SemaOverload.cpp revision 287fe7cd8f247104da8ad0f564a350770c3f4496
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              ForceRValue, UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (FunctionDecl *Fn
617               = ResolveAddressOfOverloadedFunction(From, ToType, false,
618                                                    AccessPair)) {
619    // Address of overloaded function (C++ [over.over]).
620    SCS.First = ICK_Function_To_Pointer;
621
622    // We were able to resolve the address of the overloaded function,
623    // so we can convert to the type of that function.
624    FromType = Fn->getType();
625    if (ToType->isLValueReferenceType())
626      FromType = Context.getLValueReferenceType(FromType);
627    else if (ToType->isRValueReferenceType())
628      FromType = Context.getRValueReferenceType(FromType);
629    else if (ToType->isMemberPointerType()) {
630      // Resolve address only succeeds if both sides are member pointers,
631      // but it doesn't have to be the same class. See DR 247.
632      // Note that this means that the type of &Derived::fn can be
633      // Ret (Base::*)(Args) if the fn overload actually found is from the
634      // base class, even if it was brought into the derived class via a
635      // using declaration. The standard isn't clear on this issue at all.
636      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
637      FromType = Context.getMemberPointerType(FromType,
638                    Context.getTypeDeclType(M->getParent()).getTypePtr());
639    } else
640      FromType = Context.getPointerType(FromType);
641  } else {
642    // We don't require any conversions for the first step.
643    SCS.First = ICK_Identity;
644  }
645  SCS.setToType(0, FromType);
646
647  // The second conversion can be an integral promotion, floating
648  // point promotion, integral conversion, floating point conversion,
649  // floating-integral conversion, pointer conversion,
650  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
651  // For overloading in C, this can also be a "compatible-type"
652  // conversion.
653  bool IncompatibleObjC = false;
654  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
655    // The unqualified versions of the types are the same: there's no
656    // conversion to do.
657    SCS.Second = ICK_Identity;
658  } else if (IsIntegralPromotion(From, FromType, ToType)) {
659    // Integral promotion (C++ 4.5).
660    SCS.Second = ICK_Integral_Promotion;
661    FromType = ToType.getUnqualifiedType();
662  } else if (IsFloatingPointPromotion(FromType, ToType)) {
663    // Floating point promotion (C++ 4.6).
664    SCS.Second = ICK_Floating_Promotion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (IsComplexPromotion(FromType, ToType)) {
667    // Complex promotion (Clang extension)
668    SCS.Second = ICK_Complex_Promotion;
669    FromType = ToType.getUnqualifiedType();
670  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
671           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
672    // Integral conversions (C++ 4.7).
673    SCS.Second = ICK_Integral_Conversion;
674    FromType = ToType.getUnqualifiedType();
675  } else if (FromType->isComplexType() && ToType->isComplexType()) {
676    // Complex conversions (C99 6.3.1.6)
677    SCS.Second = ICK_Complex_Conversion;
678    FromType = ToType.getUnqualifiedType();
679  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
680             (ToType->isComplexType() && FromType->isArithmeticType())) {
681    // Complex-real conversions (C99 6.3.1.7)
682    SCS.Second = ICK_Complex_Real;
683    FromType = ToType.getUnqualifiedType();
684  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
685    // Floating point conversions (C++ 4.8).
686    SCS.Second = ICK_Floating_Conversion;
687    FromType = ToType.getUnqualifiedType();
688  } else if ((FromType->isFloatingType() &&
689              ToType->isIntegralType() && (!ToType->isBooleanType() &&
690                                           !ToType->isEnumeralType())) ||
691             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
692              ToType->isFloatingType())) {
693    // Floating-integral conversions (C++ 4.9).
694    SCS.Second = ICK_Floating_Integral;
695    FromType = ToType.getUnqualifiedType();
696  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
697                                 FromType, IncompatibleObjC)) {
698    // Pointer conversions (C++ 4.10).
699    SCS.Second = ICK_Pointer_Conversion;
700    SCS.IncompatibleObjC = IncompatibleObjC;
701  } else if (IsMemberPointerConversion(From, FromType, ToType,
702                                       InOverloadResolution, FromType)) {
703    // Pointer to member conversions (4.11).
704    SCS.Second = ICK_Pointer_Member;
705  } else if (ToType->isBooleanType() &&
706             (FromType->isArithmeticType() ||
707              FromType->isEnumeralType() ||
708              FromType->isAnyPointerType() ||
709              FromType->isBlockPointerType() ||
710              FromType->isMemberPointerType() ||
711              FromType->isNullPtrType())) {
712    // Boolean conversions (C++ 4.12).
713    SCS.Second = ICK_Boolean_Conversion;
714    FromType = Context.BoolTy;
715  } else if (!getLangOptions().CPlusPlus &&
716             Context.typesAreCompatible(ToType, FromType)) {
717    // Compatible conversions (Clang extension for C function overloading)
718    SCS.Second = ICK_Compatible_Conversion;
719  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
720    // Treat a conversion that strips "noreturn" as an identity conversion.
721    SCS.Second = ICK_NoReturn_Adjustment;
722  } else {
723    // No second conversion required.
724    SCS.Second = ICK_Identity;
725  }
726  SCS.setToType(1, FromType);
727
728  QualType CanonFrom;
729  QualType CanonTo;
730  // The third conversion can be a qualification conversion (C++ 4p1).
731  if (IsQualificationConversion(FromType, ToType)) {
732    SCS.Third = ICK_Qualification;
733    FromType = ToType;
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736  } else {
737    // No conversion required
738    SCS.Third = ICK_Identity;
739
740    // C++ [over.best.ics]p6:
741    //   [...] Any difference in top-level cv-qualification is
742    //   subsumed by the initialization itself and does not constitute
743    //   a conversion. [...]
744    CanonFrom = Context.getCanonicalType(FromType);
745    CanonTo = Context.getCanonicalType(ToType);
746    if (CanonFrom.getLocalUnqualifiedType()
747                                       == CanonTo.getLocalUnqualifiedType() &&
748        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
749      FromType = ToType;
750      CanonFrom = CanonTo;
751    }
752  }
753  SCS.setToType(2, FromType);
754
755  // If we have not converted the argument type to the parameter type,
756  // this is a bad conversion sequence.
757  if (CanonFrom != CanonTo)
758    return false;
759
760  return true;
761}
762
763/// IsIntegralPromotion - Determines whether the conversion from the
764/// expression From (whose potentially-adjusted type is FromType) to
765/// ToType is an integral promotion (C++ 4.5). If so, returns true and
766/// sets PromotedType to the promoted type.
767bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
768  const BuiltinType *To = ToType->getAs<BuiltinType>();
769  // All integers are built-in.
770  if (!To) {
771    return false;
772  }
773
774  // An rvalue of type char, signed char, unsigned char, short int, or
775  // unsigned short int can be converted to an rvalue of type int if
776  // int can represent all the values of the source type; otherwise,
777  // the source rvalue can be converted to an rvalue of type unsigned
778  // int (C++ 4.5p1).
779  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
780      !FromType->isEnumeralType()) {
781    if (// We can promote any signed, promotable integer type to an int
782        (FromType->isSignedIntegerType() ||
783         // We can promote any unsigned integer type whose size is
784         // less than int to an int.
785         (!FromType->isSignedIntegerType() &&
786          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
787      return To->getKind() == BuiltinType::Int;
788    }
789
790    return To->getKind() == BuiltinType::UInt;
791  }
792
793  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
794  // can be converted to an rvalue of the first of the following types
795  // that can represent all the values of its underlying type: int,
796  // unsigned int, long, or unsigned long (C++ 4.5p2).
797
798  // We pre-calculate the promotion type for enum types.
799  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
800    if (ToType->isIntegerType())
801      return Context.hasSameUnqualifiedType(ToType,
802                                FromEnumType->getDecl()->getPromotionType());
803
804  if (FromType->isWideCharType() && ToType->isIntegerType()) {
805    // Determine whether the type we're converting from is signed or
806    // unsigned.
807    bool FromIsSigned;
808    uint64_t FromSize = Context.getTypeSize(FromType);
809
810    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
811    FromIsSigned = true;
812
813    // The types we'll try to promote to, in the appropriate
814    // order. Try each of these types.
815    QualType PromoteTypes[6] = {
816      Context.IntTy, Context.UnsignedIntTy,
817      Context.LongTy, Context.UnsignedLongTy ,
818      Context.LongLongTy, Context.UnsignedLongLongTy
819    };
820    for (int Idx = 0; Idx < 6; ++Idx) {
821      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
822      if (FromSize < ToSize ||
823          (FromSize == ToSize &&
824           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
825        // We found the type that we can promote to. If this is the
826        // type we wanted, we have a promotion. Otherwise, no
827        // promotion.
828        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
829      }
830    }
831  }
832
833  // An rvalue for an integral bit-field (9.6) can be converted to an
834  // rvalue of type int if int can represent all the values of the
835  // bit-field; otherwise, it can be converted to unsigned int if
836  // unsigned int can represent all the values of the bit-field. If
837  // the bit-field is larger yet, no integral promotion applies to
838  // it. If the bit-field has an enumerated type, it is treated as any
839  // other value of that type for promotion purposes (C++ 4.5p3).
840  // FIXME: We should delay checking of bit-fields until we actually perform the
841  // conversion.
842  using llvm::APSInt;
843  if (From)
844    if (FieldDecl *MemberDecl = From->getBitField()) {
845      APSInt BitWidth;
846      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
847          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
848        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
849        ToSize = Context.getTypeSize(ToType);
850
851        // Are we promoting to an int from a bitfield that fits in an int?
852        if (BitWidth < ToSize ||
853            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
854          return To->getKind() == BuiltinType::Int;
855        }
856
857        // Are we promoting to an unsigned int from an unsigned bitfield
858        // that fits into an unsigned int?
859        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
860          return To->getKind() == BuiltinType::UInt;
861        }
862
863        return false;
864      }
865    }
866
867  // An rvalue of type bool can be converted to an rvalue of type int,
868  // with false becoming zero and true becoming one (C++ 4.5p4).
869  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
870    return true;
871  }
872
873  return false;
874}
875
876/// IsFloatingPointPromotion - Determines whether the conversion from
877/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
878/// returns true and sets PromotedType to the promoted type.
879bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
880  /// An rvalue of type float can be converted to an rvalue of type
881  /// double. (C++ 4.6p1).
882  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
883    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
884      if (FromBuiltin->getKind() == BuiltinType::Float &&
885          ToBuiltin->getKind() == BuiltinType::Double)
886        return true;
887
888      // C99 6.3.1.5p1:
889      //   When a float is promoted to double or long double, or a
890      //   double is promoted to long double [...].
891      if (!getLangOptions().CPlusPlus &&
892          (FromBuiltin->getKind() == BuiltinType::Float ||
893           FromBuiltin->getKind() == BuiltinType::Double) &&
894          (ToBuiltin->getKind() == BuiltinType::LongDouble))
895        return true;
896    }
897
898  return false;
899}
900
901/// \brief Determine if a conversion is a complex promotion.
902///
903/// A complex promotion is defined as a complex -> complex conversion
904/// where the conversion between the underlying real types is a
905/// floating-point or integral promotion.
906bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
907  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
908  if (!FromComplex)
909    return false;
910
911  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
912  if (!ToComplex)
913    return false;
914
915  return IsFloatingPointPromotion(FromComplex->getElementType(),
916                                  ToComplex->getElementType()) ||
917    IsIntegralPromotion(0, FromComplex->getElementType(),
918                        ToComplex->getElementType());
919}
920
921/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
922/// the pointer type FromPtr to a pointer to type ToPointee, with the
923/// same type qualifiers as FromPtr has on its pointee type. ToType,
924/// if non-empty, will be a pointer to ToType that may or may not have
925/// the right set of qualifiers on its pointee.
926static QualType
927BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
928                                   QualType ToPointee, QualType ToType,
929                                   ASTContext &Context) {
930  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
931  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
932  Qualifiers Quals = CanonFromPointee.getQualifiers();
933
934  // Exact qualifier match -> return the pointer type we're converting to.
935  if (CanonToPointee.getLocalQualifiers() == Quals) {
936    // ToType is exactly what we need. Return it.
937    if (!ToType.isNull())
938      return ToType;
939
940    // Build a pointer to ToPointee. It has the right qualifiers
941    // already.
942    return Context.getPointerType(ToPointee);
943  }
944
945  // Just build a canonical type that has the right qualifiers.
946  return Context.getPointerType(
947         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
948                                  Quals));
949}
950
951/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
952/// the FromType, which is an objective-c pointer, to ToType, which may or may
953/// not have the right set of qualifiers.
954static QualType
955BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
956                                             QualType ToType,
957                                             ASTContext &Context) {
958  QualType CanonFromType = Context.getCanonicalType(FromType);
959  QualType CanonToType = Context.getCanonicalType(ToType);
960  Qualifiers Quals = CanonFromType.getQualifiers();
961
962  // Exact qualifier match -> return the pointer type we're converting to.
963  if (CanonToType.getLocalQualifiers() == Quals)
964    return ToType;
965
966  // Just build a canonical type that has the right qualifiers.
967  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
968}
969
970static bool isNullPointerConstantForConversion(Expr *Expr,
971                                               bool InOverloadResolution,
972                                               ASTContext &Context) {
973  // Handle value-dependent integral null pointer constants correctly.
974  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
975  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
976      Expr->getType()->isIntegralType())
977    return !InOverloadResolution;
978
979  return Expr->isNullPointerConstant(Context,
980                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
981                                        : Expr::NPC_ValueDependentIsNull);
982}
983
984/// IsPointerConversion - Determines whether the conversion of the
985/// expression From, which has the (possibly adjusted) type FromType,
986/// can be converted to the type ToType via a pointer conversion (C++
987/// 4.10). If so, returns true and places the converted type (that
988/// might differ from ToType in its cv-qualifiers at some level) into
989/// ConvertedType.
990///
991/// This routine also supports conversions to and from block pointers
992/// and conversions with Objective-C's 'id', 'id<protocols...>', and
993/// pointers to interfaces. FIXME: Once we've determined the
994/// appropriate overloading rules for Objective-C, we may want to
995/// split the Objective-C checks into a different routine; however,
996/// GCC seems to consider all of these conversions to be pointer
997/// conversions, so for now they live here. IncompatibleObjC will be
998/// set if the conversion is an allowed Objective-C conversion that
999/// should result in a warning.
1000bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1001                               bool InOverloadResolution,
1002                               QualType& ConvertedType,
1003                               bool &IncompatibleObjC) {
1004  IncompatibleObjC = false;
1005  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1006    return true;
1007
1008  // Conversion from a null pointer constant to any Objective-C pointer type.
1009  if (ToType->isObjCObjectPointerType() &&
1010      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1011    ConvertedType = ToType;
1012    return true;
1013  }
1014
1015  // Blocks: Block pointers can be converted to void*.
1016  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1017      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1018    ConvertedType = ToType;
1019    return true;
1020  }
1021  // Blocks: A null pointer constant can be converted to a block
1022  // pointer type.
1023  if (ToType->isBlockPointerType() &&
1024      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1025    ConvertedType = ToType;
1026    return true;
1027  }
1028
1029  // If the left-hand-side is nullptr_t, the right side can be a null
1030  // pointer constant.
1031  if (ToType->isNullPtrType() &&
1032      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1033    ConvertedType = ToType;
1034    return true;
1035  }
1036
1037  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1038  if (!ToTypePtr)
1039    return false;
1040
1041  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1042  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1043    ConvertedType = ToType;
1044    return true;
1045  }
1046
1047  // Beyond this point, both types need to be pointers
1048  // , including objective-c pointers.
1049  QualType ToPointeeType = ToTypePtr->getPointeeType();
1050  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1051    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1052                                                       ToType, Context);
1053    return true;
1054
1055  }
1056  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1057  if (!FromTypePtr)
1058    return false;
1059
1060  QualType FromPointeeType = FromTypePtr->getPointeeType();
1061
1062  // An rvalue of type "pointer to cv T," where T is an object type,
1063  // can be converted to an rvalue of type "pointer to cv void" (C++
1064  // 4.10p2).
1065  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1066    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1067                                                       ToPointeeType,
1068                                                       ToType, Context);
1069    return true;
1070  }
1071
1072  // When we're overloading in C, we allow a special kind of pointer
1073  // conversion for compatible-but-not-identical pointee types.
1074  if (!getLangOptions().CPlusPlus &&
1075      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1076    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1077                                                       ToPointeeType,
1078                                                       ToType, Context);
1079    return true;
1080  }
1081
1082  // C++ [conv.ptr]p3:
1083  //
1084  //   An rvalue of type "pointer to cv D," where D is a class type,
1085  //   can be converted to an rvalue of type "pointer to cv B," where
1086  //   B is a base class (clause 10) of D. If B is an inaccessible
1087  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1088  //   necessitates this conversion is ill-formed. The result of the
1089  //   conversion is a pointer to the base class sub-object of the
1090  //   derived class object. The null pointer value is converted to
1091  //   the null pointer value of the destination type.
1092  //
1093  // Note that we do not check for ambiguity or inaccessibility
1094  // here. That is handled by CheckPointerConversion.
1095  if (getLangOptions().CPlusPlus &&
1096      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1097      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1098      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1099      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1100    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1101                                                       ToPointeeType,
1102                                                       ToType, Context);
1103    return true;
1104  }
1105
1106  return false;
1107}
1108
1109/// isObjCPointerConversion - Determines whether this is an
1110/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1111/// with the same arguments and return values.
1112bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1113                                   QualType& ConvertedType,
1114                                   bool &IncompatibleObjC) {
1115  if (!getLangOptions().ObjC1)
1116    return false;
1117
1118  // First, we handle all conversions on ObjC object pointer types.
1119  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1120  const ObjCObjectPointerType *FromObjCPtr =
1121    FromType->getAs<ObjCObjectPointerType>();
1122
1123  if (ToObjCPtr && FromObjCPtr) {
1124    // Objective C++: We're able to convert between "id" or "Class" and a
1125    // pointer to any interface (in both directions).
1126    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1127      ConvertedType = ToType;
1128      return true;
1129    }
1130    // Conversions with Objective-C's id<...>.
1131    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1132         ToObjCPtr->isObjCQualifiedIdType()) &&
1133        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1134                                                  /*compare=*/false)) {
1135      ConvertedType = ToType;
1136      return true;
1137    }
1138    // Objective C++: We're able to convert from a pointer to an
1139    // interface to a pointer to a different interface.
1140    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1141      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1142      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1143      if (getLangOptions().CPlusPlus && LHS && RHS &&
1144          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1145                                                FromObjCPtr->getPointeeType()))
1146        return false;
1147      ConvertedType = ToType;
1148      return true;
1149    }
1150
1151    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1152      // Okay: this is some kind of implicit downcast of Objective-C
1153      // interfaces, which is permitted. However, we're going to
1154      // complain about it.
1155      IncompatibleObjC = true;
1156      ConvertedType = FromType;
1157      return true;
1158    }
1159  }
1160  // Beyond this point, both types need to be C pointers or block pointers.
1161  QualType ToPointeeType;
1162  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1163    ToPointeeType = ToCPtr->getPointeeType();
1164  else if (const BlockPointerType *ToBlockPtr =
1165            ToType->getAs<BlockPointerType>()) {
1166    // Objective C++: We're able to convert from a pointer to any object
1167    // to a block pointer type.
1168    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1169      ConvertedType = ToType;
1170      return true;
1171    }
1172    ToPointeeType = ToBlockPtr->getPointeeType();
1173  }
1174  else if (FromType->getAs<BlockPointerType>() &&
1175           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1176    // Objective C++: We're able to convert from a block pointer type to a
1177    // pointer to any object.
1178    ConvertedType = ToType;
1179    return true;
1180  }
1181  else
1182    return false;
1183
1184  QualType FromPointeeType;
1185  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1186    FromPointeeType = FromCPtr->getPointeeType();
1187  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1188    FromPointeeType = FromBlockPtr->getPointeeType();
1189  else
1190    return false;
1191
1192  // If we have pointers to pointers, recursively check whether this
1193  // is an Objective-C conversion.
1194  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1195      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1196                              IncompatibleObjC)) {
1197    // We always complain about this conversion.
1198    IncompatibleObjC = true;
1199    ConvertedType = ToType;
1200    return true;
1201  }
1202  // Allow conversion of pointee being objective-c pointer to another one;
1203  // as in I* to id.
1204  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1205      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1206      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1207                              IncompatibleObjC)) {
1208    ConvertedType = ToType;
1209    return true;
1210  }
1211
1212  // If we have pointers to functions or blocks, check whether the only
1213  // differences in the argument and result types are in Objective-C
1214  // pointer conversions. If so, we permit the conversion (but
1215  // complain about it).
1216  const FunctionProtoType *FromFunctionType
1217    = FromPointeeType->getAs<FunctionProtoType>();
1218  const FunctionProtoType *ToFunctionType
1219    = ToPointeeType->getAs<FunctionProtoType>();
1220  if (FromFunctionType && ToFunctionType) {
1221    // If the function types are exactly the same, this isn't an
1222    // Objective-C pointer conversion.
1223    if (Context.getCanonicalType(FromPointeeType)
1224          == Context.getCanonicalType(ToPointeeType))
1225      return false;
1226
1227    // Perform the quick checks that will tell us whether these
1228    // function types are obviously different.
1229    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1230        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1231        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1232      return false;
1233
1234    bool HasObjCConversion = false;
1235    if (Context.getCanonicalType(FromFunctionType->getResultType())
1236          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1237      // Okay, the types match exactly. Nothing to do.
1238    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1239                                       ToFunctionType->getResultType(),
1240                                       ConvertedType, IncompatibleObjC)) {
1241      // Okay, we have an Objective-C pointer conversion.
1242      HasObjCConversion = true;
1243    } else {
1244      // Function types are too different. Abort.
1245      return false;
1246    }
1247
1248    // Check argument types.
1249    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1250         ArgIdx != NumArgs; ++ArgIdx) {
1251      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1252      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1253      if (Context.getCanonicalType(FromArgType)
1254            == Context.getCanonicalType(ToArgType)) {
1255        // Okay, the types match exactly. Nothing to do.
1256      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1257                                         ConvertedType, IncompatibleObjC)) {
1258        // Okay, we have an Objective-C pointer conversion.
1259        HasObjCConversion = true;
1260      } else {
1261        // Argument types are too different. Abort.
1262        return false;
1263      }
1264    }
1265
1266    if (HasObjCConversion) {
1267      // We had an Objective-C conversion. Allow this pointer
1268      // conversion, but complain about it.
1269      ConvertedType = ToType;
1270      IncompatibleObjC = true;
1271      return true;
1272    }
1273  }
1274
1275  return false;
1276}
1277
1278/// CheckPointerConversion - Check the pointer conversion from the
1279/// expression From to the type ToType. This routine checks for
1280/// ambiguous or inaccessible derived-to-base pointer
1281/// conversions for which IsPointerConversion has already returned
1282/// true. It returns true and produces a diagnostic if there was an
1283/// error, or returns false otherwise.
1284bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1285                                  CastExpr::CastKind &Kind,
1286                                  bool IgnoreBaseAccess) {
1287  QualType FromType = From->getType();
1288
1289  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1290    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1291      QualType FromPointeeType = FromPtrType->getPointeeType(),
1292               ToPointeeType   = ToPtrType->getPointeeType();
1293
1294      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1295          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1296        // We must have a derived-to-base conversion. Check an
1297        // ambiguous or inaccessible conversion.
1298        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1299                                         From->getExprLoc(),
1300                                         From->getSourceRange(),
1301                                         IgnoreBaseAccess))
1302          return true;
1303
1304        // The conversion was successful.
1305        Kind = CastExpr::CK_DerivedToBase;
1306      }
1307    }
1308  if (const ObjCObjectPointerType *FromPtrType =
1309        FromType->getAs<ObjCObjectPointerType>())
1310    if (const ObjCObjectPointerType *ToPtrType =
1311          ToType->getAs<ObjCObjectPointerType>()) {
1312      // Objective-C++ conversions are always okay.
1313      // FIXME: We should have a different class of conversions for the
1314      // Objective-C++ implicit conversions.
1315      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1316        return false;
1317
1318  }
1319  return false;
1320}
1321
1322/// IsMemberPointerConversion - Determines whether the conversion of the
1323/// expression From, which has the (possibly adjusted) type FromType, can be
1324/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1325/// If so, returns true and places the converted type (that might differ from
1326/// ToType in its cv-qualifiers at some level) into ConvertedType.
1327bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1328                                     QualType ToType,
1329                                     bool InOverloadResolution,
1330                                     QualType &ConvertedType) {
1331  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1332  if (!ToTypePtr)
1333    return false;
1334
1335  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1336  if (From->isNullPointerConstant(Context,
1337                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1338                                        : Expr::NPC_ValueDependentIsNull)) {
1339    ConvertedType = ToType;
1340    return true;
1341  }
1342
1343  // Otherwise, both types have to be member pointers.
1344  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1345  if (!FromTypePtr)
1346    return false;
1347
1348  // A pointer to member of B can be converted to a pointer to member of D,
1349  // where D is derived from B (C++ 4.11p2).
1350  QualType FromClass(FromTypePtr->getClass(), 0);
1351  QualType ToClass(ToTypePtr->getClass(), 0);
1352  // FIXME: What happens when these are dependent? Is this function even called?
1353
1354  if (IsDerivedFrom(ToClass, FromClass)) {
1355    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1356                                                 ToClass.getTypePtr());
1357    return true;
1358  }
1359
1360  return false;
1361}
1362
1363/// CheckMemberPointerConversion - Check the member pointer conversion from the
1364/// expression From to the type ToType. This routine checks for ambiguous or
1365/// virtual or inaccessible base-to-derived member pointer conversions
1366/// for which IsMemberPointerConversion has already returned true. It returns
1367/// true and produces a diagnostic if there was an error, or returns false
1368/// otherwise.
1369bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1370                                        CastExpr::CastKind &Kind,
1371                                        bool IgnoreBaseAccess) {
1372  QualType FromType = From->getType();
1373  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1374  if (!FromPtrType) {
1375    // This must be a null pointer to member pointer conversion
1376    assert(From->isNullPointerConstant(Context,
1377                                       Expr::NPC_ValueDependentIsNull) &&
1378           "Expr must be null pointer constant!");
1379    Kind = CastExpr::CK_NullToMemberPointer;
1380    return false;
1381  }
1382
1383  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1384  assert(ToPtrType && "No member pointer cast has a target type "
1385                      "that is not a member pointer.");
1386
1387  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1388  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1389
1390  // FIXME: What about dependent types?
1391  assert(FromClass->isRecordType() && "Pointer into non-class.");
1392  assert(ToClass->isRecordType() && "Pointer into non-class.");
1393
1394  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1395                     /*DetectVirtual=*/true);
1396  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1397  assert(DerivationOkay &&
1398         "Should not have been called if derivation isn't OK.");
1399  (void)DerivationOkay;
1400
1401  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1402                                  getUnqualifiedType())) {
1403    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1404    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1405      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1406    return true;
1407  }
1408
1409  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1410    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1411      << FromClass << ToClass << QualType(VBase, 0)
1412      << From->getSourceRange();
1413    return true;
1414  }
1415
1416  if (!IgnoreBaseAccess)
1417    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1418                         Paths.front(),
1419                         diag::err_downcast_from_inaccessible_base);
1420
1421  // Must be a base to derived member conversion.
1422  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1423  return false;
1424}
1425
1426/// IsQualificationConversion - Determines whether the conversion from
1427/// an rvalue of type FromType to ToType is a qualification conversion
1428/// (C++ 4.4).
1429bool
1430Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1431  FromType = Context.getCanonicalType(FromType);
1432  ToType = Context.getCanonicalType(ToType);
1433
1434  // If FromType and ToType are the same type, this is not a
1435  // qualification conversion.
1436  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1437    return false;
1438
1439  // (C++ 4.4p4):
1440  //   A conversion can add cv-qualifiers at levels other than the first
1441  //   in multi-level pointers, subject to the following rules: [...]
1442  bool PreviousToQualsIncludeConst = true;
1443  bool UnwrappedAnyPointer = false;
1444  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1445    // Within each iteration of the loop, we check the qualifiers to
1446    // determine if this still looks like a qualification
1447    // conversion. Then, if all is well, we unwrap one more level of
1448    // pointers or pointers-to-members and do it all again
1449    // until there are no more pointers or pointers-to-members left to
1450    // unwrap.
1451    UnwrappedAnyPointer = true;
1452
1453    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1454    //      2,j, and similarly for volatile.
1455    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1456      return false;
1457
1458    //   -- if the cv 1,j and cv 2,j are different, then const is in
1459    //      every cv for 0 < k < j.
1460    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1461        && !PreviousToQualsIncludeConst)
1462      return false;
1463
1464    // Keep track of whether all prior cv-qualifiers in the "to" type
1465    // include const.
1466    PreviousToQualsIncludeConst
1467      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1468  }
1469
1470  // We are left with FromType and ToType being the pointee types
1471  // after unwrapping the original FromType and ToType the same number
1472  // of types. If we unwrapped any pointers, and if FromType and
1473  // ToType have the same unqualified type (since we checked
1474  // qualifiers above), then this is a qualification conversion.
1475  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1476}
1477
1478/// Determines whether there is a user-defined conversion sequence
1479/// (C++ [over.ics.user]) that converts expression From to the type
1480/// ToType. If such a conversion exists, User will contain the
1481/// user-defined conversion sequence that performs such a conversion
1482/// and this routine will return true. Otherwise, this routine returns
1483/// false and User is unspecified.
1484///
1485/// \param AllowConversionFunctions true if the conversion should
1486/// consider conversion functions at all. If false, only constructors
1487/// will be considered.
1488///
1489/// \param AllowExplicit  true if the conversion should consider C++0x
1490/// "explicit" conversion functions as well as non-explicit conversion
1491/// functions (C++0x [class.conv.fct]p2).
1492///
1493/// \param ForceRValue  true if the expression should be treated as an rvalue
1494/// for overload resolution.
1495/// \param UserCast true if looking for user defined conversion for a static
1496/// cast.
1497OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1498                                          UserDefinedConversionSequence& User,
1499                                            OverloadCandidateSet& CandidateSet,
1500                                                bool AllowConversionFunctions,
1501                                                bool AllowExplicit,
1502                                                bool ForceRValue,
1503                                                bool UserCast) {
1504  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1505    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1506      // We're not going to find any constructors.
1507    } else if (CXXRecordDecl *ToRecordDecl
1508                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1509      // C++ [over.match.ctor]p1:
1510      //   When objects of class type are direct-initialized (8.5), or
1511      //   copy-initialized from an expression of the same or a
1512      //   derived class type (8.5), overload resolution selects the
1513      //   constructor. [...] For copy-initialization, the candidate
1514      //   functions are all the converting constructors (12.3.1) of
1515      //   that class. The argument list is the expression-list within
1516      //   the parentheses of the initializer.
1517      bool SuppressUserConversions = !UserCast;
1518      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1519          IsDerivedFrom(From->getType(), ToType)) {
1520        SuppressUserConversions = false;
1521        AllowConversionFunctions = false;
1522      }
1523
1524      DeclarationName ConstructorName
1525        = Context.DeclarationNames.getCXXConstructorName(
1526                          Context.getCanonicalType(ToType).getUnqualifiedType());
1527      DeclContext::lookup_iterator Con, ConEnd;
1528      for (llvm::tie(Con, ConEnd)
1529             = ToRecordDecl->lookup(ConstructorName);
1530           Con != ConEnd; ++Con) {
1531        NamedDecl *D = *Con;
1532        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1533
1534        // Find the constructor (which may be a template).
1535        CXXConstructorDecl *Constructor = 0;
1536        FunctionTemplateDecl *ConstructorTmpl
1537          = dyn_cast<FunctionTemplateDecl>(D);
1538        if (ConstructorTmpl)
1539          Constructor
1540            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1541        else
1542          Constructor = cast<CXXConstructorDecl>(D);
1543
1544        if (!Constructor->isInvalidDecl() &&
1545            Constructor->isConvertingConstructor(AllowExplicit)) {
1546          if (ConstructorTmpl)
1547            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1548                                         /*ExplicitArgs*/ 0,
1549                                         &From, 1, CandidateSet,
1550                                         SuppressUserConversions, ForceRValue);
1551          else
1552            // Allow one user-defined conversion when user specifies a
1553            // From->ToType conversion via an static cast (c-style, etc).
1554            AddOverloadCandidate(Constructor, FoundDecl,
1555                                 &From, 1, CandidateSet,
1556                                 SuppressUserConversions, ForceRValue);
1557        }
1558      }
1559    }
1560  }
1561
1562  if (!AllowConversionFunctions) {
1563    // Don't allow any conversion functions to enter the overload set.
1564  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1565                                 PDiag(0)
1566                                   << From->getSourceRange())) {
1567    // No conversion functions from incomplete types.
1568  } else if (const RecordType *FromRecordType
1569               = From->getType()->getAs<RecordType>()) {
1570    if (CXXRecordDecl *FromRecordDecl
1571         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1572      // Add all of the conversion functions as candidates.
1573      const UnresolvedSetImpl *Conversions
1574        = FromRecordDecl->getVisibleConversionFunctions();
1575      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1576             E = Conversions->end(); I != E; ++I) {
1577        DeclAccessPair FoundDecl = I.getPair();
1578        NamedDecl *D = FoundDecl.getDecl();
1579        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1580        if (isa<UsingShadowDecl>(D))
1581          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1582
1583        CXXConversionDecl *Conv;
1584        FunctionTemplateDecl *ConvTemplate;
1585        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1586          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1587        else
1588          Conv = cast<CXXConversionDecl>(D);
1589
1590        if (AllowExplicit || !Conv->isExplicit()) {
1591          if (ConvTemplate)
1592            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1593                                           ActingContext, From, ToType,
1594                                           CandidateSet);
1595          else
1596            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1597                                   From, ToType, CandidateSet);
1598        }
1599      }
1600    }
1601  }
1602
1603  OverloadCandidateSet::iterator Best;
1604  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1605    case OR_Success:
1606      // Record the standard conversion we used and the conversion function.
1607      if (CXXConstructorDecl *Constructor
1608            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1609        // C++ [over.ics.user]p1:
1610        //   If the user-defined conversion is specified by a
1611        //   constructor (12.3.1), the initial standard conversion
1612        //   sequence converts the source type to the type required by
1613        //   the argument of the constructor.
1614        //
1615        QualType ThisType = Constructor->getThisType(Context);
1616        if (Best->Conversions[0].isEllipsis())
1617          User.EllipsisConversion = true;
1618        else {
1619          User.Before = Best->Conversions[0].Standard;
1620          User.EllipsisConversion = false;
1621        }
1622        User.ConversionFunction = Constructor;
1623        User.After.setAsIdentityConversion();
1624        User.After.setFromType(
1625          ThisType->getAs<PointerType>()->getPointeeType());
1626        User.After.setAllToTypes(ToType);
1627        return OR_Success;
1628      } else if (CXXConversionDecl *Conversion
1629                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1630        // C++ [over.ics.user]p1:
1631        //
1632        //   [...] If the user-defined conversion is specified by a
1633        //   conversion function (12.3.2), the initial standard
1634        //   conversion sequence converts the source type to the
1635        //   implicit object parameter of the conversion function.
1636        User.Before = Best->Conversions[0].Standard;
1637        User.ConversionFunction = Conversion;
1638        User.EllipsisConversion = false;
1639
1640        // C++ [over.ics.user]p2:
1641        //   The second standard conversion sequence converts the
1642        //   result of the user-defined conversion to the target type
1643        //   for the sequence. Since an implicit conversion sequence
1644        //   is an initialization, the special rules for
1645        //   initialization by user-defined conversion apply when
1646        //   selecting the best user-defined conversion for a
1647        //   user-defined conversion sequence (see 13.3.3 and
1648        //   13.3.3.1).
1649        User.After = Best->FinalConversion;
1650        return OR_Success;
1651      } else {
1652        assert(false && "Not a constructor or conversion function?");
1653        return OR_No_Viable_Function;
1654      }
1655
1656    case OR_No_Viable_Function:
1657      return OR_No_Viable_Function;
1658    case OR_Deleted:
1659      // No conversion here! We're done.
1660      return OR_Deleted;
1661
1662    case OR_Ambiguous:
1663      return OR_Ambiguous;
1664    }
1665
1666  return OR_No_Viable_Function;
1667}
1668
1669bool
1670Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1671  ImplicitConversionSequence ICS;
1672  OverloadCandidateSet CandidateSet(From->getExprLoc());
1673  OverloadingResult OvResult =
1674    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1675                            CandidateSet, true, false, false);
1676  if (OvResult == OR_Ambiguous)
1677    Diag(From->getSourceRange().getBegin(),
1678         diag::err_typecheck_ambiguous_condition)
1679          << From->getType() << ToType << From->getSourceRange();
1680  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1681    Diag(From->getSourceRange().getBegin(),
1682         diag::err_typecheck_nonviable_condition)
1683    << From->getType() << ToType << From->getSourceRange();
1684  else
1685    return false;
1686  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1687  return true;
1688}
1689
1690/// CompareImplicitConversionSequences - Compare two implicit
1691/// conversion sequences to determine whether one is better than the
1692/// other or if they are indistinguishable (C++ 13.3.3.2).
1693ImplicitConversionSequence::CompareKind
1694Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1695                                         const ImplicitConversionSequence& ICS2)
1696{
1697  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1698  // conversion sequences (as defined in 13.3.3.1)
1699  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1700  //      conversion sequence than a user-defined conversion sequence or
1701  //      an ellipsis conversion sequence, and
1702  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1703  //      conversion sequence than an ellipsis conversion sequence
1704  //      (13.3.3.1.3).
1705  //
1706  // C++0x [over.best.ics]p10:
1707  //   For the purpose of ranking implicit conversion sequences as
1708  //   described in 13.3.3.2, the ambiguous conversion sequence is
1709  //   treated as a user-defined sequence that is indistinguishable
1710  //   from any other user-defined conversion sequence.
1711  if (ICS1.getKind() < ICS2.getKind()) {
1712    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1713      return ImplicitConversionSequence::Better;
1714  } else if (ICS2.getKind() < ICS1.getKind()) {
1715    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1716      return ImplicitConversionSequence::Worse;
1717  }
1718
1719  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1720    return ImplicitConversionSequence::Indistinguishable;
1721
1722  // Two implicit conversion sequences of the same form are
1723  // indistinguishable conversion sequences unless one of the
1724  // following rules apply: (C++ 13.3.3.2p3):
1725  if (ICS1.isStandard())
1726    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1727  else if (ICS1.isUserDefined()) {
1728    // User-defined conversion sequence U1 is a better conversion
1729    // sequence than another user-defined conversion sequence U2 if
1730    // they contain the same user-defined conversion function or
1731    // constructor and if the second standard conversion sequence of
1732    // U1 is better than the second standard conversion sequence of
1733    // U2 (C++ 13.3.3.2p3).
1734    if (ICS1.UserDefined.ConversionFunction ==
1735          ICS2.UserDefined.ConversionFunction)
1736      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1737                                                ICS2.UserDefined.After);
1738  }
1739
1740  return ImplicitConversionSequence::Indistinguishable;
1741}
1742
1743// Per 13.3.3.2p3, compare the given standard conversion sequences to
1744// determine if one is a proper subset of the other.
1745static ImplicitConversionSequence::CompareKind
1746compareStandardConversionSubsets(ASTContext &Context,
1747                                 const StandardConversionSequence& SCS1,
1748                                 const StandardConversionSequence& SCS2) {
1749  ImplicitConversionSequence::CompareKind Result
1750    = ImplicitConversionSequence::Indistinguishable;
1751
1752  if (SCS1.Second != SCS2.Second) {
1753    if (SCS1.Second == ICK_Identity)
1754      Result = ImplicitConversionSequence::Better;
1755    else if (SCS2.Second == ICK_Identity)
1756      Result = ImplicitConversionSequence::Worse;
1757    else
1758      return ImplicitConversionSequence::Indistinguishable;
1759  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1760    return ImplicitConversionSequence::Indistinguishable;
1761
1762  if (SCS1.Third == SCS2.Third) {
1763    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1764                             : ImplicitConversionSequence::Indistinguishable;
1765  }
1766
1767  if (SCS1.Third == ICK_Identity)
1768    return Result == ImplicitConversionSequence::Worse
1769             ? ImplicitConversionSequence::Indistinguishable
1770             : ImplicitConversionSequence::Better;
1771
1772  if (SCS2.Third == ICK_Identity)
1773    return Result == ImplicitConversionSequence::Better
1774             ? ImplicitConversionSequence::Indistinguishable
1775             : ImplicitConversionSequence::Worse;
1776
1777  return ImplicitConversionSequence::Indistinguishable;
1778}
1779
1780/// CompareStandardConversionSequences - Compare two standard
1781/// conversion sequences to determine whether one is better than the
1782/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1783ImplicitConversionSequence::CompareKind
1784Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1785                                         const StandardConversionSequence& SCS2)
1786{
1787  // Standard conversion sequence S1 is a better conversion sequence
1788  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1789
1790  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1791  //     sequences in the canonical form defined by 13.3.3.1.1,
1792  //     excluding any Lvalue Transformation; the identity conversion
1793  //     sequence is considered to be a subsequence of any
1794  //     non-identity conversion sequence) or, if not that,
1795  if (ImplicitConversionSequence::CompareKind CK
1796        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1797    return CK;
1798
1799  //  -- the rank of S1 is better than the rank of S2 (by the rules
1800  //     defined below), or, if not that,
1801  ImplicitConversionRank Rank1 = SCS1.getRank();
1802  ImplicitConversionRank Rank2 = SCS2.getRank();
1803  if (Rank1 < Rank2)
1804    return ImplicitConversionSequence::Better;
1805  else if (Rank2 < Rank1)
1806    return ImplicitConversionSequence::Worse;
1807
1808  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1809  // are indistinguishable unless one of the following rules
1810  // applies:
1811
1812  //   A conversion that is not a conversion of a pointer, or
1813  //   pointer to member, to bool is better than another conversion
1814  //   that is such a conversion.
1815  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1816    return SCS2.isPointerConversionToBool()
1817             ? ImplicitConversionSequence::Better
1818             : ImplicitConversionSequence::Worse;
1819
1820  // C++ [over.ics.rank]p4b2:
1821  //
1822  //   If class B is derived directly or indirectly from class A,
1823  //   conversion of B* to A* is better than conversion of B* to
1824  //   void*, and conversion of A* to void* is better than conversion
1825  //   of B* to void*.
1826  bool SCS1ConvertsToVoid
1827    = SCS1.isPointerConversionToVoidPointer(Context);
1828  bool SCS2ConvertsToVoid
1829    = SCS2.isPointerConversionToVoidPointer(Context);
1830  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1831    // Exactly one of the conversion sequences is a conversion to
1832    // a void pointer; it's the worse conversion.
1833    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1834                              : ImplicitConversionSequence::Worse;
1835  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1836    // Neither conversion sequence converts to a void pointer; compare
1837    // their derived-to-base conversions.
1838    if (ImplicitConversionSequence::CompareKind DerivedCK
1839          = CompareDerivedToBaseConversions(SCS1, SCS2))
1840      return DerivedCK;
1841  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1842    // Both conversion sequences are conversions to void
1843    // pointers. Compare the source types to determine if there's an
1844    // inheritance relationship in their sources.
1845    QualType FromType1 = SCS1.getFromType();
1846    QualType FromType2 = SCS2.getFromType();
1847
1848    // Adjust the types we're converting from via the array-to-pointer
1849    // conversion, if we need to.
1850    if (SCS1.First == ICK_Array_To_Pointer)
1851      FromType1 = Context.getArrayDecayedType(FromType1);
1852    if (SCS2.First == ICK_Array_To_Pointer)
1853      FromType2 = Context.getArrayDecayedType(FromType2);
1854
1855    QualType FromPointee1
1856      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1857    QualType FromPointee2
1858      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1859
1860    if (IsDerivedFrom(FromPointee2, FromPointee1))
1861      return ImplicitConversionSequence::Better;
1862    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1863      return ImplicitConversionSequence::Worse;
1864
1865    // Objective-C++: If one interface is more specific than the
1866    // other, it is the better one.
1867    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1868    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1869    if (FromIface1 && FromIface1) {
1870      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1871        return ImplicitConversionSequence::Better;
1872      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1873        return ImplicitConversionSequence::Worse;
1874    }
1875  }
1876
1877  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1878  // bullet 3).
1879  if (ImplicitConversionSequence::CompareKind QualCK
1880        = CompareQualificationConversions(SCS1, SCS2))
1881    return QualCK;
1882
1883  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1884    // C++0x [over.ics.rank]p3b4:
1885    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1886    //      implicit object parameter of a non-static member function declared
1887    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1888    //      rvalue and S2 binds an lvalue reference.
1889    // FIXME: We don't know if we're dealing with the implicit object parameter,
1890    // or if the member function in this case has a ref qualifier.
1891    // (Of course, we don't have ref qualifiers yet.)
1892    if (SCS1.RRefBinding != SCS2.RRefBinding)
1893      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1894                              : ImplicitConversionSequence::Worse;
1895
1896    // C++ [over.ics.rank]p3b4:
1897    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1898    //      which the references refer are the same type except for
1899    //      top-level cv-qualifiers, and the type to which the reference
1900    //      initialized by S2 refers is more cv-qualified than the type
1901    //      to which the reference initialized by S1 refers.
1902    QualType T1 = SCS1.getToType(2);
1903    QualType T2 = SCS2.getToType(2);
1904    T1 = Context.getCanonicalType(T1);
1905    T2 = Context.getCanonicalType(T2);
1906    Qualifiers T1Quals, T2Quals;
1907    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1908    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1909    if (UnqualT1 == UnqualT2) {
1910      // If the type is an array type, promote the element qualifiers to the type
1911      // for comparison.
1912      if (isa<ArrayType>(T1) && T1Quals)
1913        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1914      if (isa<ArrayType>(T2) && T2Quals)
1915        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1916      if (T2.isMoreQualifiedThan(T1))
1917        return ImplicitConversionSequence::Better;
1918      else if (T1.isMoreQualifiedThan(T2))
1919        return ImplicitConversionSequence::Worse;
1920    }
1921  }
1922
1923  return ImplicitConversionSequence::Indistinguishable;
1924}
1925
1926/// CompareQualificationConversions - Compares two standard conversion
1927/// sequences to determine whether they can be ranked based on their
1928/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1929ImplicitConversionSequence::CompareKind
1930Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1931                                      const StandardConversionSequence& SCS2) {
1932  // C++ 13.3.3.2p3:
1933  //  -- S1 and S2 differ only in their qualification conversion and
1934  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1935  //     cv-qualification signature of type T1 is a proper subset of
1936  //     the cv-qualification signature of type T2, and S1 is not the
1937  //     deprecated string literal array-to-pointer conversion (4.2).
1938  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1939      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1940    return ImplicitConversionSequence::Indistinguishable;
1941
1942  // FIXME: the example in the standard doesn't use a qualification
1943  // conversion (!)
1944  QualType T1 = SCS1.getToType(2);
1945  QualType T2 = SCS2.getToType(2);
1946  T1 = Context.getCanonicalType(T1);
1947  T2 = Context.getCanonicalType(T2);
1948  Qualifiers T1Quals, T2Quals;
1949  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1950  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1951
1952  // If the types are the same, we won't learn anything by unwrapped
1953  // them.
1954  if (UnqualT1 == UnqualT2)
1955    return ImplicitConversionSequence::Indistinguishable;
1956
1957  // If the type is an array type, promote the element qualifiers to the type
1958  // for comparison.
1959  if (isa<ArrayType>(T1) && T1Quals)
1960    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1961  if (isa<ArrayType>(T2) && T2Quals)
1962    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1963
1964  ImplicitConversionSequence::CompareKind Result
1965    = ImplicitConversionSequence::Indistinguishable;
1966  while (UnwrapSimilarPointerTypes(T1, T2)) {
1967    // Within each iteration of the loop, we check the qualifiers to
1968    // determine if this still looks like a qualification
1969    // conversion. Then, if all is well, we unwrap one more level of
1970    // pointers or pointers-to-members and do it all again
1971    // until there are no more pointers or pointers-to-members left
1972    // to unwrap. This essentially mimics what
1973    // IsQualificationConversion does, but here we're checking for a
1974    // strict subset of qualifiers.
1975    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1976      // The qualifiers are the same, so this doesn't tell us anything
1977      // about how the sequences rank.
1978      ;
1979    else if (T2.isMoreQualifiedThan(T1)) {
1980      // T1 has fewer qualifiers, so it could be the better sequence.
1981      if (Result == ImplicitConversionSequence::Worse)
1982        // Neither has qualifiers that are a subset of the other's
1983        // qualifiers.
1984        return ImplicitConversionSequence::Indistinguishable;
1985
1986      Result = ImplicitConversionSequence::Better;
1987    } else if (T1.isMoreQualifiedThan(T2)) {
1988      // T2 has fewer qualifiers, so it could be the better sequence.
1989      if (Result == ImplicitConversionSequence::Better)
1990        // Neither has qualifiers that are a subset of the other's
1991        // qualifiers.
1992        return ImplicitConversionSequence::Indistinguishable;
1993
1994      Result = ImplicitConversionSequence::Worse;
1995    } else {
1996      // Qualifiers are disjoint.
1997      return ImplicitConversionSequence::Indistinguishable;
1998    }
1999
2000    // If the types after this point are equivalent, we're done.
2001    if (Context.hasSameUnqualifiedType(T1, T2))
2002      break;
2003  }
2004
2005  // Check that the winning standard conversion sequence isn't using
2006  // the deprecated string literal array to pointer conversion.
2007  switch (Result) {
2008  case ImplicitConversionSequence::Better:
2009    if (SCS1.DeprecatedStringLiteralToCharPtr)
2010      Result = ImplicitConversionSequence::Indistinguishable;
2011    break;
2012
2013  case ImplicitConversionSequence::Indistinguishable:
2014    break;
2015
2016  case ImplicitConversionSequence::Worse:
2017    if (SCS2.DeprecatedStringLiteralToCharPtr)
2018      Result = ImplicitConversionSequence::Indistinguishable;
2019    break;
2020  }
2021
2022  return Result;
2023}
2024
2025/// CompareDerivedToBaseConversions - Compares two standard conversion
2026/// sequences to determine whether they can be ranked based on their
2027/// various kinds of derived-to-base conversions (C++
2028/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2029/// conversions between Objective-C interface types.
2030ImplicitConversionSequence::CompareKind
2031Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2032                                      const StandardConversionSequence& SCS2) {
2033  QualType FromType1 = SCS1.getFromType();
2034  QualType ToType1 = SCS1.getToType(1);
2035  QualType FromType2 = SCS2.getFromType();
2036  QualType ToType2 = SCS2.getToType(1);
2037
2038  // Adjust the types we're converting from via the array-to-pointer
2039  // conversion, if we need to.
2040  if (SCS1.First == ICK_Array_To_Pointer)
2041    FromType1 = Context.getArrayDecayedType(FromType1);
2042  if (SCS2.First == ICK_Array_To_Pointer)
2043    FromType2 = Context.getArrayDecayedType(FromType2);
2044
2045  // Canonicalize all of the types.
2046  FromType1 = Context.getCanonicalType(FromType1);
2047  ToType1 = Context.getCanonicalType(ToType1);
2048  FromType2 = Context.getCanonicalType(FromType2);
2049  ToType2 = Context.getCanonicalType(ToType2);
2050
2051  // C++ [over.ics.rank]p4b3:
2052  //
2053  //   If class B is derived directly or indirectly from class A and
2054  //   class C is derived directly or indirectly from B,
2055  //
2056  // For Objective-C, we let A, B, and C also be Objective-C
2057  // interfaces.
2058
2059  // Compare based on pointer conversions.
2060  if (SCS1.Second == ICK_Pointer_Conversion &&
2061      SCS2.Second == ICK_Pointer_Conversion &&
2062      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2063      FromType1->isPointerType() && FromType2->isPointerType() &&
2064      ToType1->isPointerType() && ToType2->isPointerType()) {
2065    QualType FromPointee1
2066      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2067    QualType ToPointee1
2068      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2069    QualType FromPointee2
2070      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2071    QualType ToPointee2
2072      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2073
2074    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2075    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2076    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2077    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2078
2079    //   -- conversion of C* to B* is better than conversion of C* to A*,
2080    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2081      if (IsDerivedFrom(ToPointee1, ToPointee2))
2082        return ImplicitConversionSequence::Better;
2083      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2084        return ImplicitConversionSequence::Worse;
2085
2086      if (ToIface1 && ToIface2) {
2087        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2088          return ImplicitConversionSequence::Better;
2089        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2090          return ImplicitConversionSequence::Worse;
2091      }
2092    }
2093
2094    //   -- conversion of B* to A* is better than conversion of C* to A*,
2095    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2096      if (IsDerivedFrom(FromPointee2, FromPointee1))
2097        return ImplicitConversionSequence::Better;
2098      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2099        return ImplicitConversionSequence::Worse;
2100
2101      if (FromIface1 && FromIface2) {
2102        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2103          return ImplicitConversionSequence::Better;
2104        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2105          return ImplicitConversionSequence::Worse;
2106      }
2107    }
2108  }
2109
2110  // Ranking of member-pointer types.
2111  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2112      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2113      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2114    const MemberPointerType * FromMemPointer1 =
2115                                        FromType1->getAs<MemberPointerType>();
2116    const MemberPointerType * ToMemPointer1 =
2117                                          ToType1->getAs<MemberPointerType>();
2118    const MemberPointerType * FromMemPointer2 =
2119                                          FromType2->getAs<MemberPointerType>();
2120    const MemberPointerType * ToMemPointer2 =
2121                                          ToType2->getAs<MemberPointerType>();
2122    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2123    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2124    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2125    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2126    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2127    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2128    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2129    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2130    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2131    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2132      if (IsDerivedFrom(ToPointee1, ToPointee2))
2133        return ImplicitConversionSequence::Worse;
2134      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2135        return ImplicitConversionSequence::Better;
2136    }
2137    // conversion of B::* to C::* is better than conversion of A::* to C::*
2138    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2139      if (IsDerivedFrom(FromPointee1, FromPointee2))
2140        return ImplicitConversionSequence::Better;
2141      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2142        return ImplicitConversionSequence::Worse;
2143    }
2144  }
2145
2146  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2147      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2148      SCS1.Second == ICK_Derived_To_Base) {
2149    //   -- conversion of C to B is better than conversion of C to A,
2150    //   -- binding of an expression of type C to a reference of type
2151    //      B& is better than binding an expression of type C to a
2152    //      reference of type A&,
2153    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2154        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2155      if (IsDerivedFrom(ToType1, ToType2))
2156        return ImplicitConversionSequence::Better;
2157      else if (IsDerivedFrom(ToType2, ToType1))
2158        return ImplicitConversionSequence::Worse;
2159    }
2160
2161    //   -- conversion of B to A is better than conversion of C to A.
2162    //   -- binding of an expression of type B to a reference of type
2163    //      A& is better than binding an expression of type C to a
2164    //      reference of type A&,
2165    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2166        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2167      if (IsDerivedFrom(FromType2, FromType1))
2168        return ImplicitConversionSequence::Better;
2169      else if (IsDerivedFrom(FromType1, FromType2))
2170        return ImplicitConversionSequence::Worse;
2171    }
2172  }
2173
2174  return ImplicitConversionSequence::Indistinguishable;
2175}
2176
2177/// TryCopyInitialization - Try to copy-initialize a value of type
2178/// ToType from the expression From. Return the implicit conversion
2179/// sequence required to pass this argument, which may be a bad
2180/// conversion sequence (meaning that the argument cannot be passed to
2181/// a parameter of this type). If @p SuppressUserConversions, then we
2182/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2183/// then we treat @p From as an rvalue, even if it is an lvalue.
2184ImplicitConversionSequence
2185Sema::TryCopyInitialization(Expr *From, QualType ToType,
2186                            bool SuppressUserConversions, bool ForceRValue,
2187                            bool InOverloadResolution) {
2188  if (ToType->isReferenceType()) {
2189    ImplicitConversionSequence ICS;
2190    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
2191    CheckReferenceInit(From, ToType,
2192                       /*FIXME:*/From->getLocStart(),
2193                       SuppressUserConversions,
2194                       /*AllowExplicit=*/false,
2195                       ForceRValue,
2196                       &ICS);
2197    return ICS;
2198  } else {
2199    return TryImplicitConversion(From, ToType,
2200                                 SuppressUserConversions,
2201                                 /*AllowExplicit=*/false,
2202                                 ForceRValue,
2203                                 InOverloadResolution);
2204  }
2205}
2206
2207/// TryObjectArgumentInitialization - Try to initialize the object
2208/// parameter of the given member function (@c Method) from the
2209/// expression @p From.
2210ImplicitConversionSequence
2211Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2212                                      CXXMethodDecl *Method,
2213                                      CXXRecordDecl *ActingContext) {
2214  QualType ClassType = Context.getTypeDeclType(ActingContext);
2215  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2216  //                 const volatile object.
2217  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2218    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2219  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2220
2221  // Set up the conversion sequence as a "bad" conversion, to allow us
2222  // to exit early.
2223  ImplicitConversionSequence ICS;
2224
2225  // We need to have an object of class type.
2226  QualType FromType = OrigFromType;
2227  if (const PointerType *PT = FromType->getAs<PointerType>())
2228    FromType = PT->getPointeeType();
2229
2230  assert(FromType->isRecordType());
2231
2232  // The implicit object parameter is has the type "reference to cv X",
2233  // where X is the class of which the function is a member
2234  // (C++ [over.match.funcs]p4). However, when finding an implicit
2235  // conversion sequence for the argument, we are not allowed to
2236  // create temporaries or perform user-defined conversions
2237  // (C++ [over.match.funcs]p5). We perform a simplified version of
2238  // reference binding here, that allows class rvalues to bind to
2239  // non-constant references.
2240
2241  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2242  // with the implicit object parameter (C++ [over.match.funcs]p5).
2243  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2244  if (ImplicitParamType.getCVRQualifiers()
2245                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2246      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2247    ICS.setBad(BadConversionSequence::bad_qualifiers,
2248               OrigFromType, ImplicitParamType);
2249    return ICS;
2250  }
2251
2252  // Check that we have either the same type or a derived type. It
2253  // affects the conversion rank.
2254  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2255  ImplicitConversionKind SecondKind;
2256  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2257    SecondKind = ICK_Identity;
2258  } else if (IsDerivedFrom(FromType, ClassType))
2259    SecondKind = ICK_Derived_To_Base;
2260  else {
2261    ICS.setBad(BadConversionSequence::unrelated_class,
2262               FromType, ImplicitParamType);
2263    return ICS;
2264  }
2265
2266  // Success. Mark this as a reference binding.
2267  ICS.setStandard();
2268  ICS.Standard.setAsIdentityConversion();
2269  ICS.Standard.Second = SecondKind;
2270  ICS.Standard.setFromType(FromType);
2271  ICS.Standard.setAllToTypes(ImplicitParamType);
2272  ICS.Standard.ReferenceBinding = true;
2273  ICS.Standard.DirectBinding = true;
2274  ICS.Standard.RRefBinding = false;
2275  return ICS;
2276}
2277
2278/// PerformObjectArgumentInitialization - Perform initialization of
2279/// the implicit object parameter for the given Method with the given
2280/// expression.
2281bool
2282Sema::PerformObjectArgumentInitialization(Expr *&From,
2283                                          NestedNameSpecifier *Qualifier,
2284                                          NamedDecl *FoundDecl,
2285                                          CXXMethodDecl *Method) {
2286  QualType FromRecordType, DestType;
2287  QualType ImplicitParamRecordType  =
2288    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2289
2290  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2291    FromRecordType = PT->getPointeeType();
2292    DestType = Method->getThisType(Context);
2293  } else {
2294    FromRecordType = From->getType();
2295    DestType = ImplicitParamRecordType;
2296  }
2297
2298  // Note that we always use the true parent context when performing
2299  // the actual argument initialization.
2300  ImplicitConversionSequence ICS
2301    = TryObjectArgumentInitialization(From->getType(), Method,
2302                                      Method->getParent());
2303  if (ICS.isBad())
2304    return Diag(From->getSourceRange().getBegin(),
2305                diag::err_implicit_object_parameter_init)
2306       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2307
2308  if (ICS.Standard.Second == ICK_Derived_To_Base)
2309    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2310
2311  if (!Context.hasSameType(From->getType(), DestType))
2312    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2313                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2314  return false;
2315}
2316
2317/// TryContextuallyConvertToBool - Attempt to contextually convert the
2318/// expression From to bool (C++0x [conv]p3).
2319ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2320  return TryImplicitConversion(From, Context.BoolTy,
2321                               // FIXME: Are these flags correct?
2322                               /*SuppressUserConversions=*/false,
2323                               /*AllowExplicit=*/true,
2324                               /*ForceRValue=*/false,
2325                               /*InOverloadResolution=*/false);
2326}
2327
2328/// PerformContextuallyConvertToBool - Perform a contextual conversion
2329/// of the expression From to bool (C++0x [conv]p3).
2330bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2331  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2332  if (!ICS.isBad())
2333    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2334
2335  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2336    return  Diag(From->getSourceRange().getBegin(),
2337                 diag::err_typecheck_bool_condition)
2338                  << From->getType() << From->getSourceRange();
2339  return true;
2340}
2341
2342/// AddOverloadCandidate - Adds the given function to the set of
2343/// candidate functions, using the given function call arguments.  If
2344/// @p SuppressUserConversions, then don't allow user-defined
2345/// conversions via constructors or conversion operators.
2346/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2347/// hacky way to implement the overloading rules for elidable copy
2348/// initialization in C++0x (C++0x 12.8p15).
2349///
2350/// \para PartialOverloading true if we are performing "partial" overloading
2351/// based on an incomplete set of function arguments. This feature is used by
2352/// code completion.
2353void
2354Sema::AddOverloadCandidate(FunctionDecl *Function,
2355                           DeclAccessPair FoundDecl,
2356                           Expr **Args, unsigned NumArgs,
2357                           OverloadCandidateSet& CandidateSet,
2358                           bool SuppressUserConversions,
2359                           bool ForceRValue,
2360                           bool PartialOverloading) {
2361  const FunctionProtoType* Proto
2362    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2363  assert(Proto && "Functions without a prototype cannot be overloaded");
2364  assert(!Function->getDescribedFunctionTemplate() &&
2365         "Use AddTemplateOverloadCandidate for function templates");
2366
2367  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2368    if (!isa<CXXConstructorDecl>(Method)) {
2369      // If we get here, it's because we're calling a member function
2370      // that is named without a member access expression (e.g.,
2371      // "this->f") that was either written explicitly or created
2372      // implicitly. This can happen with a qualified call to a member
2373      // function, e.g., X::f(). We use an empty type for the implied
2374      // object argument (C++ [over.call.func]p3), and the acting context
2375      // is irrelevant.
2376      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2377                         QualType(), Args, NumArgs, CandidateSet,
2378                         SuppressUserConversions, ForceRValue);
2379      return;
2380    }
2381    // We treat a constructor like a non-member function, since its object
2382    // argument doesn't participate in overload resolution.
2383  }
2384
2385  if (!CandidateSet.isNewCandidate(Function))
2386    return;
2387
2388  // Overload resolution is always an unevaluated context.
2389  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2390
2391  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2392    // C++ [class.copy]p3:
2393    //   A member function template is never instantiated to perform the copy
2394    //   of a class object to an object of its class type.
2395    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2396    if (NumArgs == 1 &&
2397        Constructor->isCopyConstructorLikeSpecialization() &&
2398        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2399         IsDerivedFrom(Args[0]->getType(), ClassType)))
2400      return;
2401  }
2402
2403  // Add this candidate
2404  CandidateSet.push_back(OverloadCandidate());
2405  OverloadCandidate& Candidate = CandidateSet.back();
2406  Candidate.FoundDecl = FoundDecl;
2407  Candidate.Function = Function;
2408  Candidate.Viable = true;
2409  Candidate.IsSurrogate = false;
2410  Candidate.IgnoreObjectArgument = false;
2411
2412  unsigned NumArgsInProto = Proto->getNumArgs();
2413
2414  // (C++ 13.3.2p2): A candidate function having fewer than m
2415  // parameters is viable only if it has an ellipsis in its parameter
2416  // list (8.3.5).
2417  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2418      !Proto->isVariadic()) {
2419    Candidate.Viable = false;
2420    Candidate.FailureKind = ovl_fail_too_many_arguments;
2421    return;
2422  }
2423
2424  // (C++ 13.3.2p2): A candidate function having more than m parameters
2425  // is viable only if the (m+1)st parameter has a default argument
2426  // (8.3.6). For the purposes of overload resolution, the
2427  // parameter list is truncated on the right, so that there are
2428  // exactly m parameters.
2429  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2430  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2431    // Not enough arguments.
2432    Candidate.Viable = false;
2433    Candidate.FailureKind = ovl_fail_too_few_arguments;
2434    return;
2435  }
2436
2437  // Determine the implicit conversion sequences for each of the
2438  // arguments.
2439  Candidate.Conversions.resize(NumArgs);
2440  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2441    if (ArgIdx < NumArgsInProto) {
2442      // (C++ 13.3.2p3): for F to be a viable function, there shall
2443      // exist for each argument an implicit conversion sequence
2444      // (13.3.3.1) that converts that argument to the corresponding
2445      // parameter of F.
2446      QualType ParamType = Proto->getArgType(ArgIdx);
2447      Candidate.Conversions[ArgIdx]
2448        = TryCopyInitialization(Args[ArgIdx], ParamType,
2449                                SuppressUserConversions, ForceRValue,
2450                                /*InOverloadResolution=*/true);
2451      if (Candidate.Conversions[ArgIdx].isBad()) {
2452        Candidate.Viable = false;
2453        Candidate.FailureKind = ovl_fail_bad_conversion;
2454        break;
2455      }
2456    } else {
2457      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2458      // argument for which there is no corresponding parameter is
2459      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2460      Candidate.Conversions[ArgIdx].setEllipsis();
2461    }
2462  }
2463}
2464
2465/// \brief Add all of the function declarations in the given function set to
2466/// the overload canddiate set.
2467void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2468                                 Expr **Args, unsigned NumArgs,
2469                                 OverloadCandidateSet& CandidateSet,
2470                                 bool SuppressUserConversions) {
2471  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2472    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2473    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2474      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2475        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2476                           cast<CXXMethodDecl>(FD)->getParent(),
2477                           Args[0]->getType(), Args + 1, NumArgs - 1,
2478                           CandidateSet, SuppressUserConversions);
2479      else
2480        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2481                             SuppressUserConversions);
2482    } else {
2483      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2484      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2485          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2486        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2487                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2488                                   /*FIXME: explicit args */ 0,
2489                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2490                                   CandidateSet,
2491                                   SuppressUserConversions);
2492      else
2493        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2494                                     /*FIXME: explicit args */ 0,
2495                                     Args, NumArgs, CandidateSet,
2496                                     SuppressUserConversions);
2497    }
2498  }
2499}
2500
2501/// AddMethodCandidate - Adds a named decl (which is some kind of
2502/// method) as a method candidate to the given overload set.
2503void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2504                              QualType ObjectType,
2505                              Expr **Args, unsigned NumArgs,
2506                              OverloadCandidateSet& CandidateSet,
2507                              bool SuppressUserConversions, bool ForceRValue) {
2508  NamedDecl *Decl = FoundDecl.getDecl();
2509  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2510
2511  if (isa<UsingShadowDecl>(Decl))
2512    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2513
2514  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2515    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2516           "Expected a member function template");
2517    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2518                               /*ExplicitArgs*/ 0,
2519                               ObjectType, Args, NumArgs,
2520                               CandidateSet,
2521                               SuppressUserConversions,
2522                               ForceRValue);
2523  } else {
2524    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2525                       ObjectType, Args, NumArgs,
2526                       CandidateSet, SuppressUserConversions, ForceRValue);
2527  }
2528}
2529
2530/// AddMethodCandidate - Adds the given C++ member function to the set
2531/// of candidate functions, using the given function call arguments
2532/// and the object argument (@c Object). For example, in a call
2533/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2534/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2535/// allow user-defined conversions via constructors or conversion
2536/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2537/// a slightly hacky way to implement the overloading rules for elidable copy
2538/// initialization in C++0x (C++0x 12.8p15).
2539void
2540Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2541                         CXXRecordDecl *ActingContext, QualType ObjectType,
2542                         Expr **Args, unsigned NumArgs,
2543                         OverloadCandidateSet& CandidateSet,
2544                         bool SuppressUserConversions, bool ForceRValue) {
2545  const FunctionProtoType* Proto
2546    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2547  assert(Proto && "Methods without a prototype cannot be overloaded");
2548  assert(!isa<CXXConstructorDecl>(Method) &&
2549         "Use AddOverloadCandidate for constructors");
2550
2551  if (!CandidateSet.isNewCandidate(Method))
2552    return;
2553
2554  // Overload resolution is always an unevaluated context.
2555  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2556
2557  // Add this candidate
2558  CandidateSet.push_back(OverloadCandidate());
2559  OverloadCandidate& Candidate = CandidateSet.back();
2560  Candidate.FoundDecl = FoundDecl;
2561  Candidate.Function = Method;
2562  Candidate.IsSurrogate = false;
2563  Candidate.IgnoreObjectArgument = false;
2564
2565  unsigned NumArgsInProto = Proto->getNumArgs();
2566
2567  // (C++ 13.3.2p2): A candidate function having fewer than m
2568  // parameters is viable only if it has an ellipsis in its parameter
2569  // list (8.3.5).
2570  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2571    Candidate.Viable = false;
2572    Candidate.FailureKind = ovl_fail_too_many_arguments;
2573    return;
2574  }
2575
2576  // (C++ 13.3.2p2): A candidate function having more than m parameters
2577  // is viable only if the (m+1)st parameter has a default argument
2578  // (8.3.6). For the purposes of overload resolution, the
2579  // parameter list is truncated on the right, so that there are
2580  // exactly m parameters.
2581  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2582  if (NumArgs < MinRequiredArgs) {
2583    // Not enough arguments.
2584    Candidate.Viable = false;
2585    Candidate.FailureKind = ovl_fail_too_few_arguments;
2586    return;
2587  }
2588
2589  Candidate.Viable = true;
2590  Candidate.Conversions.resize(NumArgs + 1);
2591
2592  if (Method->isStatic() || ObjectType.isNull())
2593    // The implicit object argument is ignored.
2594    Candidate.IgnoreObjectArgument = true;
2595  else {
2596    // Determine the implicit conversion sequence for the object
2597    // parameter.
2598    Candidate.Conversions[0]
2599      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2600    if (Candidate.Conversions[0].isBad()) {
2601      Candidate.Viable = false;
2602      Candidate.FailureKind = ovl_fail_bad_conversion;
2603      return;
2604    }
2605  }
2606
2607  // Determine the implicit conversion sequences for each of the
2608  // arguments.
2609  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2610    if (ArgIdx < NumArgsInProto) {
2611      // (C++ 13.3.2p3): for F to be a viable function, there shall
2612      // exist for each argument an implicit conversion sequence
2613      // (13.3.3.1) that converts that argument to the corresponding
2614      // parameter of F.
2615      QualType ParamType = Proto->getArgType(ArgIdx);
2616      Candidate.Conversions[ArgIdx + 1]
2617        = TryCopyInitialization(Args[ArgIdx], ParamType,
2618                                SuppressUserConversions, ForceRValue,
2619                                /*InOverloadResolution=*/true);
2620      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2621        Candidate.Viable = false;
2622        Candidate.FailureKind = ovl_fail_bad_conversion;
2623        break;
2624      }
2625    } else {
2626      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2627      // argument for which there is no corresponding parameter is
2628      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2629      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2630    }
2631  }
2632}
2633
2634/// \brief Add a C++ member function template as a candidate to the candidate
2635/// set, using template argument deduction to produce an appropriate member
2636/// function template specialization.
2637void
2638Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2639                                 DeclAccessPair FoundDecl,
2640                                 CXXRecordDecl *ActingContext,
2641                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2642                                 QualType ObjectType,
2643                                 Expr **Args, unsigned NumArgs,
2644                                 OverloadCandidateSet& CandidateSet,
2645                                 bool SuppressUserConversions,
2646                                 bool ForceRValue) {
2647  if (!CandidateSet.isNewCandidate(MethodTmpl))
2648    return;
2649
2650  // C++ [over.match.funcs]p7:
2651  //   In each case where a candidate is a function template, candidate
2652  //   function template specializations are generated using template argument
2653  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2654  //   candidate functions in the usual way.113) A given name can refer to one
2655  //   or more function templates and also to a set of overloaded non-template
2656  //   functions. In such a case, the candidate functions generated from each
2657  //   function template are combined with the set of non-template candidate
2658  //   functions.
2659  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2660  FunctionDecl *Specialization = 0;
2661  if (TemplateDeductionResult Result
2662      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2663                                Args, NumArgs, Specialization, Info)) {
2664        // FIXME: Record what happened with template argument deduction, so
2665        // that we can give the user a beautiful diagnostic.
2666        (void)Result;
2667        return;
2668      }
2669
2670  // Add the function template specialization produced by template argument
2671  // deduction as a candidate.
2672  assert(Specialization && "Missing member function template specialization?");
2673  assert(isa<CXXMethodDecl>(Specialization) &&
2674         "Specialization is not a member function?");
2675  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2676                     ActingContext, ObjectType, Args, NumArgs,
2677                     CandidateSet, SuppressUserConversions, ForceRValue);
2678}
2679
2680/// \brief Add a C++ function template specialization as a candidate
2681/// in the candidate set, using template argument deduction to produce
2682/// an appropriate function template specialization.
2683void
2684Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2685                                   DeclAccessPair FoundDecl,
2686                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2687                                   Expr **Args, unsigned NumArgs,
2688                                   OverloadCandidateSet& CandidateSet,
2689                                   bool SuppressUserConversions,
2690                                   bool ForceRValue) {
2691  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2692    return;
2693
2694  // C++ [over.match.funcs]p7:
2695  //   In each case where a candidate is a function template, candidate
2696  //   function template specializations are generated using template argument
2697  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2698  //   candidate functions in the usual way.113) A given name can refer to one
2699  //   or more function templates and also to a set of overloaded non-template
2700  //   functions. In such a case, the candidate functions generated from each
2701  //   function template are combined with the set of non-template candidate
2702  //   functions.
2703  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2704  FunctionDecl *Specialization = 0;
2705  if (TemplateDeductionResult Result
2706        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2707                                  Args, NumArgs, Specialization, Info)) {
2708    CandidateSet.push_back(OverloadCandidate());
2709    OverloadCandidate &Candidate = CandidateSet.back();
2710    Candidate.FoundDecl = FoundDecl;
2711    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2712    Candidate.Viable = false;
2713    Candidate.FailureKind = ovl_fail_bad_deduction;
2714    Candidate.IsSurrogate = false;
2715    Candidate.IgnoreObjectArgument = false;
2716
2717    // TODO: record more information about failed template arguments
2718    Candidate.DeductionFailure.Result = Result;
2719    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2720    return;
2721  }
2722
2723  // Add the function template specialization produced by template argument
2724  // deduction as a candidate.
2725  assert(Specialization && "Missing function template specialization?");
2726  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
2727                       SuppressUserConversions, ForceRValue);
2728}
2729
2730/// AddConversionCandidate - Add a C++ conversion function as a
2731/// candidate in the candidate set (C++ [over.match.conv],
2732/// C++ [over.match.copy]). From is the expression we're converting from,
2733/// and ToType is the type that we're eventually trying to convert to
2734/// (which may or may not be the same type as the type that the
2735/// conversion function produces).
2736void
2737Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2738                             DeclAccessPair FoundDecl,
2739                             CXXRecordDecl *ActingContext,
2740                             Expr *From, QualType ToType,
2741                             OverloadCandidateSet& CandidateSet) {
2742  assert(!Conversion->getDescribedFunctionTemplate() &&
2743         "Conversion function templates use AddTemplateConversionCandidate");
2744
2745  if (!CandidateSet.isNewCandidate(Conversion))
2746    return;
2747
2748  // Overload resolution is always an unevaluated context.
2749  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2750
2751  // Add this candidate
2752  CandidateSet.push_back(OverloadCandidate());
2753  OverloadCandidate& Candidate = CandidateSet.back();
2754  Candidate.FoundDecl = FoundDecl;
2755  Candidate.Function = Conversion;
2756  Candidate.IsSurrogate = false;
2757  Candidate.IgnoreObjectArgument = false;
2758  Candidate.FinalConversion.setAsIdentityConversion();
2759  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2760  Candidate.FinalConversion.setAllToTypes(ToType);
2761
2762  // Determine the implicit conversion sequence for the implicit
2763  // object parameter.
2764  Candidate.Viable = true;
2765  Candidate.Conversions.resize(1);
2766  Candidate.Conversions[0]
2767    = TryObjectArgumentInitialization(From->getType(), Conversion,
2768                                      ActingContext);
2769  // Conversion functions to a different type in the base class is visible in
2770  // the derived class.  So, a derived to base conversion should not participate
2771  // in overload resolution.
2772  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2773    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2774  if (Candidate.Conversions[0].isBad()) {
2775    Candidate.Viable = false;
2776    Candidate.FailureKind = ovl_fail_bad_conversion;
2777    return;
2778  }
2779
2780  // We won't go through a user-define type conversion function to convert a
2781  // derived to base as such conversions are given Conversion Rank. They only
2782  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2783  QualType FromCanon
2784    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2785  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2786  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2787    Candidate.Viable = false;
2788    Candidate.FailureKind = ovl_fail_trivial_conversion;
2789    return;
2790  }
2791
2792
2793  // To determine what the conversion from the result of calling the
2794  // conversion function to the type we're eventually trying to
2795  // convert to (ToType), we need to synthesize a call to the
2796  // conversion function and attempt copy initialization from it. This
2797  // makes sure that we get the right semantics with respect to
2798  // lvalues/rvalues and the type. Fortunately, we can allocate this
2799  // call on the stack and we don't need its arguments to be
2800  // well-formed.
2801  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2802                            From->getLocStart());
2803  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2804                                CastExpr::CK_FunctionToPointerDecay,
2805                                &ConversionRef, false);
2806
2807  // Note that it is safe to allocate CallExpr on the stack here because
2808  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2809  // allocator).
2810  CallExpr Call(Context, &ConversionFn, 0, 0,
2811                Conversion->getConversionType().getNonReferenceType(),
2812                From->getLocStart());
2813  ImplicitConversionSequence ICS =
2814    TryCopyInitialization(&Call, ToType,
2815                          /*SuppressUserConversions=*/true,
2816                          /*ForceRValue=*/false,
2817                          /*InOverloadResolution=*/false);
2818
2819  switch (ICS.getKind()) {
2820  case ImplicitConversionSequence::StandardConversion:
2821    Candidate.FinalConversion = ICS.Standard;
2822    break;
2823
2824  case ImplicitConversionSequence::BadConversion:
2825    Candidate.Viable = false;
2826    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2827    break;
2828
2829  default:
2830    assert(false &&
2831           "Can only end up with a standard conversion sequence or failure");
2832  }
2833}
2834
2835/// \brief Adds a conversion function template specialization
2836/// candidate to the overload set, using template argument deduction
2837/// to deduce the template arguments of the conversion function
2838/// template from the type that we are converting to (C++
2839/// [temp.deduct.conv]).
2840void
2841Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2842                                     DeclAccessPair FoundDecl,
2843                                     CXXRecordDecl *ActingDC,
2844                                     Expr *From, QualType ToType,
2845                                     OverloadCandidateSet &CandidateSet) {
2846  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2847         "Only conversion function templates permitted here");
2848
2849  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2850    return;
2851
2852  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2853  CXXConversionDecl *Specialization = 0;
2854  if (TemplateDeductionResult Result
2855        = DeduceTemplateArguments(FunctionTemplate, ToType,
2856                                  Specialization, Info)) {
2857    // FIXME: Record what happened with template argument deduction, so
2858    // that we can give the user a beautiful diagnostic.
2859    (void)Result;
2860    return;
2861  }
2862
2863  // Add the conversion function template specialization produced by
2864  // template argument deduction as a candidate.
2865  assert(Specialization && "Missing function template specialization?");
2866  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
2867                         CandidateSet);
2868}
2869
2870/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2871/// converts the given @c Object to a function pointer via the
2872/// conversion function @c Conversion, and then attempts to call it
2873/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2874/// the type of function that we'll eventually be calling.
2875void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2876                                 DeclAccessPair FoundDecl,
2877                                 CXXRecordDecl *ActingContext,
2878                                 const FunctionProtoType *Proto,
2879                                 QualType ObjectType,
2880                                 Expr **Args, unsigned NumArgs,
2881                                 OverloadCandidateSet& CandidateSet) {
2882  if (!CandidateSet.isNewCandidate(Conversion))
2883    return;
2884
2885  // Overload resolution is always an unevaluated context.
2886  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2887
2888  CandidateSet.push_back(OverloadCandidate());
2889  OverloadCandidate& Candidate = CandidateSet.back();
2890  Candidate.FoundDecl = FoundDecl;
2891  Candidate.Function = 0;
2892  Candidate.Surrogate = Conversion;
2893  Candidate.Viable = true;
2894  Candidate.IsSurrogate = true;
2895  Candidate.IgnoreObjectArgument = false;
2896  Candidate.Conversions.resize(NumArgs + 1);
2897
2898  // Determine the implicit conversion sequence for the implicit
2899  // object parameter.
2900  ImplicitConversionSequence ObjectInit
2901    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2902  if (ObjectInit.isBad()) {
2903    Candidate.Viable = false;
2904    Candidate.FailureKind = ovl_fail_bad_conversion;
2905    Candidate.Conversions[0] = ObjectInit;
2906    return;
2907  }
2908
2909  // The first conversion is actually a user-defined conversion whose
2910  // first conversion is ObjectInit's standard conversion (which is
2911  // effectively a reference binding). Record it as such.
2912  Candidate.Conversions[0].setUserDefined();
2913  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2914  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2915  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2916  Candidate.Conversions[0].UserDefined.After
2917    = Candidate.Conversions[0].UserDefined.Before;
2918  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2919
2920  // Find the
2921  unsigned NumArgsInProto = Proto->getNumArgs();
2922
2923  // (C++ 13.3.2p2): A candidate function having fewer than m
2924  // parameters is viable only if it has an ellipsis in its parameter
2925  // list (8.3.5).
2926  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2927    Candidate.Viable = false;
2928    Candidate.FailureKind = ovl_fail_too_many_arguments;
2929    return;
2930  }
2931
2932  // Function types don't have any default arguments, so just check if
2933  // we have enough arguments.
2934  if (NumArgs < NumArgsInProto) {
2935    // Not enough arguments.
2936    Candidate.Viable = false;
2937    Candidate.FailureKind = ovl_fail_too_few_arguments;
2938    return;
2939  }
2940
2941  // Determine the implicit conversion sequences for each of the
2942  // arguments.
2943  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2944    if (ArgIdx < NumArgsInProto) {
2945      // (C++ 13.3.2p3): for F to be a viable function, there shall
2946      // exist for each argument an implicit conversion sequence
2947      // (13.3.3.1) that converts that argument to the corresponding
2948      // parameter of F.
2949      QualType ParamType = Proto->getArgType(ArgIdx);
2950      Candidate.Conversions[ArgIdx + 1]
2951        = TryCopyInitialization(Args[ArgIdx], ParamType,
2952                                /*SuppressUserConversions=*/false,
2953                                /*ForceRValue=*/false,
2954                                /*InOverloadResolution=*/false);
2955      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2956        Candidate.Viable = false;
2957        Candidate.FailureKind = ovl_fail_bad_conversion;
2958        break;
2959      }
2960    } else {
2961      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2962      // argument for which there is no corresponding parameter is
2963      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2964      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2965    }
2966  }
2967}
2968
2969// FIXME: This will eventually be removed, once we've migrated all of the
2970// operator overloading logic over to the scheme used by binary operators, which
2971// works for template instantiation.
2972void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2973                                 SourceLocation OpLoc,
2974                                 Expr **Args, unsigned NumArgs,
2975                                 OverloadCandidateSet& CandidateSet,
2976                                 SourceRange OpRange) {
2977  UnresolvedSet<16> Fns;
2978
2979  QualType T1 = Args[0]->getType();
2980  QualType T2;
2981  if (NumArgs > 1)
2982    T2 = Args[1]->getType();
2983
2984  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2985  if (S)
2986    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
2987  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
2988  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
2989                                       CandidateSet);
2990  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2991  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2992}
2993
2994/// \brief Add overload candidates for overloaded operators that are
2995/// member functions.
2996///
2997/// Add the overloaded operator candidates that are member functions
2998/// for the operator Op that was used in an operator expression such
2999/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3000/// CandidateSet will store the added overload candidates. (C++
3001/// [over.match.oper]).
3002void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3003                                       SourceLocation OpLoc,
3004                                       Expr **Args, unsigned NumArgs,
3005                                       OverloadCandidateSet& CandidateSet,
3006                                       SourceRange OpRange) {
3007  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3008
3009  // C++ [over.match.oper]p3:
3010  //   For a unary operator @ with an operand of a type whose
3011  //   cv-unqualified version is T1, and for a binary operator @ with
3012  //   a left operand of a type whose cv-unqualified version is T1 and
3013  //   a right operand of a type whose cv-unqualified version is T2,
3014  //   three sets of candidate functions, designated member
3015  //   candidates, non-member candidates and built-in candidates, are
3016  //   constructed as follows:
3017  QualType T1 = Args[0]->getType();
3018  QualType T2;
3019  if (NumArgs > 1)
3020    T2 = Args[1]->getType();
3021
3022  //     -- If T1 is a class type, the set of member candidates is the
3023  //        result of the qualified lookup of T1::operator@
3024  //        (13.3.1.1.1); otherwise, the set of member candidates is
3025  //        empty.
3026  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3027    // Complete the type if it can be completed. Otherwise, we're done.
3028    if (RequireCompleteType(OpLoc, T1, PDiag()))
3029      return;
3030
3031    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3032    LookupQualifiedName(Operators, T1Rec->getDecl());
3033    Operators.suppressDiagnostics();
3034
3035    for (LookupResult::iterator Oper = Operators.begin(),
3036                             OperEnd = Operators.end();
3037         Oper != OperEnd;
3038         ++Oper)
3039      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3040                         Args + 1, NumArgs - 1, CandidateSet,
3041                         /* SuppressUserConversions = */ false);
3042  }
3043}
3044
3045/// AddBuiltinCandidate - Add a candidate for a built-in
3046/// operator. ResultTy and ParamTys are the result and parameter types
3047/// of the built-in candidate, respectively. Args and NumArgs are the
3048/// arguments being passed to the candidate. IsAssignmentOperator
3049/// should be true when this built-in candidate is an assignment
3050/// operator. NumContextualBoolArguments is the number of arguments
3051/// (at the beginning of the argument list) that will be contextually
3052/// converted to bool.
3053void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3054                               Expr **Args, unsigned NumArgs,
3055                               OverloadCandidateSet& CandidateSet,
3056                               bool IsAssignmentOperator,
3057                               unsigned NumContextualBoolArguments) {
3058  // Overload resolution is always an unevaluated context.
3059  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3060
3061  // Add this candidate
3062  CandidateSet.push_back(OverloadCandidate());
3063  OverloadCandidate& Candidate = CandidateSet.back();
3064  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3065  Candidate.Function = 0;
3066  Candidate.IsSurrogate = false;
3067  Candidate.IgnoreObjectArgument = false;
3068  Candidate.BuiltinTypes.ResultTy = ResultTy;
3069  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3070    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3071
3072  // Determine the implicit conversion sequences for each of the
3073  // arguments.
3074  Candidate.Viable = true;
3075  Candidate.Conversions.resize(NumArgs);
3076  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3077    // C++ [over.match.oper]p4:
3078    //   For the built-in assignment operators, conversions of the
3079    //   left operand are restricted as follows:
3080    //     -- no temporaries are introduced to hold the left operand, and
3081    //     -- no user-defined conversions are applied to the left
3082    //        operand to achieve a type match with the left-most
3083    //        parameter of a built-in candidate.
3084    //
3085    // We block these conversions by turning off user-defined
3086    // conversions, since that is the only way that initialization of
3087    // a reference to a non-class type can occur from something that
3088    // is not of the same type.
3089    if (ArgIdx < NumContextualBoolArguments) {
3090      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3091             "Contextual conversion to bool requires bool type");
3092      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3093    } else {
3094      Candidate.Conversions[ArgIdx]
3095        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3096                                ArgIdx == 0 && IsAssignmentOperator,
3097                                /*ForceRValue=*/false,
3098                                /*InOverloadResolution=*/false);
3099    }
3100    if (Candidate.Conversions[ArgIdx].isBad()) {
3101      Candidate.Viable = false;
3102      Candidate.FailureKind = ovl_fail_bad_conversion;
3103      break;
3104    }
3105  }
3106}
3107
3108/// BuiltinCandidateTypeSet - A set of types that will be used for the
3109/// candidate operator functions for built-in operators (C++
3110/// [over.built]). The types are separated into pointer types and
3111/// enumeration types.
3112class BuiltinCandidateTypeSet  {
3113  /// TypeSet - A set of types.
3114  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3115
3116  /// PointerTypes - The set of pointer types that will be used in the
3117  /// built-in candidates.
3118  TypeSet PointerTypes;
3119
3120  /// MemberPointerTypes - The set of member pointer types that will be
3121  /// used in the built-in candidates.
3122  TypeSet MemberPointerTypes;
3123
3124  /// EnumerationTypes - The set of enumeration types that will be
3125  /// used in the built-in candidates.
3126  TypeSet EnumerationTypes;
3127
3128  /// Sema - The semantic analysis instance where we are building the
3129  /// candidate type set.
3130  Sema &SemaRef;
3131
3132  /// Context - The AST context in which we will build the type sets.
3133  ASTContext &Context;
3134
3135  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3136                                               const Qualifiers &VisibleQuals);
3137  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3138
3139public:
3140  /// iterator - Iterates through the types that are part of the set.
3141  typedef TypeSet::iterator iterator;
3142
3143  BuiltinCandidateTypeSet(Sema &SemaRef)
3144    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3145
3146  void AddTypesConvertedFrom(QualType Ty,
3147                             SourceLocation Loc,
3148                             bool AllowUserConversions,
3149                             bool AllowExplicitConversions,
3150                             const Qualifiers &VisibleTypeConversionsQuals);
3151
3152  /// pointer_begin - First pointer type found;
3153  iterator pointer_begin() { return PointerTypes.begin(); }
3154
3155  /// pointer_end - Past the last pointer type found;
3156  iterator pointer_end() { return PointerTypes.end(); }
3157
3158  /// member_pointer_begin - First member pointer type found;
3159  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3160
3161  /// member_pointer_end - Past the last member pointer type found;
3162  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3163
3164  /// enumeration_begin - First enumeration type found;
3165  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3166
3167  /// enumeration_end - Past the last enumeration type found;
3168  iterator enumeration_end() { return EnumerationTypes.end(); }
3169};
3170
3171/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3172/// the set of pointer types along with any more-qualified variants of
3173/// that type. For example, if @p Ty is "int const *", this routine
3174/// will add "int const *", "int const volatile *", "int const
3175/// restrict *", and "int const volatile restrict *" to the set of
3176/// pointer types. Returns true if the add of @p Ty itself succeeded,
3177/// false otherwise.
3178///
3179/// FIXME: what to do about extended qualifiers?
3180bool
3181BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3182                                             const Qualifiers &VisibleQuals) {
3183
3184  // Insert this type.
3185  if (!PointerTypes.insert(Ty))
3186    return false;
3187
3188  const PointerType *PointerTy = Ty->getAs<PointerType>();
3189  assert(PointerTy && "type was not a pointer type!");
3190
3191  QualType PointeeTy = PointerTy->getPointeeType();
3192  // Don't add qualified variants of arrays. For one, they're not allowed
3193  // (the qualifier would sink to the element type), and for another, the
3194  // only overload situation where it matters is subscript or pointer +- int,
3195  // and those shouldn't have qualifier variants anyway.
3196  if (PointeeTy->isArrayType())
3197    return true;
3198  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3199  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3200    BaseCVR = Array->getElementType().getCVRQualifiers();
3201  bool hasVolatile = VisibleQuals.hasVolatile();
3202  bool hasRestrict = VisibleQuals.hasRestrict();
3203
3204  // Iterate through all strict supersets of BaseCVR.
3205  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3206    if ((CVR | BaseCVR) != CVR) continue;
3207    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3208    // in the types.
3209    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3210    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3211    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3212    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3213  }
3214
3215  return true;
3216}
3217
3218/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3219/// to the set of pointer types along with any more-qualified variants of
3220/// that type. For example, if @p Ty is "int const *", this routine
3221/// will add "int const *", "int const volatile *", "int const
3222/// restrict *", and "int const volatile restrict *" to the set of
3223/// pointer types. Returns true if the add of @p Ty itself succeeded,
3224/// false otherwise.
3225///
3226/// FIXME: what to do about extended qualifiers?
3227bool
3228BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3229    QualType Ty) {
3230  // Insert this type.
3231  if (!MemberPointerTypes.insert(Ty))
3232    return false;
3233
3234  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3235  assert(PointerTy && "type was not a member pointer type!");
3236
3237  QualType PointeeTy = PointerTy->getPointeeType();
3238  // Don't add qualified variants of arrays. For one, they're not allowed
3239  // (the qualifier would sink to the element type), and for another, the
3240  // only overload situation where it matters is subscript or pointer +- int,
3241  // and those shouldn't have qualifier variants anyway.
3242  if (PointeeTy->isArrayType())
3243    return true;
3244  const Type *ClassTy = PointerTy->getClass();
3245
3246  // Iterate through all strict supersets of the pointee type's CVR
3247  // qualifiers.
3248  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3249  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3250    if ((CVR | BaseCVR) != CVR) continue;
3251
3252    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3253    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3254  }
3255
3256  return true;
3257}
3258
3259/// AddTypesConvertedFrom - Add each of the types to which the type @p
3260/// Ty can be implicit converted to the given set of @p Types. We're
3261/// primarily interested in pointer types and enumeration types. We also
3262/// take member pointer types, for the conditional operator.
3263/// AllowUserConversions is true if we should look at the conversion
3264/// functions of a class type, and AllowExplicitConversions if we
3265/// should also include the explicit conversion functions of a class
3266/// type.
3267void
3268BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3269                                               SourceLocation Loc,
3270                                               bool AllowUserConversions,
3271                                               bool AllowExplicitConversions,
3272                                               const Qualifiers &VisibleQuals) {
3273  // Only deal with canonical types.
3274  Ty = Context.getCanonicalType(Ty);
3275
3276  // Look through reference types; they aren't part of the type of an
3277  // expression for the purposes of conversions.
3278  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3279    Ty = RefTy->getPointeeType();
3280
3281  // We don't care about qualifiers on the type.
3282  Ty = Ty.getLocalUnqualifiedType();
3283
3284  // If we're dealing with an array type, decay to the pointer.
3285  if (Ty->isArrayType())
3286    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3287
3288  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3289    QualType PointeeTy = PointerTy->getPointeeType();
3290
3291    // Insert our type, and its more-qualified variants, into the set
3292    // of types.
3293    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3294      return;
3295  } else if (Ty->isMemberPointerType()) {
3296    // Member pointers are far easier, since the pointee can't be converted.
3297    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3298      return;
3299  } else if (Ty->isEnumeralType()) {
3300    EnumerationTypes.insert(Ty);
3301  } else if (AllowUserConversions) {
3302    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3303      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3304        // No conversion functions in incomplete types.
3305        return;
3306      }
3307
3308      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3309      const UnresolvedSetImpl *Conversions
3310        = ClassDecl->getVisibleConversionFunctions();
3311      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3312             E = Conversions->end(); I != E; ++I) {
3313        NamedDecl *D = I.getDecl();
3314        if (isa<UsingShadowDecl>(D))
3315          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3316
3317        // Skip conversion function templates; they don't tell us anything
3318        // about which builtin types we can convert to.
3319        if (isa<FunctionTemplateDecl>(D))
3320          continue;
3321
3322        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3323        if (AllowExplicitConversions || !Conv->isExplicit()) {
3324          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3325                                VisibleQuals);
3326        }
3327      }
3328    }
3329  }
3330}
3331
3332/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3333/// the volatile- and non-volatile-qualified assignment operators for the
3334/// given type to the candidate set.
3335static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3336                                                   QualType T,
3337                                                   Expr **Args,
3338                                                   unsigned NumArgs,
3339                                    OverloadCandidateSet &CandidateSet) {
3340  QualType ParamTypes[2];
3341
3342  // T& operator=(T&, T)
3343  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3344  ParamTypes[1] = T;
3345  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3346                        /*IsAssignmentOperator=*/true);
3347
3348  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3349    // volatile T& operator=(volatile T&, T)
3350    ParamTypes[0]
3351      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3352    ParamTypes[1] = T;
3353    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3354                          /*IsAssignmentOperator=*/true);
3355  }
3356}
3357
3358/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3359/// if any, found in visible type conversion functions found in ArgExpr's type.
3360static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3361    Qualifiers VRQuals;
3362    const RecordType *TyRec;
3363    if (const MemberPointerType *RHSMPType =
3364        ArgExpr->getType()->getAs<MemberPointerType>())
3365      TyRec = cast<RecordType>(RHSMPType->getClass());
3366    else
3367      TyRec = ArgExpr->getType()->getAs<RecordType>();
3368    if (!TyRec) {
3369      // Just to be safe, assume the worst case.
3370      VRQuals.addVolatile();
3371      VRQuals.addRestrict();
3372      return VRQuals;
3373    }
3374
3375    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3376    if (!ClassDecl->hasDefinition())
3377      return VRQuals;
3378
3379    const UnresolvedSetImpl *Conversions =
3380      ClassDecl->getVisibleConversionFunctions();
3381
3382    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3383           E = Conversions->end(); I != E; ++I) {
3384      NamedDecl *D = I.getDecl();
3385      if (isa<UsingShadowDecl>(D))
3386        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3387      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3388        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3389        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3390          CanTy = ResTypeRef->getPointeeType();
3391        // Need to go down the pointer/mempointer chain and add qualifiers
3392        // as see them.
3393        bool done = false;
3394        while (!done) {
3395          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3396            CanTy = ResTypePtr->getPointeeType();
3397          else if (const MemberPointerType *ResTypeMPtr =
3398                CanTy->getAs<MemberPointerType>())
3399            CanTy = ResTypeMPtr->getPointeeType();
3400          else
3401            done = true;
3402          if (CanTy.isVolatileQualified())
3403            VRQuals.addVolatile();
3404          if (CanTy.isRestrictQualified())
3405            VRQuals.addRestrict();
3406          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3407            return VRQuals;
3408        }
3409      }
3410    }
3411    return VRQuals;
3412}
3413
3414/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3415/// operator overloads to the candidate set (C++ [over.built]), based
3416/// on the operator @p Op and the arguments given. For example, if the
3417/// operator is a binary '+', this routine might add "int
3418/// operator+(int, int)" to cover integer addition.
3419void
3420Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3421                                   SourceLocation OpLoc,
3422                                   Expr **Args, unsigned NumArgs,
3423                                   OverloadCandidateSet& CandidateSet) {
3424  // The set of "promoted arithmetic types", which are the arithmetic
3425  // types are that preserved by promotion (C++ [over.built]p2). Note
3426  // that the first few of these types are the promoted integral
3427  // types; these types need to be first.
3428  // FIXME: What about complex?
3429  const unsigned FirstIntegralType = 0;
3430  const unsigned LastIntegralType = 13;
3431  const unsigned FirstPromotedIntegralType = 7,
3432                 LastPromotedIntegralType = 13;
3433  const unsigned FirstPromotedArithmeticType = 7,
3434                 LastPromotedArithmeticType = 16;
3435  const unsigned NumArithmeticTypes = 16;
3436  QualType ArithmeticTypes[NumArithmeticTypes] = {
3437    Context.BoolTy, Context.CharTy, Context.WCharTy,
3438// FIXME:   Context.Char16Ty, Context.Char32Ty,
3439    Context.SignedCharTy, Context.ShortTy,
3440    Context.UnsignedCharTy, Context.UnsignedShortTy,
3441    Context.IntTy, Context.LongTy, Context.LongLongTy,
3442    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3443    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3444  };
3445  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3446         "Invalid first promoted integral type");
3447  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3448           == Context.UnsignedLongLongTy &&
3449         "Invalid last promoted integral type");
3450  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3451         "Invalid first promoted arithmetic type");
3452  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3453            == Context.LongDoubleTy &&
3454         "Invalid last promoted arithmetic type");
3455
3456  // Find all of the types that the arguments can convert to, but only
3457  // if the operator we're looking at has built-in operator candidates
3458  // that make use of these types.
3459  Qualifiers VisibleTypeConversionsQuals;
3460  VisibleTypeConversionsQuals.addConst();
3461  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3462    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3463
3464  BuiltinCandidateTypeSet CandidateTypes(*this);
3465  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3466      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3467      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3468      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3469      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3470      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3471    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3472      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3473                                           OpLoc,
3474                                           true,
3475                                           (Op == OO_Exclaim ||
3476                                            Op == OO_AmpAmp ||
3477                                            Op == OO_PipePipe),
3478                                           VisibleTypeConversionsQuals);
3479  }
3480
3481  bool isComparison = false;
3482  switch (Op) {
3483  case OO_None:
3484  case NUM_OVERLOADED_OPERATORS:
3485    assert(false && "Expected an overloaded operator");
3486    break;
3487
3488  case OO_Star: // '*' is either unary or binary
3489    if (NumArgs == 1)
3490      goto UnaryStar;
3491    else
3492      goto BinaryStar;
3493    break;
3494
3495  case OO_Plus: // '+' is either unary or binary
3496    if (NumArgs == 1)
3497      goto UnaryPlus;
3498    else
3499      goto BinaryPlus;
3500    break;
3501
3502  case OO_Minus: // '-' is either unary or binary
3503    if (NumArgs == 1)
3504      goto UnaryMinus;
3505    else
3506      goto BinaryMinus;
3507    break;
3508
3509  case OO_Amp: // '&' is either unary or binary
3510    if (NumArgs == 1)
3511      goto UnaryAmp;
3512    else
3513      goto BinaryAmp;
3514
3515  case OO_PlusPlus:
3516  case OO_MinusMinus:
3517    // C++ [over.built]p3:
3518    //
3519    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3520    //   is either volatile or empty, there exist candidate operator
3521    //   functions of the form
3522    //
3523    //       VQ T&      operator++(VQ T&);
3524    //       T          operator++(VQ T&, int);
3525    //
3526    // C++ [over.built]p4:
3527    //
3528    //   For every pair (T, VQ), where T is an arithmetic type other
3529    //   than bool, and VQ is either volatile or empty, there exist
3530    //   candidate operator functions of the form
3531    //
3532    //       VQ T&      operator--(VQ T&);
3533    //       T          operator--(VQ T&, int);
3534    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3535         Arith < NumArithmeticTypes; ++Arith) {
3536      QualType ArithTy = ArithmeticTypes[Arith];
3537      QualType ParamTypes[2]
3538        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3539
3540      // Non-volatile version.
3541      if (NumArgs == 1)
3542        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3543      else
3544        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3545      // heuristic to reduce number of builtin candidates in the set.
3546      // Add volatile version only if there are conversions to a volatile type.
3547      if (VisibleTypeConversionsQuals.hasVolatile()) {
3548        // Volatile version
3549        ParamTypes[0]
3550          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3551        if (NumArgs == 1)
3552          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3553        else
3554          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3555      }
3556    }
3557
3558    // C++ [over.built]p5:
3559    //
3560    //   For every pair (T, VQ), where T is a cv-qualified or
3561    //   cv-unqualified object type, and VQ is either volatile or
3562    //   empty, there exist candidate operator functions of the form
3563    //
3564    //       T*VQ&      operator++(T*VQ&);
3565    //       T*VQ&      operator--(T*VQ&);
3566    //       T*         operator++(T*VQ&, int);
3567    //       T*         operator--(T*VQ&, int);
3568    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3569         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3570      // Skip pointer types that aren't pointers to object types.
3571      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3572        continue;
3573
3574      QualType ParamTypes[2] = {
3575        Context.getLValueReferenceType(*Ptr), Context.IntTy
3576      };
3577
3578      // Without volatile
3579      if (NumArgs == 1)
3580        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3581      else
3582        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3583
3584      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3585          VisibleTypeConversionsQuals.hasVolatile()) {
3586        // With volatile
3587        ParamTypes[0]
3588          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3589        if (NumArgs == 1)
3590          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3591        else
3592          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3593      }
3594    }
3595    break;
3596
3597  UnaryStar:
3598    // C++ [over.built]p6:
3599    //   For every cv-qualified or cv-unqualified object type T, there
3600    //   exist candidate operator functions of the form
3601    //
3602    //       T&         operator*(T*);
3603    //
3604    // C++ [over.built]p7:
3605    //   For every function type T, there exist candidate operator
3606    //   functions of the form
3607    //       T&         operator*(T*);
3608    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3609         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3610      QualType ParamTy = *Ptr;
3611      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3612      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3613                          &ParamTy, Args, 1, CandidateSet);
3614    }
3615    break;
3616
3617  UnaryPlus:
3618    // C++ [over.built]p8:
3619    //   For every type T, there exist candidate operator functions of
3620    //   the form
3621    //
3622    //       T*         operator+(T*);
3623    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3624         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3625      QualType ParamTy = *Ptr;
3626      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3627    }
3628
3629    // Fall through
3630
3631  UnaryMinus:
3632    // C++ [over.built]p9:
3633    //  For every promoted arithmetic type T, there exist candidate
3634    //  operator functions of the form
3635    //
3636    //       T         operator+(T);
3637    //       T         operator-(T);
3638    for (unsigned Arith = FirstPromotedArithmeticType;
3639         Arith < LastPromotedArithmeticType; ++Arith) {
3640      QualType ArithTy = ArithmeticTypes[Arith];
3641      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3642    }
3643    break;
3644
3645  case OO_Tilde:
3646    // C++ [over.built]p10:
3647    //   For every promoted integral type T, there exist candidate
3648    //   operator functions of the form
3649    //
3650    //        T         operator~(T);
3651    for (unsigned Int = FirstPromotedIntegralType;
3652         Int < LastPromotedIntegralType; ++Int) {
3653      QualType IntTy = ArithmeticTypes[Int];
3654      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3655    }
3656    break;
3657
3658  case OO_New:
3659  case OO_Delete:
3660  case OO_Array_New:
3661  case OO_Array_Delete:
3662  case OO_Call:
3663    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3664    break;
3665
3666  case OO_Comma:
3667  UnaryAmp:
3668  case OO_Arrow:
3669    // C++ [over.match.oper]p3:
3670    //   -- For the operator ',', the unary operator '&', or the
3671    //      operator '->', the built-in candidates set is empty.
3672    break;
3673
3674  case OO_EqualEqual:
3675  case OO_ExclaimEqual:
3676    // C++ [over.match.oper]p16:
3677    //   For every pointer to member type T, there exist candidate operator
3678    //   functions of the form
3679    //
3680    //        bool operator==(T,T);
3681    //        bool operator!=(T,T);
3682    for (BuiltinCandidateTypeSet::iterator
3683           MemPtr = CandidateTypes.member_pointer_begin(),
3684           MemPtrEnd = CandidateTypes.member_pointer_end();
3685         MemPtr != MemPtrEnd;
3686         ++MemPtr) {
3687      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3688      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3689    }
3690
3691    // Fall through
3692
3693  case OO_Less:
3694  case OO_Greater:
3695  case OO_LessEqual:
3696  case OO_GreaterEqual:
3697    // C++ [over.built]p15:
3698    //
3699    //   For every pointer or enumeration type T, there exist
3700    //   candidate operator functions of the form
3701    //
3702    //        bool       operator<(T, T);
3703    //        bool       operator>(T, T);
3704    //        bool       operator<=(T, T);
3705    //        bool       operator>=(T, T);
3706    //        bool       operator==(T, T);
3707    //        bool       operator!=(T, T);
3708    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3709         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3710      QualType ParamTypes[2] = { *Ptr, *Ptr };
3711      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3712    }
3713    for (BuiltinCandidateTypeSet::iterator Enum
3714           = CandidateTypes.enumeration_begin();
3715         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3716      QualType ParamTypes[2] = { *Enum, *Enum };
3717      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3718    }
3719
3720    // Fall through.
3721    isComparison = true;
3722
3723  BinaryPlus:
3724  BinaryMinus:
3725    if (!isComparison) {
3726      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3727
3728      // C++ [over.built]p13:
3729      //
3730      //   For every cv-qualified or cv-unqualified object type T
3731      //   there exist candidate operator functions of the form
3732      //
3733      //      T*         operator+(T*, ptrdiff_t);
3734      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3735      //      T*         operator-(T*, ptrdiff_t);
3736      //      T*         operator+(ptrdiff_t, T*);
3737      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3738      //
3739      // C++ [over.built]p14:
3740      //
3741      //   For every T, where T is a pointer to object type, there
3742      //   exist candidate operator functions of the form
3743      //
3744      //      ptrdiff_t  operator-(T, T);
3745      for (BuiltinCandidateTypeSet::iterator Ptr
3746             = CandidateTypes.pointer_begin();
3747           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3748        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3749
3750        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3751        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3752
3753        if (Op == OO_Plus) {
3754          // T* operator+(ptrdiff_t, T*);
3755          ParamTypes[0] = ParamTypes[1];
3756          ParamTypes[1] = *Ptr;
3757          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3758        } else {
3759          // ptrdiff_t operator-(T, T);
3760          ParamTypes[1] = *Ptr;
3761          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3762                              Args, 2, CandidateSet);
3763        }
3764      }
3765    }
3766    // Fall through
3767
3768  case OO_Slash:
3769  BinaryStar:
3770  Conditional:
3771    // C++ [over.built]p12:
3772    //
3773    //   For every pair of promoted arithmetic types L and R, there
3774    //   exist candidate operator functions of the form
3775    //
3776    //        LR         operator*(L, R);
3777    //        LR         operator/(L, R);
3778    //        LR         operator+(L, R);
3779    //        LR         operator-(L, R);
3780    //        bool       operator<(L, R);
3781    //        bool       operator>(L, R);
3782    //        bool       operator<=(L, R);
3783    //        bool       operator>=(L, R);
3784    //        bool       operator==(L, R);
3785    //        bool       operator!=(L, R);
3786    //
3787    //   where LR is the result of the usual arithmetic conversions
3788    //   between types L and R.
3789    //
3790    // C++ [over.built]p24:
3791    //
3792    //   For every pair of promoted arithmetic types L and R, there exist
3793    //   candidate operator functions of the form
3794    //
3795    //        LR       operator?(bool, L, R);
3796    //
3797    //   where LR is the result of the usual arithmetic conversions
3798    //   between types L and R.
3799    // Our candidates ignore the first parameter.
3800    for (unsigned Left = FirstPromotedArithmeticType;
3801         Left < LastPromotedArithmeticType; ++Left) {
3802      for (unsigned Right = FirstPromotedArithmeticType;
3803           Right < LastPromotedArithmeticType; ++Right) {
3804        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3805        QualType Result
3806          = isComparison
3807          ? Context.BoolTy
3808          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3809        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3810      }
3811    }
3812    break;
3813
3814  case OO_Percent:
3815  BinaryAmp:
3816  case OO_Caret:
3817  case OO_Pipe:
3818  case OO_LessLess:
3819  case OO_GreaterGreater:
3820    // C++ [over.built]p17:
3821    //
3822    //   For every pair of promoted integral types L and R, there
3823    //   exist candidate operator functions of the form
3824    //
3825    //      LR         operator%(L, R);
3826    //      LR         operator&(L, R);
3827    //      LR         operator^(L, R);
3828    //      LR         operator|(L, R);
3829    //      L          operator<<(L, R);
3830    //      L          operator>>(L, R);
3831    //
3832    //   where LR is the result of the usual arithmetic conversions
3833    //   between types L and R.
3834    for (unsigned Left = FirstPromotedIntegralType;
3835         Left < LastPromotedIntegralType; ++Left) {
3836      for (unsigned Right = FirstPromotedIntegralType;
3837           Right < LastPromotedIntegralType; ++Right) {
3838        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3839        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3840            ? LandR[0]
3841            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3842        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3843      }
3844    }
3845    break;
3846
3847  case OO_Equal:
3848    // C++ [over.built]p20:
3849    //
3850    //   For every pair (T, VQ), where T is an enumeration or
3851    //   pointer to member type and VQ is either volatile or
3852    //   empty, there exist candidate operator functions of the form
3853    //
3854    //        VQ T&      operator=(VQ T&, T);
3855    for (BuiltinCandidateTypeSet::iterator
3856           Enum = CandidateTypes.enumeration_begin(),
3857           EnumEnd = CandidateTypes.enumeration_end();
3858         Enum != EnumEnd; ++Enum)
3859      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3860                                             CandidateSet);
3861    for (BuiltinCandidateTypeSet::iterator
3862           MemPtr = CandidateTypes.member_pointer_begin(),
3863         MemPtrEnd = CandidateTypes.member_pointer_end();
3864         MemPtr != MemPtrEnd; ++MemPtr)
3865      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3866                                             CandidateSet);
3867      // Fall through.
3868
3869  case OO_PlusEqual:
3870  case OO_MinusEqual:
3871    // C++ [over.built]p19:
3872    //
3873    //   For every pair (T, VQ), where T is any type and VQ is either
3874    //   volatile or empty, there exist candidate operator functions
3875    //   of the form
3876    //
3877    //        T*VQ&      operator=(T*VQ&, T*);
3878    //
3879    // C++ [over.built]p21:
3880    //
3881    //   For every pair (T, VQ), where T is a cv-qualified or
3882    //   cv-unqualified object type and VQ is either volatile or
3883    //   empty, there exist candidate operator functions of the form
3884    //
3885    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3886    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3887    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3888         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3889      QualType ParamTypes[2];
3890      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3891
3892      // non-volatile version
3893      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3894      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3895                          /*IsAssigmentOperator=*/Op == OO_Equal);
3896
3897      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3898          VisibleTypeConversionsQuals.hasVolatile()) {
3899        // volatile version
3900        ParamTypes[0]
3901          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3902        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3903                            /*IsAssigmentOperator=*/Op == OO_Equal);
3904      }
3905    }
3906    // Fall through.
3907
3908  case OO_StarEqual:
3909  case OO_SlashEqual:
3910    // C++ [over.built]p18:
3911    //
3912    //   For every triple (L, VQ, R), where L is an arithmetic type,
3913    //   VQ is either volatile or empty, and R is a promoted
3914    //   arithmetic type, there exist candidate operator functions of
3915    //   the form
3916    //
3917    //        VQ L&      operator=(VQ L&, R);
3918    //        VQ L&      operator*=(VQ L&, R);
3919    //        VQ L&      operator/=(VQ L&, R);
3920    //        VQ L&      operator+=(VQ L&, R);
3921    //        VQ L&      operator-=(VQ L&, R);
3922    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3923      for (unsigned Right = FirstPromotedArithmeticType;
3924           Right < LastPromotedArithmeticType; ++Right) {
3925        QualType ParamTypes[2];
3926        ParamTypes[1] = ArithmeticTypes[Right];
3927
3928        // Add this built-in operator as a candidate (VQ is empty).
3929        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3930        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3931                            /*IsAssigmentOperator=*/Op == OO_Equal);
3932
3933        // Add this built-in operator as a candidate (VQ is 'volatile').
3934        if (VisibleTypeConversionsQuals.hasVolatile()) {
3935          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3936          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3937          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3938                              /*IsAssigmentOperator=*/Op == OO_Equal);
3939        }
3940      }
3941    }
3942    break;
3943
3944  case OO_PercentEqual:
3945  case OO_LessLessEqual:
3946  case OO_GreaterGreaterEqual:
3947  case OO_AmpEqual:
3948  case OO_CaretEqual:
3949  case OO_PipeEqual:
3950    // C++ [over.built]p22:
3951    //
3952    //   For every triple (L, VQ, R), where L is an integral type, VQ
3953    //   is either volatile or empty, and R is a promoted integral
3954    //   type, there exist candidate operator functions of the form
3955    //
3956    //        VQ L&       operator%=(VQ L&, R);
3957    //        VQ L&       operator<<=(VQ L&, R);
3958    //        VQ L&       operator>>=(VQ L&, R);
3959    //        VQ L&       operator&=(VQ L&, R);
3960    //        VQ L&       operator^=(VQ L&, R);
3961    //        VQ L&       operator|=(VQ L&, R);
3962    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3963      for (unsigned Right = FirstPromotedIntegralType;
3964           Right < LastPromotedIntegralType; ++Right) {
3965        QualType ParamTypes[2];
3966        ParamTypes[1] = ArithmeticTypes[Right];
3967
3968        // Add this built-in operator as a candidate (VQ is empty).
3969        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3970        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3971        if (VisibleTypeConversionsQuals.hasVolatile()) {
3972          // Add this built-in operator as a candidate (VQ is 'volatile').
3973          ParamTypes[0] = ArithmeticTypes[Left];
3974          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3975          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3976          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3977        }
3978      }
3979    }
3980    break;
3981
3982  case OO_Exclaim: {
3983    // C++ [over.operator]p23:
3984    //
3985    //   There also exist candidate operator functions of the form
3986    //
3987    //        bool        operator!(bool);
3988    //        bool        operator&&(bool, bool);     [BELOW]
3989    //        bool        operator||(bool, bool);     [BELOW]
3990    QualType ParamTy = Context.BoolTy;
3991    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3992                        /*IsAssignmentOperator=*/false,
3993                        /*NumContextualBoolArguments=*/1);
3994    break;
3995  }
3996
3997  case OO_AmpAmp:
3998  case OO_PipePipe: {
3999    // C++ [over.operator]p23:
4000    //
4001    //   There also exist candidate operator functions of the form
4002    //
4003    //        bool        operator!(bool);            [ABOVE]
4004    //        bool        operator&&(bool, bool);
4005    //        bool        operator||(bool, bool);
4006    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4007    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4008                        /*IsAssignmentOperator=*/false,
4009                        /*NumContextualBoolArguments=*/2);
4010    break;
4011  }
4012
4013  case OO_Subscript:
4014    // C++ [over.built]p13:
4015    //
4016    //   For every cv-qualified or cv-unqualified object type T there
4017    //   exist candidate operator functions of the form
4018    //
4019    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4020    //        T&         operator[](T*, ptrdiff_t);
4021    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4022    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4023    //        T&         operator[](ptrdiff_t, T*);
4024    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4025         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4026      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4027      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4028      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4029
4030      // T& operator[](T*, ptrdiff_t)
4031      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4032
4033      // T& operator[](ptrdiff_t, T*);
4034      ParamTypes[0] = ParamTypes[1];
4035      ParamTypes[1] = *Ptr;
4036      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4037    }
4038    break;
4039
4040  case OO_ArrowStar:
4041    // C++ [over.built]p11:
4042    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4043    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4044    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4045    //    there exist candidate operator functions of the form
4046    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4047    //    where CV12 is the union of CV1 and CV2.
4048    {
4049      for (BuiltinCandidateTypeSet::iterator Ptr =
4050             CandidateTypes.pointer_begin();
4051           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4052        QualType C1Ty = (*Ptr);
4053        QualType C1;
4054        QualifierCollector Q1;
4055        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4056          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4057          if (!isa<RecordType>(C1))
4058            continue;
4059          // heuristic to reduce number of builtin candidates in the set.
4060          // Add volatile/restrict version only if there are conversions to a
4061          // volatile/restrict type.
4062          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4063            continue;
4064          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4065            continue;
4066        }
4067        for (BuiltinCandidateTypeSet::iterator
4068             MemPtr = CandidateTypes.member_pointer_begin(),
4069             MemPtrEnd = CandidateTypes.member_pointer_end();
4070             MemPtr != MemPtrEnd; ++MemPtr) {
4071          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4072          QualType C2 = QualType(mptr->getClass(), 0);
4073          C2 = C2.getUnqualifiedType();
4074          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4075            break;
4076          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4077          // build CV12 T&
4078          QualType T = mptr->getPointeeType();
4079          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4080              T.isVolatileQualified())
4081            continue;
4082          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4083              T.isRestrictQualified())
4084            continue;
4085          T = Q1.apply(T);
4086          QualType ResultTy = Context.getLValueReferenceType(T);
4087          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4088        }
4089      }
4090    }
4091    break;
4092
4093  case OO_Conditional:
4094    // Note that we don't consider the first argument, since it has been
4095    // contextually converted to bool long ago. The candidates below are
4096    // therefore added as binary.
4097    //
4098    // C++ [over.built]p24:
4099    //   For every type T, where T is a pointer or pointer-to-member type,
4100    //   there exist candidate operator functions of the form
4101    //
4102    //        T        operator?(bool, T, T);
4103    //
4104    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4105         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4106      QualType ParamTypes[2] = { *Ptr, *Ptr };
4107      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4108    }
4109    for (BuiltinCandidateTypeSet::iterator Ptr =
4110           CandidateTypes.member_pointer_begin(),
4111         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4112      QualType ParamTypes[2] = { *Ptr, *Ptr };
4113      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4114    }
4115    goto Conditional;
4116  }
4117}
4118
4119/// \brief Add function candidates found via argument-dependent lookup
4120/// to the set of overloading candidates.
4121///
4122/// This routine performs argument-dependent name lookup based on the
4123/// given function name (which may also be an operator name) and adds
4124/// all of the overload candidates found by ADL to the overload
4125/// candidate set (C++ [basic.lookup.argdep]).
4126void
4127Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4128                                           bool Operator,
4129                                           Expr **Args, unsigned NumArgs,
4130                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4131                                           OverloadCandidateSet& CandidateSet,
4132                                           bool PartialOverloading) {
4133  ADLResult Fns;
4134
4135  // FIXME: This approach for uniquing ADL results (and removing
4136  // redundant candidates from the set) relies on pointer-equality,
4137  // which means we need to key off the canonical decl.  However,
4138  // always going back to the canonical decl might not get us the
4139  // right set of default arguments.  What default arguments are
4140  // we supposed to consider on ADL candidates, anyway?
4141
4142  // FIXME: Pass in the explicit template arguments?
4143  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4144
4145  // Erase all of the candidates we already knew about.
4146  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4147                                   CandEnd = CandidateSet.end();
4148       Cand != CandEnd; ++Cand)
4149    if (Cand->Function) {
4150      Fns.erase(Cand->Function);
4151      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4152        Fns.erase(FunTmpl);
4153    }
4154
4155  // For each of the ADL candidates we found, add it to the overload
4156  // set.
4157  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4158    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4159    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4160      if (ExplicitTemplateArgs)
4161        continue;
4162
4163      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4164                           false, false, PartialOverloading);
4165    } else
4166      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4167                                   FoundDecl, ExplicitTemplateArgs,
4168                                   Args, NumArgs, CandidateSet);
4169  }
4170}
4171
4172/// isBetterOverloadCandidate - Determines whether the first overload
4173/// candidate is a better candidate than the second (C++ 13.3.3p1).
4174bool
4175Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4176                                const OverloadCandidate& Cand2,
4177                                SourceLocation Loc) {
4178  // Define viable functions to be better candidates than non-viable
4179  // functions.
4180  if (!Cand2.Viable)
4181    return Cand1.Viable;
4182  else if (!Cand1.Viable)
4183    return false;
4184
4185  // C++ [over.match.best]p1:
4186  //
4187  //   -- if F is a static member function, ICS1(F) is defined such
4188  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4189  //      any function G, and, symmetrically, ICS1(G) is neither
4190  //      better nor worse than ICS1(F).
4191  unsigned StartArg = 0;
4192  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4193    StartArg = 1;
4194
4195  // C++ [over.match.best]p1:
4196  //   A viable function F1 is defined to be a better function than another
4197  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4198  //   conversion sequence than ICSi(F2), and then...
4199  unsigned NumArgs = Cand1.Conversions.size();
4200  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4201  bool HasBetterConversion = false;
4202  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4203    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4204                                               Cand2.Conversions[ArgIdx])) {
4205    case ImplicitConversionSequence::Better:
4206      // Cand1 has a better conversion sequence.
4207      HasBetterConversion = true;
4208      break;
4209
4210    case ImplicitConversionSequence::Worse:
4211      // Cand1 can't be better than Cand2.
4212      return false;
4213
4214    case ImplicitConversionSequence::Indistinguishable:
4215      // Do nothing.
4216      break;
4217    }
4218  }
4219
4220  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4221  //       ICSj(F2), or, if not that,
4222  if (HasBetterConversion)
4223    return true;
4224
4225  //     - F1 is a non-template function and F2 is a function template
4226  //       specialization, or, if not that,
4227  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4228      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4229    return true;
4230
4231  //   -- F1 and F2 are function template specializations, and the function
4232  //      template for F1 is more specialized than the template for F2
4233  //      according to the partial ordering rules described in 14.5.5.2, or,
4234  //      if not that,
4235  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4236      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4237    if (FunctionTemplateDecl *BetterTemplate
4238          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4239                                       Cand2.Function->getPrimaryTemplate(),
4240                                       Loc,
4241                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4242                                                             : TPOC_Call))
4243      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4244
4245  //   -- the context is an initialization by user-defined conversion
4246  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4247  //      from the return type of F1 to the destination type (i.e.,
4248  //      the type of the entity being initialized) is a better
4249  //      conversion sequence than the standard conversion sequence
4250  //      from the return type of F2 to the destination type.
4251  if (Cand1.Function && Cand2.Function &&
4252      isa<CXXConversionDecl>(Cand1.Function) &&
4253      isa<CXXConversionDecl>(Cand2.Function)) {
4254    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4255                                               Cand2.FinalConversion)) {
4256    case ImplicitConversionSequence::Better:
4257      // Cand1 has a better conversion sequence.
4258      return true;
4259
4260    case ImplicitConversionSequence::Worse:
4261      // Cand1 can't be better than Cand2.
4262      return false;
4263
4264    case ImplicitConversionSequence::Indistinguishable:
4265      // Do nothing
4266      break;
4267    }
4268  }
4269
4270  return false;
4271}
4272
4273/// \brief Computes the best viable function (C++ 13.3.3)
4274/// within an overload candidate set.
4275///
4276/// \param CandidateSet the set of candidate functions.
4277///
4278/// \param Loc the location of the function name (or operator symbol) for
4279/// which overload resolution occurs.
4280///
4281/// \param Best f overload resolution was successful or found a deleted
4282/// function, Best points to the candidate function found.
4283///
4284/// \returns The result of overload resolution.
4285OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4286                                           SourceLocation Loc,
4287                                        OverloadCandidateSet::iterator& Best) {
4288  // Find the best viable function.
4289  Best = CandidateSet.end();
4290  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4291       Cand != CandidateSet.end(); ++Cand) {
4292    if (Cand->Viable) {
4293      if (Best == CandidateSet.end() ||
4294          isBetterOverloadCandidate(*Cand, *Best, Loc))
4295        Best = Cand;
4296    }
4297  }
4298
4299  // If we didn't find any viable functions, abort.
4300  if (Best == CandidateSet.end())
4301    return OR_No_Viable_Function;
4302
4303  // Make sure that this function is better than every other viable
4304  // function. If not, we have an ambiguity.
4305  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4306       Cand != CandidateSet.end(); ++Cand) {
4307    if (Cand->Viable &&
4308        Cand != Best &&
4309        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4310      Best = CandidateSet.end();
4311      return OR_Ambiguous;
4312    }
4313  }
4314
4315  // Best is the best viable function.
4316  if (Best->Function &&
4317      (Best->Function->isDeleted() ||
4318       Best->Function->getAttr<UnavailableAttr>()))
4319    return OR_Deleted;
4320
4321  // C++ [basic.def.odr]p2:
4322  //   An overloaded function is used if it is selected by overload resolution
4323  //   when referred to from a potentially-evaluated expression. [Note: this
4324  //   covers calls to named functions (5.2.2), operator overloading
4325  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4326  //   placement new (5.3.4), as well as non-default initialization (8.5).
4327  if (Best->Function)
4328    MarkDeclarationReferenced(Loc, Best->Function);
4329  return OR_Success;
4330}
4331
4332namespace {
4333
4334enum OverloadCandidateKind {
4335  oc_function,
4336  oc_method,
4337  oc_constructor,
4338  oc_function_template,
4339  oc_method_template,
4340  oc_constructor_template,
4341  oc_implicit_default_constructor,
4342  oc_implicit_copy_constructor,
4343  oc_implicit_copy_assignment
4344};
4345
4346OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4347                                                FunctionDecl *Fn,
4348                                                std::string &Description) {
4349  bool isTemplate = false;
4350
4351  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4352    isTemplate = true;
4353    Description = S.getTemplateArgumentBindingsText(
4354      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4355  }
4356
4357  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4358    if (!Ctor->isImplicit())
4359      return isTemplate ? oc_constructor_template : oc_constructor;
4360
4361    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4362                                     : oc_implicit_default_constructor;
4363  }
4364
4365  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4366    // This actually gets spelled 'candidate function' for now, but
4367    // it doesn't hurt to split it out.
4368    if (!Meth->isImplicit())
4369      return isTemplate ? oc_method_template : oc_method;
4370
4371    assert(Meth->isCopyAssignment()
4372           && "implicit method is not copy assignment operator?");
4373    return oc_implicit_copy_assignment;
4374  }
4375
4376  return isTemplate ? oc_function_template : oc_function;
4377}
4378
4379} // end anonymous namespace
4380
4381// Notes the location of an overload candidate.
4382void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4383  std::string FnDesc;
4384  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4385  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4386    << (unsigned) K << FnDesc;
4387}
4388
4389/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4390/// "lead" diagnostic; it will be given two arguments, the source and
4391/// target types of the conversion.
4392void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4393                                       SourceLocation CaretLoc,
4394                                       const PartialDiagnostic &PDiag) {
4395  Diag(CaretLoc, PDiag)
4396    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4397  for (AmbiguousConversionSequence::const_iterator
4398         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4399    NoteOverloadCandidate(*I);
4400  }
4401}
4402
4403namespace {
4404
4405void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4406  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4407  assert(Conv.isBad());
4408  assert(Cand->Function && "for now, candidate must be a function");
4409  FunctionDecl *Fn = Cand->Function;
4410
4411  // There's a conversion slot for the object argument if this is a
4412  // non-constructor method.  Note that 'I' corresponds the
4413  // conversion-slot index.
4414  bool isObjectArgument = false;
4415  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4416    if (I == 0)
4417      isObjectArgument = true;
4418    else
4419      I--;
4420  }
4421
4422  std::string FnDesc;
4423  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4424
4425  Expr *FromExpr = Conv.Bad.FromExpr;
4426  QualType FromTy = Conv.Bad.getFromType();
4427  QualType ToTy = Conv.Bad.getToType();
4428
4429  if (FromTy == S.Context.OverloadTy) {
4430    assert(FromExpr && "overload set argument came from implicit argument?");
4431    Expr *E = FromExpr->IgnoreParens();
4432    if (isa<UnaryOperator>(E))
4433      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4434    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4435
4436    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4437      << (unsigned) FnKind << FnDesc
4438      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4439      << ToTy << Name << I+1;
4440    return;
4441  }
4442
4443  // Do some hand-waving analysis to see if the non-viability is due
4444  // to a qualifier mismatch.
4445  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4446  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4447  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4448    CToTy = RT->getPointeeType();
4449  else {
4450    // TODO: detect and diagnose the full richness of const mismatches.
4451    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4452      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4453        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4454  }
4455
4456  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4457      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4458    // It is dumb that we have to do this here.
4459    while (isa<ArrayType>(CFromTy))
4460      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4461    while (isa<ArrayType>(CToTy))
4462      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4463
4464    Qualifiers FromQs = CFromTy.getQualifiers();
4465    Qualifiers ToQs = CToTy.getQualifiers();
4466
4467    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4468      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4469        << (unsigned) FnKind << FnDesc
4470        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4471        << FromTy
4472        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4473        << (unsigned) isObjectArgument << I+1;
4474      return;
4475    }
4476
4477    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4478    assert(CVR && "unexpected qualifiers mismatch");
4479
4480    if (isObjectArgument) {
4481      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4482        << (unsigned) FnKind << FnDesc
4483        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4484        << FromTy << (CVR - 1);
4485    } else {
4486      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4487        << (unsigned) FnKind << FnDesc
4488        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4489        << FromTy << (CVR - 1) << I+1;
4490    }
4491    return;
4492  }
4493
4494  // Diagnose references or pointers to incomplete types differently,
4495  // since it's far from impossible that the incompleteness triggered
4496  // the failure.
4497  QualType TempFromTy = FromTy.getNonReferenceType();
4498  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4499    TempFromTy = PTy->getPointeeType();
4500  if (TempFromTy->isIncompleteType()) {
4501    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4502      << (unsigned) FnKind << FnDesc
4503      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4504      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4505    return;
4506  }
4507
4508  // TODO: specialize more based on the kind of mismatch
4509  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4510    << (unsigned) FnKind << FnDesc
4511    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4512    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4513}
4514
4515void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4516                           unsigned NumFormalArgs) {
4517  // TODO: treat calls to a missing default constructor as a special case
4518
4519  FunctionDecl *Fn = Cand->Function;
4520  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4521
4522  unsigned MinParams = Fn->getMinRequiredArguments();
4523
4524  // at least / at most / exactly
4525  unsigned mode, modeCount;
4526  if (NumFormalArgs < MinParams) {
4527    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4528    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4529      mode = 0; // "at least"
4530    else
4531      mode = 2; // "exactly"
4532    modeCount = MinParams;
4533  } else {
4534    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4535    if (MinParams != FnTy->getNumArgs())
4536      mode = 1; // "at most"
4537    else
4538      mode = 2; // "exactly"
4539    modeCount = FnTy->getNumArgs();
4540  }
4541
4542  std::string Description;
4543  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4544
4545  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4546    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4547}
4548
4549/// Diagnose a failed template-argument deduction.
4550void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4551                          Expr **Args, unsigned NumArgs) {
4552  FunctionDecl *Fn = Cand->Function; // pattern
4553
4554  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4555                                   Cand->DeductionFailure.TemplateParameter);
4556
4557  switch (Cand->DeductionFailure.Result) {
4558  case Sema::TDK_Success:
4559    llvm_unreachable("TDK_success while diagnosing bad deduction");
4560
4561  case Sema::TDK_Incomplete: {
4562    NamedDecl *ParamD;
4563    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4564    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4565    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4566    assert(ParamD && "no parameter found for incomplete deduction result");
4567    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4568      << ParamD->getDeclName();
4569    return;
4570  }
4571
4572  // TODO: diagnose these individually, then kill off
4573  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4574  case Sema::TDK_InstantiationDepth:
4575  case Sema::TDK_Inconsistent:
4576  case Sema::TDK_InconsistentQuals:
4577  case Sema::TDK_SubstitutionFailure:
4578  case Sema::TDK_NonDeducedMismatch:
4579  case Sema::TDK_TooManyArguments:
4580  case Sema::TDK_TooFewArguments:
4581  case Sema::TDK_InvalidExplicitArguments:
4582  case Sema::TDK_FailedOverloadResolution:
4583    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4584    return;
4585  }
4586}
4587
4588/// Generates a 'note' diagnostic for an overload candidate.  We've
4589/// already generated a primary error at the call site.
4590///
4591/// It really does need to be a single diagnostic with its caret
4592/// pointed at the candidate declaration.  Yes, this creates some
4593/// major challenges of technical writing.  Yes, this makes pointing
4594/// out problems with specific arguments quite awkward.  It's still
4595/// better than generating twenty screens of text for every failed
4596/// overload.
4597///
4598/// It would be great to be able to express per-candidate problems
4599/// more richly for those diagnostic clients that cared, but we'd
4600/// still have to be just as careful with the default diagnostics.
4601void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4602                           Expr **Args, unsigned NumArgs) {
4603  FunctionDecl *Fn = Cand->Function;
4604
4605  // Note deleted candidates, but only if they're viable.
4606  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4607    std::string FnDesc;
4608    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4609
4610    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4611      << FnKind << FnDesc << Fn->isDeleted();
4612    return;
4613  }
4614
4615  // We don't really have anything else to say about viable candidates.
4616  if (Cand->Viable) {
4617    S.NoteOverloadCandidate(Fn);
4618    return;
4619  }
4620
4621  switch (Cand->FailureKind) {
4622  case ovl_fail_too_many_arguments:
4623  case ovl_fail_too_few_arguments:
4624    return DiagnoseArityMismatch(S, Cand, NumArgs);
4625
4626  case ovl_fail_bad_deduction:
4627    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4628
4629  case ovl_fail_trivial_conversion:
4630  case ovl_fail_bad_final_conversion:
4631    return S.NoteOverloadCandidate(Fn);
4632
4633  case ovl_fail_bad_conversion: {
4634    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4635    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4636      if (Cand->Conversions[I].isBad())
4637        return DiagnoseBadConversion(S, Cand, I);
4638
4639    // FIXME: this currently happens when we're called from SemaInit
4640    // when user-conversion overload fails.  Figure out how to handle
4641    // those conditions and diagnose them well.
4642    return S.NoteOverloadCandidate(Fn);
4643  }
4644  }
4645}
4646
4647void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4648  // Desugar the type of the surrogate down to a function type,
4649  // retaining as many typedefs as possible while still showing
4650  // the function type (and, therefore, its parameter types).
4651  QualType FnType = Cand->Surrogate->getConversionType();
4652  bool isLValueReference = false;
4653  bool isRValueReference = false;
4654  bool isPointer = false;
4655  if (const LValueReferenceType *FnTypeRef =
4656        FnType->getAs<LValueReferenceType>()) {
4657    FnType = FnTypeRef->getPointeeType();
4658    isLValueReference = true;
4659  } else if (const RValueReferenceType *FnTypeRef =
4660               FnType->getAs<RValueReferenceType>()) {
4661    FnType = FnTypeRef->getPointeeType();
4662    isRValueReference = true;
4663  }
4664  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4665    FnType = FnTypePtr->getPointeeType();
4666    isPointer = true;
4667  }
4668  // Desugar down to a function type.
4669  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4670  // Reconstruct the pointer/reference as appropriate.
4671  if (isPointer) FnType = S.Context.getPointerType(FnType);
4672  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4673  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4674
4675  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4676    << FnType;
4677}
4678
4679void NoteBuiltinOperatorCandidate(Sema &S,
4680                                  const char *Opc,
4681                                  SourceLocation OpLoc,
4682                                  OverloadCandidate *Cand) {
4683  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4684  std::string TypeStr("operator");
4685  TypeStr += Opc;
4686  TypeStr += "(";
4687  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4688  if (Cand->Conversions.size() == 1) {
4689    TypeStr += ")";
4690    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4691  } else {
4692    TypeStr += ", ";
4693    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4694    TypeStr += ")";
4695    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4696  }
4697}
4698
4699void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4700                                  OverloadCandidate *Cand) {
4701  unsigned NoOperands = Cand->Conversions.size();
4702  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4703    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4704    if (ICS.isBad()) break; // all meaningless after first invalid
4705    if (!ICS.isAmbiguous()) continue;
4706
4707    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4708                              S.PDiag(diag::note_ambiguous_type_conversion));
4709  }
4710}
4711
4712SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4713  if (Cand->Function)
4714    return Cand->Function->getLocation();
4715  if (Cand->IsSurrogate)
4716    return Cand->Surrogate->getLocation();
4717  return SourceLocation();
4718}
4719
4720struct CompareOverloadCandidatesForDisplay {
4721  Sema &S;
4722  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4723
4724  bool operator()(const OverloadCandidate *L,
4725                  const OverloadCandidate *R) {
4726    // Fast-path this check.
4727    if (L == R) return false;
4728
4729    // Order first by viability.
4730    if (L->Viable) {
4731      if (!R->Viable) return true;
4732
4733      // TODO: introduce a tri-valued comparison for overload
4734      // candidates.  Would be more worthwhile if we had a sort
4735      // that could exploit it.
4736      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4737      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4738    } else if (R->Viable)
4739      return false;
4740
4741    assert(L->Viable == R->Viable);
4742
4743    // Criteria by which we can sort non-viable candidates:
4744    if (!L->Viable) {
4745      // 1. Arity mismatches come after other candidates.
4746      if (L->FailureKind == ovl_fail_too_many_arguments ||
4747          L->FailureKind == ovl_fail_too_few_arguments)
4748        return false;
4749      if (R->FailureKind == ovl_fail_too_many_arguments ||
4750          R->FailureKind == ovl_fail_too_few_arguments)
4751        return true;
4752
4753      // 2. Bad conversions come first and are ordered by the number
4754      // of bad conversions and quality of good conversions.
4755      if (L->FailureKind == ovl_fail_bad_conversion) {
4756        if (R->FailureKind != ovl_fail_bad_conversion)
4757          return true;
4758
4759        // If there's any ordering between the defined conversions...
4760        // FIXME: this might not be transitive.
4761        assert(L->Conversions.size() == R->Conversions.size());
4762
4763        int leftBetter = 0;
4764        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
4765        for (unsigned E = L->Conversions.size(); I != E; ++I) {
4766          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4767                                                       R->Conversions[I])) {
4768          case ImplicitConversionSequence::Better:
4769            leftBetter++;
4770            break;
4771
4772          case ImplicitConversionSequence::Worse:
4773            leftBetter--;
4774            break;
4775
4776          case ImplicitConversionSequence::Indistinguishable:
4777            break;
4778          }
4779        }
4780        if (leftBetter > 0) return true;
4781        if (leftBetter < 0) return false;
4782
4783      } else if (R->FailureKind == ovl_fail_bad_conversion)
4784        return false;
4785
4786      // TODO: others?
4787    }
4788
4789    // Sort everything else by location.
4790    SourceLocation LLoc = GetLocationForCandidate(L);
4791    SourceLocation RLoc = GetLocationForCandidate(R);
4792
4793    // Put candidates without locations (e.g. builtins) at the end.
4794    if (LLoc.isInvalid()) return false;
4795    if (RLoc.isInvalid()) return true;
4796
4797    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4798  }
4799};
4800
4801/// CompleteNonViableCandidate - Normally, overload resolution only
4802/// computes up to the first
4803void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4804                                Expr **Args, unsigned NumArgs) {
4805  assert(!Cand->Viable);
4806
4807  // Don't do anything on failures other than bad conversion.
4808  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4809
4810  // Skip forward to the first bad conversion.
4811  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
4812  unsigned ConvCount = Cand->Conversions.size();
4813  while (true) {
4814    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4815    ConvIdx++;
4816    if (Cand->Conversions[ConvIdx - 1].isBad())
4817      break;
4818  }
4819
4820  if (ConvIdx == ConvCount)
4821    return;
4822
4823  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
4824         "remaining conversion is initialized?");
4825
4826  // FIXME: these should probably be preserved from the overload
4827  // operation somehow.
4828  bool SuppressUserConversions = false;
4829  bool ForceRValue = false;
4830
4831  const FunctionProtoType* Proto;
4832  unsigned ArgIdx = ConvIdx;
4833
4834  if (Cand->IsSurrogate) {
4835    QualType ConvType
4836      = Cand->Surrogate->getConversionType().getNonReferenceType();
4837    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4838      ConvType = ConvPtrType->getPointeeType();
4839    Proto = ConvType->getAs<FunctionProtoType>();
4840    ArgIdx--;
4841  } else if (Cand->Function) {
4842    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4843    if (isa<CXXMethodDecl>(Cand->Function) &&
4844        !isa<CXXConstructorDecl>(Cand->Function))
4845      ArgIdx--;
4846  } else {
4847    // Builtin binary operator with a bad first conversion.
4848    assert(ConvCount <= 3);
4849    for (; ConvIdx != ConvCount; ++ConvIdx)
4850      Cand->Conversions[ConvIdx]
4851        = S.TryCopyInitialization(Args[ConvIdx],
4852                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4853                                  SuppressUserConversions, ForceRValue,
4854                                  /*InOverloadResolution*/ true);
4855    return;
4856  }
4857
4858  // Fill in the rest of the conversions.
4859  unsigned NumArgsInProto = Proto->getNumArgs();
4860  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4861    if (ArgIdx < NumArgsInProto)
4862      Cand->Conversions[ConvIdx]
4863        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4864                                  SuppressUserConversions, ForceRValue,
4865                                  /*InOverloadResolution=*/true);
4866    else
4867      Cand->Conversions[ConvIdx].setEllipsis();
4868  }
4869}
4870
4871} // end anonymous namespace
4872
4873/// PrintOverloadCandidates - When overload resolution fails, prints
4874/// diagnostic messages containing the candidates in the candidate
4875/// set.
4876void
4877Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4878                              OverloadCandidateDisplayKind OCD,
4879                              Expr **Args, unsigned NumArgs,
4880                              const char *Opc,
4881                              SourceLocation OpLoc) {
4882  // Sort the candidates by viability and position.  Sorting directly would
4883  // be prohibitive, so we make a set of pointers and sort those.
4884  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4885  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4886  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4887                                  LastCand = CandidateSet.end();
4888       Cand != LastCand; ++Cand) {
4889    if (Cand->Viable)
4890      Cands.push_back(Cand);
4891    else if (OCD == OCD_AllCandidates) {
4892      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4893      Cands.push_back(Cand);
4894    }
4895  }
4896
4897  std::sort(Cands.begin(), Cands.end(),
4898            CompareOverloadCandidatesForDisplay(*this));
4899
4900  bool ReportedAmbiguousConversions = false;
4901
4902  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4903  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4904    OverloadCandidate *Cand = *I;
4905
4906    if (Cand->Function)
4907      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4908    else if (Cand->IsSurrogate)
4909      NoteSurrogateCandidate(*this, Cand);
4910
4911    // This a builtin candidate.  We do not, in general, want to list
4912    // every possible builtin candidate.
4913    else if (Cand->Viable) {
4914      // Generally we only see ambiguities including viable builtin
4915      // operators if overload resolution got screwed up by an
4916      // ambiguous user-defined conversion.
4917      //
4918      // FIXME: It's quite possible for different conversions to see
4919      // different ambiguities, though.
4920      if (!ReportedAmbiguousConversions) {
4921        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4922        ReportedAmbiguousConversions = true;
4923      }
4924
4925      // If this is a viable builtin, print it.
4926      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4927    }
4928  }
4929}
4930
4931static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
4932  if (isa<UnresolvedLookupExpr>(E))
4933    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
4934
4935  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
4936}
4937
4938/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4939/// an overloaded function (C++ [over.over]), where @p From is an
4940/// expression with overloaded function type and @p ToType is the type
4941/// we're trying to resolve to. For example:
4942///
4943/// @code
4944/// int f(double);
4945/// int f(int);
4946///
4947/// int (*pfd)(double) = f; // selects f(double)
4948/// @endcode
4949///
4950/// This routine returns the resulting FunctionDecl if it could be
4951/// resolved, and NULL otherwise. When @p Complain is true, this
4952/// routine will emit diagnostics if there is an error.
4953FunctionDecl *
4954Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4955                                         bool Complain,
4956                                         DeclAccessPair &FoundResult) {
4957  QualType FunctionType = ToType;
4958  bool IsMember = false;
4959  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4960    FunctionType = ToTypePtr->getPointeeType();
4961  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4962    FunctionType = ToTypeRef->getPointeeType();
4963  else if (const MemberPointerType *MemTypePtr =
4964                    ToType->getAs<MemberPointerType>()) {
4965    FunctionType = MemTypePtr->getPointeeType();
4966    IsMember = true;
4967  }
4968
4969  // We only look at pointers or references to functions.
4970  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4971  if (!FunctionType->isFunctionType())
4972    return 0;
4973
4974  // Find the actual overloaded function declaration.
4975  if (From->getType() != Context.OverloadTy)
4976    return 0;
4977
4978  // C++ [over.over]p1:
4979  //   [...] [Note: any redundant set of parentheses surrounding the
4980  //   overloaded function name is ignored (5.1). ]
4981  // C++ [over.over]p1:
4982  //   [...] The overloaded function name can be preceded by the &
4983  //   operator.
4984  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
4985  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
4986  if (OvlExpr->hasExplicitTemplateArgs()) {
4987    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
4988    ExplicitTemplateArgs = &ETABuffer;
4989  }
4990
4991  // Look through all of the overloaded functions, searching for one
4992  // whose type matches exactly.
4993  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
4994  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
4995
4996  bool FoundNonTemplateFunction = false;
4997  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
4998         E = OvlExpr->decls_end(); I != E; ++I) {
4999    // Look through any using declarations to find the underlying function.
5000    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5001
5002    // C++ [over.over]p3:
5003    //   Non-member functions and static member functions match
5004    //   targets of type "pointer-to-function" or "reference-to-function."
5005    //   Nonstatic member functions match targets of
5006    //   type "pointer-to-member-function."
5007    // Note that according to DR 247, the containing class does not matter.
5008
5009    if (FunctionTemplateDecl *FunctionTemplate
5010          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5011      if (CXXMethodDecl *Method
5012            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5013        // Skip non-static function templates when converting to pointer, and
5014        // static when converting to member pointer.
5015        if (Method->isStatic() == IsMember)
5016          continue;
5017      } else if (IsMember)
5018        continue;
5019
5020      // C++ [over.over]p2:
5021      //   If the name is a function template, template argument deduction is
5022      //   done (14.8.2.2), and if the argument deduction succeeds, the
5023      //   resulting template argument list is used to generate a single
5024      //   function template specialization, which is added to the set of
5025      //   overloaded functions considered.
5026      // FIXME: We don't really want to build the specialization here, do we?
5027      FunctionDecl *Specialization = 0;
5028      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5029      if (TemplateDeductionResult Result
5030            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5031                                      FunctionType, Specialization, Info)) {
5032        // FIXME: make a note of the failed deduction for diagnostics.
5033        (void)Result;
5034      } else {
5035        // FIXME: If the match isn't exact, shouldn't we just drop this as
5036        // a candidate? Find a testcase before changing the code.
5037        assert(FunctionType
5038                 == Context.getCanonicalType(Specialization->getType()));
5039        Matches.push_back(std::make_pair(I.getPair(),
5040                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5041      }
5042
5043      continue;
5044    }
5045
5046    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5047      // Skip non-static functions when converting to pointer, and static
5048      // when converting to member pointer.
5049      if (Method->isStatic() == IsMember)
5050        continue;
5051
5052      // If we have explicit template arguments, skip non-templates.
5053      if (OvlExpr->hasExplicitTemplateArgs())
5054        continue;
5055    } else if (IsMember)
5056      continue;
5057
5058    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5059      QualType ResultTy;
5060      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5061          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5062                               ResultTy)) {
5063        Matches.push_back(std::make_pair(I.getPair(),
5064                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5065        FoundNonTemplateFunction = true;
5066      }
5067    }
5068  }
5069
5070  // If there were 0 or 1 matches, we're done.
5071  if (Matches.empty())
5072    return 0;
5073  else if (Matches.size() == 1) {
5074    FunctionDecl *Result = Matches[0].second;
5075    FoundResult = Matches[0].first;
5076    MarkDeclarationReferenced(From->getLocStart(), Result);
5077    if (Complain)
5078      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5079    return Result;
5080  }
5081
5082  // C++ [over.over]p4:
5083  //   If more than one function is selected, [...]
5084  if (!FoundNonTemplateFunction) {
5085    //   [...] and any given function template specialization F1 is
5086    //   eliminated if the set contains a second function template
5087    //   specialization whose function template is more specialized
5088    //   than the function template of F1 according to the partial
5089    //   ordering rules of 14.5.5.2.
5090
5091    // The algorithm specified above is quadratic. We instead use a
5092    // two-pass algorithm (similar to the one used to identify the
5093    // best viable function in an overload set) that identifies the
5094    // best function template (if it exists).
5095
5096    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5097    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5098      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5099
5100    UnresolvedSetIterator Result =
5101        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5102                           TPOC_Other, From->getLocStart(),
5103                           PDiag(),
5104                           PDiag(diag::err_addr_ovl_ambiguous)
5105                               << Matches[0].second->getDeclName(),
5106                           PDiag(diag::note_ovl_candidate)
5107                               << (unsigned) oc_function_template);
5108    assert(Result != MatchesCopy.end() && "no most-specialized template");
5109    MarkDeclarationReferenced(From->getLocStart(), *Result);
5110    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5111    if (Complain)
5112      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5113    return cast<FunctionDecl>(*Result);
5114  }
5115
5116  //   [...] any function template specializations in the set are
5117  //   eliminated if the set also contains a non-template function, [...]
5118  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5119    if (Matches[I].second->getPrimaryTemplate() == 0)
5120      ++I;
5121    else {
5122      Matches[I] = Matches[--N];
5123      Matches.set_size(N);
5124    }
5125  }
5126
5127  // [...] After such eliminations, if any, there shall remain exactly one
5128  // selected function.
5129  if (Matches.size() == 1) {
5130    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5131    FoundResult = Matches[0].first;
5132    if (Complain)
5133      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5134    return cast<FunctionDecl>(Matches[0].second);
5135  }
5136
5137  // FIXME: We should probably return the same thing that BestViableFunction
5138  // returns (even if we issue the diagnostics here).
5139  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5140    << Matches[0].second->getDeclName();
5141  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5142    NoteOverloadCandidate(Matches[I].second);
5143  return 0;
5144}
5145
5146/// \brief Given an expression that refers to an overloaded function, try to
5147/// resolve that overloaded function expression down to a single function.
5148///
5149/// This routine can only resolve template-ids that refer to a single function
5150/// template, where that template-id refers to a single template whose template
5151/// arguments are either provided by the template-id or have defaults,
5152/// as described in C++0x [temp.arg.explicit]p3.
5153FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5154  // C++ [over.over]p1:
5155  //   [...] [Note: any redundant set of parentheses surrounding the
5156  //   overloaded function name is ignored (5.1). ]
5157  // C++ [over.over]p1:
5158  //   [...] The overloaded function name can be preceded by the &
5159  //   operator.
5160
5161  if (From->getType() != Context.OverloadTy)
5162    return 0;
5163
5164  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5165
5166  // If we didn't actually find any template-ids, we're done.
5167  if (!OvlExpr->hasExplicitTemplateArgs())
5168    return 0;
5169
5170  TemplateArgumentListInfo ExplicitTemplateArgs;
5171  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5172
5173  // Look through all of the overloaded functions, searching for one
5174  // whose type matches exactly.
5175  FunctionDecl *Matched = 0;
5176  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5177         E = OvlExpr->decls_end(); I != E; ++I) {
5178    // C++0x [temp.arg.explicit]p3:
5179    //   [...] In contexts where deduction is done and fails, or in contexts
5180    //   where deduction is not done, if a template argument list is
5181    //   specified and it, along with any default template arguments,
5182    //   identifies a single function template specialization, then the
5183    //   template-id is an lvalue for the function template specialization.
5184    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5185
5186    // C++ [over.over]p2:
5187    //   If the name is a function template, template argument deduction is
5188    //   done (14.8.2.2), and if the argument deduction succeeds, the
5189    //   resulting template argument list is used to generate a single
5190    //   function template specialization, which is added to the set of
5191    //   overloaded functions considered.
5192    FunctionDecl *Specialization = 0;
5193    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5194    if (TemplateDeductionResult Result
5195          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5196                                    Specialization, Info)) {
5197      // FIXME: make a note of the failed deduction for diagnostics.
5198      (void)Result;
5199      continue;
5200    }
5201
5202    // Multiple matches; we can't resolve to a single declaration.
5203    if (Matched)
5204      return 0;
5205
5206    Matched = Specialization;
5207  }
5208
5209  return Matched;
5210}
5211
5212/// \brief Add a single candidate to the overload set.
5213static void AddOverloadedCallCandidate(Sema &S,
5214                                       DeclAccessPair FoundDecl,
5215                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5216                                       Expr **Args, unsigned NumArgs,
5217                                       OverloadCandidateSet &CandidateSet,
5218                                       bool PartialOverloading) {
5219  NamedDecl *Callee = FoundDecl.getDecl();
5220  if (isa<UsingShadowDecl>(Callee))
5221    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5222
5223  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5224    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5225    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5226                           false, false, PartialOverloading);
5227    return;
5228  }
5229
5230  if (FunctionTemplateDecl *FuncTemplate
5231      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5232    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5233                                   ExplicitTemplateArgs,
5234                                   Args, NumArgs, CandidateSet);
5235    return;
5236  }
5237
5238  assert(false && "unhandled case in overloaded call candidate");
5239
5240  // do nothing?
5241}
5242
5243/// \brief Add the overload candidates named by callee and/or found by argument
5244/// dependent lookup to the given overload set.
5245void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5246                                       Expr **Args, unsigned NumArgs,
5247                                       OverloadCandidateSet &CandidateSet,
5248                                       bool PartialOverloading) {
5249
5250#ifndef NDEBUG
5251  // Verify that ArgumentDependentLookup is consistent with the rules
5252  // in C++0x [basic.lookup.argdep]p3:
5253  //
5254  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5255  //   and let Y be the lookup set produced by argument dependent
5256  //   lookup (defined as follows). If X contains
5257  //
5258  //     -- a declaration of a class member, or
5259  //
5260  //     -- a block-scope function declaration that is not a
5261  //        using-declaration, or
5262  //
5263  //     -- a declaration that is neither a function or a function
5264  //        template
5265  //
5266  //   then Y is empty.
5267
5268  if (ULE->requiresADL()) {
5269    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5270           E = ULE->decls_end(); I != E; ++I) {
5271      assert(!(*I)->getDeclContext()->isRecord());
5272      assert(isa<UsingShadowDecl>(*I) ||
5273             !(*I)->getDeclContext()->isFunctionOrMethod());
5274      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5275    }
5276  }
5277#endif
5278
5279  // It would be nice to avoid this copy.
5280  TemplateArgumentListInfo TABuffer;
5281  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5282  if (ULE->hasExplicitTemplateArgs()) {
5283    ULE->copyTemplateArgumentsInto(TABuffer);
5284    ExplicitTemplateArgs = &TABuffer;
5285  }
5286
5287  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5288         E = ULE->decls_end(); I != E; ++I)
5289    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5290                               Args, NumArgs, CandidateSet,
5291                               PartialOverloading);
5292
5293  if (ULE->requiresADL())
5294    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5295                                         Args, NumArgs,
5296                                         ExplicitTemplateArgs,
5297                                         CandidateSet,
5298                                         PartialOverloading);
5299}
5300
5301static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5302                                      Expr **Args, unsigned NumArgs) {
5303  Fn->Destroy(SemaRef.Context);
5304  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5305    Args[Arg]->Destroy(SemaRef.Context);
5306  return SemaRef.ExprError();
5307}
5308
5309/// Attempts to recover from a call where no functions were found.
5310///
5311/// Returns true if new candidates were found.
5312static Sema::OwningExprResult
5313BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5314                      UnresolvedLookupExpr *ULE,
5315                      SourceLocation LParenLoc,
5316                      Expr **Args, unsigned NumArgs,
5317                      SourceLocation *CommaLocs,
5318                      SourceLocation RParenLoc) {
5319
5320  CXXScopeSpec SS;
5321  if (ULE->getQualifier()) {
5322    SS.setScopeRep(ULE->getQualifier());
5323    SS.setRange(ULE->getQualifierRange());
5324  }
5325
5326  TemplateArgumentListInfo TABuffer;
5327  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5328  if (ULE->hasExplicitTemplateArgs()) {
5329    ULE->copyTemplateArgumentsInto(TABuffer);
5330    ExplicitTemplateArgs = &TABuffer;
5331  }
5332
5333  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5334                 Sema::LookupOrdinaryName);
5335  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5336    return Destroy(SemaRef, Fn, Args, NumArgs);
5337
5338  assert(!R.empty() && "lookup results empty despite recovery");
5339
5340  // Build an implicit member call if appropriate.  Just drop the
5341  // casts and such from the call, we don't really care.
5342  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5343  if ((*R.begin())->isCXXClassMember())
5344    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5345  else if (ExplicitTemplateArgs)
5346    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5347  else
5348    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5349
5350  if (NewFn.isInvalid())
5351    return Destroy(SemaRef, Fn, Args, NumArgs);
5352
5353  Fn->Destroy(SemaRef.Context);
5354
5355  // This shouldn't cause an infinite loop because we're giving it
5356  // an expression with non-empty lookup results, which should never
5357  // end up here.
5358  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5359                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5360                               CommaLocs, RParenLoc);
5361}
5362
5363/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5364/// (which eventually refers to the declaration Func) and the call
5365/// arguments Args/NumArgs, attempt to resolve the function call down
5366/// to a specific function. If overload resolution succeeds, returns
5367/// the function declaration produced by overload
5368/// resolution. Otherwise, emits diagnostics, deletes all of the
5369/// arguments and Fn, and returns NULL.
5370Sema::OwningExprResult
5371Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5372                              SourceLocation LParenLoc,
5373                              Expr **Args, unsigned NumArgs,
5374                              SourceLocation *CommaLocs,
5375                              SourceLocation RParenLoc) {
5376#ifndef NDEBUG
5377  if (ULE->requiresADL()) {
5378    // To do ADL, we must have found an unqualified name.
5379    assert(!ULE->getQualifier() && "qualified name with ADL");
5380
5381    // We don't perform ADL for implicit declarations of builtins.
5382    // Verify that this was correctly set up.
5383    FunctionDecl *F;
5384    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5385        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5386        F->getBuiltinID() && F->isImplicit())
5387      assert(0 && "performing ADL for builtin");
5388
5389    // We don't perform ADL in C.
5390    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5391  }
5392#endif
5393
5394  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5395
5396  // Add the functions denoted by the callee to the set of candidate
5397  // functions, including those from argument-dependent lookup.
5398  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5399
5400  // If we found nothing, try to recover.
5401  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5402  // bailout out if it fails.
5403  if (CandidateSet.empty())
5404    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5405                                 CommaLocs, RParenLoc);
5406
5407  OverloadCandidateSet::iterator Best;
5408  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5409  case OR_Success: {
5410    FunctionDecl *FDecl = Best->Function;
5411    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5412    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5413    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5414  }
5415
5416  case OR_No_Viable_Function:
5417    Diag(Fn->getSourceRange().getBegin(),
5418         diag::err_ovl_no_viable_function_in_call)
5419      << ULE->getName() << Fn->getSourceRange();
5420    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5421    break;
5422
5423  case OR_Ambiguous:
5424    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5425      << ULE->getName() << Fn->getSourceRange();
5426    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5427    break;
5428
5429  case OR_Deleted:
5430    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5431      << Best->Function->isDeleted()
5432      << ULE->getName()
5433      << Fn->getSourceRange();
5434    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5435    break;
5436  }
5437
5438  // Overload resolution failed. Destroy all of the subexpressions and
5439  // return NULL.
5440  Fn->Destroy(Context);
5441  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5442    Args[Arg]->Destroy(Context);
5443  return ExprError();
5444}
5445
5446static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5447  return Functions.size() > 1 ||
5448    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5449}
5450
5451/// \brief Create a unary operation that may resolve to an overloaded
5452/// operator.
5453///
5454/// \param OpLoc The location of the operator itself (e.g., '*').
5455///
5456/// \param OpcIn The UnaryOperator::Opcode that describes this
5457/// operator.
5458///
5459/// \param Functions The set of non-member functions that will be
5460/// considered by overload resolution. The caller needs to build this
5461/// set based on the context using, e.g.,
5462/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5463/// set should not contain any member functions; those will be added
5464/// by CreateOverloadedUnaryOp().
5465///
5466/// \param input The input argument.
5467Sema::OwningExprResult
5468Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5469                              const UnresolvedSetImpl &Fns,
5470                              ExprArg input) {
5471  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5472  Expr *Input = (Expr *)input.get();
5473
5474  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5475  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5476  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5477
5478  Expr *Args[2] = { Input, 0 };
5479  unsigned NumArgs = 1;
5480
5481  // For post-increment and post-decrement, add the implicit '0' as
5482  // the second argument, so that we know this is a post-increment or
5483  // post-decrement.
5484  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5485    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5486    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5487                                           SourceLocation());
5488    NumArgs = 2;
5489  }
5490
5491  if (Input->isTypeDependent()) {
5492    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5493    UnresolvedLookupExpr *Fn
5494      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5495                                     0, SourceRange(), OpName, OpLoc,
5496                                     /*ADL*/ true, IsOverloaded(Fns));
5497    Fn->addDecls(Fns.begin(), Fns.end());
5498
5499    input.release();
5500    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5501                                                   &Args[0], NumArgs,
5502                                                   Context.DependentTy,
5503                                                   OpLoc));
5504  }
5505
5506  // Build an empty overload set.
5507  OverloadCandidateSet CandidateSet(OpLoc);
5508
5509  // Add the candidates from the given function set.
5510  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5511
5512  // Add operator candidates that are member functions.
5513  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5514
5515  // Add candidates from ADL.
5516  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5517                                       Args, NumArgs,
5518                                       /*ExplicitTemplateArgs*/ 0,
5519                                       CandidateSet);
5520
5521  // Add builtin operator candidates.
5522  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5523
5524  // Perform overload resolution.
5525  OverloadCandidateSet::iterator Best;
5526  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5527  case OR_Success: {
5528    // We found a built-in operator or an overloaded operator.
5529    FunctionDecl *FnDecl = Best->Function;
5530
5531    if (FnDecl) {
5532      // We matched an overloaded operator. Build a call to that
5533      // operator.
5534
5535      // Convert the arguments.
5536      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5537        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5538
5539        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5540                                                Best->FoundDecl, Method))
5541          return ExprError();
5542      } else {
5543        // Convert the arguments.
5544        OwningExprResult InputInit
5545          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5546                                                      FnDecl->getParamDecl(0)),
5547                                      SourceLocation(),
5548                                      move(input));
5549        if (InputInit.isInvalid())
5550          return ExprError();
5551
5552        input = move(InputInit);
5553        Input = (Expr *)input.get();
5554      }
5555
5556      // Determine the result type
5557      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5558
5559      // Build the actual expression node.
5560      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5561                                               SourceLocation());
5562      UsualUnaryConversions(FnExpr);
5563
5564      input.release();
5565      Args[0] = Input;
5566      ExprOwningPtr<CallExpr> TheCall(this,
5567        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5568                                          Args, NumArgs, ResultTy, OpLoc));
5569
5570      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5571                              FnDecl))
5572        return ExprError();
5573
5574      return MaybeBindToTemporary(TheCall.release());
5575    } else {
5576      // We matched a built-in operator. Convert the arguments, then
5577      // break out so that we will build the appropriate built-in
5578      // operator node.
5579        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5580                                      Best->Conversions[0], AA_Passing))
5581          return ExprError();
5582
5583        break;
5584      }
5585    }
5586
5587    case OR_No_Viable_Function:
5588      // No viable function; fall through to handling this as a
5589      // built-in operator, which will produce an error message for us.
5590      break;
5591
5592    case OR_Ambiguous:
5593      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5594          << UnaryOperator::getOpcodeStr(Opc)
5595          << Input->getSourceRange();
5596      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5597                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5598      return ExprError();
5599
5600    case OR_Deleted:
5601      Diag(OpLoc, diag::err_ovl_deleted_oper)
5602        << Best->Function->isDeleted()
5603        << UnaryOperator::getOpcodeStr(Opc)
5604        << Input->getSourceRange();
5605      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5606      return ExprError();
5607    }
5608
5609  // Either we found no viable overloaded operator or we matched a
5610  // built-in operator. In either case, fall through to trying to
5611  // build a built-in operation.
5612  input.release();
5613  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5614}
5615
5616/// \brief Create a binary operation that may resolve to an overloaded
5617/// operator.
5618///
5619/// \param OpLoc The location of the operator itself (e.g., '+').
5620///
5621/// \param OpcIn The BinaryOperator::Opcode that describes this
5622/// operator.
5623///
5624/// \param Functions The set of non-member functions that will be
5625/// considered by overload resolution. The caller needs to build this
5626/// set based on the context using, e.g.,
5627/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5628/// set should not contain any member functions; those will be added
5629/// by CreateOverloadedBinOp().
5630///
5631/// \param LHS Left-hand argument.
5632/// \param RHS Right-hand argument.
5633Sema::OwningExprResult
5634Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5635                            unsigned OpcIn,
5636                            const UnresolvedSetImpl &Fns,
5637                            Expr *LHS, Expr *RHS) {
5638  Expr *Args[2] = { LHS, RHS };
5639  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5640
5641  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5642  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5643  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5644
5645  // If either side is type-dependent, create an appropriate dependent
5646  // expression.
5647  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5648    if (Fns.empty()) {
5649      // If there are no functions to store, just build a dependent
5650      // BinaryOperator or CompoundAssignment.
5651      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5652        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5653                                                  Context.DependentTy, OpLoc));
5654
5655      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5656                                                        Context.DependentTy,
5657                                                        Context.DependentTy,
5658                                                        Context.DependentTy,
5659                                                        OpLoc));
5660    }
5661
5662    // FIXME: save results of ADL from here?
5663    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5664    UnresolvedLookupExpr *Fn
5665      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5666                                     0, SourceRange(), OpName, OpLoc,
5667                                     /*ADL*/ true, IsOverloaded(Fns));
5668
5669    Fn->addDecls(Fns.begin(), Fns.end());
5670    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5671                                                   Args, 2,
5672                                                   Context.DependentTy,
5673                                                   OpLoc));
5674  }
5675
5676  // If this is the .* operator, which is not overloadable, just
5677  // create a built-in binary operator.
5678  if (Opc == BinaryOperator::PtrMemD)
5679    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5680
5681  // If this is the assignment operator, we only perform overload resolution
5682  // if the left-hand side is a class or enumeration type. This is actually
5683  // a hack. The standard requires that we do overload resolution between the
5684  // various built-in candidates, but as DR507 points out, this can lead to
5685  // problems. So we do it this way, which pretty much follows what GCC does.
5686  // Note that we go the traditional code path for compound assignment forms.
5687  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5688    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5689
5690  // Build an empty overload set.
5691  OverloadCandidateSet CandidateSet(OpLoc);
5692
5693  // Add the candidates from the given function set.
5694  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5695
5696  // Add operator candidates that are member functions.
5697  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5698
5699  // Add candidates from ADL.
5700  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5701                                       Args, 2,
5702                                       /*ExplicitTemplateArgs*/ 0,
5703                                       CandidateSet);
5704
5705  // Add builtin operator candidates.
5706  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5707
5708  // Perform overload resolution.
5709  OverloadCandidateSet::iterator Best;
5710  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5711    case OR_Success: {
5712      // We found a built-in operator or an overloaded operator.
5713      FunctionDecl *FnDecl = Best->Function;
5714
5715      if (FnDecl) {
5716        // We matched an overloaded operator. Build a call to that
5717        // operator.
5718
5719        // Convert the arguments.
5720        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5721          // Best->Access is only meaningful for class members.
5722          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
5723
5724          OwningExprResult Arg1
5725            = PerformCopyInitialization(
5726                                        InitializedEntity::InitializeParameter(
5727                                                        FnDecl->getParamDecl(0)),
5728                                        SourceLocation(),
5729                                        Owned(Args[1]));
5730          if (Arg1.isInvalid())
5731            return ExprError();
5732
5733          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5734                                                  Best->FoundDecl, Method))
5735            return ExprError();
5736
5737          Args[1] = RHS = Arg1.takeAs<Expr>();
5738        } else {
5739          // Convert the arguments.
5740          OwningExprResult Arg0
5741            = PerformCopyInitialization(
5742                                        InitializedEntity::InitializeParameter(
5743                                                        FnDecl->getParamDecl(0)),
5744                                        SourceLocation(),
5745                                        Owned(Args[0]));
5746          if (Arg0.isInvalid())
5747            return ExprError();
5748
5749          OwningExprResult Arg1
5750            = PerformCopyInitialization(
5751                                        InitializedEntity::InitializeParameter(
5752                                                        FnDecl->getParamDecl(1)),
5753                                        SourceLocation(),
5754                                        Owned(Args[1]));
5755          if (Arg1.isInvalid())
5756            return ExprError();
5757          Args[0] = LHS = Arg0.takeAs<Expr>();
5758          Args[1] = RHS = Arg1.takeAs<Expr>();
5759        }
5760
5761        // Determine the result type
5762        QualType ResultTy
5763          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5764        ResultTy = ResultTy.getNonReferenceType();
5765
5766        // Build the actual expression node.
5767        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5768                                                 OpLoc);
5769        UsualUnaryConversions(FnExpr);
5770
5771        ExprOwningPtr<CXXOperatorCallExpr>
5772          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5773                                                          Args, 2, ResultTy,
5774                                                          OpLoc));
5775
5776        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5777                                FnDecl))
5778          return ExprError();
5779
5780        return MaybeBindToTemporary(TheCall.release());
5781      } else {
5782        // We matched a built-in operator. Convert the arguments, then
5783        // break out so that we will build the appropriate built-in
5784        // operator node.
5785        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5786                                      Best->Conversions[0], AA_Passing) ||
5787            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5788                                      Best->Conversions[1], AA_Passing))
5789          return ExprError();
5790
5791        break;
5792      }
5793    }
5794
5795    case OR_No_Viable_Function: {
5796      // C++ [over.match.oper]p9:
5797      //   If the operator is the operator , [...] and there are no
5798      //   viable functions, then the operator is assumed to be the
5799      //   built-in operator and interpreted according to clause 5.
5800      if (Opc == BinaryOperator::Comma)
5801        break;
5802
5803      // For class as left operand for assignment or compound assigment operator
5804      // do not fall through to handling in built-in, but report that no overloaded
5805      // assignment operator found
5806      OwningExprResult Result = ExprError();
5807      if (Args[0]->getType()->isRecordType() &&
5808          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5809        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5810             << BinaryOperator::getOpcodeStr(Opc)
5811             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5812      } else {
5813        // No viable function; try to create a built-in operation, which will
5814        // produce an error. Then, show the non-viable candidates.
5815        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5816      }
5817      assert(Result.isInvalid() &&
5818             "C++ binary operator overloading is missing candidates!");
5819      if (Result.isInvalid())
5820        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5821                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5822      return move(Result);
5823    }
5824
5825    case OR_Ambiguous:
5826      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5827          << BinaryOperator::getOpcodeStr(Opc)
5828          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5829      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5830                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5831      return ExprError();
5832
5833    case OR_Deleted:
5834      Diag(OpLoc, diag::err_ovl_deleted_oper)
5835        << Best->Function->isDeleted()
5836        << BinaryOperator::getOpcodeStr(Opc)
5837        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5838      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5839      return ExprError();
5840  }
5841
5842  // We matched a built-in operator; build it.
5843  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5844}
5845
5846Action::OwningExprResult
5847Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5848                                         SourceLocation RLoc,
5849                                         ExprArg Base, ExprArg Idx) {
5850  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5851                    static_cast<Expr*>(Idx.get()) };
5852  DeclarationName OpName =
5853      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5854
5855  // If either side is type-dependent, create an appropriate dependent
5856  // expression.
5857  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5858
5859    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5860    UnresolvedLookupExpr *Fn
5861      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5862                                     0, SourceRange(), OpName, LLoc,
5863                                     /*ADL*/ true, /*Overloaded*/ false);
5864    // Can't add any actual overloads yet
5865
5866    Base.release();
5867    Idx.release();
5868    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5869                                                   Args, 2,
5870                                                   Context.DependentTy,
5871                                                   RLoc));
5872  }
5873
5874  // Build an empty overload set.
5875  OverloadCandidateSet CandidateSet(LLoc);
5876
5877  // Subscript can only be overloaded as a member function.
5878
5879  // Add operator candidates that are member functions.
5880  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5881
5882  // Add builtin operator candidates.
5883  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5884
5885  // Perform overload resolution.
5886  OverloadCandidateSet::iterator Best;
5887  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5888    case OR_Success: {
5889      // We found a built-in operator or an overloaded operator.
5890      FunctionDecl *FnDecl = Best->Function;
5891
5892      if (FnDecl) {
5893        // We matched an overloaded operator. Build a call to that
5894        // operator.
5895
5896        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
5897
5898        // Convert the arguments.
5899        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5900        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5901                                                Best->FoundDecl, Method))
5902          return ExprError();
5903
5904        // Convert the arguments.
5905        OwningExprResult InputInit
5906          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5907                                                      FnDecl->getParamDecl(0)),
5908                                      SourceLocation(),
5909                                      Owned(Args[1]));
5910        if (InputInit.isInvalid())
5911          return ExprError();
5912
5913        Args[1] = InputInit.takeAs<Expr>();
5914
5915        // Determine the result type
5916        QualType ResultTy
5917          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5918        ResultTy = ResultTy.getNonReferenceType();
5919
5920        // Build the actual expression node.
5921        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5922                                                 LLoc);
5923        UsualUnaryConversions(FnExpr);
5924
5925        Base.release();
5926        Idx.release();
5927        ExprOwningPtr<CXXOperatorCallExpr>
5928          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5929                                                          FnExpr, Args, 2,
5930                                                          ResultTy, RLoc));
5931
5932        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5933                                FnDecl))
5934          return ExprError();
5935
5936        return MaybeBindToTemporary(TheCall.release());
5937      } else {
5938        // We matched a built-in operator. Convert the arguments, then
5939        // break out so that we will build the appropriate built-in
5940        // operator node.
5941        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5942                                      Best->Conversions[0], AA_Passing) ||
5943            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5944                                      Best->Conversions[1], AA_Passing))
5945          return ExprError();
5946
5947        break;
5948      }
5949    }
5950
5951    case OR_No_Viable_Function: {
5952      if (CandidateSet.empty())
5953        Diag(LLoc, diag::err_ovl_no_oper)
5954          << Args[0]->getType() << /*subscript*/ 0
5955          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5956      else
5957        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5958          << Args[0]->getType()
5959          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5960      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5961                              "[]", LLoc);
5962      return ExprError();
5963    }
5964
5965    case OR_Ambiguous:
5966      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5967          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5968      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5969                              "[]", LLoc);
5970      return ExprError();
5971
5972    case OR_Deleted:
5973      Diag(LLoc, diag::err_ovl_deleted_oper)
5974        << Best->Function->isDeleted() << "[]"
5975        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5976      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5977                              "[]", LLoc);
5978      return ExprError();
5979    }
5980
5981  // We matched a built-in operator; build it.
5982  Base.release();
5983  Idx.release();
5984  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5985                                         Owned(Args[1]), RLoc);
5986}
5987
5988/// BuildCallToMemberFunction - Build a call to a member
5989/// function. MemExpr is the expression that refers to the member
5990/// function (and includes the object parameter), Args/NumArgs are the
5991/// arguments to the function call (not including the object
5992/// parameter). The caller needs to validate that the member
5993/// expression refers to a member function or an overloaded member
5994/// function.
5995Sema::OwningExprResult
5996Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5997                                SourceLocation LParenLoc, Expr **Args,
5998                                unsigned NumArgs, SourceLocation *CommaLocs,
5999                                SourceLocation RParenLoc) {
6000  // Dig out the member expression. This holds both the object
6001  // argument and the member function we're referring to.
6002  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6003
6004  MemberExpr *MemExpr;
6005  CXXMethodDecl *Method = 0;
6006  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6007  NestedNameSpecifier *Qualifier = 0;
6008  if (isa<MemberExpr>(NakedMemExpr)) {
6009    MemExpr = cast<MemberExpr>(NakedMemExpr);
6010    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6011    FoundDecl = MemExpr->getFoundDecl();
6012    Qualifier = MemExpr->getQualifier();
6013  } else {
6014    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6015    Qualifier = UnresExpr->getQualifier();
6016
6017    QualType ObjectType = UnresExpr->getBaseType();
6018
6019    // Add overload candidates
6020    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6021
6022    // FIXME: avoid copy.
6023    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6024    if (UnresExpr->hasExplicitTemplateArgs()) {
6025      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6026      TemplateArgs = &TemplateArgsBuffer;
6027    }
6028
6029    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6030           E = UnresExpr->decls_end(); I != E; ++I) {
6031
6032      NamedDecl *Func = *I;
6033      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6034      if (isa<UsingShadowDecl>(Func))
6035        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6036
6037      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6038        // If explicit template arguments were provided, we can't call a
6039        // non-template member function.
6040        if (TemplateArgs)
6041          continue;
6042
6043        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6044                           Args, NumArgs,
6045                           CandidateSet, /*SuppressUserConversions=*/false);
6046      } else {
6047        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6048                                   I.getPair(), ActingDC, TemplateArgs,
6049                                   ObjectType, Args, NumArgs,
6050                                   CandidateSet,
6051                                   /*SuppressUsedConversions=*/false);
6052      }
6053    }
6054
6055    DeclarationName DeclName = UnresExpr->getMemberName();
6056
6057    OverloadCandidateSet::iterator Best;
6058    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6059    case OR_Success:
6060      Method = cast<CXXMethodDecl>(Best->Function);
6061      FoundDecl = Best->FoundDecl;
6062      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6063      break;
6064
6065    case OR_No_Viable_Function:
6066      Diag(UnresExpr->getMemberLoc(),
6067           diag::err_ovl_no_viable_member_function_in_call)
6068        << DeclName << MemExprE->getSourceRange();
6069      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6070      // FIXME: Leaking incoming expressions!
6071      return ExprError();
6072
6073    case OR_Ambiguous:
6074      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6075        << DeclName << MemExprE->getSourceRange();
6076      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6077      // FIXME: Leaking incoming expressions!
6078      return ExprError();
6079
6080    case OR_Deleted:
6081      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6082        << Best->Function->isDeleted()
6083        << DeclName << MemExprE->getSourceRange();
6084      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6085      // FIXME: Leaking incoming expressions!
6086      return ExprError();
6087    }
6088
6089    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6090
6091    // If overload resolution picked a static member, build a
6092    // non-member call based on that function.
6093    if (Method->isStatic()) {
6094      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6095                                   Args, NumArgs, RParenLoc);
6096    }
6097
6098    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6099  }
6100
6101  assert(Method && "Member call to something that isn't a method?");
6102  ExprOwningPtr<CXXMemberCallExpr>
6103    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6104                                                  NumArgs,
6105                                  Method->getResultType().getNonReferenceType(),
6106                                  RParenLoc));
6107
6108  // Check for a valid return type.
6109  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6110                          TheCall.get(), Method))
6111    return ExprError();
6112
6113  // Convert the object argument (for a non-static member function call).
6114  // We only need to do this if there was actually an overload; otherwise
6115  // it was done at lookup.
6116  Expr *ObjectArg = MemExpr->getBase();
6117  if (!Method->isStatic() &&
6118      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6119                                          FoundDecl, Method))
6120    return ExprError();
6121  MemExpr->setBase(ObjectArg);
6122
6123  // Convert the rest of the arguments
6124  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6125  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6126                              RParenLoc))
6127    return ExprError();
6128
6129  if (CheckFunctionCall(Method, TheCall.get()))
6130    return ExprError();
6131
6132  return MaybeBindToTemporary(TheCall.release());
6133}
6134
6135/// BuildCallToObjectOfClassType - Build a call to an object of class
6136/// type (C++ [over.call.object]), which can end up invoking an
6137/// overloaded function call operator (@c operator()) or performing a
6138/// user-defined conversion on the object argument.
6139Sema::ExprResult
6140Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6141                                   SourceLocation LParenLoc,
6142                                   Expr **Args, unsigned NumArgs,
6143                                   SourceLocation *CommaLocs,
6144                                   SourceLocation RParenLoc) {
6145  assert(Object->getType()->isRecordType() && "Requires object type argument");
6146  const RecordType *Record = Object->getType()->getAs<RecordType>();
6147
6148  // C++ [over.call.object]p1:
6149  //  If the primary-expression E in the function call syntax
6150  //  evaluates to a class object of type "cv T", then the set of
6151  //  candidate functions includes at least the function call
6152  //  operators of T. The function call operators of T are obtained by
6153  //  ordinary lookup of the name operator() in the context of
6154  //  (E).operator().
6155  OverloadCandidateSet CandidateSet(LParenLoc);
6156  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6157
6158  if (RequireCompleteType(LParenLoc, Object->getType(),
6159                          PDiag(diag::err_incomplete_object_call)
6160                          << Object->getSourceRange()))
6161    return true;
6162
6163  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6164  LookupQualifiedName(R, Record->getDecl());
6165  R.suppressDiagnostics();
6166
6167  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6168       Oper != OperEnd; ++Oper) {
6169    AddMethodCandidate(Oper.getPair(), Object->getType(),
6170                       Args, NumArgs, CandidateSet,
6171                       /*SuppressUserConversions=*/ false);
6172  }
6173
6174  // C++ [over.call.object]p2:
6175  //   In addition, for each conversion function declared in T of the
6176  //   form
6177  //
6178  //        operator conversion-type-id () cv-qualifier;
6179  //
6180  //   where cv-qualifier is the same cv-qualification as, or a
6181  //   greater cv-qualification than, cv, and where conversion-type-id
6182  //   denotes the type "pointer to function of (P1,...,Pn) returning
6183  //   R", or the type "reference to pointer to function of
6184  //   (P1,...,Pn) returning R", or the type "reference to function
6185  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6186  //   is also considered as a candidate function. Similarly,
6187  //   surrogate call functions are added to the set of candidate
6188  //   functions for each conversion function declared in an
6189  //   accessible base class provided the function is not hidden
6190  //   within T by another intervening declaration.
6191  const UnresolvedSetImpl *Conversions
6192    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6193  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6194         E = Conversions->end(); I != E; ++I) {
6195    NamedDecl *D = *I;
6196    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6197    if (isa<UsingShadowDecl>(D))
6198      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6199
6200    // Skip over templated conversion functions; they aren't
6201    // surrogates.
6202    if (isa<FunctionTemplateDecl>(D))
6203      continue;
6204
6205    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6206
6207    // Strip the reference type (if any) and then the pointer type (if
6208    // any) to get down to what might be a function type.
6209    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6210    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6211      ConvType = ConvPtrType->getPointeeType();
6212
6213    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6214      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6215                            Object->getType(), Args, NumArgs,
6216                            CandidateSet);
6217  }
6218
6219  // Perform overload resolution.
6220  OverloadCandidateSet::iterator Best;
6221  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6222  case OR_Success:
6223    // Overload resolution succeeded; we'll build the appropriate call
6224    // below.
6225    break;
6226
6227  case OR_No_Viable_Function:
6228    if (CandidateSet.empty())
6229      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6230        << Object->getType() << /*call*/ 1
6231        << Object->getSourceRange();
6232    else
6233      Diag(Object->getSourceRange().getBegin(),
6234           diag::err_ovl_no_viable_object_call)
6235        << Object->getType() << Object->getSourceRange();
6236    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6237    break;
6238
6239  case OR_Ambiguous:
6240    Diag(Object->getSourceRange().getBegin(),
6241         diag::err_ovl_ambiguous_object_call)
6242      << Object->getType() << Object->getSourceRange();
6243    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6244    break;
6245
6246  case OR_Deleted:
6247    Diag(Object->getSourceRange().getBegin(),
6248         diag::err_ovl_deleted_object_call)
6249      << Best->Function->isDeleted()
6250      << Object->getType() << Object->getSourceRange();
6251    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6252    break;
6253  }
6254
6255  if (Best == CandidateSet.end()) {
6256    // We had an error; delete all of the subexpressions and return
6257    // the error.
6258    Object->Destroy(Context);
6259    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6260      Args[ArgIdx]->Destroy(Context);
6261    return true;
6262  }
6263
6264  if (Best->Function == 0) {
6265    // Since there is no function declaration, this is one of the
6266    // surrogate candidates. Dig out the conversion function.
6267    CXXConversionDecl *Conv
6268      = cast<CXXConversionDecl>(
6269                         Best->Conversions[0].UserDefined.ConversionFunction);
6270
6271    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6272
6273    // We selected one of the surrogate functions that converts the
6274    // object parameter to a function pointer. Perform the conversion
6275    // on the object argument, then let ActOnCallExpr finish the job.
6276
6277    // Create an implicit member expr to refer to the conversion operator.
6278    // and then call it.
6279    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6280                                                   Conv);
6281
6282    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6283                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6284                         CommaLocs, RParenLoc).release();
6285  }
6286
6287  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6288
6289  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6290  // that calls this method, using Object for the implicit object
6291  // parameter and passing along the remaining arguments.
6292  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6293  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6294
6295  unsigned NumArgsInProto = Proto->getNumArgs();
6296  unsigned NumArgsToCheck = NumArgs;
6297
6298  // Build the full argument list for the method call (the
6299  // implicit object parameter is placed at the beginning of the
6300  // list).
6301  Expr **MethodArgs;
6302  if (NumArgs < NumArgsInProto) {
6303    NumArgsToCheck = NumArgsInProto;
6304    MethodArgs = new Expr*[NumArgsInProto + 1];
6305  } else {
6306    MethodArgs = new Expr*[NumArgs + 1];
6307  }
6308  MethodArgs[0] = Object;
6309  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6310    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6311
6312  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6313                                          SourceLocation());
6314  UsualUnaryConversions(NewFn);
6315
6316  // Once we've built TheCall, all of the expressions are properly
6317  // owned.
6318  QualType ResultTy = Method->getResultType().getNonReferenceType();
6319  ExprOwningPtr<CXXOperatorCallExpr>
6320    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6321                                                    MethodArgs, NumArgs + 1,
6322                                                    ResultTy, RParenLoc));
6323  delete [] MethodArgs;
6324
6325  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6326                          Method))
6327    return true;
6328
6329  // We may have default arguments. If so, we need to allocate more
6330  // slots in the call for them.
6331  if (NumArgs < NumArgsInProto)
6332    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6333  else if (NumArgs > NumArgsInProto)
6334    NumArgsToCheck = NumArgsInProto;
6335
6336  bool IsError = false;
6337
6338  // Initialize the implicit object parameter.
6339  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6340                                                 Best->FoundDecl, Method);
6341  TheCall->setArg(0, Object);
6342
6343
6344  // Check the argument types.
6345  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6346    Expr *Arg;
6347    if (i < NumArgs) {
6348      Arg = Args[i];
6349
6350      // Pass the argument.
6351
6352      OwningExprResult InputInit
6353        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6354                                                    Method->getParamDecl(i)),
6355                                    SourceLocation(), Owned(Arg));
6356
6357      IsError |= InputInit.isInvalid();
6358      Arg = InputInit.takeAs<Expr>();
6359    } else {
6360      OwningExprResult DefArg
6361        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6362      if (DefArg.isInvalid()) {
6363        IsError = true;
6364        break;
6365      }
6366
6367      Arg = DefArg.takeAs<Expr>();
6368    }
6369
6370    TheCall->setArg(i + 1, Arg);
6371  }
6372
6373  // If this is a variadic call, handle args passed through "...".
6374  if (Proto->isVariadic()) {
6375    // Promote the arguments (C99 6.5.2.2p7).
6376    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6377      Expr *Arg = Args[i];
6378      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6379      TheCall->setArg(i + 1, Arg);
6380    }
6381  }
6382
6383  if (IsError) return true;
6384
6385  if (CheckFunctionCall(Method, TheCall.get()))
6386    return true;
6387
6388  return MaybeBindToTemporary(TheCall.release()).release();
6389}
6390
6391/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6392///  (if one exists), where @c Base is an expression of class type and
6393/// @c Member is the name of the member we're trying to find.
6394Sema::OwningExprResult
6395Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6396  Expr *Base = static_cast<Expr *>(BaseIn.get());
6397  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6398
6399  SourceLocation Loc = Base->getExprLoc();
6400
6401  // C++ [over.ref]p1:
6402  //
6403  //   [...] An expression x->m is interpreted as (x.operator->())->m
6404  //   for a class object x of type T if T::operator->() exists and if
6405  //   the operator is selected as the best match function by the
6406  //   overload resolution mechanism (13.3).
6407  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6408  OverloadCandidateSet CandidateSet(Loc);
6409  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6410
6411  if (RequireCompleteType(Loc, Base->getType(),
6412                          PDiag(diag::err_typecheck_incomplete_tag)
6413                            << Base->getSourceRange()))
6414    return ExprError();
6415
6416  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6417  LookupQualifiedName(R, BaseRecord->getDecl());
6418  R.suppressDiagnostics();
6419
6420  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6421       Oper != OperEnd; ++Oper) {
6422    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6423                       /*SuppressUserConversions=*/false);
6424  }
6425
6426  // Perform overload resolution.
6427  OverloadCandidateSet::iterator Best;
6428  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6429  case OR_Success:
6430    // Overload resolution succeeded; we'll build the call below.
6431    break;
6432
6433  case OR_No_Viable_Function:
6434    if (CandidateSet.empty())
6435      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6436        << Base->getType() << Base->getSourceRange();
6437    else
6438      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6439        << "operator->" << Base->getSourceRange();
6440    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6441    return ExprError();
6442
6443  case OR_Ambiguous:
6444    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6445      << "->" << Base->getSourceRange();
6446    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6447    return ExprError();
6448
6449  case OR_Deleted:
6450    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6451      << Best->Function->isDeleted()
6452      << "->" << Base->getSourceRange();
6453    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6454    return ExprError();
6455  }
6456
6457  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6458
6459  // Convert the object parameter.
6460  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6461  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6462                                          Best->FoundDecl, Method))
6463    return ExprError();
6464
6465  // No concerns about early exits now.
6466  BaseIn.release();
6467
6468  // Build the operator call.
6469  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6470                                           SourceLocation());
6471  UsualUnaryConversions(FnExpr);
6472
6473  QualType ResultTy = Method->getResultType().getNonReferenceType();
6474  ExprOwningPtr<CXXOperatorCallExpr>
6475    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6476                                                    &Base, 1, ResultTy, OpLoc));
6477
6478  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6479                          Method))
6480          return ExprError();
6481  return move(TheCall);
6482}
6483
6484/// FixOverloadedFunctionReference - E is an expression that refers to
6485/// a C++ overloaded function (possibly with some parentheses and
6486/// perhaps a '&' around it). We have resolved the overloaded function
6487/// to the function declaration Fn, so patch up the expression E to
6488/// refer (possibly indirectly) to Fn. Returns the new expr.
6489Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6490                                           FunctionDecl *Fn) {
6491  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6492    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6493                                                   Found, Fn);
6494    if (SubExpr == PE->getSubExpr())
6495      return PE->Retain();
6496
6497    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6498  }
6499
6500  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6501    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6502                                                   Found, Fn);
6503    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6504                               SubExpr->getType()) &&
6505           "Implicit cast type cannot be determined from overload");
6506    if (SubExpr == ICE->getSubExpr())
6507      return ICE->Retain();
6508
6509    return new (Context) ImplicitCastExpr(ICE->getType(),
6510                                          ICE->getCastKind(),
6511                                          SubExpr,
6512                                          ICE->isLvalueCast());
6513  }
6514
6515  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6516    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6517           "Can only take the address of an overloaded function");
6518    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6519      if (Method->isStatic()) {
6520        // Do nothing: static member functions aren't any different
6521        // from non-member functions.
6522      } else {
6523        // Fix the sub expression, which really has to be an
6524        // UnresolvedLookupExpr holding an overloaded member function
6525        // or template.
6526        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6527                                                       Found, Fn);
6528        if (SubExpr == UnOp->getSubExpr())
6529          return UnOp->Retain();
6530
6531        assert(isa<DeclRefExpr>(SubExpr)
6532               && "fixed to something other than a decl ref");
6533        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6534               && "fixed to a member ref with no nested name qualifier");
6535
6536        // We have taken the address of a pointer to member
6537        // function. Perform the computation here so that we get the
6538        // appropriate pointer to member type.
6539        QualType ClassType
6540          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6541        QualType MemPtrType
6542          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6543
6544        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6545                                           MemPtrType, UnOp->getOperatorLoc());
6546      }
6547    }
6548    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6549                                                   Found, Fn);
6550    if (SubExpr == UnOp->getSubExpr())
6551      return UnOp->Retain();
6552
6553    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6554                                     Context.getPointerType(SubExpr->getType()),
6555                                       UnOp->getOperatorLoc());
6556  }
6557
6558  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6559    // FIXME: avoid copy.
6560    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6561    if (ULE->hasExplicitTemplateArgs()) {
6562      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6563      TemplateArgs = &TemplateArgsBuffer;
6564    }
6565
6566    return DeclRefExpr::Create(Context,
6567                               ULE->getQualifier(),
6568                               ULE->getQualifierRange(),
6569                               Fn,
6570                               ULE->getNameLoc(),
6571                               Fn->getType(),
6572                               TemplateArgs);
6573  }
6574
6575  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6576    // FIXME: avoid copy.
6577    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6578    if (MemExpr->hasExplicitTemplateArgs()) {
6579      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6580      TemplateArgs = &TemplateArgsBuffer;
6581    }
6582
6583    Expr *Base;
6584
6585    // If we're filling in
6586    if (MemExpr->isImplicitAccess()) {
6587      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6588        return DeclRefExpr::Create(Context,
6589                                   MemExpr->getQualifier(),
6590                                   MemExpr->getQualifierRange(),
6591                                   Fn,
6592                                   MemExpr->getMemberLoc(),
6593                                   Fn->getType(),
6594                                   TemplateArgs);
6595      } else {
6596        SourceLocation Loc = MemExpr->getMemberLoc();
6597        if (MemExpr->getQualifier())
6598          Loc = MemExpr->getQualifierRange().getBegin();
6599        Base = new (Context) CXXThisExpr(Loc,
6600                                         MemExpr->getBaseType(),
6601                                         /*isImplicit=*/true);
6602      }
6603    } else
6604      Base = MemExpr->getBase()->Retain();
6605
6606    return MemberExpr::Create(Context, Base,
6607                              MemExpr->isArrow(),
6608                              MemExpr->getQualifier(),
6609                              MemExpr->getQualifierRange(),
6610                              Fn,
6611                              Found,
6612                              MemExpr->getMemberLoc(),
6613                              TemplateArgs,
6614                              Fn->getType());
6615  }
6616
6617  assert(false && "Invalid reference to overloaded function");
6618  return E->Retain();
6619}
6620
6621Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6622                                                          DeclAccessPair Found,
6623                                                            FunctionDecl *Fn) {
6624  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6625}
6626
6627} // end namespace clang
6628