SemaOverload.cpp revision 33bbbc5ec8269bc2cde5b84f970fa49319a30267
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAsPointerType())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304    // Is the function New an overload of the function Old?
305    QualType OldQType = Context.getCanonicalType(Old->getType());
306    QualType NewQType = Context.getCanonicalType(New->getType());
307
308    // Compare the signatures (C++ 1.3.10) of the two functions to
309    // determine whether they are overloads. If we find any mismatch
310    // in the signature, they are overloads.
311
312    // If either of these functions is a K&R-style function (no
313    // prototype), then we consider them to have matching signatures.
314    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
316      return false;
317
318    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
320
321    // The signature of a function includes the types of its
322    // parameters (C++ 1.3.10), which includes the presence or absence
323    // of the ellipsis; see C++ DR 357).
324    if (OldQType != NewQType &&
325        (OldType->getNumArgs() != NewType->getNumArgs() ||
326         OldType->isVariadic() != NewType->isVariadic() ||
327         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328                     NewType->arg_type_begin())))
329      return true;
330
331    // If the function is a class member, its signature includes the
332    // cv-qualifiers (if any) on the function itself.
333    //
334    // As part of this, also check whether one of the member functions
335    // is static, in which case they are not overloads (C++
336    // 13.1p2). While not part of the definition of the signature,
337    // this check is important to determine whether these functions
338    // can be overloaded.
339    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341    if (OldMethod && NewMethod &&
342        !OldMethod->isStatic() && !NewMethod->isStatic() &&
343        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
344      return true;
345
346    // The signatures match; this is not an overload.
347    return false;
348  } else {
349    // (C++ 13p1):
350    //   Only function declarations can be overloaded; object and type
351    //   declarations cannot be overloaded.
352    return false;
353  }
354}
355
356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
360///
361///   void f(float f);
362///   void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
381ImplicitConversionSequence
382Sema::TryImplicitConversion(Expr* From, QualType ToType,
383                            bool SuppressUserConversions,
384                            bool AllowExplicit, bool ForceRValue)
385{
386  ImplicitConversionSequence ICS;
387  if (IsStandardConversion(From, ToType, ICS.Standard))
388    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
389  else if (getLangOptions().CPlusPlus &&
390           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
391                                   !SuppressUserConversions, AllowExplicit,
392                                   ForceRValue)) {
393    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
394    // C++ [over.ics.user]p4:
395    //   A conversion of an expression of class type to the same class
396    //   type is given Exact Match rank, and a conversion of an
397    //   expression of class type to a base class of that type is
398    //   given Conversion rank, in spite of the fact that a copy
399    //   constructor (i.e., a user-defined conversion function) is
400    //   called for those cases.
401    if (CXXConstructorDecl *Constructor
402          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
403      QualType FromCanon
404        = Context.getCanonicalType(From->getType().getUnqualifiedType());
405      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
407        // Turn this into a "standard" conversion sequence, so that it
408        // gets ranked with standard conversion sequences.
409        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410        ICS.Standard.setAsIdentityConversion();
411        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
413        ICS.Standard.CopyConstructor = Constructor;
414        if (ToCanon != FromCanon)
415          ICS.Standard.Second = ICK_Derived_To_Base;
416      }
417    }
418
419    // C++ [over.best.ics]p4:
420    //   However, when considering the argument of a user-defined
421    //   conversion function that is a candidate by 13.3.1.3 when
422    //   invoked for the copying of the temporary in the second step
423    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424    //   13.3.1.6 in all cases, only standard conversion sequences and
425    //   ellipsis conversion sequences are allowed.
426    if (SuppressUserConversions &&
427        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
429  } else
430    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
431
432  return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445                           StandardConversionSequence &SCS)
446{
447  QualType FromType = From->getType();
448
449  // Standard conversions (C++ [conv])
450  SCS.setAsIdentityConversion();
451  SCS.Deprecated = false;
452  SCS.IncompatibleObjC = false;
453  SCS.FromTypePtr = FromType.getAsOpaquePtr();
454  SCS.CopyConstructor = 0;
455
456  // There are no standard conversions for class types in C++, so
457  // abort early. When overloading in C, however, we do permit
458  if (FromType->isRecordType() || ToType->isRecordType()) {
459    if (getLangOptions().CPlusPlus)
460      return false;
461
462    // When we're overloading in C, we allow, as standard conversions,
463  }
464
465  // The first conversion can be an lvalue-to-rvalue conversion,
466  // array-to-pointer conversion, or function-to-pointer conversion
467  // (C++ 4p1).
468
469  // Lvalue-to-rvalue conversion (C++ 4.1):
470  //   An lvalue (3.10) of a non-function, non-array type T can be
471  //   converted to an rvalue.
472  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473  if (argIsLvalue == Expr::LV_Valid &&
474      !FromType->isFunctionType() && !FromType->isArrayType() &&
475      Context.getCanonicalType(FromType) != Context.OverloadTy) {
476    SCS.First = ICK_Lvalue_To_Rvalue;
477
478    // If T is a non-class type, the type of the rvalue is the
479    // cv-unqualified version of T. Otherwise, the type of the rvalue
480    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481    // just strip the qualifiers because they don't matter.
482
483    // FIXME: Doesn't see through to qualifiers behind a typedef!
484    FromType = FromType.getUnqualifiedType();
485  }
486  // Array-to-pointer conversion (C++ 4.2)
487  else if (FromType->isArrayType()) {
488    SCS.First = ICK_Array_To_Pointer;
489
490    // An lvalue or rvalue of type "array of N T" or "array of unknown
491    // bound of T" can be converted to an rvalue of type "pointer to
492    // T" (C++ 4.2p1).
493    FromType = Context.getArrayDecayedType(FromType);
494
495    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496      // This conversion is deprecated. (C++ D.4).
497      SCS.Deprecated = true;
498
499      // For the purpose of ranking in overload resolution
500      // (13.3.3.1.1), this conversion is considered an
501      // array-to-pointer conversion followed by a qualification
502      // conversion (4.4). (C++ 4.2p2)
503      SCS.Second = ICK_Identity;
504      SCS.Third = ICK_Qualification;
505      SCS.ToTypePtr = ToType.getAsOpaquePtr();
506      return true;
507    }
508  }
509  // Function-to-pointer conversion (C++ 4.3).
510  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
511    SCS.First = ICK_Function_To_Pointer;
512
513    // An lvalue of function type T can be converted to an rvalue of
514    // type "pointer to T." The result is a pointer to the
515    // function. (C++ 4.3p1).
516    FromType = Context.getPointerType(FromType);
517  }
518  // Address of overloaded function (C++ [over.over]).
519  else if (FunctionDecl *Fn
520             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521    SCS.First = ICK_Function_To_Pointer;
522
523    // We were able to resolve the address of the overloaded function,
524    // so we can convert to the type of that function.
525    FromType = Fn->getType();
526    if (ToType->isLValueReferenceType())
527      FromType = Context.getLValueReferenceType(FromType);
528    else if (ToType->isRValueReferenceType())
529      FromType = Context.getRValueReferenceType(FromType);
530    else if (ToType->isMemberPointerType()) {
531      // Resolve address only succeeds if both sides are member pointers,
532      // but it doesn't have to be the same class. See DR 247.
533      // Note that this means that the type of &Derived::fn can be
534      // Ret (Base::*)(Args) if the fn overload actually found is from the
535      // base class, even if it was brought into the derived class via a
536      // using declaration. The standard isn't clear on this issue at all.
537      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538      FromType = Context.getMemberPointerType(FromType,
539                    Context.getTypeDeclType(M->getParent()).getTypePtr());
540    } else
541      FromType = Context.getPointerType(FromType);
542  }
543  // We don't require any conversions for the first step.
544  else {
545    SCS.First = ICK_Identity;
546  }
547
548  // The second conversion can be an integral promotion, floating
549  // point promotion, integral conversion, floating point conversion,
550  // floating-integral conversion, pointer conversion,
551  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
552  // For overloading in C, this can also be a "compatible-type"
553  // conversion.
554  bool IncompatibleObjC = false;
555  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
556    // The unqualified versions of the types are the same: there's no
557    // conversion to do.
558    SCS.Second = ICK_Identity;
559  }
560  // Integral promotion (C++ 4.5).
561  else if (IsIntegralPromotion(From, FromType, ToType)) {
562    SCS.Second = ICK_Integral_Promotion;
563    FromType = ToType.getUnqualifiedType();
564  }
565  // Floating point promotion (C++ 4.6).
566  else if (IsFloatingPointPromotion(FromType, ToType)) {
567    SCS.Second = ICK_Floating_Promotion;
568    FromType = ToType.getUnqualifiedType();
569  }
570  // Complex promotion (Clang extension)
571  else if (IsComplexPromotion(FromType, ToType)) {
572    SCS.Second = ICK_Complex_Promotion;
573    FromType = ToType.getUnqualifiedType();
574  }
575  // Integral conversions (C++ 4.7).
576  // FIXME: isIntegralType shouldn't be true for enums in C++.
577  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
578           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
579    SCS.Second = ICK_Integral_Conversion;
580    FromType = ToType.getUnqualifiedType();
581  }
582  // Floating point conversions (C++ 4.8).
583  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
584    SCS.Second = ICK_Floating_Conversion;
585    FromType = ToType.getUnqualifiedType();
586  }
587  // Complex conversions (C99 6.3.1.6)
588  else if (FromType->isComplexType() && ToType->isComplexType()) {
589    SCS.Second = ICK_Complex_Conversion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating-integral conversions (C++ 4.9).
593  // FIXME: isIntegralType shouldn't be true for enums in C++.
594  else if ((FromType->isFloatingType() &&
595            ToType->isIntegralType() && !ToType->isBooleanType() &&
596                                        !ToType->isEnumeralType()) ||
597           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598            ToType->isFloatingType())) {
599    SCS.Second = ICK_Floating_Integral;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Complex-real conversions (C99 6.3.1.7)
603  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604           (ToType->isComplexType() && FromType->isArithmeticType())) {
605    SCS.Second = ICK_Complex_Real;
606    FromType = ToType.getUnqualifiedType();
607  }
608  // Pointer conversions (C++ 4.10).
609  else if (IsPointerConversion(From, FromType, ToType, FromType,
610                               IncompatibleObjC)) {
611    SCS.Second = ICK_Pointer_Conversion;
612    SCS.IncompatibleObjC = IncompatibleObjC;
613  }
614  // Pointer to member conversions (4.11).
615  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616    SCS.Second = ICK_Pointer_Member;
617  }
618  // Boolean conversions (C++ 4.12).
619  else if (ToType->isBooleanType() &&
620           (FromType->isArithmeticType() ||
621            FromType->isEnumeralType() ||
622            FromType->isPointerType() ||
623            FromType->isBlockPointerType() ||
624            FromType->isMemberPointerType())) {
625    SCS.Second = ICK_Boolean_Conversion;
626    FromType = Context.BoolTy;
627  }
628  // Compatible conversions (Clang extension for C function overloading)
629  else if (!getLangOptions().CPlusPlus &&
630           Context.typesAreCompatible(ToType, FromType)) {
631    SCS.Second = ICK_Compatible_Conversion;
632  } else {
633    // No second conversion required.
634    SCS.Second = ICK_Identity;
635  }
636
637  QualType CanonFrom;
638  QualType CanonTo;
639  // The third conversion can be a qualification conversion (C++ 4p1).
640  if (IsQualificationConversion(FromType, ToType)) {
641    SCS.Third = ICK_Qualification;
642    FromType = ToType;
643    CanonFrom = Context.getCanonicalType(FromType);
644    CanonTo = Context.getCanonicalType(ToType);
645  } else {
646    // No conversion required
647    SCS.Third = ICK_Identity;
648
649    // C++ [over.best.ics]p6:
650    //   [...] Any difference in top-level cv-qualification is
651    //   subsumed by the initialization itself and does not constitute
652    //   a conversion. [...]
653    CanonFrom = Context.getCanonicalType(FromType);
654    CanonTo = Context.getCanonicalType(ToType);
655    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
656        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
657      FromType = ToType;
658      CanonFrom = CanonTo;
659    }
660  }
661
662  // If we have not converted the argument type to the parameter type,
663  // this is a bad conversion sequence.
664  if (CanonFrom != CanonTo)
665    return false;
666
667  SCS.ToTypePtr = FromType.getAsOpaquePtr();
668  return true;
669}
670
671/// IsIntegralPromotion - Determines whether the conversion from the
672/// expression From (whose potentially-adjusted type is FromType) to
673/// ToType is an integral promotion (C++ 4.5). If so, returns true and
674/// sets PromotedType to the promoted type.
675bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
676{
677  const BuiltinType *To = ToType->getAsBuiltinType();
678  // All integers are built-in.
679  if (!To) {
680    return false;
681  }
682
683  // An rvalue of type char, signed char, unsigned char, short int, or
684  // unsigned short int can be converted to an rvalue of type int if
685  // int can represent all the values of the source type; otherwise,
686  // the source rvalue can be converted to an rvalue of type unsigned
687  // int (C++ 4.5p1).
688  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
689    if (// We can promote any signed, promotable integer type to an int
690        (FromType->isSignedIntegerType() ||
691         // We can promote any unsigned integer type whose size is
692         // less than int to an int.
693         (!FromType->isSignedIntegerType() &&
694          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
695      return To->getKind() == BuiltinType::Int;
696    }
697
698    return To->getKind() == BuiltinType::UInt;
699  }
700
701  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
702  // can be converted to an rvalue of the first of the following types
703  // that can represent all the values of its underlying type: int,
704  // unsigned int, long, or unsigned long (C++ 4.5p2).
705  if ((FromType->isEnumeralType() || FromType->isWideCharType())
706      && ToType->isIntegerType()) {
707    // Determine whether the type we're converting from is signed or
708    // unsigned.
709    bool FromIsSigned;
710    uint64_t FromSize = Context.getTypeSize(FromType);
711    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
712      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
713      FromIsSigned = UnderlyingType->isSignedIntegerType();
714    } else {
715      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
716      FromIsSigned = true;
717    }
718
719    // The types we'll try to promote to, in the appropriate
720    // order. Try each of these types.
721    QualType PromoteTypes[6] = {
722      Context.IntTy, Context.UnsignedIntTy,
723      Context.LongTy, Context.UnsignedLongTy ,
724      Context.LongLongTy, Context.UnsignedLongLongTy
725    };
726    for (int Idx = 0; Idx < 6; ++Idx) {
727      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
728      if (FromSize < ToSize ||
729          (FromSize == ToSize &&
730           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
731        // We found the type that we can promote to. If this is the
732        // type we wanted, we have a promotion. Otherwise, no
733        // promotion.
734        return Context.getCanonicalType(ToType).getUnqualifiedType()
735          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
736      }
737    }
738  }
739
740  // An rvalue for an integral bit-field (9.6) can be converted to an
741  // rvalue of type int if int can represent all the values of the
742  // bit-field; otherwise, it can be converted to unsigned int if
743  // unsigned int can represent all the values of the bit-field. If
744  // the bit-field is larger yet, no integral promotion applies to
745  // it. If the bit-field has an enumerated type, it is treated as any
746  // other value of that type for promotion purposes (C++ 4.5p3).
747  // FIXME: We should delay checking of bit-fields until we actually
748  // perform the conversion.
749  using llvm::APSInt;
750  if (From)
751    if (FieldDecl *MemberDecl = From->getBitField()) {
752      APSInt BitWidth;
753      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
754          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
755        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
756        ToSize = Context.getTypeSize(ToType);
757
758        // Are we promoting to an int from a bitfield that fits in an int?
759        if (BitWidth < ToSize ||
760            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
761          return To->getKind() == BuiltinType::Int;
762        }
763
764        // Are we promoting to an unsigned int from an unsigned bitfield
765        // that fits into an unsigned int?
766        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
767          return To->getKind() == BuiltinType::UInt;
768        }
769
770        return false;
771      }
772    }
773
774  // An rvalue of type bool can be converted to an rvalue of type int,
775  // with false becoming zero and true becoming one (C++ 4.5p4).
776  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
777    return true;
778  }
779
780  return false;
781}
782
783/// IsFloatingPointPromotion - Determines whether the conversion from
784/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
785/// returns true and sets PromotedType to the promoted type.
786bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
787{
788  /// An rvalue of type float can be converted to an rvalue of type
789  /// double. (C++ 4.6p1).
790  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
791    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
792      if (FromBuiltin->getKind() == BuiltinType::Float &&
793          ToBuiltin->getKind() == BuiltinType::Double)
794        return true;
795
796      // C99 6.3.1.5p1:
797      //   When a float is promoted to double or long double, or a
798      //   double is promoted to long double [...].
799      if (!getLangOptions().CPlusPlus &&
800          (FromBuiltin->getKind() == BuiltinType::Float ||
801           FromBuiltin->getKind() == BuiltinType::Double) &&
802          (ToBuiltin->getKind() == BuiltinType::LongDouble))
803        return true;
804    }
805
806  return false;
807}
808
809/// \brief Determine if a conversion is a complex promotion.
810///
811/// A complex promotion is defined as a complex -> complex conversion
812/// where the conversion between the underlying real types is a
813/// floating-point or integral promotion.
814bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
815  const ComplexType *FromComplex = FromType->getAsComplexType();
816  if (!FromComplex)
817    return false;
818
819  const ComplexType *ToComplex = ToType->getAsComplexType();
820  if (!ToComplex)
821    return false;
822
823  return IsFloatingPointPromotion(FromComplex->getElementType(),
824                                  ToComplex->getElementType()) ||
825    IsIntegralPromotion(0, FromComplex->getElementType(),
826                        ToComplex->getElementType());
827}
828
829/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
830/// the pointer type FromPtr to a pointer to type ToPointee, with the
831/// same type qualifiers as FromPtr has on its pointee type. ToType,
832/// if non-empty, will be a pointer to ToType that may or may not have
833/// the right set of qualifiers on its pointee.
834static QualType
835BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
836                                   QualType ToPointee, QualType ToType,
837                                   ASTContext &Context) {
838  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
839  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
840  unsigned Quals = CanonFromPointee.getCVRQualifiers();
841
842  // Exact qualifier match -> return the pointer type we're converting to.
843  if (CanonToPointee.getCVRQualifiers() == Quals) {
844    // ToType is exactly what we need. Return it.
845    if (ToType.getTypePtr())
846      return ToType;
847
848    // Build a pointer to ToPointee. It has the right qualifiers
849    // already.
850    return Context.getPointerType(ToPointee);
851  }
852
853  // Just build a canonical type that has the right qualifiers.
854  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
855}
856
857/// IsPointerConversion - Determines whether the conversion of the
858/// expression From, which has the (possibly adjusted) type FromType,
859/// can be converted to the type ToType via a pointer conversion (C++
860/// 4.10). If so, returns true and places the converted type (that
861/// might differ from ToType in its cv-qualifiers at some level) into
862/// ConvertedType.
863///
864/// This routine also supports conversions to and from block pointers
865/// and conversions with Objective-C's 'id', 'id<protocols...>', and
866/// pointers to interfaces. FIXME: Once we've determined the
867/// appropriate overloading rules for Objective-C, we may want to
868/// split the Objective-C checks into a different routine; however,
869/// GCC seems to consider all of these conversions to be pointer
870/// conversions, so for now they live here. IncompatibleObjC will be
871/// set if the conversion is an allowed Objective-C conversion that
872/// should result in a warning.
873bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
874                               QualType& ConvertedType,
875                               bool &IncompatibleObjC)
876{
877  IncompatibleObjC = false;
878  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
879    return true;
880
881  // Conversion from a null pointer constant to any Objective-C pointer type.
882  if (Context.isObjCObjectPointerType(ToType) &&
883      From->isNullPointerConstant(Context)) {
884    ConvertedType = ToType;
885    return true;
886  }
887
888  // Blocks: Block pointers can be converted to void*.
889  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
890      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
891    ConvertedType = ToType;
892    return true;
893  }
894  // Blocks: A null pointer constant can be converted to a block
895  // pointer type.
896  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
897    ConvertedType = ToType;
898    return true;
899  }
900
901  const PointerType* ToTypePtr = ToType->getAsPointerType();
902  if (!ToTypePtr)
903    return false;
904
905  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
906  if (From->isNullPointerConstant(Context)) {
907    ConvertedType = ToType;
908    return true;
909  }
910
911  // Beyond this point, both types need to be pointers.
912  const PointerType *FromTypePtr = FromType->getAsPointerType();
913  if (!FromTypePtr)
914    return false;
915
916  QualType FromPointeeType = FromTypePtr->getPointeeType();
917  QualType ToPointeeType = ToTypePtr->getPointeeType();
918
919  // An rvalue of type "pointer to cv T," where T is an object type,
920  // can be converted to an rvalue of type "pointer to cv void" (C++
921  // 4.10p2).
922  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
923    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
924                                                       ToPointeeType,
925                                                       ToType, Context);
926    return true;
927  }
928
929  // When we're overloading in C, we allow a special kind of pointer
930  // conversion for compatible-but-not-identical pointee types.
931  if (!getLangOptions().CPlusPlus &&
932      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
933    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
934                                                       ToPointeeType,
935                                                       ToType, Context);
936    return true;
937  }
938
939  // C++ [conv.ptr]p3:
940  //
941  //   An rvalue of type "pointer to cv D," where D is a class type,
942  //   can be converted to an rvalue of type "pointer to cv B," where
943  //   B is a base class (clause 10) of D. If B is an inaccessible
944  //   (clause 11) or ambiguous (10.2) base class of D, a program that
945  //   necessitates this conversion is ill-formed. The result of the
946  //   conversion is a pointer to the base class sub-object of the
947  //   derived class object. The null pointer value is converted to
948  //   the null pointer value of the destination type.
949  //
950  // Note that we do not check for ambiguity or inaccessibility
951  // here. That is handled by CheckPointerConversion.
952  if (getLangOptions().CPlusPlus &&
953      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
954      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
955    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
956                                                       ToPointeeType,
957                                                       ToType, Context);
958    return true;
959  }
960
961  return false;
962}
963
964/// isObjCPointerConversion - Determines whether this is an
965/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
966/// with the same arguments and return values.
967bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
968                                   QualType& ConvertedType,
969                                   bool &IncompatibleObjC) {
970  if (!getLangOptions().ObjC1)
971    return false;
972
973  // Conversions with Objective-C's id<...>.
974  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
975      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
976    ConvertedType = ToType;
977    return true;
978  }
979
980  // Beyond this point, both types need to be pointers or block pointers.
981  QualType ToPointeeType;
982  const PointerType* ToTypePtr = ToType->getAsPointerType();
983  if (ToTypePtr)
984    ToPointeeType = ToTypePtr->getPointeeType();
985  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
986    ToPointeeType = ToBlockPtr->getPointeeType();
987  else
988    return false;
989
990  QualType FromPointeeType;
991  const PointerType *FromTypePtr = FromType->getAsPointerType();
992  if (FromTypePtr)
993    FromPointeeType = FromTypePtr->getPointeeType();
994  else if (const BlockPointerType *FromBlockPtr
995             = FromType->getAsBlockPointerType())
996    FromPointeeType = FromBlockPtr->getPointeeType();
997  else
998    return false;
999
1000  // Objective C++: We're able to convert from a pointer to an
1001  // interface to a pointer to a different interface.
1002  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1003  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1004  if (FromIface && ToIface &&
1005      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
1006    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1007                                                       ToPointeeType,
1008                                                       ToType, Context);
1009    return true;
1010  }
1011
1012  if (FromIface && ToIface &&
1013      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1014    // Okay: this is some kind of implicit downcast of Objective-C
1015    // interfaces, which is permitted. However, we're going to
1016    // complain about it.
1017    IncompatibleObjC = true;
1018    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1019                                                       ToPointeeType,
1020                                                       ToType, Context);
1021    return true;
1022  }
1023
1024  // Objective C++: We're able to convert between "id" and a pointer
1025  // to any interface (in both directions).
1026  if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1027      || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
1028    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1029                                                       ToPointeeType,
1030                                                       ToType, Context);
1031    return true;
1032  }
1033
1034  // Objective C++: Allow conversions between the Objective-C "id" and
1035  // "Class", in either direction.
1036  if ((Context.isObjCIdStructType(FromPointeeType) &&
1037       Context.isObjCClassStructType(ToPointeeType)) ||
1038      (Context.isObjCClassStructType(FromPointeeType) &&
1039       Context.isObjCIdStructType(ToPointeeType))) {
1040    ConvertedType = ToType;
1041    return true;
1042  }
1043
1044  // If we have pointers to pointers, recursively check whether this
1045  // is an Objective-C conversion.
1046  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1047      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1048                              IncompatibleObjC)) {
1049    // We always complain about this conversion.
1050    IncompatibleObjC = true;
1051    ConvertedType = ToType;
1052    return true;
1053  }
1054
1055  // If we have pointers to functions or blocks, check whether the only
1056  // differences in the argument and result types are in Objective-C
1057  // pointer conversions. If so, we permit the conversion (but
1058  // complain about it).
1059  const FunctionProtoType *FromFunctionType
1060    = FromPointeeType->getAsFunctionProtoType();
1061  const FunctionProtoType *ToFunctionType
1062    = ToPointeeType->getAsFunctionProtoType();
1063  if (FromFunctionType && ToFunctionType) {
1064    // If the function types are exactly the same, this isn't an
1065    // Objective-C pointer conversion.
1066    if (Context.getCanonicalType(FromPointeeType)
1067          == Context.getCanonicalType(ToPointeeType))
1068      return false;
1069
1070    // Perform the quick checks that will tell us whether these
1071    // function types are obviously different.
1072    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1073        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1074        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1075      return false;
1076
1077    bool HasObjCConversion = false;
1078    if (Context.getCanonicalType(FromFunctionType->getResultType())
1079          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1080      // Okay, the types match exactly. Nothing to do.
1081    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1082                                       ToFunctionType->getResultType(),
1083                                       ConvertedType, IncompatibleObjC)) {
1084      // Okay, we have an Objective-C pointer conversion.
1085      HasObjCConversion = true;
1086    } else {
1087      // Function types are too different. Abort.
1088      return false;
1089    }
1090
1091    // Check argument types.
1092    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1093         ArgIdx != NumArgs; ++ArgIdx) {
1094      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1095      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1096      if (Context.getCanonicalType(FromArgType)
1097            == Context.getCanonicalType(ToArgType)) {
1098        // Okay, the types match exactly. Nothing to do.
1099      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1100                                         ConvertedType, IncompatibleObjC)) {
1101        // Okay, we have an Objective-C pointer conversion.
1102        HasObjCConversion = true;
1103      } else {
1104        // Argument types are too different. Abort.
1105        return false;
1106      }
1107    }
1108
1109    if (HasObjCConversion) {
1110      // We had an Objective-C conversion. Allow this pointer
1111      // conversion, but complain about it.
1112      ConvertedType = ToType;
1113      IncompatibleObjC = true;
1114      return true;
1115    }
1116  }
1117
1118  return false;
1119}
1120
1121/// CheckPointerConversion - Check the pointer conversion from the
1122/// expression From to the type ToType. This routine checks for
1123/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1124/// conversions for which IsPointerConversion has already returned
1125/// true. It returns true and produces a diagnostic if there was an
1126/// error, or returns false otherwise.
1127bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1128  QualType FromType = From->getType();
1129
1130  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1131    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1132      QualType FromPointeeType = FromPtrType->getPointeeType(),
1133               ToPointeeType   = ToPtrType->getPointeeType();
1134
1135      // Objective-C++ conversions are always okay.
1136      // FIXME: We should have a different class of conversions for
1137      // the Objective-C++ implicit conversions.
1138      if (Context.isObjCIdStructType(FromPointeeType) ||
1139          Context.isObjCIdStructType(ToPointeeType) ||
1140          Context.isObjCClassStructType(FromPointeeType) ||
1141          Context.isObjCClassStructType(ToPointeeType))
1142        return false;
1143
1144      if (FromPointeeType->isRecordType() &&
1145          ToPointeeType->isRecordType()) {
1146        // We must have a derived-to-base conversion. Check an
1147        // ambiguous or inaccessible conversion.
1148        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1149                                            From->getExprLoc(),
1150                                            From->getSourceRange());
1151      }
1152    }
1153
1154  return false;
1155}
1156
1157/// IsMemberPointerConversion - Determines whether the conversion of the
1158/// expression From, which has the (possibly adjusted) type FromType, can be
1159/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1160/// If so, returns true and places the converted type (that might differ from
1161/// ToType in its cv-qualifiers at some level) into ConvertedType.
1162bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1163                                     QualType ToType, QualType &ConvertedType)
1164{
1165  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1166  if (!ToTypePtr)
1167    return false;
1168
1169  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1170  if (From->isNullPointerConstant(Context)) {
1171    ConvertedType = ToType;
1172    return true;
1173  }
1174
1175  // Otherwise, both types have to be member pointers.
1176  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1177  if (!FromTypePtr)
1178    return false;
1179
1180  // A pointer to member of B can be converted to a pointer to member of D,
1181  // where D is derived from B (C++ 4.11p2).
1182  QualType FromClass(FromTypePtr->getClass(), 0);
1183  QualType ToClass(ToTypePtr->getClass(), 0);
1184  // FIXME: What happens when these are dependent? Is this function even called?
1185
1186  if (IsDerivedFrom(ToClass, FromClass)) {
1187    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1188                                                 ToClass.getTypePtr());
1189    return true;
1190  }
1191
1192  return false;
1193}
1194
1195/// CheckMemberPointerConversion - Check the member pointer conversion from the
1196/// expression From to the type ToType. This routine checks for ambiguous or
1197/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1198/// for which IsMemberPointerConversion has already returned true. It returns
1199/// true and produces a diagnostic if there was an error, or returns false
1200/// otherwise.
1201bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1202  QualType FromType = From->getType();
1203  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1204  if (!FromPtrType)
1205    return false;
1206
1207  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1208  assert(ToPtrType && "No member pointer cast has a target type "
1209                      "that is not a member pointer.");
1210
1211  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1212  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1213
1214  // FIXME: What about dependent types?
1215  assert(FromClass->isRecordType() && "Pointer into non-class.");
1216  assert(ToClass->isRecordType() && "Pointer into non-class.");
1217
1218  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1219                  /*DetectVirtual=*/true);
1220  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1221  assert(DerivationOkay &&
1222         "Should not have been called if derivation isn't OK.");
1223  (void)DerivationOkay;
1224
1225  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1226                                  getUnqualifiedType())) {
1227    // Derivation is ambiguous. Redo the check to find the exact paths.
1228    Paths.clear();
1229    Paths.setRecordingPaths(true);
1230    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1231    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1232    (void)StillOkay;
1233
1234    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1235    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1236      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1237    return true;
1238  }
1239
1240  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1241    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1242      << FromClass << ToClass << QualType(VBase, 0)
1243      << From->getSourceRange();
1244    return true;
1245  }
1246
1247  return false;
1248}
1249
1250/// IsQualificationConversion - Determines whether the conversion from
1251/// an rvalue of type FromType to ToType is a qualification conversion
1252/// (C++ 4.4).
1253bool
1254Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1255{
1256  FromType = Context.getCanonicalType(FromType);
1257  ToType = Context.getCanonicalType(ToType);
1258
1259  // If FromType and ToType are the same type, this is not a
1260  // qualification conversion.
1261  if (FromType == ToType)
1262    return false;
1263
1264  // (C++ 4.4p4):
1265  //   A conversion can add cv-qualifiers at levels other than the first
1266  //   in multi-level pointers, subject to the following rules: [...]
1267  bool PreviousToQualsIncludeConst = true;
1268  bool UnwrappedAnyPointer = false;
1269  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1270    // Within each iteration of the loop, we check the qualifiers to
1271    // determine if this still looks like a qualification
1272    // conversion. Then, if all is well, we unwrap one more level of
1273    // pointers or pointers-to-members and do it all again
1274    // until there are no more pointers or pointers-to-members left to
1275    // unwrap.
1276    UnwrappedAnyPointer = true;
1277
1278    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1279    //      2,j, and similarly for volatile.
1280    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1281      return false;
1282
1283    //   -- if the cv 1,j and cv 2,j are different, then const is in
1284    //      every cv for 0 < k < j.
1285    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1286        && !PreviousToQualsIncludeConst)
1287      return false;
1288
1289    // Keep track of whether all prior cv-qualifiers in the "to" type
1290    // include const.
1291    PreviousToQualsIncludeConst
1292      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1293  }
1294
1295  // We are left with FromType and ToType being the pointee types
1296  // after unwrapping the original FromType and ToType the same number
1297  // of types. If we unwrapped any pointers, and if FromType and
1298  // ToType have the same unqualified type (since we checked
1299  // qualifiers above), then this is a qualification conversion.
1300  return UnwrappedAnyPointer &&
1301    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1302}
1303
1304/// Determines whether there is a user-defined conversion sequence
1305/// (C++ [over.ics.user]) that converts expression From to the type
1306/// ToType. If such a conversion exists, User will contain the
1307/// user-defined conversion sequence that performs such a conversion
1308/// and this routine will return true. Otherwise, this routine returns
1309/// false and User is unspecified.
1310///
1311/// \param AllowConversionFunctions true if the conversion should
1312/// consider conversion functions at all. If false, only constructors
1313/// will be considered.
1314///
1315/// \param AllowExplicit  true if the conversion should consider C++0x
1316/// "explicit" conversion functions as well as non-explicit conversion
1317/// functions (C++0x [class.conv.fct]p2).
1318///
1319/// \param ForceRValue  true if the expression should be treated as an rvalue
1320/// for overload resolution.
1321bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1322                                   UserDefinedConversionSequence& User,
1323                                   bool AllowConversionFunctions,
1324                                   bool AllowExplicit, bool ForceRValue)
1325{
1326  OverloadCandidateSet CandidateSet;
1327  if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1328    if (CXXRecordDecl *ToRecordDecl
1329          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1330      // C++ [over.match.ctor]p1:
1331      //   When objects of class type are direct-initialized (8.5), or
1332      //   copy-initialized from an expression of the same or a
1333      //   derived class type (8.5), overload resolution selects the
1334      //   constructor. [...] For copy-initialization, the candidate
1335      //   functions are all the converting constructors (12.3.1) of
1336      //   that class. The argument list is the expression-list within
1337      //   the parentheses of the initializer.
1338      DeclarationName ConstructorName
1339        = Context.DeclarationNames.getCXXConstructorName(
1340                          Context.getCanonicalType(ToType).getUnqualifiedType());
1341      DeclContext::lookup_iterator Con, ConEnd;
1342      for (llvm::tie(Con, ConEnd)
1343             = ToRecordDecl->lookup(Context, ConstructorName);
1344           Con != ConEnd; ++Con) {
1345        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1346        if (Constructor->isConvertingConstructor())
1347          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1348                               /*SuppressUserConversions=*/true, ForceRValue);
1349      }
1350    }
1351  }
1352
1353  if (!AllowConversionFunctions) {
1354    // Don't allow any conversion functions to enter the overload set.
1355  } else if (const RecordType *FromRecordType
1356               = From->getType()->getAsRecordType()) {
1357    if (CXXRecordDecl *FromRecordDecl
1358          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1359      // Add all of the conversion functions as candidates.
1360      // FIXME: Look for conversions in base classes!
1361      OverloadedFunctionDecl *Conversions
1362        = FromRecordDecl->getConversionFunctions();
1363      for (OverloadedFunctionDecl::function_iterator Func
1364             = Conversions->function_begin();
1365           Func != Conversions->function_end(); ++Func) {
1366        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1367        if (AllowExplicit || !Conv->isExplicit())
1368          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1369      }
1370    }
1371  }
1372
1373  OverloadCandidateSet::iterator Best;
1374  switch (BestViableFunction(CandidateSet, Best)) {
1375    case OR_Success:
1376      // Record the standard conversion we used and the conversion function.
1377      if (CXXConstructorDecl *Constructor
1378            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1379        // C++ [over.ics.user]p1:
1380        //   If the user-defined conversion is specified by a
1381        //   constructor (12.3.1), the initial standard conversion
1382        //   sequence converts the source type to the type required by
1383        //   the argument of the constructor.
1384        //
1385        // FIXME: What about ellipsis conversions?
1386        QualType ThisType = Constructor->getThisType(Context);
1387        User.Before = Best->Conversions[0].Standard;
1388        User.ConversionFunction = Constructor;
1389        User.After.setAsIdentityConversion();
1390        User.After.FromTypePtr
1391          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1392        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1393        return true;
1394      } else if (CXXConversionDecl *Conversion
1395                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1396        // C++ [over.ics.user]p1:
1397        //
1398        //   [...] If the user-defined conversion is specified by a
1399        //   conversion function (12.3.2), the initial standard
1400        //   conversion sequence converts the source type to the
1401        //   implicit object parameter of the conversion function.
1402        User.Before = Best->Conversions[0].Standard;
1403        User.ConversionFunction = Conversion;
1404
1405        // C++ [over.ics.user]p2:
1406        //   The second standard conversion sequence converts the
1407        //   result of the user-defined conversion to the target type
1408        //   for the sequence. Since an implicit conversion sequence
1409        //   is an initialization, the special rules for
1410        //   initialization by user-defined conversion apply when
1411        //   selecting the best user-defined conversion for a
1412        //   user-defined conversion sequence (see 13.3.3 and
1413        //   13.3.3.1).
1414        User.After = Best->FinalConversion;
1415        return true;
1416      } else {
1417        assert(false && "Not a constructor or conversion function?");
1418        return false;
1419      }
1420
1421    case OR_No_Viable_Function:
1422    case OR_Deleted:
1423      // No conversion here! We're done.
1424      return false;
1425
1426    case OR_Ambiguous:
1427      // FIXME: See C++ [over.best.ics]p10 for the handling of
1428      // ambiguous conversion sequences.
1429      return false;
1430    }
1431
1432  return false;
1433}
1434
1435/// CompareImplicitConversionSequences - Compare two implicit
1436/// conversion sequences to determine whether one is better than the
1437/// other or if they are indistinguishable (C++ 13.3.3.2).
1438ImplicitConversionSequence::CompareKind
1439Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1440                                         const ImplicitConversionSequence& ICS2)
1441{
1442  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1443  // conversion sequences (as defined in 13.3.3.1)
1444  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1445  //      conversion sequence than a user-defined conversion sequence or
1446  //      an ellipsis conversion sequence, and
1447  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1448  //      conversion sequence than an ellipsis conversion sequence
1449  //      (13.3.3.1.3).
1450  //
1451  if (ICS1.ConversionKind < ICS2.ConversionKind)
1452    return ImplicitConversionSequence::Better;
1453  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1454    return ImplicitConversionSequence::Worse;
1455
1456  // Two implicit conversion sequences of the same form are
1457  // indistinguishable conversion sequences unless one of the
1458  // following rules apply: (C++ 13.3.3.2p3):
1459  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1460    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1461  else if (ICS1.ConversionKind ==
1462             ImplicitConversionSequence::UserDefinedConversion) {
1463    // User-defined conversion sequence U1 is a better conversion
1464    // sequence than another user-defined conversion sequence U2 if
1465    // they contain the same user-defined conversion function or
1466    // constructor and if the second standard conversion sequence of
1467    // U1 is better than the second standard conversion sequence of
1468    // U2 (C++ 13.3.3.2p3).
1469    if (ICS1.UserDefined.ConversionFunction ==
1470          ICS2.UserDefined.ConversionFunction)
1471      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1472                                                ICS2.UserDefined.After);
1473  }
1474
1475  return ImplicitConversionSequence::Indistinguishable;
1476}
1477
1478/// CompareStandardConversionSequences - Compare two standard
1479/// conversion sequences to determine whether one is better than the
1480/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1481ImplicitConversionSequence::CompareKind
1482Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1483                                         const StandardConversionSequence& SCS2)
1484{
1485  // Standard conversion sequence S1 is a better conversion sequence
1486  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1487
1488  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1489  //     sequences in the canonical form defined by 13.3.3.1.1,
1490  //     excluding any Lvalue Transformation; the identity conversion
1491  //     sequence is considered to be a subsequence of any
1492  //     non-identity conversion sequence) or, if not that,
1493  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1494    // Neither is a proper subsequence of the other. Do nothing.
1495    ;
1496  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1497           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1498           (SCS1.Second == ICK_Identity &&
1499            SCS1.Third == ICK_Identity))
1500    // SCS1 is a proper subsequence of SCS2.
1501    return ImplicitConversionSequence::Better;
1502  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1503           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1504           (SCS2.Second == ICK_Identity &&
1505            SCS2.Third == ICK_Identity))
1506    // SCS2 is a proper subsequence of SCS1.
1507    return ImplicitConversionSequence::Worse;
1508
1509  //  -- the rank of S1 is better than the rank of S2 (by the rules
1510  //     defined below), or, if not that,
1511  ImplicitConversionRank Rank1 = SCS1.getRank();
1512  ImplicitConversionRank Rank2 = SCS2.getRank();
1513  if (Rank1 < Rank2)
1514    return ImplicitConversionSequence::Better;
1515  else if (Rank2 < Rank1)
1516    return ImplicitConversionSequence::Worse;
1517
1518  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1519  // are indistinguishable unless one of the following rules
1520  // applies:
1521
1522  //   A conversion that is not a conversion of a pointer, or
1523  //   pointer to member, to bool is better than another conversion
1524  //   that is such a conversion.
1525  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1526    return SCS2.isPointerConversionToBool()
1527             ? ImplicitConversionSequence::Better
1528             : ImplicitConversionSequence::Worse;
1529
1530  // C++ [over.ics.rank]p4b2:
1531  //
1532  //   If class B is derived directly or indirectly from class A,
1533  //   conversion of B* to A* is better than conversion of B* to
1534  //   void*, and conversion of A* to void* is better than conversion
1535  //   of B* to void*.
1536  bool SCS1ConvertsToVoid
1537    = SCS1.isPointerConversionToVoidPointer(Context);
1538  bool SCS2ConvertsToVoid
1539    = SCS2.isPointerConversionToVoidPointer(Context);
1540  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1541    // Exactly one of the conversion sequences is a conversion to
1542    // a void pointer; it's the worse conversion.
1543    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1544                              : ImplicitConversionSequence::Worse;
1545  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1546    // Neither conversion sequence converts to a void pointer; compare
1547    // their derived-to-base conversions.
1548    if (ImplicitConversionSequence::CompareKind DerivedCK
1549          = CompareDerivedToBaseConversions(SCS1, SCS2))
1550      return DerivedCK;
1551  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1552    // Both conversion sequences are conversions to void
1553    // pointers. Compare the source types to determine if there's an
1554    // inheritance relationship in their sources.
1555    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1556    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1557
1558    // Adjust the types we're converting from via the array-to-pointer
1559    // conversion, if we need to.
1560    if (SCS1.First == ICK_Array_To_Pointer)
1561      FromType1 = Context.getArrayDecayedType(FromType1);
1562    if (SCS2.First == ICK_Array_To_Pointer)
1563      FromType2 = Context.getArrayDecayedType(FromType2);
1564
1565    QualType FromPointee1
1566      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1567    QualType FromPointee2
1568      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1569
1570    if (IsDerivedFrom(FromPointee2, FromPointee1))
1571      return ImplicitConversionSequence::Better;
1572    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1573      return ImplicitConversionSequence::Worse;
1574
1575    // Objective-C++: If one interface is more specific than the
1576    // other, it is the better one.
1577    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1578    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1579    if (FromIface1 && FromIface1) {
1580      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1581        return ImplicitConversionSequence::Better;
1582      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1583        return ImplicitConversionSequence::Worse;
1584    }
1585  }
1586
1587  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1588  // bullet 3).
1589  if (ImplicitConversionSequence::CompareKind QualCK
1590        = CompareQualificationConversions(SCS1, SCS2))
1591    return QualCK;
1592
1593  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1594    // C++0x [over.ics.rank]p3b4:
1595    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1596    //      implicit object parameter of a non-static member function declared
1597    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1598    //      rvalue and S2 binds an lvalue reference.
1599    // FIXME: We don't know if we're dealing with the implicit object parameter,
1600    // or if the member function in this case has a ref qualifier.
1601    // (Of course, we don't have ref qualifiers yet.)
1602    if (SCS1.RRefBinding != SCS2.RRefBinding)
1603      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1604                              : ImplicitConversionSequence::Worse;
1605
1606    // C++ [over.ics.rank]p3b4:
1607    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1608    //      which the references refer are the same type except for
1609    //      top-level cv-qualifiers, and the type to which the reference
1610    //      initialized by S2 refers is more cv-qualified than the type
1611    //      to which the reference initialized by S1 refers.
1612    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1613    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1614    T1 = Context.getCanonicalType(T1);
1615    T2 = Context.getCanonicalType(T2);
1616    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1617      if (T2.isMoreQualifiedThan(T1))
1618        return ImplicitConversionSequence::Better;
1619      else if (T1.isMoreQualifiedThan(T2))
1620        return ImplicitConversionSequence::Worse;
1621    }
1622  }
1623
1624  return ImplicitConversionSequence::Indistinguishable;
1625}
1626
1627/// CompareQualificationConversions - Compares two standard conversion
1628/// sequences to determine whether they can be ranked based on their
1629/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1630ImplicitConversionSequence::CompareKind
1631Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1632                                      const StandardConversionSequence& SCS2)
1633{
1634  // C++ 13.3.3.2p3:
1635  //  -- S1 and S2 differ only in their qualification conversion and
1636  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1637  //     cv-qualification signature of type T1 is a proper subset of
1638  //     the cv-qualification signature of type T2, and S1 is not the
1639  //     deprecated string literal array-to-pointer conversion (4.2).
1640  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1641      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1642    return ImplicitConversionSequence::Indistinguishable;
1643
1644  // FIXME: the example in the standard doesn't use a qualification
1645  // conversion (!)
1646  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1647  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1648  T1 = Context.getCanonicalType(T1);
1649  T2 = Context.getCanonicalType(T2);
1650
1651  // If the types are the same, we won't learn anything by unwrapped
1652  // them.
1653  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1654    return ImplicitConversionSequence::Indistinguishable;
1655
1656  ImplicitConversionSequence::CompareKind Result
1657    = ImplicitConversionSequence::Indistinguishable;
1658  while (UnwrapSimilarPointerTypes(T1, T2)) {
1659    // Within each iteration of the loop, we check the qualifiers to
1660    // determine if this still looks like a qualification
1661    // conversion. Then, if all is well, we unwrap one more level of
1662    // pointers or pointers-to-members and do it all again
1663    // until there are no more pointers or pointers-to-members left
1664    // to unwrap. This essentially mimics what
1665    // IsQualificationConversion does, but here we're checking for a
1666    // strict subset of qualifiers.
1667    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1668      // The qualifiers are the same, so this doesn't tell us anything
1669      // about how the sequences rank.
1670      ;
1671    else if (T2.isMoreQualifiedThan(T1)) {
1672      // T1 has fewer qualifiers, so it could be the better sequence.
1673      if (Result == ImplicitConversionSequence::Worse)
1674        // Neither has qualifiers that are a subset of the other's
1675        // qualifiers.
1676        return ImplicitConversionSequence::Indistinguishable;
1677
1678      Result = ImplicitConversionSequence::Better;
1679    } else if (T1.isMoreQualifiedThan(T2)) {
1680      // T2 has fewer qualifiers, so it could be the better sequence.
1681      if (Result == ImplicitConversionSequence::Better)
1682        // Neither has qualifiers that are a subset of the other's
1683        // qualifiers.
1684        return ImplicitConversionSequence::Indistinguishable;
1685
1686      Result = ImplicitConversionSequence::Worse;
1687    } else {
1688      // Qualifiers are disjoint.
1689      return ImplicitConversionSequence::Indistinguishable;
1690    }
1691
1692    // If the types after this point are equivalent, we're done.
1693    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1694      break;
1695  }
1696
1697  // Check that the winning standard conversion sequence isn't using
1698  // the deprecated string literal array to pointer conversion.
1699  switch (Result) {
1700  case ImplicitConversionSequence::Better:
1701    if (SCS1.Deprecated)
1702      Result = ImplicitConversionSequence::Indistinguishable;
1703    break;
1704
1705  case ImplicitConversionSequence::Indistinguishable:
1706    break;
1707
1708  case ImplicitConversionSequence::Worse:
1709    if (SCS2.Deprecated)
1710      Result = ImplicitConversionSequence::Indistinguishable;
1711    break;
1712  }
1713
1714  return Result;
1715}
1716
1717/// CompareDerivedToBaseConversions - Compares two standard conversion
1718/// sequences to determine whether they can be ranked based on their
1719/// various kinds of derived-to-base conversions (C++
1720/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1721/// conversions between Objective-C interface types.
1722ImplicitConversionSequence::CompareKind
1723Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1724                                      const StandardConversionSequence& SCS2) {
1725  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1726  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1727  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1728  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1729
1730  // Adjust the types we're converting from via the array-to-pointer
1731  // conversion, if we need to.
1732  if (SCS1.First == ICK_Array_To_Pointer)
1733    FromType1 = Context.getArrayDecayedType(FromType1);
1734  if (SCS2.First == ICK_Array_To_Pointer)
1735    FromType2 = Context.getArrayDecayedType(FromType2);
1736
1737  // Canonicalize all of the types.
1738  FromType1 = Context.getCanonicalType(FromType1);
1739  ToType1 = Context.getCanonicalType(ToType1);
1740  FromType2 = Context.getCanonicalType(FromType2);
1741  ToType2 = Context.getCanonicalType(ToType2);
1742
1743  // C++ [over.ics.rank]p4b3:
1744  //
1745  //   If class B is derived directly or indirectly from class A and
1746  //   class C is derived directly or indirectly from B,
1747  //
1748  // For Objective-C, we let A, B, and C also be Objective-C
1749  // interfaces.
1750
1751  // Compare based on pointer conversions.
1752  if (SCS1.Second == ICK_Pointer_Conversion &&
1753      SCS2.Second == ICK_Pointer_Conversion &&
1754      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1755      FromType1->isPointerType() && FromType2->isPointerType() &&
1756      ToType1->isPointerType() && ToType2->isPointerType()) {
1757    QualType FromPointee1
1758      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1759    QualType ToPointee1
1760      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1761    QualType FromPointee2
1762      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1763    QualType ToPointee2
1764      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1765
1766    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1767    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1768    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1769    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1770
1771    //   -- conversion of C* to B* is better than conversion of C* to A*,
1772    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1773      if (IsDerivedFrom(ToPointee1, ToPointee2))
1774        return ImplicitConversionSequence::Better;
1775      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1776        return ImplicitConversionSequence::Worse;
1777
1778      if (ToIface1 && ToIface2) {
1779        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1780          return ImplicitConversionSequence::Better;
1781        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1782          return ImplicitConversionSequence::Worse;
1783      }
1784    }
1785
1786    //   -- conversion of B* to A* is better than conversion of C* to A*,
1787    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1788      if (IsDerivedFrom(FromPointee2, FromPointee1))
1789        return ImplicitConversionSequence::Better;
1790      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1791        return ImplicitConversionSequence::Worse;
1792
1793      if (FromIface1 && FromIface2) {
1794        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1795          return ImplicitConversionSequence::Better;
1796        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1797          return ImplicitConversionSequence::Worse;
1798      }
1799    }
1800  }
1801
1802  // Compare based on reference bindings.
1803  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1804      SCS1.Second == ICK_Derived_To_Base) {
1805    //   -- binding of an expression of type C to a reference of type
1806    //      B& is better than binding an expression of type C to a
1807    //      reference of type A&,
1808    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1809        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1810      if (IsDerivedFrom(ToType1, ToType2))
1811        return ImplicitConversionSequence::Better;
1812      else if (IsDerivedFrom(ToType2, ToType1))
1813        return ImplicitConversionSequence::Worse;
1814    }
1815
1816    //   -- binding of an expression of type B to a reference of type
1817    //      A& is better than binding an expression of type C to a
1818    //      reference of type A&,
1819    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1820        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1821      if (IsDerivedFrom(FromType2, FromType1))
1822        return ImplicitConversionSequence::Better;
1823      else if (IsDerivedFrom(FromType1, FromType2))
1824        return ImplicitConversionSequence::Worse;
1825    }
1826  }
1827
1828
1829  // FIXME: conversion of A::* to B::* is better than conversion of
1830  // A::* to C::*,
1831
1832  // FIXME: conversion of B::* to C::* is better than conversion of
1833  // A::* to C::*, and
1834
1835  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1836      SCS1.Second == ICK_Derived_To_Base) {
1837    //   -- conversion of C to B is better than conversion of C to A,
1838    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1839        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1840      if (IsDerivedFrom(ToType1, ToType2))
1841        return ImplicitConversionSequence::Better;
1842      else if (IsDerivedFrom(ToType2, ToType1))
1843        return ImplicitConversionSequence::Worse;
1844    }
1845
1846    //   -- conversion of B to A is better than conversion of C to A.
1847    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1848        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1849      if (IsDerivedFrom(FromType2, FromType1))
1850        return ImplicitConversionSequence::Better;
1851      else if (IsDerivedFrom(FromType1, FromType2))
1852        return ImplicitConversionSequence::Worse;
1853    }
1854  }
1855
1856  return ImplicitConversionSequence::Indistinguishable;
1857}
1858
1859/// TryCopyInitialization - Try to copy-initialize a value of type
1860/// ToType from the expression From. Return the implicit conversion
1861/// sequence required to pass this argument, which may be a bad
1862/// conversion sequence (meaning that the argument cannot be passed to
1863/// a parameter of this type). If @p SuppressUserConversions, then we
1864/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1865/// then we treat @p From as an rvalue, even if it is an lvalue.
1866ImplicitConversionSequence
1867Sema::TryCopyInitialization(Expr *From, QualType ToType,
1868                            bool SuppressUserConversions, bool ForceRValue) {
1869  if (ToType->isReferenceType()) {
1870    ImplicitConversionSequence ICS;
1871    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1872                       /*AllowExplicit=*/false, ForceRValue);
1873    return ICS;
1874  } else {
1875    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1876                                 ForceRValue);
1877  }
1878}
1879
1880/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1881/// the expression @p From. Returns true (and emits a diagnostic) if there was
1882/// an error, returns false if the initialization succeeded. Elidable should
1883/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1884/// differently in C++0x for this case.
1885bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1886                                     const char* Flavor, bool Elidable) {
1887  if (!getLangOptions().CPlusPlus) {
1888    // In C, argument passing is the same as performing an assignment.
1889    QualType FromType = From->getType();
1890
1891    AssignConvertType ConvTy =
1892      CheckSingleAssignmentConstraints(ToType, From);
1893    if (ConvTy != Compatible &&
1894        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1895      ConvTy = Compatible;
1896
1897    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1898                                    FromType, From, Flavor);
1899  }
1900
1901  if (ToType->isReferenceType())
1902    return CheckReferenceInit(From, ToType);
1903
1904  if (!PerformImplicitConversion(From, ToType, Flavor,
1905                                 /*AllowExplicit=*/false, Elidable))
1906    return false;
1907
1908  return Diag(From->getSourceRange().getBegin(),
1909              diag::err_typecheck_convert_incompatible)
1910    << ToType << From->getType() << Flavor << From->getSourceRange();
1911}
1912
1913/// TryObjectArgumentInitialization - Try to initialize the object
1914/// parameter of the given member function (@c Method) from the
1915/// expression @p From.
1916ImplicitConversionSequence
1917Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1918  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1919  unsigned MethodQuals = Method->getTypeQualifiers();
1920  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1921
1922  // Set up the conversion sequence as a "bad" conversion, to allow us
1923  // to exit early.
1924  ImplicitConversionSequence ICS;
1925  ICS.Standard.setAsIdentityConversion();
1926  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1927
1928  // We need to have an object of class type.
1929  QualType FromType = From->getType();
1930  if (const PointerType *PT = FromType->getAsPointerType())
1931    FromType = PT->getPointeeType();
1932
1933  assert(FromType->isRecordType());
1934
1935  // The implicit object parmeter is has the type "reference to cv X",
1936  // where X is the class of which the function is a member
1937  // (C++ [over.match.funcs]p4). However, when finding an implicit
1938  // conversion sequence for the argument, we are not allowed to
1939  // create temporaries or perform user-defined conversions
1940  // (C++ [over.match.funcs]p5). We perform a simplified version of
1941  // reference binding here, that allows class rvalues to bind to
1942  // non-constant references.
1943
1944  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1945  // with the implicit object parameter (C++ [over.match.funcs]p5).
1946  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1947  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1948      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1949    return ICS;
1950
1951  // Check that we have either the same type or a derived type. It
1952  // affects the conversion rank.
1953  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1954  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1955    ICS.Standard.Second = ICK_Identity;
1956  else if (IsDerivedFrom(FromType, ClassType))
1957    ICS.Standard.Second = ICK_Derived_To_Base;
1958  else
1959    return ICS;
1960
1961  // Success. Mark this as a reference binding.
1962  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1963  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1964  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1965  ICS.Standard.ReferenceBinding = true;
1966  ICS.Standard.DirectBinding = true;
1967  ICS.Standard.RRefBinding = false;
1968  return ICS;
1969}
1970
1971/// PerformObjectArgumentInitialization - Perform initialization of
1972/// the implicit object parameter for the given Method with the given
1973/// expression.
1974bool
1975Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1976  QualType FromRecordType, DestType;
1977  QualType ImplicitParamRecordType  =
1978    Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1979
1980  if (const PointerType *PT = From->getType()->getAsPointerType()) {
1981    FromRecordType = PT->getPointeeType();
1982    DestType = Method->getThisType(Context);
1983  } else {
1984    FromRecordType = From->getType();
1985    DestType = ImplicitParamRecordType;
1986  }
1987
1988  ImplicitConversionSequence ICS
1989    = TryObjectArgumentInitialization(From, Method);
1990  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1991    return Diag(From->getSourceRange().getBegin(),
1992                diag::err_implicit_object_parameter_init)
1993       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
1994
1995  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1996      CheckDerivedToBaseConversion(FromRecordType,
1997                                   ImplicitParamRecordType,
1998                                   From->getSourceRange().getBegin(),
1999                                   From->getSourceRange()))
2000    return true;
2001
2002  ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2003  return false;
2004}
2005
2006/// TryContextuallyConvertToBool - Attempt to contextually convert the
2007/// expression From to bool (C++0x [conv]p3).
2008ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2009  return TryImplicitConversion(From, Context.BoolTy, false, true);
2010}
2011
2012/// PerformContextuallyConvertToBool - Perform a contextual conversion
2013/// of the expression From to bool (C++0x [conv]p3).
2014bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2015  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2016  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2017    return false;
2018
2019  return Diag(From->getSourceRange().getBegin(),
2020              diag::err_typecheck_bool_condition)
2021    << From->getType() << From->getSourceRange();
2022}
2023
2024/// AddOverloadCandidate - Adds the given function to the set of
2025/// candidate functions, using the given function call arguments.  If
2026/// @p SuppressUserConversions, then don't allow user-defined
2027/// conversions via constructors or conversion operators.
2028/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2029/// hacky way to implement the overloading rules for elidable copy
2030/// initialization in C++0x (C++0x 12.8p15).
2031void
2032Sema::AddOverloadCandidate(FunctionDecl *Function,
2033                           Expr **Args, unsigned NumArgs,
2034                           OverloadCandidateSet& CandidateSet,
2035                           bool SuppressUserConversions,
2036                           bool ForceRValue)
2037{
2038  const FunctionProtoType* Proto
2039    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2040  assert(Proto && "Functions without a prototype cannot be overloaded");
2041  assert(!isa<CXXConversionDecl>(Function) &&
2042         "Use AddConversionCandidate for conversion functions");
2043
2044  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2045    if (!isa<CXXConstructorDecl>(Method)) {
2046      // If we get here, it's because we're calling a member function
2047      // that is named without a member access expression (e.g.,
2048      // "this->f") that was either written explicitly or created
2049      // implicitly. This can happen with a qualified call to a member
2050      // function, e.g., X::f(). We use a NULL object as the implied
2051      // object argument (C++ [over.call.func]p3).
2052      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2053                         SuppressUserConversions, ForceRValue);
2054      return;
2055    }
2056    // We treat a constructor like a non-member function, since its object
2057    // argument doesn't participate in overload resolution.
2058  }
2059
2060
2061  // Add this candidate
2062  CandidateSet.push_back(OverloadCandidate());
2063  OverloadCandidate& Candidate = CandidateSet.back();
2064  Candidate.Function = Function;
2065  Candidate.Viable = true;
2066  Candidate.IsSurrogate = false;
2067  Candidate.IgnoreObjectArgument = false;
2068
2069  unsigned NumArgsInProto = Proto->getNumArgs();
2070
2071  // (C++ 13.3.2p2): A candidate function having fewer than m
2072  // parameters is viable only if it has an ellipsis in its parameter
2073  // list (8.3.5).
2074  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2075    Candidate.Viable = false;
2076    return;
2077  }
2078
2079  // (C++ 13.3.2p2): A candidate function having more than m parameters
2080  // is viable only if the (m+1)st parameter has a default argument
2081  // (8.3.6). For the purposes of overload resolution, the
2082  // parameter list is truncated on the right, so that there are
2083  // exactly m parameters.
2084  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2085  if (NumArgs < MinRequiredArgs) {
2086    // Not enough arguments.
2087    Candidate.Viable = false;
2088    return;
2089  }
2090
2091  // Determine the implicit conversion sequences for each of the
2092  // arguments.
2093  Candidate.Conversions.resize(NumArgs);
2094  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2095    if (ArgIdx < NumArgsInProto) {
2096      // (C++ 13.3.2p3): for F to be a viable function, there shall
2097      // exist for each argument an implicit conversion sequence
2098      // (13.3.3.1) that converts that argument to the corresponding
2099      // parameter of F.
2100      QualType ParamType = Proto->getArgType(ArgIdx);
2101      Candidate.Conversions[ArgIdx]
2102        = TryCopyInitialization(Args[ArgIdx], ParamType,
2103                                SuppressUserConversions, ForceRValue);
2104      if (Candidate.Conversions[ArgIdx].ConversionKind
2105            == ImplicitConversionSequence::BadConversion) {
2106        Candidate.Viable = false;
2107        break;
2108      }
2109    } else {
2110      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2111      // argument for which there is no corresponding parameter is
2112      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2113      Candidate.Conversions[ArgIdx].ConversionKind
2114        = ImplicitConversionSequence::EllipsisConversion;
2115    }
2116  }
2117}
2118
2119/// \brief Add all of the function declarations in the given function set to
2120/// the overload canddiate set.
2121void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2122                                 Expr **Args, unsigned NumArgs,
2123                                 OverloadCandidateSet& CandidateSet,
2124                                 bool SuppressUserConversions) {
2125  for (FunctionSet::const_iterator F = Functions.begin(),
2126                                FEnd = Functions.end();
2127       F != FEnd; ++F)
2128    AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2129                         SuppressUserConversions);
2130}
2131
2132/// AddMethodCandidate - Adds the given C++ member function to the set
2133/// of candidate functions, using the given function call arguments
2134/// and the object argument (@c Object). For example, in a call
2135/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2136/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2137/// allow user-defined conversions via constructors or conversion
2138/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2139/// a slightly hacky way to implement the overloading rules for elidable copy
2140/// initialization in C++0x (C++0x 12.8p15).
2141void
2142Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2143                         Expr **Args, unsigned NumArgs,
2144                         OverloadCandidateSet& CandidateSet,
2145                         bool SuppressUserConversions, bool ForceRValue)
2146{
2147  const FunctionProtoType* Proto
2148    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2149  assert(Proto && "Methods without a prototype cannot be overloaded");
2150  assert(!isa<CXXConversionDecl>(Method) &&
2151         "Use AddConversionCandidate for conversion functions");
2152  assert(!isa<CXXConstructorDecl>(Method) &&
2153         "Use AddOverloadCandidate for constructors");
2154
2155  // Add this candidate
2156  CandidateSet.push_back(OverloadCandidate());
2157  OverloadCandidate& Candidate = CandidateSet.back();
2158  Candidate.Function = Method;
2159  Candidate.IsSurrogate = false;
2160  Candidate.IgnoreObjectArgument = false;
2161
2162  unsigned NumArgsInProto = Proto->getNumArgs();
2163
2164  // (C++ 13.3.2p2): A candidate function having fewer than m
2165  // parameters is viable only if it has an ellipsis in its parameter
2166  // list (8.3.5).
2167  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2168    Candidate.Viable = false;
2169    return;
2170  }
2171
2172  // (C++ 13.3.2p2): A candidate function having more than m parameters
2173  // is viable only if the (m+1)st parameter has a default argument
2174  // (8.3.6). For the purposes of overload resolution, the
2175  // parameter list is truncated on the right, so that there are
2176  // exactly m parameters.
2177  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2178  if (NumArgs < MinRequiredArgs) {
2179    // Not enough arguments.
2180    Candidate.Viable = false;
2181    return;
2182  }
2183
2184  Candidate.Viable = true;
2185  Candidate.Conversions.resize(NumArgs + 1);
2186
2187  if (Method->isStatic() || !Object)
2188    // The implicit object argument is ignored.
2189    Candidate.IgnoreObjectArgument = true;
2190  else {
2191    // Determine the implicit conversion sequence for the object
2192    // parameter.
2193    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2194    if (Candidate.Conversions[0].ConversionKind
2195          == ImplicitConversionSequence::BadConversion) {
2196      Candidate.Viable = false;
2197      return;
2198    }
2199  }
2200
2201  // Determine the implicit conversion sequences for each of the
2202  // arguments.
2203  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2204    if (ArgIdx < NumArgsInProto) {
2205      // (C++ 13.3.2p3): for F to be a viable function, there shall
2206      // exist for each argument an implicit conversion sequence
2207      // (13.3.3.1) that converts that argument to the corresponding
2208      // parameter of F.
2209      QualType ParamType = Proto->getArgType(ArgIdx);
2210      Candidate.Conversions[ArgIdx + 1]
2211        = TryCopyInitialization(Args[ArgIdx], ParamType,
2212                                SuppressUserConversions, ForceRValue);
2213      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2214            == ImplicitConversionSequence::BadConversion) {
2215        Candidate.Viable = false;
2216        break;
2217      }
2218    } else {
2219      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2220      // argument for which there is no corresponding parameter is
2221      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2222      Candidate.Conversions[ArgIdx + 1].ConversionKind
2223        = ImplicitConversionSequence::EllipsisConversion;
2224    }
2225  }
2226}
2227
2228/// AddConversionCandidate - Add a C++ conversion function as a
2229/// candidate in the candidate set (C++ [over.match.conv],
2230/// C++ [over.match.copy]). From is the expression we're converting from,
2231/// and ToType is the type that we're eventually trying to convert to
2232/// (which may or may not be the same type as the type that the
2233/// conversion function produces).
2234void
2235Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2236                             Expr *From, QualType ToType,
2237                             OverloadCandidateSet& CandidateSet) {
2238  // Add this candidate
2239  CandidateSet.push_back(OverloadCandidate());
2240  OverloadCandidate& Candidate = CandidateSet.back();
2241  Candidate.Function = Conversion;
2242  Candidate.IsSurrogate = false;
2243  Candidate.IgnoreObjectArgument = false;
2244  Candidate.FinalConversion.setAsIdentityConversion();
2245  Candidate.FinalConversion.FromTypePtr
2246    = Conversion->getConversionType().getAsOpaquePtr();
2247  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2248
2249  // Determine the implicit conversion sequence for the implicit
2250  // object parameter.
2251  Candidate.Viable = true;
2252  Candidate.Conversions.resize(1);
2253  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2254
2255  if (Candidate.Conversions[0].ConversionKind
2256      == ImplicitConversionSequence::BadConversion) {
2257    Candidate.Viable = false;
2258    return;
2259  }
2260
2261  // To determine what the conversion from the result of calling the
2262  // conversion function to the type we're eventually trying to
2263  // convert to (ToType), we need to synthesize a call to the
2264  // conversion function and attempt copy initialization from it. This
2265  // makes sure that we get the right semantics with respect to
2266  // lvalues/rvalues and the type. Fortunately, we can allocate this
2267  // call on the stack and we don't need its arguments to be
2268  // well-formed.
2269  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2270                            SourceLocation());
2271  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2272                                &ConversionRef, false);
2273
2274  // Note that it is safe to allocate CallExpr on the stack here because
2275  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2276  // allocator).
2277  CallExpr Call(Context, &ConversionFn, 0, 0,
2278                Conversion->getConversionType().getNonReferenceType(),
2279                SourceLocation());
2280  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2281  switch (ICS.ConversionKind) {
2282  case ImplicitConversionSequence::StandardConversion:
2283    Candidate.FinalConversion = ICS.Standard;
2284    break;
2285
2286  case ImplicitConversionSequence::BadConversion:
2287    Candidate.Viable = false;
2288    break;
2289
2290  default:
2291    assert(false &&
2292           "Can only end up with a standard conversion sequence or failure");
2293  }
2294}
2295
2296/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2297/// converts the given @c Object to a function pointer via the
2298/// conversion function @c Conversion, and then attempts to call it
2299/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2300/// the type of function that we'll eventually be calling.
2301void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2302                                 const FunctionProtoType *Proto,
2303                                 Expr *Object, Expr **Args, unsigned NumArgs,
2304                                 OverloadCandidateSet& CandidateSet) {
2305  CandidateSet.push_back(OverloadCandidate());
2306  OverloadCandidate& Candidate = CandidateSet.back();
2307  Candidate.Function = 0;
2308  Candidate.Surrogate = Conversion;
2309  Candidate.Viable = true;
2310  Candidate.IsSurrogate = true;
2311  Candidate.IgnoreObjectArgument = false;
2312  Candidate.Conversions.resize(NumArgs + 1);
2313
2314  // Determine the implicit conversion sequence for the implicit
2315  // object parameter.
2316  ImplicitConversionSequence ObjectInit
2317    = TryObjectArgumentInitialization(Object, Conversion);
2318  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2319    Candidate.Viable = false;
2320    return;
2321  }
2322
2323  // The first conversion is actually a user-defined conversion whose
2324  // first conversion is ObjectInit's standard conversion (which is
2325  // effectively a reference binding). Record it as such.
2326  Candidate.Conversions[0].ConversionKind
2327    = ImplicitConversionSequence::UserDefinedConversion;
2328  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2329  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2330  Candidate.Conversions[0].UserDefined.After
2331    = Candidate.Conversions[0].UserDefined.Before;
2332  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2333
2334  // Find the
2335  unsigned NumArgsInProto = Proto->getNumArgs();
2336
2337  // (C++ 13.3.2p2): A candidate function having fewer than m
2338  // parameters is viable only if it has an ellipsis in its parameter
2339  // list (8.3.5).
2340  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2341    Candidate.Viable = false;
2342    return;
2343  }
2344
2345  // Function types don't have any default arguments, so just check if
2346  // we have enough arguments.
2347  if (NumArgs < NumArgsInProto) {
2348    // Not enough arguments.
2349    Candidate.Viable = false;
2350    return;
2351  }
2352
2353  // Determine the implicit conversion sequences for each of the
2354  // arguments.
2355  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2356    if (ArgIdx < NumArgsInProto) {
2357      // (C++ 13.3.2p3): for F to be a viable function, there shall
2358      // exist for each argument an implicit conversion sequence
2359      // (13.3.3.1) that converts that argument to the corresponding
2360      // parameter of F.
2361      QualType ParamType = Proto->getArgType(ArgIdx);
2362      Candidate.Conversions[ArgIdx + 1]
2363        = TryCopyInitialization(Args[ArgIdx], ParamType,
2364                                /*SuppressUserConversions=*/false);
2365      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2366            == ImplicitConversionSequence::BadConversion) {
2367        Candidate.Viable = false;
2368        break;
2369      }
2370    } else {
2371      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2372      // argument for which there is no corresponding parameter is
2373      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2374      Candidate.Conversions[ArgIdx + 1].ConversionKind
2375        = ImplicitConversionSequence::EllipsisConversion;
2376    }
2377  }
2378}
2379
2380// FIXME: This will eventually be removed, once we've migrated all of
2381// the operator overloading logic over to the scheme used by binary
2382// operators, which works for template instantiation.
2383void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2384                                 SourceLocation OpLoc,
2385                                 Expr **Args, unsigned NumArgs,
2386                                 OverloadCandidateSet& CandidateSet,
2387                                 SourceRange OpRange) {
2388
2389  FunctionSet Functions;
2390
2391  QualType T1 = Args[0]->getType();
2392  QualType T2;
2393  if (NumArgs > 1)
2394    T2 = Args[1]->getType();
2395
2396  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2397  LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2398  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2399  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2400  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2401  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2402}
2403
2404/// \brief Add overload candidates for overloaded operators that are
2405/// member functions.
2406///
2407/// Add the overloaded operator candidates that are member functions
2408/// for the operator Op that was used in an operator expression such
2409/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2410/// CandidateSet will store the added overload candidates. (C++
2411/// [over.match.oper]).
2412void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2413                                       SourceLocation OpLoc,
2414                                       Expr **Args, unsigned NumArgs,
2415                                       OverloadCandidateSet& CandidateSet,
2416                                       SourceRange OpRange) {
2417  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2418
2419  // C++ [over.match.oper]p3:
2420  //   For a unary operator @ with an operand of a type whose
2421  //   cv-unqualified version is T1, and for a binary operator @ with
2422  //   a left operand of a type whose cv-unqualified version is T1 and
2423  //   a right operand of a type whose cv-unqualified version is T2,
2424  //   three sets of candidate functions, designated member
2425  //   candidates, non-member candidates and built-in candidates, are
2426  //   constructed as follows:
2427  QualType T1 = Args[0]->getType();
2428  QualType T2;
2429  if (NumArgs > 1)
2430    T2 = Args[1]->getType();
2431
2432  //     -- If T1 is a class type, the set of member candidates is the
2433  //        result of the qualified lookup of T1::operator@
2434  //        (13.3.1.1.1); otherwise, the set of member candidates is
2435  //        empty.
2436  // FIXME: Lookup in base classes, too!
2437  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2438    DeclContext::lookup_const_iterator Oper, OperEnd;
2439    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
2440         Oper != OperEnd; ++Oper)
2441      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2442                         Args+1, NumArgs - 1, CandidateSet,
2443                         /*SuppressUserConversions=*/false);
2444  }
2445}
2446
2447/// AddBuiltinCandidate - Add a candidate for a built-in
2448/// operator. ResultTy and ParamTys are the result and parameter types
2449/// of the built-in candidate, respectively. Args and NumArgs are the
2450/// arguments being passed to the candidate. IsAssignmentOperator
2451/// should be true when this built-in candidate is an assignment
2452/// operator. NumContextualBoolArguments is the number of arguments
2453/// (at the beginning of the argument list) that will be contextually
2454/// converted to bool.
2455void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2456                               Expr **Args, unsigned NumArgs,
2457                               OverloadCandidateSet& CandidateSet,
2458                               bool IsAssignmentOperator,
2459                               unsigned NumContextualBoolArguments) {
2460  // Add this candidate
2461  CandidateSet.push_back(OverloadCandidate());
2462  OverloadCandidate& Candidate = CandidateSet.back();
2463  Candidate.Function = 0;
2464  Candidate.IsSurrogate = false;
2465  Candidate.IgnoreObjectArgument = false;
2466  Candidate.BuiltinTypes.ResultTy = ResultTy;
2467  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2468    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2469
2470  // Determine the implicit conversion sequences for each of the
2471  // arguments.
2472  Candidate.Viable = true;
2473  Candidate.Conversions.resize(NumArgs);
2474  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2475    // C++ [over.match.oper]p4:
2476    //   For the built-in assignment operators, conversions of the
2477    //   left operand are restricted as follows:
2478    //     -- no temporaries are introduced to hold the left operand, and
2479    //     -- no user-defined conversions are applied to the left
2480    //        operand to achieve a type match with the left-most
2481    //        parameter of a built-in candidate.
2482    //
2483    // We block these conversions by turning off user-defined
2484    // conversions, since that is the only way that initialization of
2485    // a reference to a non-class type can occur from something that
2486    // is not of the same type.
2487    if (ArgIdx < NumContextualBoolArguments) {
2488      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2489             "Contextual conversion to bool requires bool type");
2490      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2491    } else {
2492      Candidate.Conversions[ArgIdx]
2493        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2494                                ArgIdx == 0 && IsAssignmentOperator);
2495    }
2496    if (Candidate.Conversions[ArgIdx].ConversionKind
2497        == ImplicitConversionSequence::BadConversion) {
2498      Candidate.Viable = false;
2499      break;
2500    }
2501  }
2502}
2503
2504/// BuiltinCandidateTypeSet - A set of types that will be used for the
2505/// candidate operator functions for built-in operators (C++
2506/// [over.built]). The types are separated into pointer types and
2507/// enumeration types.
2508class BuiltinCandidateTypeSet  {
2509  /// TypeSet - A set of types.
2510  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2511
2512  /// PointerTypes - The set of pointer types that will be used in the
2513  /// built-in candidates.
2514  TypeSet PointerTypes;
2515
2516  /// MemberPointerTypes - The set of member pointer types that will be
2517  /// used in the built-in candidates.
2518  TypeSet MemberPointerTypes;
2519
2520  /// EnumerationTypes - The set of enumeration types that will be
2521  /// used in the built-in candidates.
2522  TypeSet EnumerationTypes;
2523
2524  /// Context - The AST context in which we will build the type sets.
2525  ASTContext &Context;
2526
2527  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2528  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2529
2530public:
2531  /// iterator - Iterates through the types that are part of the set.
2532  typedef TypeSet::iterator iterator;
2533
2534  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2535
2536  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2537                             bool AllowExplicitConversions);
2538
2539  /// pointer_begin - First pointer type found;
2540  iterator pointer_begin() { return PointerTypes.begin(); }
2541
2542  /// pointer_end - Past the last pointer type found;
2543  iterator pointer_end() { return PointerTypes.end(); }
2544
2545  /// member_pointer_begin - First member pointer type found;
2546  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2547
2548  /// member_pointer_end - Past the last member pointer type found;
2549  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2550
2551  /// enumeration_begin - First enumeration type found;
2552  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2553
2554  /// enumeration_end - Past the last enumeration type found;
2555  iterator enumeration_end() { return EnumerationTypes.end(); }
2556};
2557
2558/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2559/// the set of pointer types along with any more-qualified variants of
2560/// that type. For example, if @p Ty is "int const *", this routine
2561/// will add "int const *", "int const volatile *", "int const
2562/// restrict *", and "int const volatile restrict *" to the set of
2563/// pointer types. Returns true if the add of @p Ty itself succeeded,
2564/// false otherwise.
2565bool
2566BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2567  // Insert this type.
2568  if (!PointerTypes.insert(Ty))
2569    return false;
2570
2571  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2572    QualType PointeeTy = PointerTy->getPointeeType();
2573    // FIXME: Optimize this so that we don't keep trying to add the same types.
2574
2575    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2576    // with all pointer conversions that don't cast away constness?
2577    if (!PointeeTy.isConstQualified())
2578      AddPointerWithMoreQualifiedTypeVariants
2579        (Context.getPointerType(PointeeTy.withConst()));
2580    if (!PointeeTy.isVolatileQualified())
2581      AddPointerWithMoreQualifiedTypeVariants
2582        (Context.getPointerType(PointeeTy.withVolatile()));
2583    if (!PointeeTy.isRestrictQualified())
2584      AddPointerWithMoreQualifiedTypeVariants
2585        (Context.getPointerType(PointeeTy.withRestrict()));
2586  }
2587
2588  return true;
2589}
2590
2591/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2592/// to the set of pointer types along with any more-qualified variants of
2593/// that type. For example, if @p Ty is "int const *", this routine
2594/// will add "int const *", "int const volatile *", "int const
2595/// restrict *", and "int const volatile restrict *" to the set of
2596/// pointer types. Returns true if the add of @p Ty itself succeeded,
2597/// false otherwise.
2598bool
2599BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2600    QualType Ty) {
2601  // Insert this type.
2602  if (!MemberPointerTypes.insert(Ty))
2603    return false;
2604
2605  if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2606    QualType PointeeTy = PointerTy->getPointeeType();
2607    const Type *ClassTy = PointerTy->getClass();
2608    // FIXME: Optimize this so that we don't keep trying to add the same types.
2609
2610    if (!PointeeTy.isConstQualified())
2611      AddMemberPointerWithMoreQualifiedTypeVariants
2612        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2613    if (!PointeeTy.isVolatileQualified())
2614      AddMemberPointerWithMoreQualifiedTypeVariants
2615        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2616    if (!PointeeTy.isRestrictQualified())
2617      AddMemberPointerWithMoreQualifiedTypeVariants
2618        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2619  }
2620
2621  return true;
2622}
2623
2624/// AddTypesConvertedFrom - Add each of the types to which the type @p
2625/// Ty can be implicit converted to the given set of @p Types. We're
2626/// primarily interested in pointer types and enumeration types. We also
2627/// take member pointer types, for the conditional operator.
2628/// AllowUserConversions is true if we should look at the conversion
2629/// functions of a class type, and AllowExplicitConversions if we
2630/// should also include the explicit conversion functions of a class
2631/// type.
2632void
2633BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2634                                               bool AllowUserConversions,
2635                                               bool AllowExplicitConversions) {
2636  // Only deal with canonical types.
2637  Ty = Context.getCanonicalType(Ty);
2638
2639  // Look through reference types; they aren't part of the type of an
2640  // expression for the purposes of conversions.
2641  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2642    Ty = RefTy->getPointeeType();
2643
2644  // We don't care about qualifiers on the type.
2645  Ty = Ty.getUnqualifiedType();
2646
2647  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2648    QualType PointeeTy = PointerTy->getPointeeType();
2649
2650    // Insert our type, and its more-qualified variants, into the set
2651    // of types.
2652    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2653      return;
2654
2655    // Add 'cv void*' to our set of types.
2656    if (!Ty->isVoidType()) {
2657      QualType QualVoid
2658        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2659      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2660    }
2661
2662    // If this is a pointer to a class type, add pointers to its bases
2663    // (with the same level of cv-qualification as the original
2664    // derived class, of course).
2665    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2666      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2667      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2668           Base != ClassDecl->bases_end(); ++Base) {
2669        QualType BaseTy = Context.getCanonicalType(Base->getType());
2670        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2671
2672        // Add the pointer type, recursively, so that we get all of
2673        // the indirect base classes, too.
2674        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2675      }
2676    }
2677  } else if (Ty->isMemberPointerType()) {
2678    // Member pointers are far easier, since the pointee can't be converted.
2679    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2680      return;
2681  } else if (Ty->isEnumeralType()) {
2682    EnumerationTypes.insert(Ty);
2683  } else if (AllowUserConversions) {
2684    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2685      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2686      // FIXME: Visit conversion functions in the base classes, too.
2687      OverloadedFunctionDecl *Conversions
2688        = ClassDecl->getConversionFunctions();
2689      for (OverloadedFunctionDecl::function_iterator Func
2690             = Conversions->function_begin();
2691           Func != Conversions->function_end(); ++Func) {
2692        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2693        if (AllowExplicitConversions || !Conv->isExplicit())
2694          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2695      }
2696    }
2697  }
2698}
2699
2700/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2701/// operator overloads to the candidate set (C++ [over.built]), based
2702/// on the operator @p Op and the arguments given. For example, if the
2703/// operator is a binary '+', this routine might add "int
2704/// operator+(int, int)" to cover integer addition.
2705void
2706Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2707                                   Expr **Args, unsigned NumArgs,
2708                                   OverloadCandidateSet& CandidateSet) {
2709  // The set of "promoted arithmetic types", which are the arithmetic
2710  // types are that preserved by promotion (C++ [over.built]p2). Note
2711  // that the first few of these types are the promoted integral
2712  // types; these types need to be first.
2713  // FIXME: What about complex?
2714  const unsigned FirstIntegralType = 0;
2715  const unsigned LastIntegralType = 13;
2716  const unsigned FirstPromotedIntegralType = 7,
2717                 LastPromotedIntegralType = 13;
2718  const unsigned FirstPromotedArithmeticType = 7,
2719                 LastPromotedArithmeticType = 16;
2720  const unsigned NumArithmeticTypes = 16;
2721  QualType ArithmeticTypes[NumArithmeticTypes] = {
2722    Context.BoolTy, Context.CharTy, Context.WCharTy,
2723    Context.SignedCharTy, Context.ShortTy,
2724    Context.UnsignedCharTy, Context.UnsignedShortTy,
2725    Context.IntTy, Context.LongTy, Context.LongLongTy,
2726    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2727    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2728  };
2729
2730  // Find all of the types that the arguments can convert to, but only
2731  // if the operator we're looking at has built-in operator candidates
2732  // that make use of these types.
2733  BuiltinCandidateTypeSet CandidateTypes(Context);
2734  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2735      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2736      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2737      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2738      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2739      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2740    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2741      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2742                                           true,
2743                                           (Op == OO_Exclaim ||
2744                                            Op == OO_AmpAmp ||
2745                                            Op == OO_PipePipe));
2746  }
2747
2748  bool isComparison = false;
2749  switch (Op) {
2750  case OO_None:
2751  case NUM_OVERLOADED_OPERATORS:
2752    assert(false && "Expected an overloaded operator");
2753    break;
2754
2755  case OO_Star: // '*' is either unary or binary
2756    if (NumArgs == 1)
2757      goto UnaryStar;
2758    else
2759      goto BinaryStar;
2760    break;
2761
2762  case OO_Plus: // '+' is either unary or binary
2763    if (NumArgs == 1)
2764      goto UnaryPlus;
2765    else
2766      goto BinaryPlus;
2767    break;
2768
2769  case OO_Minus: // '-' is either unary or binary
2770    if (NumArgs == 1)
2771      goto UnaryMinus;
2772    else
2773      goto BinaryMinus;
2774    break;
2775
2776  case OO_Amp: // '&' is either unary or binary
2777    if (NumArgs == 1)
2778      goto UnaryAmp;
2779    else
2780      goto BinaryAmp;
2781
2782  case OO_PlusPlus:
2783  case OO_MinusMinus:
2784    // C++ [over.built]p3:
2785    //
2786    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2787    //   is either volatile or empty, there exist candidate operator
2788    //   functions of the form
2789    //
2790    //       VQ T&      operator++(VQ T&);
2791    //       T          operator++(VQ T&, int);
2792    //
2793    // C++ [over.built]p4:
2794    //
2795    //   For every pair (T, VQ), where T is an arithmetic type other
2796    //   than bool, and VQ is either volatile or empty, there exist
2797    //   candidate operator functions of the form
2798    //
2799    //       VQ T&      operator--(VQ T&);
2800    //       T          operator--(VQ T&, int);
2801    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2802         Arith < NumArithmeticTypes; ++Arith) {
2803      QualType ArithTy = ArithmeticTypes[Arith];
2804      QualType ParamTypes[2]
2805        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2806
2807      // Non-volatile version.
2808      if (NumArgs == 1)
2809        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2810      else
2811        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2812
2813      // Volatile version
2814      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2815      if (NumArgs == 1)
2816        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2817      else
2818        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2819    }
2820
2821    // C++ [over.built]p5:
2822    //
2823    //   For every pair (T, VQ), where T is a cv-qualified or
2824    //   cv-unqualified object type, and VQ is either volatile or
2825    //   empty, there exist candidate operator functions of the form
2826    //
2827    //       T*VQ&      operator++(T*VQ&);
2828    //       T*VQ&      operator--(T*VQ&);
2829    //       T*         operator++(T*VQ&, int);
2830    //       T*         operator--(T*VQ&, int);
2831    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2832         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2833      // Skip pointer types that aren't pointers to object types.
2834      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2835        continue;
2836
2837      QualType ParamTypes[2] = {
2838        Context.getLValueReferenceType(*Ptr), Context.IntTy
2839      };
2840
2841      // Without volatile
2842      if (NumArgs == 1)
2843        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2844      else
2845        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2846
2847      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2848        // With volatile
2849        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2850        if (NumArgs == 1)
2851          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2852        else
2853          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2854      }
2855    }
2856    break;
2857
2858  UnaryStar:
2859    // C++ [over.built]p6:
2860    //   For every cv-qualified or cv-unqualified object type T, there
2861    //   exist candidate operator functions of the form
2862    //
2863    //       T&         operator*(T*);
2864    //
2865    // C++ [over.built]p7:
2866    //   For every function type T, there exist candidate operator
2867    //   functions of the form
2868    //       T&         operator*(T*);
2869    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2870         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2871      QualType ParamTy = *Ptr;
2872      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2873      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2874                          &ParamTy, Args, 1, CandidateSet);
2875    }
2876    break;
2877
2878  UnaryPlus:
2879    // C++ [over.built]p8:
2880    //   For every type T, there exist candidate operator functions of
2881    //   the form
2882    //
2883    //       T*         operator+(T*);
2884    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2885         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2886      QualType ParamTy = *Ptr;
2887      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2888    }
2889
2890    // Fall through
2891
2892  UnaryMinus:
2893    // C++ [over.built]p9:
2894    //  For every promoted arithmetic type T, there exist candidate
2895    //  operator functions of the form
2896    //
2897    //       T         operator+(T);
2898    //       T         operator-(T);
2899    for (unsigned Arith = FirstPromotedArithmeticType;
2900         Arith < LastPromotedArithmeticType; ++Arith) {
2901      QualType ArithTy = ArithmeticTypes[Arith];
2902      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2903    }
2904    break;
2905
2906  case OO_Tilde:
2907    // C++ [over.built]p10:
2908    //   For every promoted integral type T, there exist candidate
2909    //   operator functions of the form
2910    //
2911    //        T         operator~(T);
2912    for (unsigned Int = FirstPromotedIntegralType;
2913         Int < LastPromotedIntegralType; ++Int) {
2914      QualType IntTy = ArithmeticTypes[Int];
2915      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2916    }
2917    break;
2918
2919  case OO_New:
2920  case OO_Delete:
2921  case OO_Array_New:
2922  case OO_Array_Delete:
2923  case OO_Call:
2924    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2925    break;
2926
2927  case OO_Comma:
2928  UnaryAmp:
2929  case OO_Arrow:
2930    // C++ [over.match.oper]p3:
2931    //   -- For the operator ',', the unary operator '&', or the
2932    //      operator '->', the built-in candidates set is empty.
2933    break;
2934
2935  case OO_Less:
2936  case OO_Greater:
2937  case OO_LessEqual:
2938  case OO_GreaterEqual:
2939  case OO_EqualEqual:
2940  case OO_ExclaimEqual:
2941    // C++ [over.built]p15:
2942    //
2943    //   For every pointer or enumeration type T, there exist
2944    //   candidate operator functions of the form
2945    //
2946    //        bool       operator<(T, T);
2947    //        bool       operator>(T, T);
2948    //        bool       operator<=(T, T);
2949    //        bool       operator>=(T, T);
2950    //        bool       operator==(T, T);
2951    //        bool       operator!=(T, T);
2952    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2953         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2954      QualType ParamTypes[2] = { *Ptr, *Ptr };
2955      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2956    }
2957    for (BuiltinCandidateTypeSet::iterator Enum
2958           = CandidateTypes.enumeration_begin();
2959         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2960      QualType ParamTypes[2] = { *Enum, *Enum };
2961      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2962    }
2963
2964    // Fall through.
2965    isComparison = true;
2966
2967  BinaryPlus:
2968  BinaryMinus:
2969    if (!isComparison) {
2970      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2971
2972      // C++ [over.built]p13:
2973      //
2974      //   For every cv-qualified or cv-unqualified object type T
2975      //   there exist candidate operator functions of the form
2976      //
2977      //      T*         operator+(T*, ptrdiff_t);
2978      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2979      //      T*         operator-(T*, ptrdiff_t);
2980      //      T*         operator+(ptrdiff_t, T*);
2981      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2982      //
2983      // C++ [over.built]p14:
2984      //
2985      //   For every T, where T is a pointer to object type, there
2986      //   exist candidate operator functions of the form
2987      //
2988      //      ptrdiff_t  operator-(T, T);
2989      for (BuiltinCandidateTypeSet::iterator Ptr
2990             = CandidateTypes.pointer_begin();
2991           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2992        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2993
2994        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2995        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2996
2997        if (Op == OO_Plus) {
2998          // T* operator+(ptrdiff_t, T*);
2999          ParamTypes[0] = ParamTypes[1];
3000          ParamTypes[1] = *Ptr;
3001          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3002        } else {
3003          // ptrdiff_t operator-(T, T);
3004          ParamTypes[1] = *Ptr;
3005          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3006                              Args, 2, CandidateSet);
3007        }
3008      }
3009    }
3010    // Fall through
3011
3012  case OO_Slash:
3013  BinaryStar:
3014  Conditional:
3015    // C++ [over.built]p12:
3016    //
3017    //   For every pair of promoted arithmetic types L and R, there
3018    //   exist candidate operator functions of the form
3019    //
3020    //        LR         operator*(L, R);
3021    //        LR         operator/(L, R);
3022    //        LR         operator+(L, R);
3023    //        LR         operator-(L, R);
3024    //        bool       operator<(L, R);
3025    //        bool       operator>(L, R);
3026    //        bool       operator<=(L, R);
3027    //        bool       operator>=(L, R);
3028    //        bool       operator==(L, R);
3029    //        bool       operator!=(L, R);
3030    //
3031    //   where LR is the result of the usual arithmetic conversions
3032    //   between types L and R.
3033    //
3034    // C++ [over.built]p24:
3035    //
3036    //   For every pair of promoted arithmetic types L and R, there exist
3037    //   candidate operator functions of the form
3038    //
3039    //        LR       operator?(bool, L, R);
3040    //
3041    //   where LR is the result of the usual arithmetic conversions
3042    //   between types L and R.
3043    // Our candidates ignore the first parameter.
3044    for (unsigned Left = FirstPromotedArithmeticType;
3045         Left < LastPromotedArithmeticType; ++Left) {
3046      for (unsigned Right = FirstPromotedArithmeticType;
3047           Right < LastPromotedArithmeticType; ++Right) {
3048        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3049        QualType Result
3050          = isComparison? Context.BoolTy
3051                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3052        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3053      }
3054    }
3055    break;
3056
3057  case OO_Percent:
3058  BinaryAmp:
3059  case OO_Caret:
3060  case OO_Pipe:
3061  case OO_LessLess:
3062  case OO_GreaterGreater:
3063    // C++ [over.built]p17:
3064    //
3065    //   For every pair of promoted integral types L and R, there
3066    //   exist candidate operator functions of the form
3067    //
3068    //      LR         operator%(L, R);
3069    //      LR         operator&(L, R);
3070    //      LR         operator^(L, R);
3071    //      LR         operator|(L, R);
3072    //      L          operator<<(L, R);
3073    //      L          operator>>(L, R);
3074    //
3075    //   where LR is the result of the usual arithmetic conversions
3076    //   between types L and R.
3077    for (unsigned Left = FirstPromotedIntegralType;
3078         Left < LastPromotedIntegralType; ++Left) {
3079      for (unsigned Right = FirstPromotedIntegralType;
3080           Right < LastPromotedIntegralType; ++Right) {
3081        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3082        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3083            ? LandR[0]
3084            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3085        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3086      }
3087    }
3088    break;
3089
3090  case OO_Equal:
3091    // C++ [over.built]p20:
3092    //
3093    //   For every pair (T, VQ), where T is an enumeration or
3094    //   (FIXME:) pointer to member type and VQ is either volatile or
3095    //   empty, there exist candidate operator functions of the form
3096    //
3097    //        VQ T&      operator=(VQ T&, T);
3098    for (BuiltinCandidateTypeSet::iterator Enum
3099           = CandidateTypes.enumeration_begin();
3100         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3101      QualType ParamTypes[2];
3102
3103      // T& operator=(T&, T)
3104      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3105      ParamTypes[1] = *Enum;
3106      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3107                          /*IsAssignmentOperator=*/false);
3108
3109      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3110        // volatile T& operator=(volatile T&, T)
3111        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3112        ParamTypes[1] = *Enum;
3113        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3114                            /*IsAssignmentOperator=*/false);
3115      }
3116    }
3117    // Fall through.
3118
3119  case OO_PlusEqual:
3120  case OO_MinusEqual:
3121    // C++ [over.built]p19:
3122    //
3123    //   For every pair (T, VQ), where T is any type and VQ is either
3124    //   volatile or empty, there exist candidate operator functions
3125    //   of the form
3126    //
3127    //        T*VQ&      operator=(T*VQ&, T*);
3128    //
3129    // C++ [over.built]p21:
3130    //
3131    //   For every pair (T, VQ), where T is a cv-qualified or
3132    //   cv-unqualified object type and VQ is either volatile or
3133    //   empty, there exist candidate operator functions of the form
3134    //
3135    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3136    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3137    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3138         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3139      QualType ParamTypes[2];
3140      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3141
3142      // non-volatile version
3143      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3144      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3145                          /*IsAssigmentOperator=*/Op == OO_Equal);
3146
3147      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3148        // volatile version
3149        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3150        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3151                            /*IsAssigmentOperator=*/Op == OO_Equal);
3152      }
3153    }
3154    // Fall through.
3155
3156  case OO_StarEqual:
3157  case OO_SlashEqual:
3158    // C++ [over.built]p18:
3159    //
3160    //   For every triple (L, VQ, R), where L is an arithmetic type,
3161    //   VQ is either volatile or empty, and R is a promoted
3162    //   arithmetic type, there exist candidate operator functions of
3163    //   the form
3164    //
3165    //        VQ L&      operator=(VQ L&, R);
3166    //        VQ L&      operator*=(VQ L&, R);
3167    //        VQ L&      operator/=(VQ L&, R);
3168    //        VQ L&      operator+=(VQ L&, R);
3169    //        VQ L&      operator-=(VQ L&, R);
3170    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3171      for (unsigned Right = FirstPromotedArithmeticType;
3172           Right < LastPromotedArithmeticType; ++Right) {
3173        QualType ParamTypes[2];
3174        ParamTypes[1] = ArithmeticTypes[Right];
3175
3176        // Add this built-in operator as a candidate (VQ is empty).
3177        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3178        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3179                            /*IsAssigmentOperator=*/Op == OO_Equal);
3180
3181        // Add this built-in operator as a candidate (VQ is 'volatile').
3182        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3183        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3184        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3185                            /*IsAssigmentOperator=*/Op == OO_Equal);
3186      }
3187    }
3188    break;
3189
3190  case OO_PercentEqual:
3191  case OO_LessLessEqual:
3192  case OO_GreaterGreaterEqual:
3193  case OO_AmpEqual:
3194  case OO_CaretEqual:
3195  case OO_PipeEqual:
3196    // C++ [over.built]p22:
3197    //
3198    //   For every triple (L, VQ, R), where L is an integral type, VQ
3199    //   is either volatile or empty, and R is a promoted integral
3200    //   type, there exist candidate operator functions of the form
3201    //
3202    //        VQ L&       operator%=(VQ L&, R);
3203    //        VQ L&       operator<<=(VQ L&, R);
3204    //        VQ L&       operator>>=(VQ L&, R);
3205    //        VQ L&       operator&=(VQ L&, R);
3206    //        VQ L&       operator^=(VQ L&, R);
3207    //        VQ L&       operator|=(VQ L&, R);
3208    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3209      for (unsigned Right = FirstPromotedIntegralType;
3210           Right < LastPromotedIntegralType; ++Right) {
3211        QualType ParamTypes[2];
3212        ParamTypes[1] = ArithmeticTypes[Right];
3213
3214        // Add this built-in operator as a candidate (VQ is empty).
3215        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3216        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3217
3218        // Add this built-in operator as a candidate (VQ is 'volatile').
3219        ParamTypes[0] = ArithmeticTypes[Left];
3220        ParamTypes[0].addVolatile();
3221        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3222        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3223      }
3224    }
3225    break;
3226
3227  case OO_Exclaim: {
3228    // C++ [over.operator]p23:
3229    //
3230    //   There also exist candidate operator functions of the form
3231    //
3232    //        bool        operator!(bool);
3233    //        bool        operator&&(bool, bool);     [BELOW]
3234    //        bool        operator||(bool, bool);     [BELOW]
3235    QualType ParamTy = Context.BoolTy;
3236    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3237                        /*IsAssignmentOperator=*/false,
3238                        /*NumContextualBoolArguments=*/1);
3239    break;
3240  }
3241
3242  case OO_AmpAmp:
3243  case OO_PipePipe: {
3244    // C++ [over.operator]p23:
3245    //
3246    //   There also exist candidate operator functions of the form
3247    //
3248    //        bool        operator!(bool);            [ABOVE]
3249    //        bool        operator&&(bool, bool);
3250    //        bool        operator||(bool, bool);
3251    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3252    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3253                        /*IsAssignmentOperator=*/false,
3254                        /*NumContextualBoolArguments=*/2);
3255    break;
3256  }
3257
3258  case OO_Subscript:
3259    // C++ [over.built]p13:
3260    //
3261    //   For every cv-qualified or cv-unqualified object type T there
3262    //   exist candidate operator functions of the form
3263    //
3264    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3265    //        T&         operator[](T*, ptrdiff_t);
3266    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3267    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3268    //        T&         operator[](ptrdiff_t, T*);
3269    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3270         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3271      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3272      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3273      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3274
3275      // T& operator[](T*, ptrdiff_t)
3276      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3277
3278      // T& operator[](ptrdiff_t, T*);
3279      ParamTypes[0] = ParamTypes[1];
3280      ParamTypes[1] = *Ptr;
3281      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3282    }
3283    break;
3284
3285  case OO_ArrowStar:
3286    // FIXME: No support for pointer-to-members yet.
3287    break;
3288
3289  case OO_Conditional:
3290    // Note that we don't consider the first argument, since it has been
3291    // contextually converted to bool long ago. The candidates below are
3292    // therefore added as binary.
3293    //
3294    // C++ [over.built]p24:
3295    //   For every type T, where T is a pointer or pointer-to-member type,
3296    //   there exist candidate operator functions of the form
3297    //
3298    //        T        operator?(bool, T, T);
3299    //
3300    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3301         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3302      QualType ParamTypes[2] = { *Ptr, *Ptr };
3303      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3304    }
3305    for (BuiltinCandidateTypeSet::iterator Ptr =
3306           CandidateTypes.member_pointer_begin(),
3307         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3308      QualType ParamTypes[2] = { *Ptr, *Ptr };
3309      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3310    }
3311    goto Conditional;
3312  }
3313}
3314
3315/// \brief Add function candidates found via argument-dependent lookup
3316/// to the set of overloading candidates.
3317///
3318/// This routine performs argument-dependent name lookup based on the
3319/// given function name (which may also be an operator name) and adds
3320/// all of the overload candidates found by ADL to the overload
3321/// candidate set (C++ [basic.lookup.argdep]).
3322void
3323Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3324                                           Expr **Args, unsigned NumArgs,
3325                                           OverloadCandidateSet& CandidateSet) {
3326  FunctionSet Functions;
3327
3328  // Record all of the function candidates that we've already
3329  // added to the overload set, so that we don't add those same
3330  // candidates a second time.
3331  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3332                                   CandEnd = CandidateSet.end();
3333       Cand != CandEnd; ++Cand)
3334    if (Cand->Function)
3335      Functions.insert(Cand->Function);
3336
3337  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3338
3339  // Erase all of the candidates we already knew about.
3340  // FIXME: This is suboptimal. Is there a better way?
3341  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3342                                   CandEnd = CandidateSet.end();
3343       Cand != CandEnd; ++Cand)
3344    if (Cand->Function)
3345      Functions.erase(Cand->Function);
3346
3347  // For each of the ADL candidates we found, add it to the overload
3348  // set.
3349  for (FunctionSet::iterator Func = Functions.begin(),
3350                          FuncEnd = Functions.end();
3351       Func != FuncEnd; ++Func)
3352    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3353}
3354
3355/// isBetterOverloadCandidate - Determines whether the first overload
3356/// candidate is a better candidate than the second (C++ 13.3.3p1).
3357bool
3358Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3359                                const OverloadCandidate& Cand2)
3360{
3361  // Define viable functions to be better candidates than non-viable
3362  // functions.
3363  if (!Cand2.Viable)
3364    return Cand1.Viable;
3365  else if (!Cand1.Viable)
3366    return false;
3367
3368  // C++ [over.match.best]p1:
3369  //
3370  //   -- if F is a static member function, ICS1(F) is defined such
3371  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3372  //      any function G, and, symmetrically, ICS1(G) is neither
3373  //      better nor worse than ICS1(F).
3374  unsigned StartArg = 0;
3375  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3376    StartArg = 1;
3377
3378  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3379  // function than another viable function F2 if for all arguments i,
3380  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3381  // then...
3382  unsigned NumArgs = Cand1.Conversions.size();
3383  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3384  bool HasBetterConversion = false;
3385  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3386    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3387                                               Cand2.Conversions[ArgIdx])) {
3388    case ImplicitConversionSequence::Better:
3389      // Cand1 has a better conversion sequence.
3390      HasBetterConversion = true;
3391      break;
3392
3393    case ImplicitConversionSequence::Worse:
3394      // Cand1 can't be better than Cand2.
3395      return false;
3396
3397    case ImplicitConversionSequence::Indistinguishable:
3398      // Do nothing.
3399      break;
3400    }
3401  }
3402
3403  if (HasBetterConversion)
3404    return true;
3405
3406  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3407  // implemented, but they require template support.
3408
3409  // C++ [over.match.best]p1b4:
3410  //
3411  //   -- the context is an initialization by user-defined conversion
3412  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3413  //      from the return type of F1 to the destination type (i.e.,
3414  //      the type of the entity being initialized) is a better
3415  //      conversion sequence than the standard conversion sequence
3416  //      from the return type of F2 to the destination type.
3417  if (Cand1.Function && Cand2.Function &&
3418      isa<CXXConversionDecl>(Cand1.Function) &&
3419      isa<CXXConversionDecl>(Cand2.Function)) {
3420    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3421                                               Cand2.FinalConversion)) {
3422    case ImplicitConversionSequence::Better:
3423      // Cand1 has a better conversion sequence.
3424      return true;
3425
3426    case ImplicitConversionSequence::Worse:
3427      // Cand1 can't be better than Cand2.
3428      return false;
3429
3430    case ImplicitConversionSequence::Indistinguishable:
3431      // Do nothing
3432      break;
3433    }
3434  }
3435
3436  return false;
3437}
3438
3439/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3440/// within an overload candidate set. If overloading is successful,
3441/// the result will be OR_Success and Best will be set to point to the
3442/// best viable function within the candidate set. Otherwise, one of
3443/// several kinds of errors will be returned; see
3444/// Sema::OverloadingResult.
3445Sema::OverloadingResult
3446Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3447                         OverloadCandidateSet::iterator& Best)
3448{
3449  // Find the best viable function.
3450  Best = CandidateSet.end();
3451  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3452       Cand != CandidateSet.end(); ++Cand) {
3453    if (Cand->Viable) {
3454      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3455        Best = Cand;
3456    }
3457  }
3458
3459  // If we didn't find any viable functions, abort.
3460  if (Best == CandidateSet.end())
3461    return OR_No_Viable_Function;
3462
3463  // Make sure that this function is better than every other viable
3464  // function. If not, we have an ambiguity.
3465  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3466       Cand != CandidateSet.end(); ++Cand) {
3467    if (Cand->Viable &&
3468        Cand != Best &&
3469        !isBetterOverloadCandidate(*Best, *Cand)) {
3470      Best = CandidateSet.end();
3471      return OR_Ambiguous;
3472    }
3473  }
3474
3475  // Best is the best viable function.
3476  if (Best->Function &&
3477      (Best->Function->isDeleted() ||
3478       Best->Function->getAttr<UnavailableAttr>()))
3479    return OR_Deleted;
3480
3481  // If Best refers to a function that is either deleted (C++0x) or
3482  // unavailable (Clang extension) report an error.
3483
3484  return OR_Success;
3485}
3486
3487/// PrintOverloadCandidates - When overload resolution fails, prints
3488/// diagnostic messages containing the candidates in the candidate
3489/// set. If OnlyViable is true, only viable candidates will be printed.
3490void
3491Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3492                              bool OnlyViable)
3493{
3494  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3495                             LastCand = CandidateSet.end();
3496  for (; Cand != LastCand; ++Cand) {
3497    if (Cand->Viable || !OnlyViable) {
3498      if (Cand->Function) {
3499        if (Cand->Function->isDeleted() ||
3500            Cand->Function->getAttr<UnavailableAttr>()) {
3501          // Deleted or "unavailable" function.
3502          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3503            << Cand->Function->isDeleted();
3504        } else {
3505          // Normal function
3506          // FIXME: Give a better reason!
3507          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3508        }
3509      } else if (Cand->IsSurrogate) {
3510        // Desugar the type of the surrogate down to a function type,
3511        // retaining as many typedefs as possible while still showing
3512        // the function type (and, therefore, its parameter types).
3513        QualType FnType = Cand->Surrogate->getConversionType();
3514        bool isLValueReference = false;
3515        bool isRValueReference = false;
3516        bool isPointer = false;
3517        if (const LValueReferenceType *FnTypeRef =
3518              FnType->getAsLValueReferenceType()) {
3519          FnType = FnTypeRef->getPointeeType();
3520          isLValueReference = true;
3521        } else if (const RValueReferenceType *FnTypeRef =
3522                     FnType->getAsRValueReferenceType()) {
3523          FnType = FnTypeRef->getPointeeType();
3524          isRValueReference = true;
3525        }
3526        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3527          FnType = FnTypePtr->getPointeeType();
3528          isPointer = true;
3529        }
3530        // Desugar down to a function type.
3531        FnType = QualType(FnType->getAsFunctionType(), 0);
3532        // Reconstruct the pointer/reference as appropriate.
3533        if (isPointer) FnType = Context.getPointerType(FnType);
3534        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3535        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3536
3537        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3538          << FnType;
3539      } else {
3540        // FIXME: We need to get the identifier in here
3541        // FIXME: Do we want the error message to point at the
3542        // operator? (built-ins won't have a location)
3543        QualType FnType
3544          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3545                                    Cand->BuiltinTypes.ParamTypes,
3546                                    Cand->Conversions.size(),
3547                                    false, 0);
3548
3549        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3550      }
3551    }
3552  }
3553}
3554
3555/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3556/// an overloaded function (C++ [over.over]), where @p From is an
3557/// expression with overloaded function type and @p ToType is the type
3558/// we're trying to resolve to. For example:
3559///
3560/// @code
3561/// int f(double);
3562/// int f(int);
3563///
3564/// int (*pfd)(double) = f; // selects f(double)
3565/// @endcode
3566///
3567/// This routine returns the resulting FunctionDecl if it could be
3568/// resolved, and NULL otherwise. When @p Complain is true, this
3569/// routine will emit diagnostics if there is an error.
3570FunctionDecl *
3571Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3572                                         bool Complain) {
3573  QualType FunctionType = ToType;
3574  bool IsMember = false;
3575  if (const PointerType *ToTypePtr = ToType->getAsPointerType())
3576    FunctionType = ToTypePtr->getPointeeType();
3577  else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3578    FunctionType = ToTypeRef->getPointeeType();
3579  else if (const MemberPointerType *MemTypePtr =
3580                    ToType->getAsMemberPointerType()) {
3581    FunctionType = MemTypePtr->getPointeeType();
3582    IsMember = true;
3583  }
3584
3585  // We only look at pointers or references to functions.
3586  if (!FunctionType->isFunctionType())
3587    return 0;
3588
3589  // Find the actual overloaded function declaration.
3590  OverloadedFunctionDecl *Ovl = 0;
3591
3592  // C++ [over.over]p1:
3593  //   [...] [Note: any redundant set of parentheses surrounding the
3594  //   overloaded function name is ignored (5.1). ]
3595  Expr *OvlExpr = From->IgnoreParens();
3596
3597  // C++ [over.over]p1:
3598  //   [...] The overloaded function name can be preceded by the &
3599  //   operator.
3600  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3601    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3602      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3603  }
3604
3605  // Try to dig out the overloaded function.
3606  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3607    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3608
3609  // If there's no overloaded function declaration, we're done.
3610  if (!Ovl)
3611    return 0;
3612
3613  // Look through all of the overloaded functions, searching for one
3614  // whose type matches exactly.
3615  // FIXME: When templates or using declarations come along, we'll actually
3616  // have to deal with duplicates, partial ordering, etc. For now, we
3617  // can just do a simple search.
3618  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3619  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3620       Fun != Ovl->function_end(); ++Fun) {
3621    // C++ [over.over]p3:
3622    //   Non-member functions and static member functions match
3623    //   targets of type "pointer-to-function" or "reference-to-function."
3624    //   Nonstatic member functions match targets of
3625    //   type "pointer-to-member-function."
3626    // Note that according to DR 247, the containing class does not matter.
3627    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3628      // Skip non-static functions when converting to pointer, and static
3629      // when converting to member pointer.
3630      if (Method->isStatic() == IsMember)
3631        continue;
3632    } else if (IsMember)
3633      continue;
3634
3635    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3636      return *Fun;
3637  }
3638
3639  return 0;
3640}
3641
3642/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3643/// (which eventually refers to the declaration Func) and the call
3644/// arguments Args/NumArgs, attempt to resolve the function call down
3645/// to a specific function. If overload resolution succeeds, returns
3646/// the function declaration produced by overload
3647/// resolution. Otherwise, emits diagnostics, deletes all of the
3648/// arguments and Fn, and returns NULL.
3649FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3650                                            DeclarationName UnqualifiedName,
3651                                            SourceLocation LParenLoc,
3652                                            Expr **Args, unsigned NumArgs,
3653                                            SourceLocation *CommaLocs,
3654                                            SourceLocation RParenLoc,
3655                                            bool &ArgumentDependentLookup) {
3656  OverloadCandidateSet CandidateSet;
3657
3658  // Add the functions denoted by Callee to the set of candidate
3659  // functions. While we're doing so, track whether argument-dependent
3660  // lookup still applies, per:
3661  //
3662  // C++0x [basic.lookup.argdep]p3:
3663  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3664  //   and let Y be the lookup set produced by argument dependent
3665  //   lookup (defined as follows). If X contains
3666  //
3667  //     -- a declaration of a class member, or
3668  //
3669  //     -- a block-scope function declaration that is not a
3670  //        using-declaration, or
3671  //
3672  //     -- a declaration that is neither a function or a function
3673  //        template
3674  //
3675  //   then Y is empty.
3676  if (OverloadedFunctionDecl *Ovl
3677        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3678    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3679                                                FuncEnd = Ovl->function_end();
3680         Func != FuncEnd; ++Func) {
3681      AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3682
3683      if ((*Func)->getDeclContext()->isRecord() ||
3684          (*Func)->getDeclContext()->isFunctionOrMethod())
3685        ArgumentDependentLookup = false;
3686    }
3687  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3688    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3689
3690    if (Func->getDeclContext()->isRecord() ||
3691        Func->getDeclContext()->isFunctionOrMethod())
3692      ArgumentDependentLookup = false;
3693  }
3694
3695  if (Callee)
3696    UnqualifiedName = Callee->getDeclName();
3697
3698  if (ArgumentDependentLookup)
3699    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3700                                         CandidateSet);
3701
3702  OverloadCandidateSet::iterator Best;
3703  switch (BestViableFunction(CandidateSet, Best)) {
3704  case OR_Success:
3705    return Best->Function;
3706
3707  case OR_No_Viable_Function:
3708    Diag(Fn->getSourceRange().getBegin(),
3709         diag::err_ovl_no_viable_function_in_call)
3710      << UnqualifiedName << Fn->getSourceRange();
3711    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3712    break;
3713
3714  case OR_Ambiguous:
3715    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3716      << UnqualifiedName << Fn->getSourceRange();
3717    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3718    break;
3719
3720  case OR_Deleted:
3721    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3722      << Best->Function->isDeleted()
3723      << UnqualifiedName
3724      << Fn->getSourceRange();
3725    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3726    break;
3727  }
3728
3729  // Overload resolution failed. Destroy all of the subexpressions and
3730  // return NULL.
3731  Fn->Destroy(Context);
3732  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3733    Args[Arg]->Destroy(Context);
3734  return 0;
3735}
3736
3737/// \brief Create a unary operation that may resolve to an overloaded
3738/// operator.
3739///
3740/// \param OpLoc The location of the operator itself (e.g., '*').
3741///
3742/// \param OpcIn The UnaryOperator::Opcode that describes this
3743/// operator.
3744///
3745/// \param Functions The set of non-member functions that will be
3746/// considered by overload resolution. The caller needs to build this
3747/// set based on the context using, e.g.,
3748/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3749/// set should not contain any member functions; those will be added
3750/// by CreateOverloadedUnaryOp().
3751///
3752/// \param input The input argument.
3753Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3754                                                     unsigned OpcIn,
3755                                                     FunctionSet &Functions,
3756                                                     ExprArg input) {
3757  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3758  Expr *Input = (Expr *)input.get();
3759
3760  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3761  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3762  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3763
3764  Expr *Args[2] = { Input, 0 };
3765  unsigned NumArgs = 1;
3766
3767  // For post-increment and post-decrement, add the implicit '0' as
3768  // the second argument, so that we know this is a post-increment or
3769  // post-decrement.
3770  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3771    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3772    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3773                                           SourceLocation());
3774    NumArgs = 2;
3775  }
3776
3777  if (Input->isTypeDependent()) {
3778    OverloadedFunctionDecl *Overloads
3779      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3780    for (FunctionSet::iterator Func = Functions.begin(),
3781                            FuncEnd = Functions.end();
3782         Func != FuncEnd; ++Func)
3783      Overloads->addOverload(*Func);
3784
3785    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3786                                                OpLoc, false, false);
3787
3788    input.release();
3789    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3790                                                   &Args[0], NumArgs,
3791                                                   Context.DependentTy,
3792                                                   OpLoc));
3793  }
3794
3795  // Build an empty overload set.
3796  OverloadCandidateSet CandidateSet;
3797
3798  // Add the candidates from the given function set.
3799  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3800
3801  // Add operator candidates that are member functions.
3802  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3803
3804  // Add builtin operator candidates.
3805  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3806
3807  // Perform overload resolution.
3808  OverloadCandidateSet::iterator Best;
3809  switch (BestViableFunction(CandidateSet, Best)) {
3810  case OR_Success: {
3811    // We found a built-in operator or an overloaded operator.
3812    FunctionDecl *FnDecl = Best->Function;
3813
3814    if (FnDecl) {
3815      // We matched an overloaded operator. Build a call to that
3816      // operator.
3817
3818      // Convert the arguments.
3819      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3820        if (PerformObjectArgumentInitialization(Input, Method))
3821          return ExprError();
3822      } else {
3823        // Convert the arguments.
3824        if (PerformCopyInitialization(Input,
3825                                      FnDecl->getParamDecl(0)->getType(),
3826                                      "passing"))
3827          return ExprError();
3828      }
3829
3830      // Determine the result type
3831      QualType ResultTy
3832        = FnDecl->getType()->getAsFunctionType()->getResultType();
3833      ResultTy = ResultTy.getNonReferenceType();
3834
3835      // Build the actual expression node.
3836      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3837                                               SourceLocation());
3838      UsualUnaryConversions(FnExpr);
3839
3840      input.release();
3841      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3842                                                     &Input, 1, ResultTy,
3843                                                     OpLoc));
3844    } else {
3845      // We matched a built-in operator. Convert the arguments, then
3846      // break out so that we will build the appropriate built-in
3847      // operator node.
3848        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3849                                      Best->Conversions[0], "passing"))
3850          return ExprError();
3851
3852        break;
3853      }
3854    }
3855
3856    case OR_No_Viable_Function:
3857      // No viable function; fall through to handling this as a
3858      // built-in operator, which will produce an error message for us.
3859      break;
3860
3861    case OR_Ambiguous:
3862      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3863          << UnaryOperator::getOpcodeStr(Opc)
3864          << Input->getSourceRange();
3865      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3866      return ExprError();
3867
3868    case OR_Deleted:
3869      Diag(OpLoc, diag::err_ovl_deleted_oper)
3870        << Best->Function->isDeleted()
3871        << UnaryOperator::getOpcodeStr(Opc)
3872        << Input->getSourceRange();
3873      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3874      return ExprError();
3875    }
3876
3877  // Either we found no viable overloaded operator or we matched a
3878  // built-in operator. In either case, fall through to trying to
3879  // build a built-in operation.
3880  input.release();
3881  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3882}
3883
3884/// \brief Create a binary operation that may resolve to an overloaded
3885/// operator.
3886///
3887/// \param OpLoc The location of the operator itself (e.g., '+').
3888///
3889/// \param OpcIn The BinaryOperator::Opcode that describes this
3890/// operator.
3891///
3892/// \param Functions The set of non-member functions that will be
3893/// considered by overload resolution. The caller needs to build this
3894/// set based on the context using, e.g.,
3895/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3896/// set should not contain any member functions; those will be added
3897/// by CreateOverloadedBinOp().
3898///
3899/// \param LHS Left-hand argument.
3900/// \param RHS Right-hand argument.
3901Sema::OwningExprResult
3902Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3903                            unsigned OpcIn,
3904                            FunctionSet &Functions,
3905                            Expr *LHS, Expr *RHS) {
3906  Expr *Args[2] = { LHS, RHS };
3907
3908  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3909  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3910  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3911
3912  // If either side is type-dependent, create an appropriate dependent
3913  // expression.
3914  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3915    // .* cannot be overloaded.
3916    if (Opc == BinaryOperator::PtrMemD)
3917      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3918                                                Context.DependentTy, OpLoc));
3919
3920    OverloadedFunctionDecl *Overloads
3921      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3922    for (FunctionSet::iterator Func = Functions.begin(),
3923                            FuncEnd = Functions.end();
3924         Func != FuncEnd; ++Func)
3925      Overloads->addOverload(*Func);
3926
3927    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3928                                                OpLoc, false, false);
3929
3930    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3931                                                   Args, 2,
3932                                                   Context.DependentTy,
3933                                                   OpLoc));
3934  }
3935
3936  // If this is the .* operator, which is not overloadable, just
3937  // create a built-in binary operator.
3938  if (Opc == BinaryOperator::PtrMemD)
3939    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3940
3941  // If this is one of the assignment operators, we only perform
3942  // overload resolution if the left-hand side is a class or
3943  // enumeration type (C++ [expr.ass]p3).
3944  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3945      !LHS->getType()->isOverloadableType())
3946    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3947
3948  // Build an empty overload set.
3949  OverloadCandidateSet CandidateSet;
3950
3951  // Add the candidates from the given function set.
3952  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3953
3954  // Add operator candidates that are member functions.
3955  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3956
3957  // Add builtin operator candidates.
3958  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3959
3960  // Perform overload resolution.
3961  OverloadCandidateSet::iterator Best;
3962  switch (BestViableFunction(CandidateSet, Best)) {
3963    case OR_Success: {
3964      // We found a built-in operator or an overloaded operator.
3965      FunctionDecl *FnDecl = Best->Function;
3966
3967      if (FnDecl) {
3968        // We matched an overloaded operator. Build a call to that
3969        // operator.
3970
3971        // Convert the arguments.
3972        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3973          if (PerformObjectArgumentInitialization(LHS, Method) ||
3974              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3975                                        "passing"))
3976            return ExprError();
3977        } else {
3978          // Convert the arguments.
3979          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3980                                        "passing") ||
3981              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3982                                        "passing"))
3983            return ExprError();
3984        }
3985
3986        // Determine the result type
3987        QualType ResultTy
3988          = FnDecl->getType()->getAsFunctionType()->getResultType();
3989        ResultTy = ResultTy.getNonReferenceType();
3990
3991        // Build the actual expression node.
3992        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3993                                                 SourceLocation());
3994        UsualUnaryConversions(FnExpr);
3995
3996        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3997                                                       Args, 2, ResultTy,
3998                                                       OpLoc));
3999      } else {
4000        // We matched a built-in operator. Convert the arguments, then
4001        // break out so that we will build the appropriate built-in
4002        // operator node.
4003        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4004                                      Best->Conversions[0], "passing") ||
4005            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4006                                      Best->Conversions[1], "passing"))
4007          return ExprError();
4008
4009        break;
4010      }
4011    }
4012
4013    case OR_No_Viable_Function:
4014      // No viable function; fall through to handling this as a
4015      // built-in operator, which will produce an error message for us.
4016      break;
4017
4018    case OR_Ambiguous:
4019      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4020          << BinaryOperator::getOpcodeStr(Opc)
4021          << LHS->getSourceRange() << RHS->getSourceRange();
4022      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4023      return ExprError();
4024
4025    case OR_Deleted:
4026      Diag(OpLoc, diag::err_ovl_deleted_oper)
4027        << Best->Function->isDeleted()
4028        << BinaryOperator::getOpcodeStr(Opc)
4029        << LHS->getSourceRange() << RHS->getSourceRange();
4030      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4031      return ExprError();
4032    }
4033
4034  // Either we found no viable overloaded operator or we matched a
4035  // built-in operator. In either case, try to build a built-in
4036  // operation.
4037  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4038}
4039
4040/// BuildCallToMemberFunction - Build a call to a member
4041/// function. MemExpr is the expression that refers to the member
4042/// function (and includes the object parameter), Args/NumArgs are the
4043/// arguments to the function call (not including the object
4044/// parameter). The caller needs to validate that the member
4045/// expression refers to a member function or an overloaded member
4046/// function.
4047Sema::ExprResult
4048Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4049                                SourceLocation LParenLoc, Expr **Args,
4050                                unsigned NumArgs, SourceLocation *CommaLocs,
4051                                SourceLocation RParenLoc) {
4052  // Dig out the member expression. This holds both the object
4053  // argument and the member function we're referring to.
4054  MemberExpr *MemExpr = 0;
4055  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4056    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4057  else
4058    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4059  assert(MemExpr && "Building member call without member expression");
4060
4061  // Extract the object argument.
4062  Expr *ObjectArg = MemExpr->getBase();
4063
4064  CXXMethodDecl *Method = 0;
4065  if (OverloadedFunctionDecl *Ovl
4066        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4067    // Add overload candidates
4068    OverloadCandidateSet CandidateSet;
4069    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4070                                                FuncEnd = Ovl->function_end();
4071         Func != FuncEnd; ++Func) {
4072      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4073      Method = cast<CXXMethodDecl>(*Func);
4074      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4075                         /*SuppressUserConversions=*/false);
4076    }
4077
4078    OverloadCandidateSet::iterator Best;
4079    switch (BestViableFunction(CandidateSet, Best)) {
4080    case OR_Success:
4081      Method = cast<CXXMethodDecl>(Best->Function);
4082      break;
4083
4084    case OR_No_Viable_Function:
4085      Diag(MemExpr->getSourceRange().getBegin(),
4086           diag::err_ovl_no_viable_member_function_in_call)
4087        << Ovl->getDeclName() << MemExprE->getSourceRange();
4088      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4089      // FIXME: Leaking incoming expressions!
4090      return true;
4091
4092    case OR_Ambiguous:
4093      Diag(MemExpr->getSourceRange().getBegin(),
4094           diag::err_ovl_ambiguous_member_call)
4095        << Ovl->getDeclName() << MemExprE->getSourceRange();
4096      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4097      // FIXME: Leaking incoming expressions!
4098      return true;
4099
4100    case OR_Deleted:
4101      Diag(MemExpr->getSourceRange().getBegin(),
4102           diag::err_ovl_deleted_member_call)
4103        << Best->Function->isDeleted()
4104        << Ovl->getDeclName() << MemExprE->getSourceRange();
4105      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4106      // FIXME: Leaking incoming expressions!
4107      return true;
4108    }
4109
4110    FixOverloadedFunctionReference(MemExpr, Method);
4111  } else {
4112    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4113  }
4114
4115  assert(Method && "Member call to something that isn't a method?");
4116  ExprOwningPtr<CXXMemberCallExpr>
4117    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4118                                                  NumArgs,
4119                                  Method->getResultType().getNonReferenceType(),
4120                                  RParenLoc));
4121
4122  // Convert the object argument (for a non-static member function call).
4123  if (!Method->isStatic() &&
4124      PerformObjectArgumentInitialization(ObjectArg, Method))
4125    return true;
4126  MemExpr->setBase(ObjectArg);
4127
4128  // Convert the rest of the arguments
4129  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4130  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4131                              RParenLoc))
4132    return true;
4133
4134  return CheckFunctionCall(Method, TheCall.take()).release();
4135}
4136
4137/// BuildCallToObjectOfClassType - Build a call to an object of class
4138/// type (C++ [over.call.object]), which can end up invoking an
4139/// overloaded function call operator (@c operator()) or performing a
4140/// user-defined conversion on the object argument.
4141Sema::ExprResult
4142Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4143                                   SourceLocation LParenLoc,
4144                                   Expr **Args, unsigned NumArgs,
4145                                   SourceLocation *CommaLocs,
4146                                   SourceLocation RParenLoc) {
4147  assert(Object->getType()->isRecordType() && "Requires object type argument");
4148  const RecordType *Record = Object->getType()->getAsRecordType();
4149
4150  // C++ [over.call.object]p1:
4151  //  If the primary-expression E in the function call syntax
4152  //  evaluates to a class object of type “cv T”, then the set of
4153  //  candidate functions includes at least the function call
4154  //  operators of T. The function call operators of T are obtained by
4155  //  ordinary lookup of the name operator() in the context of
4156  //  (E).operator().
4157  OverloadCandidateSet CandidateSet;
4158  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4159  DeclContext::lookup_const_iterator Oper, OperEnd;
4160  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
4161       Oper != OperEnd; ++Oper)
4162    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4163                       CandidateSet, /*SuppressUserConversions=*/false);
4164
4165  // C++ [over.call.object]p2:
4166  //   In addition, for each conversion function declared in T of the
4167  //   form
4168  //
4169  //        operator conversion-type-id () cv-qualifier;
4170  //
4171  //   where cv-qualifier is the same cv-qualification as, or a
4172  //   greater cv-qualification than, cv, and where conversion-type-id
4173  //   denotes the type "pointer to function of (P1,...,Pn) returning
4174  //   R", or the type "reference to pointer to function of
4175  //   (P1,...,Pn) returning R", or the type "reference to function
4176  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4177  //   is also considered as a candidate function. Similarly,
4178  //   surrogate call functions are added to the set of candidate
4179  //   functions for each conversion function declared in an
4180  //   accessible base class provided the function is not hidden
4181  //   within T by another intervening declaration.
4182  //
4183  // FIXME: Look in base classes for more conversion operators!
4184  OverloadedFunctionDecl *Conversions
4185    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4186  for (OverloadedFunctionDecl::function_iterator
4187         Func = Conversions->function_begin(),
4188         FuncEnd = Conversions->function_end();
4189       Func != FuncEnd; ++Func) {
4190    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4191
4192    // Strip the reference type (if any) and then the pointer type (if
4193    // any) to get down to what might be a function type.
4194    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4195    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4196      ConvType = ConvPtrType->getPointeeType();
4197
4198    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4199      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4200  }
4201
4202  // Perform overload resolution.
4203  OverloadCandidateSet::iterator Best;
4204  switch (BestViableFunction(CandidateSet, Best)) {
4205  case OR_Success:
4206    // Overload resolution succeeded; we'll build the appropriate call
4207    // below.
4208    break;
4209
4210  case OR_No_Viable_Function:
4211    Diag(Object->getSourceRange().getBegin(),
4212         diag::err_ovl_no_viable_object_call)
4213      << Object->getType() << Object->getSourceRange();
4214    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4215    break;
4216
4217  case OR_Ambiguous:
4218    Diag(Object->getSourceRange().getBegin(),
4219         diag::err_ovl_ambiguous_object_call)
4220      << Object->getType() << Object->getSourceRange();
4221    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4222    break;
4223
4224  case OR_Deleted:
4225    Diag(Object->getSourceRange().getBegin(),
4226         diag::err_ovl_deleted_object_call)
4227      << Best->Function->isDeleted()
4228      << Object->getType() << Object->getSourceRange();
4229    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4230    break;
4231  }
4232
4233  if (Best == CandidateSet.end()) {
4234    // We had an error; delete all of the subexpressions and return
4235    // the error.
4236    Object->Destroy(Context);
4237    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4238      Args[ArgIdx]->Destroy(Context);
4239    return true;
4240  }
4241
4242  if (Best->Function == 0) {
4243    // Since there is no function declaration, this is one of the
4244    // surrogate candidates. Dig out the conversion function.
4245    CXXConversionDecl *Conv
4246      = cast<CXXConversionDecl>(
4247                         Best->Conversions[0].UserDefined.ConversionFunction);
4248
4249    // We selected one of the surrogate functions that converts the
4250    // object parameter to a function pointer. Perform the conversion
4251    // on the object argument, then let ActOnCallExpr finish the job.
4252    // FIXME: Represent the user-defined conversion in the AST!
4253    ImpCastExprToType(Object,
4254                      Conv->getConversionType().getNonReferenceType(),
4255                      Conv->getConversionType()->isLValueReferenceType());
4256    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4257                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4258                         CommaLocs, RParenLoc).release();
4259  }
4260
4261  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4262  // that calls this method, using Object for the implicit object
4263  // parameter and passing along the remaining arguments.
4264  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4265  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4266
4267  unsigned NumArgsInProto = Proto->getNumArgs();
4268  unsigned NumArgsToCheck = NumArgs;
4269
4270  // Build the full argument list for the method call (the
4271  // implicit object parameter is placed at the beginning of the
4272  // list).
4273  Expr **MethodArgs;
4274  if (NumArgs < NumArgsInProto) {
4275    NumArgsToCheck = NumArgsInProto;
4276    MethodArgs = new Expr*[NumArgsInProto + 1];
4277  } else {
4278    MethodArgs = new Expr*[NumArgs + 1];
4279  }
4280  MethodArgs[0] = Object;
4281  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4282    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4283
4284  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4285                                          SourceLocation());
4286  UsualUnaryConversions(NewFn);
4287
4288  // Once we've built TheCall, all of the expressions are properly
4289  // owned.
4290  QualType ResultTy = Method->getResultType().getNonReferenceType();
4291  ExprOwningPtr<CXXOperatorCallExpr>
4292    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4293                                                    MethodArgs, NumArgs + 1,
4294                                                    ResultTy, RParenLoc));
4295  delete [] MethodArgs;
4296
4297  // We may have default arguments. If so, we need to allocate more
4298  // slots in the call for them.
4299  if (NumArgs < NumArgsInProto)
4300    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4301  else if (NumArgs > NumArgsInProto)
4302    NumArgsToCheck = NumArgsInProto;
4303
4304  bool IsError = false;
4305
4306  // Initialize the implicit object parameter.
4307  IsError |= PerformObjectArgumentInitialization(Object, Method);
4308  TheCall->setArg(0, Object);
4309
4310
4311  // Check the argument types.
4312  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4313    Expr *Arg;
4314    if (i < NumArgs) {
4315      Arg = Args[i];
4316
4317      // Pass the argument.
4318      QualType ProtoArgType = Proto->getArgType(i);
4319      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4320    } else {
4321      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4322    }
4323
4324    TheCall->setArg(i + 1, Arg);
4325  }
4326
4327  // If this is a variadic call, handle args passed through "...".
4328  if (Proto->isVariadic()) {
4329    // Promote the arguments (C99 6.5.2.2p7).
4330    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4331      Expr *Arg = Args[i];
4332      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4333      TheCall->setArg(i + 1, Arg);
4334    }
4335  }
4336
4337  if (IsError) return true;
4338
4339  return CheckFunctionCall(Method, TheCall.take()).release();
4340}
4341
4342/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4343///  (if one exists), where @c Base is an expression of class type and
4344/// @c Member is the name of the member we're trying to find.
4345Action::ExprResult
4346Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4347                               SourceLocation MemberLoc,
4348                               IdentifierInfo &Member) {
4349  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4350
4351  // C++ [over.ref]p1:
4352  //
4353  //   [...] An expression x->m is interpreted as (x.operator->())->m
4354  //   for a class object x of type T if T::operator->() exists and if
4355  //   the operator is selected as the best match function by the
4356  //   overload resolution mechanism (13.3).
4357  // FIXME: look in base classes.
4358  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4359  OverloadCandidateSet CandidateSet;
4360  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4361
4362  DeclContext::lookup_const_iterator Oper, OperEnd;
4363  for (llvm::tie(Oper, OperEnd)
4364         = BaseRecord->getDecl()->lookup(Context, OpName);
4365       Oper != OperEnd; ++Oper)
4366    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4367                       /*SuppressUserConversions=*/false);
4368
4369  ExprOwningPtr<Expr> BasePtr(this, Base);
4370
4371  // Perform overload resolution.
4372  OverloadCandidateSet::iterator Best;
4373  switch (BestViableFunction(CandidateSet, Best)) {
4374  case OR_Success:
4375    // Overload resolution succeeded; we'll build the call below.
4376    break;
4377
4378  case OR_No_Viable_Function:
4379    if (CandidateSet.empty())
4380      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4381        << BasePtr->getType() << BasePtr->getSourceRange();
4382    else
4383      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4384        << "operator->" << BasePtr->getSourceRange();
4385    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4386    return true;
4387
4388  case OR_Ambiguous:
4389    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4390      << "operator->" << BasePtr->getSourceRange();
4391    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4392    return true;
4393
4394  case OR_Deleted:
4395    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4396      << Best->Function->isDeleted()
4397      << "operator->" << BasePtr->getSourceRange();
4398    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4399    return true;
4400  }
4401
4402  // Convert the object parameter.
4403  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4404  if (PerformObjectArgumentInitialization(Base, Method))
4405    return true;
4406
4407  // No concerns about early exits now.
4408  BasePtr.take();
4409
4410  // Build the operator call.
4411  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4412                                           SourceLocation());
4413  UsualUnaryConversions(FnExpr);
4414  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4415                                 Method->getResultType().getNonReferenceType(),
4416                                 OpLoc);
4417  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4418                                  MemberLoc, Member, DeclPtrTy()).release();
4419}
4420
4421/// FixOverloadedFunctionReference - E is an expression that refers to
4422/// a C++ overloaded function (possibly with some parentheses and
4423/// perhaps a '&' around it). We have resolved the overloaded function
4424/// to the function declaration Fn, so patch up the expression E to
4425/// refer (possibly indirectly) to Fn.
4426void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4427  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4428    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4429    E->setType(PE->getSubExpr()->getType());
4430  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4431    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4432           "Can only take the address of an overloaded function");
4433    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4434      if (Method->isStatic()) {
4435        // Do nothing: static member functions aren't any different
4436        // from non-member functions.
4437      }
4438      else if (QualifiedDeclRefExpr *DRE
4439                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4440        // We have taken the address of a pointer to member
4441        // function. Perform the computation here so that we get the
4442        // appropriate pointer to member type.
4443        DRE->setDecl(Fn);
4444        DRE->setType(Fn->getType());
4445        QualType ClassType
4446          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4447        E->setType(Context.getMemberPointerType(Fn->getType(),
4448                                                ClassType.getTypePtr()));
4449        return;
4450      }
4451    }
4452    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4453    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4454  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4455    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4456           "Expected overloaded function");
4457    DR->setDecl(Fn);
4458    E->setType(Fn->getType());
4459  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4460    MemExpr->setMemberDecl(Fn);
4461    E->setType(Fn->getType());
4462  } else {
4463    assert(false && "Invalid reference to overloaded function");
4464  }
4465}
4466
4467} // end namespace clang
4468