SemaOverload.cpp revision 3201f6beec688ab9fe8750527e28f52d5420e22d
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAsPointerType())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304    // Is the function New an overload of the function Old?
305    QualType OldQType = Context.getCanonicalType(Old->getType());
306    QualType NewQType = Context.getCanonicalType(New->getType());
307
308    // Compare the signatures (C++ 1.3.10) of the two functions to
309    // determine whether they are overloads. If we find any mismatch
310    // in the signature, they are overloads.
311
312    // If either of these functions is a K&R-style function (no
313    // prototype), then we consider them to have matching signatures.
314    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
316      return false;
317
318    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
320
321    // The signature of a function includes the types of its
322    // parameters (C++ 1.3.10), which includes the presence or absence
323    // of the ellipsis; see C++ DR 357).
324    if (OldQType != NewQType &&
325        (OldType->getNumArgs() != NewType->getNumArgs() ||
326         OldType->isVariadic() != NewType->isVariadic() ||
327         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328                     NewType->arg_type_begin())))
329      return true;
330
331    // If the function is a class member, its signature includes the
332    // cv-qualifiers (if any) on the function itself.
333    //
334    // As part of this, also check whether one of the member functions
335    // is static, in which case they are not overloads (C++
336    // 13.1p2). While not part of the definition of the signature,
337    // this check is important to determine whether these functions
338    // can be overloaded.
339    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341    if (OldMethod && NewMethod &&
342        !OldMethod->isStatic() && !NewMethod->isStatic() &&
343        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
344      return true;
345
346    // The signatures match; this is not an overload.
347    return false;
348  } else {
349    // (C++ 13p1):
350    //   Only function declarations can be overloaded; object and type
351    //   declarations cannot be overloaded.
352    return false;
353  }
354}
355
356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
360///
361///   void f(float f);
362///   void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
381ImplicitConversionSequence
382Sema::TryImplicitConversion(Expr* From, QualType ToType,
383                            bool SuppressUserConversions,
384                            bool AllowExplicit, bool ForceRValue)
385{
386  ImplicitConversionSequence ICS;
387  if (IsStandardConversion(From, ToType, ICS.Standard))
388    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
389  else if (getLangOptions().CPlusPlus &&
390           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
391                                   !SuppressUserConversions, AllowExplicit,
392                                   ForceRValue)) {
393    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
394    // C++ [over.ics.user]p4:
395    //   A conversion of an expression of class type to the same class
396    //   type is given Exact Match rank, and a conversion of an
397    //   expression of class type to a base class of that type is
398    //   given Conversion rank, in spite of the fact that a copy
399    //   constructor (i.e., a user-defined conversion function) is
400    //   called for those cases.
401    if (CXXConstructorDecl *Constructor
402          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
403      QualType FromCanon
404        = Context.getCanonicalType(From->getType().getUnqualifiedType());
405      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
407        // Turn this into a "standard" conversion sequence, so that it
408        // gets ranked with standard conversion sequences.
409        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410        ICS.Standard.setAsIdentityConversion();
411        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
413        ICS.Standard.CopyConstructor = Constructor;
414        if (ToCanon != FromCanon)
415          ICS.Standard.Second = ICK_Derived_To_Base;
416      }
417    }
418
419    // C++ [over.best.ics]p4:
420    //   However, when considering the argument of a user-defined
421    //   conversion function that is a candidate by 13.3.1.3 when
422    //   invoked for the copying of the temporary in the second step
423    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424    //   13.3.1.6 in all cases, only standard conversion sequences and
425    //   ellipsis conversion sequences are allowed.
426    if (SuppressUserConversions &&
427        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
429  } else
430    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
431
432  return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445                           StandardConversionSequence &SCS)
446{
447  QualType FromType = From->getType();
448
449  // Standard conversions (C++ [conv])
450  SCS.setAsIdentityConversion();
451  SCS.Deprecated = false;
452  SCS.IncompatibleObjC = false;
453  SCS.FromTypePtr = FromType.getAsOpaquePtr();
454  SCS.CopyConstructor = 0;
455
456  // There are no standard conversions for class types in C++, so
457  // abort early. When overloading in C, however, we do permit
458  if (FromType->isRecordType() || ToType->isRecordType()) {
459    if (getLangOptions().CPlusPlus)
460      return false;
461
462    // When we're overloading in C, we allow, as standard conversions,
463  }
464
465  // The first conversion can be an lvalue-to-rvalue conversion,
466  // array-to-pointer conversion, or function-to-pointer conversion
467  // (C++ 4p1).
468
469  // Lvalue-to-rvalue conversion (C++ 4.1):
470  //   An lvalue (3.10) of a non-function, non-array type T can be
471  //   converted to an rvalue.
472  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473  if (argIsLvalue == Expr::LV_Valid &&
474      !FromType->isFunctionType() && !FromType->isArrayType() &&
475      Context.getCanonicalType(FromType) != Context.OverloadTy) {
476    SCS.First = ICK_Lvalue_To_Rvalue;
477
478    // If T is a non-class type, the type of the rvalue is the
479    // cv-unqualified version of T. Otherwise, the type of the rvalue
480    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481    // just strip the qualifiers because they don't matter.
482
483    // FIXME: Doesn't see through to qualifiers behind a typedef!
484    FromType = FromType.getUnqualifiedType();
485  }
486  // Array-to-pointer conversion (C++ 4.2)
487  else if (FromType->isArrayType()) {
488    SCS.First = ICK_Array_To_Pointer;
489
490    // An lvalue or rvalue of type "array of N T" or "array of unknown
491    // bound of T" can be converted to an rvalue of type "pointer to
492    // T" (C++ 4.2p1).
493    FromType = Context.getArrayDecayedType(FromType);
494
495    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496      // This conversion is deprecated. (C++ D.4).
497      SCS.Deprecated = true;
498
499      // For the purpose of ranking in overload resolution
500      // (13.3.3.1.1), this conversion is considered an
501      // array-to-pointer conversion followed by a qualification
502      // conversion (4.4). (C++ 4.2p2)
503      SCS.Second = ICK_Identity;
504      SCS.Third = ICK_Qualification;
505      SCS.ToTypePtr = ToType.getAsOpaquePtr();
506      return true;
507    }
508  }
509  // Function-to-pointer conversion (C++ 4.3).
510  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
511    SCS.First = ICK_Function_To_Pointer;
512
513    // An lvalue of function type T can be converted to an rvalue of
514    // type "pointer to T." The result is a pointer to the
515    // function. (C++ 4.3p1).
516    FromType = Context.getPointerType(FromType);
517  }
518  // Address of overloaded function (C++ [over.over]).
519  else if (FunctionDecl *Fn
520             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521    SCS.First = ICK_Function_To_Pointer;
522
523    // We were able to resolve the address of the overloaded function,
524    // so we can convert to the type of that function.
525    FromType = Fn->getType();
526    if (ToType->isLValueReferenceType())
527      FromType = Context.getLValueReferenceType(FromType);
528    else if (ToType->isRValueReferenceType())
529      FromType = Context.getRValueReferenceType(FromType);
530    else if (ToType->isMemberPointerType()) {
531      // Resolve address only succeeds if both sides are member pointers,
532      // but it doesn't have to be the same class. See DR 247.
533      // Note that this means that the type of &Derived::fn can be
534      // Ret (Base::*)(Args) if the fn overload actually found is from the
535      // base class, even if it was brought into the derived class via a
536      // using declaration. The standard isn't clear on this issue at all.
537      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538      FromType = Context.getMemberPointerType(FromType,
539                    Context.getTypeDeclType(M->getParent()).getTypePtr());
540    } else
541      FromType = Context.getPointerType(FromType);
542  }
543  // We don't require any conversions for the first step.
544  else {
545    SCS.First = ICK_Identity;
546  }
547
548  // The second conversion can be an integral promotion, floating
549  // point promotion, integral conversion, floating point conversion,
550  // floating-integral conversion, pointer conversion,
551  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
552  // For overloading in C, this can also be a "compatible-type"
553  // conversion.
554  bool IncompatibleObjC = false;
555  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
556    // The unqualified versions of the types are the same: there's no
557    // conversion to do.
558    SCS.Second = ICK_Identity;
559  }
560  // Integral promotion (C++ 4.5).
561  else if (IsIntegralPromotion(From, FromType, ToType)) {
562    SCS.Second = ICK_Integral_Promotion;
563    FromType = ToType.getUnqualifiedType();
564  }
565  // Floating point promotion (C++ 4.6).
566  else if (IsFloatingPointPromotion(FromType, ToType)) {
567    SCS.Second = ICK_Floating_Promotion;
568    FromType = ToType.getUnqualifiedType();
569  }
570  // Complex promotion (Clang extension)
571  else if (IsComplexPromotion(FromType, ToType)) {
572    SCS.Second = ICK_Complex_Promotion;
573    FromType = ToType.getUnqualifiedType();
574  }
575  // Integral conversions (C++ 4.7).
576  // FIXME: isIntegralType shouldn't be true for enums in C++.
577  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
578           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
579    SCS.Second = ICK_Integral_Conversion;
580    FromType = ToType.getUnqualifiedType();
581  }
582  // Floating point conversions (C++ 4.8).
583  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
584    SCS.Second = ICK_Floating_Conversion;
585    FromType = ToType.getUnqualifiedType();
586  }
587  // Complex conversions (C99 6.3.1.6)
588  else if (FromType->isComplexType() && ToType->isComplexType()) {
589    SCS.Second = ICK_Complex_Conversion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating-integral conversions (C++ 4.9).
593  // FIXME: isIntegralType shouldn't be true for enums in C++.
594  else if ((FromType->isFloatingType() &&
595            ToType->isIntegralType() && !ToType->isBooleanType() &&
596                                        !ToType->isEnumeralType()) ||
597           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598            ToType->isFloatingType())) {
599    SCS.Second = ICK_Floating_Integral;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Complex-real conversions (C99 6.3.1.7)
603  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604           (ToType->isComplexType() && FromType->isArithmeticType())) {
605    SCS.Second = ICK_Complex_Real;
606    FromType = ToType.getUnqualifiedType();
607  }
608  // Pointer conversions (C++ 4.10).
609  else if (IsPointerConversion(From, FromType, ToType, FromType,
610                               IncompatibleObjC)) {
611    SCS.Second = ICK_Pointer_Conversion;
612    SCS.IncompatibleObjC = IncompatibleObjC;
613  }
614  // Pointer to member conversions (4.11).
615  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616    SCS.Second = ICK_Pointer_Member;
617  }
618  // Boolean conversions (C++ 4.12).
619  else if (ToType->isBooleanType() &&
620           (FromType->isArithmeticType() ||
621            FromType->isEnumeralType() ||
622            FromType->isPointerType() ||
623            FromType->isBlockPointerType() ||
624            FromType->isMemberPointerType())) {
625    SCS.Second = ICK_Boolean_Conversion;
626    FromType = Context.BoolTy;
627  }
628  // Compatible conversions (Clang extension for C function overloading)
629  else if (!getLangOptions().CPlusPlus &&
630           Context.typesAreCompatible(ToType, FromType)) {
631    SCS.Second = ICK_Compatible_Conversion;
632  } else {
633    // No second conversion required.
634    SCS.Second = ICK_Identity;
635  }
636
637  QualType CanonFrom;
638  QualType CanonTo;
639  // The third conversion can be a qualification conversion (C++ 4p1).
640  if (IsQualificationConversion(FromType, ToType)) {
641    SCS.Third = ICK_Qualification;
642    FromType = ToType;
643    CanonFrom = Context.getCanonicalType(FromType);
644    CanonTo = Context.getCanonicalType(ToType);
645  } else {
646    // No conversion required
647    SCS.Third = ICK_Identity;
648
649    // C++ [over.best.ics]p6:
650    //   [...] Any difference in top-level cv-qualification is
651    //   subsumed by the initialization itself and does not constitute
652    //   a conversion. [...]
653    CanonFrom = Context.getCanonicalType(FromType);
654    CanonTo = Context.getCanonicalType(ToType);
655    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
656        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
657      FromType = ToType;
658      CanonFrom = CanonTo;
659    }
660  }
661
662  // If we have not converted the argument type to the parameter type,
663  // this is a bad conversion sequence.
664  if (CanonFrom != CanonTo)
665    return false;
666
667  SCS.ToTypePtr = FromType.getAsOpaquePtr();
668  return true;
669}
670
671/// IsIntegralPromotion - Determines whether the conversion from the
672/// expression From (whose potentially-adjusted type is FromType) to
673/// ToType is an integral promotion (C++ 4.5). If so, returns true and
674/// sets PromotedType to the promoted type.
675bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
676{
677  const BuiltinType *To = ToType->getAsBuiltinType();
678  // All integers are built-in.
679  if (!To) {
680    return false;
681  }
682
683  // An rvalue of type char, signed char, unsigned char, short int, or
684  // unsigned short int can be converted to an rvalue of type int if
685  // int can represent all the values of the source type; otherwise,
686  // the source rvalue can be converted to an rvalue of type unsigned
687  // int (C++ 4.5p1).
688  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
689    if (// We can promote any signed, promotable integer type to an int
690        (FromType->isSignedIntegerType() ||
691         // We can promote any unsigned integer type whose size is
692         // less than int to an int.
693         (!FromType->isSignedIntegerType() &&
694          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
695      return To->getKind() == BuiltinType::Int;
696    }
697
698    return To->getKind() == BuiltinType::UInt;
699  }
700
701  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
702  // can be converted to an rvalue of the first of the following types
703  // that can represent all the values of its underlying type: int,
704  // unsigned int, long, or unsigned long (C++ 4.5p2).
705  if ((FromType->isEnumeralType() || FromType->isWideCharType())
706      && ToType->isIntegerType()) {
707    // Determine whether the type we're converting from is signed or
708    // unsigned.
709    bool FromIsSigned;
710    uint64_t FromSize = Context.getTypeSize(FromType);
711    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
712      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
713      FromIsSigned = UnderlyingType->isSignedIntegerType();
714    } else {
715      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
716      FromIsSigned = true;
717    }
718
719    // The types we'll try to promote to, in the appropriate
720    // order. Try each of these types.
721    QualType PromoteTypes[6] = {
722      Context.IntTy, Context.UnsignedIntTy,
723      Context.LongTy, Context.UnsignedLongTy ,
724      Context.LongLongTy, Context.UnsignedLongLongTy
725    };
726    for (int Idx = 0; Idx < 6; ++Idx) {
727      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
728      if (FromSize < ToSize ||
729          (FromSize == ToSize &&
730           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
731        // We found the type that we can promote to. If this is the
732        // type we wanted, we have a promotion. Otherwise, no
733        // promotion.
734        return Context.getCanonicalType(ToType).getUnqualifiedType()
735          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
736      }
737    }
738  }
739
740  // An rvalue for an integral bit-field (9.6) can be converted to an
741  // rvalue of type int if int can represent all the values of the
742  // bit-field; otherwise, it can be converted to unsigned int if
743  // unsigned int can represent all the values of the bit-field. If
744  // the bit-field is larger yet, no integral promotion applies to
745  // it. If the bit-field has an enumerated type, it is treated as any
746  // other value of that type for promotion purposes (C++ 4.5p3).
747  // FIXME: We should delay checking of bit-fields until we actually
748  // perform the conversion.
749  if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
750    using llvm::APSInt;
751    if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
752      APSInt BitWidth;
753      if (MemberDecl->isBitField() &&
754          FromType->isIntegralType() && !FromType->isEnumeralType() &&
755          From->isIntegerConstantExpr(BitWidth, Context)) {
756        APSInt ToSize(Context.getTypeSize(ToType));
757
758        // Are we promoting to an int from a bitfield that fits in an int?
759        if (BitWidth < ToSize ||
760            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
761          return To->getKind() == BuiltinType::Int;
762        }
763
764        // Are we promoting to an unsigned int from an unsigned bitfield
765        // that fits into an unsigned int?
766        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
767          return To->getKind() == BuiltinType::UInt;
768        }
769
770        return false;
771      }
772    }
773  }
774
775  // An rvalue of type bool can be converted to an rvalue of type int,
776  // with false becoming zero and true becoming one (C++ 4.5p4).
777  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
778    return true;
779  }
780
781  return false;
782}
783
784/// IsFloatingPointPromotion - Determines whether the conversion from
785/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
786/// returns true and sets PromotedType to the promoted type.
787bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
788{
789  /// An rvalue of type float can be converted to an rvalue of type
790  /// double. (C++ 4.6p1).
791  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
792    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
793      if (FromBuiltin->getKind() == BuiltinType::Float &&
794          ToBuiltin->getKind() == BuiltinType::Double)
795        return true;
796
797      // C99 6.3.1.5p1:
798      //   When a float is promoted to double or long double, or a
799      //   double is promoted to long double [...].
800      if (!getLangOptions().CPlusPlus &&
801          (FromBuiltin->getKind() == BuiltinType::Float ||
802           FromBuiltin->getKind() == BuiltinType::Double) &&
803          (ToBuiltin->getKind() == BuiltinType::LongDouble))
804        return true;
805    }
806
807  return false;
808}
809
810/// \brief Determine if a conversion is a complex promotion.
811///
812/// A complex promotion is defined as a complex -> complex conversion
813/// where the conversion between the underlying real types is a
814/// floating-point or integral promotion.
815bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
816  const ComplexType *FromComplex = FromType->getAsComplexType();
817  if (!FromComplex)
818    return false;
819
820  const ComplexType *ToComplex = ToType->getAsComplexType();
821  if (!ToComplex)
822    return false;
823
824  return IsFloatingPointPromotion(FromComplex->getElementType(),
825                                  ToComplex->getElementType()) ||
826    IsIntegralPromotion(0, FromComplex->getElementType(),
827                        ToComplex->getElementType());
828}
829
830/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
831/// the pointer type FromPtr to a pointer to type ToPointee, with the
832/// same type qualifiers as FromPtr has on its pointee type. ToType,
833/// if non-empty, will be a pointer to ToType that may or may not have
834/// the right set of qualifiers on its pointee.
835static QualType
836BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
837                                   QualType ToPointee, QualType ToType,
838                                   ASTContext &Context) {
839  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
840  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
841  unsigned Quals = CanonFromPointee.getCVRQualifiers();
842
843  // Exact qualifier match -> return the pointer type we're converting to.
844  if (CanonToPointee.getCVRQualifiers() == Quals) {
845    // ToType is exactly what we need. Return it.
846    if (ToType.getTypePtr())
847      return ToType;
848
849    // Build a pointer to ToPointee. It has the right qualifiers
850    // already.
851    return Context.getPointerType(ToPointee);
852  }
853
854  // Just build a canonical type that has the right qualifiers.
855  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
856}
857
858/// IsPointerConversion - Determines whether the conversion of the
859/// expression From, which has the (possibly adjusted) type FromType,
860/// can be converted to the type ToType via a pointer conversion (C++
861/// 4.10). If so, returns true and places the converted type (that
862/// might differ from ToType in its cv-qualifiers at some level) into
863/// ConvertedType.
864///
865/// This routine also supports conversions to and from block pointers
866/// and conversions with Objective-C's 'id', 'id<protocols...>', and
867/// pointers to interfaces. FIXME: Once we've determined the
868/// appropriate overloading rules for Objective-C, we may want to
869/// split the Objective-C checks into a different routine; however,
870/// GCC seems to consider all of these conversions to be pointer
871/// conversions, so for now they live here. IncompatibleObjC will be
872/// set if the conversion is an allowed Objective-C conversion that
873/// should result in a warning.
874bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
875                               QualType& ConvertedType,
876                               bool &IncompatibleObjC)
877{
878  IncompatibleObjC = false;
879  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
880    return true;
881
882  // Conversion from a null pointer constant to any Objective-C pointer type.
883  if (Context.isObjCObjectPointerType(ToType) &&
884      From->isNullPointerConstant(Context)) {
885    ConvertedType = ToType;
886    return true;
887  }
888
889  // Blocks: Block pointers can be converted to void*.
890  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
891      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
892    ConvertedType = ToType;
893    return true;
894  }
895  // Blocks: A null pointer constant can be converted to a block
896  // pointer type.
897  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
898    ConvertedType = ToType;
899    return true;
900  }
901
902  const PointerType* ToTypePtr = ToType->getAsPointerType();
903  if (!ToTypePtr)
904    return false;
905
906  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
907  if (From->isNullPointerConstant(Context)) {
908    ConvertedType = ToType;
909    return true;
910  }
911
912  // Beyond this point, both types need to be pointers.
913  const PointerType *FromTypePtr = FromType->getAsPointerType();
914  if (!FromTypePtr)
915    return false;
916
917  QualType FromPointeeType = FromTypePtr->getPointeeType();
918  QualType ToPointeeType = ToTypePtr->getPointeeType();
919
920  // An rvalue of type "pointer to cv T," where T is an object type,
921  // can be converted to an rvalue of type "pointer to cv void" (C++
922  // 4.10p2).
923  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
924    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
925                                                       ToPointeeType,
926                                                       ToType, Context);
927    return true;
928  }
929
930  // When we're overloading in C, we allow a special kind of pointer
931  // conversion for compatible-but-not-identical pointee types.
932  if (!getLangOptions().CPlusPlus &&
933      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
934    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
935                                                       ToPointeeType,
936                                                       ToType, Context);
937    return true;
938  }
939
940  // C++ [conv.ptr]p3:
941  //
942  //   An rvalue of type "pointer to cv D," where D is a class type,
943  //   can be converted to an rvalue of type "pointer to cv B," where
944  //   B is a base class (clause 10) of D. If B is an inaccessible
945  //   (clause 11) or ambiguous (10.2) base class of D, a program that
946  //   necessitates this conversion is ill-formed. The result of the
947  //   conversion is a pointer to the base class sub-object of the
948  //   derived class object. The null pointer value is converted to
949  //   the null pointer value of the destination type.
950  //
951  // Note that we do not check for ambiguity or inaccessibility
952  // here. That is handled by CheckPointerConversion.
953  if (getLangOptions().CPlusPlus &&
954      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
955      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
956    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
957                                                       ToPointeeType,
958                                                       ToType, Context);
959    return true;
960  }
961
962  return false;
963}
964
965/// isObjCPointerConversion - Determines whether this is an
966/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
967/// with the same arguments and return values.
968bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
969                                   QualType& ConvertedType,
970                                   bool &IncompatibleObjC) {
971  if (!getLangOptions().ObjC1)
972    return false;
973
974  // Conversions with Objective-C's id<...>.
975  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
976      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
977    ConvertedType = ToType;
978    return true;
979  }
980
981  // Beyond this point, both types need to be pointers or block pointers.
982  QualType ToPointeeType;
983  const PointerType* ToTypePtr = ToType->getAsPointerType();
984  if (ToTypePtr)
985    ToPointeeType = ToTypePtr->getPointeeType();
986  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
987    ToPointeeType = ToBlockPtr->getPointeeType();
988  else
989    return false;
990
991  QualType FromPointeeType;
992  const PointerType *FromTypePtr = FromType->getAsPointerType();
993  if (FromTypePtr)
994    FromPointeeType = FromTypePtr->getPointeeType();
995  else if (const BlockPointerType *FromBlockPtr
996             = FromType->getAsBlockPointerType())
997    FromPointeeType = FromBlockPtr->getPointeeType();
998  else
999    return false;
1000
1001  // Objective C++: We're able to convert from a pointer to an
1002  // interface to a pointer to a different interface.
1003  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1004  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1005  if (FromIface && ToIface &&
1006      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
1007    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1008                                                       ToPointeeType,
1009                                                       ToType, Context);
1010    return true;
1011  }
1012
1013  if (FromIface && ToIface &&
1014      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1015    // Okay: this is some kind of implicit downcast of Objective-C
1016    // interfaces, which is permitted. However, we're going to
1017    // complain about it.
1018    IncompatibleObjC = true;
1019    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1020                                                       ToPointeeType,
1021                                                       ToType, Context);
1022    return true;
1023  }
1024
1025  // Objective C++: We're able to convert between "id" and a pointer
1026  // to any interface (in both directions).
1027  if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1028      || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
1029    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1030                                                       ToPointeeType,
1031                                                       ToType, Context);
1032    return true;
1033  }
1034
1035  // Objective C++: Allow conversions between the Objective-C "id" and
1036  // "Class", in either direction.
1037  if ((Context.isObjCIdStructType(FromPointeeType) &&
1038       Context.isObjCClassStructType(ToPointeeType)) ||
1039      (Context.isObjCClassStructType(FromPointeeType) &&
1040       Context.isObjCIdStructType(ToPointeeType))) {
1041    ConvertedType = ToType;
1042    return true;
1043  }
1044
1045  // If we have pointers to pointers, recursively check whether this
1046  // is an Objective-C conversion.
1047  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049                              IncompatibleObjC)) {
1050    // We always complain about this conversion.
1051    IncompatibleObjC = true;
1052    ConvertedType = ToType;
1053    return true;
1054  }
1055
1056  // If we have pointers to functions or blocks, check whether the only
1057  // differences in the argument and result types are in Objective-C
1058  // pointer conversions. If so, we permit the conversion (but
1059  // complain about it).
1060  const FunctionProtoType *FromFunctionType
1061    = FromPointeeType->getAsFunctionProtoType();
1062  const FunctionProtoType *ToFunctionType
1063    = ToPointeeType->getAsFunctionProtoType();
1064  if (FromFunctionType && ToFunctionType) {
1065    // If the function types are exactly the same, this isn't an
1066    // Objective-C pointer conversion.
1067    if (Context.getCanonicalType(FromPointeeType)
1068          == Context.getCanonicalType(ToPointeeType))
1069      return false;
1070
1071    // Perform the quick checks that will tell us whether these
1072    // function types are obviously different.
1073    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1074        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1075        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1076      return false;
1077
1078    bool HasObjCConversion = false;
1079    if (Context.getCanonicalType(FromFunctionType->getResultType())
1080          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1081      // Okay, the types match exactly. Nothing to do.
1082    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1083                                       ToFunctionType->getResultType(),
1084                                       ConvertedType, IncompatibleObjC)) {
1085      // Okay, we have an Objective-C pointer conversion.
1086      HasObjCConversion = true;
1087    } else {
1088      // Function types are too different. Abort.
1089      return false;
1090    }
1091
1092    // Check argument types.
1093    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1094         ArgIdx != NumArgs; ++ArgIdx) {
1095      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1096      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1097      if (Context.getCanonicalType(FromArgType)
1098            == Context.getCanonicalType(ToArgType)) {
1099        // Okay, the types match exactly. Nothing to do.
1100      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1101                                         ConvertedType, IncompatibleObjC)) {
1102        // Okay, we have an Objective-C pointer conversion.
1103        HasObjCConversion = true;
1104      } else {
1105        // Argument types are too different. Abort.
1106        return false;
1107      }
1108    }
1109
1110    if (HasObjCConversion) {
1111      // We had an Objective-C conversion. Allow this pointer
1112      // conversion, but complain about it.
1113      ConvertedType = ToType;
1114      IncompatibleObjC = true;
1115      return true;
1116    }
1117  }
1118
1119  return false;
1120}
1121
1122/// CheckPointerConversion - Check the pointer conversion from the
1123/// expression From to the type ToType. This routine checks for
1124/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1125/// conversions for which IsPointerConversion has already returned
1126/// true. It returns true and produces a diagnostic if there was an
1127/// error, or returns false otherwise.
1128bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1129  QualType FromType = From->getType();
1130
1131  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1132    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1133      QualType FromPointeeType = FromPtrType->getPointeeType(),
1134               ToPointeeType   = ToPtrType->getPointeeType();
1135
1136      // Objective-C++ conversions are always okay.
1137      // FIXME: We should have a different class of conversions for
1138      // the Objective-C++ implicit conversions.
1139      if (Context.isObjCIdStructType(FromPointeeType) ||
1140          Context.isObjCIdStructType(ToPointeeType) ||
1141          Context.isObjCClassStructType(FromPointeeType) ||
1142          Context.isObjCClassStructType(ToPointeeType))
1143        return false;
1144
1145      if (FromPointeeType->isRecordType() &&
1146          ToPointeeType->isRecordType()) {
1147        // We must have a derived-to-base conversion. Check an
1148        // ambiguous or inaccessible conversion.
1149        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1150                                            From->getExprLoc(),
1151                                            From->getSourceRange());
1152      }
1153    }
1154
1155  return false;
1156}
1157
1158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164                                     QualType ToType, QualType &ConvertedType)
1165{
1166  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1167  if (!ToTypePtr)
1168    return false;
1169
1170  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171  if (From->isNullPointerConstant(Context)) {
1172    ConvertedType = ToType;
1173    return true;
1174  }
1175
1176  // Otherwise, both types have to be member pointers.
1177  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1178  if (!FromTypePtr)
1179    return false;
1180
1181  // A pointer to member of B can be converted to a pointer to member of D,
1182  // where D is derived from B (C++ 4.11p2).
1183  QualType FromClass(FromTypePtr->getClass(), 0);
1184  QualType ToClass(ToTypePtr->getClass(), 0);
1185  // FIXME: What happens when these are dependent? Is this function even called?
1186
1187  if (IsDerivedFrom(ToClass, FromClass)) {
1188    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189                                                 ToClass.getTypePtr());
1190    return true;
1191  }
1192
1193  return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203  QualType FromType = From->getType();
1204  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1205  if (!FromPtrType)
1206    return false;
1207
1208  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1209  assert(ToPtrType && "No member pointer cast has a target type "
1210                      "that is not a member pointer.");
1211
1212  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1214
1215  // FIXME: What about dependent types?
1216  assert(FromClass->isRecordType() && "Pointer into non-class.");
1217  assert(ToClass->isRecordType() && "Pointer into non-class.");
1218
1219  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220                  /*DetectVirtual=*/true);
1221  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222  assert(DerivationOkay &&
1223         "Should not have been called if derivation isn't OK.");
1224  (void)DerivationOkay;
1225
1226  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227                                  getUnqualifiedType())) {
1228    // Derivation is ambiguous. Redo the check to find the exact paths.
1229    Paths.clear();
1230    Paths.setRecordingPaths(true);
1231    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233    (void)StillOkay;
1234
1235    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238    return true;
1239  }
1240
1241  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1242    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243      << FromClass << ToClass << QualType(VBase, 0)
1244      << From->getSourceRange();
1245    return true;
1246  }
1247
1248  return false;
1249}
1250
1251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257  FromType = Context.getCanonicalType(FromType);
1258  ToType = Context.getCanonicalType(ToType);
1259
1260  // If FromType and ToType are the same type, this is not a
1261  // qualification conversion.
1262  if (FromType == ToType)
1263    return false;
1264
1265  // (C++ 4.4p4):
1266  //   A conversion can add cv-qualifiers at levels other than the first
1267  //   in multi-level pointers, subject to the following rules: [...]
1268  bool PreviousToQualsIncludeConst = true;
1269  bool UnwrappedAnyPointer = false;
1270  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1271    // Within each iteration of the loop, we check the qualifiers to
1272    // determine if this still looks like a qualification
1273    // conversion. Then, if all is well, we unwrap one more level of
1274    // pointers or pointers-to-members and do it all again
1275    // until there are no more pointers or pointers-to-members left to
1276    // unwrap.
1277    UnwrappedAnyPointer = true;
1278
1279    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1280    //      2,j, and similarly for volatile.
1281    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1282      return false;
1283
1284    //   -- if the cv 1,j and cv 2,j are different, then const is in
1285    //      every cv for 0 < k < j.
1286    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1287        && !PreviousToQualsIncludeConst)
1288      return false;
1289
1290    // Keep track of whether all prior cv-qualifiers in the "to" type
1291    // include const.
1292    PreviousToQualsIncludeConst
1293      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1294  }
1295
1296  // We are left with FromType and ToType being the pointee types
1297  // after unwrapping the original FromType and ToType the same number
1298  // of types. If we unwrapped any pointers, and if FromType and
1299  // ToType have the same unqualified type (since we checked
1300  // qualifiers above), then this is a qualification conversion.
1301  return UnwrappedAnyPointer &&
1302    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
1305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit  true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
1319///
1320/// \param ForceRValue  true if the expression should be treated as an rvalue
1321/// for overload resolution.
1322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1323                                   UserDefinedConversionSequence& User,
1324                                   bool AllowConversionFunctions,
1325                                   bool AllowExplicit, bool ForceRValue)
1326{
1327  OverloadCandidateSet CandidateSet;
1328  if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1329    if (CXXRecordDecl *ToRecordDecl
1330          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331      // C++ [over.match.ctor]p1:
1332      //   When objects of class type are direct-initialized (8.5), or
1333      //   copy-initialized from an expression of the same or a
1334      //   derived class type (8.5), overload resolution selects the
1335      //   constructor. [...] For copy-initialization, the candidate
1336      //   functions are all the converting constructors (12.3.1) of
1337      //   that class. The argument list is the expression-list within
1338      //   the parentheses of the initializer.
1339      DeclarationName ConstructorName
1340        = Context.DeclarationNames.getCXXConstructorName(
1341                          Context.getCanonicalType(ToType).getUnqualifiedType());
1342      DeclContext::lookup_iterator Con, ConEnd;
1343      for (llvm::tie(Con, ConEnd)
1344             = ToRecordDecl->lookup(Context, ConstructorName);
1345           Con != ConEnd; ++Con) {
1346        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1347        if (Constructor->isConvertingConstructor())
1348          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1349                               /*SuppressUserConversions=*/true, ForceRValue);
1350      }
1351    }
1352  }
1353
1354  if (!AllowConversionFunctions) {
1355    // Don't allow any conversion functions to enter the overload set.
1356  } else if (const RecordType *FromRecordType
1357               = From->getType()->getAsRecordType()) {
1358    if (CXXRecordDecl *FromRecordDecl
1359          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1360      // Add all of the conversion functions as candidates.
1361      // FIXME: Look for conversions in base classes!
1362      OverloadedFunctionDecl *Conversions
1363        = FromRecordDecl->getConversionFunctions();
1364      for (OverloadedFunctionDecl::function_iterator Func
1365             = Conversions->function_begin();
1366           Func != Conversions->function_end(); ++Func) {
1367        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1368        if (AllowExplicit || !Conv->isExplicit())
1369          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1370      }
1371    }
1372  }
1373
1374  OverloadCandidateSet::iterator Best;
1375  switch (BestViableFunction(CandidateSet, Best)) {
1376    case OR_Success:
1377      // Record the standard conversion we used and the conversion function.
1378      if (CXXConstructorDecl *Constructor
1379            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1380        // C++ [over.ics.user]p1:
1381        //   If the user-defined conversion is specified by a
1382        //   constructor (12.3.1), the initial standard conversion
1383        //   sequence converts the source type to the type required by
1384        //   the argument of the constructor.
1385        //
1386        // FIXME: What about ellipsis conversions?
1387        QualType ThisType = Constructor->getThisType(Context);
1388        User.Before = Best->Conversions[0].Standard;
1389        User.ConversionFunction = Constructor;
1390        User.After.setAsIdentityConversion();
1391        User.After.FromTypePtr
1392          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1393        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1394        return true;
1395      } else if (CXXConversionDecl *Conversion
1396                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1397        // C++ [over.ics.user]p1:
1398        //
1399        //   [...] If the user-defined conversion is specified by a
1400        //   conversion function (12.3.2), the initial standard
1401        //   conversion sequence converts the source type to the
1402        //   implicit object parameter of the conversion function.
1403        User.Before = Best->Conversions[0].Standard;
1404        User.ConversionFunction = Conversion;
1405
1406        // C++ [over.ics.user]p2:
1407        //   The second standard conversion sequence converts the
1408        //   result of the user-defined conversion to the target type
1409        //   for the sequence. Since an implicit conversion sequence
1410        //   is an initialization, the special rules for
1411        //   initialization by user-defined conversion apply when
1412        //   selecting the best user-defined conversion for a
1413        //   user-defined conversion sequence (see 13.3.3 and
1414        //   13.3.3.1).
1415        User.After = Best->FinalConversion;
1416        return true;
1417      } else {
1418        assert(false && "Not a constructor or conversion function?");
1419        return false;
1420      }
1421
1422    case OR_No_Viable_Function:
1423    case OR_Deleted:
1424      // No conversion here! We're done.
1425      return false;
1426
1427    case OR_Ambiguous:
1428      // FIXME: See C++ [over.best.ics]p10 for the handling of
1429      // ambiguous conversion sequences.
1430      return false;
1431    }
1432
1433  return false;
1434}
1435
1436/// CompareImplicitConversionSequences - Compare two implicit
1437/// conversion sequences to determine whether one is better than the
1438/// other or if they are indistinguishable (C++ 13.3.3.2).
1439ImplicitConversionSequence::CompareKind
1440Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1441                                         const ImplicitConversionSequence& ICS2)
1442{
1443  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1444  // conversion sequences (as defined in 13.3.3.1)
1445  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1446  //      conversion sequence than a user-defined conversion sequence or
1447  //      an ellipsis conversion sequence, and
1448  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1449  //      conversion sequence than an ellipsis conversion sequence
1450  //      (13.3.3.1.3).
1451  //
1452  if (ICS1.ConversionKind < ICS2.ConversionKind)
1453    return ImplicitConversionSequence::Better;
1454  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1455    return ImplicitConversionSequence::Worse;
1456
1457  // Two implicit conversion sequences of the same form are
1458  // indistinguishable conversion sequences unless one of the
1459  // following rules apply: (C++ 13.3.3.2p3):
1460  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1461    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1462  else if (ICS1.ConversionKind ==
1463             ImplicitConversionSequence::UserDefinedConversion) {
1464    // User-defined conversion sequence U1 is a better conversion
1465    // sequence than another user-defined conversion sequence U2 if
1466    // they contain the same user-defined conversion function or
1467    // constructor and if the second standard conversion sequence of
1468    // U1 is better than the second standard conversion sequence of
1469    // U2 (C++ 13.3.3.2p3).
1470    if (ICS1.UserDefined.ConversionFunction ==
1471          ICS2.UserDefined.ConversionFunction)
1472      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1473                                                ICS2.UserDefined.After);
1474  }
1475
1476  return ImplicitConversionSequence::Indistinguishable;
1477}
1478
1479/// CompareStandardConversionSequences - Compare two standard
1480/// conversion sequences to determine whether one is better than the
1481/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1482ImplicitConversionSequence::CompareKind
1483Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1484                                         const StandardConversionSequence& SCS2)
1485{
1486  // Standard conversion sequence S1 is a better conversion sequence
1487  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1488
1489  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1490  //     sequences in the canonical form defined by 13.3.3.1.1,
1491  //     excluding any Lvalue Transformation; the identity conversion
1492  //     sequence is considered to be a subsequence of any
1493  //     non-identity conversion sequence) or, if not that,
1494  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1495    // Neither is a proper subsequence of the other. Do nothing.
1496    ;
1497  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1498           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1499           (SCS1.Second == ICK_Identity &&
1500            SCS1.Third == ICK_Identity))
1501    // SCS1 is a proper subsequence of SCS2.
1502    return ImplicitConversionSequence::Better;
1503  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1504           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1505           (SCS2.Second == ICK_Identity &&
1506            SCS2.Third == ICK_Identity))
1507    // SCS2 is a proper subsequence of SCS1.
1508    return ImplicitConversionSequence::Worse;
1509
1510  //  -- the rank of S1 is better than the rank of S2 (by the rules
1511  //     defined below), or, if not that,
1512  ImplicitConversionRank Rank1 = SCS1.getRank();
1513  ImplicitConversionRank Rank2 = SCS2.getRank();
1514  if (Rank1 < Rank2)
1515    return ImplicitConversionSequence::Better;
1516  else if (Rank2 < Rank1)
1517    return ImplicitConversionSequence::Worse;
1518
1519  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1520  // are indistinguishable unless one of the following rules
1521  // applies:
1522
1523  //   A conversion that is not a conversion of a pointer, or
1524  //   pointer to member, to bool is better than another conversion
1525  //   that is such a conversion.
1526  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1527    return SCS2.isPointerConversionToBool()
1528             ? ImplicitConversionSequence::Better
1529             : ImplicitConversionSequence::Worse;
1530
1531  // C++ [over.ics.rank]p4b2:
1532  //
1533  //   If class B is derived directly or indirectly from class A,
1534  //   conversion of B* to A* is better than conversion of B* to
1535  //   void*, and conversion of A* to void* is better than conversion
1536  //   of B* to void*.
1537  bool SCS1ConvertsToVoid
1538    = SCS1.isPointerConversionToVoidPointer(Context);
1539  bool SCS2ConvertsToVoid
1540    = SCS2.isPointerConversionToVoidPointer(Context);
1541  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1542    // Exactly one of the conversion sequences is a conversion to
1543    // a void pointer; it's the worse conversion.
1544    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1545                              : ImplicitConversionSequence::Worse;
1546  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1547    // Neither conversion sequence converts to a void pointer; compare
1548    // their derived-to-base conversions.
1549    if (ImplicitConversionSequence::CompareKind DerivedCK
1550          = CompareDerivedToBaseConversions(SCS1, SCS2))
1551      return DerivedCK;
1552  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1553    // Both conversion sequences are conversions to void
1554    // pointers. Compare the source types to determine if there's an
1555    // inheritance relationship in their sources.
1556    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1557    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1558
1559    // Adjust the types we're converting from via the array-to-pointer
1560    // conversion, if we need to.
1561    if (SCS1.First == ICK_Array_To_Pointer)
1562      FromType1 = Context.getArrayDecayedType(FromType1);
1563    if (SCS2.First == ICK_Array_To_Pointer)
1564      FromType2 = Context.getArrayDecayedType(FromType2);
1565
1566    QualType FromPointee1
1567      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1568    QualType FromPointee2
1569      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1570
1571    if (IsDerivedFrom(FromPointee2, FromPointee1))
1572      return ImplicitConversionSequence::Better;
1573    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1574      return ImplicitConversionSequence::Worse;
1575
1576    // Objective-C++: If one interface is more specific than the
1577    // other, it is the better one.
1578    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1579    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1580    if (FromIface1 && FromIface1) {
1581      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1582        return ImplicitConversionSequence::Better;
1583      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1584        return ImplicitConversionSequence::Worse;
1585    }
1586  }
1587
1588  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1589  // bullet 3).
1590  if (ImplicitConversionSequence::CompareKind QualCK
1591        = CompareQualificationConversions(SCS1, SCS2))
1592    return QualCK;
1593
1594  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1595    // C++0x [over.ics.rank]p3b4:
1596    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1597    //      implicit object parameter of a non-static member function declared
1598    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1599    //      rvalue and S2 binds an lvalue reference.
1600    // FIXME: We don't know if we're dealing with the implicit object parameter,
1601    // or if the member function in this case has a ref qualifier.
1602    // (Of course, we don't have ref qualifiers yet.)
1603    if (SCS1.RRefBinding != SCS2.RRefBinding)
1604      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1605                              : ImplicitConversionSequence::Worse;
1606
1607    // C++ [over.ics.rank]p3b4:
1608    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1609    //      which the references refer are the same type except for
1610    //      top-level cv-qualifiers, and the type to which the reference
1611    //      initialized by S2 refers is more cv-qualified than the type
1612    //      to which the reference initialized by S1 refers.
1613    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1614    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1615    T1 = Context.getCanonicalType(T1);
1616    T2 = Context.getCanonicalType(T2);
1617    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1618      if (T2.isMoreQualifiedThan(T1))
1619        return ImplicitConversionSequence::Better;
1620      else if (T1.isMoreQualifiedThan(T2))
1621        return ImplicitConversionSequence::Worse;
1622    }
1623  }
1624
1625  return ImplicitConversionSequence::Indistinguishable;
1626}
1627
1628/// CompareQualificationConversions - Compares two standard conversion
1629/// sequences to determine whether they can be ranked based on their
1630/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1631ImplicitConversionSequence::CompareKind
1632Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1633                                      const StandardConversionSequence& SCS2)
1634{
1635  // C++ 13.3.3.2p3:
1636  //  -- S1 and S2 differ only in their qualification conversion and
1637  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1638  //     cv-qualification signature of type T1 is a proper subset of
1639  //     the cv-qualification signature of type T2, and S1 is not the
1640  //     deprecated string literal array-to-pointer conversion (4.2).
1641  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1642      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1643    return ImplicitConversionSequence::Indistinguishable;
1644
1645  // FIXME: the example in the standard doesn't use a qualification
1646  // conversion (!)
1647  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1648  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1649  T1 = Context.getCanonicalType(T1);
1650  T2 = Context.getCanonicalType(T2);
1651
1652  // If the types are the same, we won't learn anything by unwrapped
1653  // them.
1654  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1655    return ImplicitConversionSequence::Indistinguishable;
1656
1657  ImplicitConversionSequence::CompareKind Result
1658    = ImplicitConversionSequence::Indistinguishable;
1659  while (UnwrapSimilarPointerTypes(T1, T2)) {
1660    // Within each iteration of the loop, we check the qualifiers to
1661    // determine if this still looks like a qualification
1662    // conversion. Then, if all is well, we unwrap one more level of
1663    // pointers or pointers-to-members and do it all again
1664    // until there are no more pointers or pointers-to-members left
1665    // to unwrap. This essentially mimics what
1666    // IsQualificationConversion does, but here we're checking for a
1667    // strict subset of qualifiers.
1668    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1669      // The qualifiers are the same, so this doesn't tell us anything
1670      // about how the sequences rank.
1671      ;
1672    else if (T2.isMoreQualifiedThan(T1)) {
1673      // T1 has fewer qualifiers, so it could be the better sequence.
1674      if (Result == ImplicitConversionSequence::Worse)
1675        // Neither has qualifiers that are a subset of the other's
1676        // qualifiers.
1677        return ImplicitConversionSequence::Indistinguishable;
1678
1679      Result = ImplicitConversionSequence::Better;
1680    } else if (T1.isMoreQualifiedThan(T2)) {
1681      // T2 has fewer qualifiers, so it could be the better sequence.
1682      if (Result == ImplicitConversionSequence::Better)
1683        // Neither has qualifiers that are a subset of the other's
1684        // qualifiers.
1685        return ImplicitConversionSequence::Indistinguishable;
1686
1687      Result = ImplicitConversionSequence::Worse;
1688    } else {
1689      // Qualifiers are disjoint.
1690      return ImplicitConversionSequence::Indistinguishable;
1691    }
1692
1693    // If the types after this point are equivalent, we're done.
1694    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1695      break;
1696  }
1697
1698  // Check that the winning standard conversion sequence isn't using
1699  // the deprecated string literal array to pointer conversion.
1700  switch (Result) {
1701  case ImplicitConversionSequence::Better:
1702    if (SCS1.Deprecated)
1703      Result = ImplicitConversionSequence::Indistinguishable;
1704    break;
1705
1706  case ImplicitConversionSequence::Indistinguishable:
1707    break;
1708
1709  case ImplicitConversionSequence::Worse:
1710    if (SCS2.Deprecated)
1711      Result = ImplicitConversionSequence::Indistinguishable;
1712    break;
1713  }
1714
1715  return Result;
1716}
1717
1718/// CompareDerivedToBaseConversions - Compares two standard conversion
1719/// sequences to determine whether they can be ranked based on their
1720/// various kinds of derived-to-base conversions (C++
1721/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1722/// conversions between Objective-C interface types.
1723ImplicitConversionSequence::CompareKind
1724Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1725                                      const StandardConversionSequence& SCS2) {
1726  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1727  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1728  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1729  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1730
1731  // Adjust the types we're converting from via the array-to-pointer
1732  // conversion, if we need to.
1733  if (SCS1.First == ICK_Array_To_Pointer)
1734    FromType1 = Context.getArrayDecayedType(FromType1);
1735  if (SCS2.First == ICK_Array_To_Pointer)
1736    FromType2 = Context.getArrayDecayedType(FromType2);
1737
1738  // Canonicalize all of the types.
1739  FromType1 = Context.getCanonicalType(FromType1);
1740  ToType1 = Context.getCanonicalType(ToType1);
1741  FromType2 = Context.getCanonicalType(FromType2);
1742  ToType2 = Context.getCanonicalType(ToType2);
1743
1744  // C++ [over.ics.rank]p4b3:
1745  //
1746  //   If class B is derived directly or indirectly from class A and
1747  //   class C is derived directly or indirectly from B,
1748  //
1749  // For Objective-C, we let A, B, and C also be Objective-C
1750  // interfaces.
1751
1752  // Compare based on pointer conversions.
1753  if (SCS1.Second == ICK_Pointer_Conversion &&
1754      SCS2.Second == ICK_Pointer_Conversion &&
1755      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1756      FromType1->isPointerType() && FromType2->isPointerType() &&
1757      ToType1->isPointerType() && ToType2->isPointerType()) {
1758    QualType FromPointee1
1759      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1760    QualType ToPointee1
1761      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1762    QualType FromPointee2
1763      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1764    QualType ToPointee2
1765      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1766
1767    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1768    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1769    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1770    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1771
1772    //   -- conversion of C* to B* is better than conversion of C* to A*,
1773    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1774      if (IsDerivedFrom(ToPointee1, ToPointee2))
1775        return ImplicitConversionSequence::Better;
1776      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1777        return ImplicitConversionSequence::Worse;
1778
1779      if (ToIface1 && ToIface2) {
1780        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1781          return ImplicitConversionSequence::Better;
1782        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1783          return ImplicitConversionSequence::Worse;
1784      }
1785    }
1786
1787    //   -- conversion of B* to A* is better than conversion of C* to A*,
1788    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1789      if (IsDerivedFrom(FromPointee2, FromPointee1))
1790        return ImplicitConversionSequence::Better;
1791      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1792        return ImplicitConversionSequence::Worse;
1793
1794      if (FromIface1 && FromIface2) {
1795        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1796          return ImplicitConversionSequence::Better;
1797        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1798          return ImplicitConversionSequence::Worse;
1799      }
1800    }
1801  }
1802
1803  // Compare based on reference bindings.
1804  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1805      SCS1.Second == ICK_Derived_To_Base) {
1806    //   -- binding of an expression of type C to a reference of type
1807    //      B& is better than binding an expression of type C to a
1808    //      reference of type A&,
1809    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1810        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1811      if (IsDerivedFrom(ToType1, ToType2))
1812        return ImplicitConversionSequence::Better;
1813      else if (IsDerivedFrom(ToType2, ToType1))
1814        return ImplicitConversionSequence::Worse;
1815    }
1816
1817    //   -- binding of an expression of type B to a reference of type
1818    //      A& is better than binding an expression of type C to a
1819    //      reference of type A&,
1820    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1821        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1822      if (IsDerivedFrom(FromType2, FromType1))
1823        return ImplicitConversionSequence::Better;
1824      else if (IsDerivedFrom(FromType1, FromType2))
1825        return ImplicitConversionSequence::Worse;
1826    }
1827  }
1828
1829
1830  // FIXME: conversion of A::* to B::* is better than conversion of
1831  // A::* to C::*,
1832
1833  // FIXME: conversion of B::* to C::* is better than conversion of
1834  // A::* to C::*, and
1835
1836  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1837      SCS1.Second == ICK_Derived_To_Base) {
1838    //   -- conversion of C to B is better than conversion of C to A,
1839    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1840        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1841      if (IsDerivedFrom(ToType1, ToType2))
1842        return ImplicitConversionSequence::Better;
1843      else if (IsDerivedFrom(ToType2, ToType1))
1844        return ImplicitConversionSequence::Worse;
1845    }
1846
1847    //   -- conversion of B to A is better than conversion of C to A.
1848    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1849        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1850      if (IsDerivedFrom(FromType2, FromType1))
1851        return ImplicitConversionSequence::Better;
1852      else if (IsDerivedFrom(FromType1, FromType2))
1853        return ImplicitConversionSequence::Worse;
1854    }
1855  }
1856
1857  return ImplicitConversionSequence::Indistinguishable;
1858}
1859
1860/// TryCopyInitialization - Try to copy-initialize a value of type
1861/// ToType from the expression From. Return the implicit conversion
1862/// sequence required to pass this argument, which may be a bad
1863/// conversion sequence (meaning that the argument cannot be passed to
1864/// a parameter of this type). If @p SuppressUserConversions, then we
1865/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1866/// then we treat @p From as an rvalue, even if it is an lvalue.
1867ImplicitConversionSequence
1868Sema::TryCopyInitialization(Expr *From, QualType ToType,
1869                            bool SuppressUserConversions, bool ForceRValue) {
1870  if (ToType->isReferenceType()) {
1871    ImplicitConversionSequence ICS;
1872    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1873                       /*AllowExplicit=*/false, ForceRValue);
1874    return ICS;
1875  } else {
1876    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1877                                 ForceRValue);
1878  }
1879}
1880
1881/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1882/// the expression @p From. Returns true (and emits a diagnostic) if there was
1883/// an error, returns false if the initialization succeeded. Elidable should
1884/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1885/// differently in C++0x for this case.
1886bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1887                                     const char* Flavor, bool Elidable) {
1888  if (!getLangOptions().CPlusPlus) {
1889    // In C, argument passing is the same as performing an assignment.
1890    QualType FromType = From->getType();
1891    AssignConvertType ConvTy =
1892      CheckSingleAssignmentConstraints(ToType, From);
1893
1894    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1895                                    FromType, From, Flavor);
1896  }
1897
1898  if (ToType->isReferenceType())
1899    return CheckReferenceInit(From, ToType);
1900
1901  if (!PerformImplicitConversion(From, ToType, Flavor,
1902                                 /*AllowExplicit=*/false, Elidable))
1903    return false;
1904
1905  return Diag(From->getSourceRange().getBegin(),
1906              diag::err_typecheck_convert_incompatible)
1907    << ToType << From->getType() << Flavor << From->getSourceRange();
1908}
1909
1910/// TryObjectArgumentInitialization - Try to initialize the object
1911/// parameter of the given member function (@c Method) from the
1912/// expression @p From.
1913ImplicitConversionSequence
1914Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1915  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1916  unsigned MethodQuals = Method->getTypeQualifiers();
1917  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1918
1919  // Set up the conversion sequence as a "bad" conversion, to allow us
1920  // to exit early.
1921  ImplicitConversionSequence ICS;
1922  ICS.Standard.setAsIdentityConversion();
1923  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1924
1925  // We need to have an object of class type.
1926  QualType FromType = From->getType();
1927  if (!FromType->isRecordType())
1928    return ICS;
1929
1930  // The implicit object parmeter is has the type "reference to cv X",
1931  // where X is the class of which the function is a member
1932  // (C++ [over.match.funcs]p4). However, when finding an implicit
1933  // conversion sequence for the argument, we are not allowed to
1934  // create temporaries or perform user-defined conversions
1935  // (C++ [over.match.funcs]p5). We perform a simplified version of
1936  // reference binding here, that allows class rvalues to bind to
1937  // non-constant references.
1938
1939  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1940  // with the implicit object parameter (C++ [over.match.funcs]p5).
1941  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1942  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1943      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1944    return ICS;
1945
1946  // Check that we have either the same type or a derived type. It
1947  // affects the conversion rank.
1948  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1949  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1950    ICS.Standard.Second = ICK_Identity;
1951  else if (IsDerivedFrom(FromType, ClassType))
1952    ICS.Standard.Second = ICK_Derived_To_Base;
1953  else
1954    return ICS;
1955
1956  // Success. Mark this as a reference binding.
1957  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1958  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1959  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1960  ICS.Standard.ReferenceBinding = true;
1961  ICS.Standard.DirectBinding = true;
1962  ICS.Standard.RRefBinding = false;
1963  return ICS;
1964}
1965
1966/// PerformObjectArgumentInitialization - Perform initialization of
1967/// the implicit object parameter for the given Method with the given
1968/// expression.
1969bool
1970Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1971  QualType ImplicitParamType
1972    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1973  ImplicitConversionSequence ICS
1974    = TryObjectArgumentInitialization(From, Method);
1975  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1976    return Diag(From->getSourceRange().getBegin(),
1977                diag::err_implicit_object_parameter_init)
1978       << ImplicitParamType << From->getType() << From->getSourceRange();
1979
1980  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1981      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1982                                   From->getSourceRange().getBegin(),
1983                                   From->getSourceRange()))
1984    return true;
1985
1986  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1987  return false;
1988}
1989
1990/// TryContextuallyConvertToBool - Attempt to contextually convert the
1991/// expression From to bool (C++0x [conv]p3).
1992ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1993  return TryImplicitConversion(From, Context.BoolTy, false, true);
1994}
1995
1996/// PerformContextuallyConvertToBool - Perform a contextual conversion
1997/// of the expression From to bool (C++0x [conv]p3).
1998bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1999  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2000  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2001    return false;
2002
2003  return Diag(From->getSourceRange().getBegin(),
2004              diag::err_typecheck_bool_condition)
2005    << From->getType() << From->getSourceRange();
2006}
2007
2008/// AddOverloadCandidate - Adds the given function to the set of
2009/// candidate functions, using the given function call arguments.  If
2010/// @p SuppressUserConversions, then don't allow user-defined
2011/// conversions via constructors or conversion operators.
2012/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2013/// hacky way to implement the overloading rules for elidable copy
2014/// initialization in C++0x (C++0x 12.8p15).
2015void
2016Sema::AddOverloadCandidate(FunctionDecl *Function,
2017                           Expr **Args, unsigned NumArgs,
2018                           OverloadCandidateSet& CandidateSet,
2019                           bool SuppressUserConversions,
2020                           bool ForceRValue)
2021{
2022  const FunctionProtoType* Proto
2023    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2024  assert(Proto && "Functions without a prototype cannot be overloaded");
2025  assert(!isa<CXXConversionDecl>(Function) &&
2026         "Use AddConversionCandidate for conversion functions");
2027
2028  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2029    if (!isa<CXXConstructorDecl>(Method)) {
2030      // If we get here, it's because we're calling a member function
2031      // that is named without a member access expression (e.g.,
2032      // "this->f") that was either written explicitly or created
2033      // implicitly. This can happen with a qualified call to a member
2034      // function, e.g., X::f(). We use a NULL object as the implied
2035      // object argument (C++ [over.call.func]p3).
2036      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2037                         SuppressUserConversions, ForceRValue);
2038      return;
2039    }
2040    // We treat a constructor like a non-member function, since its object
2041    // argument doesn't participate in overload resolution.
2042  }
2043
2044
2045  // Add this candidate
2046  CandidateSet.push_back(OverloadCandidate());
2047  OverloadCandidate& Candidate = CandidateSet.back();
2048  Candidate.Function = Function;
2049  Candidate.Viable = true;
2050  Candidate.IsSurrogate = false;
2051  Candidate.IgnoreObjectArgument = false;
2052
2053  unsigned NumArgsInProto = Proto->getNumArgs();
2054
2055  // (C++ 13.3.2p2): A candidate function having fewer than m
2056  // parameters is viable only if it has an ellipsis in its parameter
2057  // list (8.3.5).
2058  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2059    Candidate.Viable = false;
2060    return;
2061  }
2062
2063  // (C++ 13.3.2p2): A candidate function having more than m parameters
2064  // is viable only if the (m+1)st parameter has a default argument
2065  // (8.3.6). For the purposes of overload resolution, the
2066  // parameter list is truncated on the right, so that there are
2067  // exactly m parameters.
2068  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2069  if (NumArgs < MinRequiredArgs) {
2070    // Not enough arguments.
2071    Candidate.Viable = false;
2072    return;
2073  }
2074
2075  // Determine the implicit conversion sequences for each of the
2076  // arguments.
2077  Candidate.Conversions.resize(NumArgs);
2078  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2079    if (ArgIdx < NumArgsInProto) {
2080      // (C++ 13.3.2p3): for F to be a viable function, there shall
2081      // exist for each argument an implicit conversion sequence
2082      // (13.3.3.1) that converts that argument to the corresponding
2083      // parameter of F.
2084      QualType ParamType = Proto->getArgType(ArgIdx);
2085      Candidate.Conversions[ArgIdx]
2086        = TryCopyInitialization(Args[ArgIdx], ParamType,
2087                                SuppressUserConversions, ForceRValue);
2088      if (Candidate.Conversions[ArgIdx].ConversionKind
2089            == ImplicitConversionSequence::BadConversion) {
2090        Candidate.Viable = false;
2091        break;
2092      }
2093    } else {
2094      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2095      // argument for which there is no corresponding parameter is
2096      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2097      Candidate.Conversions[ArgIdx].ConversionKind
2098        = ImplicitConversionSequence::EllipsisConversion;
2099    }
2100  }
2101}
2102
2103/// \brief Add all of the function declarations in the given function set to
2104/// the overload canddiate set.
2105void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2106                                 Expr **Args, unsigned NumArgs,
2107                                 OverloadCandidateSet& CandidateSet,
2108                                 bool SuppressUserConversions) {
2109  for (FunctionSet::const_iterator F = Functions.begin(),
2110                                FEnd = Functions.end();
2111       F != FEnd; ++F)
2112    AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2113                         SuppressUserConversions);
2114}
2115
2116/// AddMethodCandidate - Adds the given C++ member function to the set
2117/// of candidate functions, using the given function call arguments
2118/// and the object argument (@c Object). For example, in a call
2119/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2120/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2121/// allow user-defined conversions via constructors or conversion
2122/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2123/// a slightly hacky way to implement the overloading rules for elidable copy
2124/// initialization in C++0x (C++0x 12.8p15).
2125void
2126Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2127                         Expr **Args, unsigned NumArgs,
2128                         OverloadCandidateSet& CandidateSet,
2129                         bool SuppressUserConversions, bool ForceRValue)
2130{
2131  const FunctionProtoType* Proto
2132    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2133  assert(Proto && "Methods without a prototype cannot be overloaded");
2134  assert(!isa<CXXConversionDecl>(Method) &&
2135         "Use AddConversionCandidate for conversion functions");
2136  assert(!isa<CXXConstructorDecl>(Method) &&
2137         "Use AddOverloadCandidate for constructors");
2138
2139  // Add this candidate
2140  CandidateSet.push_back(OverloadCandidate());
2141  OverloadCandidate& Candidate = CandidateSet.back();
2142  Candidate.Function = Method;
2143  Candidate.IsSurrogate = false;
2144  Candidate.IgnoreObjectArgument = false;
2145
2146  unsigned NumArgsInProto = Proto->getNumArgs();
2147
2148  // (C++ 13.3.2p2): A candidate function having fewer than m
2149  // parameters is viable only if it has an ellipsis in its parameter
2150  // list (8.3.5).
2151  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2152    Candidate.Viable = false;
2153    return;
2154  }
2155
2156  // (C++ 13.3.2p2): A candidate function having more than m parameters
2157  // is viable only if the (m+1)st parameter has a default argument
2158  // (8.3.6). For the purposes of overload resolution, the
2159  // parameter list is truncated on the right, so that there are
2160  // exactly m parameters.
2161  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2162  if (NumArgs < MinRequiredArgs) {
2163    // Not enough arguments.
2164    Candidate.Viable = false;
2165    return;
2166  }
2167
2168  Candidate.Viable = true;
2169  Candidate.Conversions.resize(NumArgs + 1);
2170
2171  if (Method->isStatic() || !Object)
2172    // The implicit object argument is ignored.
2173    Candidate.IgnoreObjectArgument = true;
2174  else {
2175    // Determine the implicit conversion sequence for the object
2176    // parameter.
2177    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2178    if (Candidate.Conversions[0].ConversionKind
2179          == ImplicitConversionSequence::BadConversion) {
2180      Candidate.Viable = false;
2181      return;
2182    }
2183  }
2184
2185  // Determine the implicit conversion sequences for each of the
2186  // arguments.
2187  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2188    if (ArgIdx < NumArgsInProto) {
2189      // (C++ 13.3.2p3): for F to be a viable function, there shall
2190      // exist for each argument an implicit conversion sequence
2191      // (13.3.3.1) that converts that argument to the corresponding
2192      // parameter of F.
2193      QualType ParamType = Proto->getArgType(ArgIdx);
2194      Candidate.Conversions[ArgIdx + 1]
2195        = TryCopyInitialization(Args[ArgIdx], ParamType,
2196                                SuppressUserConversions, ForceRValue);
2197      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2198            == ImplicitConversionSequence::BadConversion) {
2199        Candidate.Viable = false;
2200        break;
2201      }
2202    } else {
2203      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2204      // argument for which there is no corresponding parameter is
2205      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2206      Candidate.Conversions[ArgIdx + 1].ConversionKind
2207        = ImplicitConversionSequence::EllipsisConversion;
2208    }
2209  }
2210}
2211
2212/// AddConversionCandidate - Add a C++ conversion function as a
2213/// candidate in the candidate set (C++ [over.match.conv],
2214/// C++ [over.match.copy]). From is the expression we're converting from,
2215/// and ToType is the type that we're eventually trying to convert to
2216/// (which may or may not be the same type as the type that the
2217/// conversion function produces).
2218void
2219Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2220                             Expr *From, QualType ToType,
2221                             OverloadCandidateSet& CandidateSet) {
2222  // Add this candidate
2223  CandidateSet.push_back(OverloadCandidate());
2224  OverloadCandidate& Candidate = CandidateSet.back();
2225  Candidate.Function = Conversion;
2226  Candidate.IsSurrogate = false;
2227  Candidate.IgnoreObjectArgument = false;
2228  Candidate.FinalConversion.setAsIdentityConversion();
2229  Candidate.FinalConversion.FromTypePtr
2230    = Conversion->getConversionType().getAsOpaquePtr();
2231  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2232
2233  // Determine the implicit conversion sequence for the implicit
2234  // object parameter.
2235  Candidate.Viable = true;
2236  Candidate.Conversions.resize(1);
2237  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2238
2239  if (Candidate.Conversions[0].ConversionKind
2240      == ImplicitConversionSequence::BadConversion) {
2241    Candidate.Viable = false;
2242    return;
2243  }
2244
2245  // To determine what the conversion from the result of calling the
2246  // conversion function to the type we're eventually trying to
2247  // convert to (ToType), we need to synthesize a call to the
2248  // conversion function and attempt copy initialization from it. This
2249  // makes sure that we get the right semantics with respect to
2250  // lvalues/rvalues and the type. Fortunately, we can allocate this
2251  // call on the stack and we don't need its arguments to be
2252  // well-formed.
2253  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2254                            SourceLocation());
2255  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2256                                &ConversionRef, false);
2257
2258  // Note that it is safe to allocate CallExpr on the stack here because
2259  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2260  // allocator).
2261  CallExpr Call(Context, &ConversionFn, 0, 0,
2262                Conversion->getConversionType().getNonReferenceType(),
2263                SourceLocation());
2264  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2265  switch (ICS.ConversionKind) {
2266  case ImplicitConversionSequence::StandardConversion:
2267    Candidate.FinalConversion = ICS.Standard;
2268    break;
2269
2270  case ImplicitConversionSequence::BadConversion:
2271    Candidate.Viable = false;
2272    break;
2273
2274  default:
2275    assert(false &&
2276           "Can only end up with a standard conversion sequence or failure");
2277  }
2278}
2279
2280/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2281/// converts the given @c Object to a function pointer via the
2282/// conversion function @c Conversion, and then attempts to call it
2283/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2284/// the type of function that we'll eventually be calling.
2285void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2286                                 const FunctionProtoType *Proto,
2287                                 Expr *Object, Expr **Args, unsigned NumArgs,
2288                                 OverloadCandidateSet& CandidateSet) {
2289  CandidateSet.push_back(OverloadCandidate());
2290  OverloadCandidate& Candidate = CandidateSet.back();
2291  Candidate.Function = 0;
2292  Candidate.Surrogate = Conversion;
2293  Candidate.Viable = true;
2294  Candidate.IsSurrogate = true;
2295  Candidate.IgnoreObjectArgument = false;
2296  Candidate.Conversions.resize(NumArgs + 1);
2297
2298  // Determine the implicit conversion sequence for the implicit
2299  // object parameter.
2300  ImplicitConversionSequence ObjectInit
2301    = TryObjectArgumentInitialization(Object, Conversion);
2302  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2303    Candidate.Viable = false;
2304    return;
2305  }
2306
2307  // The first conversion is actually a user-defined conversion whose
2308  // first conversion is ObjectInit's standard conversion (which is
2309  // effectively a reference binding). Record it as such.
2310  Candidate.Conversions[0].ConversionKind
2311    = ImplicitConversionSequence::UserDefinedConversion;
2312  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2313  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2314  Candidate.Conversions[0].UserDefined.After
2315    = Candidate.Conversions[0].UserDefined.Before;
2316  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2317
2318  // Find the
2319  unsigned NumArgsInProto = Proto->getNumArgs();
2320
2321  // (C++ 13.3.2p2): A candidate function having fewer than m
2322  // parameters is viable only if it has an ellipsis in its parameter
2323  // list (8.3.5).
2324  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2325    Candidate.Viable = false;
2326    return;
2327  }
2328
2329  // Function types don't have any default arguments, so just check if
2330  // we have enough arguments.
2331  if (NumArgs < NumArgsInProto) {
2332    // Not enough arguments.
2333    Candidate.Viable = false;
2334    return;
2335  }
2336
2337  // Determine the implicit conversion sequences for each of the
2338  // arguments.
2339  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2340    if (ArgIdx < NumArgsInProto) {
2341      // (C++ 13.3.2p3): for F to be a viable function, there shall
2342      // exist for each argument an implicit conversion sequence
2343      // (13.3.3.1) that converts that argument to the corresponding
2344      // parameter of F.
2345      QualType ParamType = Proto->getArgType(ArgIdx);
2346      Candidate.Conversions[ArgIdx + 1]
2347        = TryCopyInitialization(Args[ArgIdx], ParamType,
2348                                /*SuppressUserConversions=*/false);
2349      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2350            == ImplicitConversionSequence::BadConversion) {
2351        Candidate.Viable = false;
2352        break;
2353      }
2354    } else {
2355      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2356      // argument for which there is no corresponding parameter is
2357      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2358      Candidate.Conversions[ArgIdx + 1].ConversionKind
2359        = ImplicitConversionSequence::EllipsisConversion;
2360    }
2361  }
2362}
2363
2364// FIXME: This will eventually be removed, once we've migrated all of
2365// the operator overloading logic over to the scheme used by binary
2366// operators, which works for template instantiation.
2367void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2368                                 SourceLocation OpLoc,
2369                                 Expr **Args, unsigned NumArgs,
2370                                 OverloadCandidateSet& CandidateSet,
2371                                 SourceRange OpRange) {
2372
2373  FunctionSet Functions;
2374
2375  QualType T1 = Args[0]->getType();
2376  QualType T2;
2377  if (NumArgs > 1)
2378    T2 = Args[1]->getType();
2379
2380  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2381  LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2382  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2383  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2384  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2385  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2386}
2387
2388/// \brief Add overload candidates for overloaded operators that are
2389/// member functions.
2390///
2391/// Add the overloaded operator candidates that are member functions
2392/// for the operator Op that was used in an operator expression such
2393/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2394/// CandidateSet will store the added overload candidates. (C++
2395/// [over.match.oper]).
2396void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2397                                       SourceLocation OpLoc,
2398                                       Expr **Args, unsigned NumArgs,
2399                                       OverloadCandidateSet& CandidateSet,
2400                                       SourceRange OpRange) {
2401  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2402
2403  // C++ [over.match.oper]p3:
2404  //   For a unary operator @ with an operand of a type whose
2405  //   cv-unqualified version is T1, and for a binary operator @ with
2406  //   a left operand of a type whose cv-unqualified version is T1 and
2407  //   a right operand of a type whose cv-unqualified version is T2,
2408  //   three sets of candidate functions, designated member
2409  //   candidates, non-member candidates and built-in candidates, are
2410  //   constructed as follows:
2411  QualType T1 = Args[0]->getType();
2412  QualType T2;
2413  if (NumArgs > 1)
2414    T2 = Args[1]->getType();
2415
2416  //     -- If T1 is a class type, the set of member candidates is the
2417  //        result of the qualified lookup of T1::operator@
2418  //        (13.3.1.1.1); otherwise, the set of member candidates is
2419  //        empty.
2420  // FIXME: Lookup in base classes, too!
2421  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2422    DeclContext::lookup_const_iterator Oper, OperEnd;
2423    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
2424         Oper != OperEnd; ++Oper)
2425      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2426                         Args+1, NumArgs - 1, CandidateSet,
2427                         /*SuppressUserConversions=*/false);
2428  }
2429}
2430
2431/// AddBuiltinCandidate - Add a candidate for a built-in
2432/// operator. ResultTy and ParamTys are the result and parameter types
2433/// of the built-in candidate, respectively. Args and NumArgs are the
2434/// arguments being passed to the candidate. IsAssignmentOperator
2435/// should be true when this built-in candidate is an assignment
2436/// operator. NumContextualBoolArguments is the number of arguments
2437/// (at the beginning of the argument list) that will be contextually
2438/// converted to bool.
2439void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2440                               Expr **Args, unsigned NumArgs,
2441                               OverloadCandidateSet& CandidateSet,
2442                               bool IsAssignmentOperator,
2443                               unsigned NumContextualBoolArguments) {
2444  // Add this candidate
2445  CandidateSet.push_back(OverloadCandidate());
2446  OverloadCandidate& Candidate = CandidateSet.back();
2447  Candidate.Function = 0;
2448  Candidate.IsSurrogate = false;
2449  Candidate.IgnoreObjectArgument = false;
2450  Candidate.BuiltinTypes.ResultTy = ResultTy;
2451  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2452    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2453
2454  // Determine the implicit conversion sequences for each of the
2455  // arguments.
2456  Candidate.Viable = true;
2457  Candidate.Conversions.resize(NumArgs);
2458  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2459    // C++ [over.match.oper]p4:
2460    //   For the built-in assignment operators, conversions of the
2461    //   left operand are restricted as follows:
2462    //     -- no temporaries are introduced to hold the left operand, and
2463    //     -- no user-defined conversions are applied to the left
2464    //        operand to achieve a type match with the left-most
2465    //        parameter of a built-in candidate.
2466    //
2467    // We block these conversions by turning off user-defined
2468    // conversions, since that is the only way that initialization of
2469    // a reference to a non-class type can occur from something that
2470    // is not of the same type.
2471    if (ArgIdx < NumContextualBoolArguments) {
2472      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2473             "Contextual conversion to bool requires bool type");
2474      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2475    } else {
2476      Candidate.Conversions[ArgIdx]
2477        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2478                                ArgIdx == 0 && IsAssignmentOperator);
2479    }
2480    if (Candidate.Conversions[ArgIdx].ConversionKind
2481        == ImplicitConversionSequence::BadConversion) {
2482      Candidate.Viable = false;
2483      break;
2484    }
2485  }
2486}
2487
2488/// BuiltinCandidateTypeSet - A set of types that will be used for the
2489/// candidate operator functions for built-in operators (C++
2490/// [over.built]). The types are separated into pointer types and
2491/// enumeration types.
2492class BuiltinCandidateTypeSet  {
2493  /// TypeSet - A set of types.
2494  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2495
2496  /// PointerTypes - The set of pointer types that will be used in the
2497  /// built-in candidates.
2498  TypeSet PointerTypes;
2499
2500  /// EnumerationTypes - The set of enumeration types that will be
2501  /// used in the built-in candidates.
2502  TypeSet EnumerationTypes;
2503
2504  /// Context - The AST context in which we will build the type sets.
2505  ASTContext &Context;
2506
2507  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2508
2509public:
2510  /// iterator - Iterates through the types that are part of the set.
2511  typedef TypeSet::iterator iterator;
2512
2513  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2514
2515  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2516                             bool AllowExplicitConversions);
2517
2518  /// pointer_begin - First pointer type found;
2519  iterator pointer_begin() { return PointerTypes.begin(); }
2520
2521  /// pointer_end - Last pointer type found;
2522  iterator pointer_end() { return PointerTypes.end(); }
2523
2524  /// enumeration_begin - First enumeration type found;
2525  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2526
2527  /// enumeration_end - Last enumeration type found;
2528  iterator enumeration_end() { return EnumerationTypes.end(); }
2529};
2530
2531/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2532/// the set of pointer types along with any more-qualified variants of
2533/// that type. For example, if @p Ty is "int const *", this routine
2534/// will add "int const *", "int const volatile *", "int const
2535/// restrict *", and "int const volatile restrict *" to the set of
2536/// pointer types. Returns true if the add of @p Ty itself succeeded,
2537/// false otherwise.
2538bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2539  // Insert this type.
2540  if (!PointerTypes.insert(Ty))
2541    return false;
2542
2543  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2544    QualType PointeeTy = PointerTy->getPointeeType();
2545    // FIXME: Optimize this so that we don't keep trying to add the same types.
2546
2547    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2548    // with all pointer conversions that don't cast away constness?
2549    if (!PointeeTy.isConstQualified())
2550      AddWithMoreQualifiedTypeVariants
2551        (Context.getPointerType(PointeeTy.withConst()));
2552    if (!PointeeTy.isVolatileQualified())
2553      AddWithMoreQualifiedTypeVariants
2554        (Context.getPointerType(PointeeTy.withVolatile()));
2555    if (!PointeeTy.isRestrictQualified())
2556      AddWithMoreQualifiedTypeVariants
2557        (Context.getPointerType(PointeeTy.withRestrict()));
2558  }
2559
2560  return true;
2561}
2562
2563/// AddTypesConvertedFrom - Add each of the types to which the type @p
2564/// Ty can be implicit converted to the given set of @p Types. We're
2565/// primarily interested in pointer types and enumeration types.
2566/// AllowUserConversions is true if we should look at the conversion
2567/// functions of a class type, and AllowExplicitConversions if we
2568/// should also include the explicit conversion functions of a class
2569/// type.
2570void
2571BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2572                                               bool AllowUserConversions,
2573                                               bool AllowExplicitConversions) {
2574  // Only deal with canonical types.
2575  Ty = Context.getCanonicalType(Ty);
2576
2577  // Look through reference types; they aren't part of the type of an
2578  // expression for the purposes of conversions.
2579  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2580    Ty = RefTy->getPointeeType();
2581
2582  // We don't care about qualifiers on the type.
2583  Ty = Ty.getUnqualifiedType();
2584
2585  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2586    QualType PointeeTy = PointerTy->getPointeeType();
2587
2588    // Insert our type, and its more-qualified variants, into the set
2589    // of types.
2590    if (!AddWithMoreQualifiedTypeVariants(Ty))
2591      return;
2592
2593    // Add 'cv void*' to our set of types.
2594    if (!Ty->isVoidType()) {
2595      QualType QualVoid
2596        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2597      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2598    }
2599
2600    // If this is a pointer to a class type, add pointers to its bases
2601    // (with the same level of cv-qualification as the original
2602    // derived class, of course).
2603    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2604      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2605      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2606           Base != ClassDecl->bases_end(); ++Base) {
2607        QualType BaseTy = Context.getCanonicalType(Base->getType());
2608        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2609
2610        // Add the pointer type, recursively, so that we get all of
2611        // the indirect base classes, too.
2612        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2613      }
2614    }
2615  } else if (Ty->isEnumeralType()) {
2616    EnumerationTypes.insert(Ty);
2617  } else if (AllowUserConversions) {
2618    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2619      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2620      // FIXME: Visit conversion functions in the base classes, too.
2621      OverloadedFunctionDecl *Conversions
2622        = ClassDecl->getConversionFunctions();
2623      for (OverloadedFunctionDecl::function_iterator Func
2624             = Conversions->function_begin();
2625           Func != Conversions->function_end(); ++Func) {
2626        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2627        if (AllowExplicitConversions || !Conv->isExplicit())
2628          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2629      }
2630    }
2631  }
2632}
2633
2634/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2635/// operator overloads to the candidate set (C++ [over.built]), based
2636/// on the operator @p Op and the arguments given. For example, if the
2637/// operator is a binary '+', this routine might add "int
2638/// operator+(int, int)" to cover integer addition.
2639void
2640Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2641                                   Expr **Args, unsigned NumArgs,
2642                                   OverloadCandidateSet& CandidateSet) {
2643  // The set of "promoted arithmetic types", which are the arithmetic
2644  // types are that preserved by promotion (C++ [over.built]p2). Note
2645  // that the first few of these types are the promoted integral
2646  // types; these types need to be first.
2647  // FIXME: What about complex?
2648  const unsigned FirstIntegralType = 0;
2649  const unsigned LastIntegralType = 13;
2650  const unsigned FirstPromotedIntegralType = 7,
2651                 LastPromotedIntegralType = 13;
2652  const unsigned FirstPromotedArithmeticType = 7,
2653                 LastPromotedArithmeticType = 16;
2654  const unsigned NumArithmeticTypes = 16;
2655  QualType ArithmeticTypes[NumArithmeticTypes] = {
2656    Context.BoolTy, Context.CharTy, Context.WCharTy,
2657    Context.SignedCharTy, Context.ShortTy,
2658    Context.UnsignedCharTy, Context.UnsignedShortTy,
2659    Context.IntTy, Context.LongTy, Context.LongLongTy,
2660    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2661    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2662  };
2663
2664  // Find all of the types that the arguments can convert to, but only
2665  // if the operator we're looking at has built-in operator candidates
2666  // that make use of these types.
2667  BuiltinCandidateTypeSet CandidateTypes(Context);
2668  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2669      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2670      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2671      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2672      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2673      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2674    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2675      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2676                                           true,
2677                                           (Op == OO_Exclaim ||
2678                                            Op == OO_AmpAmp ||
2679                                            Op == OO_PipePipe));
2680  }
2681
2682  bool isComparison = false;
2683  switch (Op) {
2684  case OO_None:
2685  case NUM_OVERLOADED_OPERATORS:
2686    assert(false && "Expected an overloaded operator");
2687    break;
2688
2689  case OO_Star: // '*' is either unary or binary
2690    if (NumArgs == 1)
2691      goto UnaryStar;
2692    else
2693      goto BinaryStar;
2694    break;
2695
2696  case OO_Plus: // '+' is either unary or binary
2697    if (NumArgs == 1)
2698      goto UnaryPlus;
2699    else
2700      goto BinaryPlus;
2701    break;
2702
2703  case OO_Minus: // '-' is either unary or binary
2704    if (NumArgs == 1)
2705      goto UnaryMinus;
2706    else
2707      goto BinaryMinus;
2708    break;
2709
2710  case OO_Amp: // '&' is either unary or binary
2711    if (NumArgs == 1)
2712      goto UnaryAmp;
2713    else
2714      goto BinaryAmp;
2715
2716  case OO_PlusPlus:
2717  case OO_MinusMinus:
2718    // C++ [over.built]p3:
2719    //
2720    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2721    //   is either volatile or empty, there exist candidate operator
2722    //   functions of the form
2723    //
2724    //       VQ T&      operator++(VQ T&);
2725    //       T          operator++(VQ T&, int);
2726    //
2727    // C++ [over.built]p4:
2728    //
2729    //   For every pair (T, VQ), where T is an arithmetic type other
2730    //   than bool, and VQ is either volatile or empty, there exist
2731    //   candidate operator functions of the form
2732    //
2733    //       VQ T&      operator--(VQ T&);
2734    //       T          operator--(VQ T&, int);
2735    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2736         Arith < NumArithmeticTypes; ++Arith) {
2737      QualType ArithTy = ArithmeticTypes[Arith];
2738      QualType ParamTypes[2]
2739        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2740
2741      // Non-volatile version.
2742      if (NumArgs == 1)
2743        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2744      else
2745        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2746
2747      // Volatile version
2748      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2749      if (NumArgs == 1)
2750        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2751      else
2752        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2753    }
2754
2755    // C++ [over.built]p5:
2756    //
2757    //   For every pair (T, VQ), where T is a cv-qualified or
2758    //   cv-unqualified object type, and VQ is either volatile or
2759    //   empty, there exist candidate operator functions of the form
2760    //
2761    //       T*VQ&      operator++(T*VQ&);
2762    //       T*VQ&      operator--(T*VQ&);
2763    //       T*         operator++(T*VQ&, int);
2764    //       T*         operator--(T*VQ&, int);
2765    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2766         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2767      // Skip pointer types that aren't pointers to object types.
2768      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2769        continue;
2770
2771      QualType ParamTypes[2] = {
2772        Context.getLValueReferenceType(*Ptr), Context.IntTy
2773      };
2774
2775      // Without volatile
2776      if (NumArgs == 1)
2777        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2778      else
2779        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2780
2781      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2782        // With volatile
2783        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2784        if (NumArgs == 1)
2785          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2786        else
2787          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2788      }
2789    }
2790    break;
2791
2792  UnaryStar:
2793    // C++ [over.built]p6:
2794    //   For every cv-qualified or cv-unqualified object type T, there
2795    //   exist candidate operator functions of the form
2796    //
2797    //       T&         operator*(T*);
2798    //
2799    // C++ [over.built]p7:
2800    //   For every function type T, there exist candidate operator
2801    //   functions of the form
2802    //       T&         operator*(T*);
2803    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2804         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2805      QualType ParamTy = *Ptr;
2806      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2807      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2808                          &ParamTy, Args, 1, CandidateSet);
2809    }
2810    break;
2811
2812  UnaryPlus:
2813    // C++ [over.built]p8:
2814    //   For every type T, there exist candidate operator functions of
2815    //   the form
2816    //
2817    //       T*         operator+(T*);
2818    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2819         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2820      QualType ParamTy = *Ptr;
2821      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2822    }
2823
2824    // Fall through
2825
2826  UnaryMinus:
2827    // C++ [over.built]p9:
2828    //  For every promoted arithmetic type T, there exist candidate
2829    //  operator functions of the form
2830    //
2831    //       T         operator+(T);
2832    //       T         operator-(T);
2833    for (unsigned Arith = FirstPromotedArithmeticType;
2834         Arith < LastPromotedArithmeticType; ++Arith) {
2835      QualType ArithTy = ArithmeticTypes[Arith];
2836      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2837    }
2838    break;
2839
2840  case OO_Tilde:
2841    // C++ [over.built]p10:
2842    //   For every promoted integral type T, there exist candidate
2843    //   operator functions of the form
2844    //
2845    //        T         operator~(T);
2846    for (unsigned Int = FirstPromotedIntegralType;
2847         Int < LastPromotedIntegralType; ++Int) {
2848      QualType IntTy = ArithmeticTypes[Int];
2849      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2850    }
2851    break;
2852
2853  case OO_New:
2854  case OO_Delete:
2855  case OO_Array_New:
2856  case OO_Array_Delete:
2857  case OO_Call:
2858    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2859    break;
2860
2861  case OO_Comma:
2862  UnaryAmp:
2863  case OO_Arrow:
2864    // C++ [over.match.oper]p3:
2865    //   -- For the operator ',', the unary operator '&', or the
2866    //      operator '->', the built-in candidates set is empty.
2867    break;
2868
2869  case OO_Less:
2870  case OO_Greater:
2871  case OO_LessEqual:
2872  case OO_GreaterEqual:
2873  case OO_EqualEqual:
2874  case OO_ExclaimEqual:
2875    // C++ [over.built]p15:
2876    //
2877    //   For every pointer or enumeration type T, there exist
2878    //   candidate operator functions of the form
2879    //
2880    //        bool       operator<(T, T);
2881    //        bool       operator>(T, T);
2882    //        bool       operator<=(T, T);
2883    //        bool       operator>=(T, T);
2884    //        bool       operator==(T, T);
2885    //        bool       operator!=(T, T);
2886    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2887         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2888      QualType ParamTypes[2] = { *Ptr, *Ptr };
2889      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2890    }
2891    for (BuiltinCandidateTypeSet::iterator Enum
2892           = CandidateTypes.enumeration_begin();
2893         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2894      QualType ParamTypes[2] = { *Enum, *Enum };
2895      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2896    }
2897
2898    // Fall through.
2899    isComparison = true;
2900
2901  BinaryPlus:
2902  BinaryMinus:
2903    if (!isComparison) {
2904      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2905
2906      // C++ [over.built]p13:
2907      //
2908      //   For every cv-qualified or cv-unqualified object type T
2909      //   there exist candidate operator functions of the form
2910      //
2911      //      T*         operator+(T*, ptrdiff_t);
2912      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2913      //      T*         operator-(T*, ptrdiff_t);
2914      //      T*         operator+(ptrdiff_t, T*);
2915      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2916      //
2917      // C++ [over.built]p14:
2918      //
2919      //   For every T, where T is a pointer to object type, there
2920      //   exist candidate operator functions of the form
2921      //
2922      //      ptrdiff_t  operator-(T, T);
2923      for (BuiltinCandidateTypeSet::iterator Ptr
2924             = CandidateTypes.pointer_begin();
2925           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2926        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2927
2928        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2929        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2930
2931        if (Op == OO_Plus) {
2932          // T* operator+(ptrdiff_t, T*);
2933          ParamTypes[0] = ParamTypes[1];
2934          ParamTypes[1] = *Ptr;
2935          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2936        } else {
2937          // ptrdiff_t operator-(T, T);
2938          ParamTypes[1] = *Ptr;
2939          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2940                              Args, 2, CandidateSet);
2941        }
2942      }
2943    }
2944    // Fall through
2945
2946  case OO_Slash:
2947  BinaryStar:
2948  Conditional:
2949    // C++ [over.built]p12:
2950    //
2951    //   For every pair of promoted arithmetic types L and R, there
2952    //   exist candidate operator functions of the form
2953    //
2954    //        LR         operator*(L, R);
2955    //        LR         operator/(L, R);
2956    //        LR         operator+(L, R);
2957    //        LR         operator-(L, R);
2958    //        bool       operator<(L, R);
2959    //        bool       operator>(L, R);
2960    //        bool       operator<=(L, R);
2961    //        bool       operator>=(L, R);
2962    //        bool       operator==(L, R);
2963    //        bool       operator!=(L, R);
2964    //
2965    //   where LR is the result of the usual arithmetic conversions
2966    //   between types L and R.
2967    //
2968    // C++ [over.built]p24:
2969    //
2970    //   For every pair of promoted arithmetic types L and R, there exist
2971    //   candidate operator functions of the form
2972    //
2973    //        LR       operator?(bool, L, R);
2974    //
2975    //   where LR is the result of the usual arithmetic conversions
2976    //   between types L and R.
2977    // Our candidates ignore the first parameter.
2978    for (unsigned Left = FirstPromotedArithmeticType;
2979         Left < LastPromotedArithmeticType; ++Left) {
2980      for (unsigned Right = FirstPromotedArithmeticType;
2981           Right < LastPromotedArithmeticType; ++Right) {
2982        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2983        QualType Result
2984          = isComparison? Context.BoolTy
2985                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2986        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2987      }
2988    }
2989    break;
2990
2991  case OO_Percent:
2992  BinaryAmp:
2993  case OO_Caret:
2994  case OO_Pipe:
2995  case OO_LessLess:
2996  case OO_GreaterGreater:
2997    // C++ [over.built]p17:
2998    //
2999    //   For every pair of promoted integral types L and R, there
3000    //   exist candidate operator functions of the form
3001    //
3002    //      LR         operator%(L, R);
3003    //      LR         operator&(L, R);
3004    //      LR         operator^(L, R);
3005    //      LR         operator|(L, R);
3006    //      L          operator<<(L, R);
3007    //      L          operator>>(L, R);
3008    //
3009    //   where LR is the result of the usual arithmetic conversions
3010    //   between types L and R.
3011    for (unsigned Left = FirstPromotedIntegralType;
3012         Left < LastPromotedIntegralType; ++Left) {
3013      for (unsigned Right = FirstPromotedIntegralType;
3014           Right < LastPromotedIntegralType; ++Right) {
3015        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3016        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3017            ? LandR[0]
3018            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3019        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3020      }
3021    }
3022    break;
3023
3024  case OO_Equal:
3025    // C++ [over.built]p20:
3026    //
3027    //   For every pair (T, VQ), where T is an enumeration or
3028    //   (FIXME:) pointer to member type and VQ is either volatile or
3029    //   empty, there exist candidate operator functions of the form
3030    //
3031    //        VQ T&      operator=(VQ T&, T);
3032    for (BuiltinCandidateTypeSet::iterator Enum
3033           = CandidateTypes.enumeration_begin();
3034         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3035      QualType ParamTypes[2];
3036
3037      // T& operator=(T&, T)
3038      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3039      ParamTypes[1] = *Enum;
3040      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3041                          /*IsAssignmentOperator=*/false);
3042
3043      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3044        // volatile T& operator=(volatile T&, T)
3045        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3046        ParamTypes[1] = *Enum;
3047        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3048                            /*IsAssignmentOperator=*/false);
3049      }
3050    }
3051    // Fall through.
3052
3053  case OO_PlusEqual:
3054  case OO_MinusEqual:
3055    // C++ [over.built]p19:
3056    //
3057    //   For every pair (T, VQ), where T is any type and VQ is either
3058    //   volatile or empty, there exist candidate operator functions
3059    //   of the form
3060    //
3061    //        T*VQ&      operator=(T*VQ&, T*);
3062    //
3063    // C++ [over.built]p21:
3064    //
3065    //   For every pair (T, VQ), where T is a cv-qualified or
3066    //   cv-unqualified object type and VQ is either volatile or
3067    //   empty, there exist candidate operator functions of the form
3068    //
3069    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3070    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3071    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3072         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3073      QualType ParamTypes[2];
3074      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3075
3076      // non-volatile version
3077      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3078      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3079                          /*IsAssigmentOperator=*/Op == OO_Equal);
3080
3081      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3082        // volatile version
3083        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3084        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3085                            /*IsAssigmentOperator=*/Op == OO_Equal);
3086      }
3087    }
3088    // Fall through.
3089
3090  case OO_StarEqual:
3091  case OO_SlashEqual:
3092    // C++ [over.built]p18:
3093    //
3094    //   For every triple (L, VQ, R), where L is an arithmetic type,
3095    //   VQ is either volatile or empty, and R is a promoted
3096    //   arithmetic type, there exist candidate operator functions of
3097    //   the form
3098    //
3099    //        VQ L&      operator=(VQ L&, R);
3100    //        VQ L&      operator*=(VQ L&, R);
3101    //        VQ L&      operator/=(VQ L&, R);
3102    //        VQ L&      operator+=(VQ L&, R);
3103    //        VQ L&      operator-=(VQ L&, R);
3104    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3105      for (unsigned Right = FirstPromotedArithmeticType;
3106           Right < LastPromotedArithmeticType; ++Right) {
3107        QualType ParamTypes[2];
3108        ParamTypes[1] = ArithmeticTypes[Right];
3109
3110        // Add this built-in operator as a candidate (VQ is empty).
3111        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3112        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3113                            /*IsAssigmentOperator=*/Op == OO_Equal);
3114
3115        // Add this built-in operator as a candidate (VQ is 'volatile').
3116        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3117        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3118        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3119                            /*IsAssigmentOperator=*/Op == OO_Equal);
3120      }
3121    }
3122    break;
3123
3124  case OO_PercentEqual:
3125  case OO_LessLessEqual:
3126  case OO_GreaterGreaterEqual:
3127  case OO_AmpEqual:
3128  case OO_CaretEqual:
3129  case OO_PipeEqual:
3130    // C++ [over.built]p22:
3131    //
3132    //   For every triple (L, VQ, R), where L is an integral type, VQ
3133    //   is either volatile or empty, and R is a promoted integral
3134    //   type, there exist candidate operator functions of the form
3135    //
3136    //        VQ L&       operator%=(VQ L&, R);
3137    //        VQ L&       operator<<=(VQ L&, R);
3138    //        VQ L&       operator>>=(VQ L&, R);
3139    //        VQ L&       operator&=(VQ L&, R);
3140    //        VQ L&       operator^=(VQ L&, R);
3141    //        VQ L&       operator|=(VQ L&, R);
3142    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3143      for (unsigned Right = FirstPromotedIntegralType;
3144           Right < LastPromotedIntegralType; ++Right) {
3145        QualType ParamTypes[2];
3146        ParamTypes[1] = ArithmeticTypes[Right];
3147
3148        // Add this built-in operator as a candidate (VQ is empty).
3149        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3150        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3151
3152        // Add this built-in operator as a candidate (VQ is 'volatile').
3153        ParamTypes[0] = ArithmeticTypes[Left];
3154        ParamTypes[0].addVolatile();
3155        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3156        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3157      }
3158    }
3159    break;
3160
3161  case OO_Exclaim: {
3162    // C++ [over.operator]p23:
3163    //
3164    //   There also exist candidate operator functions of the form
3165    //
3166    //        bool        operator!(bool);
3167    //        bool        operator&&(bool, bool);     [BELOW]
3168    //        bool        operator||(bool, bool);     [BELOW]
3169    QualType ParamTy = Context.BoolTy;
3170    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3171                        /*IsAssignmentOperator=*/false,
3172                        /*NumContextualBoolArguments=*/1);
3173    break;
3174  }
3175
3176  case OO_AmpAmp:
3177  case OO_PipePipe: {
3178    // C++ [over.operator]p23:
3179    //
3180    //   There also exist candidate operator functions of the form
3181    //
3182    //        bool        operator!(bool);            [ABOVE]
3183    //        bool        operator&&(bool, bool);
3184    //        bool        operator||(bool, bool);
3185    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3186    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3187                        /*IsAssignmentOperator=*/false,
3188                        /*NumContextualBoolArguments=*/2);
3189    break;
3190  }
3191
3192  case OO_Subscript:
3193    // C++ [over.built]p13:
3194    //
3195    //   For every cv-qualified or cv-unqualified object type T there
3196    //   exist candidate operator functions of the form
3197    //
3198    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3199    //        T&         operator[](T*, ptrdiff_t);
3200    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3201    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3202    //        T&         operator[](ptrdiff_t, T*);
3203    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3204         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3205      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3206      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3207      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3208
3209      // T& operator[](T*, ptrdiff_t)
3210      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3211
3212      // T& operator[](ptrdiff_t, T*);
3213      ParamTypes[0] = ParamTypes[1];
3214      ParamTypes[1] = *Ptr;
3215      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3216    }
3217    break;
3218
3219  case OO_ArrowStar:
3220    // FIXME: No support for pointer-to-members yet.
3221    break;
3222
3223  case OO_Conditional:
3224    // Note that we don't consider the first argument, since it has been
3225    // contextually converted to bool long ago. The candidates below are
3226    // therefore added as binary.
3227    //
3228    // C++ [over.built]p24:
3229    //   For every type T, where T is a pointer or pointer-to-member type,
3230    //   there exist candidate operator functions of the form
3231    //
3232    //        T        operator?(bool, T, T);
3233    //
3234    // FIXME: pointer-to-member
3235    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3236         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3237      QualType ParamTypes[2] = { *Ptr, *Ptr };
3238      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3239    }
3240    goto Conditional;
3241  }
3242}
3243
3244/// \brief Add function candidates found via argument-dependent lookup
3245/// to the set of overloading candidates.
3246///
3247/// This routine performs argument-dependent name lookup based on the
3248/// given function name (which may also be an operator name) and adds
3249/// all of the overload candidates found by ADL to the overload
3250/// candidate set (C++ [basic.lookup.argdep]).
3251void
3252Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3253                                           Expr **Args, unsigned NumArgs,
3254                                           OverloadCandidateSet& CandidateSet) {
3255  FunctionSet Functions;
3256
3257  // Record all of the function candidates that we've already
3258  // added to the overload set, so that we don't add those same
3259  // candidates a second time.
3260  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3261                                   CandEnd = CandidateSet.end();
3262       Cand != CandEnd; ++Cand)
3263    if (Cand->Function)
3264      Functions.insert(Cand->Function);
3265
3266  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3267
3268  // Erase all of the candidates we already knew about.
3269  // FIXME: This is suboptimal. Is there a better way?
3270  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3271                                   CandEnd = CandidateSet.end();
3272       Cand != CandEnd; ++Cand)
3273    if (Cand->Function)
3274      Functions.erase(Cand->Function);
3275
3276  // For each of the ADL candidates we found, add it to the overload
3277  // set.
3278  for (FunctionSet::iterator Func = Functions.begin(),
3279                          FuncEnd = Functions.end();
3280       Func != FuncEnd; ++Func)
3281    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3282}
3283
3284/// isBetterOverloadCandidate - Determines whether the first overload
3285/// candidate is a better candidate than the second (C++ 13.3.3p1).
3286bool
3287Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3288                                const OverloadCandidate& Cand2)
3289{
3290  // Define viable functions to be better candidates than non-viable
3291  // functions.
3292  if (!Cand2.Viable)
3293    return Cand1.Viable;
3294  else if (!Cand1.Viable)
3295    return false;
3296
3297  // C++ [over.match.best]p1:
3298  //
3299  //   -- if F is a static member function, ICS1(F) is defined such
3300  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3301  //      any function G, and, symmetrically, ICS1(G) is neither
3302  //      better nor worse than ICS1(F).
3303  unsigned StartArg = 0;
3304  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3305    StartArg = 1;
3306
3307  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3308  // function than another viable function F2 if for all arguments i,
3309  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3310  // then...
3311  unsigned NumArgs = Cand1.Conversions.size();
3312  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3313  bool HasBetterConversion = false;
3314  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3315    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3316                                               Cand2.Conversions[ArgIdx])) {
3317    case ImplicitConversionSequence::Better:
3318      // Cand1 has a better conversion sequence.
3319      HasBetterConversion = true;
3320      break;
3321
3322    case ImplicitConversionSequence::Worse:
3323      // Cand1 can't be better than Cand2.
3324      return false;
3325
3326    case ImplicitConversionSequence::Indistinguishable:
3327      // Do nothing.
3328      break;
3329    }
3330  }
3331
3332  if (HasBetterConversion)
3333    return true;
3334
3335  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3336  // implemented, but they require template support.
3337
3338  // C++ [over.match.best]p1b4:
3339  //
3340  //   -- the context is an initialization by user-defined conversion
3341  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3342  //      from the return type of F1 to the destination type (i.e.,
3343  //      the type of the entity being initialized) is a better
3344  //      conversion sequence than the standard conversion sequence
3345  //      from the return type of F2 to the destination type.
3346  if (Cand1.Function && Cand2.Function &&
3347      isa<CXXConversionDecl>(Cand1.Function) &&
3348      isa<CXXConversionDecl>(Cand2.Function)) {
3349    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3350                                               Cand2.FinalConversion)) {
3351    case ImplicitConversionSequence::Better:
3352      // Cand1 has a better conversion sequence.
3353      return true;
3354
3355    case ImplicitConversionSequence::Worse:
3356      // Cand1 can't be better than Cand2.
3357      return false;
3358
3359    case ImplicitConversionSequence::Indistinguishable:
3360      // Do nothing
3361      break;
3362    }
3363  }
3364
3365  return false;
3366}
3367
3368/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3369/// within an overload candidate set. If overloading is successful,
3370/// the result will be OR_Success and Best will be set to point to the
3371/// best viable function within the candidate set. Otherwise, one of
3372/// several kinds of errors will be returned; see
3373/// Sema::OverloadingResult.
3374Sema::OverloadingResult
3375Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3376                         OverloadCandidateSet::iterator& Best)
3377{
3378  // Find the best viable function.
3379  Best = CandidateSet.end();
3380  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3381       Cand != CandidateSet.end(); ++Cand) {
3382    if (Cand->Viable) {
3383      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3384        Best = Cand;
3385    }
3386  }
3387
3388  // If we didn't find any viable functions, abort.
3389  if (Best == CandidateSet.end())
3390    return OR_No_Viable_Function;
3391
3392  // Make sure that this function is better than every other viable
3393  // function. If not, we have an ambiguity.
3394  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3395       Cand != CandidateSet.end(); ++Cand) {
3396    if (Cand->Viable &&
3397        Cand != Best &&
3398        !isBetterOverloadCandidate(*Best, *Cand)) {
3399      Best = CandidateSet.end();
3400      return OR_Ambiguous;
3401    }
3402  }
3403
3404  // Best is the best viable function.
3405  if (Best->Function &&
3406      (Best->Function->isDeleted() ||
3407       Best->Function->getAttr<UnavailableAttr>()))
3408    return OR_Deleted;
3409
3410  // If Best refers to a function that is either deleted (C++0x) or
3411  // unavailable (Clang extension) report an error.
3412
3413  return OR_Success;
3414}
3415
3416/// PrintOverloadCandidates - When overload resolution fails, prints
3417/// diagnostic messages containing the candidates in the candidate
3418/// set. If OnlyViable is true, only viable candidates will be printed.
3419void
3420Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3421                              bool OnlyViable)
3422{
3423  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3424                             LastCand = CandidateSet.end();
3425  for (; Cand != LastCand; ++Cand) {
3426    if (Cand->Viable || !OnlyViable) {
3427      if (Cand->Function) {
3428        if (Cand->Function->isDeleted() ||
3429            Cand->Function->getAttr<UnavailableAttr>()) {
3430          // Deleted or "unavailable" function.
3431          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3432            << Cand->Function->isDeleted();
3433        } else {
3434          // Normal function
3435          // FIXME: Give a better reason!
3436          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3437        }
3438      } else if (Cand->IsSurrogate) {
3439        // Desugar the type of the surrogate down to a function type,
3440        // retaining as many typedefs as possible while still showing
3441        // the function type (and, therefore, its parameter types).
3442        QualType FnType = Cand->Surrogate->getConversionType();
3443        bool isLValueReference = false;
3444        bool isRValueReference = false;
3445        bool isPointer = false;
3446        if (const LValueReferenceType *FnTypeRef =
3447              FnType->getAsLValueReferenceType()) {
3448          FnType = FnTypeRef->getPointeeType();
3449          isLValueReference = true;
3450        } else if (const RValueReferenceType *FnTypeRef =
3451                     FnType->getAsRValueReferenceType()) {
3452          FnType = FnTypeRef->getPointeeType();
3453          isRValueReference = true;
3454        }
3455        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3456          FnType = FnTypePtr->getPointeeType();
3457          isPointer = true;
3458        }
3459        // Desugar down to a function type.
3460        FnType = QualType(FnType->getAsFunctionType(), 0);
3461        // Reconstruct the pointer/reference as appropriate.
3462        if (isPointer) FnType = Context.getPointerType(FnType);
3463        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3464        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3465
3466        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3467          << FnType;
3468      } else {
3469        // FIXME: We need to get the identifier in here
3470        // FIXME: Do we want the error message to point at the
3471        // operator? (built-ins won't have a location)
3472        QualType FnType
3473          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3474                                    Cand->BuiltinTypes.ParamTypes,
3475                                    Cand->Conversions.size(),
3476                                    false, 0);
3477
3478        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3479      }
3480    }
3481  }
3482}
3483
3484/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3485/// an overloaded function (C++ [over.over]), where @p From is an
3486/// expression with overloaded function type and @p ToType is the type
3487/// we're trying to resolve to. For example:
3488///
3489/// @code
3490/// int f(double);
3491/// int f(int);
3492///
3493/// int (*pfd)(double) = f; // selects f(double)
3494/// @endcode
3495///
3496/// This routine returns the resulting FunctionDecl if it could be
3497/// resolved, and NULL otherwise. When @p Complain is true, this
3498/// routine will emit diagnostics if there is an error.
3499FunctionDecl *
3500Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3501                                         bool Complain) {
3502  QualType FunctionType = ToType;
3503  bool IsMember = false;
3504  if (const PointerType *ToTypePtr = ToType->getAsPointerType())
3505    FunctionType = ToTypePtr->getPointeeType();
3506  else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3507    FunctionType = ToTypeRef->getPointeeType();
3508  else if (const MemberPointerType *MemTypePtr =
3509                    ToType->getAsMemberPointerType()) {
3510    FunctionType = MemTypePtr->getPointeeType();
3511    IsMember = true;
3512  }
3513
3514  // We only look at pointers or references to functions.
3515  if (!FunctionType->isFunctionType())
3516    return 0;
3517
3518  // Find the actual overloaded function declaration.
3519  OverloadedFunctionDecl *Ovl = 0;
3520
3521  // C++ [over.over]p1:
3522  //   [...] [Note: any redundant set of parentheses surrounding the
3523  //   overloaded function name is ignored (5.1). ]
3524  Expr *OvlExpr = From->IgnoreParens();
3525
3526  // C++ [over.over]p1:
3527  //   [...] The overloaded function name can be preceded by the &
3528  //   operator.
3529  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3530    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3531      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3532  }
3533
3534  // Try to dig out the overloaded function.
3535  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3536    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3537
3538  // If there's no overloaded function declaration, we're done.
3539  if (!Ovl)
3540    return 0;
3541
3542  // Look through all of the overloaded functions, searching for one
3543  // whose type matches exactly.
3544  // FIXME: When templates or using declarations come along, we'll actually
3545  // have to deal with duplicates, partial ordering, etc. For now, we
3546  // can just do a simple search.
3547  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3548  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3549       Fun != Ovl->function_end(); ++Fun) {
3550    // C++ [over.over]p3:
3551    //   Non-member functions and static member functions match
3552    //   targets of type "pointer-to-function" or "reference-to-function."
3553    //   Nonstatic member functions match targets of
3554    //   type "pointer-to-member-function."
3555    // Note that according to DR 247, the containing class does not matter.
3556    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3557      // Skip non-static functions when converting to pointer, and static
3558      // when converting to member pointer.
3559      if (Method->isStatic() == IsMember)
3560        continue;
3561    } else if (IsMember)
3562      continue;
3563
3564    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3565      return *Fun;
3566  }
3567
3568  return 0;
3569}
3570
3571/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3572/// (which eventually refers to the declaration Func) and the call
3573/// arguments Args/NumArgs, attempt to resolve the function call down
3574/// to a specific function. If overload resolution succeeds, returns
3575/// the function declaration produced by overload
3576/// resolution. Otherwise, emits diagnostics, deletes all of the
3577/// arguments and Fn, and returns NULL.
3578FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3579                                            DeclarationName UnqualifiedName,
3580                                            SourceLocation LParenLoc,
3581                                            Expr **Args, unsigned NumArgs,
3582                                            SourceLocation *CommaLocs,
3583                                            SourceLocation RParenLoc,
3584                                            bool &ArgumentDependentLookup) {
3585  OverloadCandidateSet CandidateSet;
3586
3587  // Add the functions denoted by Callee to the set of candidate
3588  // functions. While we're doing so, track whether argument-dependent
3589  // lookup still applies, per:
3590  //
3591  // C++0x [basic.lookup.argdep]p3:
3592  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3593  //   and let Y be the lookup set produced by argument dependent
3594  //   lookup (defined as follows). If X contains
3595  //
3596  //     -- a declaration of a class member, or
3597  //
3598  //     -- a block-scope function declaration that is not a
3599  //        using-declaration, or
3600  //
3601  //     -- a declaration that is neither a function or a function
3602  //        template
3603  //
3604  //   then Y is empty.
3605  if (OverloadedFunctionDecl *Ovl
3606        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3607    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3608                                                FuncEnd = Ovl->function_end();
3609         Func != FuncEnd; ++Func) {
3610      AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3611
3612      if ((*Func)->getDeclContext()->isRecord() ||
3613          (*Func)->getDeclContext()->isFunctionOrMethod())
3614        ArgumentDependentLookup = false;
3615    }
3616  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3617    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3618
3619    if (Func->getDeclContext()->isRecord() ||
3620        Func->getDeclContext()->isFunctionOrMethod())
3621      ArgumentDependentLookup = false;
3622  }
3623
3624  if (Callee)
3625    UnqualifiedName = Callee->getDeclName();
3626
3627  if (ArgumentDependentLookup)
3628    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3629                                         CandidateSet);
3630
3631  OverloadCandidateSet::iterator Best;
3632  switch (BestViableFunction(CandidateSet, Best)) {
3633  case OR_Success:
3634    return Best->Function;
3635
3636  case OR_No_Viable_Function:
3637    Diag(Fn->getSourceRange().getBegin(),
3638         diag::err_ovl_no_viable_function_in_call)
3639      << UnqualifiedName << Fn->getSourceRange();
3640    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3641    break;
3642
3643  case OR_Ambiguous:
3644    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3645      << UnqualifiedName << Fn->getSourceRange();
3646    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3647    break;
3648
3649  case OR_Deleted:
3650    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3651      << Best->Function->isDeleted()
3652      << UnqualifiedName
3653      << Fn->getSourceRange();
3654    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3655    break;
3656  }
3657
3658  // Overload resolution failed. Destroy all of the subexpressions and
3659  // return NULL.
3660  Fn->Destroy(Context);
3661  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3662    Args[Arg]->Destroy(Context);
3663  return 0;
3664}
3665
3666/// \brief Create a unary operation that may resolve to an overloaded
3667/// operator.
3668///
3669/// \param OpLoc The location of the operator itself (e.g., '*').
3670///
3671/// \param OpcIn The UnaryOperator::Opcode that describes this
3672/// operator.
3673///
3674/// \param Functions The set of non-member functions that will be
3675/// considered by overload resolution. The caller needs to build this
3676/// set based on the context using, e.g.,
3677/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3678/// set should not contain any member functions; those will be added
3679/// by CreateOverloadedUnaryOp().
3680///
3681/// \param input The input argument.
3682Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3683                                                     unsigned OpcIn,
3684                                                     FunctionSet &Functions,
3685                                                     ExprArg input) {
3686  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3687  Expr *Input = (Expr *)input.get();
3688
3689  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3690  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3691  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3692
3693  Expr *Args[2] = { Input, 0 };
3694  unsigned NumArgs = 1;
3695
3696  // For post-increment and post-decrement, add the implicit '0' as
3697  // the second argument, so that we know this is a post-increment or
3698  // post-decrement.
3699  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3700    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3701    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3702                                           SourceLocation());
3703    NumArgs = 2;
3704  }
3705
3706  if (Input->isTypeDependent()) {
3707    OverloadedFunctionDecl *Overloads
3708      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3709    for (FunctionSet::iterator Func = Functions.begin(),
3710                            FuncEnd = Functions.end();
3711         Func != FuncEnd; ++Func)
3712      Overloads->addOverload(*Func);
3713
3714    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3715                                                OpLoc, false, false);
3716
3717    input.release();
3718    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3719                                                   &Args[0], NumArgs,
3720                                                   Context.DependentTy,
3721                                                   OpLoc));
3722  }
3723
3724  // Build an empty overload set.
3725  OverloadCandidateSet CandidateSet;
3726
3727  // Add the candidates from the given function set.
3728  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3729
3730  // Add operator candidates that are member functions.
3731  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3732
3733  // Add builtin operator candidates.
3734  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3735
3736  // Perform overload resolution.
3737  OverloadCandidateSet::iterator Best;
3738  switch (BestViableFunction(CandidateSet, Best)) {
3739  case OR_Success: {
3740    // We found a built-in operator or an overloaded operator.
3741    FunctionDecl *FnDecl = Best->Function;
3742
3743    if (FnDecl) {
3744      // We matched an overloaded operator. Build a call to that
3745      // operator.
3746
3747      // Convert the arguments.
3748      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3749        if (PerformObjectArgumentInitialization(Input, Method))
3750          return ExprError();
3751      } else {
3752        // Convert the arguments.
3753        if (PerformCopyInitialization(Input,
3754                                      FnDecl->getParamDecl(0)->getType(),
3755                                      "passing"))
3756          return ExprError();
3757      }
3758
3759      // Determine the result type
3760      QualType ResultTy
3761        = FnDecl->getType()->getAsFunctionType()->getResultType();
3762      ResultTy = ResultTy.getNonReferenceType();
3763
3764      // Build the actual expression node.
3765      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3766                                               SourceLocation());
3767      UsualUnaryConversions(FnExpr);
3768
3769      input.release();
3770      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3771                                                     &Input, 1, ResultTy,
3772                                                     OpLoc));
3773    } else {
3774      // We matched a built-in operator. Convert the arguments, then
3775      // break out so that we will build the appropriate built-in
3776      // operator node.
3777        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3778                                      Best->Conversions[0], "passing"))
3779          return ExprError();
3780
3781        break;
3782      }
3783    }
3784
3785    case OR_No_Viable_Function:
3786      // No viable function; fall through to handling this as a
3787      // built-in operator, which will produce an error message for us.
3788      break;
3789
3790    case OR_Ambiguous:
3791      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3792          << UnaryOperator::getOpcodeStr(Opc)
3793          << Input->getSourceRange();
3794      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3795      return ExprError();
3796
3797    case OR_Deleted:
3798      Diag(OpLoc, diag::err_ovl_deleted_oper)
3799        << Best->Function->isDeleted()
3800        << UnaryOperator::getOpcodeStr(Opc)
3801        << Input->getSourceRange();
3802      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3803      return ExprError();
3804    }
3805
3806  // Either we found no viable overloaded operator or we matched a
3807  // built-in operator. In either case, fall through to trying to
3808  // build a built-in operation.
3809  input.release();
3810  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3811}
3812
3813/// \brief Create a binary operation that may resolve to an overloaded
3814/// operator.
3815///
3816/// \param OpLoc The location of the operator itself (e.g., '+').
3817///
3818/// \param OpcIn The BinaryOperator::Opcode that describes this
3819/// operator.
3820///
3821/// \param Functions The set of non-member functions that will be
3822/// considered by overload resolution. The caller needs to build this
3823/// set based on the context using, e.g.,
3824/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3825/// set should not contain any member functions; those will be added
3826/// by CreateOverloadedBinOp().
3827///
3828/// \param LHS Left-hand argument.
3829/// \param RHS Right-hand argument.
3830Sema::OwningExprResult
3831Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3832                            unsigned OpcIn,
3833                            FunctionSet &Functions,
3834                            Expr *LHS, Expr *RHS) {
3835  Expr *Args[2] = { LHS, RHS };
3836
3837  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3838  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3839  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3840
3841  // If either side is type-dependent, create an appropriate dependent
3842  // expression.
3843  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3844    // .* cannot be overloaded.
3845    if (Opc == BinaryOperator::PtrMemD)
3846      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3847                                                Context.DependentTy, OpLoc));
3848
3849    OverloadedFunctionDecl *Overloads
3850      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3851    for (FunctionSet::iterator Func = Functions.begin(),
3852                            FuncEnd = Functions.end();
3853         Func != FuncEnd; ++Func)
3854      Overloads->addOverload(*Func);
3855
3856    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3857                                                OpLoc, false, false);
3858
3859    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3860                                                   Args, 2,
3861                                                   Context.DependentTy,
3862                                                   OpLoc));
3863  }
3864
3865  // If this is the .* operator, which is not overloadable, just
3866  // create a built-in binary operator.
3867  if (Opc == BinaryOperator::PtrMemD)
3868    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3869
3870  // If this is one of the assignment operators, we only perform
3871  // overload resolution if the left-hand side is a class or
3872  // enumeration type (C++ [expr.ass]p3).
3873  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3874      !LHS->getType()->isOverloadableType())
3875    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3876
3877  // Build an empty overload set.
3878  OverloadCandidateSet CandidateSet;
3879
3880  // Add the candidates from the given function set.
3881  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3882
3883  // Add operator candidates that are member functions.
3884  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3885
3886  // Add builtin operator candidates.
3887  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3888
3889  // Perform overload resolution.
3890  OverloadCandidateSet::iterator Best;
3891  switch (BestViableFunction(CandidateSet, Best)) {
3892    case OR_Success: {
3893      // We found a built-in operator or an overloaded operator.
3894      FunctionDecl *FnDecl = Best->Function;
3895
3896      if (FnDecl) {
3897        // We matched an overloaded operator. Build a call to that
3898        // operator.
3899
3900        // Convert the arguments.
3901        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3902          if (PerformObjectArgumentInitialization(LHS, Method) ||
3903              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3904                                        "passing"))
3905            return ExprError();
3906        } else {
3907          // Convert the arguments.
3908          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3909                                        "passing") ||
3910              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3911                                        "passing"))
3912            return ExprError();
3913        }
3914
3915        // Determine the result type
3916        QualType ResultTy
3917          = FnDecl->getType()->getAsFunctionType()->getResultType();
3918        ResultTy = ResultTy.getNonReferenceType();
3919
3920        // Build the actual expression node.
3921        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3922                                                 SourceLocation());
3923        UsualUnaryConversions(FnExpr);
3924
3925        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3926                                                       Args, 2, ResultTy,
3927                                                       OpLoc));
3928      } else {
3929        // We matched a built-in operator. Convert the arguments, then
3930        // break out so that we will build the appropriate built-in
3931        // operator node.
3932        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
3933                                      Best->Conversions[0], "passing") ||
3934            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
3935                                      Best->Conversions[1], "passing"))
3936          return ExprError();
3937
3938        break;
3939      }
3940    }
3941
3942    case OR_No_Viable_Function:
3943      // No viable function; fall through to handling this as a
3944      // built-in operator, which will produce an error message for us.
3945      break;
3946
3947    case OR_Ambiguous:
3948      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3949          << BinaryOperator::getOpcodeStr(Opc)
3950          << LHS->getSourceRange() << RHS->getSourceRange();
3951      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3952      return ExprError();
3953
3954    case OR_Deleted:
3955      Diag(OpLoc, diag::err_ovl_deleted_oper)
3956        << Best->Function->isDeleted()
3957        << BinaryOperator::getOpcodeStr(Opc)
3958        << LHS->getSourceRange() << RHS->getSourceRange();
3959      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3960      return ExprError();
3961    }
3962
3963  // Either we found no viable overloaded operator or we matched a
3964  // built-in operator. In either case, try to build a built-in
3965  // operation.
3966  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3967}
3968
3969/// BuildCallToMemberFunction - Build a call to a member
3970/// function. MemExpr is the expression that refers to the member
3971/// function (and includes the object parameter), Args/NumArgs are the
3972/// arguments to the function call (not including the object
3973/// parameter). The caller needs to validate that the member
3974/// expression refers to a member function or an overloaded member
3975/// function.
3976Sema::ExprResult
3977Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3978                                SourceLocation LParenLoc, Expr **Args,
3979                                unsigned NumArgs, SourceLocation *CommaLocs,
3980                                SourceLocation RParenLoc) {
3981  // Dig out the member expression. This holds both the object
3982  // argument and the member function we're referring to.
3983  MemberExpr *MemExpr = 0;
3984  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3985    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3986  else
3987    MemExpr = dyn_cast<MemberExpr>(MemExprE);
3988  assert(MemExpr && "Building member call without member expression");
3989
3990  // Extract the object argument.
3991  Expr *ObjectArg = MemExpr->getBase();
3992  if (MemExpr->isArrow())
3993    ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3994                     ObjectArg->getType()->getAsPointerType()->getPointeeType(),
3995                                            ObjectArg->getLocStart());
3996  CXXMethodDecl *Method = 0;
3997  if (OverloadedFunctionDecl *Ovl
3998        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3999    // Add overload candidates
4000    OverloadCandidateSet CandidateSet;
4001    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4002                                                FuncEnd = Ovl->function_end();
4003         Func != FuncEnd; ++Func) {
4004      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4005      Method = cast<CXXMethodDecl>(*Func);
4006      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4007                         /*SuppressUserConversions=*/false);
4008    }
4009
4010    OverloadCandidateSet::iterator Best;
4011    switch (BestViableFunction(CandidateSet, Best)) {
4012    case OR_Success:
4013      Method = cast<CXXMethodDecl>(Best->Function);
4014      break;
4015
4016    case OR_No_Viable_Function:
4017      Diag(MemExpr->getSourceRange().getBegin(),
4018           diag::err_ovl_no_viable_member_function_in_call)
4019        << Ovl->getDeclName() << MemExprE->getSourceRange();
4020      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4021      // FIXME: Leaking incoming expressions!
4022      return true;
4023
4024    case OR_Ambiguous:
4025      Diag(MemExpr->getSourceRange().getBegin(),
4026           diag::err_ovl_ambiguous_member_call)
4027        << Ovl->getDeclName() << MemExprE->getSourceRange();
4028      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4029      // FIXME: Leaking incoming expressions!
4030      return true;
4031
4032    case OR_Deleted:
4033      Diag(MemExpr->getSourceRange().getBegin(),
4034           diag::err_ovl_deleted_member_call)
4035        << Best->Function->isDeleted()
4036        << Ovl->getDeclName() << MemExprE->getSourceRange();
4037      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4038      // FIXME: Leaking incoming expressions!
4039      return true;
4040    }
4041
4042    FixOverloadedFunctionReference(MemExpr, Method);
4043  } else {
4044    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4045  }
4046
4047  assert(Method && "Member call to something that isn't a method?");
4048  ExprOwningPtr<CXXMemberCallExpr>
4049    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4050                                                  NumArgs,
4051                                  Method->getResultType().getNonReferenceType(),
4052                                  RParenLoc));
4053
4054  // Convert the object argument (for a non-static member function call).
4055  if (!Method->isStatic() &&
4056      PerformObjectArgumentInitialization(ObjectArg, Method))
4057    return true;
4058  MemExpr->setBase(ObjectArg);
4059
4060  // Convert the rest of the arguments
4061  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4062  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4063                              RParenLoc))
4064    return true;
4065
4066  return CheckFunctionCall(Method, TheCall.take()).release();
4067}
4068
4069/// BuildCallToObjectOfClassType - Build a call to an object of class
4070/// type (C++ [over.call.object]), which can end up invoking an
4071/// overloaded function call operator (@c operator()) or performing a
4072/// user-defined conversion on the object argument.
4073Sema::ExprResult
4074Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4075                                   SourceLocation LParenLoc,
4076                                   Expr **Args, unsigned NumArgs,
4077                                   SourceLocation *CommaLocs,
4078                                   SourceLocation RParenLoc) {
4079  assert(Object->getType()->isRecordType() && "Requires object type argument");
4080  const RecordType *Record = Object->getType()->getAsRecordType();
4081
4082  // C++ [over.call.object]p1:
4083  //  If the primary-expression E in the function call syntax
4084  //  evaluates to a class object of type “cv T”, then the set of
4085  //  candidate functions includes at least the function call
4086  //  operators of T. The function call operators of T are obtained by
4087  //  ordinary lookup of the name operator() in the context of
4088  //  (E).operator().
4089  OverloadCandidateSet CandidateSet;
4090  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4091  DeclContext::lookup_const_iterator Oper, OperEnd;
4092  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
4093       Oper != OperEnd; ++Oper)
4094    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4095                       CandidateSet, /*SuppressUserConversions=*/false);
4096
4097  // C++ [over.call.object]p2:
4098  //   In addition, for each conversion function declared in T of the
4099  //   form
4100  //
4101  //        operator conversion-type-id () cv-qualifier;
4102  //
4103  //   where cv-qualifier is the same cv-qualification as, or a
4104  //   greater cv-qualification than, cv, and where conversion-type-id
4105  //   denotes the type "pointer to function of (P1,...,Pn) returning
4106  //   R", or the type "reference to pointer to function of
4107  //   (P1,...,Pn) returning R", or the type "reference to function
4108  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4109  //   is also considered as a candidate function. Similarly,
4110  //   surrogate call functions are added to the set of candidate
4111  //   functions for each conversion function declared in an
4112  //   accessible base class provided the function is not hidden
4113  //   within T by another intervening declaration.
4114  //
4115  // FIXME: Look in base classes for more conversion operators!
4116  OverloadedFunctionDecl *Conversions
4117    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4118  for (OverloadedFunctionDecl::function_iterator
4119         Func = Conversions->function_begin(),
4120         FuncEnd = Conversions->function_end();
4121       Func != FuncEnd; ++Func) {
4122    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4123
4124    // Strip the reference type (if any) and then the pointer type (if
4125    // any) to get down to what might be a function type.
4126    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4127    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4128      ConvType = ConvPtrType->getPointeeType();
4129
4130    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4131      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4132  }
4133
4134  // Perform overload resolution.
4135  OverloadCandidateSet::iterator Best;
4136  switch (BestViableFunction(CandidateSet, Best)) {
4137  case OR_Success:
4138    // Overload resolution succeeded; we'll build the appropriate call
4139    // below.
4140    break;
4141
4142  case OR_No_Viable_Function:
4143    Diag(Object->getSourceRange().getBegin(),
4144         diag::err_ovl_no_viable_object_call)
4145      << Object->getType() << Object->getSourceRange();
4146    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4147    break;
4148
4149  case OR_Ambiguous:
4150    Diag(Object->getSourceRange().getBegin(),
4151         diag::err_ovl_ambiguous_object_call)
4152      << Object->getType() << Object->getSourceRange();
4153    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4154    break;
4155
4156  case OR_Deleted:
4157    Diag(Object->getSourceRange().getBegin(),
4158         diag::err_ovl_deleted_object_call)
4159      << Best->Function->isDeleted()
4160      << Object->getType() << Object->getSourceRange();
4161    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4162    break;
4163  }
4164
4165  if (Best == CandidateSet.end()) {
4166    // We had an error; delete all of the subexpressions and return
4167    // the error.
4168    Object->Destroy(Context);
4169    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4170      Args[ArgIdx]->Destroy(Context);
4171    return true;
4172  }
4173
4174  if (Best->Function == 0) {
4175    // Since there is no function declaration, this is one of the
4176    // surrogate candidates. Dig out the conversion function.
4177    CXXConversionDecl *Conv
4178      = cast<CXXConversionDecl>(
4179                         Best->Conversions[0].UserDefined.ConversionFunction);
4180
4181    // We selected one of the surrogate functions that converts the
4182    // object parameter to a function pointer. Perform the conversion
4183    // on the object argument, then let ActOnCallExpr finish the job.
4184    // FIXME: Represent the user-defined conversion in the AST!
4185    ImpCastExprToType(Object,
4186                      Conv->getConversionType().getNonReferenceType(),
4187                      Conv->getConversionType()->isLValueReferenceType());
4188    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4189                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4190                         CommaLocs, RParenLoc).release();
4191  }
4192
4193  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4194  // that calls this method, using Object for the implicit object
4195  // parameter and passing along the remaining arguments.
4196  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4197  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4198
4199  unsigned NumArgsInProto = Proto->getNumArgs();
4200  unsigned NumArgsToCheck = NumArgs;
4201
4202  // Build the full argument list for the method call (the
4203  // implicit object parameter is placed at the beginning of the
4204  // list).
4205  Expr **MethodArgs;
4206  if (NumArgs < NumArgsInProto) {
4207    NumArgsToCheck = NumArgsInProto;
4208    MethodArgs = new Expr*[NumArgsInProto + 1];
4209  } else {
4210    MethodArgs = new Expr*[NumArgs + 1];
4211  }
4212  MethodArgs[0] = Object;
4213  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4214    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4215
4216  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4217                                          SourceLocation());
4218  UsualUnaryConversions(NewFn);
4219
4220  // Once we've built TheCall, all of the expressions are properly
4221  // owned.
4222  QualType ResultTy = Method->getResultType().getNonReferenceType();
4223  ExprOwningPtr<CXXOperatorCallExpr>
4224    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4225                                                    MethodArgs, NumArgs + 1,
4226                                                    ResultTy, RParenLoc));
4227  delete [] MethodArgs;
4228
4229  // We may have default arguments. If so, we need to allocate more
4230  // slots in the call for them.
4231  if (NumArgs < NumArgsInProto)
4232    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4233  else if (NumArgs > NumArgsInProto)
4234    NumArgsToCheck = NumArgsInProto;
4235
4236  bool IsError = false;
4237
4238  // Initialize the implicit object parameter.
4239  IsError |= PerformObjectArgumentInitialization(Object, Method);
4240  TheCall->setArg(0, Object);
4241
4242
4243  // Check the argument types.
4244  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4245    Expr *Arg;
4246    if (i < NumArgs) {
4247      Arg = Args[i];
4248
4249      // Pass the argument.
4250      QualType ProtoArgType = Proto->getArgType(i);
4251      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4252    } else {
4253      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4254    }
4255
4256    TheCall->setArg(i + 1, Arg);
4257  }
4258
4259  // If this is a variadic call, handle args passed through "...".
4260  if (Proto->isVariadic()) {
4261    // Promote the arguments (C99 6.5.2.2p7).
4262    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4263      Expr *Arg = Args[i];
4264      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4265      TheCall->setArg(i + 1, Arg);
4266    }
4267  }
4268
4269  if (IsError) return true;
4270
4271  return CheckFunctionCall(Method, TheCall.take()).release();
4272}
4273
4274/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4275///  (if one exists), where @c Base is an expression of class type and
4276/// @c Member is the name of the member we're trying to find.
4277Action::ExprResult
4278Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4279                               SourceLocation MemberLoc,
4280                               IdentifierInfo &Member) {
4281  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4282
4283  // C++ [over.ref]p1:
4284  //
4285  //   [...] An expression x->m is interpreted as (x.operator->())->m
4286  //   for a class object x of type T if T::operator->() exists and if
4287  //   the operator is selected as the best match function by the
4288  //   overload resolution mechanism (13.3).
4289  // FIXME: look in base classes.
4290  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4291  OverloadCandidateSet CandidateSet;
4292  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4293
4294  DeclContext::lookup_const_iterator Oper, OperEnd;
4295  for (llvm::tie(Oper, OperEnd)
4296         = BaseRecord->getDecl()->lookup(Context, OpName);
4297       Oper != OperEnd; ++Oper)
4298    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4299                       /*SuppressUserConversions=*/false);
4300
4301  ExprOwningPtr<Expr> BasePtr(this, Base);
4302
4303  // Perform overload resolution.
4304  OverloadCandidateSet::iterator Best;
4305  switch (BestViableFunction(CandidateSet, Best)) {
4306  case OR_Success:
4307    // Overload resolution succeeded; we'll build the call below.
4308    break;
4309
4310  case OR_No_Viable_Function:
4311    if (CandidateSet.empty())
4312      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4313        << BasePtr->getType() << BasePtr->getSourceRange();
4314    else
4315      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4316        << "operator->" << BasePtr->getSourceRange();
4317    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4318    return true;
4319
4320  case OR_Ambiguous:
4321    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4322      << "operator->" << BasePtr->getSourceRange();
4323    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4324    return true;
4325
4326  case OR_Deleted:
4327    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4328      << Best->Function->isDeleted()
4329      << "operator->" << BasePtr->getSourceRange();
4330    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4331    return true;
4332  }
4333
4334  // Convert the object parameter.
4335  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4336  if (PerformObjectArgumentInitialization(Base, Method))
4337    return true;
4338
4339  // No concerns about early exits now.
4340  BasePtr.take();
4341
4342  // Build the operator call.
4343  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4344                                           SourceLocation());
4345  UsualUnaryConversions(FnExpr);
4346  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4347                                 Method->getResultType().getNonReferenceType(),
4348                                 OpLoc);
4349  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4350                                  MemberLoc, Member, DeclPtrTy()).release();
4351}
4352
4353/// FixOverloadedFunctionReference - E is an expression that refers to
4354/// a C++ overloaded function (possibly with some parentheses and
4355/// perhaps a '&' around it). We have resolved the overloaded function
4356/// to the function declaration Fn, so patch up the expression E to
4357/// refer (possibly indirectly) to Fn.
4358void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4359  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4360    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4361    E->setType(PE->getSubExpr()->getType());
4362  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4363    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4364           "Can only take the address of an overloaded function");
4365    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4366      if (Method->isStatic()) {
4367        // Do nothing: static member functions aren't any different
4368        // from non-member functions.
4369      }
4370      else if (QualifiedDeclRefExpr *DRE
4371                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4372        // We have taken the address of a pointer to member
4373        // function. Perform the computation here so that we get the
4374        // appropriate pointer to member type.
4375        DRE->setDecl(Fn);
4376        DRE->setType(Fn->getType());
4377        QualType ClassType
4378          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4379        E->setType(Context.getMemberPointerType(Fn->getType(),
4380                                                ClassType.getTypePtr()));
4381        return;
4382      }
4383    }
4384    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4385    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4386  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4387    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4388           "Expected overloaded function");
4389    DR->setDecl(Fn);
4390    E->setType(Fn->getType());
4391  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4392    MemExpr->setMemberDecl(Fn);
4393    E->setType(Fn->getType());
4394  } else {
4395    assert(false && "Invalid reference to overloaded function");
4396  }
4397}
4398
4399} // end namespace clang
4400