SemaOverload.cpp revision 294b199e9bae5088f24bc9f71dc5cf5a561d9e58
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407/// If @p UserCast, the implicit conversion is being done for a user-specified
408/// cast.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue,
413                            bool InOverloadResolution,
414                            bool UserCast) {
415  ImplicitConversionSequence ICS;
416  OverloadCandidateSet Conversions;
417  OverloadingResult UserDefResult = OR_Success;
418  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
419    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
420  else if (getLangOptions().CPlusPlus &&
421           (UserDefResult = IsUserDefinedConversion(From, ToType,
422                                   ICS.UserDefined,
423                                   Conversions,
424                                   !SuppressUserConversions, AllowExplicit,
425				   ForceRValue, UserCast)) == OR_Success) {
426    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
427    // C++ [over.ics.user]p4:
428    //   A conversion of an expression of class type to the same class
429    //   type is given Exact Match rank, and a conversion of an
430    //   expression of class type to a base class of that type is
431    //   given Conversion rank, in spite of the fact that a copy
432    //   constructor (i.e., a user-defined conversion function) is
433    //   called for those cases.
434    if (CXXConstructorDecl *Constructor
435          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
436      QualType FromCanon
437        = Context.getCanonicalType(From->getType().getUnqualifiedType());
438      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
439      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
440        // Turn this into a "standard" conversion sequence, so that it
441        // gets ranked with standard conversion sequences.
442        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
443        ICS.Standard.setAsIdentityConversion();
444        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
445        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
446        ICS.Standard.CopyConstructor = Constructor;
447        if (ToCanon != FromCanon)
448          ICS.Standard.Second = ICK_Derived_To_Base;
449      }
450    }
451
452    // C++ [over.best.ics]p4:
453    //   However, when considering the argument of a user-defined
454    //   conversion function that is a candidate by 13.3.1.3 when
455    //   invoked for the copying of the temporary in the second step
456    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
457    //   13.3.1.6 in all cases, only standard conversion sequences and
458    //   ellipsis conversion sequences are allowed.
459    if (SuppressUserConversions &&
460        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
461      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
462  } else {
463    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
464    if (UserDefResult == OR_Ambiguous) {
465      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
466           Cand != Conversions.end(); ++Cand)
467        if (Cand->Viable)
468          ICS.ConversionFunctionSet.push_back(Cand->Function);
469    }
470  }
471
472  return ICS;
473}
474
475/// IsStandardConversion - Determines whether there is a standard
476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
477/// expression From to the type ToType. Standard conversion sequences
478/// only consider non-class types; for conversions that involve class
479/// types, use TryImplicitConversion. If a conversion exists, SCS will
480/// contain the standard conversion sequence required to perform this
481/// conversion and this routine will return true. Otherwise, this
482/// routine will return false and the value of SCS is unspecified.
483bool
484Sema::IsStandardConversion(Expr* From, QualType ToType,
485                           bool InOverloadResolution,
486                           StandardConversionSequence &SCS) {
487  QualType FromType = From->getType();
488
489  // Standard conversions (C++ [conv])
490  SCS.setAsIdentityConversion();
491  SCS.Deprecated = false;
492  SCS.IncompatibleObjC = false;
493  SCS.FromTypePtr = FromType.getAsOpaquePtr();
494  SCS.CopyConstructor = 0;
495
496  // There are no standard conversions for class types in C++, so
497  // abort early. When overloading in C, however, we do permit
498  if (FromType->isRecordType() || ToType->isRecordType()) {
499    if (getLangOptions().CPlusPlus)
500      return false;
501
502    // When we're overloading in C, we allow, as standard conversions,
503  }
504
505  // The first conversion can be an lvalue-to-rvalue conversion,
506  // array-to-pointer conversion, or function-to-pointer conversion
507  // (C++ 4p1).
508
509  // Lvalue-to-rvalue conversion (C++ 4.1):
510  //   An lvalue (3.10) of a non-function, non-array type T can be
511  //   converted to an rvalue.
512  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
513  if (argIsLvalue == Expr::LV_Valid &&
514      !FromType->isFunctionType() && !FromType->isArrayType() &&
515      Context.getCanonicalType(FromType) != Context.OverloadTy) {
516    SCS.First = ICK_Lvalue_To_Rvalue;
517
518    // If T is a non-class type, the type of the rvalue is the
519    // cv-unqualified version of T. Otherwise, the type of the rvalue
520    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
521    // just strip the qualifiers because they don't matter.
522
523    // FIXME: Doesn't see through to qualifiers behind a typedef!
524    FromType = FromType.getUnqualifiedType();
525  } else if (FromType->isArrayType()) {
526    // Array-to-pointer conversion (C++ 4.2)
527    SCS.First = ICK_Array_To_Pointer;
528
529    // An lvalue or rvalue of type "array of N T" or "array of unknown
530    // bound of T" can be converted to an rvalue of type "pointer to
531    // T" (C++ 4.2p1).
532    FromType = Context.getArrayDecayedType(FromType);
533
534    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
535      // This conversion is deprecated. (C++ D.4).
536      SCS.Deprecated = true;
537
538      // For the purpose of ranking in overload resolution
539      // (13.3.3.1.1), this conversion is considered an
540      // array-to-pointer conversion followed by a qualification
541      // conversion (4.4). (C++ 4.2p2)
542      SCS.Second = ICK_Identity;
543      SCS.Third = ICK_Qualification;
544      SCS.ToTypePtr = ToType.getAsOpaquePtr();
545      return true;
546    }
547  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
548    // Function-to-pointer conversion (C++ 4.3).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // An lvalue of function type T can be converted to an rvalue of
552    // type "pointer to T." The result is a pointer to the
553    // function. (C++ 4.3p1).
554    FromType = Context.getPointerType(FromType);
555  } else if (FunctionDecl *Fn
556             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
557    // Address of overloaded function (C++ [over.over]).
558    SCS.First = ICK_Function_To_Pointer;
559
560    // We were able to resolve the address of the overloaded function,
561    // so we can convert to the type of that function.
562    FromType = Fn->getType();
563    if (ToType->isLValueReferenceType())
564      FromType = Context.getLValueReferenceType(FromType);
565    else if (ToType->isRValueReferenceType())
566      FromType = Context.getRValueReferenceType(FromType);
567    else if (ToType->isMemberPointerType()) {
568      // Resolve address only succeeds if both sides are member pointers,
569      // but it doesn't have to be the same class. See DR 247.
570      // Note that this means that the type of &Derived::fn can be
571      // Ret (Base::*)(Args) if the fn overload actually found is from the
572      // base class, even if it was brought into the derived class via a
573      // using declaration. The standard isn't clear on this issue at all.
574      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
575      FromType = Context.getMemberPointerType(FromType,
576                    Context.getTypeDeclType(M->getParent()).getTypePtr());
577    } else
578      FromType = Context.getPointerType(FromType);
579  } else {
580    // We don't require any conversions for the first step.
581    SCS.First = ICK_Identity;
582  }
583
584  // The second conversion can be an integral promotion, floating
585  // point promotion, integral conversion, floating point conversion,
586  // floating-integral conversion, pointer conversion,
587  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
588  // For overloading in C, this can also be a "compatible-type"
589  // conversion.
590  bool IncompatibleObjC = false;
591  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
592    // The unqualified versions of the types are the same: there's no
593    // conversion to do.
594    SCS.Second = ICK_Identity;
595  } else if (IsIntegralPromotion(From, FromType, ToType)) {
596    // Integral promotion (C++ 4.5).
597    SCS.Second = ICK_Integral_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsFloatingPointPromotion(FromType, ToType)) {
600    // Floating point promotion (C++ 4.6).
601    SCS.Second = ICK_Floating_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (IsComplexPromotion(FromType, ToType)) {
604    // Complex promotion (Clang extension)
605    SCS.Second = ICK_Complex_Promotion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
608           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
609    // Integral conversions (C++ 4.7).
610    // FIXME: isIntegralType shouldn't be true for enums in C++.
611    SCS.Second = ICK_Integral_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
614    // Floating point conversions (C++ 4.8).
615    SCS.Second = ICK_Floating_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if (FromType->isComplexType() && ToType->isComplexType()) {
618    // Complex conversions (C99 6.3.1.6)
619    SCS.Second = ICK_Complex_Conversion;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isFloatingType() &&
622              ToType->isIntegralType() && (!ToType->isBooleanType() &&
623                                           !ToType->isEnumeralType())) ||
624             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625              ToType->isFloatingType())) {
626    // Floating-integral conversions (C++ 4.9).
627    // FIXME: isIntegralType shouldn't be true for enums in C++.
628    SCS.Second = ICK_Floating_Integral;
629    FromType = ToType.getUnqualifiedType();
630  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631             (ToType->isComplexType() && FromType->isArithmeticType())) {
632    // Complex-real conversions (C99 6.3.1.7)
633    SCS.Second = ICK_Complex_Real;
634    FromType = ToType.getUnqualifiedType();
635  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
636                                 FromType, IncompatibleObjC)) {
637    // Pointer conversions (C++ 4.10).
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  } else if (IsMemberPointerConversion(From, FromType, ToType,
641                                       InOverloadResolution, FromType)) {
642    // Pointer to member conversions (4.11).
643    SCS.Second = ICK_Pointer_Member;
644  } else if (ToType->isBooleanType() &&
645             (FromType->isArithmeticType() ||
646              FromType->isEnumeralType() ||
647              FromType->isPointerType() ||
648              FromType->isBlockPointerType() ||
649              FromType->isMemberPointerType() ||
650              FromType->isNullPtrType())) {
651    // Boolean conversions (C++ 4.12).
652    SCS.Second = ICK_Boolean_Conversion;
653    FromType = Context.BoolTy;
654  } else if (!getLangOptions().CPlusPlus &&
655             Context.typesAreCompatible(ToType, FromType)) {
656    // Compatible conversions (Clang extension for C function overloading)
657    SCS.Second = ICK_Compatible_Conversion;
658  } else {
659    // No second conversion required.
660    SCS.Second = ICK_Identity;
661  }
662
663  QualType CanonFrom;
664  QualType CanonTo;
665  // The third conversion can be a qualification conversion (C++ 4p1).
666  if (IsQualificationConversion(FromType, ToType)) {
667    SCS.Third = ICK_Qualification;
668    FromType = ToType;
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671  } else {
672    // No conversion required
673    SCS.Third = ICK_Identity;
674
675    // C++ [over.best.ics]p6:
676    //   [...] Any difference in top-level cv-qualification is
677    //   subsumed by the initialization itself and does not constitute
678    //   a conversion. [...]
679    CanonFrom = Context.getCanonicalType(FromType);
680    CanonTo = Context.getCanonicalType(ToType);
681    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
682        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
683      FromType = ToType;
684      CanonFrom = CanonTo;
685    }
686  }
687
688  // If we have not converted the argument type to the parameter type,
689  // this is a bad conversion sequence.
690  if (CanonFrom != CanonTo)
691    return false;
692
693  SCS.ToTypePtr = FromType.getAsOpaquePtr();
694  return true;
695}
696
697/// IsIntegralPromotion - Determines whether the conversion from the
698/// expression From (whose potentially-adjusted type is FromType) to
699/// ToType is an integral promotion (C++ 4.5). If so, returns true and
700/// sets PromotedType to the promoted type.
701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
702  const BuiltinType *To = ToType->getAs<BuiltinType>();
703  // All integers are built-in.
704  if (!To) {
705    return false;
706  }
707
708  // An rvalue of type char, signed char, unsigned char, short int, or
709  // unsigned short int can be converted to an rvalue of type int if
710  // int can represent all the values of the source type; otherwise,
711  // the source rvalue can be converted to an rvalue of type unsigned
712  // int (C++ 4.5p1).
713  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
714    if (// We can promote any signed, promotable integer type to an int
715        (FromType->isSignedIntegerType() ||
716         // We can promote any unsigned integer type whose size is
717         // less than int to an int.
718         (!FromType->isSignedIntegerType() &&
719          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
720      return To->getKind() == BuiltinType::Int;
721    }
722
723    return To->getKind() == BuiltinType::UInt;
724  }
725
726  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
727  // can be converted to an rvalue of the first of the following types
728  // that can represent all the values of its underlying type: int,
729  // unsigned int, long, or unsigned long (C++ 4.5p2).
730  if ((FromType->isEnumeralType() || FromType->isWideCharType())
731      && ToType->isIntegerType()) {
732    // Determine whether the type we're converting from is signed or
733    // unsigned.
734    bool FromIsSigned;
735    uint64_t FromSize = Context.getTypeSize(FromType);
736    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
737      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
738      FromIsSigned = UnderlyingType->isSignedIntegerType();
739    } else {
740      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
741      FromIsSigned = true;
742    }
743
744    // The types we'll try to promote to, in the appropriate
745    // order. Try each of these types.
746    QualType PromoteTypes[6] = {
747      Context.IntTy, Context.UnsignedIntTy,
748      Context.LongTy, Context.UnsignedLongTy ,
749      Context.LongLongTy, Context.UnsignedLongLongTy
750    };
751    for (int Idx = 0; Idx < 6; ++Idx) {
752      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
753      if (FromSize < ToSize ||
754          (FromSize == ToSize &&
755           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
756        // We found the type that we can promote to. If this is the
757        // type we wanted, we have a promotion. Otherwise, no
758        // promotion.
759        return Context.getCanonicalType(ToType).getUnqualifiedType()
760          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
761      }
762    }
763  }
764
765  // An rvalue for an integral bit-field (9.6) can be converted to an
766  // rvalue of type int if int can represent all the values of the
767  // bit-field; otherwise, it can be converted to unsigned int if
768  // unsigned int can represent all the values of the bit-field. If
769  // the bit-field is larger yet, no integral promotion applies to
770  // it. If the bit-field has an enumerated type, it is treated as any
771  // other value of that type for promotion purposes (C++ 4.5p3).
772  // FIXME: We should delay checking of bit-fields until we actually perform the
773  // conversion.
774  using llvm::APSInt;
775  if (From)
776    if (FieldDecl *MemberDecl = From->getBitField()) {
777      APSInt BitWidth;
778      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
779          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
780        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
781        ToSize = Context.getTypeSize(ToType);
782
783        // Are we promoting to an int from a bitfield that fits in an int?
784        if (BitWidth < ToSize ||
785            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
786          return To->getKind() == BuiltinType::Int;
787        }
788
789        // Are we promoting to an unsigned int from an unsigned bitfield
790        // that fits into an unsigned int?
791        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
792          return To->getKind() == BuiltinType::UInt;
793        }
794
795        return false;
796      }
797    }
798
799  // An rvalue of type bool can be converted to an rvalue of type int,
800  // with false becoming zero and true becoming one (C++ 4.5p4).
801  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
802    return true;
803  }
804
805  return false;
806}
807
808/// IsFloatingPointPromotion - Determines whether the conversion from
809/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
810/// returns true and sets PromotedType to the promoted type.
811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
812  /// An rvalue of type float can be converted to an rvalue of type
813  /// double. (C++ 4.6p1).
814  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
815    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
816      if (FromBuiltin->getKind() == BuiltinType::Float &&
817          ToBuiltin->getKind() == BuiltinType::Double)
818        return true;
819
820      // C99 6.3.1.5p1:
821      //   When a float is promoted to double or long double, or a
822      //   double is promoted to long double [...].
823      if (!getLangOptions().CPlusPlus &&
824          (FromBuiltin->getKind() == BuiltinType::Float ||
825           FromBuiltin->getKind() == BuiltinType::Double) &&
826          (ToBuiltin->getKind() == BuiltinType::LongDouble))
827        return true;
828    }
829
830  return false;
831}
832
833/// \brief Determine if a conversion is a complex promotion.
834///
835/// A complex promotion is defined as a complex -> complex conversion
836/// where the conversion between the underlying real types is a
837/// floating-point or integral promotion.
838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
839  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
840  if (!FromComplex)
841    return false;
842
843  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
844  if (!ToComplex)
845    return false;
846
847  return IsFloatingPointPromotion(FromComplex->getElementType(),
848                                  ToComplex->getElementType()) ||
849    IsIntegralPromotion(0, FromComplex->getElementType(),
850                        ToComplex->getElementType());
851}
852
853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
854/// the pointer type FromPtr to a pointer to type ToPointee, with the
855/// same type qualifiers as FromPtr has on its pointee type. ToType,
856/// if non-empty, will be a pointer to ToType that may or may not have
857/// the right set of qualifiers on its pointee.
858static QualType
859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
860                                   QualType ToPointee, QualType ToType,
861                                   ASTContext &Context) {
862  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
863  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
864  Qualifiers Quals = CanonFromPointee.getQualifiers();
865
866  // Exact qualifier match -> return the pointer type we're converting to.
867  if (CanonToPointee.getQualifiers() == Quals) {
868    // ToType is exactly what we need. Return it.
869    if (!ToType.isNull())
870      return ToType;
871
872    // Build a pointer to ToPointee. It has the right qualifiers
873    // already.
874    return Context.getPointerType(ToPointee);
875  }
876
877  // Just build a canonical type that has the right qualifiers.
878  return Context.getPointerType(
879         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
880}
881
882static bool isNullPointerConstantForConversion(Expr *Expr,
883                                               bool InOverloadResolution,
884                                               ASTContext &Context) {
885  // Handle value-dependent integral null pointer constants correctly.
886  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
887  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
888      Expr->getType()->isIntegralType())
889    return !InOverloadResolution;
890
891  return Expr->isNullPointerConstant(Context,
892                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
893                                        : Expr::NPC_ValueDependentIsNull);
894}
895
896/// IsPointerConversion - Determines whether the conversion of the
897/// expression From, which has the (possibly adjusted) type FromType,
898/// can be converted to the type ToType via a pointer conversion (C++
899/// 4.10). If so, returns true and places the converted type (that
900/// might differ from ToType in its cv-qualifiers at some level) into
901/// ConvertedType.
902///
903/// This routine also supports conversions to and from block pointers
904/// and conversions with Objective-C's 'id', 'id<protocols...>', and
905/// pointers to interfaces. FIXME: Once we've determined the
906/// appropriate overloading rules for Objective-C, we may want to
907/// split the Objective-C checks into a different routine; however,
908/// GCC seems to consider all of these conversions to be pointer
909/// conversions, so for now they live here. IncompatibleObjC will be
910/// set if the conversion is an allowed Objective-C conversion that
911/// should result in a warning.
912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
913                               bool InOverloadResolution,
914                               QualType& ConvertedType,
915                               bool &IncompatibleObjC) {
916  IncompatibleObjC = false;
917  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
918    return true;
919
920  // Conversion from a null pointer constant to any Objective-C pointer type.
921  if (ToType->isObjCObjectPointerType() &&
922      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
923    ConvertedType = ToType;
924    return true;
925  }
926
927  // Blocks: Block pointers can be converted to void*.
928  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
929      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
930    ConvertedType = ToType;
931    return true;
932  }
933  // Blocks: A null pointer constant can be converted to a block
934  // pointer type.
935  if (ToType->isBlockPointerType() &&
936      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // If the left-hand-side is nullptr_t, the right side can be a null
942  // pointer constant.
943  if (ToType->isNullPtrType() &&
944      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
950  if (!ToTypePtr)
951    return false;
952
953  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
954  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
955    ConvertedType = ToType;
956    return true;
957  }
958
959  // Beyond this point, both types need to be pointers.
960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
961  if (!FromTypePtr)
962    return false;
963
964  QualType FromPointeeType = FromTypePtr->getPointeeType();
965  QualType ToPointeeType = ToTypePtr->getPointeeType();
966
967  // An rvalue of type "pointer to cv T," where T is an object type,
968  // can be converted to an rvalue of type "pointer to cv void" (C++
969  // 4.10p2).
970  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // When we're overloading in C, we allow a special kind of pointer
978  // conversion for compatible-but-not-identical pointee types.
979  if (!getLangOptions().CPlusPlus &&
980      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
981    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
982                                                       ToPointeeType,
983                                                       ToType, Context);
984    return true;
985  }
986
987  // C++ [conv.ptr]p3:
988  //
989  //   An rvalue of type "pointer to cv D," where D is a class type,
990  //   can be converted to an rvalue of type "pointer to cv B," where
991  //   B is a base class (clause 10) of D. If B is an inaccessible
992  //   (clause 11) or ambiguous (10.2) base class of D, a program that
993  //   necessitates this conversion is ill-formed. The result of the
994  //   conversion is a pointer to the base class sub-object of the
995  //   derived class object. The null pointer value is converted to
996  //   the null pointer value of the destination type.
997  //
998  // Note that we do not check for ambiguity or inaccessibility
999  // here. That is handled by CheckPointerConversion.
1000  if (getLangOptions().CPlusPlus &&
1001      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1002      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1003    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1004                                                       ToPointeeType,
1005                                                       ToType, Context);
1006    return true;
1007  }
1008
1009  return false;
1010}
1011
1012/// isObjCPointerConversion - Determines whether this is an
1013/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1014/// with the same arguments and return values.
1015bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1016                                   QualType& ConvertedType,
1017                                   bool &IncompatibleObjC) {
1018  if (!getLangOptions().ObjC1)
1019    return false;
1020
1021  // First, we handle all conversions on ObjC object pointer types.
1022  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1023  const ObjCObjectPointerType *FromObjCPtr =
1024    FromType->getAs<ObjCObjectPointerType>();
1025
1026  if (ToObjCPtr && FromObjCPtr) {
1027    // Objective C++: We're able to convert between "id" or "Class" and a
1028    // pointer to any interface (in both directions).
1029    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1030      ConvertedType = ToType;
1031      return true;
1032    }
1033    // Conversions with Objective-C's id<...>.
1034    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1035         ToObjCPtr->isObjCQualifiedIdType()) &&
1036        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1037                                                  /*compare=*/false)) {
1038      ConvertedType = ToType;
1039      return true;
1040    }
1041    // Objective C++: We're able to convert from a pointer to an
1042    // interface to a pointer to a different interface.
1043    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1044      ConvertedType = ToType;
1045      return true;
1046    }
1047
1048    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1049      // Okay: this is some kind of implicit downcast of Objective-C
1050      // interfaces, which is permitted. However, we're going to
1051      // complain about it.
1052      IncompatibleObjC = true;
1053      ConvertedType = FromType;
1054      return true;
1055    }
1056  }
1057  // Beyond this point, both types need to be C pointers or block pointers.
1058  QualType ToPointeeType;
1059  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1060    ToPointeeType = ToCPtr->getPointeeType();
1061  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1062    ToPointeeType = ToBlockPtr->getPointeeType();
1063  else
1064    return false;
1065
1066  QualType FromPointeeType;
1067  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1068    FromPointeeType = FromCPtr->getPointeeType();
1069  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1070    FromPointeeType = FromBlockPtr->getPointeeType();
1071  else
1072    return false;
1073
1074  // If we have pointers to pointers, recursively check whether this
1075  // is an Objective-C conversion.
1076  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1077      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1078                              IncompatibleObjC)) {
1079    // We always complain about this conversion.
1080    IncompatibleObjC = true;
1081    ConvertedType = ToType;
1082    return true;
1083  }
1084  // If we have pointers to functions or blocks, check whether the only
1085  // differences in the argument and result types are in Objective-C
1086  // pointer conversions. If so, we permit the conversion (but
1087  // complain about it).
1088  const FunctionProtoType *FromFunctionType
1089    = FromPointeeType->getAs<FunctionProtoType>();
1090  const FunctionProtoType *ToFunctionType
1091    = ToPointeeType->getAs<FunctionProtoType>();
1092  if (FromFunctionType && ToFunctionType) {
1093    // If the function types are exactly the same, this isn't an
1094    // Objective-C pointer conversion.
1095    if (Context.getCanonicalType(FromPointeeType)
1096          == Context.getCanonicalType(ToPointeeType))
1097      return false;
1098
1099    // Perform the quick checks that will tell us whether these
1100    // function types are obviously different.
1101    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1102        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1103        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1104      return false;
1105
1106    bool HasObjCConversion = false;
1107    if (Context.getCanonicalType(FromFunctionType->getResultType())
1108          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1109      // Okay, the types match exactly. Nothing to do.
1110    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1111                                       ToFunctionType->getResultType(),
1112                                       ConvertedType, IncompatibleObjC)) {
1113      // Okay, we have an Objective-C pointer conversion.
1114      HasObjCConversion = true;
1115    } else {
1116      // Function types are too different. Abort.
1117      return false;
1118    }
1119
1120    // Check argument types.
1121    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1122         ArgIdx != NumArgs; ++ArgIdx) {
1123      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1124      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1125      if (Context.getCanonicalType(FromArgType)
1126            == Context.getCanonicalType(ToArgType)) {
1127        // Okay, the types match exactly. Nothing to do.
1128      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1129                                         ConvertedType, IncompatibleObjC)) {
1130        // Okay, we have an Objective-C pointer conversion.
1131        HasObjCConversion = true;
1132      } else {
1133        // Argument types are too different. Abort.
1134        return false;
1135      }
1136    }
1137
1138    if (HasObjCConversion) {
1139      // We had an Objective-C conversion. Allow this pointer
1140      // conversion, but complain about it.
1141      ConvertedType = ToType;
1142      IncompatibleObjC = true;
1143      return true;
1144    }
1145  }
1146
1147  return false;
1148}
1149
1150/// CheckPointerConversion - Check the pointer conversion from the
1151/// expression From to the type ToType. This routine checks for
1152/// ambiguous or inaccessible derived-to-base pointer
1153/// conversions for which IsPointerConversion has already returned
1154/// true. It returns true and produces a diagnostic if there was an
1155/// error, or returns false otherwise.
1156bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1157                                  CastExpr::CastKind &Kind) {
1158  QualType FromType = From->getType();
1159
1160  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1161    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1162      QualType FromPointeeType = FromPtrType->getPointeeType(),
1163               ToPointeeType   = ToPtrType->getPointeeType();
1164
1165      if (FromPointeeType->isRecordType() &&
1166          ToPointeeType->isRecordType()) {
1167        // We must have a derived-to-base conversion. Check an
1168        // ambiguous or inaccessible conversion.
1169        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1170                                         From->getExprLoc(),
1171                                         From->getSourceRange()))
1172          return true;
1173
1174        // The conversion was successful.
1175        Kind = CastExpr::CK_DerivedToBase;
1176      }
1177    }
1178  if (const ObjCObjectPointerType *FromPtrType =
1179        FromType->getAs<ObjCObjectPointerType>())
1180    if (const ObjCObjectPointerType *ToPtrType =
1181          ToType->getAs<ObjCObjectPointerType>()) {
1182      // Objective-C++ conversions are always okay.
1183      // FIXME: We should have a different class of conversions for the
1184      // Objective-C++ implicit conversions.
1185      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1186        return false;
1187
1188  }
1189  return false;
1190}
1191
1192/// IsMemberPointerConversion - Determines whether the conversion of the
1193/// expression From, which has the (possibly adjusted) type FromType, can be
1194/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1195/// If so, returns true and places the converted type (that might differ from
1196/// ToType in its cv-qualifiers at some level) into ConvertedType.
1197bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1198                                     QualType ToType,
1199                                     bool InOverloadResolution,
1200                                     QualType &ConvertedType) {
1201  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1202  if (!ToTypePtr)
1203    return false;
1204
1205  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1206  if (From->isNullPointerConstant(Context,
1207                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1208                                        : Expr::NPC_ValueDependentIsNull)) {
1209    ConvertedType = ToType;
1210    return true;
1211  }
1212
1213  // Otherwise, both types have to be member pointers.
1214  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1215  if (!FromTypePtr)
1216    return false;
1217
1218  // A pointer to member of B can be converted to a pointer to member of D,
1219  // where D is derived from B (C++ 4.11p2).
1220  QualType FromClass(FromTypePtr->getClass(), 0);
1221  QualType ToClass(ToTypePtr->getClass(), 0);
1222  // FIXME: What happens when these are dependent? Is this function even called?
1223
1224  if (IsDerivedFrom(ToClass, FromClass)) {
1225    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1226                                                 ToClass.getTypePtr());
1227    return true;
1228  }
1229
1230  return false;
1231}
1232
1233/// CheckMemberPointerConversion - Check the member pointer conversion from the
1234/// expression From to the type ToType. This routine checks for ambiguous or
1235/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1236/// for which IsMemberPointerConversion has already returned true. It returns
1237/// true and produces a diagnostic if there was an error, or returns false
1238/// otherwise.
1239bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1240                                        CastExpr::CastKind &Kind) {
1241  QualType FromType = From->getType();
1242  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1243  if (!FromPtrType) {
1244    // This must be a null pointer to member pointer conversion
1245    assert(From->isNullPointerConstant(Context,
1246                                       Expr::NPC_ValueDependentIsNull) &&
1247           "Expr must be null pointer constant!");
1248    Kind = CastExpr::CK_NullToMemberPointer;
1249    return false;
1250  }
1251
1252  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1253  assert(ToPtrType && "No member pointer cast has a target type "
1254                      "that is not a member pointer.");
1255
1256  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1257  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1258
1259  // FIXME: What about dependent types?
1260  assert(FromClass->isRecordType() && "Pointer into non-class.");
1261  assert(ToClass->isRecordType() && "Pointer into non-class.");
1262
1263  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1264                     /*DetectVirtual=*/true);
1265  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1266  assert(DerivationOkay &&
1267         "Should not have been called if derivation isn't OK.");
1268  (void)DerivationOkay;
1269
1270  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1271                                  getUnqualifiedType())) {
1272    // Derivation is ambiguous. Redo the check to find the exact paths.
1273    Paths.clear();
1274    Paths.setRecordingPaths(true);
1275    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1276    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1277    (void)StillOkay;
1278
1279    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1280    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1281      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1282    return true;
1283  }
1284
1285  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1286    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1287      << FromClass << ToClass << QualType(VBase, 0)
1288      << From->getSourceRange();
1289    return true;
1290  }
1291
1292  // Must be a base to derived member conversion.
1293  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1294  return false;
1295}
1296
1297/// IsQualificationConversion - Determines whether the conversion from
1298/// an rvalue of type FromType to ToType is a qualification conversion
1299/// (C++ 4.4).
1300bool
1301Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1302  FromType = Context.getCanonicalType(FromType);
1303  ToType = Context.getCanonicalType(ToType);
1304
1305  // If FromType and ToType are the same type, this is not a
1306  // qualification conversion.
1307  if (FromType == ToType)
1308    return false;
1309
1310  // (C++ 4.4p4):
1311  //   A conversion can add cv-qualifiers at levels other than the first
1312  //   in multi-level pointers, subject to the following rules: [...]
1313  bool PreviousToQualsIncludeConst = true;
1314  bool UnwrappedAnyPointer = false;
1315  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1316    // Within each iteration of the loop, we check the qualifiers to
1317    // determine if this still looks like a qualification
1318    // conversion. Then, if all is well, we unwrap one more level of
1319    // pointers or pointers-to-members and do it all again
1320    // until there are no more pointers or pointers-to-members left to
1321    // unwrap.
1322    UnwrappedAnyPointer = true;
1323
1324    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1325    //      2,j, and similarly for volatile.
1326    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1327      return false;
1328
1329    //   -- if the cv 1,j and cv 2,j are different, then const is in
1330    //      every cv for 0 < k < j.
1331    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1332        && !PreviousToQualsIncludeConst)
1333      return false;
1334
1335    // Keep track of whether all prior cv-qualifiers in the "to" type
1336    // include const.
1337    PreviousToQualsIncludeConst
1338      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1339  }
1340
1341  // We are left with FromType and ToType being the pointee types
1342  // after unwrapping the original FromType and ToType the same number
1343  // of types. If we unwrapped any pointers, and if FromType and
1344  // ToType have the same unqualified type (since we checked
1345  // qualifiers above), then this is a qualification conversion.
1346  return UnwrappedAnyPointer &&
1347    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1348}
1349
1350/// \brief Given a function template or function, extract the function template
1351/// declaration (if any) and the underlying function declaration.
1352template<typename T>
1353static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1354                                   FunctionTemplateDecl *&FunctionTemplate) {
1355  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1356  if (FunctionTemplate)
1357    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1358  else
1359    Function = cast<T>(Orig);
1360}
1361
1362/// Determines whether there is a user-defined conversion sequence
1363/// (C++ [over.ics.user]) that converts expression From to the type
1364/// ToType. If such a conversion exists, User will contain the
1365/// user-defined conversion sequence that performs such a conversion
1366/// and this routine will return true. Otherwise, this routine returns
1367/// false and User is unspecified.
1368///
1369/// \param AllowConversionFunctions true if the conversion should
1370/// consider conversion functions at all. If false, only constructors
1371/// will be considered.
1372///
1373/// \param AllowExplicit  true if the conversion should consider C++0x
1374/// "explicit" conversion functions as well as non-explicit conversion
1375/// functions (C++0x [class.conv.fct]p2).
1376///
1377/// \param ForceRValue  true if the expression should be treated as an rvalue
1378/// for overload resolution.
1379/// \param UserCast true if looking for user defined conversion for a static
1380/// cast.
1381Sema::OverloadingResult Sema::IsUserDefinedConversion(
1382                                   Expr *From, QualType ToType,
1383                                   UserDefinedConversionSequence& User,
1384                                   OverloadCandidateSet& CandidateSet,
1385                                   bool AllowConversionFunctions,
1386                                   bool AllowExplicit, bool ForceRValue,
1387                                   bool UserCast) {
1388  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1389    if (CXXRecordDecl *ToRecordDecl
1390          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1391      // C++ [over.match.ctor]p1:
1392      //   When objects of class type are direct-initialized (8.5), or
1393      //   copy-initialized from an expression of the same or a
1394      //   derived class type (8.5), overload resolution selects the
1395      //   constructor. [...] For copy-initialization, the candidate
1396      //   functions are all the converting constructors (12.3.1) of
1397      //   that class. The argument list is the expression-list within
1398      //   the parentheses of the initializer.
1399      DeclarationName ConstructorName
1400        = Context.DeclarationNames.getCXXConstructorName(
1401                          Context.getCanonicalType(ToType).getUnqualifiedType());
1402      DeclContext::lookup_iterator Con, ConEnd;
1403      for (llvm::tie(Con, ConEnd)
1404             = ToRecordDecl->lookup(ConstructorName);
1405           Con != ConEnd; ++Con) {
1406        // Find the constructor (which may be a template).
1407        CXXConstructorDecl *Constructor = 0;
1408        FunctionTemplateDecl *ConstructorTmpl
1409          = dyn_cast<FunctionTemplateDecl>(*Con);
1410        if (ConstructorTmpl)
1411          Constructor
1412            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1413        else
1414          Constructor = cast<CXXConstructorDecl>(*Con);
1415
1416        if (!Constructor->isInvalidDecl() &&
1417            Constructor->isConvertingConstructor(AllowExplicit)) {
1418          if (ConstructorTmpl)
1419            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1420                                         1, CandidateSet,
1421                                         /*SuppressUserConversions=*/!UserCast,
1422                                         ForceRValue);
1423          else
1424            // Allow one user-defined conversion when user specifies a
1425            // From->ToType conversion via an static cast (c-style, etc).
1426            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1427                                 /*SuppressUserConversions=*/!UserCast,
1428                                 ForceRValue);
1429        }
1430      }
1431    }
1432  }
1433
1434  if (!AllowConversionFunctions) {
1435    // Don't allow any conversion functions to enter the overload set.
1436  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1437                                 PDiag(0)
1438                                   << From->getSourceRange())) {
1439    // No conversion functions from incomplete types.
1440  } else if (const RecordType *FromRecordType
1441               = From->getType()->getAs<RecordType>()) {
1442    if (CXXRecordDecl *FromRecordDecl
1443         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1444      // Add all of the conversion functions as candidates.
1445      OverloadedFunctionDecl *Conversions
1446        = FromRecordDecl->getVisibleConversionFunctions();
1447      for (OverloadedFunctionDecl::function_iterator Func
1448             = Conversions->function_begin();
1449           Func != Conversions->function_end(); ++Func) {
1450        CXXConversionDecl *Conv;
1451        FunctionTemplateDecl *ConvTemplate;
1452        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1453        if (ConvTemplate)
1454          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1455        else
1456          Conv = dyn_cast<CXXConversionDecl>(*Func);
1457
1458        if (AllowExplicit || !Conv->isExplicit()) {
1459          if (ConvTemplate)
1460            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1461                                           CandidateSet);
1462          else
1463            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1464        }
1465      }
1466    }
1467  }
1468
1469  OverloadCandidateSet::iterator Best;
1470  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1471    case OR_Success:
1472      // Record the standard conversion we used and the conversion function.
1473      if (CXXConstructorDecl *Constructor
1474            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1475        // C++ [over.ics.user]p1:
1476        //   If the user-defined conversion is specified by a
1477        //   constructor (12.3.1), the initial standard conversion
1478        //   sequence converts the source type to the type required by
1479        //   the argument of the constructor.
1480        //
1481        // FIXME: What about ellipsis conversions?
1482        QualType ThisType = Constructor->getThisType(Context);
1483        User.Before = Best->Conversions[0].Standard;
1484        User.ConversionFunction = Constructor;
1485        User.After.setAsIdentityConversion();
1486        User.After.FromTypePtr
1487          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1488        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1489        return OR_Success;
1490      } else if (CXXConversionDecl *Conversion
1491                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1492        // C++ [over.ics.user]p1:
1493        //
1494        //   [...] If the user-defined conversion is specified by a
1495        //   conversion function (12.3.2), the initial standard
1496        //   conversion sequence converts the source type to the
1497        //   implicit object parameter of the conversion function.
1498        User.Before = Best->Conversions[0].Standard;
1499        User.ConversionFunction = Conversion;
1500
1501        // C++ [over.ics.user]p2:
1502        //   The second standard conversion sequence converts the
1503        //   result of the user-defined conversion to the target type
1504        //   for the sequence. Since an implicit conversion sequence
1505        //   is an initialization, the special rules for
1506        //   initialization by user-defined conversion apply when
1507        //   selecting the best user-defined conversion for a
1508        //   user-defined conversion sequence (see 13.3.3 and
1509        //   13.3.3.1).
1510        User.After = Best->FinalConversion;
1511        return OR_Success;
1512      } else {
1513        assert(false && "Not a constructor or conversion function?");
1514        return OR_No_Viable_Function;
1515      }
1516
1517    case OR_No_Viable_Function:
1518      return OR_No_Viable_Function;
1519    case OR_Deleted:
1520      // No conversion here! We're done.
1521      return OR_Deleted;
1522
1523    case OR_Ambiguous:
1524      return OR_Ambiguous;
1525    }
1526
1527  return OR_No_Viable_Function;
1528}
1529
1530bool
1531Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1532  ImplicitConversionSequence ICS;
1533  OverloadCandidateSet CandidateSet;
1534  OverloadingResult OvResult =
1535    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1536                            CandidateSet, true, false, false);
1537  if (OvResult != OR_Ambiguous)
1538    return false;
1539  Diag(From->getSourceRange().getBegin(),
1540       diag::err_typecheck_ambiguous_condition)
1541  << From->getType() << ToType << From->getSourceRange();
1542    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1543  return true;
1544}
1545
1546/// CompareImplicitConversionSequences - Compare two implicit
1547/// conversion sequences to determine whether one is better than the
1548/// other or if they are indistinguishable (C++ 13.3.3.2).
1549ImplicitConversionSequence::CompareKind
1550Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1551                                         const ImplicitConversionSequence& ICS2)
1552{
1553  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1554  // conversion sequences (as defined in 13.3.3.1)
1555  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1556  //      conversion sequence than a user-defined conversion sequence or
1557  //      an ellipsis conversion sequence, and
1558  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1559  //      conversion sequence than an ellipsis conversion sequence
1560  //      (13.3.3.1.3).
1561  //
1562  if (ICS1.ConversionKind < ICS2.ConversionKind)
1563    return ImplicitConversionSequence::Better;
1564  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1565    return ImplicitConversionSequence::Worse;
1566
1567  // Two implicit conversion sequences of the same form are
1568  // indistinguishable conversion sequences unless one of the
1569  // following rules apply: (C++ 13.3.3.2p3):
1570  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1571    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1572  else if (ICS1.ConversionKind ==
1573             ImplicitConversionSequence::UserDefinedConversion) {
1574    // User-defined conversion sequence U1 is a better conversion
1575    // sequence than another user-defined conversion sequence U2 if
1576    // they contain the same user-defined conversion function or
1577    // constructor and if the second standard conversion sequence of
1578    // U1 is better than the second standard conversion sequence of
1579    // U2 (C++ 13.3.3.2p3).
1580    if (ICS1.UserDefined.ConversionFunction ==
1581          ICS2.UserDefined.ConversionFunction)
1582      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1583                                                ICS2.UserDefined.After);
1584  }
1585
1586  return ImplicitConversionSequence::Indistinguishable;
1587}
1588
1589/// CompareStandardConversionSequences - Compare two standard
1590/// conversion sequences to determine whether one is better than the
1591/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1592ImplicitConversionSequence::CompareKind
1593Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1594                                         const StandardConversionSequence& SCS2)
1595{
1596  // Standard conversion sequence S1 is a better conversion sequence
1597  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1598
1599  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1600  //     sequences in the canonical form defined by 13.3.3.1.1,
1601  //     excluding any Lvalue Transformation; the identity conversion
1602  //     sequence is considered to be a subsequence of any
1603  //     non-identity conversion sequence) or, if not that,
1604  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1605    // Neither is a proper subsequence of the other. Do nothing.
1606    ;
1607  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1608           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1609           (SCS1.Second == ICK_Identity &&
1610            SCS1.Third == ICK_Identity))
1611    // SCS1 is a proper subsequence of SCS2.
1612    return ImplicitConversionSequence::Better;
1613  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1614           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1615           (SCS2.Second == ICK_Identity &&
1616            SCS2.Third == ICK_Identity))
1617    // SCS2 is a proper subsequence of SCS1.
1618    return ImplicitConversionSequence::Worse;
1619
1620  //  -- the rank of S1 is better than the rank of S2 (by the rules
1621  //     defined below), or, if not that,
1622  ImplicitConversionRank Rank1 = SCS1.getRank();
1623  ImplicitConversionRank Rank2 = SCS2.getRank();
1624  if (Rank1 < Rank2)
1625    return ImplicitConversionSequence::Better;
1626  else if (Rank2 < Rank1)
1627    return ImplicitConversionSequence::Worse;
1628
1629  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1630  // are indistinguishable unless one of the following rules
1631  // applies:
1632
1633  //   A conversion that is not a conversion of a pointer, or
1634  //   pointer to member, to bool is better than another conversion
1635  //   that is such a conversion.
1636  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1637    return SCS2.isPointerConversionToBool()
1638             ? ImplicitConversionSequence::Better
1639             : ImplicitConversionSequence::Worse;
1640
1641  // C++ [over.ics.rank]p4b2:
1642  //
1643  //   If class B is derived directly or indirectly from class A,
1644  //   conversion of B* to A* is better than conversion of B* to
1645  //   void*, and conversion of A* to void* is better than conversion
1646  //   of B* to void*.
1647  bool SCS1ConvertsToVoid
1648    = SCS1.isPointerConversionToVoidPointer(Context);
1649  bool SCS2ConvertsToVoid
1650    = SCS2.isPointerConversionToVoidPointer(Context);
1651  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1652    // Exactly one of the conversion sequences is a conversion to
1653    // a void pointer; it's the worse conversion.
1654    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1655                              : ImplicitConversionSequence::Worse;
1656  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1657    // Neither conversion sequence converts to a void pointer; compare
1658    // their derived-to-base conversions.
1659    if (ImplicitConversionSequence::CompareKind DerivedCK
1660          = CompareDerivedToBaseConversions(SCS1, SCS2))
1661      return DerivedCK;
1662  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1663    // Both conversion sequences are conversions to void
1664    // pointers. Compare the source types to determine if there's an
1665    // inheritance relationship in their sources.
1666    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1667    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1668
1669    // Adjust the types we're converting from via the array-to-pointer
1670    // conversion, if we need to.
1671    if (SCS1.First == ICK_Array_To_Pointer)
1672      FromType1 = Context.getArrayDecayedType(FromType1);
1673    if (SCS2.First == ICK_Array_To_Pointer)
1674      FromType2 = Context.getArrayDecayedType(FromType2);
1675
1676    QualType FromPointee1
1677      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1678    QualType FromPointee2
1679      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1680
1681    if (IsDerivedFrom(FromPointee2, FromPointee1))
1682      return ImplicitConversionSequence::Better;
1683    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1684      return ImplicitConversionSequence::Worse;
1685
1686    // Objective-C++: If one interface is more specific than the
1687    // other, it is the better one.
1688    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1689    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1690    if (FromIface1 && FromIface1) {
1691      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1692        return ImplicitConversionSequence::Better;
1693      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1694        return ImplicitConversionSequence::Worse;
1695    }
1696  }
1697
1698  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1699  // bullet 3).
1700  if (ImplicitConversionSequence::CompareKind QualCK
1701        = CompareQualificationConversions(SCS1, SCS2))
1702    return QualCK;
1703
1704  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1705    // C++0x [over.ics.rank]p3b4:
1706    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1707    //      implicit object parameter of a non-static member function declared
1708    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1709    //      rvalue and S2 binds an lvalue reference.
1710    // FIXME: We don't know if we're dealing with the implicit object parameter,
1711    // or if the member function in this case has a ref qualifier.
1712    // (Of course, we don't have ref qualifiers yet.)
1713    if (SCS1.RRefBinding != SCS2.RRefBinding)
1714      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1715                              : ImplicitConversionSequence::Worse;
1716
1717    // C++ [over.ics.rank]p3b4:
1718    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1719    //      which the references refer are the same type except for
1720    //      top-level cv-qualifiers, and the type to which the reference
1721    //      initialized by S2 refers is more cv-qualified than the type
1722    //      to which the reference initialized by S1 refers.
1723    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1724    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1725    T1 = Context.getCanonicalType(T1);
1726    T2 = Context.getCanonicalType(T2);
1727    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1728      if (T2.isMoreQualifiedThan(T1))
1729        return ImplicitConversionSequence::Better;
1730      else if (T1.isMoreQualifiedThan(T2))
1731        return ImplicitConversionSequence::Worse;
1732    }
1733  }
1734
1735  return ImplicitConversionSequence::Indistinguishable;
1736}
1737
1738/// CompareQualificationConversions - Compares two standard conversion
1739/// sequences to determine whether they can be ranked based on their
1740/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1741ImplicitConversionSequence::CompareKind
1742Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1743                                      const StandardConversionSequence& SCS2) {
1744  // C++ 13.3.3.2p3:
1745  //  -- S1 and S2 differ only in their qualification conversion and
1746  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1747  //     cv-qualification signature of type T1 is a proper subset of
1748  //     the cv-qualification signature of type T2, and S1 is not the
1749  //     deprecated string literal array-to-pointer conversion (4.2).
1750  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1751      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1752    return ImplicitConversionSequence::Indistinguishable;
1753
1754  // FIXME: the example in the standard doesn't use a qualification
1755  // conversion (!)
1756  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1757  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1758  T1 = Context.getCanonicalType(T1);
1759  T2 = Context.getCanonicalType(T2);
1760
1761  // If the types are the same, we won't learn anything by unwrapped
1762  // them.
1763  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1764    return ImplicitConversionSequence::Indistinguishable;
1765
1766  ImplicitConversionSequence::CompareKind Result
1767    = ImplicitConversionSequence::Indistinguishable;
1768  while (UnwrapSimilarPointerTypes(T1, T2)) {
1769    // Within each iteration of the loop, we check the qualifiers to
1770    // determine if this still looks like a qualification
1771    // conversion. Then, if all is well, we unwrap one more level of
1772    // pointers or pointers-to-members and do it all again
1773    // until there are no more pointers or pointers-to-members left
1774    // to unwrap. This essentially mimics what
1775    // IsQualificationConversion does, but here we're checking for a
1776    // strict subset of qualifiers.
1777    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1778      // The qualifiers are the same, so this doesn't tell us anything
1779      // about how the sequences rank.
1780      ;
1781    else if (T2.isMoreQualifiedThan(T1)) {
1782      // T1 has fewer qualifiers, so it could be the better sequence.
1783      if (Result == ImplicitConversionSequence::Worse)
1784        // Neither has qualifiers that are a subset of the other's
1785        // qualifiers.
1786        return ImplicitConversionSequence::Indistinguishable;
1787
1788      Result = ImplicitConversionSequence::Better;
1789    } else if (T1.isMoreQualifiedThan(T2)) {
1790      // T2 has fewer qualifiers, so it could be the better sequence.
1791      if (Result == ImplicitConversionSequence::Better)
1792        // Neither has qualifiers that are a subset of the other's
1793        // qualifiers.
1794        return ImplicitConversionSequence::Indistinguishable;
1795
1796      Result = ImplicitConversionSequence::Worse;
1797    } else {
1798      // Qualifiers are disjoint.
1799      return ImplicitConversionSequence::Indistinguishable;
1800    }
1801
1802    // If the types after this point are equivalent, we're done.
1803    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1804      break;
1805  }
1806
1807  // Check that the winning standard conversion sequence isn't using
1808  // the deprecated string literal array to pointer conversion.
1809  switch (Result) {
1810  case ImplicitConversionSequence::Better:
1811    if (SCS1.Deprecated)
1812      Result = ImplicitConversionSequence::Indistinguishable;
1813    break;
1814
1815  case ImplicitConversionSequence::Indistinguishable:
1816    break;
1817
1818  case ImplicitConversionSequence::Worse:
1819    if (SCS2.Deprecated)
1820      Result = ImplicitConversionSequence::Indistinguishable;
1821    break;
1822  }
1823
1824  return Result;
1825}
1826
1827/// CompareDerivedToBaseConversions - Compares two standard conversion
1828/// sequences to determine whether they can be ranked based on their
1829/// various kinds of derived-to-base conversions (C++
1830/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1831/// conversions between Objective-C interface types.
1832ImplicitConversionSequence::CompareKind
1833Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1834                                      const StandardConversionSequence& SCS2) {
1835  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1836  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1837  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1838  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1839
1840  // Adjust the types we're converting from via the array-to-pointer
1841  // conversion, if we need to.
1842  if (SCS1.First == ICK_Array_To_Pointer)
1843    FromType1 = Context.getArrayDecayedType(FromType1);
1844  if (SCS2.First == ICK_Array_To_Pointer)
1845    FromType2 = Context.getArrayDecayedType(FromType2);
1846
1847  // Canonicalize all of the types.
1848  FromType1 = Context.getCanonicalType(FromType1);
1849  ToType1 = Context.getCanonicalType(ToType1);
1850  FromType2 = Context.getCanonicalType(FromType2);
1851  ToType2 = Context.getCanonicalType(ToType2);
1852
1853  // C++ [over.ics.rank]p4b3:
1854  //
1855  //   If class B is derived directly or indirectly from class A and
1856  //   class C is derived directly or indirectly from B,
1857  //
1858  // For Objective-C, we let A, B, and C also be Objective-C
1859  // interfaces.
1860
1861  // Compare based on pointer conversions.
1862  if (SCS1.Second == ICK_Pointer_Conversion &&
1863      SCS2.Second == ICK_Pointer_Conversion &&
1864      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1865      FromType1->isPointerType() && FromType2->isPointerType() &&
1866      ToType1->isPointerType() && ToType2->isPointerType()) {
1867    QualType FromPointee1
1868      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1869    QualType ToPointee1
1870      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1871    QualType FromPointee2
1872      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1873    QualType ToPointee2
1874      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1875
1876    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1877    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1878    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1879    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1880
1881    //   -- conversion of C* to B* is better than conversion of C* to A*,
1882    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1883      if (IsDerivedFrom(ToPointee1, ToPointee2))
1884        return ImplicitConversionSequence::Better;
1885      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1886        return ImplicitConversionSequence::Worse;
1887
1888      if (ToIface1 && ToIface2) {
1889        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1890          return ImplicitConversionSequence::Better;
1891        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1892          return ImplicitConversionSequence::Worse;
1893      }
1894    }
1895
1896    //   -- conversion of B* to A* is better than conversion of C* to A*,
1897    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1898      if (IsDerivedFrom(FromPointee2, FromPointee1))
1899        return ImplicitConversionSequence::Better;
1900      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1901        return ImplicitConversionSequence::Worse;
1902
1903      if (FromIface1 && FromIface2) {
1904        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1905          return ImplicitConversionSequence::Better;
1906        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1907          return ImplicitConversionSequence::Worse;
1908      }
1909    }
1910  }
1911
1912  // Compare based on reference bindings.
1913  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1914      SCS1.Second == ICK_Derived_To_Base) {
1915    //   -- binding of an expression of type C to a reference of type
1916    //      B& is better than binding an expression of type C to a
1917    //      reference of type A&,
1918    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1919        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1920      if (IsDerivedFrom(ToType1, ToType2))
1921        return ImplicitConversionSequence::Better;
1922      else if (IsDerivedFrom(ToType2, ToType1))
1923        return ImplicitConversionSequence::Worse;
1924    }
1925
1926    //   -- binding of an expression of type B to a reference of type
1927    //      A& is better than binding an expression of type C to a
1928    //      reference of type A&,
1929    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1930        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1931      if (IsDerivedFrom(FromType2, FromType1))
1932        return ImplicitConversionSequence::Better;
1933      else if (IsDerivedFrom(FromType1, FromType2))
1934        return ImplicitConversionSequence::Worse;
1935    }
1936  }
1937
1938
1939  // FIXME: conversion of A::* to B::* is better than conversion of
1940  // A::* to C::*,
1941
1942  // FIXME: conversion of B::* to C::* is better than conversion of
1943  // A::* to C::*, and
1944
1945  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1946      SCS1.Second == ICK_Derived_To_Base) {
1947    //   -- conversion of C to B is better than conversion of C to A,
1948    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1949        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1950      if (IsDerivedFrom(ToType1, ToType2))
1951        return ImplicitConversionSequence::Better;
1952      else if (IsDerivedFrom(ToType2, ToType1))
1953        return ImplicitConversionSequence::Worse;
1954    }
1955
1956    //   -- conversion of B to A is better than conversion of C to A.
1957    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1958        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1959      if (IsDerivedFrom(FromType2, FromType1))
1960        return ImplicitConversionSequence::Better;
1961      else if (IsDerivedFrom(FromType1, FromType2))
1962        return ImplicitConversionSequence::Worse;
1963    }
1964  }
1965
1966  return ImplicitConversionSequence::Indistinguishable;
1967}
1968
1969/// TryCopyInitialization - Try to copy-initialize a value of type
1970/// ToType from the expression From. Return the implicit conversion
1971/// sequence required to pass this argument, which may be a bad
1972/// conversion sequence (meaning that the argument cannot be passed to
1973/// a parameter of this type). If @p SuppressUserConversions, then we
1974/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1975/// then we treat @p From as an rvalue, even if it is an lvalue.
1976ImplicitConversionSequence
1977Sema::TryCopyInitialization(Expr *From, QualType ToType,
1978                            bool SuppressUserConversions, bool ForceRValue,
1979                            bool InOverloadResolution) {
1980  if (ToType->isReferenceType()) {
1981    ImplicitConversionSequence ICS;
1982    CheckReferenceInit(From, ToType,
1983                       /*FIXME:*/From->getLocStart(),
1984                       SuppressUserConversions,
1985                       /*AllowExplicit=*/false,
1986                       ForceRValue,
1987                       &ICS);
1988    return ICS;
1989  } else {
1990    return TryImplicitConversion(From, ToType,
1991                                 SuppressUserConversions,
1992                                 /*AllowExplicit=*/false,
1993                                 ForceRValue,
1994                                 InOverloadResolution);
1995  }
1996}
1997
1998/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1999/// the expression @p From. Returns true (and emits a diagnostic) if there was
2000/// an error, returns false if the initialization succeeded. Elidable should
2001/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2002/// differently in C++0x for this case.
2003bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2004                                     const char* Flavor, bool Elidable) {
2005  if (!getLangOptions().CPlusPlus) {
2006    // In C, argument passing is the same as performing an assignment.
2007    QualType FromType = From->getType();
2008
2009    AssignConvertType ConvTy =
2010      CheckSingleAssignmentConstraints(ToType, From);
2011    if (ConvTy != Compatible &&
2012        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2013      ConvTy = Compatible;
2014
2015    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2016                                    FromType, From, Flavor);
2017  }
2018
2019  if (ToType->isReferenceType())
2020    return CheckReferenceInit(From, ToType,
2021                              /*FIXME:*/From->getLocStart(),
2022                              /*SuppressUserConversions=*/false,
2023                              /*AllowExplicit=*/false,
2024                              /*ForceRValue=*/false);
2025
2026  if (!PerformImplicitConversion(From, ToType, Flavor,
2027                                 /*AllowExplicit=*/false, Elidable))
2028    return false;
2029  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2030    return Diag(From->getSourceRange().getBegin(),
2031                diag::err_typecheck_convert_incompatible)
2032      << ToType << From->getType() << Flavor << From->getSourceRange();
2033  return true;
2034}
2035
2036/// TryObjectArgumentInitialization - Try to initialize the object
2037/// parameter of the given member function (@c Method) from the
2038/// expression @p From.
2039ImplicitConversionSequence
2040Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2041  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2042  QualType ImplicitParamType
2043    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2044
2045  // Set up the conversion sequence as a "bad" conversion, to allow us
2046  // to exit early.
2047  ImplicitConversionSequence ICS;
2048  ICS.Standard.setAsIdentityConversion();
2049  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2050
2051  // We need to have an object of class type.
2052  QualType FromType = From->getType();
2053  if (const PointerType *PT = FromType->getAs<PointerType>())
2054    FromType = PT->getPointeeType();
2055
2056  assert(FromType->isRecordType());
2057
2058  // The implicit object parmeter is has the type "reference to cv X",
2059  // where X is the class of which the function is a member
2060  // (C++ [over.match.funcs]p4). However, when finding an implicit
2061  // conversion sequence for the argument, we are not allowed to
2062  // create temporaries or perform user-defined conversions
2063  // (C++ [over.match.funcs]p5). We perform a simplified version of
2064  // reference binding here, that allows class rvalues to bind to
2065  // non-constant references.
2066
2067  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2068  // with the implicit object parameter (C++ [over.match.funcs]p5).
2069  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2070  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2071      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2072    return ICS;
2073
2074  // Check that we have either the same type or a derived type. It
2075  // affects the conversion rank.
2076  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2077  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2078    ICS.Standard.Second = ICK_Identity;
2079  else if (IsDerivedFrom(FromType, ClassType))
2080    ICS.Standard.Second = ICK_Derived_To_Base;
2081  else
2082    return ICS;
2083
2084  // Success. Mark this as a reference binding.
2085  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2086  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2087  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2088  ICS.Standard.ReferenceBinding = true;
2089  ICS.Standard.DirectBinding = true;
2090  ICS.Standard.RRefBinding = false;
2091  return ICS;
2092}
2093
2094/// PerformObjectArgumentInitialization - Perform initialization of
2095/// the implicit object parameter for the given Method with the given
2096/// expression.
2097bool
2098Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2099  QualType FromRecordType, DestType;
2100  QualType ImplicitParamRecordType  =
2101    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2102
2103  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2104    FromRecordType = PT->getPointeeType();
2105    DestType = Method->getThisType(Context);
2106  } else {
2107    FromRecordType = From->getType();
2108    DestType = ImplicitParamRecordType;
2109  }
2110
2111  ImplicitConversionSequence ICS
2112    = TryObjectArgumentInitialization(From, Method);
2113  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2114    return Diag(From->getSourceRange().getBegin(),
2115                diag::err_implicit_object_parameter_init)
2116       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2117
2118  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2119      CheckDerivedToBaseConversion(FromRecordType,
2120                                   ImplicitParamRecordType,
2121                                   From->getSourceRange().getBegin(),
2122                                   From->getSourceRange()))
2123    return true;
2124
2125  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2126                    /*isLvalue=*/true);
2127  return false;
2128}
2129
2130/// TryContextuallyConvertToBool - Attempt to contextually convert the
2131/// expression From to bool (C++0x [conv]p3).
2132ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2133  return TryImplicitConversion(From, Context.BoolTy,
2134                               // FIXME: Are these flags correct?
2135                               /*SuppressUserConversions=*/false,
2136                               /*AllowExplicit=*/true,
2137                               /*ForceRValue=*/false,
2138                               /*InOverloadResolution=*/false);
2139}
2140
2141/// PerformContextuallyConvertToBool - Perform a contextual conversion
2142/// of the expression From to bool (C++0x [conv]p3).
2143bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2144  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2145  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2146    return false;
2147
2148  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2149    return  Diag(From->getSourceRange().getBegin(),
2150                 diag::err_typecheck_bool_condition)
2151                  << From->getType() << From->getSourceRange();
2152  return true;
2153}
2154
2155/// AddOverloadCandidate - Adds the given function to the set of
2156/// candidate functions, using the given function call arguments.  If
2157/// @p SuppressUserConversions, then don't allow user-defined
2158/// conversions via constructors or conversion operators.
2159/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2160/// hacky way to implement the overloading rules for elidable copy
2161/// initialization in C++0x (C++0x 12.8p15).
2162///
2163/// \para PartialOverloading true if we are performing "partial" overloading
2164/// based on an incomplete set of function arguments. This feature is used by
2165/// code completion.
2166void
2167Sema::AddOverloadCandidate(FunctionDecl *Function,
2168                           Expr **Args, unsigned NumArgs,
2169                           OverloadCandidateSet& CandidateSet,
2170                           bool SuppressUserConversions,
2171                           bool ForceRValue,
2172                           bool PartialOverloading) {
2173  const FunctionProtoType* Proto
2174    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2175  assert(Proto && "Functions without a prototype cannot be overloaded");
2176  assert(!isa<CXXConversionDecl>(Function) &&
2177         "Use AddConversionCandidate for conversion functions");
2178  assert(!Function->getDescribedFunctionTemplate() &&
2179         "Use AddTemplateOverloadCandidate for function templates");
2180
2181  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2182    if (!isa<CXXConstructorDecl>(Method)) {
2183      // If we get here, it's because we're calling a member function
2184      // that is named without a member access expression (e.g.,
2185      // "this->f") that was either written explicitly or created
2186      // implicitly. This can happen with a qualified call to a member
2187      // function, e.g., X::f(). We use a NULL object as the implied
2188      // object argument (C++ [over.call.func]p3).
2189      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2190                         SuppressUserConversions, ForceRValue);
2191      return;
2192    }
2193    // We treat a constructor like a non-member function, since its object
2194    // argument doesn't participate in overload resolution.
2195  }
2196
2197  if (!CandidateSet.isNewCandidate(Function))
2198    return;
2199
2200  // Add this candidate
2201  CandidateSet.push_back(OverloadCandidate());
2202  OverloadCandidate& Candidate = CandidateSet.back();
2203  Candidate.Function = Function;
2204  Candidate.Viable = true;
2205  Candidate.IsSurrogate = false;
2206  Candidate.IgnoreObjectArgument = false;
2207
2208  unsigned NumArgsInProto = Proto->getNumArgs();
2209
2210  // (C++ 13.3.2p2): A candidate function having fewer than m
2211  // parameters is viable only if it has an ellipsis in its parameter
2212  // list (8.3.5).
2213  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2214      !Proto->isVariadic()) {
2215    Candidate.Viable = false;
2216    return;
2217  }
2218
2219  // (C++ 13.3.2p2): A candidate function having more than m parameters
2220  // is viable only if the (m+1)st parameter has a default argument
2221  // (8.3.6). For the purposes of overload resolution, the
2222  // parameter list is truncated on the right, so that there are
2223  // exactly m parameters.
2224  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2225  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2226    // Not enough arguments.
2227    Candidate.Viable = false;
2228    return;
2229  }
2230
2231  // Determine the implicit conversion sequences for each of the
2232  // arguments.
2233  Candidate.Conversions.resize(NumArgs);
2234  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2235    if (ArgIdx < NumArgsInProto) {
2236      // (C++ 13.3.2p3): for F to be a viable function, there shall
2237      // exist for each argument an implicit conversion sequence
2238      // (13.3.3.1) that converts that argument to the corresponding
2239      // parameter of F.
2240      QualType ParamType = Proto->getArgType(ArgIdx);
2241      Candidate.Conversions[ArgIdx]
2242        = TryCopyInitialization(Args[ArgIdx], ParamType,
2243                                SuppressUserConversions, ForceRValue,
2244                                /*InOverloadResolution=*/true);
2245      if (Candidate.Conversions[ArgIdx].ConversionKind
2246            == ImplicitConversionSequence::BadConversion) {
2247      // 13.3.3.1-p10 If several different sequences of conversions exist that
2248      // each convert the argument to the parameter type, the implicit conversion
2249      // sequence associated with the parameter is defined to be the unique conversion
2250      // sequence designated the ambiguous conversion sequence. For the purpose of
2251      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2252      // conversion sequence is treated as a user-defined sequence that is
2253      // indistinguishable from any other user-defined conversion sequence
2254        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2255          Candidate.Conversions[ArgIdx].ConversionKind =
2256            ImplicitConversionSequence::UserDefinedConversion;
2257          // Set the conversion function to one of them. As due to ambiguity,
2258          // they carry the same weight and is needed for overload resolution
2259          // later.
2260          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2261            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2262        }
2263        else {
2264          Candidate.Viable = false;
2265          break;
2266        }
2267      }
2268    } else {
2269      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2270      // argument for which there is no corresponding parameter is
2271      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2272      Candidate.Conversions[ArgIdx].ConversionKind
2273        = ImplicitConversionSequence::EllipsisConversion;
2274    }
2275  }
2276}
2277
2278/// \brief Add all of the function declarations in the given function set to
2279/// the overload canddiate set.
2280void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2281                                 Expr **Args, unsigned NumArgs,
2282                                 OverloadCandidateSet& CandidateSet,
2283                                 bool SuppressUserConversions) {
2284  for (FunctionSet::const_iterator F = Functions.begin(),
2285                                FEnd = Functions.end();
2286       F != FEnd; ++F) {
2287    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2288      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2289        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2290                           Args[0], Args + 1, NumArgs - 1,
2291                           CandidateSet, SuppressUserConversions);
2292      else
2293        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2294                             SuppressUserConversions);
2295    } else {
2296      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2297      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2298          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2299        AddMethodTemplateCandidate(FunTmpl,
2300                                   /*FIXME: explicit args */false, 0, 0,
2301                                   Args[0], Args + 1, NumArgs - 1,
2302                                   CandidateSet,
2303                                   SuppressUserConversions);
2304      else
2305        AddTemplateOverloadCandidate(FunTmpl,
2306                                     /*FIXME: explicit args */false, 0, 0,
2307                                     Args, NumArgs, CandidateSet,
2308                                     SuppressUserConversions);
2309    }
2310  }
2311}
2312
2313/// AddMethodCandidate - Adds the given C++ member function to the set
2314/// of candidate functions, using the given function call arguments
2315/// and the object argument (@c Object). For example, in a call
2316/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2317/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2318/// allow user-defined conversions via constructors or conversion
2319/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2320/// a slightly hacky way to implement the overloading rules for elidable copy
2321/// initialization in C++0x (C++0x 12.8p15).
2322void
2323Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2324                         Expr **Args, unsigned NumArgs,
2325                         OverloadCandidateSet& CandidateSet,
2326                         bool SuppressUserConversions, bool ForceRValue) {
2327  const FunctionProtoType* Proto
2328    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2329  assert(Proto && "Methods without a prototype cannot be overloaded");
2330  assert(!isa<CXXConversionDecl>(Method) &&
2331         "Use AddConversionCandidate for conversion functions");
2332  assert(!isa<CXXConstructorDecl>(Method) &&
2333         "Use AddOverloadCandidate for constructors");
2334
2335  if (!CandidateSet.isNewCandidate(Method))
2336    return;
2337
2338  // Add this candidate
2339  CandidateSet.push_back(OverloadCandidate());
2340  OverloadCandidate& Candidate = CandidateSet.back();
2341  Candidate.Function = Method;
2342  Candidate.IsSurrogate = false;
2343  Candidate.IgnoreObjectArgument = false;
2344
2345  unsigned NumArgsInProto = Proto->getNumArgs();
2346
2347  // (C++ 13.3.2p2): A candidate function having fewer than m
2348  // parameters is viable only if it has an ellipsis in its parameter
2349  // list (8.3.5).
2350  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2351    Candidate.Viable = false;
2352    return;
2353  }
2354
2355  // (C++ 13.3.2p2): A candidate function having more than m parameters
2356  // is viable only if the (m+1)st parameter has a default argument
2357  // (8.3.6). For the purposes of overload resolution, the
2358  // parameter list is truncated on the right, so that there are
2359  // exactly m parameters.
2360  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2361  if (NumArgs < MinRequiredArgs) {
2362    // Not enough arguments.
2363    Candidate.Viable = false;
2364    return;
2365  }
2366
2367  Candidate.Viable = true;
2368  Candidate.Conversions.resize(NumArgs + 1);
2369
2370  if (Method->isStatic() || !Object)
2371    // The implicit object argument is ignored.
2372    Candidate.IgnoreObjectArgument = true;
2373  else {
2374    // Determine the implicit conversion sequence for the object
2375    // parameter.
2376    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2377    if (Candidate.Conversions[0].ConversionKind
2378          == ImplicitConversionSequence::BadConversion) {
2379      Candidate.Viable = false;
2380      return;
2381    }
2382  }
2383
2384  // Determine the implicit conversion sequences for each of the
2385  // arguments.
2386  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2387    if (ArgIdx < NumArgsInProto) {
2388      // (C++ 13.3.2p3): for F to be a viable function, there shall
2389      // exist for each argument an implicit conversion sequence
2390      // (13.3.3.1) that converts that argument to the corresponding
2391      // parameter of F.
2392      QualType ParamType = Proto->getArgType(ArgIdx);
2393      Candidate.Conversions[ArgIdx + 1]
2394        = TryCopyInitialization(Args[ArgIdx], ParamType,
2395                                SuppressUserConversions, ForceRValue,
2396                                /*InOverloadResolution=*/true);
2397      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2398            == ImplicitConversionSequence::BadConversion) {
2399        Candidate.Viable = false;
2400        break;
2401      }
2402    } else {
2403      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2404      // argument for which there is no corresponding parameter is
2405      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2406      Candidate.Conversions[ArgIdx + 1].ConversionKind
2407        = ImplicitConversionSequence::EllipsisConversion;
2408    }
2409  }
2410}
2411
2412/// \brief Add a C++ member function template as a candidate to the candidate
2413/// set, using template argument deduction to produce an appropriate member
2414/// function template specialization.
2415void
2416Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2417                                 bool HasExplicitTemplateArgs,
2418                                 const TemplateArgument *ExplicitTemplateArgs,
2419                                 unsigned NumExplicitTemplateArgs,
2420                                 Expr *Object, Expr **Args, unsigned NumArgs,
2421                                 OverloadCandidateSet& CandidateSet,
2422                                 bool SuppressUserConversions,
2423                                 bool ForceRValue) {
2424  if (!CandidateSet.isNewCandidate(MethodTmpl))
2425    return;
2426
2427  // C++ [over.match.funcs]p7:
2428  //   In each case where a candidate is a function template, candidate
2429  //   function template specializations are generated using template argument
2430  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2431  //   candidate functions in the usual way.113) A given name can refer to one
2432  //   or more function templates and also to a set of overloaded non-template
2433  //   functions. In such a case, the candidate functions generated from each
2434  //   function template are combined with the set of non-template candidate
2435  //   functions.
2436  TemplateDeductionInfo Info(Context);
2437  FunctionDecl *Specialization = 0;
2438  if (TemplateDeductionResult Result
2439      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2440                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2441                                Args, NumArgs, Specialization, Info)) {
2442        // FIXME: Record what happened with template argument deduction, so
2443        // that we can give the user a beautiful diagnostic.
2444        (void)Result;
2445        return;
2446      }
2447
2448  // Add the function template specialization produced by template argument
2449  // deduction as a candidate.
2450  assert(Specialization && "Missing member function template specialization?");
2451  assert(isa<CXXMethodDecl>(Specialization) &&
2452         "Specialization is not a member function?");
2453  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2454                     CandidateSet, SuppressUserConversions, ForceRValue);
2455}
2456
2457/// \brief Add a C++ function template specialization as a candidate
2458/// in the candidate set, using template argument deduction to produce
2459/// an appropriate function template specialization.
2460void
2461Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2462                                   bool HasExplicitTemplateArgs,
2463                                 const TemplateArgument *ExplicitTemplateArgs,
2464                                   unsigned NumExplicitTemplateArgs,
2465                                   Expr **Args, unsigned NumArgs,
2466                                   OverloadCandidateSet& CandidateSet,
2467                                   bool SuppressUserConversions,
2468                                   bool ForceRValue) {
2469  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2470    return;
2471
2472  // C++ [over.match.funcs]p7:
2473  //   In each case where a candidate is a function template, candidate
2474  //   function template specializations are generated using template argument
2475  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2476  //   candidate functions in the usual way.113) A given name can refer to one
2477  //   or more function templates and also to a set of overloaded non-template
2478  //   functions. In such a case, the candidate functions generated from each
2479  //   function template are combined with the set of non-template candidate
2480  //   functions.
2481  TemplateDeductionInfo Info(Context);
2482  FunctionDecl *Specialization = 0;
2483  if (TemplateDeductionResult Result
2484        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2485                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2486                                  Args, NumArgs, Specialization, Info)) {
2487    // FIXME: Record what happened with template argument deduction, so
2488    // that we can give the user a beautiful diagnostic.
2489    (void)Result;
2490    return;
2491  }
2492
2493  // Add the function template specialization produced by template argument
2494  // deduction as a candidate.
2495  assert(Specialization && "Missing function template specialization?");
2496  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2497                       SuppressUserConversions, ForceRValue);
2498}
2499
2500/// AddConversionCandidate - Add a C++ conversion function as a
2501/// candidate in the candidate set (C++ [over.match.conv],
2502/// C++ [over.match.copy]). From is the expression we're converting from,
2503/// and ToType is the type that we're eventually trying to convert to
2504/// (which may or may not be the same type as the type that the
2505/// conversion function produces).
2506void
2507Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2508                             Expr *From, QualType ToType,
2509                             OverloadCandidateSet& CandidateSet) {
2510  assert(!Conversion->getDescribedFunctionTemplate() &&
2511         "Conversion function templates use AddTemplateConversionCandidate");
2512
2513  if (!CandidateSet.isNewCandidate(Conversion))
2514    return;
2515
2516  // Add this candidate
2517  CandidateSet.push_back(OverloadCandidate());
2518  OverloadCandidate& Candidate = CandidateSet.back();
2519  Candidate.Function = Conversion;
2520  Candidate.IsSurrogate = false;
2521  Candidate.IgnoreObjectArgument = false;
2522  Candidate.FinalConversion.setAsIdentityConversion();
2523  Candidate.FinalConversion.FromTypePtr
2524    = Conversion->getConversionType().getAsOpaquePtr();
2525  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2526
2527  // Determine the implicit conversion sequence for the implicit
2528  // object parameter.
2529  Candidate.Viable = true;
2530  Candidate.Conversions.resize(1);
2531  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2532  // Conversion functions to a different type in the base class is visible in
2533  // the derived class.  So, a derived to base conversion should not participate
2534  // in overload resolution.
2535  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2536    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2537  if (Candidate.Conversions[0].ConversionKind
2538      == ImplicitConversionSequence::BadConversion) {
2539    Candidate.Viable = false;
2540    return;
2541  }
2542
2543  // We won't go through a user-define type conversion function to convert a
2544  // derived to base as such conversions are given Conversion Rank. They only
2545  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2546  QualType FromCanon
2547    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2548  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2549  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2550    Candidate.Viable = false;
2551    return;
2552  }
2553
2554
2555  // To determine what the conversion from the result of calling the
2556  // conversion function to the type we're eventually trying to
2557  // convert to (ToType), we need to synthesize a call to the
2558  // conversion function and attempt copy initialization from it. This
2559  // makes sure that we get the right semantics with respect to
2560  // lvalues/rvalues and the type. Fortunately, we can allocate this
2561  // call on the stack and we don't need its arguments to be
2562  // well-formed.
2563  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2564                            SourceLocation());
2565  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2566                                CastExpr::CK_FunctionToPointerDecay,
2567                                &ConversionRef, false);
2568
2569  // Note that it is safe to allocate CallExpr on the stack here because
2570  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2571  // allocator).
2572  CallExpr Call(Context, &ConversionFn, 0, 0,
2573                Conversion->getConversionType().getNonReferenceType(),
2574                SourceLocation());
2575  ImplicitConversionSequence ICS =
2576    TryCopyInitialization(&Call, ToType,
2577                          /*SuppressUserConversions=*/true,
2578                          /*ForceRValue=*/false,
2579                          /*InOverloadResolution=*/false);
2580
2581  switch (ICS.ConversionKind) {
2582  case ImplicitConversionSequence::StandardConversion:
2583    Candidate.FinalConversion = ICS.Standard;
2584    break;
2585
2586  case ImplicitConversionSequence::BadConversion:
2587    Candidate.Viable = false;
2588    break;
2589
2590  default:
2591    assert(false &&
2592           "Can only end up with a standard conversion sequence or failure");
2593  }
2594}
2595
2596/// \brief Adds a conversion function template specialization
2597/// candidate to the overload set, using template argument deduction
2598/// to deduce the template arguments of the conversion function
2599/// template from the type that we are converting to (C++
2600/// [temp.deduct.conv]).
2601void
2602Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2603                                     Expr *From, QualType ToType,
2604                                     OverloadCandidateSet &CandidateSet) {
2605  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2606         "Only conversion function templates permitted here");
2607
2608  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2609    return;
2610
2611  TemplateDeductionInfo Info(Context);
2612  CXXConversionDecl *Specialization = 0;
2613  if (TemplateDeductionResult Result
2614        = DeduceTemplateArguments(FunctionTemplate, ToType,
2615                                  Specialization, Info)) {
2616    // FIXME: Record what happened with template argument deduction, so
2617    // that we can give the user a beautiful diagnostic.
2618    (void)Result;
2619    return;
2620  }
2621
2622  // Add the conversion function template specialization produced by
2623  // template argument deduction as a candidate.
2624  assert(Specialization && "Missing function template specialization?");
2625  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2626}
2627
2628/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2629/// converts the given @c Object to a function pointer via the
2630/// conversion function @c Conversion, and then attempts to call it
2631/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2632/// the type of function that we'll eventually be calling.
2633void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2634                                 const FunctionProtoType *Proto,
2635                                 Expr *Object, Expr **Args, unsigned NumArgs,
2636                                 OverloadCandidateSet& CandidateSet) {
2637  if (!CandidateSet.isNewCandidate(Conversion))
2638    return;
2639
2640  CandidateSet.push_back(OverloadCandidate());
2641  OverloadCandidate& Candidate = CandidateSet.back();
2642  Candidate.Function = 0;
2643  Candidate.Surrogate = Conversion;
2644  Candidate.Viable = true;
2645  Candidate.IsSurrogate = true;
2646  Candidate.IgnoreObjectArgument = false;
2647  Candidate.Conversions.resize(NumArgs + 1);
2648
2649  // Determine the implicit conversion sequence for the implicit
2650  // object parameter.
2651  ImplicitConversionSequence ObjectInit
2652    = TryObjectArgumentInitialization(Object, Conversion);
2653  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2654    Candidate.Viable = false;
2655    return;
2656  }
2657
2658  // The first conversion is actually a user-defined conversion whose
2659  // first conversion is ObjectInit's standard conversion (which is
2660  // effectively a reference binding). Record it as such.
2661  Candidate.Conversions[0].ConversionKind
2662    = ImplicitConversionSequence::UserDefinedConversion;
2663  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2664  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2665  Candidate.Conversions[0].UserDefined.After
2666    = Candidate.Conversions[0].UserDefined.Before;
2667  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2668
2669  // Find the
2670  unsigned NumArgsInProto = Proto->getNumArgs();
2671
2672  // (C++ 13.3.2p2): A candidate function having fewer than m
2673  // parameters is viable only if it has an ellipsis in its parameter
2674  // list (8.3.5).
2675  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2676    Candidate.Viable = false;
2677    return;
2678  }
2679
2680  // Function types don't have any default arguments, so just check if
2681  // we have enough arguments.
2682  if (NumArgs < NumArgsInProto) {
2683    // Not enough arguments.
2684    Candidate.Viable = false;
2685    return;
2686  }
2687
2688  // Determine the implicit conversion sequences for each of the
2689  // arguments.
2690  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2691    if (ArgIdx < NumArgsInProto) {
2692      // (C++ 13.3.2p3): for F to be a viable function, there shall
2693      // exist for each argument an implicit conversion sequence
2694      // (13.3.3.1) that converts that argument to the corresponding
2695      // parameter of F.
2696      QualType ParamType = Proto->getArgType(ArgIdx);
2697      Candidate.Conversions[ArgIdx + 1]
2698        = TryCopyInitialization(Args[ArgIdx], ParamType,
2699                                /*SuppressUserConversions=*/false,
2700                                /*ForceRValue=*/false,
2701                                /*InOverloadResolution=*/false);
2702      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2703            == ImplicitConversionSequence::BadConversion) {
2704        Candidate.Viable = false;
2705        break;
2706      }
2707    } else {
2708      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2709      // argument for which there is no corresponding parameter is
2710      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2711      Candidate.Conversions[ArgIdx + 1].ConversionKind
2712        = ImplicitConversionSequence::EllipsisConversion;
2713    }
2714  }
2715}
2716
2717// FIXME: This will eventually be removed, once we've migrated all of the
2718// operator overloading logic over to the scheme used by binary operators, which
2719// works for template instantiation.
2720void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2721                                 SourceLocation OpLoc,
2722                                 Expr **Args, unsigned NumArgs,
2723                                 OverloadCandidateSet& CandidateSet,
2724                                 SourceRange OpRange) {
2725  FunctionSet Functions;
2726
2727  QualType T1 = Args[0]->getType();
2728  QualType T2;
2729  if (NumArgs > 1)
2730    T2 = Args[1]->getType();
2731
2732  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2733  if (S)
2734    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2735  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2736  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2737  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2738  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2739}
2740
2741/// \brief Add overload candidates for overloaded operators that are
2742/// member functions.
2743///
2744/// Add the overloaded operator candidates that are member functions
2745/// for the operator Op that was used in an operator expression such
2746/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2747/// CandidateSet will store the added overload candidates. (C++
2748/// [over.match.oper]).
2749void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2750                                       SourceLocation OpLoc,
2751                                       Expr **Args, unsigned NumArgs,
2752                                       OverloadCandidateSet& CandidateSet,
2753                                       SourceRange OpRange) {
2754  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2755
2756  // C++ [over.match.oper]p3:
2757  //   For a unary operator @ with an operand of a type whose
2758  //   cv-unqualified version is T1, and for a binary operator @ with
2759  //   a left operand of a type whose cv-unqualified version is T1 and
2760  //   a right operand of a type whose cv-unqualified version is T2,
2761  //   three sets of candidate functions, designated member
2762  //   candidates, non-member candidates and built-in candidates, are
2763  //   constructed as follows:
2764  QualType T1 = Args[0]->getType();
2765  QualType T2;
2766  if (NumArgs > 1)
2767    T2 = Args[1]->getType();
2768
2769  //     -- If T1 is a class type, the set of member candidates is the
2770  //        result of the qualified lookup of T1::operator@
2771  //        (13.3.1.1.1); otherwise, the set of member candidates is
2772  //        empty.
2773  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2774    // Complete the type if it can be completed. Otherwise, we're done.
2775    if (RequireCompleteType(OpLoc, T1, PDiag()))
2776      return;
2777
2778    LookupResult Operators;
2779    LookupQualifiedName(Operators, T1Rec->getDecl(), OpName,
2780                        LookupOrdinaryName, false);
2781    for (LookupResult::iterator Oper = Operators.begin(),
2782                             OperEnd = Operators.end();
2783         Oper != OperEnd;
2784         ++Oper) {
2785      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) {
2786        AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2787                           /*SuppressUserConversions=*/false);
2788        continue;
2789      }
2790
2791      assert(isa<FunctionTemplateDecl>(*Oper) &&
2792             isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper)
2793                                                        ->getTemplatedDecl()) &&
2794             "Expected a member function template");
2795      AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0,
2796                                 Args[0], Args+1, NumArgs - 1, CandidateSet,
2797                                 /*SuppressUserConversions=*/false);
2798    }
2799  }
2800}
2801
2802/// AddBuiltinCandidate - Add a candidate for a built-in
2803/// operator. ResultTy and ParamTys are the result and parameter types
2804/// of the built-in candidate, respectively. Args and NumArgs are the
2805/// arguments being passed to the candidate. IsAssignmentOperator
2806/// should be true when this built-in candidate is an assignment
2807/// operator. NumContextualBoolArguments is the number of arguments
2808/// (at the beginning of the argument list) that will be contextually
2809/// converted to bool.
2810void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2811                               Expr **Args, unsigned NumArgs,
2812                               OverloadCandidateSet& CandidateSet,
2813                               bool IsAssignmentOperator,
2814                               unsigned NumContextualBoolArguments) {
2815  // Add this candidate
2816  CandidateSet.push_back(OverloadCandidate());
2817  OverloadCandidate& Candidate = CandidateSet.back();
2818  Candidate.Function = 0;
2819  Candidate.IsSurrogate = false;
2820  Candidate.IgnoreObjectArgument = false;
2821  Candidate.BuiltinTypes.ResultTy = ResultTy;
2822  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2823    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2824
2825  // Determine the implicit conversion sequences for each of the
2826  // arguments.
2827  Candidate.Viable = true;
2828  Candidate.Conversions.resize(NumArgs);
2829  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2830    // C++ [over.match.oper]p4:
2831    //   For the built-in assignment operators, conversions of the
2832    //   left operand are restricted as follows:
2833    //     -- no temporaries are introduced to hold the left operand, and
2834    //     -- no user-defined conversions are applied to the left
2835    //        operand to achieve a type match with the left-most
2836    //        parameter of a built-in candidate.
2837    //
2838    // We block these conversions by turning off user-defined
2839    // conversions, since that is the only way that initialization of
2840    // a reference to a non-class type can occur from something that
2841    // is not of the same type.
2842    if (ArgIdx < NumContextualBoolArguments) {
2843      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2844             "Contextual conversion to bool requires bool type");
2845      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2846    } else {
2847      Candidate.Conversions[ArgIdx]
2848        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2849                                ArgIdx == 0 && IsAssignmentOperator,
2850                                /*ForceRValue=*/false,
2851                                /*InOverloadResolution=*/false);
2852    }
2853    if (Candidate.Conversions[ArgIdx].ConversionKind
2854        == ImplicitConversionSequence::BadConversion) {
2855      Candidate.Viable = false;
2856      break;
2857    }
2858  }
2859}
2860
2861/// BuiltinCandidateTypeSet - A set of types that will be used for the
2862/// candidate operator functions for built-in operators (C++
2863/// [over.built]). The types are separated into pointer types and
2864/// enumeration types.
2865class BuiltinCandidateTypeSet  {
2866  /// TypeSet - A set of types.
2867  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2868
2869  /// PointerTypes - The set of pointer types that will be used in the
2870  /// built-in candidates.
2871  TypeSet PointerTypes;
2872
2873  /// MemberPointerTypes - The set of member pointer types that will be
2874  /// used in the built-in candidates.
2875  TypeSet MemberPointerTypes;
2876
2877  /// EnumerationTypes - The set of enumeration types that will be
2878  /// used in the built-in candidates.
2879  TypeSet EnumerationTypes;
2880
2881  /// Sema - The semantic analysis instance where we are building the
2882  /// candidate type set.
2883  Sema &SemaRef;
2884
2885  /// Context - The AST context in which we will build the type sets.
2886  ASTContext &Context;
2887
2888  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2889                                               const Qualifiers &VisibleQuals);
2890  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2891
2892public:
2893  /// iterator - Iterates through the types that are part of the set.
2894  typedef TypeSet::iterator iterator;
2895
2896  BuiltinCandidateTypeSet(Sema &SemaRef)
2897    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2898
2899  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2900                             bool AllowExplicitConversions,
2901                             const Qualifiers &VisibleTypeConversionsQuals);
2902
2903  /// pointer_begin - First pointer type found;
2904  iterator pointer_begin() { return PointerTypes.begin(); }
2905
2906  /// pointer_end - Past the last pointer type found;
2907  iterator pointer_end() { return PointerTypes.end(); }
2908
2909  /// member_pointer_begin - First member pointer type found;
2910  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2911
2912  /// member_pointer_end - Past the last member pointer type found;
2913  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2914
2915  /// enumeration_begin - First enumeration type found;
2916  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2917
2918  /// enumeration_end - Past the last enumeration type found;
2919  iterator enumeration_end() { return EnumerationTypes.end(); }
2920};
2921
2922/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2923/// the set of pointer types along with any more-qualified variants of
2924/// that type. For example, if @p Ty is "int const *", this routine
2925/// will add "int const *", "int const volatile *", "int const
2926/// restrict *", and "int const volatile restrict *" to the set of
2927/// pointer types. Returns true if the add of @p Ty itself succeeded,
2928/// false otherwise.
2929///
2930/// FIXME: what to do about extended qualifiers?
2931bool
2932BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty
2933                                            ,const Qualifiers &VisibleQuals) {
2934
2935  // Insert this type.
2936  if (!PointerTypes.insert(Ty))
2937    return false;
2938
2939  const PointerType *PointerTy = Ty->getAs<PointerType>();
2940  assert(PointerTy && "type was not a pointer type!");
2941
2942  QualType PointeeTy = PointerTy->getPointeeType();
2943  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2944  bool hasVolatile = VisibleQuals.hasVolatile();
2945  bool hasRestrict = VisibleQuals.hasRestrict();
2946
2947  // Iterate through all strict supersets of BaseCVR.
2948  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2949    if ((CVR | BaseCVR) != CVR) continue;
2950    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
2951    // in the types.
2952    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
2953    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
2954    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2955    PointerTypes.insert(Context.getPointerType(QPointeeTy));
2956  }
2957
2958  return true;
2959}
2960
2961/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2962/// to the set of pointer types along with any more-qualified variants of
2963/// that type. For example, if @p Ty is "int const *", this routine
2964/// will add "int const *", "int const volatile *", "int const
2965/// restrict *", and "int const volatile restrict *" to the set of
2966/// pointer types. Returns true if the add of @p Ty itself succeeded,
2967/// false otherwise.
2968///
2969/// FIXME: what to do about extended qualifiers?
2970bool
2971BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2972    QualType Ty) {
2973  // Insert this type.
2974  if (!MemberPointerTypes.insert(Ty))
2975    return false;
2976
2977  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
2978  assert(PointerTy && "type was not a member pointer type!");
2979
2980  QualType PointeeTy = PointerTy->getPointeeType();
2981  const Type *ClassTy = PointerTy->getClass();
2982
2983  // Iterate through all strict supersets of the pointee type's CVR
2984  // qualifiers.
2985  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2986  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2987    if ((CVR | BaseCVR) != CVR) continue;
2988
2989    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2990    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
2991  }
2992
2993  return true;
2994}
2995
2996/// AddTypesConvertedFrom - Add each of the types to which the type @p
2997/// Ty can be implicit converted to the given set of @p Types. We're
2998/// primarily interested in pointer types and enumeration types. We also
2999/// take member pointer types, for the conditional operator.
3000/// AllowUserConversions is true if we should look at the conversion
3001/// functions of a class type, and AllowExplicitConversions if we
3002/// should also include the explicit conversion functions of a class
3003/// type.
3004void
3005BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3006                                               bool AllowUserConversions,
3007                                               bool AllowExplicitConversions,
3008                                               const Qualifiers &VisibleQuals) {
3009  // Only deal with canonical types.
3010  Ty = Context.getCanonicalType(Ty);
3011
3012  // Look through reference types; they aren't part of the type of an
3013  // expression for the purposes of conversions.
3014  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3015    Ty = RefTy->getPointeeType();
3016
3017  // We don't care about qualifiers on the type.
3018  Ty = Ty.getUnqualifiedType();
3019
3020  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3021    QualType PointeeTy = PointerTy->getPointeeType();
3022
3023    // Insert our type, and its more-qualified variants, into the set
3024    // of types.
3025    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3026      return;
3027
3028    // Add 'cv void*' to our set of types.
3029    if (!Ty->isVoidType()) {
3030      QualType QualVoid
3031        = Context.getCVRQualifiedType(Context.VoidTy,
3032                                   PointeeTy.getCVRQualifiers());
3033      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid),
3034                                              VisibleQuals);
3035    }
3036
3037    // If this is a pointer to a class type, add pointers to its bases
3038    // (with the same level of cv-qualification as the original
3039    // derived class, of course).
3040    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
3041      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
3042      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3043           Base != ClassDecl->bases_end(); ++Base) {
3044        QualType BaseTy = Context.getCanonicalType(Base->getType());
3045        BaseTy = Context.getCVRQualifiedType(BaseTy.getUnqualifiedType(),
3046                                          PointeeTy.getCVRQualifiers());
3047        // Add the pointer type, recursively, so that we get all of
3048        // the indirect base classes, too.
3049        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false,
3050                              VisibleQuals);
3051      }
3052    }
3053  } else if (Ty->isMemberPointerType()) {
3054    // Member pointers are far easier, since the pointee can't be converted.
3055    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3056      return;
3057  } else if (Ty->isEnumeralType()) {
3058    EnumerationTypes.insert(Ty);
3059  } else if (AllowUserConversions) {
3060    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3061      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
3062        // No conversion functions in incomplete types.
3063        return;
3064      }
3065
3066      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3067      OverloadedFunctionDecl *Conversions
3068        = ClassDecl->getVisibleConversionFunctions();
3069      for (OverloadedFunctionDecl::function_iterator Func
3070             = Conversions->function_begin();
3071           Func != Conversions->function_end(); ++Func) {
3072        CXXConversionDecl *Conv;
3073        FunctionTemplateDecl *ConvTemplate;
3074        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
3075
3076        // Skip conversion function templates; they don't tell us anything
3077        // about which builtin types we can convert to.
3078        if (ConvTemplate)
3079          continue;
3080
3081        if (AllowExplicitConversions || !Conv->isExplicit()) {
3082          AddTypesConvertedFrom(Conv->getConversionType(), false, false,
3083                                VisibleQuals);
3084        }
3085      }
3086    }
3087  }
3088}
3089
3090/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3091/// the volatile- and non-volatile-qualified assignment operators for the
3092/// given type to the candidate set.
3093static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3094                                                   QualType T,
3095                                                   Expr **Args,
3096                                                   unsigned NumArgs,
3097                                    OverloadCandidateSet &CandidateSet) {
3098  QualType ParamTypes[2];
3099
3100  // T& operator=(T&, T)
3101  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3102  ParamTypes[1] = T;
3103  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3104                        /*IsAssignmentOperator=*/true);
3105
3106  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3107    // volatile T& operator=(volatile T&, T)
3108    ParamTypes[0]
3109      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3110    ParamTypes[1] = T;
3111    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3112                          /*IsAssignmentOperator=*/true);
3113  }
3114}
3115
3116/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers
3117/// , if any, found in visible type conversion functions found in ArgExpr's
3118/// type.
3119static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3120    Qualifiers VRQuals;
3121    const RecordType *TyRec;
3122    if (const MemberPointerType *RHSMPType =
3123        ArgExpr->getType()->getAs<MemberPointerType>())
3124      TyRec = cast<RecordType>(RHSMPType->getClass());
3125    else
3126      TyRec = ArgExpr->getType()->getAs<RecordType>();
3127    if (!TyRec) {
3128      // Just to be safe, assume the worst case.
3129      VRQuals.addVolatile();
3130      VRQuals.addRestrict();
3131      return VRQuals;
3132    }
3133
3134    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3135    OverloadedFunctionDecl *Conversions =
3136    ClassDecl->getVisibleConversionFunctions();
3137
3138    for (OverloadedFunctionDecl::function_iterator Func
3139         = Conversions->function_begin();
3140         Func != Conversions->function_end(); ++Func) {
3141      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) {
3142        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3143        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3144          CanTy = ResTypeRef->getPointeeType();
3145        // Need to go down the pointer/mempointer chain and add qualifiers
3146        // as see them.
3147        bool done = false;
3148        while (!done) {
3149          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3150            CanTy = ResTypePtr->getPointeeType();
3151          else if (const MemberPointerType *ResTypeMPtr =
3152                CanTy->getAs<MemberPointerType>())
3153            CanTy = ResTypeMPtr->getPointeeType();
3154          else
3155            done = true;
3156          if (CanTy.isVolatileQualified())
3157            VRQuals.addVolatile();
3158          if (CanTy.isRestrictQualified())
3159            VRQuals.addRestrict();
3160          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3161            return VRQuals;
3162        }
3163      }
3164    }
3165    return VRQuals;
3166}
3167
3168/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3169/// operator overloads to the candidate set (C++ [over.built]), based
3170/// on the operator @p Op and the arguments given. For example, if the
3171/// operator is a binary '+', this routine might add "int
3172/// operator+(int, int)" to cover integer addition.
3173void
3174Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3175                                   Expr **Args, unsigned NumArgs,
3176                                   OverloadCandidateSet& CandidateSet) {
3177  // The set of "promoted arithmetic types", which are the arithmetic
3178  // types are that preserved by promotion (C++ [over.built]p2). Note
3179  // that the first few of these types are the promoted integral
3180  // types; these types need to be first.
3181  // FIXME: What about complex?
3182  const unsigned FirstIntegralType = 0;
3183  const unsigned LastIntegralType = 13;
3184  const unsigned FirstPromotedIntegralType = 7,
3185                 LastPromotedIntegralType = 13;
3186  const unsigned FirstPromotedArithmeticType = 7,
3187                 LastPromotedArithmeticType = 16;
3188  const unsigned NumArithmeticTypes = 16;
3189  QualType ArithmeticTypes[NumArithmeticTypes] = {
3190    Context.BoolTy, Context.CharTy, Context.WCharTy,
3191// FIXME:   Context.Char16Ty, Context.Char32Ty,
3192    Context.SignedCharTy, Context.ShortTy,
3193    Context.UnsignedCharTy, Context.UnsignedShortTy,
3194    Context.IntTy, Context.LongTy, Context.LongLongTy,
3195    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3196    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3197  };
3198
3199  // Find all of the types that the arguments can convert to, but only
3200  // if the operator we're looking at has built-in operator candidates
3201  // that make use of these types.
3202  Qualifiers VisibleTypeConversionsQuals;
3203  VisibleTypeConversionsQuals.addConst();
3204  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3205    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3206
3207  BuiltinCandidateTypeSet CandidateTypes(*this);
3208  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3209      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3210      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3211      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3212      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3213      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3214    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3215      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3216                                           true,
3217                                           (Op == OO_Exclaim ||
3218                                            Op == OO_AmpAmp ||
3219                                            Op == OO_PipePipe),
3220                                           VisibleTypeConversionsQuals);
3221  }
3222
3223  bool isComparison = false;
3224  switch (Op) {
3225  case OO_None:
3226  case NUM_OVERLOADED_OPERATORS:
3227    assert(false && "Expected an overloaded operator");
3228    break;
3229
3230  case OO_Star: // '*' is either unary or binary
3231    if (NumArgs == 1)
3232      goto UnaryStar;
3233    else
3234      goto BinaryStar;
3235    break;
3236
3237  case OO_Plus: // '+' is either unary or binary
3238    if (NumArgs == 1)
3239      goto UnaryPlus;
3240    else
3241      goto BinaryPlus;
3242    break;
3243
3244  case OO_Minus: // '-' is either unary or binary
3245    if (NumArgs == 1)
3246      goto UnaryMinus;
3247    else
3248      goto BinaryMinus;
3249    break;
3250
3251  case OO_Amp: // '&' is either unary or binary
3252    if (NumArgs == 1)
3253      goto UnaryAmp;
3254    else
3255      goto BinaryAmp;
3256
3257  case OO_PlusPlus:
3258  case OO_MinusMinus:
3259    // C++ [over.built]p3:
3260    //
3261    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3262    //   is either volatile or empty, there exist candidate operator
3263    //   functions of the form
3264    //
3265    //       VQ T&      operator++(VQ T&);
3266    //       T          operator++(VQ T&, int);
3267    //
3268    // C++ [over.built]p4:
3269    //
3270    //   For every pair (T, VQ), where T is an arithmetic type other
3271    //   than bool, and VQ is either volatile or empty, there exist
3272    //   candidate operator functions of the form
3273    //
3274    //       VQ T&      operator--(VQ T&);
3275    //       T          operator--(VQ T&, int);
3276    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3277         Arith < NumArithmeticTypes; ++Arith) {
3278      QualType ArithTy = ArithmeticTypes[Arith];
3279      QualType ParamTypes[2]
3280        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3281
3282      // Non-volatile version.
3283      if (NumArgs == 1)
3284        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3285      else
3286        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3287      // heuristic to reduce number of builtin candidates in the set.
3288      // Add volatile version only if there are conversions to a volatile type.
3289      if (VisibleTypeConversionsQuals.hasVolatile()) {
3290        // Volatile version
3291        ParamTypes[0]
3292          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3293        if (NumArgs == 1)
3294          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3295        else
3296          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3297      }
3298    }
3299
3300    // C++ [over.built]p5:
3301    //
3302    //   For every pair (T, VQ), where T is a cv-qualified or
3303    //   cv-unqualified object type, and VQ is either volatile or
3304    //   empty, there exist candidate operator functions of the form
3305    //
3306    //       T*VQ&      operator++(T*VQ&);
3307    //       T*VQ&      operator--(T*VQ&);
3308    //       T*         operator++(T*VQ&, int);
3309    //       T*         operator--(T*VQ&, int);
3310    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3311         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3312      // Skip pointer types that aren't pointers to object types.
3313      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3314        continue;
3315
3316      QualType ParamTypes[2] = {
3317        Context.getLValueReferenceType(*Ptr), Context.IntTy
3318      };
3319
3320      // Without volatile
3321      if (NumArgs == 1)
3322        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3323      else
3324        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3325
3326      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3327          VisibleTypeConversionsQuals.hasVolatile()) {
3328        // With volatile
3329        ParamTypes[0]
3330          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3331        if (NumArgs == 1)
3332          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3333        else
3334          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3335      }
3336    }
3337    break;
3338
3339  UnaryStar:
3340    // C++ [over.built]p6:
3341    //   For every cv-qualified or cv-unqualified object type T, there
3342    //   exist candidate operator functions of the form
3343    //
3344    //       T&         operator*(T*);
3345    //
3346    // C++ [over.built]p7:
3347    //   For every function type T, there exist candidate operator
3348    //   functions of the form
3349    //       T&         operator*(T*);
3350    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3351         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3352      QualType ParamTy = *Ptr;
3353      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3354      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3355                          &ParamTy, Args, 1, CandidateSet);
3356    }
3357    break;
3358
3359  UnaryPlus:
3360    // C++ [over.built]p8:
3361    //   For every type T, there exist candidate operator functions of
3362    //   the form
3363    //
3364    //       T*         operator+(T*);
3365    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3366         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3367      QualType ParamTy = *Ptr;
3368      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3369    }
3370
3371    // Fall through
3372
3373  UnaryMinus:
3374    // C++ [over.built]p9:
3375    //  For every promoted arithmetic type T, there exist candidate
3376    //  operator functions of the form
3377    //
3378    //       T         operator+(T);
3379    //       T         operator-(T);
3380    for (unsigned Arith = FirstPromotedArithmeticType;
3381         Arith < LastPromotedArithmeticType; ++Arith) {
3382      QualType ArithTy = ArithmeticTypes[Arith];
3383      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3384    }
3385    break;
3386
3387  case OO_Tilde:
3388    // C++ [over.built]p10:
3389    //   For every promoted integral type T, there exist candidate
3390    //   operator functions of the form
3391    //
3392    //        T         operator~(T);
3393    for (unsigned Int = FirstPromotedIntegralType;
3394         Int < LastPromotedIntegralType; ++Int) {
3395      QualType IntTy = ArithmeticTypes[Int];
3396      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3397    }
3398    break;
3399
3400  case OO_New:
3401  case OO_Delete:
3402  case OO_Array_New:
3403  case OO_Array_Delete:
3404  case OO_Call:
3405    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3406    break;
3407
3408  case OO_Comma:
3409  UnaryAmp:
3410  case OO_Arrow:
3411    // C++ [over.match.oper]p3:
3412    //   -- For the operator ',', the unary operator '&', or the
3413    //      operator '->', the built-in candidates set is empty.
3414    break;
3415
3416  case OO_EqualEqual:
3417  case OO_ExclaimEqual:
3418    // C++ [over.match.oper]p16:
3419    //   For every pointer to member type T, there exist candidate operator
3420    //   functions of the form
3421    //
3422    //        bool operator==(T,T);
3423    //        bool operator!=(T,T);
3424    for (BuiltinCandidateTypeSet::iterator
3425           MemPtr = CandidateTypes.member_pointer_begin(),
3426           MemPtrEnd = CandidateTypes.member_pointer_end();
3427         MemPtr != MemPtrEnd;
3428         ++MemPtr) {
3429      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3430      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3431    }
3432
3433    // Fall through
3434
3435  case OO_Less:
3436  case OO_Greater:
3437  case OO_LessEqual:
3438  case OO_GreaterEqual:
3439    // C++ [over.built]p15:
3440    //
3441    //   For every pointer or enumeration type T, there exist
3442    //   candidate operator functions of the form
3443    //
3444    //        bool       operator<(T, T);
3445    //        bool       operator>(T, T);
3446    //        bool       operator<=(T, T);
3447    //        bool       operator>=(T, T);
3448    //        bool       operator==(T, T);
3449    //        bool       operator!=(T, T);
3450    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3451         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3452      QualType ParamTypes[2] = { *Ptr, *Ptr };
3453      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3454    }
3455    for (BuiltinCandidateTypeSet::iterator Enum
3456           = CandidateTypes.enumeration_begin();
3457         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3458      QualType ParamTypes[2] = { *Enum, *Enum };
3459      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3460    }
3461
3462    // Fall through.
3463    isComparison = true;
3464
3465  BinaryPlus:
3466  BinaryMinus:
3467    if (!isComparison) {
3468      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3469
3470      // C++ [over.built]p13:
3471      //
3472      //   For every cv-qualified or cv-unqualified object type T
3473      //   there exist candidate operator functions of the form
3474      //
3475      //      T*         operator+(T*, ptrdiff_t);
3476      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3477      //      T*         operator-(T*, ptrdiff_t);
3478      //      T*         operator+(ptrdiff_t, T*);
3479      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3480      //
3481      // C++ [over.built]p14:
3482      //
3483      //   For every T, where T is a pointer to object type, there
3484      //   exist candidate operator functions of the form
3485      //
3486      //      ptrdiff_t  operator-(T, T);
3487      for (BuiltinCandidateTypeSet::iterator Ptr
3488             = CandidateTypes.pointer_begin();
3489           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3490        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3491
3492        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3493        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3494
3495        if (Op == OO_Plus) {
3496          // T* operator+(ptrdiff_t, T*);
3497          ParamTypes[0] = ParamTypes[1];
3498          ParamTypes[1] = *Ptr;
3499          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3500        } else {
3501          // ptrdiff_t operator-(T, T);
3502          ParamTypes[1] = *Ptr;
3503          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3504                              Args, 2, CandidateSet);
3505        }
3506      }
3507    }
3508    // Fall through
3509
3510  case OO_Slash:
3511  BinaryStar:
3512  Conditional:
3513    // C++ [over.built]p12:
3514    //
3515    //   For every pair of promoted arithmetic types L and R, there
3516    //   exist candidate operator functions of the form
3517    //
3518    //        LR         operator*(L, R);
3519    //        LR         operator/(L, R);
3520    //        LR         operator+(L, R);
3521    //        LR         operator-(L, R);
3522    //        bool       operator<(L, R);
3523    //        bool       operator>(L, R);
3524    //        bool       operator<=(L, R);
3525    //        bool       operator>=(L, R);
3526    //        bool       operator==(L, R);
3527    //        bool       operator!=(L, R);
3528    //
3529    //   where LR is the result of the usual arithmetic conversions
3530    //   between types L and R.
3531    //
3532    // C++ [over.built]p24:
3533    //
3534    //   For every pair of promoted arithmetic types L and R, there exist
3535    //   candidate operator functions of the form
3536    //
3537    //        LR       operator?(bool, L, R);
3538    //
3539    //   where LR is the result of the usual arithmetic conversions
3540    //   between types L and R.
3541    // Our candidates ignore the first parameter.
3542    for (unsigned Left = FirstPromotedArithmeticType;
3543         Left < LastPromotedArithmeticType; ++Left) {
3544      for (unsigned Right = FirstPromotedArithmeticType;
3545           Right < LastPromotedArithmeticType; ++Right) {
3546        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3547        QualType Result
3548          = isComparison
3549          ? Context.BoolTy
3550          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3551        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3552      }
3553    }
3554    break;
3555
3556  case OO_Percent:
3557  BinaryAmp:
3558  case OO_Caret:
3559  case OO_Pipe:
3560  case OO_LessLess:
3561  case OO_GreaterGreater:
3562    // C++ [over.built]p17:
3563    //
3564    //   For every pair of promoted integral types L and R, there
3565    //   exist candidate operator functions of the form
3566    //
3567    //      LR         operator%(L, R);
3568    //      LR         operator&(L, R);
3569    //      LR         operator^(L, R);
3570    //      LR         operator|(L, R);
3571    //      L          operator<<(L, R);
3572    //      L          operator>>(L, R);
3573    //
3574    //   where LR is the result of the usual arithmetic conversions
3575    //   between types L and R.
3576    for (unsigned Left = FirstPromotedIntegralType;
3577         Left < LastPromotedIntegralType; ++Left) {
3578      for (unsigned Right = FirstPromotedIntegralType;
3579           Right < LastPromotedIntegralType; ++Right) {
3580        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3581        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3582            ? LandR[0]
3583            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3584        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3585      }
3586    }
3587    break;
3588
3589  case OO_Equal:
3590    // C++ [over.built]p20:
3591    //
3592    //   For every pair (T, VQ), where T is an enumeration or
3593    //   pointer to member type and VQ is either volatile or
3594    //   empty, there exist candidate operator functions of the form
3595    //
3596    //        VQ T&      operator=(VQ T&, T);
3597    for (BuiltinCandidateTypeSet::iterator
3598           Enum = CandidateTypes.enumeration_begin(),
3599           EnumEnd = CandidateTypes.enumeration_end();
3600         Enum != EnumEnd; ++Enum)
3601      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3602                                             CandidateSet);
3603    for (BuiltinCandidateTypeSet::iterator
3604           MemPtr = CandidateTypes.member_pointer_begin(),
3605         MemPtrEnd = CandidateTypes.member_pointer_end();
3606         MemPtr != MemPtrEnd; ++MemPtr)
3607      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3608                                             CandidateSet);
3609      // Fall through.
3610
3611  case OO_PlusEqual:
3612  case OO_MinusEqual:
3613    // C++ [over.built]p19:
3614    //
3615    //   For every pair (T, VQ), where T is any type and VQ is either
3616    //   volatile or empty, there exist candidate operator functions
3617    //   of the form
3618    //
3619    //        T*VQ&      operator=(T*VQ&, T*);
3620    //
3621    // C++ [over.built]p21:
3622    //
3623    //   For every pair (T, VQ), where T is a cv-qualified or
3624    //   cv-unqualified object type and VQ is either volatile or
3625    //   empty, there exist candidate operator functions of the form
3626    //
3627    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3628    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3629    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3630         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3631      QualType ParamTypes[2];
3632      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3633
3634      // non-volatile version
3635      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3636      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3637                          /*IsAssigmentOperator=*/Op == OO_Equal);
3638
3639      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3640          VisibleTypeConversionsQuals.hasVolatile()) {
3641        // volatile version
3642        ParamTypes[0]
3643          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3644        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3645                            /*IsAssigmentOperator=*/Op == OO_Equal);
3646      }
3647    }
3648    // Fall through.
3649
3650  case OO_StarEqual:
3651  case OO_SlashEqual:
3652    // C++ [over.built]p18:
3653    //
3654    //   For every triple (L, VQ, R), where L is an arithmetic type,
3655    //   VQ is either volatile or empty, and R is a promoted
3656    //   arithmetic type, there exist candidate operator functions of
3657    //   the form
3658    //
3659    //        VQ L&      operator=(VQ L&, R);
3660    //        VQ L&      operator*=(VQ L&, R);
3661    //        VQ L&      operator/=(VQ L&, R);
3662    //        VQ L&      operator+=(VQ L&, R);
3663    //        VQ L&      operator-=(VQ L&, R);
3664    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3665      for (unsigned Right = FirstPromotedArithmeticType;
3666           Right < LastPromotedArithmeticType; ++Right) {
3667        QualType ParamTypes[2];
3668        ParamTypes[1] = ArithmeticTypes[Right];
3669
3670        // Add this built-in operator as a candidate (VQ is empty).
3671        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3672        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3673                            /*IsAssigmentOperator=*/Op == OO_Equal);
3674
3675        // Add this built-in operator as a candidate (VQ is 'volatile').
3676        if (VisibleTypeConversionsQuals.hasVolatile()) {
3677          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3678          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3679          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3680                              /*IsAssigmentOperator=*/Op == OO_Equal);
3681        }
3682      }
3683    }
3684    break;
3685
3686  case OO_PercentEqual:
3687  case OO_LessLessEqual:
3688  case OO_GreaterGreaterEqual:
3689  case OO_AmpEqual:
3690  case OO_CaretEqual:
3691  case OO_PipeEqual:
3692    // C++ [over.built]p22:
3693    //
3694    //   For every triple (L, VQ, R), where L is an integral type, VQ
3695    //   is either volatile or empty, and R is a promoted integral
3696    //   type, there exist candidate operator functions of the form
3697    //
3698    //        VQ L&       operator%=(VQ L&, R);
3699    //        VQ L&       operator<<=(VQ L&, R);
3700    //        VQ L&       operator>>=(VQ L&, R);
3701    //        VQ L&       operator&=(VQ L&, R);
3702    //        VQ L&       operator^=(VQ L&, R);
3703    //        VQ L&       operator|=(VQ L&, R);
3704    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3705      for (unsigned Right = FirstPromotedIntegralType;
3706           Right < LastPromotedIntegralType; ++Right) {
3707        QualType ParamTypes[2];
3708        ParamTypes[1] = ArithmeticTypes[Right];
3709
3710        // Add this built-in operator as a candidate (VQ is empty).
3711        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3712        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3713        if (VisibleTypeConversionsQuals.hasVolatile()) {
3714          // Add this built-in operator as a candidate (VQ is 'volatile').
3715          ParamTypes[0] = ArithmeticTypes[Left];
3716          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3717          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3718          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3719        }
3720      }
3721    }
3722    break;
3723
3724  case OO_Exclaim: {
3725    // C++ [over.operator]p23:
3726    //
3727    //   There also exist candidate operator functions of the form
3728    //
3729    //        bool        operator!(bool);
3730    //        bool        operator&&(bool, bool);     [BELOW]
3731    //        bool        operator||(bool, bool);     [BELOW]
3732    QualType ParamTy = Context.BoolTy;
3733    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3734                        /*IsAssignmentOperator=*/false,
3735                        /*NumContextualBoolArguments=*/1);
3736    break;
3737  }
3738
3739  case OO_AmpAmp:
3740  case OO_PipePipe: {
3741    // C++ [over.operator]p23:
3742    //
3743    //   There also exist candidate operator functions of the form
3744    //
3745    //        bool        operator!(bool);            [ABOVE]
3746    //        bool        operator&&(bool, bool);
3747    //        bool        operator||(bool, bool);
3748    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3749    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3750                        /*IsAssignmentOperator=*/false,
3751                        /*NumContextualBoolArguments=*/2);
3752    break;
3753  }
3754
3755  case OO_Subscript:
3756    // C++ [over.built]p13:
3757    //
3758    //   For every cv-qualified or cv-unqualified object type T there
3759    //   exist candidate operator functions of the form
3760    //
3761    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3762    //        T&         operator[](T*, ptrdiff_t);
3763    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3764    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3765    //        T&         operator[](ptrdiff_t, T*);
3766    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3767         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3768      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3769      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3770      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3771
3772      // T& operator[](T*, ptrdiff_t)
3773      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3774
3775      // T& operator[](ptrdiff_t, T*);
3776      ParamTypes[0] = ParamTypes[1];
3777      ParamTypes[1] = *Ptr;
3778      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3779    }
3780    break;
3781
3782  case OO_ArrowStar:
3783    // C++ [over.built]p11:
3784    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3785    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3786    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3787    //    there exist candidate operator functions of the form
3788    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3789    //    where CV12 is the union of CV1 and CV2.
3790    {
3791      for (BuiltinCandidateTypeSet::iterator Ptr =
3792             CandidateTypes.pointer_begin();
3793           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3794        QualType C1Ty = (*Ptr);
3795        QualType C1;
3796        QualifierCollector Q1;
3797        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3798          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3799          if (!isa<RecordType>(C1))
3800            continue;
3801          // heuristic to reduce number of builtin candidates in the set.
3802          // Add volatile/restrict version only if there are conversions to a
3803          // volatile/restrict type.
3804          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3805            continue;
3806          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3807            continue;
3808        }
3809        for (BuiltinCandidateTypeSet::iterator
3810             MemPtr = CandidateTypes.member_pointer_begin(),
3811             MemPtrEnd = CandidateTypes.member_pointer_end();
3812             MemPtr != MemPtrEnd; ++MemPtr) {
3813          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3814          QualType C2 = QualType(mptr->getClass(), 0);
3815          C2 = C2.getUnqualifiedType();
3816          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3817            break;
3818          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3819          // build CV12 T&
3820          QualType T = mptr->getPointeeType();
3821          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3822              T.isVolatileQualified())
3823            continue;
3824          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3825              T.isRestrictQualified())
3826            continue;
3827          T = Q1.apply(T);
3828          QualType ResultTy = Context.getLValueReferenceType(T);
3829          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3830        }
3831      }
3832    }
3833    break;
3834
3835  case OO_Conditional:
3836    // Note that we don't consider the first argument, since it has been
3837    // contextually converted to bool long ago. The candidates below are
3838    // therefore added as binary.
3839    //
3840    // C++ [over.built]p24:
3841    //   For every type T, where T is a pointer or pointer-to-member type,
3842    //   there exist candidate operator functions of the form
3843    //
3844    //        T        operator?(bool, T, T);
3845    //
3846    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3847         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3848      QualType ParamTypes[2] = { *Ptr, *Ptr };
3849      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3850    }
3851    for (BuiltinCandidateTypeSet::iterator Ptr =
3852           CandidateTypes.member_pointer_begin(),
3853         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3854      QualType ParamTypes[2] = { *Ptr, *Ptr };
3855      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3856    }
3857    goto Conditional;
3858  }
3859}
3860
3861/// \brief Add function candidates found via argument-dependent lookup
3862/// to the set of overloading candidates.
3863///
3864/// This routine performs argument-dependent name lookup based on the
3865/// given function name (which may also be an operator name) and adds
3866/// all of the overload candidates found by ADL to the overload
3867/// candidate set (C++ [basic.lookup.argdep]).
3868void
3869Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3870                                           Expr **Args, unsigned NumArgs,
3871                                           bool HasExplicitTemplateArgs,
3872                                const TemplateArgument *ExplicitTemplateArgs,
3873                                           unsigned NumExplicitTemplateArgs,
3874                                           OverloadCandidateSet& CandidateSet,
3875                                           bool PartialOverloading) {
3876  FunctionSet Functions;
3877
3878  // FIXME: Should we be trafficking in canonical function decls throughout?
3879
3880  // Record all of the function candidates that we've already
3881  // added to the overload set, so that we don't add those same
3882  // candidates a second time.
3883  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3884                                   CandEnd = CandidateSet.end();
3885       Cand != CandEnd; ++Cand)
3886    if (Cand->Function) {
3887      Functions.insert(Cand->Function);
3888      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3889        Functions.insert(FunTmpl);
3890    }
3891
3892  // FIXME: Pass in the explicit template arguments?
3893  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3894
3895  // Erase all of the candidates we already knew about.
3896  // FIXME: This is suboptimal. Is there a better way?
3897  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3898                                   CandEnd = CandidateSet.end();
3899       Cand != CandEnd; ++Cand)
3900    if (Cand->Function) {
3901      Functions.erase(Cand->Function);
3902      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3903        Functions.erase(FunTmpl);
3904    }
3905
3906  // For each of the ADL candidates we found, add it to the overload
3907  // set.
3908  for (FunctionSet::iterator Func = Functions.begin(),
3909                          FuncEnd = Functions.end();
3910       Func != FuncEnd; ++Func) {
3911    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3912      if (HasExplicitTemplateArgs)
3913        continue;
3914
3915      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3916                           false, false, PartialOverloading);
3917    } else
3918      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3919                                   HasExplicitTemplateArgs,
3920                                   ExplicitTemplateArgs,
3921                                   NumExplicitTemplateArgs,
3922                                   Args, NumArgs, CandidateSet);
3923  }
3924}
3925
3926/// isBetterOverloadCandidate - Determines whether the first overload
3927/// candidate is a better candidate than the second (C++ 13.3.3p1).
3928bool
3929Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3930                                const OverloadCandidate& Cand2) {
3931  // Define viable functions to be better candidates than non-viable
3932  // functions.
3933  if (!Cand2.Viable)
3934    return Cand1.Viable;
3935  else if (!Cand1.Viable)
3936    return false;
3937
3938  // C++ [over.match.best]p1:
3939  //
3940  //   -- if F is a static member function, ICS1(F) is defined such
3941  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3942  //      any function G, and, symmetrically, ICS1(G) is neither
3943  //      better nor worse than ICS1(F).
3944  unsigned StartArg = 0;
3945  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3946    StartArg = 1;
3947
3948  // C++ [over.match.best]p1:
3949  //   A viable function F1 is defined to be a better function than another
3950  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3951  //   conversion sequence than ICSi(F2), and then...
3952  unsigned NumArgs = Cand1.Conversions.size();
3953  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3954  bool HasBetterConversion = false;
3955  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3956    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3957                                               Cand2.Conversions[ArgIdx])) {
3958    case ImplicitConversionSequence::Better:
3959      // Cand1 has a better conversion sequence.
3960      HasBetterConversion = true;
3961      break;
3962
3963    case ImplicitConversionSequence::Worse:
3964      // Cand1 can't be better than Cand2.
3965      return false;
3966
3967    case ImplicitConversionSequence::Indistinguishable:
3968      // Do nothing.
3969      break;
3970    }
3971  }
3972
3973  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3974  //       ICSj(F2), or, if not that,
3975  if (HasBetterConversion)
3976    return true;
3977
3978  //     - F1 is a non-template function and F2 is a function template
3979  //       specialization, or, if not that,
3980  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3981      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3982    return true;
3983
3984  //   -- F1 and F2 are function template specializations, and the function
3985  //      template for F1 is more specialized than the template for F2
3986  //      according to the partial ordering rules described in 14.5.5.2, or,
3987  //      if not that,
3988  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3989      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3990    if (FunctionTemplateDecl *BetterTemplate
3991          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3992                                       Cand2.Function->getPrimaryTemplate(),
3993                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
3994                                                             : TPOC_Call))
3995      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3996
3997  //   -- the context is an initialization by user-defined conversion
3998  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3999  //      from the return type of F1 to the destination type (i.e.,
4000  //      the type of the entity being initialized) is a better
4001  //      conversion sequence than the standard conversion sequence
4002  //      from the return type of F2 to the destination type.
4003  if (Cand1.Function && Cand2.Function &&
4004      isa<CXXConversionDecl>(Cand1.Function) &&
4005      isa<CXXConversionDecl>(Cand2.Function)) {
4006    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4007                                               Cand2.FinalConversion)) {
4008    case ImplicitConversionSequence::Better:
4009      // Cand1 has a better conversion sequence.
4010      return true;
4011
4012    case ImplicitConversionSequence::Worse:
4013      // Cand1 can't be better than Cand2.
4014      return false;
4015
4016    case ImplicitConversionSequence::Indistinguishable:
4017      // Do nothing
4018      break;
4019    }
4020  }
4021
4022  return false;
4023}
4024
4025/// \brief Computes the best viable function (C++ 13.3.3)
4026/// within an overload candidate set.
4027///
4028/// \param CandidateSet the set of candidate functions.
4029///
4030/// \param Loc the location of the function name (or operator symbol) for
4031/// which overload resolution occurs.
4032///
4033/// \param Best f overload resolution was successful or found a deleted
4034/// function, Best points to the candidate function found.
4035///
4036/// \returns The result of overload resolution.
4037Sema::OverloadingResult
4038Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4039                         SourceLocation Loc,
4040                         OverloadCandidateSet::iterator& Best) {
4041  // Find the best viable function.
4042  Best = CandidateSet.end();
4043  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4044       Cand != CandidateSet.end(); ++Cand) {
4045    if (Cand->Viable) {
4046      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4047        Best = Cand;
4048    }
4049  }
4050
4051  // If we didn't find any viable functions, abort.
4052  if (Best == CandidateSet.end())
4053    return OR_No_Viable_Function;
4054
4055  // Make sure that this function is better than every other viable
4056  // function. If not, we have an ambiguity.
4057  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4058       Cand != CandidateSet.end(); ++Cand) {
4059    if (Cand->Viable &&
4060        Cand != Best &&
4061        !isBetterOverloadCandidate(*Best, *Cand)) {
4062      Best = CandidateSet.end();
4063      return OR_Ambiguous;
4064    }
4065  }
4066
4067  // Best is the best viable function.
4068  if (Best->Function &&
4069      (Best->Function->isDeleted() ||
4070       Best->Function->getAttr<UnavailableAttr>()))
4071    return OR_Deleted;
4072
4073  // C++ [basic.def.odr]p2:
4074  //   An overloaded function is used if it is selected by overload resolution
4075  //   when referred to from a potentially-evaluated expression. [Note: this
4076  //   covers calls to named functions (5.2.2), operator overloading
4077  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4078  //   placement new (5.3.4), as well as non-default initialization (8.5).
4079  if (Best->Function)
4080    MarkDeclarationReferenced(Loc, Best->Function);
4081  return OR_Success;
4082}
4083
4084/// PrintOverloadCandidates - When overload resolution fails, prints
4085/// diagnostic messages containing the candidates in the candidate
4086/// set. If OnlyViable is true, only viable candidates will be printed.
4087void
4088Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4089                              bool OnlyViable,
4090                              const char *Opc,
4091                              SourceLocation OpLoc) {
4092  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4093                             LastCand = CandidateSet.end();
4094  bool Reported = false;
4095  for (; Cand != LastCand; ++Cand) {
4096    if (Cand->Viable || !OnlyViable) {
4097      if (Cand->Function) {
4098        if (Cand->Function->isDeleted() ||
4099            Cand->Function->getAttr<UnavailableAttr>()) {
4100          // Deleted or "unavailable" function.
4101          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4102            << Cand->Function->isDeleted();
4103        } else if (FunctionTemplateDecl *FunTmpl
4104                     = Cand->Function->getPrimaryTemplate()) {
4105          // Function template specialization
4106          // FIXME: Give a better reason!
4107          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4108            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4109                              *Cand->Function->getTemplateSpecializationArgs());
4110        } else {
4111          // Normal function
4112          bool errReported = false;
4113          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4114            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4115              const ImplicitConversionSequence &Conversion =
4116                                                        Cand->Conversions[i];
4117              if ((Conversion.ConversionKind !=
4118                   ImplicitConversionSequence::BadConversion) ||
4119                  Conversion.ConversionFunctionSet.size() == 0)
4120                continue;
4121              Diag(Cand->Function->getLocation(),
4122                   diag::err_ovl_candidate_not_viable) << (i+1);
4123              errReported = true;
4124              for (int j = Conversion.ConversionFunctionSet.size()-1;
4125                   j >= 0; j--) {
4126                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4127                Diag(Func->getLocation(), diag::err_ovl_candidate);
4128              }
4129            }
4130          }
4131          if (!errReported)
4132            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4133        }
4134      } else if (Cand->IsSurrogate) {
4135        // Desugar the type of the surrogate down to a function type,
4136        // retaining as many typedefs as possible while still showing
4137        // the function type (and, therefore, its parameter types).
4138        QualType FnType = Cand->Surrogate->getConversionType();
4139        bool isLValueReference = false;
4140        bool isRValueReference = false;
4141        bool isPointer = false;
4142        if (const LValueReferenceType *FnTypeRef =
4143              FnType->getAs<LValueReferenceType>()) {
4144          FnType = FnTypeRef->getPointeeType();
4145          isLValueReference = true;
4146        } else if (const RValueReferenceType *FnTypeRef =
4147                     FnType->getAs<RValueReferenceType>()) {
4148          FnType = FnTypeRef->getPointeeType();
4149          isRValueReference = true;
4150        }
4151        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4152          FnType = FnTypePtr->getPointeeType();
4153          isPointer = true;
4154        }
4155        // Desugar down to a function type.
4156        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4157        // Reconstruct the pointer/reference as appropriate.
4158        if (isPointer) FnType = Context.getPointerType(FnType);
4159        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4160        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4161
4162        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4163          << FnType;
4164      } else if (OnlyViable) {
4165        assert(Cand->Conversions.size() <= 2 &&
4166               "builtin-binary-operator-not-binary");
4167        std::string TypeStr("operator");
4168        TypeStr += Opc;
4169        TypeStr += "(";
4170        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4171        if (Cand->Conversions.size() == 1) {
4172          TypeStr += ")";
4173          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4174        }
4175        else {
4176          TypeStr += ", ";
4177          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4178          TypeStr += ")";
4179          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4180        }
4181      }
4182      else if (!Cand->Viable && !Reported) {
4183        // Non-viability might be due to ambiguous user-defined conversions,
4184        // needed for built-in operators. Report them as well, but only once
4185        // as we have typically many built-in candidates.
4186        unsigned NoOperands = Cand->Conversions.size();
4187        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4188          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4189          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4190              ICS.ConversionFunctionSet.empty())
4191            continue;
4192          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4193                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4194            QualType FromTy =
4195              QualType(
4196                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4197            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4198                  << FromTy << Func->getConversionType();
4199          }
4200          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4201            FunctionDecl *Func =
4202              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4203            Diag(Func->getLocation(),diag::err_ovl_candidate);
4204          }
4205        }
4206        Reported = true;
4207      }
4208    }
4209  }
4210}
4211
4212/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4213/// an overloaded function (C++ [over.over]), where @p From is an
4214/// expression with overloaded function type and @p ToType is the type
4215/// we're trying to resolve to. For example:
4216///
4217/// @code
4218/// int f(double);
4219/// int f(int);
4220///
4221/// int (*pfd)(double) = f; // selects f(double)
4222/// @endcode
4223///
4224/// This routine returns the resulting FunctionDecl if it could be
4225/// resolved, and NULL otherwise. When @p Complain is true, this
4226/// routine will emit diagnostics if there is an error.
4227FunctionDecl *
4228Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4229                                         bool Complain) {
4230  QualType FunctionType = ToType;
4231  bool IsMember = false;
4232  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4233    FunctionType = ToTypePtr->getPointeeType();
4234  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4235    FunctionType = ToTypeRef->getPointeeType();
4236  else if (const MemberPointerType *MemTypePtr =
4237                    ToType->getAs<MemberPointerType>()) {
4238    FunctionType = MemTypePtr->getPointeeType();
4239    IsMember = true;
4240  }
4241
4242  // We only look at pointers or references to functions.
4243  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4244  if (!FunctionType->isFunctionType())
4245    return 0;
4246
4247  // Find the actual overloaded function declaration.
4248  OverloadedFunctionDecl *Ovl = 0;
4249
4250  // C++ [over.over]p1:
4251  //   [...] [Note: any redundant set of parentheses surrounding the
4252  //   overloaded function name is ignored (5.1). ]
4253  Expr *OvlExpr = From->IgnoreParens();
4254
4255  // C++ [over.over]p1:
4256  //   [...] The overloaded function name can be preceded by the &
4257  //   operator.
4258  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4259    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4260      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4261  }
4262
4263  // Try to dig out the overloaded function.
4264  FunctionTemplateDecl *FunctionTemplate = 0;
4265  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4266    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4267    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4268  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4269    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4270    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4271    // FIXME: Explicit template arguments
4272  }
4273  // FIXME: TemplateIdRefExpr?
4274
4275  // If there's no overloaded function declaration or function template,
4276  // we're done.
4277  if (!Ovl && !FunctionTemplate)
4278    return 0;
4279
4280  OverloadIterator Fun;
4281  if (Ovl)
4282    Fun = Ovl;
4283  else
4284    Fun = FunctionTemplate;
4285
4286  // Look through all of the overloaded functions, searching for one
4287  // whose type matches exactly.
4288  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4289  bool FoundNonTemplateFunction = false;
4290  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4291    // C++ [over.over]p3:
4292    //   Non-member functions and static member functions match
4293    //   targets of type "pointer-to-function" or "reference-to-function."
4294    //   Nonstatic member functions match targets of
4295    //   type "pointer-to-member-function."
4296    // Note that according to DR 247, the containing class does not matter.
4297
4298    if (FunctionTemplateDecl *FunctionTemplate
4299          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4300      if (CXXMethodDecl *Method
4301            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4302        // Skip non-static function templates when converting to pointer, and
4303        // static when converting to member pointer.
4304        if (Method->isStatic() == IsMember)
4305          continue;
4306      } else if (IsMember)
4307        continue;
4308
4309      // C++ [over.over]p2:
4310      //   If the name is a function template, template argument deduction is
4311      //   done (14.8.2.2), and if the argument deduction succeeds, the
4312      //   resulting template argument list is used to generate a single
4313      //   function template specialization, which is added to the set of
4314      //   overloaded functions considered.
4315      // FIXME: We don't really want to build the specialization here, do we?
4316      FunctionDecl *Specialization = 0;
4317      TemplateDeductionInfo Info(Context);
4318      if (TemplateDeductionResult Result
4319            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
4320                                      /*FIXME:*/0, /*FIXME:*/0,
4321                                      FunctionType, Specialization, Info)) {
4322        // FIXME: make a note of the failed deduction for diagnostics.
4323        (void)Result;
4324      } else {
4325        // FIXME: If the match isn't exact, shouldn't we just drop this as
4326        // a candidate? Find a testcase before changing the code.
4327        assert(FunctionType
4328                 == Context.getCanonicalType(Specialization->getType()));
4329        Matches.insert(
4330                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4331      }
4332    }
4333
4334    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4335      // Skip non-static functions when converting to pointer, and static
4336      // when converting to member pointer.
4337      if (Method->isStatic() == IsMember)
4338        continue;
4339    } else if (IsMember)
4340      continue;
4341
4342    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4343      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4344        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4345        FoundNonTemplateFunction = true;
4346      }
4347    }
4348  }
4349
4350  // If there were 0 or 1 matches, we're done.
4351  if (Matches.empty())
4352    return 0;
4353  else if (Matches.size() == 1) {
4354    FunctionDecl *Result = *Matches.begin();
4355    MarkDeclarationReferenced(From->getLocStart(), Result);
4356    return Result;
4357  }
4358
4359  // C++ [over.over]p4:
4360  //   If more than one function is selected, [...]
4361  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4362  if (!FoundNonTemplateFunction) {
4363    //   [...] and any given function template specialization F1 is
4364    //   eliminated if the set contains a second function template
4365    //   specialization whose function template is more specialized
4366    //   than the function template of F1 according to the partial
4367    //   ordering rules of 14.5.5.2.
4368
4369    // The algorithm specified above is quadratic. We instead use a
4370    // two-pass algorithm (similar to the one used to identify the
4371    // best viable function in an overload set) that identifies the
4372    // best function template (if it exists).
4373    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4374                                                         Matches.end());
4375    FunctionDecl *Result =
4376        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4377                           TPOC_Other, From->getLocStart(),
4378                           PDiag(),
4379                           PDiag(diag::err_addr_ovl_ambiguous)
4380                               << TemplateMatches[0]->getDeclName(),
4381                           PDiag(diag::err_ovl_template_candidate));
4382    MarkDeclarationReferenced(From->getLocStart(), Result);
4383    return Result;
4384  }
4385
4386  //   [...] any function template specializations in the set are
4387  //   eliminated if the set also contains a non-template function, [...]
4388  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4389  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4390    if ((*M)->getPrimaryTemplate() == 0)
4391      RemainingMatches.push_back(*M);
4392
4393  // [...] After such eliminations, if any, there shall remain exactly one
4394  // selected function.
4395  if (RemainingMatches.size() == 1) {
4396    FunctionDecl *Result = RemainingMatches.front();
4397    MarkDeclarationReferenced(From->getLocStart(), Result);
4398    return Result;
4399  }
4400
4401  // FIXME: We should probably return the same thing that BestViableFunction
4402  // returns (even if we issue the diagnostics here).
4403  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4404    << RemainingMatches[0]->getDeclName();
4405  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4406    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4407  return 0;
4408}
4409
4410/// \brief Add a single candidate to the overload set.
4411static void AddOverloadedCallCandidate(Sema &S,
4412                                       AnyFunctionDecl Callee,
4413                                       bool &ArgumentDependentLookup,
4414                                       bool HasExplicitTemplateArgs,
4415                                 const TemplateArgument *ExplicitTemplateArgs,
4416                                       unsigned NumExplicitTemplateArgs,
4417                                       Expr **Args, unsigned NumArgs,
4418                                       OverloadCandidateSet &CandidateSet,
4419                                       bool PartialOverloading) {
4420  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4421    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4422    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4423                           PartialOverloading);
4424
4425    if (Func->getDeclContext()->isRecord() ||
4426        Func->getDeclContext()->isFunctionOrMethod())
4427      ArgumentDependentLookup = false;
4428    return;
4429  }
4430
4431  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4432  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4433                                 ExplicitTemplateArgs,
4434                                 NumExplicitTemplateArgs,
4435                                 Args, NumArgs, CandidateSet);
4436
4437  if (FuncTemplate->getDeclContext()->isRecord())
4438    ArgumentDependentLookup = false;
4439}
4440
4441/// \brief Add the overload candidates named by callee and/or found by argument
4442/// dependent lookup to the given overload set.
4443void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4444                                       DeclarationName &UnqualifiedName,
4445                                       bool &ArgumentDependentLookup,
4446                                       bool HasExplicitTemplateArgs,
4447                                  const TemplateArgument *ExplicitTemplateArgs,
4448                                       unsigned NumExplicitTemplateArgs,
4449                                       Expr **Args, unsigned NumArgs,
4450                                       OverloadCandidateSet &CandidateSet,
4451                                       bool PartialOverloading) {
4452  // Add the functions denoted by Callee to the set of candidate
4453  // functions. While we're doing so, track whether argument-dependent
4454  // lookup still applies, per:
4455  //
4456  // C++0x [basic.lookup.argdep]p3:
4457  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4458  //   and let Y be the lookup set produced by argument dependent
4459  //   lookup (defined as follows). If X contains
4460  //
4461  //     -- a declaration of a class member, or
4462  //
4463  //     -- a block-scope function declaration that is not a
4464  //        using-declaration (FIXME: check for using declaration), or
4465  //
4466  //     -- a declaration that is neither a function or a function
4467  //        template
4468  //
4469  //   then Y is empty.
4470  if (!Callee) {
4471    // Nothing to do.
4472  } else if (OverloadedFunctionDecl *Ovl
4473               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4474    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4475                                                FuncEnd = Ovl->function_end();
4476         Func != FuncEnd; ++Func)
4477      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4478                                 HasExplicitTemplateArgs,
4479                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4480                                 Args, NumArgs, CandidateSet,
4481                                 PartialOverloading);
4482  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4483    AddOverloadedCallCandidate(*this,
4484                               AnyFunctionDecl::getFromNamedDecl(Callee),
4485                               ArgumentDependentLookup,
4486                               HasExplicitTemplateArgs,
4487                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4488                               Args, NumArgs, CandidateSet,
4489                               PartialOverloading);
4490  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4491  // checking dynamically.
4492
4493  if (Callee)
4494    UnqualifiedName = Callee->getDeclName();
4495
4496  if (ArgumentDependentLookup)
4497    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4498                                         HasExplicitTemplateArgs,
4499                                         ExplicitTemplateArgs,
4500                                         NumExplicitTemplateArgs,
4501                                         CandidateSet,
4502                                         PartialOverloading);
4503}
4504
4505/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4506/// (which eventually refers to the declaration Func) and the call
4507/// arguments Args/NumArgs, attempt to resolve the function call down
4508/// to a specific function. If overload resolution succeeds, returns
4509/// the function declaration produced by overload
4510/// resolution. Otherwise, emits diagnostics, deletes all of the
4511/// arguments and Fn, and returns NULL.
4512FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4513                                            DeclarationName UnqualifiedName,
4514                                            bool HasExplicitTemplateArgs,
4515                                 const TemplateArgument *ExplicitTemplateArgs,
4516                                            unsigned NumExplicitTemplateArgs,
4517                                            SourceLocation LParenLoc,
4518                                            Expr **Args, unsigned NumArgs,
4519                                            SourceLocation *CommaLocs,
4520                                            SourceLocation RParenLoc,
4521                                            bool &ArgumentDependentLookup) {
4522  OverloadCandidateSet CandidateSet;
4523
4524  // Add the functions denoted by Callee to the set of candidate
4525  // functions.
4526  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4527                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4528                              NumExplicitTemplateArgs, Args, NumArgs,
4529                              CandidateSet);
4530  OverloadCandidateSet::iterator Best;
4531  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4532  case OR_Success:
4533    return Best->Function;
4534
4535  case OR_No_Viable_Function:
4536    Diag(Fn->getSourceRange().getBegin(),
4537         diag::err_ovl_no_viable_function_in_call)
4538      << UnqualifiedName << Fn->getSourceRange();
4539    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4540    break;
4541
4542  case OR_Ambiguous:
4543    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4544      << UnqualifiedName << Fn->getSourceRange();
4545    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4546    break;
4547
4548  case OR_Deleted:
4549    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4550      << Best->Function->isDeleted()
4551      << UnqualifiedName
4552      << Fn->getSourceRange();
4553    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4554    break;
4555  }
4556
4557  // Overload resolution failed. Destroy all of the subexpressions and
4558  // return NULL.
4559  Fn->Destroy(Context);
4560  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4561    Args[Arg]->Destroy(Context);
4562  return 0;
4563}
4564
4565/// \brief Create a unary operation that may resolve to an overloaded
4566/// operator.
4567///
4568/// \param OpLoc The location of the operator itself (e.g., '*').
4569///
4570/// \param OpcIn The UnaryOperator::Opcode that describes this
4571/// operator.
4572///
4573/// \param Functions The set of non-member functions that will be
4574/// considered by overload resolution. The caller needs to build this
4575/// set based on the context using, e.g.,
4576/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4577/// set should not contain any member functions; those will be added
4578/// by CreateOverloadedUnaryOp().
4579///
4580/// \param input The input argument.
4581Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4582                                                     unsigned OpcIn,
4583                                                     FunctionSet &Functions,
4584                                                     ExprArg input) {
4585  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4586  Expr *Input = (Expr *)input.get();
4587
4588  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4589  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4590  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4591
4592  Expr *Args[2] = { Input, 0 };
4593  unsigned NumArgs = 1;
4594
4595  // For post-increment and post-decrement, add the implicit '0' as
4596  // the second argument, so that we know this is a post-increment or
4597  // post-decrement.
4598  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4599    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4600    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4601                                           SourceLocation());
4602    NumArgs = 2;
4603  }
4604
4605  if (Input->isTypeDependent()) {
4606    OverloadedFunctionDecl *Overloads
4607      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4608    for (FunctionSet::iterator Func = Functions.begin(),
4609                            FuncEnd = Functions.end();
4610         Func != FuncEnd; ++Func)
4611      Overloads->addOverload(*Func);
4612
4613    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4614                                                OpLoc, false, false);
4615
4616    input.release();
4617    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4618                                                   &Args[0], NumArgs,
4619                                                   Context.DependentTy,
4620                                                   OpLoc));
4621  }
4622
4623  // Build an empty overload set.
4624  OverloadCandidateSet CandidateSet;
4625
4626  // Add the candidates from the given function set.
4627  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4628
4629  // Add operator candidates that are member functions.
4630  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4631
4632  // Add builtin operator candidates.
4633  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4634
4635  // Perform overload resolution.
4636  OverloadCandidateSet::iterator Best;
4637  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4638  case OR_Success: {
4639    // We found a built-in operator or an overloaded operator.
4640    FunctionDecl *FnDecl = Best->Function;
4641
4642    if (FnDecl) {
4643      // We matched an overloaded operator. Build a call to that
4644      // operator.
4645
4646      // Convert the arguments.
4647      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4648        if (PerformObjectArgumentInitialization(Input, Method))
4649          return ExprError();
4650      } else {
4651        // Convert the arguments.
4652        if (PerformCopyInitialization(Input,
4653                                      FnDecl->getParamDecl(0)->getType(),
4654                                      "passing"))
4655          return ExprError();
4656      }
4657
4658      // Determine the result type
4659      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4660
4661      // Build the actual expression node.
4662      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4663                                               SourceLocation());
4664      UsualUnaryConversions(FnExpr);
4665
4666      input.release();
4667
4668      ExprOwningPtr<CallExpr> TheCall(this,
4669        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4670                                          &Input, 1, ResultTy, OpLoc));
4671
4672      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4673                              FnDecl))
4674        return ExprError();
4675
4676      return MaybeBindToTemporary(TheCall.release());
4677    } else {
4678      // We matched a built-in operator. Convert the arguments, then
4679      // break out so that we will build the appropriate built-in
4680      // operator node.
4681        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4682                                      Best->Conversions[0], "passing"))
4683          return ExprError();
4684
4685        break;
4686      }
4687    }
4688
4689    case OR_No_Viable_Function:
4690      // No viable function; fall through to handling this as a
4691      // built-in operator, which will produce an error message for us.
4692      break;
4693
4694    case OR_Ambiguous:
4695      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4696          << UnaryOperator::getOpcodeStr(Opc)
4697          << Input->getSourceRange();
4698      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4699                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4700      return ExprError();
4701
4702    case OR_Deleted:
4703      Diag(OpLoc, diag::err_ovl_deleted_oper)
4704        << Best->Function->isDeleted()
4705        << UnaryOperator::getOpcodeStr(Opc)
4706        << Input->getSourceRange();
4707      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4708      return ExprError();
4709    }
4710
4711  // Either we found no viable overloaded operator or we matched a
4712  // built-in operator. In either case, fall through to trying to
4713  // build a built-in operation.
4714  input.release();
4715  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4716}
4717
4718/// \brief Create a binary operation that may resolve to an overloaded
4719/// operator.
4720///
4721/// \param OpLoc The location of the operator itself (e.g., '+').
4722///
4723/// \param OpcIn The BinaryOperator::Opcode that describes this
4724/// operator.
4725///
4726/// \param Functions The set of non-member functions that will be
4727/// considered by overload resolution. The caller needs to build this
4728/// set based on the context using, e.g.,
4729/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4730/// set should not contain any member functions; those will be added
4731/// by CreateOverloadedBinOp().
4732///
4733/// \param LHS Left-hand argument.
4734/// \param RHS Right-hand argument.
4735Sema::OwningExprResult
4736Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4737                            unsigned OpcIn,
4738                            FunctionSet &Functions,
4739                            Expr *LHS, Expr *RHS) {
4740  Expr *Args[2] = { LHS, RHS };
4741  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4742
4743  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4744  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4745  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4746
4747  // If either side is type-dependent, create an appropriate dependent
4748  // expression.
4749  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4750    // .* cannot be overloaded.
4751    if (Opc == BinaryOperator::PtrMemD)
4752      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4753                                                Context.DependentTy, OpLoc));
4754
4755    OverloadedFunctionDecl *Overloads
4756      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4757    for (FunctionSet::iterator Func = Functions.begin(),
4758                            FuncEnd = Functions.end();
4759         Func != FuncEnd; ++Func)
4760      Overloads->addOverload(*Func);
4761
4762    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4763                                                OpLoc, false, false);
4764
4765    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4766                                                   Args, 2,
4767                                                   Context.DependentTy,
4768                                                   OpLoc));
4769  }
4770
4771  // If this is the .* operator, which is not overloadable, just
4772  // create a built-in binary operator.
4773  if (Opc == BinaryOperator::PtrMemD)
4774    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4775
4776  // If this is one of the assignment operators, we only perform
4777  // overload resolution if the left-hand side is a class or
4778  // enumeration type (C++ [expr.ass]p3).
4779  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4780      !Args[0]->getType()->isOverloadableType())
4781    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4782
4783  // Build an empty overload set.
4784  OverloadCandidateSet CandidateSet;
4785
4786  // Add the candidates from the given function set.
4787  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4788
4789  // Add operator candidates that are member functions.
4790  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4791
4792  // Add builtin operator candidates.
4793  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4794
4795  // Perform overload resolution.
4796  OverloadCandidateSet::iterator Best;
4797  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4798    case OR_Success: {
4799      // We found a built-in operator or an overloaded operator.
4800      FunctionDecl *FnDecl = Best->Function;
4801
4802      if (FnDecl) {
4803        // We matched an overloaded operator. Build a call to that
4804        // operator.
4805
4806        // Convert the arguments.
4807        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4808          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4809              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4810                                        "passing"))
4811            return ExprError();
4812        } else {
4813          // Convert the arguments.
4814          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4815                                        "passing") ||
4816              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4817                                        "passing"))
4818            return ExprError();
4819        }
4820
4821        // Determine the result type
4822        QualType ResultTy
4823          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4824        ResultTy = ResultTy.getNonReferenceType();
4825
4826        // Build the actual expression node.
4827        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4828                                                 OpLoc);
4829        UsualUnaryConversions(FnExpr);
4830
4831        ExprOwningPtr<CXXOperatorCallExpr>
4832          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4833                                                          Args, 2, ResultTy,
4834                                                          OpLoc));
4835
4836        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4837                                FnDecl))
4838          return ExprError();
4839
4840        return MaybeBindToTemporary(TheCall.release());
4841      } else {
4842        // We matched a built-in operator. Convert the arguments, then
4843        // break out so that we will build the appropriate built-in
4844        // operator node.
4845        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4846                                      Best->Conversions[0], "passing") ||
4847            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4848                                      Best->Conversions[1], "passing"))
4849          return ExprError();
4850
4851        break;
4852      }
4853    }
4854
4855    case OR_No_Viable_Function: {
4856      // C++ [over.match.oper]p9:
4857      //   If the operator is the operator , [...] and there are no
4858      //   viable functions, then the operator is assumed to be the
4859      //   built-in operator and interpreted according to clause 5.
4860      if (Opc == BinaryOperator::Comma)
4861        break;
4862
4863      // For class as left operand for assignment or compound assigment operator
4864      // do not fall through to handling in built-in, but report that no overloaded
4865      // assignment operator found
4866      OwningExprResult Result = ExprError();
4867      if (Args[0]->getType()->isRecordType() &&
4868          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4869        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4870             << BinaryOperator::getOpcodeStr(Opc)
4871             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4872      } else {
4873        // No viable function; try to create a built-in operation, which will
4874        // produce an error. Then, show the non-viable candidates.
4875        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4876      }
4877      assert(Result.isInvalid() &&
4878             "C++ binary operator overloading is missing candidates!");
4879      if (Result.isInvalid())
4880        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4881                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4882      return move(Result);
4883    }
4884
4885    case OR_Ambiguous:
4886      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4887          << BinaryOperator::getOpcodeStr(Opc)
4888          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4889      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4890                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4891      return ExprError();
4892
4893    case OR_Deleted:
4894      Diag(OpLoc, diag::err_ovl_deleted_oper)
4895        << Best->Function->isDeleted()
4896        << BinaryOperator::getOpcodeStr(Opc)
4897        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4898      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4899      return ExprError();
4900    }
4901
4902  // We matched a built-in operator; build it.
4903  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4904}
4905
4906/// BuildCallToMemberFunction - Build a call to a member
4907/// function. MemExpr is the expression that refers to the member
4908/// function (and includes the object parameter), Args/NumArgs are the
4909/// arguments to the function call (not including the object
4910/// parameter). The caller needs to validate that the member
4911/// expression refers to a member function or an overloaded member
4912/// function.
4913Sema::ExprResult
4914Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4915                                SourceLocation LParenLoc, Expr **Args,
4916                                unsigned NumArgs, SourceLocation *CommaLocs,
4917                                SourceLocation RParenLoc) {
4918  // Dig out the member expression. This holds both the object
4919  // argument and the member function we're referring to.
4920  MemberExpr *MemExpr = 0;
4921  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4922    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4923  else
4924    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4925  assert(MemExpr && "Building member call without member expression");
4926
4927  // Extract the object argument.
4928  Expr *ObjectArg = MemExpr->getBase();
4929
4930  CXXMethodDecl *Method = 0;
4931  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4932      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4933    // Add overload candidates
4934    OverloadCandidateSet CandidateSet;
4935    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4936
4937    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4938         Func != FuncEnd; ++Func) {
4939      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4940        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4941                           /*SuppressUserConversions=*/false);
4942      else
4943        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4944                                   MemExpr->hasExplicitTemplateArgumentList(),
4945                                   MemExpr->getTemplateArgs(),
4946                                   MemExpr->getNumTemplateArgs(),
4947                                   ObjectArg, Args, NumArgs,
4948                                   CandidateSet,
4949                                   /*SuppressUsedConversions=*/false);
4950    }
4951
4952    OverloadCandidateSet::iterator Best;
4953    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4954    case OR_Success:
4955      Method = cast<CXXMethodDecl>(Best->Function);
4956      break;
4957
4958    case OR_No_Viable_Function:
4959      Diag(MemExpr->getSourceRange().getBegin(),
4960           diag::err_ovl_no_viable_member_function_in_call)
4961        << DeclName << MemExprE->getSourceRange();
4962      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4963      // FIXME: Leaking incoming expressions!
4964      return true;
4965
4966    case OR_Ambiguous:
4967      Diag(MemExpr->getSourceRange().getBegin(),
4968           diag::err_ovl_ambiguous_member_call)
4969        << DeclName << MemExprE->getSourceRange();
4970      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4971      // FIXME: Leaking incoming expressions!
4972      return true;
4973
4974    case OR_Deleted:
4975      Diag(MemExpr->getSourceRange().getBegin(),
4976           diag::err_ovl_deleted_member_call)
4977        << Best->Function->isDeleted()
4978        << DeclName << MemExprE->getSourceRange();
4979      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4980      // FIXME: Leaking incoming expressions!
4981      return true;
4982    }
4983
4984    FixOverloadedFunctionReference(MemExpr, Method);
4985  } else {
4986    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4987  }
4988
4989  assert(Method && "Member call to something that isn't a method?");
4990  ExprOwningPtr<CXXMemberCallExpr>
4991    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4992                                                  NumArgs,
4993                                  Method->getResultType().getNonReferenceType(),
4994                                  RParenLoc));
4995
4996  // Check for a valid return type.
4997  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
4998                          TheCall.get(), Method))
4999    return true;
5000
5001  // Convert the object argument (for a non-static member function call).
5002  if (!Method->isStatic() &&
5003      PerformObjectArgumentInitialization(ObjectArg, Method))
5004    return true;
5005  MemExpr->setBase(ObjectArg);
5006
5007  // Convert the rest of the arguments
5008  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5009  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5010                              RParenLoc))
5011    return true;
5012
5013  if (CheckFunctionCall(Method, TheCall.get()))
5014    return true;
5015
5016  return MaybeBindToTemporary(TheCall.release()).release();
5017}
5018
5019/// BuildCallToObjectOfClassType - Build a call to an object of class
5020/// type (C++ [over.call.object]), which can end up invoking an
5021/// overloaded function call operator (@c operator()) or performing a
5022/// user-defined conversion on the object argument.
5023Sema::ExprResult
5024Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5025                                   SourceLocation LParenLoc,
5026                                   Expr **Args, unsigned NumArgs,
5027                                   SourceLocation *CommaLocs,
5028                                   SourceLocation RParenLoc) {
5029  assert(Object->getType()->isRecordType() && "Requires object type argument");
5030  const RecordType *Record = Object->getType()->getAs<RecordType>();
5031
5032  // C++ [over.call.object]p1:
5033  //  If the primary-expression E in the function call syntax
5034  //  evaluates to a class object of type "cv T", then the set of
5035  //  candidate functions includes at least the function call
5036  //  operators of T. The function call operators of T are obtained by
5037  //  ordinary lookup of the name operator() in the context of
5038  //  (E).operator().
5039  OverloadCandidateSet CandidateSet;
5040  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5041  DeclContext::lookup_const_iterator Oper, OperEnd;
5042  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
5043       Oper != OperEnd; ++Oper)
5044    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
5045                       CandidateSet, /*SuppressUserConversions=*/false);
5046
5047  // C++ [over.call.object]p2:
5048  //   In addition, for each conversion function declared in T of the
5049  //   form
5050  //
5051  //        operator conversion-type-id () cv-qualifier;
5052  //
5053  //   where cv-qualifier is the same cv-qualification as, or a
5054  //   greater cv-qualification than, cv, and where conversion-type-id
5055  //   denotes the type "pointer to function of (P1,...,Pn) returning
5056  //   R", or the type "reference to pointer to function of
5057  //   (P1,...,Pn) returning R", or the type "reference to function
5058  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5059  //   is also considered as a candidate function. Similarly,
5060  //   surrogate call functions are added to the set of candidate
5061  //   functions for each conversion function declared in an
5062  //   accessible base class provided the function is not hidden
5063  //   within T by another intervening declaration.
5064
5065  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
5066    // FIXME: Look in base classes for more conversion operators!
5067    OverloadedFunctionDecl *Conversions
5068      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5069    for (OverloadedFunctionDecl::function_iterator
5070           Func = Conversions->function_begin(),
5071           FuncEnd = Conversions->function_end();
5072         Func != FuncEnd; ++Func) {
5073      CXXConversionDecl *Conv;
5074      FunctionTemplateDecl *ConvTemplate;
5075      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
5076
5077      // Skip over templated conversion functions; they aren't
5078      // surrogates.
5079      if (ConvTemplate)
5080        continue;
5081
5082      // Strip the reference type (if any) and then the pointer type (if
5083      // any) to get down to what might be a function type.
5084      QualType ConvType = Conv->getConversionType().getNonReferenceType();
5085      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5086        ConvType = ConvPtrType->getPointeeType();
5087
5088      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5089        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5090    }
5091  }
5092
5093  // Perform overload resolution.
5094  OverloadCandidateSet::iterator Best;
5095  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5096  case OR_Success:
5097    // Overload resolution succeeded; we'll build the appropriate call
5098    // below.
5099    break;
5100
5101  case OR_No_Viable_Function:
5102    Diag(Object->getSourceRange().getBegin(),
5103         diag::err_ovl_no_viable_object_call)
5104      << Object->getType() << Object->getSourceRange();
5105    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5106    break;
5107
5108  case OR_Ambiguous:
5109    Diag(Object->getSourceRange().getBegin(),
5110         diag::err_ovl_ambiguous_object_call)
5111      << Object->getType() << Object->getSourceRange();
5112    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5113    break;
5114
5115  case OR_Deleted:
5116    Diag(Object->getSourceRange().getBegin(),
5117         diag::err_ovl_deleted_object_call)
5118      << Best->Function->isDeleted()
5119      << Object->getType() << Object->getSourceRange();
5120    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5121    break;
5122  }
5123
5124  if (Best == CandidateSet.end()) {
5125    // We had an error; delete all of the subexpressions and return
5126    // the error.
5127    Object->Destroy(Context);
5128    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5129      Args[ArgIdx]->Destroy(Context);
5130    return true;
5131  }
5132
5133  if (Best->Function == 0) {
5134    // Since there is no function declaration, this is one of the
5135    // surrogate candidates. Dig out the conversion function.
5136    CXXConversionDecl *Conv
5137      = cast<CXXConversionDecl>(
5138                         Best->Conversions[0].UserDefined.ConversionFunction);
5139
5140    // We selected one of the surrogate functions that converts the
5141    // object parameter to a function pointer. Perform the conversion
5142    // on the object argument, then let ActOnCallExpr finish the job.
5143
5144    // Create an implicit member expr to refer to the conversion operator.
5145    // and then call it.
5146    CXXMemberCallExpr *CE =
5147    BuildCXXMemberCallExpr(Object, Conv);
5148
5149    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5150                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5151                         CommaLocs, RParenLoc).release();
5152  }
5153
5154  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5155  // that calls this method, using Object for the implicit object
5156  // parameter and passing along the remaining arguments.
5157  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5158  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5159
5160  unsigned NumArgsInProto = Proto->getNumArgs();
5161  unsigned NumArgsToCheck = NumArgs;
5162
5163  // Build the full argument list for the method call (the
5164  // implicit object parameter is placed at the beginning of the
5165  // list).
5166  Expr **MethodArgs;
5167  if (NumArgs < NumArgsInProto) {
5168    NumArgsToCheck = NumArgsInProto;
5169    MethodArgs = new Expr*[NumArgsInProto + 1];
5170  } else {
5171    MethodArgs = new Expr*[NumArgs + 1];
5172  }
5173  MethodArgs[0] = Object;
5174  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5175    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5176
5177  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5178                                          SourceLocation());
5179  UsualUnaryConversions(NewFn);
5180
5181  // Once we've built TheCall, all of the expressions are properly
5182  // owned.
5183  QualType ResultTy = Method->getResultType().getNonReferenceType();
5184  ExprOwningPtr<CXXOperatorCallExpr>
5185    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5186                                                    MethodArgs, NumArgs + 1,
5187                                                    ResultTy, RParenLoc));
5188  delete [] MethodArgs;
5189
5190  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5191                          Method))
5192    return true;
5193
5194  // We may have default arguments. If so, we need to allocate more
5195  // slots in the call for them.
5196  if (NumArgs < NumArgsInProto)
5197    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5198  else if (NumArgs > NumArgsInProto)
5199    NumArgsToCheck = NumArgsInProto;
5200
5201  bool IsError = false;
5202
5203  // Initialize the implicit object parameter.
5204  IsError |= PerformObjectArgumentInitialization(Object, Method);
5205  TheCall->setArg(0, Object);
5206
5207
5208  // Check the argument types.
5209  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5210    Expr *Arg;
5211    if (i < NumArgs) {
5212      Arg = Args[i];
5213
5214      // Pass the argument.
5215      QualType ProtoArgType = Proto->getArgType(i);
5216      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5217    } else {
5218      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
5219    }
5220
5221    TheCall->setArg(i + 1, Arg);
5222  }
5223
5224  // If this is a variadic call, handle args passed through "...".
5225  if (Proto->isVariadic()) {
5226    // Promote the arguments (C99 6.5.2.2p7).
5227    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5228      Expr *Arg = Args[i];
5229      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5230      TheCall->setArg(i + 1, Arg);
5231    }
5232  }
5233
5234  if (IsError) return true;
5235
5236  if (CheckFunctionCall(Method, TheCall.get()))
5237    return true;
5238
5239  return MaybeBindToTemporary(TheCall.release()).release();
5240}
5241
5242/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5243///  (if one exists), where @c Base is an expression of class type and
5244/// @c Member is the name of the member we're trying to find.
5245Sema::OwningExprResult
5246Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5247  Expr *Base = static_cast<Expr *>(BaseIn.get());
5248  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5249
5250  // C++ [over.ref]p1:
5251  //
5252  //   [...] An expression x->m is interpreted as (x.operator->())->m
5253  //   for a class object x of type T if T::operator->() exists and if
5254  //   the operator is selected as the best match function by the
5255  //   overload resolution mechanism (13.3).
5256  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5257  OverloadCandidateSet CandidateSet;
5258  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5259
5260  LookupResult R;
5261  LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName);
5262
5263  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5264       Oper != OperEnd; ++Oper)
5265    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5266                       /*SuppressUserConversions=*/false);
5267
5268  // Perform overload resolution.
5269  OverloadCandidateSet::iterator Best;
5270  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5271  case OR_Success:
5272    // Overload resolution succeeded; we'll build the call below.
5273    break;
5274
5275  case OR_No_Viable_Function:
5276    if (CandidateSet.empty())
5277      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5278        << Base->getType() << Base->getSourceRange();
5279    else
5280      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5281        << "operator->" << Base->getSourceRange();
5282    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5283    return ExprError();
5284
5285  case OR_Ambiguous:
5286    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5287      << "->" << Base->getSourceRange();
5288    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5289    return ExprError();
5290
5291  case OR_Deleted:
5292    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5293      << Best->Function->isDeleted()
5294      << "->" << Base->getSourceRange();
5295    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5296    return ExprError();
5297  }
5298
5299  // Convert the object parameter.
5300  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5301  if (PerformObjectArgumentInitialization(Base, Method))
5302    return ExprError();
5303
5304  // No concerns about early exits now.
5305  BaseIn.release();
5306
5307  // Build the operator call.
5308  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5309                                           SourceLocation());
5310  UsualUnaryConversions(FnExpr);
5311
5312  QualType ResultTy = Method->getResultType().getNonReferenceType();
5313  ExprOwningPtr<CXXOperatorCallExpr>
5314    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5315                                                    &Base, 1, ResultTy, OpLoc));
5316
5317  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5318                          Method))
5319          return ExprError();
5320  return move(TheCall);
5321}
5322
5323/// FixOverloadedFunctionReference - E is an expression that refers to
5324/// a C++ overloaded function (possibly with some parentheses and
5325/// perhaps a '&' around it). We have resolved the overloaded function
5326/// to the function declaration Fn, so patch up the expression E to
5327/// refer (possibly indirectly) to Fn.
5328/// Returns true if the function reference used an explicit address-of operator.
5329bool Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5330  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5331    bool ret = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5332    E->setType(PE->getSubExpr()->getType());
5333    return ret;
5334  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5335    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5336           "Can only take the address of an overloaded function");
5337    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5338      if (Method->isStatic()) {
5339        // Do nothing: static member functions aren't any different
5340        // from non-member functions.
5341      } else if (QualifiedDeclRefExpr *DRE
5342                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
5343        // We have taken the address of a pointer to member
5344        // function. Perform the computation here so that we get the
5345        // appropriate pointer to member type.
5346        DRE->setDecl(Fn);
5347        DRE->setType(Fn->getType());
5348        QualType ClassType
5349          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5350        E->setType(Context.getMemberPointerType(Fn->getType(),
5351                                                ClassType.getTypePtr()));
5352        return true;
5353      }
5354    }
5355    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5356    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
5357    return true;
5358  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5359    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5360            isa<FunctionTemplateDecl>(DR->getDecl())) &&
5361           "Expected overloaded function or function template");
5362    DR->setDecl(Fn);
5363    E->setType(Fn->getType());
5364  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5365    MemExpr->setMemberDecl(Fn);
5366    E->setType(Fn->getType());
5367  } else {
5368    assert(false && "Invalid reference to overloaded function");
5369  }
5370  return false;
5371}
5372
5373} // end namespace clang
5374