SemaOverload.cpp revision 27c8dc06f65d7abcf6a7e7f64a7960c9a150ca01
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Expr.h"
19#include "llvm/Support/Compiler.h"
20#include <algorithm>
21
22namespace clang {
23
24/// GetConversionCategory - Retrieve the implicit conversion
25/// category corresponding to the given implicit conversion kind.
26ImplicitConversionCategory
27GetConversionCategory(ImplicitConversionKind Kind) {
28  static const ImplicitConversionCategory
29    Category[(int)ICK_Num_Conversion_Kinds] = {
30    ICC_Identity,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Lvalue_Transformation,
34    ICC_Qualification_Adjustment,
35    ICC_Promotion,
36    ICC_Promotion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion,
42    ICC_Conversion
43  };
44  return Category[(int)Kind];
45}
46
47/// GetConversionRank - Retrieve the implicit conversion rank
48/// corresponding to the given implicit conversion kind.
49ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
50  static const ImplicitConversionRank
51    Rank[(int)ICK_Num_Conversion_Kinds] = {
52    ICR_Exact_Match,
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Exact_Match,
57    ICR_Promotion,
58    ICR_Promotion,
59    ICR_Conversion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion,
64    ICR_Conversion
65  };
66  return Rank[(int)Kind];
67}
68
69/// GetImplicitConversionName - Return the name of this kind of
70/// implicit conversion.
71const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
72  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
73    "No conversion",
74    "Lvalue-to-rvalue",
75    "Array-to-pointer",
76    "Function-to-pointer",
77    "Qualification",
78    "Integral promotion",
79    "Floating point promotion",
80    "Integral conversion",
81    "Floating conversion",
82    "Floating-integral conversion",
83    "Pointer conversion",
84    "Pointer-to-member conversion",
85    "Boolean conversion"
86  };
87  return Name[Kind];
88}
89
90/// getRank - Retrieve the rank of this standard conversion sequence
91/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
92/// implicit conversions.
93ImplicitConversionRank StandardConversionSequence::getRank() const {
94  ImplicitConversionRank Rank = ICR_Exact_Match;
95  if  (GetConversionRank(First) > Rank)
96    Rank = GetConversionRank(First);
97  if  (GetConversionRank(Second) > Rank)
98    Rank = GetConversionRank(Second);
99  if  (GetConversionRank(Third) > Rank)
100    Rank = GetConversionRank(Third);
101  return Rank;
102}
103
104/// isPointerConversionToBool - Determines whether this conversion is
105/// a conversion of a pointer or pointer-to-member to bool. This is
106/// used as part of the ranking of standard conversion sequences
107/// (C++ 13.3.3.2p4).
108bool StandardConversionSequence::isPointerConversionToBool() const
109{
110  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
111  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
112
113  // Note that FromType has not necessarily been transformed by the
114  // array-to-pointer or function-to-pointer implicit conversions, so
115  // check for their presence as well as checking whether FromType is
116  // a pointer.
117  if (ToType->isBooleanType() &&
118      (FromType->isPointerType() ||
119       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
120    return true;
121
122  return false;
123}
124
125/// isPointerConversionToVoidPointer - Determines whether this
126/// conversion is a conversion of a pointer to a void pointer. This is
127/// used as part of the ranking of standard conversion sequences (C++
128/// 13.3.3.2p4).
129bool
130StandardConversionSequence::
131isPointerConversionToVoidPointer(ASTContext& Context) const
132{
133  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
134  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
135
136  // Note that FromType has not necessarily been transformed by the
137  // array-to-pointer implicit conversion, so check for its presence
138  // and redo the conversion to get a pointer.
139  if (First == ICK_Array_To_Pointer)
140    FromType = Context.getArrayDecayedType(FromType);
141
142  if (Second == ICK_Pointer_Conversion)
143    if (const PointerType* ToPtrType = ToType->getAsPointerType())
144      return ToPtrType->getPointeeType()->isVoidType();
145
146  return false;
147}
148
149/// DebugPrint - Print this standard conversion sequence to standard
150/// error. Useful for debugging overloading issues.
151void StandardConversionSequence::DebugPrint() const {
152  bool PrintedSomething = false;
153  if (First != ICK_Identity) {
154    fprintf(stderr, "%s", GetImplicitConversionName(First));
155    PrintedSomething = true;
156  }
157
158  if (Second != ICK_Identity) {
159    if (PrintedSomething) {
160      fprintf(stderr, " -> ");
161    }
162    fprintf(stderr, "%s", GetImplicitConversionName(Second));
163    PrintedSomething = true;
164  }
165
166  if (Third != ICK_Identity) {
167    if (PrintedSomething) {
168      fprintf(stderr, " -> ");
169    }
170    fprintf(stderr, "%s", GetImplicitConversionName(Third));
171    PrintedSomething = true;
172  }
173
174  if (!PrintedSomething) {
175    fprintf(stderr, "No conversions required");
176  }
177}
178
179/// DebugPrint - Print this user-defined conversion sequence to standard
180/// error. Useful for debugging overloading issues.
181void UserDefinedConversionSequence::DebugPrint() const {
182  if (Before.First || Before.Second || Before.Third) {
183    Before.DebugPrint();
184    fprintf(stderr, " -> ");
185  }
186  fprintf(stderr, "'%s'", ConversionFunction->getName());
187  if (After.First || After.Second || After.Third) {
188    fprintf(stderr, " -> ");
189    After.DebugPrint();
190  }
191}
192
193/// DebugPrint - Print this implicit conversion sequence to standard
194/// error. Useful for debugging overloading issues.
195void ImplicitConversionSequence::DebugPrint() const {
196  switch (ConversionKind) {
197  case StandardConversion:
198    fprintf(stderr, "Standard conversion: ");
199    Standard.DebugPrint();
200    break;
201  case UserDefinedConversion:
202    fprintf(stderr, "User-defined conversion: ");
203    UserDefined.DebugPrint();
204    break;
205  case EllipsisConversion:
206    fprintf(stderr, "Ellipsis conversion");
207    break;
208  case BadConversion:
209    fprintf(stderr, "Bad conversion");
210    break;
211  }
212
213  fprintf(stderr, "\n");
214}
215
216// IsOverload - Determine whether the given New declaration is an
217// overload of the Old declaration. This routine returns false if New
218// and Old cannot be overloaded, e.g., if they are functions with the
219// same signature (C++ 1.3.10) or if the Old declaration isn't a
220// function (or overload set). When it does return false and Old is an
221// OverloadedFunctionDecl, MatchedDecl will be set to point to the
222// FunctionDecl that New cannot be overloaded with.
223//
224// Example: Given the following input:
225//
226//   void f(int, float); // #1
227//   void f(int, int); // #2
228//   int f(int, int); // #3
229//
230// When we process #1, there is no previous declaration of "f",
231// so IsOverload will not be used.
232//
233// When we process #2, Old is a FunctionDecl for #1.  By comparing the
234// parameter types, we see that #1 and #2 are overloaded (since they
235// have different signatures), so this routine returns false;
236// MatchedDecl is unchanged.
237//
238// When we process #3, Old is an OverloadedFunctionDecl containing #1
239// and #2. We compare the signatures of #3 to #1 (they're overloaded,
240// so we do nothing) and then #3 to #2. Since the signatures of #3 and
241// #2 are identical (return types of functions are not part of the
242// signature), IsOverload returns false and MatchedDecl will be set to
243// point to the FunctionDecl for #2.
244bool
245Sema::IsOverload(FunctionDecl *New, Decl* OldD,
246                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
247{
248  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
249    // Is this new function an overload of every function in the
250    // overload set?
251    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
252                                           FuncEnd = Ovl->function_end();
253    for (; Func != FuncEnd; ++Func) {
254      if (!IsOverload(New, *Func, MatchedDecl)) {
255        MatchedDecl = Func;
256        return false;
257      }
258    }
259
260    // This function overloads every function in the overload set.
261    return true;
262  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
263    // Is the function New an overload of the function Old?
264    QualType OldQType = Context.getCanonicalType(Old->getType());
265    QualType NewQType = Context.getCanonicalType(New->getType());
266
267    // Compare the signatures (C++ 1.3.10) of the two functions to
268    // determine whether they are overloads. If we find any mismatch
269    // in the signature, they are overloads.
270
271    // If either of these functions is a K&R-style function (no
272    // prototype), then we consider them to have matching signatures.
273    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
274        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
275      return false;
276
277    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
278    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
279
280    // The signature of a function includes the types of its
281    // parameters (C++ 1.3.10), which includes the presence or absence
282    // of the ellipsis; see C++ DR 357).
283    if (OldQType != NewQType &&
284        (OldType->getNumArgs() != NewType->getNumArgs() ||
285         OldType->isVariadic() != NewType->isVariadic() ||
286         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
287                     NewType->arg_type_begin())))
288      return true;
289
290    // If the function is a class member, its signature includes the
291    // cv-qualifiers (if any) on the function itself.
292    //
293    // As part of this, also check whether one of the member functions
294    // is static, in which case they are not overloads (C++
295    // 13.1p2). While not part of the definition of the signature,
296    // this check is important to determine whether these functions
297    // can be overloaded.
298    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
299    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
300    if (OldMethod && NewMethod &&
301        !OldMethod->isStatic() && !NewMethod->isStatic() &&
302        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
303      return true;
304
305    // The signatures match; this is not an overload.
306    return false;
307  } else {
308    // (C++ 13p1):
309    //   Only function declarations can be overloaded; object and type
310    //   declarations cannot be overloaded.
311    return false;
312  }
313}
314
315/// TryImplicitConversion - Attempt to perform an implicit conversion
316/// from the given expression (Expr) to the given type (ToType). This
317/// function returns an implicit conversion sequence that can be used
318/// to perform the initialization. Given
319///
320///   void f(float f);
321///   void g(int i) { f(i); }
322///
323/// this routine would produce an implicit conversion sequence to
324/// describe the initialization of f from i, which will be a standard
325/// conversion sequence containing an lvalue-to-rvalue conversion (C++
326/// 4.1) followed by a floating-integral conversion (C++ 4.9).
327//
328/// Note that this routine only determines how the conversion can be
329/// performed; it does not actually perform the conversion. As such,
330/// it will not produce any diagnostics if no conversion is available,
331/// but will instead return an implicit conversion sequence of kind
332/// "BadConversion".
333ImplicitConversionSequence
334Sema::TryImplicitConversion(Expr* From, QualType ToType)
335{
336  ImplicitConversionSequence ICS;
337
338  QualType FromType = From->getType();
339
340  // Standard conversions (C++ 4)
341  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
342  ICS.Standard.Deprecated = false;
343  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
344
345  // The first conversion can be an lvalue-to-rvalue conversion,
346  // array-to-pointer conversion, or function-to-pointer conversion
347  // (C++ 4p1).
348
349  // Lvalue-to-rvalue conversion (C++ 4.1):
350  //   An lvalue (3.10) of a non-function, non-array type T can be
351  //   converted to an rvalue.
352  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
353  if (argIsLvalue == Expr::LV_Valid &&
354      !FromType->isFunctionType() && !FromType->isArrayType()) {
355    ICS.Standard.First = ICK_Lvalue_To_Rvalue;
356
357    // If T is a non-class type, the type of the rvalue is the
358    // cv-unqualified version of T. Otherwise, the type of the rvalue
359    // is T (C++ 4.1p1).
360    if (!FromType->isRecordType())
361      FromType = FromType.getUnqualifiedType();
362  }
363  // Array-to-pointer conversion (C++ 4.2)
364  else if (FromType->isArrayType()) {
365    ICS.Standard.First = ICK_Array_To_Pointer;
366
367    // An lvalue or rvalue of type "array of N T" or "array of unknown
368    // bound of T" can be converted to an rvalue of type "pointer to
369    // T" (C++ 4.2p1).
370    FromType = Context.getArrayDecayedType(FromType);
371
372    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
373      // This conversion is deprecated. (C++ D.4).
374      ICS.Standard.Deprecated = true;
375
376      // For the purpose of ranking in overload resolution
377      // (13.3.3.1.1), this conversion is considered an
378      // array-to-pointer conversion followed by a qualification
379      // conversion (4.4). (C++ 4.2p2)
380      ICS.Standard.Second = ICK_Identity;
381      ICS.Standard.Third = ICK_Qualification;
382      ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
383      return ICS;
384    }
385  }
386  // Function-to-pointer conversion (C++ 4.3).
387  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
388    ICS.Standard.First = ICK_Function_To_Pointer;
389
390    // An lvalue of function type T can be converted to an rvalue of
391    // type "pointer to T." The result is a pointer to the
392    // function. (C++ 4.3p1).
393    FromType = Context.getPointerType(FromType);
394
395    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
396  }
397  // We don't require any conversions for the first step.
398  else {
399    ICS.Standard.First = ICK_Identity;
400  }
401
402  // The second conversion can be an integral promotion, floating
403  // point promotion, integral conversion, floating point conversion,
404  // floating-integral conversion, pointer conversion,
405  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
406  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
407      Context.getCanonicalType(ToType).getUnqualifiedType()) {
408    // The unqualified versions of the types are the same: there's no
409    // conversion to do.
410    ICS.Standard.Second = ICK_Identity;
411  }
412  // Integral promotion (C++ 4.5).
413  else if (IsIntegralPromotion(From, FromType, ToType)) {
414    ICS.Standard.Second = ICK_Integral_Promotion;
415    FromType = ToType.getUnqualifiedType();
416  }
417  // Floating point promotion (C++ 4.6).
418  else if (IsFloatingPointPromotion(FromType, ToType)) {
419    ICS.Standard.Second = ICK_Floating_Promotion;
420    FromType = ToType.getUnqualifiedType();
421  }
422  // Integral conversions (C++ 4.7).
423  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
424           (ToType->isIntegralType() || ToType->isEnumeralType())) {
425    ICS.Standard.Second = ICK_Integral_Conversion;
426    FromType = ToType.getUnqualifiedType();
427  }
428  // Floating point conversions (C++ 4.8).
429  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
430    ICS.Standard.Second = ICK_Floating_Conversion;
431    FromType = ToType.getUnqualifiedType();
432  }
433  // Floating-integral conversions (C++ 4.9).
434  else if ((FromType->isFloatingType() &&
435            ToType->isIntegralType() && !ToType->isBooleanType()) ||
436           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
437            ToType->isFloatingType())) {
438    ICS.Standard.Second = ICK_Floating_Integral;
439    FromType = ToType.getUnqualifiedType();
440  }
441  // Pointer conversions (C++ 4.10).
442  else if (IsPointerConversion(From, FromType, ToType, FromType))
443    ICS.Standard.Second = ICK_Pointer_Conversion;
444  // FIXME: Pointer to member conversions (4.11).
445  // Boolean conversions (C++ 4.12).
446  // FIXME: pointer-to-member type
447  else if (ToType->isBooleanType() &&
448           (FromType->isArithmeticType() ||
449            FromType->isEnumeralType() ||
450            FromType->isPointerType())) {
451    ICS.Standard.Second = ICK_Boolean_Conversion;
452    FromType = Context.BoolTy;
453  } else {
454    // No second conversion required.
455    ICS.Standard.Second = ICK_Identity;
456  }
457
458  QualType CanonFrom;
459  QualType CanonTo;
460  // The third conversion can be a qualification conversion (C++ 4p1).
461  if (IsQualificationConversion(FromType, ToType)) {
462    ICS.Standard.Third = ICK_Qualification;
463    FromType = ToType;
464    CanonFrom = Context.getCanonicalType(FromType);
465    CanonTo = Context.getCanonicalType(ToType);
466  } else {
467    // No conversion required
468    ICS.Standard.Third = ICK_Identity;
469
470    // C++ [dcl.init]p14 last bullet:
471    //   Note: an expression of type "cv1 T" can initialize an object
472    //   of type “cv2 T” independently of the cv-qualifiers cv1 and
473    //   cv2. -- end note]
474    //
475    // FIXME: Where is the normative text?
476    CanonFrom = Context.getCanonicalType(FromType);
477    CanonTo = Context.getCanonicalType(ToType);
478    if (!FromType->isRecordType() &&
479        CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
480        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
481      FromType = ToType;
482      CanonFrom = CanonTo;
483    }
484  }
485
486  // If we have not converted the argument type to the parameter type,
487  // this is a bad conversion sequence.
488  if (CanonFrom != CanonTo)
489    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
490
491  ICS.Standard.ToTypePtr = FromType.getAsOpaquePtr();
492  return ICS;
493}
494
495/// IsIntegralPromotion - Determines whether the conversion from the
496/// expression From (whose potentially-adjusted type is FromType) to
497/// ToType is an integral promotion (C++ 4.5). If so, returns true and
498/// sets PromotedType to the promoted type.
499bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
500{
501  const BuiltinType *To = ToType->getAsBuiltinType();
502
503  // An rvalue of type char, signed char, unsigned char, short int, or
504  // unsigned short int can be converted to an rvalue of type int if
505  // int can represent all the values of the source type; otherwise,
506  // the source rvalue can be converted to an rvalue of type unsigned
507  // int (C++ 4.5p1).
508  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && To) {
509    if (// We can promote any signed, promotable integer type to an int
510        (FromType->isSignedIntegerType() ||
511         // We can promote any unsigned integer type whose size is
512         // less than int to an int.
513         (!FromType->isSignedIntegerType() &&
514          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))))
515      return To->getKind() == BuiltinType::Int;
516
517    return To->getKind() == BuiltinType::UInt;
518  }
519
520  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
521  // can be converted to an rvalue of the first of the following types
522  // that can represent all the values of its underlying type: int,
523  // unsigned int, long, or unsigned long (C++ 4.5p2).
524  if ((FromType->isEnumeralType() || FromType->isWideCharType())
525      && ToType->isIntegerType()) {
526    // Determine whether the type we're converting from is signed or
527    // unsigned.
528    bool FromIsSigned;
529    uint64_t FromSize = Context.getTypeSize(FromType);
530    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
531      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
532      FromIsSigned = UnderlyingType->isSignedIntegerType();
533    } else {
534      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
535      FromIsSigned = true;
536    }
537
538    // The types we'll try to promote to, in the appropriate
539    // order. Try each of these types.
540    QualType PromoteTypes[4] = {
541      Context.IntTy, Context.UnsignedIntTy,
542      Context.LongTy, Context.UnsignedLongTy
543    };
544    for (int Idx = 0; Idx < 0; ++Idx) {
545      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
546      if (FromSize < ToSize ||
547          (FromSize == ToSize &&
548           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
549        // We found the type that we can promote to. If this is the
550        // type we wanted, we have a promotion. Otherwise, no
551        // promotion.
552        return Context.getCanonicalType(FromType).getUnqualifiedType()
553          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
554      }
555    }
556  }
557
558  // An rvalue for an integral bit-field (9.6) can be converted to an
559  // rvalue of type int if int can represent all the values of the
560  // bit-field; otherwise, it can be converted to unsigned int if
561  // unsigned int can represent all the values of the bit-field. If
562  // the bit-field is larger yet, no integral promotion applies to
563  // it. If the bit-field has an enumerated type, it is treated as any
564  // other value of that type for promotion purposes (C++ 4.5p3).
565  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
566    using llvm::APSInt;
567    FieldDecl *MemberDecl = MemRef->getMemberDecl();
568    APSInt BitWidth;
569    if (MemberDecl->isBitField() &&
570        FromType->isIntegralType() && !FromType->isEnumeralType() &&
571        From->isIntegerConstantExpr(BitWidth, Context)) {
572      APSInt ToSize(Context.getTypeSize(ToType));
573
574      // Are we promoting to an int from a bitfield that fits in an int?
575      if (BitWidth < ToSize ||
576          (FromType->isSignedIntegerType() && BitWidth <= ToSize))
577        return To->getKind() == BuiltinType::Int;
578
579      // Are we promoting to an unsigned int from an unsigned bitfield
580      // that fits into an unsigned int?
581      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize)
582        return To->getKind() == BuiltinType::UInt;
583
584      return false;
585    }
586  }
587
588  // An rvalue of type bool can be converted to an rvalue of type int,
589  // with false becoming zero and true becoming one (C++ 4.5p4).
590  if (FromType->isBooleanType() && To && To->getKind() == BuiltinType::Int)
591    return true;
592
593  return false;
594}
595
596/// IsFloatingPointPromotion - Determines whether the conversion from
597/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
598/// returns true and sets PromotedType to the promoted type.
599bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
600{
601  /// An rvalue of type float can be converted to an rvalue of type
602  /// double. (C++ 4.6p1).
603  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
604    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
605      if (FromBuiltin->getKind() == BuiltinType::Float &&
606          ToBuiltin->getKind() == BuiltinType::Double)
607        return true;
608
609  return false;
610}
611
612/// IsPointerConversion - Determines whether the conversion of the
613/// expression From, which has the (possibly adjusted) type FromType,
614/// can be converted to the type ToType via a pointer conversion (C++
615/// 4.10). If so, returns true and places the converted type (that
616/// might differ from ToType in its cv-qualifiers at some level) into
617/// ConvertedType.
618bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
619                               QualType& ConvertedType)
620{
621  const PointerType* ToTypePtr = ToType->getAsPointerType();
622  if (!ToTypePtr)
623    return false;
624
625  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
626  if (From->isNullPointerConstant(Context)) {
627    ConvertedType = ToType;
628    return true;
629  }
630
631  // An rvalue of type "pointer to cv T," where T is an object type,
632  // can be converted to an rvalue of type "pointer to cv void" (C++
633  // 4.10p2).
634  if (FromType->isPointerType() &&
635      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
636      ToTypePtr->getPointeeType()->isVoidType()) {
637    // We need to produce a pointer to cv void, where cv is the same
638    // set of cv-qualifiers as we had on the incoming pointee type.
639    QualType toPointee = ToTypePtr->getPointeeType();
640    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
641                   ->getPointeeType().getCVRQualifiers();
642
643    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
644	  == Quals) {
645      // ToType is exactly the type we want. Use it.
646      ConvertedType = ToType;
647    } else {
648      // Build a new type with the right qualifiers.
649      ConvertedType
650	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
651    }
652    return true;
653  }
654
655  // C++ [conv.ptr]p3:
656  //
657  //   An rvalue of type "pointer to cv D," where D is a class type,
658  //   can be converted to an rvalue of type "pointer to cv B," where
659  //   B is a base class (clause 10) of D. If B is an inaccessible
660  //   (clause 11) or ambiguous (10.2) base class of D, a program that
661  //   necessitates this conversion is ill-formed. The result of the
662  //   conversion is a pointer to the base class sub-object of the
663  //   derived class object. The null pointer value is converted to
664  //   the null pointer value of the destination type.
665  //
666  // Note that we do not check for ambiguity or inaccessibility
667  // here. That is handled by CheckPointerConversion.
668  if (const PointerType *FromPtrType = FromType->getAsPointerType())
669    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
670      if (FromPtrType->getPointeeType()->isRecordType() &&
671          ToPtrType->getPointeeType()->isRecordType() &&
672          IsDerivedFrom(FromPtrType->getPointeeType(),
673                        ToPtrType->getPointeeType())) {
674        // The conversion is okay. Now, we need to produce the type
675        // that results from this conversion, which will have the same
676        // qualifiers as the incoming type.
677        QualType CanonFromPointee
678          = Context.getCanonicalType(FromPtrType->getPointeeType());
679        QualType ToPointee = ToPtrType->getPointeeType();
680        QualType CanonToPointee = Context.getCanonicalType(ToPointee);
681        unsigned Quals = CanonFromPointee.getCVRQualifiers();
682
683        if (CanonToPointee.getCVRQualifiers() == Quals) {
684          // ToType is exactly the type we want. Use it.
685          ConvertedType = ToType;
686        } else {
687          // Build a new type with the right qualifiers.
688          ConvertedType
689            = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
690        }
691        return true;
692      }
693    }
694
695  return false;
696}
697
698/// CheckPointerConversion - Check the pointer conversion from the
699/// expression From to the type ToType. This routine checks for
700/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
701/// conversions for which IsPointerConversion has already returned
702/// true. It returns true and produces a diagnostic if there was an
703/// error, or returns false otherwise.
704bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
705  QualType FromType = From->getType();
706
707  if (const PointerType *FromPtrType = FromType->getAsPointerType())
708    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
709      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false);
710      QualType FromPointeeType = FromPtrType->getPointeeType(),
711               ToPointeeType   = ToPtrType->getPointeeType();
712      if (FromPointeeType->isRecordType() &&
713          ToPointeeType->isRecordType()) {
714        // We must have a derived-to-base conversion. Check an
715        // ambiguous or inaccessible conversion.
716        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
717                                            From->getExprLoc(),
718                                            From->getSourceRange());
719      }
720    }
721
722  return false;
723}
724
725/// IsQualificationConversion - Determines whether the conversion from
726/// an rvalue of type FromType to ToType is a qualification conversion
727/// (C++ 4.4).
728bool
729Sema::IsQualificationConversion(QualType FromType, QualType ToType)
730{
731  FromType = Context.getCanonicalType(FromType);
732  ToType = Context.getCanonicalType(ToType);
733
734  // If FromType and ToType are the same type, this is not a
735  // qualification conversion.
736  if (FromType == ToType)
737    return false;
738
739  // (C++ 4.4p4):
740  //   A conversion can add cv-qualifiers at levels other than the first
741  //   in multi-level pointers, subject to the following rules: [...]
742  bool PreviousToQualsIncludeConst = true;
743  bool UnwrappedAnyPointer = false;
744  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
745    // Within each iteration of the loop, we check the qualifiers to
746    // determine if this still looks like a qualification
747    // conversion. Then, if all is well, we unwrap one more level of
748    // pointers or pointers-to-members and do it all again
749    // until there are no more pointers or pointers-to-members left to
750    // unwrap.
751    UnwrappedAnyPointer = true;
752
753    //   -- for every j > 0, if const is in cv 1,j then const is in cv
754    //      2,j, and similarly for volatile.
755    if (!ToType.isAtLeastAsQualifiedAs(FromType))
756      return false;
757
758    //   -- if the cv 1,j and cv 2,j are different, then const is in
759    //      every cv for 0 < k < j.
760    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
761        && !PreviousToQualsIncludeConst)
762      return false;
763
764    // Keep track of whether all prior cv-qualifiers in the "to" type
765    // include const.
766    PreviousToQualsIncludeConst
767      = PreviousToQualsIncludeConst && ToType.isConstQualified();
768  }
769
770  // We are left with FromType and ToType being the pointee types
771  // after unwrapping the original FromType and ToType the same number
772  // of types. If we unwrapped any pointers, and if FromType and
773  // ToType have the same unqualified type (since we checked
774  // qualifiers above), then this is a qualification conversion.
775  return UnwrappedAnyPointer &&
776    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
777}
778
779/// CompareImplicitConversionSequences - Compare two implicit
780/// conversion sequences to determine whether one is better than the
781/// other or if they are indistinguishable (C++ 13.3.3.2).
782ImplicitConversionSequence::CompareKind
783Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
784                                         const ImplicitConversionSequence& ICS2)
785{
786  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
787  // conversion sequences (as defined in 13.3.3.1)
788  //   -- a standard conversion sequence (13.3.3.1.1) is a better
789  //      conversion sequence than a user-defined conversion sequence or
790  //      an ellipsis conversion sequence, and
791  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
792  //      conversion sequence than an ellipsis conversion sequence
793  //      (13.3.3.1.3).
794  //
795  if (ICS1.ConversionKind < ICS2.ConversionKind)
796    return ImplicitConversionSequence::Better;
797  else if (ICS2.ConversionKind < ICS1.ConversionKind)
798    return ImplicitConversionSequence::Worse;
799
800  // Two implicit conversion sequences of the same form are
801  // indistinguishable conversion sequences unless one of the
802  // following rules apply: (C++ 13.3.3.2p3):
803  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
804    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
805  else if (ICS1.ConversionKind ==
806             ImplicitConversionSequence::UserDefinedConversion) {
807    // User-defined conversion sequence U1 is a better conversion
808    // sequence than another user-defined conversion sequence U2 if
809    // they contain the same user-defined conversion function or
810    // constructor and if the second standard conversion sequence of
811    // U1 is better than the second standard conversion sequence of
812    // U2 (C++ 13.3.3.2p3).
813    if (ICS1.UserDefined.ConversionFunction ==
814          ICS2.UserDefined.ConversionFunction)
815      return CompareStandardConversionSequences(ICS1.UserDefined.After,
816                                                ICS2.UserDefined.After);
817  }
818
819  return ImplicitConversionSequence::Indistinguishable;
820}
821
822/// CompareStandardConversionSequences - Compare two standard
823/// conversion sequences to determine whether one is better than the
824/// other or if they are indistinguishable (C++ 13.3.3.2p3).
825ImplicitConversionSequence::CompareKind
826Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
827                                         const StandardConversionSequence& SCS2)
828{
829  // Standard conversion sequence S1 is a better conversion sequence
830  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
831
832  //  -- S1 is a proper subsequence of S2 (comparing the conversion
833  //     sequences in the canonical form defined by 13.3.3.1.1,
834  //     excluding any Lvalue Transformation; the identity conversion
835  //     sequence is considered to be a subsequence of any
836  //     non-identity conversion sequence) or, if not that,
837  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
838    // Neither is a proper subsequence of the other. Do nothing.
839    ;
840  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
841           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
842           (SCS1.Second == ICK_Identity &&
843            SCS1.Third == ICK_Identity))
844    // SCS1 is a proper subsequence of SCS2.
845    return ImplicitConversionSequence::Better;
846  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
847           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
848           (SCS2.Second == ICK_Identity &&
849            SCS2.Third == ICK_Identity))
850    // SCS2 is a proper subsequence of SCS1.
851    return ImplicitConversionSequence::Worse;
852
853  //  -- the rank of S1 is better than the rank of S2 (by the rules
854  //     defined below), or, if not that,
855  ImplicitConversionRank Rank1 = SCS1.getRank();
856  ImplicitConversionRank Rank2 = SCS2.getRank();
857  if (Rank1 < Rank2)
858    return ImplicitConversionSequence::Better;
859  else if (Rank2 < Rank1)
860    return ImplicitConversionSequence::Worse;
861
862  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
863  // are indistinguishable unless one of the following rules
864  // applies:
865
866  //   A conversion that is not a conversion of a pointer, or
867  //   pointer to member, to bool is better than another conversion
868  //   that is such a conversion.
869  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
870    return SCS2.isPointerConversionToBool()
871             ? ImplicitConversionSequence::Better
872             : ImplicitConversionSequence::Worse;
873
874  // C++ [over.ics.rank]p4b2:
875  //
876  //   If class B is derived directly or indirectly from class A,
877  //   conversion of B* to A* is better than conversion of B* to void*,
878  //   and (FIXME) conversion of A* to void* is better than conversion of B*
879  //   to void*.
880  bool SCS1ConvertsToVoid
881    = SCS1.isPointerConversionToVoidPointer(Context);
882  bool SCS2ConvertsToVoid
883    = SCS2.isPointerConversionToVoidPointer(Context);
884  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid)
885    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
886                              : ImplicitConversionSequence::Worse;
887
888  if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid)
889    if (ImplicitConversionSequence::CompareKind DerivedCK
890          = CompareDerivedToBaseConversions(SCS1, SCS2))
891      return DerivedCK;
892
893  // Compare based on qualification conversions (C++ 13.3.3.2p3,
894  // bullet 3).
895  if (ImplicitConversionSequence::CompareKind QualCK
896        = CompareQualificationConversions(SCS1, SCS2))
897    return QualCK;
898
899  // FIXME: Handle comparison of reference bindings.
900
901  return ImplicitConversionSequence::Indistinguishable;
902}
903
904/// CompareQualificationConversions - Compares two standard conversion
905/// sequences to determine whether they can be ranked based on their
906/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
907ImplicitConversionSequence::CompareKind
908Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
909                                      const StandardConversionSequence& SCS2)
910{
911  // C++ 13.3.3.2p3:
912  //  -- S1 and S2 differ only in their qualification conversion and
913  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
914  //     cv-qualification signature of type T1 is a proper subset of
915  //     the cv-qualification signature of type T2, and S1 is not the
916  //     deprecated string literal array-to-pointer conversion (4.2).
917  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
918      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
919    return ImplicitConversionSequence::Indistinguishable;
920
921  // FIXME: the example in the standard doesn't use a qualification
922  // conversion (!)
923  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
924  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
925  T1 = Context.getCanonicalType(T1);
926  T2 = Context.getCanonicalType(T2);
927
928  // If the types are the same, we won't learn anything by unwrapped
929  // them.
930  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
931    return ImplicitConversionSequence::Indistinguishable;
932
933  ImplicitConversionSequence::CompareKind Result
934    = ImplicitConversionSequence::Indistinguishable;
935  while (UnwrapSimilarPointerTypes(T1, T2)) {
936    // Within each iteration of the loop, we check the qualifiers to
937    // determine if this still looks like a qualification
938    // conversion. Then, if all is well, we unwrap one more level of
939    // pointers or pointers-to-members and do it all again
940    // until there are no more pointers or pointers-to-members left
941    // to unwrap. This essentially mimics what
942    // IsQualificationConversion does, but here we're checking for a
943    // strict subset of qualifiers.
944    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
945      // The qualifiers are the same, so this doesn't tell us anything
946      // about how the sequences rank.
947      ;
948    else if (T2.isMoreQualifiedThan(T1)) {
949      // T1 has fewer qualifiers, so it could be the better sequence.
950      if (Result == ImplicitConversionSequence::Worse)
951        // Neither has qualifiers that are a subset of the other's
952        // qualifiers.
953        return ImplicitConversionSequence::Indistinguishable;
954
955      Result = ImplicitConversionSequence::Better;
956    } else if (T1.isMoreQualifiedThan(T2)) {
957      // T2 has fewer qualifiers, so it could be the better sequence.
958      if (Result == ImplicitConversionSequence::Better)
959        // Neither has qualifiers that are a subset of the other's
960        // qualifiers.
961        return ImplicitConversionSequence::Indistinguishable;
962
963      Result = ImplicitConversionSequence::Worse;
964    } else {
965      // Qualifiers are disjoint.
966      return ImplicitConversionSequence::Indistinguishable;
967    }
968
969    // If the types after this point are equivalent, we're done.
970    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
971      break;
972  }
973
974  // Check that the winning standard conversion sequence isn't using
975  // the deprecated string literal array to pointer conversion.
976  switch (Result) {
977  case ImplicitConversionSequence::Better:
978    if (SCS1.Deprecated)
979      Result = ImplicitConversionSequence::Indistinguishable;
980    break;
981
982  case ImplicitConversionSequence::Indistinguishable:
983    break;
984
985  case ImplicitConversionSequence::Worse:
986    if (SCS2.Deprecated)
987      Result = ImplicitConversionSequence::Indistinguishable;
988    break;
989  }
990
991  return Result;
992}
993
994/// CompareDerivedToBaseConversions - Compares two standard conversion
995/// sequences to determine whether they can be ranked based on their
996/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
997ImplicitConversionSequence::CompareKind
998Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
999                                      const StandardConversionSequence& SCS2) {
1000  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1001  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1002  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1003  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1004
1005  // Adjust the types we're converting from via the array-to-pointer
1006  // conversion, if we need to.
1007  if (SCS1.First == ICK_Array_To_Pointer)
1008    FromType1 = Context.getArrayDecayedType(FromType1);
1009  if (SCS2.First == ICK_Array_To_Pointer)
1010    FromType2 = Context.getArrayDecayedType(FromType2);
1011
1012  // Canonicalize all of the types.
1013  FromType1 = Context.getCanonicalType(FromType1);
1014  ToType1 = Context.getCanonicalType(ToType1);
1015  FromType2 = Context.getCanonicalType(FromType2);
1016  ToType2 = Context.getCanonicalType(ToType2);
1017
1018  // C++ [over.ics.rank]p4b4:
1019  //
1020  //   If class B is derived directly or indirectly from class A and
1021  //   class C is derived directly or indirectly from B,
1022  //
1023  // FIXME: Verify that in this section we're talking about the
1024  // unqualified forms of C, B, and A.
1025  if (SCS1.Second == ICK_Pointer_Conversion &&
1026      SCS2.Second == ICK_Pointer_Conversion) {
1027    //   -- conversion of C* to B* is better than conversion of C* to A*,
1028    QualType FromPointee1
1029      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1030    QualType ToPointee1
1031      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1032    QualType FromPointee2
1033      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1034    QualType ToPointee2
1035      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1036    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1037      if (IsDerivedFrom(ToPointee1, ToPointee2))
1038        return ImplicitConversionSequence::Better;
1039      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1040        return ImplicitConversionSequence::Worse;
1041    }
1042  }
1043
1044  // FIXME: many more sub-bullets of C++ [over.ics.rank]p4b4 to
1045  // implement.
1046  return ImplicitConversionSequence::Indistinguishable;
1047}
1048
1049/// TryCopyInitialization - Try to copy-initialize a value of type
1050/// ToType from the expression From. Return the implicit conversion
1051/// sequence required to pass this argument, which may be a bad
1052/// conversion sequence (meaning that the argument cannot be passed to
1053/// a parameter of this type). This is user for argument passing,
1054ImplicitConversionSequence
1055Sema::TryCopyInitialization(Expr *From, QualType ToType) {
1056  if (!getLangOptions().CPlusPlus) {
1057    // In C, argument passing is the same as performing an assignment.
1058    AssignConvertType ConvTy =
1059      CheckSingleAssignmentConstraints(ToType, From);
1060    ImplicitConversionSequence ICS;
1061    if (getLangOptions().NoExtensions? ConvTy != Compatible
1062                                     : ConvTy == Incompatible)
1063      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1064    else
1065      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1066    return ICS;
1067  } else if (ToType->isReferenceType()) {
1068    ImplicitConversionSequence ICS;
1069    if (CheckReferenceInit(From, ToType, /*Complain=*/false))
1070      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1071    else
1072      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1073    return ICS;
1074  } else {
1075    return TryImplicitConversion(From, ToType);
1076  }
1077}
1078
1079/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1080/// type ToType. Returns true (and emits a diagnostic) if there was
1081/// an error, returns false if the initialization succeeded.
1082bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1083                                     const char* Flavor) {
1084  if (!getLangOptions().CPlusPlus) {
1085    // In C, argument passing is the same as performing an assignment.
1086    QualType FromType = From->getType();
1087    AssignConvertType ConvTy =
1088      CheckSingleAssignmentConstraints(ToType, From);
1089
1090    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1091                                    FromType, From, Flavor);
1092  } else if (ToType->isReferenceType()) {
1093    return CheckReferenceInit(From, ToType);
1094  } else {
1095    if (PerformImplicitConversion(From, ToType))
1096      return Diag(From->getSourceRange().getBegin(),
1097                  diag::err_typecheck_convert_incompatible,
1098                  ToType.getAsString(), From->getType().getAsString(),
1099                  Flavor,
1100                  From->getSourceRange());
1101    else
1102      return false;
1103  }
1104}
1105
1106/// AddOverloadCandidate - Adds the given function to the set of
1107/// candidate functions, using the given function call arguments.
1108void
1109Sema::AddOverloadCandidate(FunctionDecl *Function,
1110                           Expr **Args, unsigned NumArgs,
1111                           OverloadCandidateSet& CandidateSet)
1112{
1113  const FunctionTypeProto* Proto
1114    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1115  assert(Proto && "Functions without a prototype cannot be overloaded");
1116
1117  // Add this candidate
1118  CandidateSet.push_back(OverloadCandidate());
1119  OverloadCandidate& Candidate = CandidateSet.back();
1120  Candidate.Function = Function;
1121
1122  unsigned NumArgsInProto = Proto->getNumArgs();
1123
1124  // (C++ 13.3.2p2): A candidate function having fewer than m
1125  // parameters is viable only if it has an ellipsis in its parameter
1126  // list (8.3.5).
1127  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1128    Candidate.Viable = false;
1129    return;
1130  }
1131
1132  // (C++ 13.3.2p2): A candidate function having more than m parameters
1133  // is viable only if the (m+1)st parameter has a default argument
1134  // (8.3.6). For the purposes of overload resolution, the
1135  // parameter list is truncated on the right, so that there are
1136  // exactly m parameters.
1137  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1138  if (NumArgs < MinRequiredArgs) {
1139    // Not enough arguments.
1140    Candidate.Viable = false;
1141    return;
1142  }
1143
1144  // Determine the implicit conversion sequences for each of the
1145  // arguments.
1146  Candidate.Viable = true;
1147  Candidate.Conversions.resize(NumArgs);
1148  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1149    if (ArgIdx < NumArgsInProto) {
1150      // (C++ 13.3.2p3): for F to be a viable function, there shall
1151      // exist for each argument an implicit conversion sequence
1152      // (13.3.3.1) that converts that argument to the corresponding
1153      // parameter of F.
1154      QualType ParamType = Proto->getArgType(ArgIdx);
1155      Candidate.Conversions[ArgIdx]
1156        = TryCopyInitialization(Args[ArgIdx], ParamType);
1157      if (Candidate.Conversions[ArgIdx].ConversionKind
1158            == ImplicitConversionSequence::BadConversion)
1159        Candidate.Viable = false;
1160    } else {
1161      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1162      // argument for which there is no corresponding parameter is
1163      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1164      Candidate.Conversions[ArgIdx].ConversionKind
1165        = ImplicitConversionSequence::EllipsisConversion;
1166    }
1167  }
1168}
1169
1170/// AddOverloadCandidates - Add all of the function overloads in Ovl
1171/// to the candidate set.
1172void
1173Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl,
1174                            Expr **Args, unsigned NumArgs,
1175                            OverloadCandidateSet& CandidateSet)
1176{
1177  for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
1178       Func != Ovl->function_end(); ++Func)
1179    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
1180}
1181
1182/// isBetterOverloadCandidate - Determines whether the first overload
1183/// candidate is a better candidate than the second (C++ 13.3.3p1).
1184bool
1185Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
1186                                const OverloadCandidate& Cand2)
1187{
1188  // Define viable functions to be better candidates than non-viable
1189  // functions.
1190  if (!Cand2.Viable)
1191    return Cand1.Viable;
1192  else if (!Cand1.Viable)
1193    return false;
1194
1195  // FIXME: Deal with the implicit object parameter for static member
1196  // functions. (C++ 13.3.3p1).
1197
1198  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
1199  // function than another viable function F2 if for all arguments i,
1200  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
1201  // then...
1202  unsigned NumArgs = Cand1.Conversions.size();
1203  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
1204  bool HasBetterConversion = false;
1205  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1206    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
1207                                               Cand2.Conversions[ArgIdx])) {
1208    case ImplicitConversionSequence::Better:
1209      // Cand1 has a better conversion sequence.
1210      HasBetterConversion = true;
1211      break;
1212
1213    case ImplicitConversionSequence::Worse:
1214      // Cand1 can't be better than Cand2.
1215      return false;
1216
1217    case ImplicitConversionSequence::Indistinguishable:
1218      // Do nothing.
1219      break;
1220    }
1221  }
1222
1223  if (HasBetterConversion)
1224    return true;
1225
1226  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1227
1228  return false;
1229}
1230
1231/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1232/// within an overload candidate set. If overloading is successful,
1233/// the result will be OR_Success and Best will be set to point to the
1234/// best viable function within the candidate set. Otherwise, one of
1235/// several kinds of errors will be returned; see
1236/// Sema::OverloadingResult.
1237Sema::OverloadingResult
1238Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1239                         OverloadCandidateSet::iterator& Best)
1240{
1241  // Find the best viable function.
1242  Best = CandidateSet.end();
1243  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1244       Cand != CandidateSet.end(); ++Cand) {
1245    if (Cand->Viable) {
1246      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1247        Best = Cand;
1248    }
1249  }
1250
1251  // If we didn't find any viable functions, abort.
1252  if (Best == CandidateSet.end())
1253    return OR_No_Viable_Function;
1254
1255  // Make sure that this function is better than every other viable
1256  // function. If not, we have an ambiguity.
1257  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1258       Cand != CandidateSet.end(); ++Cand) {
1259    if (Cand->Viable &&
1260        Cand != Best &&
1261        !isBetterOverloadCandidate(*Best, *Cand))
1262      return OR_Ambiguous;
1263  }
1264
1265  // Best is the best viable function.
1266  return OR_Success;
1267}
1268
1269/// PrintOverloadCandidates - When overload resolution fails, prints
1270/// diagnostic messages containing the candidates in the candidate
1271/// set. If OnlyViable is true, only viable candidates will be printed.
1272void
1273Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1274                              bool OnlyViable)
1275{
1276  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1277                             LastCand = CandidateSet.end();
1278  for (; Cand != LastCand; ++Cand) {
1279    if (Cand->Viable ||!OnlyViable)
1280      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1281  }
1282}
1283
1284} // end namespace clang
1285