: {
8648    // We found a built-in operator or an overloaded operator.
8649    FunctionDecl *FnDecl = Best->Function;
8650
8651    if (FnDecl) {
8652      // We matched an overloaded operator. Build a call to that
8653      // operator.
8654
8655      MarkDeclarationReferenced(OpLoc, FnDecl);
8656
8657      // Convert the arguments.
8658      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8659        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
8660
8661        ExprResult InputRes =
8662          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
8663                                              Best->FoundDecl, Method);
8664        if (InputRes.isInvalid())
8665          return ExprError();
8666        Input = InputRes.take();
8667      } else {
8668        // Convert the arguments.
8669        ExprResult InputInit
8670          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8671                                                      Context,
8672                                                      FnDecl->getParamDecl(0)),
8673                                      SourceLocation(),
8674                                      Input);
8675        if (InputInit.isInvalid())
8676          return ExprError();
8677        Input = InputInit.take();
8678      }
8679
8680      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8681
8682      // Determine the result type.
8683      QualType ResultTy = FnDecl->getResultType();
8684      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8685      ResultTy = ResultTy.getNonLValueExprType(Context);
8686
8687      // Build the actual expression node.
8688      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
8689                                                HadMultipleCandidates);
8690      if (FnExpr.isInvalid())
8691        return ExprError();
8692
8693      Args[0] = Input;
8694      CallExpr *TheCall =
8695        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8696                                          Args, NumArgs, ResultTy, VK, OpLoc);
8697
8698      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8699                              FnDecl))
8700        return ExprError();
8701
8702      return MaybeBindToTemporary(TheCall);
8703    } else {
8704      // We matched a built-in operator. Convert the arguments, then
8705      // break out so that we will build the appropriate built-in
8706      // operator node.
8707      ExprResult InputRes =
8708        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8709                                  Best->Conversions[0], AA_Passing);
8710      if (InputRes.isInvalid())
8711        return ExprError();
8712      Input = InputRes.take();
8713      break;
8714    }
8715  }
8716
8717  case OR_No_Viable_Function:
8718    // This is an erroneous use of an operator which can be overloaded by
8719    // a non-member function. Check for non-member operators which were
8720    // defined too late to be candidates.
8721    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
8722      // FIXME: Recover by calling the found function.
8723      return ExprError();
8724
8725    // No viable function; fall through to handling this as a
8726    // built-in operator, which will produce an error message for us.
8727    break;
8728
8729  case OR_Ambiguous:
8730    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8731        << UnaryOperator::getOpcodeStr(Opc)
8732        << Input->getType()
8733        << Input->getSourceRange();
8734    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs,
8735                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8736    return ExprError();
8737
8738  case OR_Deleted:
8739    Diag(OpLoc, diag::err_ovl_deleted_oper)
8740      << Best->Function->isDeleted()
8741      << UnaryOperator::getOpcodeStr(Opc)
8742      << getDeletedOrUnavailableSuffix(Best->Function)
8743      << Input->getSourceRange();
8744    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs,
8745                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8746    return ExprError();
8747  }
8748
8749  // Either we found no viable overloaded operator or we matched a
8750  // built-in operator. In either case, fall through to trying to
8751  // build a built-in operation.
8752  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8753}
8754
8755/// \brief Create a binary operation that may resolve to an overloaded
8756/// operator.
8757///
8758/// \param OpLoc The location of the operator itself (e.g., '+').
8759///
8760/// \param OpcIn The BinaryOperator::Opcode that describes this
8761/// operator.
8762///
8763/// \param Functions The set of non-member functions that will be
8764/// considered by overload resolution. The caller needs to build this
8765/// set based on the context using, e.g.,
8766/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8767/// set should not contain any member functions; those will be added
8768/// by CreateOverloadedBinOp().
8769///
8770/// \param LHS Left-hand argument.
8771/// \param RHS Right-hand argument.
8772ExprResult
8773Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8774                            unsigned OpcIn,
8775                            const UnresolvedSetImpl &Fns,
8776                            Expr *LHS, Expr *RHS) {
8777  Expr *Args[2] = { LHS, RHS };
8778  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
8779
8780  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
8781  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
8782  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8783
8784  // If either side is type-dependent, create an appropriate dependent
8785  // expression.
8786  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8787    if (Fns.empty()) {
8788      // If there are no functions to store, just build a dependent
8789      // BinaryOperator or CompoundAssignment.
8790      if (Opc <= BO_Assign || Opc > BO_OrAssign)
8791        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
8792                                                  Context.DependentTy,
8793                                                  VK_RValue, OK_Ordinary,
8794                                                  OpLoc));
8795
8796      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
8797                                                        Context.DependentTy,
8798                                                        VK_LValue,
8799                                                        OK_Ordinary,
8800                                                        Context.DependentTy,
8801                                                        Context.DependentTy,
8802                                                        OpLoc));
8803    }
8804
8805    // FIXME: save results of ADL from here?
8806    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8807    // TODO: provide better source location info in DNLoc component.
8808    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8809    UnresolvedLookupExpr *Fn
8810      = UnresolvedLookupExpr::Create(Context, NamingClass,
8811                                     NestedNameSpecifierLoc(), OpNameInfo,
8812                                     /*ADL*/ true, IsOverloaded(Fns),
8813                                     Fns.begin(), Fns.end());
8814    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8815                                                   Args, 2,
8816                                                   Context.DependentTy,
8817                                                   VK_RValue,
8818                                                   OpLoc));
8819  }
8820
8821  // Always do property rvalue conversions on the RHS.
8822  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8823    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8824    if (Result.isInvalid())
8825      return ExprError();
8826    Args[1] = Result.take();
8827  }
8828
8829  // The LHS is more complicated.
8830  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8831
8832    // There's a tension for assignment operators between primitive
8833    // property assignment and the overloaded operators.
8834    if (BinaryOperator::isAssignmentOp(Opc)) {
8835      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
8836
8837      // Is the property "logically" settable?
8838      bool Settable = (PRE->isExplicitProperty() ||
8839                       PRE->getImplicitPropertySetter());
8840
8841      // To avoid gratuitously inventing semantics, use the primitive
8842      // unless it isn't.  Thoughts in case we ever really care:
8843      // - If the property isn't logically settable, we have to
8844      //   load and hope.
8845      // - If the property is settable and this is simple assignment,
8846      //   we really should use the primitive.
8847      // - If the property is settable, then we could try overloading
8848      //   on a generic lvalue of the appropriate type;  if it works
8849      //   out to a builtin candidate, we would do that same operation
8850      //   on the property, and otherwise just error.
8851      if (Settable)
8852        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8853    }
8854
8855    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8856    if (Result.isInvalid())
8857      return ExprError();
8858    Args[0] = Result.take();
8859  }
8860
8861  // If this is the assignment operator, we only perform overload resolution
8862  // if the left-hand side is a class or enumeration type. This is actually
8863  // a hack. The standard requires that we do overload resolution between the
8864  // various built-in candidates, but as DR507 points out, this can lead to
8865  // problems. So we do it this way, which pretty much follows what GCC does.
8866  // Note that we go the traditional code path for compound assignment forms.
8867  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
8868    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8869
8870  // If this is the .* operator, which is not overloadable, just
8871  // create a built-in binary operator.
8872  if (Opc == BO_PtrMemD)
8873    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8874
8875  // Build an empty overload set.
8876  OverloadCandidateSet CandidateSet(OpLoc);
8877
8878  // Add the candidates from the given function set.
8879  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
8880
8881  // Add operator candidates that are member functions.
8882  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8883
8884  // Add candidates from ADL.
8885  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8886                                       Args, 2,
8887                                       /*ExplicitTemplateArgs*/ 0,
8888                                       CandidateSet);
8889
8890  // Add builtin operator candidates.
8891  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8892
8893  bool HadMultipleCandidates = (CandidateSet.size() > 1);
8894
8895  // Perform overload resolution.
8896  OverloadCandidateSet::iterator Best;
8897  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8898    case OR_Success: {
8899      // We found a built-in operator or an overloaded operator.
8900      FunctionDecl *FnDecl = Best->Function;
8901
8902      if (FnDecl) {
8903        // We matched an overloaded operator. Build a call to that
8904        // operator.
8905
8906        MarkDeclarationReferenced(OpLoc, FnDecl);
8907
8908        // Convert the arguments.
8909        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8910          // Best->Access is only meaningful for class members.
8911          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
8912
8913          ExprResult Arg1 =
8914            PerformCopyInitialization(
8915              InitializedEntity::InitializeParameter(Context,
8916                                                     FnDecl->getParamDecl(0)),
8917              SourceLocation(), Owned(Args[1]));
8918          if (Arg1.isInvalid())
8919            return ExprError();
8920
8921          ExprResult Arg0 =
8922            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8923                                                Best->FoundDecl, Method);
8924          if (Arg0.isInvalid())
8925            return ExprError();
8926          Args[0] = Arg0.takeAs<Expr>();
8927          Args[1] = RHS = Arg1.takeAs<Expr>();
8928        } else {
8929          // Convert the arguments.
8930          ExprResult Arg0 = PerformCopyInitialization(
8931            InitializedEntity::InitializeParameter(Context,
8932                                                   FnDecl->getParamDecl(0)),
8933            SourceLocation(), Owned(Args[0]));
8934          if (Arg0.isInvalid())
8935            return ExprError();
8936
8937          ExprResult Arg1 =
8938            PerformCopyInitialization(
8939              InitializedEntity::InitializeParameter(Context,
8940                                                     FnDecl->getParamDecl(1)),
8941              SourceLocation(), Owned(Args[1]));
8942          if (Arg1.isInvalid())
8943            return ExprError();
8944          Args[0] = LHS = Arg0.takeAs<Expr>();
8945          Args[1] = RHS = Arg1.takeAs<Expr>();
8946        }
8947
8948        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8949
8950        // Determine the result type.
8951        QualType ResultTy = FnDecl->getResultType();
8952        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8953        ResultTy = ResultTy.getNonLValueExprType(Context);
8954
8955        // Build the actual expression node.
8956        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
8957                                                  HadMultipleCandidates, OpLoc);
8958        if (FnExpr.isInvalid())
8959          return ExprError();
8960
8961        CXXOperatorCallExpr *TheCall =
8962          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8963                                            Args, 2, ResultTy, VK, OpLoc);
8964
8965        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8966                                FnDecl))
8967          return ExprError();
8968
8969        return MaybeBindToTemporary(TheCall);
8970      } else {
8971        // We matched a built-in operator. Convert the arguments, then
8972        // break out so that we will build the appropriate built-in
8973        // operator node.
8974        ExprResult ArgsRes0 =
8975          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8976                                    Best->Conversions[0], AA_Passing);
8977        if (ArgsRes0.isInvalid())
8978          return ExprError();
8979        Args[0] = ArgsRes0.take();
8980
8981        ExprResult ArgsRes1 =
8982          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8983                                    Best->Conversions[1], AA_Passing);
8984        if (ArgsRes1.isInvalid())
8985          return ExprError();
8986        Args[1] = ArgsRes1.take();
8987        break;
8988      }
8989    }
8990
8991    case OR_No_Viable_Function: {
8992      // C++ [over.match.oper]p9:
8993      //   If the operator is the operator , [...] and there are no
8994      //   viable functions, then the operator is assumed to be the
8995      //   built-in operator and interpreted according to clause 5.
8996      if (Opc == BO_Comma)
8997        break;
8998
8999      // For class as left operand for assignment or compound assigment
9000      // operator do not fall through to handling in built-in, but report that
9001      // no overloaded assignment operator found
9002      ExprResult Result = ExprError();
9003      if (Args[0]->getType()->isRecordType() &&
9004          Opc >= BO_Assign && Opc <= BO_OrAssign) {
9005        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
9006             << BinaryOperator::getOpcodeStr(Opc)
9007             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9008      } else {
9009        // This is an erroneous use of an operator which can be overloaded by
9010        // a non-member function. Check for non-member operators which were
9011        // defined too late to be candidates.
9012        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
9013          // FIXME: Recover by calling the found function.
9014          return ExprError();
9015
9016        // No viable function; try to create a built-in operation, which will
9017        // produce an error. Then, show the non-viable candidates.
9018        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9019      }
9020      assert(Result.isInvalid() &&
9021             "C++ binary operator overloading is missing candidates!");
9022      if (Result.isInvalid())
9023        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9024                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
9025      return move(Result);
9026    }
9027
9028    case OR_Ambiguous:
9029      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
9030          << BinaryOperator::getOpcodeStr(Opc)
9031          << Args[0]->getType() << Args[1]->getType()
9032          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9033      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9034                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9035      return ExprError();
9036
9037    case OR_Deleted:
9038      Diag(OpLoc, diag::err_ovl_deleted_oper)
9039        << Best->Function->isDeleted()
9040        << BinaryOperator::getOpcodeStr(Opc)
9041        << getDeletedOrUnavailableSuffix(Best->Function)
9042        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9043      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9044                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9045      return ExprError();
9046  }
9047
9048  // We matched a built-in operator; build it.
9049  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9050}
9051
9052ExprResult
9053Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
9054                                         SourceLocation RLoc,
9055                                         Expr *Base, Expr *Idx) {
9056  Expr *Args[2] = { Base, Idx };
9057  DeclarationName OpName =
9058      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
9059
9060  // If either side is type-dependent, create an appropriate dependent
9061  // expression.
9062  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9063
9064    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9065    // CHECKME: no 'operator' keyword?
9066    DeclarationNameInfo OpNameInfo(OpName, LLoc);
9067    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
9068    UnresolvedLookupExpr *Fn
9069      = UnresolvedLookupExpr::Create(Context, NamingClass,
9070                                     NestedNameSpecifierLoc(), OpNameInfo,
9071                                     /*ADL*/ true, /*Overloaded*/ false,
9072                                     UnresolvedSetIterator(),
9073                                     UnresolvedSetIterator());
9074    // Can't add any actual overloads yet
9075
9076    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
9077                                                   Args, 2,
9078                                                   Context.DependentTy,
9079                                                   VK_RValue,
9080                                                   RLoc));
9081  }
9082
9083  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
9084    ExprResult Result = ConvertPropertyForRValue(Args[0]);
9085    if (Result.isInvalid())
9086      return ExprError();
9087    Args[0] = Result.take();
9088  }
9089  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
9090    ExprResult Result = ConvertPropertyForRValue(Args[1]);
9091    if (Result.isInvalid())
9092      return ExprError();
9093    Args[1] = Result.take();
9094  }
9095
9096  // Build an empty overload set.
9097  OverloadCandidateSet CandidateSet(LLoc);
9098
9099  // Subscript can only be overloaded as a member function.
9100
9101  // Add operator candidates that are member functions.
9102  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9103
9104  // Add builtin operator candidates.
9105  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9106
9107  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9108
9109  // Perform overload resolution.
9110  OverloadCandidateSet::iterator Best;
9111  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
9112    case OR_Success: {
9113      // We found a built-in operator or an overloaded operator.
9114      FunctionDecl *FnDecl = Best->Function;
9115
9116      if (FnDecl) {
9117        // We matched an overloaded operator. Build a call to that
9118        // operator.
9119
9120        MarkDeclarationReferenced(LLoc, FnDecl);
9121
9122        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
9123        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
9124
9125        // Convert the arguments.
9126        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
9127        ExprResult Arg0 =
9128          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9129                                              Best->FoundDecl, Method);
9130        if (Arg0.isInvalid())
9131          return ExprError();
9132        Args[0] = Arg0.take();
9133
9134        // Convert the arguments.
9135        ExprResult InputInit
9136          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9137                                                      Context,
9138                                                      FnDecl->getParamDecl(0)),
9139                                      SourceLocation(),
9140                                      Owned(Args[1]));
9141        if (InputInit.isInvalid())
9142          return ExprError();
9143
9144        Args[1] = InputInit.takeAs<Expr>();
9145
9146        // Determine the result type
9147        QualType ResultTy = FnDecl->getResultType();
9148        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9149        ResultTy = ResultTy.getNonLValueExprType(Context);
9150
9151        // Build the actual expression node.
9152        DeclarationNameLoc LocInfo;
9153        LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
9154        LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
9155        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9156                                                  HadMultipleCandidates,
9157                                                  LLoc, LocInfo);
9158        if (FnExpr.isInvalid())
9159          return ExprError();
9160
9161        CXXOperatorCallExpr *TheCall =
9162          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
9163                                            FnExpr.take(), Args, 2,
9164                                            ResultTy, VK, RLoc);
9165
9166        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
9167                                FnDecl))
9168          return ExprError();
9169
9170        return MaybeBindToTemporary(TheCall);
9171      } else {
9172        // We matched a built-in operator. Convert the arguments, then
9173        // break out so that we will build the appropriate built-in
9174        // operator node.
9175        ExprResult ArgsRes0 =
9176          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9177                                    Best->Conversions[0], AA_Passing);
9178        if (ArgsRes0.isInvalid())
9179          return ExprError();
9180        Args[0] = ArgsRes0.take();
9181
9182        ExprResult ArgsRes1 =
9183          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9184                                    Best->Conversions[1], AA_Passing);
9185        if (ArgsRes1.isInvalid())
9186          return ExprError();
9187        Args[1] = ArgsRes1.take();
9188
9189        break;
9190      }
9191    }
9192
9193    case OR_No_Viable_Function: {
9194      if (CandidateSet.empty())
9195        Diag(LLoc, diag::err_ovl_no_oper)
9196          << Args[0]->getType() << /*subscript*/ 0
9197          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9198      else
9199        Diag(LLoc, diag::err_ovl_no_viable_subscript)
9200          << Args[0]->getType()
9201          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9202      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9203                                  "[]", LLoc);
9204      return ExprError();
9205    }
9206
9207    case OR_Ambiguous:
9208      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
9209          << "[]"
9210          << Args[0]->getType() << Args[1]->getType()
9211          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9212      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9213                                  "[]", LLoc);
9214      return ExprError();
9215
9216    case OR_Deleted:
9217      Diag(LLoc, diag::err_ovl_deleted_oper)
9218        << Best->Function->isDeleted() << "[]"
9219        << getDeletedOrUnavailableSuffix(Best->Function)
9220        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9221      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9222                                  "[]", LLoc);
9223      return ExprError();
9224    }
9225
9226  // We matched a built-in operator; build it.
9227  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
9228}
9229
9230/// BuildCallToMemberFunction - Build a call to a member
9231/// function. MemExpr is the expression that refers to the member
9232/// function (and includes the object parameter), Args/NumArgs are the
9233/// arguments to the function call (not including the object
9234/// parameter). The caller needs to validate that the member
9235/// expression refers to a non-static member function or an overloaded
9236/// member function.
9237ExprResult
9238Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
9239                                SourceLocation LParenLoc, Expr **Args,
9240                                unsigned NumArgs, SourceLocation RParenLoc) {
9241  assert(MemExprE->getType() == Context.BoundMemberTy ||
9242         MemExprE->getType() == Context.OverloadTy);
9243
9244  // Dig out the member expression. This holds both the object
9245  // argument and the member function we're referring to.
9246  Expr *NakedMemExpr = MemExprE->IgnoreParens();
9247
9248  // Determine whether this is a call to a pointer-to-member function.
9249  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
9250    assert(op->getType() == Context.BoundMemberTy);
9251    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
9252
9253    QualType fnType =
9254      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
9255
9256    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
9257    QualType resultType = proto->getCallResultType(Context);
9258    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
9259
9260    // Check that the object type isn't more qualified than the
9261    // member function we're calling.
9262    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
9263
9264    QualType objectType = op->getLHS()->getType();
9265    if (op->getOpcode() == BO_PtrMemI)
9266      objectType = objectType->castAs<PointerType>()->getPointeeType();
9267    Qualifiers objectQuals = objectType.getQualifiers();
9268
9269    Qualifiers difference = objectQuals - funcQuals;
9270    difference.removeObjCGCAttr();
9271    difference.removeAddressSpace();
9272    if (difference) {
9273      std::string qualsString = difference.getAsString();
9274      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
9275        << fnType.getUnqualifiedType()
9276        << qualsString
9277        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
9278    }
9279
9280    CXXMemberCallExpr *call
9281      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9282                                        resultType, valueKind, RParenLoc);
9283
9284    if (CheckCallReturnType(proto->getResultType(),
9285                            op->getRHS()->getSourceRange().getBegin(),
9286                            call, 0))
9287      return ExprError();
9288
9289    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
9290      return ExprError();
9291
9292    return MaybeBindToTemporary(call);
9293  }
9294
9295  MemberExpr *MemExpr;
9296  CXXMethodDecl *Method = 0;
9297  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
9298  NestedNameSpecifier *Qualifier = 0;
9299  if (isa<MemberExpr>(NakedMemExpr)) {
9300    MemExpr = cast<MemberExpr>(NakedMemExpr);
9301    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
9302    FoundDecl = MemExpr->getFoundDecl();
9303    Qualifier = MemExpr->getQualifier();
9304  } else {
9305    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
9306    Qualifier = UnresExpr->getQualifier();
9307
9308    QualType ObjectType = UnresExpr->getBaseType();
9309    Expr::Classification ObjectClassification
9310      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
9311                            : UnresExpr->getBase()->Classify(Context);
9312
9313    // Add overload candidates
9314    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
9315
9316    // FIXME: avoid copy.
9317    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9318    if (UnresExpr->hasExplicitTemplateArgs()) {
9319      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9320      TemplateArgs = &TemplateArgsBuffer;
9321    }
9322
9323    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
9324           E = UnresExpr->decls_end(); I != E; ++I) {
9325
9326      NamedDecl *Func = *I;
9327      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
9328      if (isa<UsingShadowDecl>(Func))
9329        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
9330
9331
9332      // Microsoft supports direct constructor calls.
9333      if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
9334        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
9335                             CandidateSet);
9336      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
9337        // If explicit template arguments were provided, we can't call a
9338        // non-template member function.
9339        if (TemplateArgs)
9340          continue;
9341
9342        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
9343                           ObjectClassification,
9344                           Args, NumArgs, CandidateSet,
9345                           /*SuppressUserConversions=*/false);
9346      } else {
9347        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
9348                                   I.getPair(), ActingDC, TemplateArgs,
9349                                   ObjectType,  ObjectClassification,
9350                                   Args, NumArgs, CandidateSet,
9351                                   /*SuppressUsedConversions=*/false);
9352      }
9353    }
9354
9355    DeclarationName DeclName = UnresExpr->getMemberName();
9356
9357    OverloadCandidateSet::iterator Best;
9358    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
9359                                            Best)) {
9360    case OR_Success:
9361      Method = cast<CXXMethodDecl>(Best->Function);
9362      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
9363      FoundDecl = Best->FoundDecl;
9364      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
9365      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
9366      break;
9367
9368    case OR_No_Viable_Function:
9369      Diag(UnresExpr->getMemberLoc(),
9370           diag::err_ovl_no_viable_member_function_in_call)
9371        << DeclName << MemExprE->getSourceRange();
9372      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9373      // FIXME: Leaking incoming expressions!
9374      return ExprError();
9375
9376    case OR_Ambiguous:
9377      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
9378        << DeclName << MemExprE->getSourceRange();
9379      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9380      // FIXME: Leaking incoming expressions!
9381      return ExprError();
9382
9383    case OR_Deleted:
9384      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
9385        << Best->Function->isDeleted()
9386        << DeclName
9387        << getDeletedOrUnavailableSuffix(Best->Function)
9388        << MemExprE->getSourceRange();
9389      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9390      // FIXME: Leaking incoming expressions!
9391      return ExprError();
9392    }
9393
9394    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
9395
9396    // If overload resolution picked a static member, build a
9397    // non-member call based on that function.
9398    if (Method->isStatic()) {
9399      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
9400                                   Args, NumArgs, RParenLoc);
9401    }
9402
9403    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
9404  }
9405
9406  QualType ResultType = Method->getResultType();
9407  ExprValueKind VK = Expr::getValueKindForType(ResultType);
9408  ResultType = ResultType.getNonLValueExprType(Context);
9409
9410  assert(Method && "Member call to something that isn't a method?");
9411  CXXMemberCallExpr *TheCall =
9412    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9413                                    ResultType, VK, RParenLoc);
9414
9415  // Check for a valid return type.
9416  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
9417                          TheCall, Method))
9418    return ExprError();
9419
9420  // Convert the object argument (for a non-static member function call).
9421  // We only need to do this if there was actually an overload; otherwise
9422  // it was done at lookup.
9423  if (!Method->isStatic()) {
9424    ExprResult ObjectArg =
9425      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
9426                                          FoundDecl, Method);
9427    if (ObjectArg.isInvalid())
9428      return ExprError();
9429    MemExpr->setBase(ObjectArg.take());
9430  }
9431
9432  // Convert the rest of the arguments
9433  const FunctionProtoType *Proto =
9434    Method->getType()->getAs<FunctionProtoType>();
9435  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
9436                              RParenLoc))
9437    return ExprError();
9438
9439  if (CheckFunctionCall(Method, TheCall))
9440    return ExprError();
9441
9442  if ((isa<CXXConstructorDecl>(CurContext) ||
9443       isa<CXXDestructorDecl>(CurContext)) &&
9444      TheCall->getMethodDecl()->isPure()) {
9445    const CXXMethodDecl *MD = TheCall->getMethodDecl();
9446
9447    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
9448      Diag(MemExpr->getLocStart(),
9449           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
9450        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
9451        << MD->getParent()->getDeclName();
9452
9453      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
9454    }
9455  }
9456  return MaybeBindToTemporary(TheCall);
9457}
9458
9459/// BuildCallToObjectOfClassType - Build a call to an object of class
9460/// type (C++ [over.call.object]), which can end up invoking an
9461/// overloaded function call operator (@c operator()) or performing a
9462/// user-defined conversion on the object argument.
9463ExprResult
9464Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
9465                                   SourceLocation LParenLoc,
9466                                   Expr **Args, unsigned NumArgs,
9467                                   SourceLocation RParenLoc) {
9468  ExprResult Object = Owned(Obj);
9469  if (Object.get()->getObjectKind() == OK_ObjCProperty) {
9470    Object = ConvertPropertyForRValue(Object.take());
9471    if (Object.isInvalid())
9472      return ExprError();
9473  }
9474
9475  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
9476  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
9477
9478  // C++ [over.call.object]p1:
9479  //  If the primary-expression E in the function call syntax
9480  //  evaluates to a class object of type "cv T", then the set of
9481  //  candidate functions includes at least the function call
9482  //  operators of T. The function call operators of T are obtained by
9483  //  ordinary lookup of the name operator() in the context of
9484  //  (E).operator().
9485  OverloadCandidateSet CandidateSet(LParenLoc);
9486  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
9487
9488  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
9489                          PDiag(diag::err_incomplete_object_call)
9490                          << Object.get()->getSourceRange()))
9491    return true;
9492
9493  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
9494  LookupQualifiedName(R, Record->getDecl());
9495  R.suppressDiagnostics();
9496
9497  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9498       Oper != OperEnd; ++Oper) {
9499    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
9500                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
9501                       /*SuppressUserConversions=*/ false);
9502  }
9503
9504  // C++ [over.call.object]p2:
9505  //   In addition, for each (non-explicit in C++0x) conversion function
9506  //   declared in T of the form
9507  //
9508  //        operator conversion-type-id () cv-qualifier;
9509  //
9510  //   where cv-qualifier is the same cv-qualification as, or a
9511  //   greater cv-qualification than, cv, and where conversion-type-id
9512  //   denotes the type "pointer to function of (P1,...,Pn) returning
9513  //   R", or the type "reference to pointer to function of
9514  //   (P1,...,Pn) returning R", or the type "reference to function
9515  //   of (P1,...,Pn) returning R", a surrogate call function [...]
9516  //   is also considered as a candidate function. Similarly,
9517  //   surrogate call functions are added to the set of candidate
9518  //   functions for each conversion function declared in an
9519  //   accessible base class provided the function is not hidden
9520  //   within T by another intervening declaration.
9521  const UnresolvedSetImpl *Conversions
9522    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
9523  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
9524         E = Conversions->end(); I != E; ++I) {
9525    NamedDecl *D = *I;
9526    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
9527    if (isa<UsingShadowDecl>(D))
9528      D = cast<UsingShadowDecl>(D)->getTargetDecl();
9529
9530    // Skip over templated conversion functions; they aren't
9531    // surrogates.
9532    if (isa<FunctionTemplateDecl>(D))
9533      continue;
9534
9535    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
9536    if (!Conv->isExplicit()) {
9537      // Strip the reference type (if any) and then the pointer type (if
9538      // any) to get down to what might be a function type.
9539      QualType ConvType = Conv->getConversionType().getNonReferenceType();
9540      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9541        ConvType = ConvPtrType->getPointeeType();
9542
9543      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
9544      {
9545        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
9546                              Object.get(), Args, NumArgs, CandidateSet);
9547      }
9548    }
9549  }
9550
9551  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9552
9553  // Perform overload resolution.
9554  OverloadCandidateSet::iterator Best;
9555  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
9556                             Best)) {
9557  case OR_Success:
9558    // Overload resolution succeeded; we'll build the appropriate call
9559    // below.
9560    break;
9561
9562  case OR_No_Viable_Function:
9563    if (CandidateSet.empty())
9564      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
9565        << Object.get()->getType() << /*call*/ 1
9566        << Object.get()->getSourceRange();
9567    else
9568      Diag(Object.get()->getSourceRange().getBegin(),
9569           diag::err_ovl_no_viable_object_call)
9570        << Object.get()->getType() << Object.get()->getSourceRange();
9571    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9572    break;
9573
9574  case OR_Ambiguous:
9575    Diag(Object.get()->getSourceRange().getBegin(),
9576         diag::err_ovl_ambiguous_object_call)
9577      << Object.get()->getType() << Object.get()->getSourceRange();
9578    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9579    break;
9580
9581  case OR_Deleted:
9582    Diag(Object.get()->getSourceRange().getBegin(),
9583         diag::err_ovl_deleted_object_call)
9584      << Best->Function->isDeleted()
9585      << Object.get()->getType()
9586      << getDeletedOrUnavailableSuffix(Best->Function)
9587      << Object.get()->getSourceRange();
9588    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9589    break;
9590  }
9591
9592  if (Best == CandidateSet.end())
9593    return true;
9594
9595  if (Best->Function == 0) {
9596    // Since there is no function declaration, this is one of the
9597    // surrogate candidates. Dig out the conversion function.
9598    CXXConversionDecl *Conv
9599      = cast<CXXConversionDecl>(
9600                         Best->Conversions[0].UserDefined.ConversionFunction);
9601
9602    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9603    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9604
9605    // We selected one of the surrogate functions that converts the
9606    // object parameter to a function pointer. Perform the conversion
9607    // on the object argument, then let ActOnCallExpr finish the job.
9608
9609    // Create an implicit member expr to refer to the conversion operator.
9610    // and then call it.
9611    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
9612                                             Conv, HadMultipleCandidates);
9613    if (Call.isInvalid())
9614      return ExprError();
9615
9616    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
9617                         RParenLoc);
9618  }
9619
9620  MarkDeclarationReferenced(LParenLoc, Best->Function);
9621  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9622  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9623
9624  // We found an overloaded operator(). Build a CXXOperatorCallExpr
9625  // that calls this method, using Object for the implicit object
9626  // parameter and passing along the remaining arguments.
9627  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9628  const FunctionProtoType *Proto =
9629    Method->getType()->getAs<FunctionProtoType>();
9630
9631  unsigned NumArgsInProto = Proto->getNumArgs();
9632  unsigned NumArgsToCheck = NumArgs;
9633
9634  // Build the full argument list for the method call (the
9635  // implicit object parameter is placed at the beginning of the
9636  // list).
9637  Expr **MethodArgs;
9638  if (NumArgs < NumArgsInProto) {
9639    NumArgsToCheck = NumArgsInProto;
9640    MethodArgs = new Expr*[NumArgsInProto + 1];
9641  } else {
9642    MethodArgs = new Expr*[NumArgs + 1];
9643  }
9644  MethodArgs[0] = Object.get();
9645  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
9646    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
9647
9648  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
9649                                           HadMultipleCandidates);
9650  if (NewFn.isInvalid())
9651    return true;
9652
9653  // Once we've built TheCall, all of the expressions are properly
9654  // owned.
9655  QualType ResultTy = Method->getResultType();
9656  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9657  ResultTy = ResultTy.getNonLValueExprType(Context);
9658
9659  CXXOperatorCallExpr *TheCall =
9660    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
9661                                      MethodArgs, NumArgs + 1,
9662                                      ResultTy, VK, RParenLoc);
9663  delete [] MethodArgs;
9664
9665  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
9666                          Method))
9667    return true;
9668
9669  // We may have default arguments. If so, we need to allocate more
9670  // slots in the call for them.
9671  if (NumArgs < NumArgsInProto)
9672    TheCall->setNumArgs(Context, NumArgsInProto + 1);
9673  else if (NumArgs > NumArgsInProto)
9674    NumArgsToCheck = NumArgsInProto;
9675
9676  bool IsError = false;
9677
9678  // Initialize the implicit object parameter.
9679  ExprResult ObjRes =
9680    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
9681                                        Best->FoundDecl, Method);
9682  if (ObjRes.isInvalid())
9683    IsError = true;
9684  else
9685    Object = move(ObjRes);
9686  TheCall->setArg(0, Object.take());
9687
9688  // Check the argument types.
9689  for (unsigned i = 0; i != NumArgsToCheck; i++) {
9690    Expr *Arg;
9691    if (i < NumArgs) {
9692      Arg = Args[i];
9693
9694      // Pass the argument.
9695
9696      ExprResult InputInit
9697        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9698                                                    Context,
9699                                                    Method->getParamDecl(i)),
9700                                    SourceLocation(), Arg);
9701
9702      IsError |= InputInit.isInvalid();
9703      Arg = InputInit.takeAs<Expr>();
9704    } else {
9705      ExprResult DefArg
9706        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
9707      if (DefArg.isInvalid()) {
9708        IsError = true;
9709        break;
9710      }
9711
9712      Arg = DefArg.takeAs<Expr>();
9713    }
9714
9715    TheCall->setArg(i + 1, Arg);
9716  }
9717
9718  // If this is a variadic call, handle args passed through "...".
9719  if (Proto->isVariadic()) {
9720    // Promote the arguments (C99 6.5.2.2p7).
9721    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
9722      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
9723      IsError |= Arg.isInvalid();
9724      TheCall->setArg(i + 1, Arg.take());
9725    }
9726  }
9727
9728  if (IsError) return true;
9729
9730  if (CheckFunctionCall(Method, TheCall))
9731    return true;
9732
9733  return MaybeBindToTemporary(TheCall);
9734}
9735
9736/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
9737///  (if one exists), where @c Base is an expression of class type and
9738/// @c Member is the name of the member we're trying to find.
9739ExprResult
9740Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
9741  assert(Base->getType()->isRecordType() &&
9742         "left-hand side must have class type");
9743
9744  if (Base->getObjectKind() == OK_ObjCProperty) {
9745    ExprResult Result = ConvertPropertyForRValue(Base);
9746    if (Result.isInvalid())
9747      return ExprError();
9748    Base = Result.take();
9749  }
9750
9751  SourceLocation Loc = Base->getExprLoc();
9752
9753  // C++ [over.ref]p1:
9754  //
9755  //   [...] An expression x->m is interpreted as (x.operator->())->m
9756  //   for a class object x of type T if T::operator->() exists and if
9757  //   the operator is selected as the best match function by the
9758  //   overload resolution mechanism (13.3).
9759  DeclarationName OpName =
9760    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
9761  OverloadCandidateSet CandidateSet(Loc);
9762  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
9763
9764  if (RequireCompleteType(Loc, Base->getType(),
9765                          PDiag(diag::err_typecheck_incomplete_tag)
9766                            << Base->getSourceRange()))
9767    return ExprError();
9768
9769  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
9770  LookupQualifiedName(R, BaseRecord->getDecl());
9771  R.suppressDiagnostics();
9772
9773  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9774       Oper != OperEnd; ++Oper) {
9775    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
9776                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
9777  }
9778
9779  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9780
9781  // Perform overload resolution.
9782  OverloadCandidateSet::iterator Best;
9783  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9784  case OR_Success:
9785    // Overload resolution succeeded; we'll build the call below.
9786    break;
9787
9788  case OR_No_Viable_Function:
9789    if (CandidateSet.empty())
9790      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
9791        << Base->getType() << Base->getSourceRange();
9792    else
9793      Diag(OpLoc, diag::err_ovl_no_viable_oper)
9794        << "operator->" << Base->getSourceRange();
9795    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9796    return ExprError();
9797
9798  case OR_Ambiguous:
9799    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9800      << "->" << Base->getType() << Base->getSourceRange();
9801    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
9802    return ExprError();
9803
9804  case OR_Deleted:
9805    Diag(OpLoc,  diag::err_ovl_deleted_oper)
9806      << Best->Function->isDeleted()
9807      << "->"
9808      << getDeletedOrUnavailableSuffix(Best->Function)
9809      << Base->getSourceRange();
9810    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9811    return ExprError();
9812  }
9813
9814  MarkDeclarationReferenced(OpLoc, Best->Function);
9815  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
9816  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9817
9818  // Convert the object parameter.
9819  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9820  ExprResult BaseResult =
9821    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
9822                                        Best->FoundDecl, Method);
9823  if (BaseResult.isInvalid())
9824    return ExprError();
9825  Base = BaseResult.take();
9826
9827  // Build the operator call.
9828  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
9829                                            HadMultipleCandidates);
9830  if (FnExpr.isInvalid())
9831    return ExprError();
9832
9833  QualType ResultTy = Method->getResultType();
9834  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9835  ResultTy = ResultTy.getNonLValueExprType(Context);
9836  CXXOperatorCallExpr *TheCall =
9837    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
9838                                      &Base, 1, ResultTy, VK, OpLoc);
9839
9840  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
9841                          Method))
9842          return ExprError();
9843
9844  return MaybeBindToTemporary(TheCall);
9845}
9846
9847/// FixOverloadedFunctionReference - E is an expression that refers to
9848/// a C++ overloaded function (possibly with some parentheses and
9849/// perhaps a '&' around it). We have resolved the overloaded function
9850/// to the function declaration Fn, so patch up the expression E to
9851/// refer (possibly indirectly) to Fn. Returns the new expr.
9852Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
9853                                           FunctionDecl *Fn) {
9854  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
9855    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
9856                                                   Found, Fn);
9857    if (SubExpr == PE->getSubExpr())
9858      return PE;
9859
9860    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
9861  }
9862
9863  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9864    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
9865                                                   Found, Fn);
9866    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
9867                               SubExpr->getType()) &&
9868           "Implicit cast type cannot be determined from overload");
9869    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
9870    if (SubExpr == ICE->getSubExpr())
9871      return ICE;
9872
9873    return ImplicitCastExpr::Create(Context, ICE->getType(),
9874                                    ICE->getCastKind(),
9875                                    SubExpr, 0,
9876                                    ICE->getValueKind());
9877  }
9878
9879  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
9880    assert(UnOp->getOpcode() == UO_AddrOf &&
9881           "Can only take the address of an overloaded function");
9882    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9883      if (Method->isStatic()) {
9884        // Do nothing: static member functions aren't any different
9885        // from non-member functions.
9886      } else {
9887        // Fix the sub expression, which really has to be an
9888        // UnresolvedLookupExpr holding an overloaded member function
9889        // or template.
9890        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9891                                                       Found, Fn);
9892        if (SubExpr == UnOp->getSubExpr())
9893          return UnOp;
9894
9895        assert(isa<DeclRefExpr>(SubExpr)
9896               && "fixed to something other than a decl ref");
9897        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
9898               && "fixed to a member ref with no nested name qualifier");
9899
9900        // We have taken the address of a pointer to member
9901        // function. Perform the computation here so that we get the
9902        // appropriate pointer to member type.
9903        QualType ClassType
9904          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
9905        QualType MemPtrType
9906          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
9907
9908        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
9909                                           VK_RValue, OK_Ordinary,
9910                                           UnOp->getOperatorLoc());
9911      }
9912    }
9913    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9914                                                   Found, Fn);
9915    if (SubExpr == UnOp->getSubExpr())
9916      return UnOp;
9917
9918    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
9919                                     Context.getPointerType(SubExpr->getType()),
9920                                       VK_RValue, OK_Ordinary,
9921                                       UnOp->getOperatorLoc());
9922  }
9923
9924  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9925    // FIXME: avoid copy.
9926    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9927    if (ULE->hasExplicitTemplateArgs()) {
9928      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
9929      TemplateArgs = &TemplateArgsBuffer;
9930    }
9931
9932    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
9933                                           ULE->getQualifierLoc(),
9934                                           Fn,
9935                                           ULE->getNameLoc(),
9936                                           Fn->getType(),
9937                                           VK_LValue,
9938                                           Found.getDecl(),
9939                                           TemplateArgs);
9940    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
9941    return DRE;
9942  }
9943
9944  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
9945    // FIXME: avoid copy.
9946    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9947    if (MemExpr->hasExplicitTemplateArgs()) {
9948      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9949      TemplateArgs = &TemplateArgsBuffer;
9950    }
9951
9952    Expr *Base;
9953
9954    // If we're filling in a static method where we used to have an
9955    // implicit member access, rewrite to a simple decl ref.
9956    if (MemExpr->isImplicitAccess()) {
9957      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9958        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
9959                                               MemExpr->getQualifierLoc(),
9960                                               Fn,
9961                                               MemExpr->getMemberLoc(),
9962                                               Fn->getType(),
9963                                               VK_LValue,
9964                                               Found.getDecl(),
9965                                               TemplateArgs);
9966        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
9967        return DRE;
9968      } else {
9969        SourceLocation Loc = MemExpr->getMemberLoc();
9970        if (MemExpr->getQualifier())
9971          Loc = MemExpr->getQualifierLoc().getBeginLoc();
9972        Base = new (Context) CXXThisExpr(Loc,
9973                                         MemExpr->getBaseType(),
9974                                         /*isImplicit=*/true);
9975      }
9976    } else
9977      Base = MemExpr->getBase();
9978
9979    ExprValueKind valueKind;
9980    QualType type;
9981    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9982      valueKind = VK_LValue;
9983      type = Fn->getType();
9984    } else {
9985      valueKind = VK_RValue;
9986      type = Context.BoundMemberTy;
9987    }
9988
9989    MemberExpr *ME = MemberExpr::Create(Context, Base,
9990                                        MemExpr->isArrow(),
9991                                        MemExpr->getQualifierLoc(),
9992                                        Fn,
9993                                        Found,
9994                                        MemExpr->getMemberNameInfo(),
9995                                        TemplateArgs,
9996                                        type, valueKind, OK_Ordinary);
9997    ME->setHadMultipleCandidates(true);
9998    return ME;
9999  }
10000
10001  llvm_unreachable("Invalid reference to overloaded function");
10002  return E;
10003}
10004
10005ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
10006                                                DeclAccessPair Found,
10007                                                FunctionDecl *Fn) {
10008  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
10009}
10010
10011} // end namespace clang
10012