SemaOverload.cpp revision 390b4cc8b45a05612349269ef08faab3e4688f06
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAsPointerType())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304    // Is the function New an overload of the function Old?
305    QualType OldQType = Context.getCanonicalType(Old->getType());
306    QualType NewQType = Context.getCanonicalType(New->getType());
307
308    // Compare the signatures (C++ 1.3.10) of the two functions to
309    // determine whether they are overloads. If we find any mismatch
310    // in the signature, they are overloads.
311
312    // If either of these functions is a K&R-style function (no
313    // prototype), then we consider them to have matching signatures.
314    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
316      return false;
317
318    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
320
321    // The signature of a function includes the types of its
322    // parameters (C++ 1.3.10), which includes the presence or absence
323    // of the ellipsis; see C++ DR 357).
324    if (OldQType != NewQType &&
325        (OldType->getNumArgs() != NewType->getNumArgs() ||
326         OldType->isVariadic() != NewType->isVariadic() ||
327         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328                     NewType->arg_type_begin())))
329      return true;
330
331    // If the function is a class member, its signature includes the
332    // cv-qualifiers (if any) on the function itself.
333    //
334    // As part of this, also check whether one of the member functions
335    // is static, in which case they are not overloads (C++
336    // 13.1p2). While not part of the definition of the signature,
337    // this check is important to determine whether these functions
338    // can be overloaded.
339    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341    if (OldMethod && NewMethod &&
342        !OldMethod->isStatic() && !NewMethod->isStatic() &&
343        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
344      return true;
345
346    // The signatures match; this is not an overload.
347    return false;
348  } else {
349    // (C++ 13p1):
350    //   Only function declarations can be overloaded; object and type
351    //   declarations cannot be overloaded.
352    return false;
353  }
354}
355
356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
360///
361///   void f(float f);
362///   void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
381ImplicitConversionSequence
382Sema::TryImplicitConversion(Expr* From, QualType ToType,
383                            bool SuppressUserConversions,
384                            bool AllowExplicit, bool ForceRValue)
385{
386  ImplicitConversionSequence ICS;
387  if (IsStandardConversion(From, ToType, ICS.Standard))
388    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
389  else if (getLangOptions().CPlusPlus &&
390           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
391                                   !SuppressUserConversions, AllowExplicit,
392                                   ForceRValue)) {
393    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
394    // C++ [over.ics.user]p4:
395    //   A conversion of an expression of class type to the same class
396    //   type is given Exact Match rank, and a conversion of an
397    //   expression of class type to a base class of that type is
398    //   given Conversion rank, in spite of the fact that a copy
399    //   constructor (i.e., a user-defined conversion function) is
400    //   called for those cases.
401    if (CXXConstructorDecl *Constructor
402          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
403      QualType FromCanon
404        = Context.getCanonicalType(From->getType().getUnqualifiedType());
405      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
407        // Turn this into a "standard" conversion sequence, so that it
408        // gets ranked with standard conversion sequences.
409        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410        ICS.Standard.setAsIdentityConversion();
411        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
413        ICS.Standard.CopyConstructor = Constructor;
414        if (ToCanon != FromCanon)
415          ICS.Standard.Second = ICK_Derived_To_Base;
416      }
417    }
418
419    // C++ [over.best.ics]p4:
420    //   However, when considering the argument of a user-defined
421    //   conversion function that is a candidate by 13.3.1.3 when
422    //   invoked for the copying of the temporary in the second step
423    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424    //   13.3.1.6 in all cases, only standard conversion sequences and
425    //   ellipsis conversion sequences are allowed.
426    if (SuppressUserConversions &&
427        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
429  } else
430    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
431
432  return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445                           StandardConversionSequence &SCS)
446{
447  QualType FromType = From->getType();
448
449  // Standard conversions (C++ [conv])
450  SCS.setAsIdentityConversion();
451  SCS.Deprecated = false;
452  SCS.IncompatibleObjC = false;
453  SCS.FromTypePtr = FromType.getAsOpaquePtr();
454  SCS.CopyConstructor = 0;
455
456  // There are no standard conversions for class types in C++, so
457  // abort early. When overloading in C, however, we do permit
458  if (FromType->isRecordType() || ToType->isRecordType()) {
459    if (getLangOptions().CPlusPlus)
460      return false;
461
462    // When we're overloading in C, we allow, as standard conversions,
463  }
464
465  // The first conversion can be an lvalue-to-rvalue conversion,
466  // array-to-pointer conversion, or function-to-pointer conversion
467  // (C++ 4p1).
468
469  // Lvalue-to-rvalue conversion (C++ 4.1):
470  //   An lvalue (3.10) of a non-function, non-array type T can be
471  //   converted to an rvalue.
472  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473  if (argIsLvalue == Expr::LV_Valid &&
474      !FromType->isFunctionType() && !FromType->isArrayType() &&
475      Context.getCanonicalType(FromType) != Context.OverloadTy) {
476    SCS.First = ICK_Lvalue_To_Rvalue;
477
478    // If T is a non-class type, the type of the rvalue is the
479    // cv-unqualified version of T. Otherwise, the type of the rvalue
480    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481    // just strip the qualifiers because they don't matter.
482
483    // FIXME: Doesn't see through to qualifiers behind a typedef!
484    FromType = FromType.getUnqualifiedType();
485  }
486  // Array-to-pointer conversion (C++ 4.2)
487  else if (FromType->isArrayType()) {
488    SCS.First = ICK_Array_To_Pointer;
489
490    // An lvalue or rvalue of type "array of N T" or "array of unknown
491    // bound of T" can be converted to an rvalue of type "pointer to
492    // T" (C++ 4.2p1).
493    FromType = Context.getArrayDecayedType(FromType);
494
495    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496      // This conversion is deprecated. (C++ D.4).
497      SCS.Deprecated = true;
498
499      // For the purpose of ranking in overload resolution
500      // (13.3.3.1.1), this conversion is considered an
501      // array-to-pointer conversion followed by a qualification
502      // conversion (4.4). (C++ 4.2p2)
503      SCS.Second = ICK_Identity;
504      SCS.Third = ICK_Qualification;
505      SCS.ToTypePtr = ToType.getAsOpaquePtr();
506      return true;
507    }
508  }
509  // Function-to-pointer conversion (C++ 4.3).
510  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
511    SCS.First = ICK_Function_To_Pointer;
512
513    // An lvalue of function type T can be converted to an rvalue of
514    // type "pointer to T." The result is a pointer to the
515    // function. (C++ 4.3p1).
516    FromType = Context.getPointerType(FromType);
517  }
518  // Address of overloaded function (C++ [over.over]).
519  else if (FunctionDecl *Fn
520             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521    SCS.First = ICK_Function_To_Pointer;
522
523    // We were able to resolve the address of the overloaded function,
524    // so we can convert to the type of that function.
525    FromType = Fn->getType();
526    if (ToType->isLValueReferenceType())
527      FromType = Context.getLValueReferenceType(FromType);
528    else if (ToType->isRValueReferenceType())
529      FromType = Context.getRValueReferenceType(FromType);
530    else if (ToType->isMemberPointerType()) {
531      // Resolve address only succeeds if both sides are member pointers,
532      // but it doesn't have to be the same class. See DR 247.
533      // Note that this means that the type of &Derived::fn can be
534      // Ret (Base::*)(Args) if the fn overload actually found is from the
535      // base class, even if it was brought into the derived class via a
536      // using declaration. The standard isn't clear on this issue at all.
537      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538      FromType = Context.getMemberPointerType(FromType,
539                    Context.getTypeDeclType(M->getParent()).getTypePtr());
540    } else
541      FromType = Context.getPointerType(FromType);
542  }
543  // We don't require any conversions for the first step.
544  else {
545    SCS.First = ICK_Identity;
546  }
547
548  // The second conversion can be an integral promotion, floating
549  // point promotion, integral conversion, floating point conversion,
550  // floating-integral conversion, pointer conversion,
551  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
552  // For overloading in C, this can also be a "compatible-type"
553  // conversion.
554  bool IncompatibleObjC = false;
555  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
556    // The unqualified versions of the types are the same: there's no
557    // conversion to do.
558    SCS.Second = ICK_Identity;
559  }
560  // Integral promotion (C++ 4.5).
561  else if (IsIntegralPromotion(From, FromType, ToType)) {
562    SCS.Second = ICK_Integral_Promotion;
563    FromType = ToType.getUnqualifiedType();
564  }
565  // Floating point promotion (C++ 4.6).
566  else if (IsFloatingPointPromotion(FromType, ToType)) {
567    SCS.Second = ICK_Floating_Promotion;
568    FromType = ToType.getUnqualifiedType();
569  }
570  // Complex promotion (Clang extension)
571  else if (IsComplexPromotion(FromType, ToType)) {
572    SCS.Second = ICK_Complex_Promotion;
573    FromType = ToType.getUnqualifiedType();
574  }
575  // Integral conversions (C++ 4.7).
576  // FIXME: isIntegralType shouldn't be true for enums in C++.
577  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
578           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
579    SCS.Second = ICK_Integral_Conversion;
580    FromType = ToType.getUnqualifiedType();
581  }
582  // Floating point conversions (C++ 4.8).
583  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
584    SCS.Second = ICK_Floating_Conversion;
585    FromType = ToType.getUnqualifiedType();
586  }
587  // Complex conversions (C99 6.3.1.6)
588  else if (FromType->isComplexType() && ToType->isComplexType()) {
589    SCS.Second = ICK_Complex_Conversion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating-integral conversions (C++ 4.9).
593  // FIXME: isIntegralType shouldn't be true for enums in C++.
594  else if ((FromType->isFloatingType() &&
595            ToType->isIntegralType() && !ToType->isBooleanType() &&
596                                        !ToType->isEnumeralType()) ||
597           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598            ToType->isFloatingType())) {
599    SCS.Second = ICK_Floating_Integral;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Complex-real conversions (C99 6.3.1.7)
603  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604           (ToType->isComplexType() && FromType->isArithmeticType())) {
605    SCS.Second = ICK_Complex_Real;
606    FromType = ToType.getUnqualifiedType();
607  }
608  // Pointer conversions (C++ 4.10).
609  else if (IsPointerConversion(From, FromType, ToType, FromType,
610                               IncompatibleObjC)) {
611    SCS.Second = ICK_Pointer_Conversion;
612    SCS.IncompatibleObjC = IncompatibleObjC;
613  }
614  // Pointer to member conversions (4.11).
615  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616    SCS.Second = ICK_Pointer_Member;
617  }
618  // Boolean conversions (C++ 4.12).
619  else if (ToType->isBooleanType() &&
620           (FromType->isArithmeticType() ||
621            FromType->isEnumeralType() ||
622            FromType->isPointerType() ||
623            FromType->isBlockPointerType() ||
624            FromType->isMemberPointerType() ||
625            FromType->isNullPtrType())) {
626    SCS.Second = ICK_Boolean_Conversion;
627    FromType = Context.BoolTy;
628  }
629  // Compatible conversions (Clang extension for C function overloading)
630  else if (!getLangOptions().CPlusPlus &&
631           Context.typesAreCompatible(ToType, FromType)) {
632    SCS.Second = ICK_Compatible_Conversion;
633  } else {
634    // No second conversion required.
635    SCS.Second = ICK_Identity;
636  }
637
638  QualType CanonFrom;
639  QualType CanonTo;
640  // The third conversion can be a qualification conversion (C++ 4p1).
641  if (IsQualificationConversion(FromType, ToType)) {
642    SCS.Third = ICK_Qualification;
643    FromType = ToType;
644    CanonFrom = Context.getCanonicalType(FromType);
645    CanonTo = Context.getCanonicalType(ToType);
646  } else {
647    // No conversion required
648    SCS.Third = ICK_Identity;
649
650    // C++ [over.best.ics]p6:
651    //   [...] Any difference in top-level cv-qualification is
652    //   subsumed by the initialization itself and does not constitute
653    //   a conversion. [...]
654    CanonFrom = Context.getCanonicalType(FromType);
655    CanonTo = Context.getCanonicalType(ToType);
656    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
657        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
658      FromType = ToType;
659      CanonFrom = CanonTo;
660    }
661  }
662
663  // If we have not converted the argument type to the parameter type,
664  // this is a bad conversion sequence.
665  if (CanonFrom != CanonTo)
666    return false;
667
668  SCS.ToTypePtr = FromType.getAsOpaquePtr();
669  return true;
670}
671
672/// IsIntegralPromotion - Determines whether the conversion from the
673/// expression From (whose potentially-adjusted type is FromType) to
674/// ToType is an integral promotion (C++ 4.5). If so, returns true and
675/// sets PromotedType to the promoted type.
676bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
677{
678  const BuiltinType *To = ToType->getAsBuiltinType();
679  // All integers are built-in.
680  if (!To) {
681    return false;
682  }
683
684  // An rvalue of type char, signed char, unsigned char, short int, or
685  // unsigned short int can be converted to an rvalue of type int if
686  // int can represent all the values of the source type; otherwise,
687  // the source rvalue can be converted to an rvalue of type unsigned
688  // int (C++ 4.5p1).
689  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
690    if (// We can promote any signed, promotable integer type to an int
691        (FromType->isSignedIntegerType() ||
692         // We can promote any unsigned integer type whose size is
693         // less than int to an int.
694         (!FromType->isSignedIntegerType() &&
695          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
696      return To->getKind() == BuiltinType::Int;
697    }
698
699    return To->getKind() == BuiltinType::UInt;
700  }
701
702  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
703  // can be converted to an rvalue of the first of the following types
704  // that can represent all the values of its underlying type: int,
705  // unsigned int, long, or unsigned long (C++ 4.5p2).
706  if ((FromType->isEnumeralType() || FromType->isWideCharType())
707      && ToType->isIntegerType()) {
708    // Determine whether the type we're converting from is signed or
709    // unsigned.
710    bool FromIsSigned;
711    uint64_t FromSize = Context.getTypeSize(FromType);
712    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
713      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
714      FromIsSigned = UnderlyingType->isSignedIntegerType();
715    } else {
716      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
717      FromIsSigned = true;
718    }
719
720    // The types we'll try to promote to, in the appropriate
721    // order. Try each of these types.
722    QualType PromoteTypes[6] = {
723      Context.IntTy, Context.UnsignedIntTy,
724      Context.LongTy, Context.UnsignedLongTy ,
725      Context.LongLongTy, Context.UnsignedLongLongTy
726    };
727    for (int Idx = 0; Idx < 6; ++Idx) {
728      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
729      if (FromSize < ToSize ||
730          (FromSize == ToSize &&
731           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
732        // We found the type that we can promote to. If this is the
733        // type we wanted, we have a promotion. Otherwise, no
734        // promotion.
735        return Context.getCanonicalType(ToType).getUnqualifiedType()
736          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
737      }
738    }
739  }
740
741  // An rvalue for an integral bit-field (9.6) can be converted to an
742  // rvalue of type int if int can represent all the values of the
743  // bit-field; otherwise, it can be converted to unsigned int if
744  // unsigned int can represent all the values of the bit-field. If
745  // the bit-field is larger yet, no integral promotion applies to
746  // it. If the bit-field has an enumerated type, it is treated as any
747  // other value of that type for promotion purposes (C++ 4.5p3).
748  // FIXME: We should delay checking of bit-fields until we actually perform the
749  // conversion.
750  using llvm::APSInt;
751  if (From)
752    if (FieldDecl *MemberDecl = From->getBitField()) {
753      APSInt BitWidth;
754      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
755          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
756        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
757        ToSize = Context.getTypeSize(ToType);
758
759        // Are we promoting to an int from a bitfield that fits in an int?
760        if (BitWidth < ToSize ||
761            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
762          return To->getKind() == BuiltinType::Int;
763        }
764
765        // Are we promoting to an unsigned int from an unsigned bitfield
766        // that fits into an unsigned int?
767        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
768          return To->getKind() == BuiltinType::UInt;
769        }
770
771        return false;
772      }
773    }
774
775  // An rvalue of type bool can be converted to an rvalue of type int,
776  // with false becoming zero and true becoming one (C++ 4.5p4).
777  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
778    return true;
779  }
780
781  return false;
782}
783
784/// IsFloatingPointPromotion - Determines whether the conversion from
785/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
786/// returns true and sets PromotedType to the promoted type.
787bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
788{
789  /// An rvalue of type float can be converted to an rvalue of type
790  /// double. (C++ 4.6p1).
791  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
792    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
793      if (FromBuiltin->getKind() == BuiltinType::Float &&
794          ToBuiltin->getKind() == BuiltinType::Double)
795        return true;
796
797      // C99 6.3.1.5p1:
798      //   When a float is promoted to double or long double, or a
799      //   double is promoted to long double [...].
800      if (!getLangOptions().CPlusPlus &&
801          (FromBuiltin->getKind() == BuiltinType::Float ||
802           FromBuiltin->getKind() == BuiltinType::Double) &&
803          (ToBuiltin->getKind() == BuiltinType::LongDouble))
804        return true;
805    }
806
807  return false;
808}
809
810/// \brief Determine if a conversion is a complex promotion.
811///
812/// A complex promotion is defined as a complex -> complex conversion
813/// where the conversion between the underlying real types is a
814/// floating-point or integral promotion.
815bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
816  const ComplexType *FromComplex = FromType->getAsComplexType();
817  if (!FromComplex)
818    return false;
819
820  const ComplexType *ToComplex = ToType->getAsComplexType();
821  if (!ToComplex)
822    return false;
823
824  return IsFloatingPointPromotion(FromComplex->getElementType(),
825                                  ToComplex->getElementType()) ||
826    IsIntegralPromotion(0, FromComplex->getElementType(),
827                        ToComplex->getElementType());
828}
829
830/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
831/// the pointer type FromPtr to a pointer to type ToPointee, with the
832/// same type qualifiers as FromPtr has on its pointee type. ToType,
833/// if non-empty, will be a pointer to ToType that may or may not have
834/// the right set of qualifiers on its pointee.
835static QualType
836BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
837                                   QualType ToPointee, QualType ToType,
838                                   ASTContext &Context) {
839  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
840  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
841  unsigned Quals = CanonFromPointee.getCVRQualifiers();
842
843  // Exact qualifier match -> return the pointer type we're converting to.
844  if (CanonToPointee.getCVRQualifiers() == Quals) {
845    // ToType is exactly what we need. Return it.
846    if (ToType.getTypePtr())
847      return ToType;
848
849    // Build a pointer to ToPointee. It has the right qualifiers
850    // already.
851    return Context.getPointerType(ToPointee);
852  }
853
854  // Just build a canonical type that has the right qualifiers.
855  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
856}
857
858/// IsPointerConversion - Determines whether the conversion of the
859/// expression From, which has the (possibly adjusted) type FromType,
860/// can be converted to the type ToType via a pointer conversion (C++
861/// 4.10). If so, returns true and places the converted type (that
862/// might differ from ToType in its cv-qualifiers at some level) into
863/// ConvertedType.
864///
865/// This routine also supports conversions to and from block pointers
866/// and conversions with Objective-C's 'id', 'id<protocols...>', and
867/// pointers to interfaces. FIXME: Once we've determined the
868/// appropriate overloading rules for Objective-C, we may want to
869/// split the Objective-C checks into a different routine; however,
870/// GCC seems to consider all of these conversions to be pointer
871/// conversions, so for now they live here. IncompatibleObjC will be
872/// set if the conversion is an allowed Objective-C conversion that
873/// should result in a warning.
874bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
875                               QualType& ConvertedType,
876                               bool &IncompatibleObjC)
877{
878  IncompatibleObjC = false;
879  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
880    return true;
881
882  // Conversion from a null pointer constant to any Objective-C pointer type.
883  if (Context.isObjCObjectPointerType(ToType) &&
884      From->isNullPointerConstant(Context)) {
885    ConvertedType = ToType;
886    return true;
887  }
888
889  // Blocks: Block pointers can be converted to void*.
890  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
891      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
892    ConvertedType = ToType;
893    return true;
894  }
895  // Blocks: A null pointer constant can be converted to a block
896  // pointer type.
897  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
898    ConvertedType = ToType;
899    return true;
900  }
901
902  // If the left-hand-side is nullptr_t, the right side can be a null
903  // pointer constant.
904  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
905    ConvertedType = ToType;
906    return true;
907  }
908
909  const PointerType* ToTypePtr = ToType->getAsPointerType();
910  if (!ToTypePtr)
911    return false;
912
913  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
914  if (From->isNullPointerConstant(Context)) {
915    ConvertedType = ToType;
916    return true;
917  }
918
919  // Beyond this point, both types need to be pointers.
920  const PointerType *FromTypePtr = FromType->getAsPointerType();
921  if (!FromTypePtr)
922    return false;
923
924  QualType FromPointeeType = FromTypePtr->getPointeeType();
925  QualType ToPointeeType = ToTypePtr->getPointeeType();
926
927  // An rvalue of type "pointer to cv T," where T is an object type,
928  // can be converted to an rvalue of type "pointer to cv void" (C++
929  // 4.10p2).
930  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
931    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
932                                                       ToPointeeType,
933                                                       ToType, Context);
934    return true;
935  }
936
937  // When we're overloading in C, we allow a special kind of pointer
938  // conversion for compatible-but-not-identical pointee types.
939  if (!getLangOptions().CPlusPlus &&
940      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
941    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
942                                                       ToPointeeType,
943                                                       ToType, Context);
944    return true;
945  }
946
947  // C++ [conv.ptr]p3:
948  //
949  //   An rvalue of type "pointer to cv D," where D is a class type,
950  //   can be converted to an rvalue of type "pointer to cv B," where
951  //   B is a base class (clause 10) of D. If B is an inaccessible
952  //   (clause 11) or ambiguous (10.2) base class of D, a program that
953  //   necessitates this conversion is ill-formed. The result of the
954  //   conversion is a pointer to the base class sub-object of the
955  //   derived class object. The null pointer value is converted to
956  //   the null pointer value of the destination type.
957  //
958  // Note that we do not check for ambiguity or inaccessibility
959  // here. That is handled by CheckPointerConversion.
960  if (getLangOptions().CPlusPlus &&
961      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
962      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
963    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
964                                                       ToPointeeType,
965                                                       ToType, Context);
966    return true;
967  }
968
969  return false;
970}
971
972/// isObjCPointerConversion - Determines whether this is an
973/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
974/// with the same arguments and return values.
975bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
976                                   QualType& ConvertedType,
977                                   bool &IncompatibleObjC) {
978  if (!getLangOptions().ObjC1)
979    return false;
980
981  // Conversions with Objective-C's id<...>.
982  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
983      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
984    ConvertedType = ToType;
985    return true;
986  }
987
988  // Beyond this point, both types need to be pointers or block pointers.
989  QualType ToPointeeType;
990  const PointerType* ToTypePtr = ToType->getAsPointerType();
991  if (ToTypePtr)
992    ToPointeeType = ToTypePtr->getPointeeType();
993  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
994    ToPointeeType = ToBlockPtr->getPointeeType();
995  else
996    return false;
997
998  QualType FromPointeeType;
999  const PointerType *FromTypePtr = FromType->getAsPointerType();
1000  if (FromTypePtr)
1001    FromPointeeType = FromTypePtr->getPointeeType();
1002  else if (const BlockPointerType *FromBlockPtr
1003             = FromType->getAsBlockPointerType())
1004    FromPointeeType = FromBlockPtr->getPointeeType();
1005  else
1006    return false;
1007
1008  // Objective C++: We're able to convert from a pointer to an
1009  // interface to a pointer to a different interface.
1010  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1011  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1012  if (FromIface && ToIface &&
1013      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
1014    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1015                                                       ToPointeeType,
1016                                                       ToType, Context);
1017    return true;
1018  }
1019
1020  if (FromIface && ToIface &&
1021      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1022    // Okay: this is some kind of implicit downcast of Objective-C
1023    // interfaces, which is permitted. However, we're going to
1024    // complain about it.
1025    IncompatibleObjC = true;
1026    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1027                                                       ToPointeeType,
1028                                                       ToType, Context);
1029    return true;
1030  }
1031
1032  // Objective C++: We're able to convert between "id" and a pointer
1033  // to any interface (in both directions).
1034  if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1035      || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
1036    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1037                                                       ToPointeeType,
1038                                                       ToType, Context);
1039    return true;
1040  }
1041
1042  // Objective C++: Allow conversions between the Objective-C "id" and
1043  // "Class", in either direction.
1044  if ((Context.isObjCIdStructType(FromPointeeType) &&
1045       Context.isObjCClassStructType(ToPointeeType)) ||
1046      (Context.isObjCClassStructType(FromPointeeType) &&
1047       Context.isObjCIdStructType(ToPointeeType))) {
1048    ConvertedType = ToType;
1049    return true;
1050  }
1051
1052  // If we have pointers to pointers, recursively check whether this
1053  // is an Objective-C conversion.
1054  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1055      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1056                              IncompatibleObjC)) {
1057    // We always complain about this conversion.
1058    IncompatibleObjC = true;
1059    ConvertedType = ToType;
1060    return true;
1061  }
1062
1063  // If we have pointers to functions or blocks, check whether the only
1064  // differences in the argument and result types are in Objective-C
1065  // pointer conversions. If so, we permit the conversion (but
1066  // complain about it).
1067  const FunctionProtoType *FromFunctionType
1068    = FromPointeeType->getAsFunctionProtoType();
1069  const FunctionProtoType *ToFunctionType
1070    = ToPointeeType->getAsFunctionProtoType();
1071  if (FromFunctionType && ToFunctionType) {
1072    // If the function types are exactly the same, this isn't an
1073    // Objective-C pointer conversion.
1074    if (Context.getCanonicalType(FromPointeeType)
1075          == Context.getCanonicalType(ToPointeeType))
1076      return false;
1077
1078    // Perform the quick checks that will tell us whether these
1079    // function types are obviously different.
1080    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1081        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1082        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1083      return false;
1084
1085    bool HasObjCConversion = false;
1086    if (Context.getCanonicalType(FromFunctionType->getResultType())
1087          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1088      // Okay, the types match exactly. Nothing to do.
1089    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1090                                       ToFunctionType->getResultType(),
1091                                       ConvertedType, IncompatibleObjC)) {
1092      // Okay, we have an Objective-C pointer conversion.
1093      HasObjCConversion = true;
1094    } else {
1095      // Function types are too different. Abort.
1096      return false;
1097    }
1098
1099    // Check argument types.
1100    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1101         ArgIdx != NumArgs; ++ArgIdx) {
1102      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1103      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1104      if (Context.getCanonicalType(FromArgType)
1105            == Context.getCanonicalType(ToArgType)) {
1106        // Okay, the types match exactly. Nothing to do.
1107      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1108                                         ConvertedType, IncompatibleObjC)) {
1109        // Okay, we have an Objective-C pointer conversion.
1110        HasObjCConversion = true;
1111      } else {
1112        // Argument types are too different. Abort.
1113        return false;
1114      }
1115    }
1116
1117    if (HasObjCConversion) {
1118      // We had an Objective-C conversion. Allow this pointer
1119      // conversion, but complain about it.
1120      ConvertedType = ToType;
1121      IncompatibleObjC = true;
1122      return true;
1123    }
1124  }
1125
1126  return false;
1127}
1128
1129/// CheckPointerConversion - Check the pointer conversion from the
1130/// expression From to the type ToType. This routine checks for
1131/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1132/// conversions for which IsPointerConversion has already returned
1133/// true. It returns true and produces a diagnostic if there was an
1134/// error, or returns false otherwise.
1135bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1136  QualType FromType = From->getType();
1137
1138  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1139    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1140      QualType FromPointeeType = FromPtrType->getPointeeType(),
1141               ToPointeeType   = ToPtrType->getPointeeType();
1142
1143      // Objective-C++ conversions are always okay.
1144      // FIXME: We should have a different class of conversions for the
1145      // Objective-C++ implicit conversions.
1146      if (Context.isObjCIdStructType(FromPointeeType) ||
1147          Context.isObjCIdStructType(ToPointeeType) ||
1148          Context.isObjCClassStructType(FromPointeeType) ||
1149          Context.isObjCClassStructType(ToPointeeType))
1150        return false;
1151
1152      if (FromPointeeType->isRecordType() &&
1153          ToPointeeType->isRecordType()) {
1154        // We must have a derived-to-base conversion. Check an
1155        // ambiguous or inaccessible conversion.
1156        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1157                                            From->getExprLoc(),
1158                                            From->getSourceRange());
1159      }
1160    }
1161
1162  return false;
1163}
1164
1165/// IsMemberPointerConversion - Determines whether the conversion of the
1166/// expression From, which has the (possibly adjusted) type FromType, can be
1167/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1168/// If so, returns true and places the converted type (that might differ from
1169/// ToType in its cv-qualifiers at some level) into ConvertedType.
1170bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1171                                     QualType ToType, QualType &ConvertedType)
1172{
1173  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1174  if (!ToTypePtr)
1175    return false;
1176
1177  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1178  if (From->isNullPointerConstant(Context)) {
1179    ConvertedType = ToType;
1180    return true;
1181  }
1182
1183  // Otherwise, both types have to be member pointers.
1184  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1185  if (!FromTypePtr)
1186    return false;
1187
1188  // A pointer to member of B can be converted to a pointer to member of D,
1189  // where D is derived from B (C++ 4.11p2).
1190  QualType FromClass(FromTypePtr->getClass(), 0);
1191  QualType ToClass(ToTypePtr->getClass(), 0);
1192  // FIXME: What happens when these are dependent? Is this function even called?
1193
1194  if (IsDerivedFrom(ToClass, FromClass)) {
1195    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1196                                                 ToClass.getTypePtr());
1197    return true;
1198  }
1199
1200  return false;
1201}
1202
1203/// CheckMemberPointerConversion - Check the member pointer conversion from the
1204/// expression From to the type ToType. This routine checks for ambiguous or
1205/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1206/// for which IsMemberPointerConversion has already returned true. It returns
1207/// true and produces a diagnostic if there was an error, or returns false
1208/// otherwise.
1209bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1210  QualType FromType = From->getType();
1211  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1212  if (!FromPtrType)
1213    return false;
1214
1215  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1216  assert(ToPtrType && "No member pointer cast has a target type "
1217                      "that is not a member pointer.");
1218
1219  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1220  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1221
1222  // FIXME: What about dependent types?
1223  assert(FromClass->isRecordType() && "Pointer into non-class.");
1224  assert(ToClass->isRecordType() && "Pointer into non-class.");
1225
1226  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1227                  /*DetectVirtual=*/true);
1228  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1229  assert(DerivationOkay &&
1230         "Should not have been called if derivation isn't OK.");
1231  (void)DerivationOkay;
1232
1233  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1234                                  getUnqualifiedType())) {
1235    // Derivation is ambiguous. Redo the check to find the exact paths.
1236    Paths.clear();
1237    Paths.setRecordingPaths(true);
1238    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1239    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1240    (void)StillOkay;
1241
1242    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1243    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1244      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1245    return true;
1246  }
1247
1248  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1249    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1250      << FromClass << ToClass << QualType(VBase, 0)
1251      << From->getSourceRange();
1252    return true;
1253  }
1254
1255  return false;
1256}
1257
1258/// IsQualificationConversion - Determines whether the conversion from
1259/// an rvalue of type FromType to ToType is a qualification conversion
1260/// (C++ 4.4).
1261bool
1262Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1263{
1264  FromType = Context.getCanonicalType(FromType);
1265  ToType = Context.getCanonicalType(ToType);
1266
1267  // If FromType and ToType are the same type, this is not a
1268  // qualification conversion.
1269  if (FromType == ToType)
1270    return false;
1271
1272  // (C++ 4.4p4):
1273  //   A conversion can add cv-qualifiers at levels other than the first
1274  //   in multi-level pointers, subject to the following rules: [...]
1275  bool PreviousToQualsIncludeConst = true;
1276  bool UnwrappedAnyPointer = false;
1277  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1278    // Within each iteration of the loop, we check the qualifiers to
1279    // determine if this still looks like a qualification
1280    // conversion. Then, if all is well, we unwrap one more level of
1281    // pointers or pointers-to-members and do it all again
1282    // until there are no more pointers or pointers-to-members left to
1283    // unwrap.
1284    UnwrappedAnyPointer = true;
1285
1286    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1287    //      2,j, and similarly for volatile.
1288    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1289      return false;
1290
1291    //   -- if the cv 1,j and cv 2,j are different, then const is in
1292    //      every cv for 0 < k < j.
1293    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1294        && !PreviousToQualsIncludeConst)
1295      return false;
1296
1297    // Keep track of whether all prior cv-qualifiers in the "to" type
1298    // include const.
1299    PreviousToQualsIncludeConst
1300      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1301  }
1302
1303  // We are left with FromType and ToType being the pointee types
1304  // after unwrapping the original FromType and ToType the same number
1305  // of types. If we unwrapped any pointers, and if FromType and
1306  // ToType have the same unqualified type (since we checked
1307  // qualifiers above), then this is a qualification conversion.
1308  return UnwrappedAnyPointer &&
1309    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1310}
1311
1312/// Determines whether there is a user-defined conversion sequence
1313/// (C++ [over.ics.user]) that converts expression From to the type
1314/// ToType. If such a conversion exists, User will contain the
1315/// user-defined conversion sequence that performs such a conversion
1316/// and this routine will return true. Otherwise, this routine returns
1317/// false and User is unspecified.
1318///
1319/// \param AllowConversionFunctions true if the conversion should
1320/// consider conversion functions at all. If false, only constructors
1321/// will be considered.
1322///
1323/// \param AllowExplicit  true if the conversion should consider C++0x
1324/// "explicit" conversion functions as well as non-explicit conversion
1325/// functions (C++0x [class.conv.fct]p2).
1326///
1327/// \param ForceRValue  true if the expression should be treated as an rvalue
1328/// for overload resolution.
1329bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1330                                   UserDefinedConversionSequence& User,
1331                                   bool AllowConversionFunctions,
1332                                   bool AllowExplicit, bool ForceRValue)
1333{
1334  OverloadCandidateSet CandidateSet;
1335  if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1336    if (CXXRecordDecl *ToRecordDecl
1337          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1338      // C++ [over.match.ctor]p1:
1339      //   When objects of class type are direct-initialized (8.5), or
1340      //   copy-initialized from an expression of the same or a
1341      //   derived class type (8.5), overload resolution selects the
1342      //   constructor. [...] For copy-initialization, the candidate
1343      //   functions are all the converting constructors (12.3.1) of
1344      //   that class. The argument list is the expression-list within
1345      //   the parentheses of the initializer.
1346      DeclarationName ConstructorName
1347        = Context.DeclarationNames.getCXXConstructorName(
1348                          Context.getCanonicalType(ToType).getUnqualifiedType());
1349      DeclContext::lookup_iterator Con, ConEnd;
1350      for (llvm::tie(Con, ConEnd)
1351             = ToRecordDecl->lookup(Context, ConstructorName);
1352           Con != ConEnd; ++Con) {
1353        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1354        if (Constructor->isConvertingConstructor())
1355          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1356                               /*SuppressUserConversions=*/true, ForceRValue);
1357      }
1358    }
1359  }
1360
1361  if (!AllowConversionFunctions) {
1362    // Don't allow any conversion functions to enter the overload set.
1363  } else if (const RecordType *FromRecordType
1364               = From->getType()->getAsRecordType()) {
1365    if (CXXRecordDecl *FromRecordDecl
1366          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1367      // Add all of the conversion functions as candidates.
1368      // FIXME: Look for conversions in base classes!
1369      OverloadedFunctionDecl *Conversions
1370        = FromRecordDecl->getConversionFunctions();
1371      for (OverloadedFunctionDecl::function_iterator Func
1372             = Conversions->function_begin();
1373           Func != Conversions->function_end(); ++Func) {
1374        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1375        if (AllowExplicit || !Conv->isExplicit())
1376          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1377      }
1378    }
1379  }
1380
1381  OverloadCandidateSet::iterator Best;
1382  switch (BestViableFunction(CandidateSet, Best)) {
1383    case OR_Success:
1384      // Record the standard conversion we used and the conversion function.
1385      if (CXXConstructorDecl *Constructor
1386            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1387        // C++ [over.ics.user]p1:
1388        //   If the user-defined conversion is specified by a
1389        //   constructor (12.3.1), the initial standard conversion
1390        //   sequence converts the source type to the type required by
1391        //   the argument of the constructor.
1392        //
1393        // FIXME: What about ellipsis conversions?
1394        QualType ThisType = Constructor->getThisType(Context);
1395        User.Before = Best->Conversions[0].Standard;
1396        User.ConversionFunction = Constructor;
1397        User.After.setAsIdentityConversion();
1398        User.After.FromTypePtr
1399          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1400        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1401        return true;
1402      } else if (CXXConversionDecl *Conversion
1403                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1404        // C++ [over.ics.user]p1:
1405        //
1406        //   [...] If the user-defined conversion is specified by a
1407        //   conversion function (12.3.2), the initial standard
1408        //   conversion sequence converts the source type to the
1409        //   implicit object parameter of the conversion function.
1410        User.Before = Best->Conversions[0].Standard;
1411        User.ConversionFunction = Conversion;
1412
1413        // C++ [over.ics.user]p2:
1414        //   The second standard conversion sequence converts the
1415        //   result of the user-defined conversion to the target type
1416        //   for the sequence. Since an implicit conversion sequence
1417        //   is an initialization, the special rules for
1418        //   initialization by user-defined conversion apply when
1419        //   selecting the best user-defined conversion for a
1420        //   user-defined conversion sequence (see 13.3.3 and
1421        //   13.3.3.1).
1422        User.After = Best->FinalConversion;
1423        return true;
1424      } else {
1425        assert(false && "Not a constructor or conversion function?");
1426        return false;
1427      }
1428
1429    case OR_No_Viable_Function:
1430    case OR_Deleted:
1431      // No conversion here! We're done.
1432      return false;
1433
1434    case OR_Ambiguous:
1435      // FIXME: See C++ [over.best.ics]p10 for the handling of
1436      // ambiguous conversion sequences.
1437      return false;
1438    }
1439
1440  return false;
1441}
1442
1443/// CompareImplicitConversionSequences - Compare two implicit
1444/// conversion sequences to determine whether one is better than the
1445/// other or if they are indistinguishable (C++ 13.3.3.2).
1446ImplicitConversionSequence::CompareKind
1447Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1448                                         const ImplicitConversionSequence& ICS2)
1449{
1450  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1451  // conversion sequences (as defined in 13.3.3.1)
1452  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1453  //      conversion sequence than a user-defined conversion sequence or
1454  //      an ellipsis conversion sequence, and
1455  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1456  //      conversion sequence than an ellipsis conversion sequence
1457  //      (13.3.3.1.3).
1458  //
1459  if (ICS1.ConversionKind < ICS2.ConversionKind)
1460    return ImplicitConversionSequence::Better;
1461  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1462    return ImplicitConversionSequence::Worse;
1463
1464  // Two implicit conversion sequences of the same form are
1465  // indistinguishable conversion sequences unless one of the
1466  // following rules apply: (C++ 13.3.3.2p3):
1467  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1468    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1469  else if (ICS1.ConversionKind ==
1470             ImplicitConversionSequence::UserDefinedConversion) {
1471    // User-defined conversion sequence U1 is a better conversion
1472    // sequence than another user-defined conversion sequence U2 if
1473    // they contain the same user-defined conversion function or
1474    // constructor and if the second standard conversion sequence of
1475    // U1 is better than the second standard conversion sequence of
1476    // U2 (C++ 13.3.3.2p3).
1477    if (ICS1.UserDefined.ConversionFunction ==
1478          ICS2.UserDefined.ConversionFunction)
1479      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1480                                                ICS2.UserDefined.After);
1481  }
1482
1483  return ImplicitConversionSequence::Indistinguishable;
1484}
1485
1486/// CompareStandardConversionSequences - Compare two standard
1487/// conversion sequences to determine whether one is better than the
1488/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1489ImplicitConversionSequence::CompareKind
1490Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1491                                         const StandardConversionSequence& SCS2)
1492{
1493  // Standard conversion sequence S1 is a better conversion sequence
1494  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1495
1496  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1497  //     sequences in the canonical form defined by 13.3.3.1.1,
1498  //     excluding any Lvalue Transformation; the identity conversion
1499  //     sequence is considered to be a subsequence of any
1500  //     non-identity conversion sequence) or, if not that,
1501  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1502    // Neither is a proper subsequence of the other. Do nothing.
1503    ;
1504  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1505           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1506           (SCS1.Second == ICK_Identity &&
1507            SCS1.Third == ICK_Identity))
1508    // SCS1 is a proper subsequence of SCS2.
1509    return ImplicitConversionSequence::Better;
1510  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1511           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1512           (SCS2.Second == ICK_Identity &&
1513            SCS2.Third == ICK_Identity))
1514    // SCS2 is a proper subsequence of SCS1.
1515    return ImplicitConversionSequence::Worse;
1516
1517  //  -- the rank of S1 is better than the rank of S2 (by the rules
1518  //     defined below), or, if not that,
1519  ImplicitConversionRank Rank1 = SCS1.getRank();
1520  ImplicitConversionRank Rank2 = SCS2.getRank();
1521  if (Rank1 < Rank2)
1522    return ImplicitConversionSequence::Better;
1523  else if (Rank2 < Rank1)
1524    return ImplicitConversionSequence::Worse;
1525
1526  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1527  // are indistinguishable unless one of the following rules
1528  // applies:
1529
1530  //   A conversion that is not a conversion of a pointer, or
1531  //   pointer to member, to bool is better than another conversion
1532  //   that is such a conversion.
1533  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1534    return SCS2.isPointerConversionToBool()
1535             ? ImplicitConversionSequence::Better
1536             : ImplicitConversionSequence::Worse;
1537
1538  // C++ [over.ics.rank]p4b2:
1539  //
1540  //   If class B is derived directly or indirectly from class A,
1541  //   conversion of B* to A* is better than conversion of B* to
1542  //   void*, and conversion of A* to void* is better than conversion
1543  //   of B* to void*.
1544  bool SCS1ConvertsToVoid
1545    = SCS1.isPointerConversionToVoidPointer(Context);
1546  bool SCS2ConvertsToVoid
1547    = SCS2.isPointerConversionToVoidPointer(Context);
1548  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1549    // Exactly one of the conversion sequences is a conversion to
1550    // a void pointer; it's the worse conversion.
1551    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1552                              : ImplicitConversionSequence::Worse;
1553  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1554    // Neither conversion sequence converts to a void pointer; compare
1555    // their derived-to-base conversions.
1556    if (ImplicitConversionSequence::CompareKind DerivedCK
1557          = CompareDerivedToBaseConversions(SCS1, SCS2))
1558      return DerivedCK;
1559  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1560    // Both conversion sequences are conversions to void
1561    // pointers. Compare the source types to determine if there's an
1562    // inheritance relationship in their sources.
1563    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1564    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1565
1566    // Adjust the types we're converting from via the array-to-pointer
1567    // conversion, if we need to.
1568    if (SCS1.First == ICK_Array_To_Pointer)
1569      FromType1 = Context.getArrayDecayedType(FromType1);
1570    if (SCS2.First == ICK_Array_To_Pointer)
1571      FromType2 = Context.getArrayDecayedType(FromType2);
1572
1573    QualType FromPointee1
1574      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1575    QualType FromPointee2
1576      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1577
1578    if (IsDerivedFrom(FromPointee2, FromPointee1))
1579      return ImplicitConversionSequence::Better;
1580    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1581      return ImplicitConversionSequence::Worse;
1582
1583    // Objective-C++: If one interface is more specific than the
1584    // other, it is the better one.
1585    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1586    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1587    if (FromIface1 && FromIface1) {
1588      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1589        return ImplicitConversionSequence::Better;
1590      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1591        return ImplicitConversionSequence::Worse;
1592    }
1593  }
1594
1595  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1596  // bullet 3).
1597  if (ImplicitConversionSequence::CompareKind QualCK
1598        = CompareQualificationConversions(SCS1, SCS2))
1599    return QualCK;
1600
1601  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1602    // C++0x [over.ics.rank]p3b4:
1603    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1604    //      implicit object parameter of a non-static member function declared
1605    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1606    //      rvalue and S2 binds an lvalue reference.
1607    // FIXME: We don't know if we're dealing with the implicit object parameter,
1608    // or if the member function in this case has a ref qualifier.
1609    // (Of course, we don't have ref qualifiers yet.)
1610    if (SCS1.RRefBinding != SCS2.RRefBinding)
1611      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1612                              : ImplicitConversionSequence::Worse;
1613
1614    // C++ [over.ics.rank]p3b4:
1615    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1616    //      which the references refer are the same type except for
1617    //      top-level cv-qualifiers, and the type to which the reference
1618    //      initialized by S2 refers is more cv-qualified than the type
1619    //      to which the reference initialized by S1 refers.
1620    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1621    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1622    T1 = Context.getCanonicalType(T1);
1623    T2 = Context.getCanonicalType(T2);
1624    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1625      if (T2.isMoreQualifiedThan(T1))
1626        return ImplicitConversionSequence::Better;
1627      else if (T1.isMoreQualifiedThan(T2))
1628        return ImplicitConversionSequence::Worse;
1629    }
1630  }
1631
1632  return ImplicitConversionSequence::Indistinguishable;
1633}
1634
1635/// CompareQualificationConversions - Compares two standard conversion
1636/// sequences to determine whether they can be ranked based on their
1637/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1638ImplicitConversionSequence::CompareKind
1639Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1640                                      const StandardConversionSequence& SCS2)
1641{
1642  // C++ 13.3.3.2p3:
1643  //  -- S1 and S2 differ only in their qualification conversion and
1644  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1645  //     cv-qualification signature of type T1 is a proper subset of
1646  //     the cv-qualification signature of type T2, and S1 is not the
1647  //     deprecated string literal array-to-pointer conversion (4.2).
1648  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1649      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1650    return ImplicitConversionSequence::Indistinguishable;
1651
1652  // FIXME: the example in the standard doesn't use a qualification
1653  // conversion (!)
1654  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1655  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1656  T1 = Context.getCanonicalType(T1);
1657  T2 = Context.getCanonicalType(T2);
1658
1659  // If the types are the same, we won't learn anything by unwrapped
1660  // them.
1661  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1662    return ImplicitConversionSequence::Indistinguishable;
1663
1664  ImplicitConversionSequence::CompareKind Result
1665    = ImplicitConversionSequence::Indistinguishable;
1666  while (UnwrapSimilarPointerTypes(T1, T2)) {
1667    // Within each iteration of the loop, we check the qualifiers to
1668    // determine if this still looks like a qualification
1669    // conversion. Then, if all is well, we unwrap one more level of
1670    // pointers or pointers-to-members and do it all again
1671    // until there are no more pointers or pointers-to-members left
1672    // to unwrap. This essentially mimics what
1673    // IsQualificationConversion does, but here we're checking for a
1674    // strict subset of qualifiers.
1675    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1676      // The qualifiers are the same, so this doesn't tell us anything
1677      // about how the sequences rank.
1678      ;
1679    else if (T2.isMoreQualifiedThan(T1)) {
1680      // T1 has fewer qualifiers, so it could be the better sequence.
1681      if (Result == ImplicitConversionSequence::Worse)
1682        // Neither has qualifiers that are a subset of the other's
1683        // qualifiers.
1684        return ImplicitConversionSequence::Indistinguishable;
1685
1686      Result = ImplicitConversionSequence::Better;
1687    } else if (T1.isMoreQualifiedThan(T2)) {
1688      // T2 has fewer qualifiers, so it could be the better sequence.
1689      if (Result == ImplicitConversionSequence::Better)
1690        // Neither has qualifiers that are a subset of the other's
1691        // qualifiers.
1692        return ImplicitConversionSequence::Indistinguishable;
1693
1694      Result = ImplicitConversionSequence::Worse;
1695    } else {
1696      // Qualifiers are disjoint.
1697      return ImplicitConversionSequence::Indistinguishable;
1698    }
1699
1700    // If the types after this point are equivalent, we're done.
1701    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1702      break;
1703  }
1704
1705  // Check that the winning standard conversion sequence isn't using
1706  // the deprecated string literal array to pointer conversion.
1707  switch (Result) {
1708  case ImplicitConversionSequence::Better:
1709    if (SCS1.Deprecated)
1710      Result = ImplicitConversionSequence::Indistinguishable;
1711    break;
1712
1713  case ImplicitConversionSequence::Indistinguishable:
1714    break;
1715
1716  case ImplicitConversionSequence::Worse:
1717    if (SCS2.Deprecated)
1718      Result = ImplicitConversionSequence::Indistinguishable;
1719    break;
1720  }
1721
1722  return Result;
1723}
1724
1725/// CompareDerivedToBaseConversions - Compares two standard conversion
1726/// sequences to determine whether they can be ranked based on their
1727/// various kinds of derived-to-base conversions (C++
1728/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1729/// conversions between Objective-C interface types.
1730ImplicitConversionSequence::CompareKind
1731Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1732                                      const StandardConversionSequence& SCS2) {
1733  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1734  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1735  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1736  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1737
1738  // Adjust the types we're converting from via the array-to-pointer
1739  // conversion, if we need to.
1740  if (SCS1.First == ICK_Array_To_Pointer)
1741    FromType1 = Context.getArrayDecayedType(FromType1);
1742  if (SCS2.First == ICK_Array_To_Pointer)
1743    FromType2 = Context.getArrayDecayedType(FromType2);
1744
1745  // Canonicalize all of the types.
1746  FromType1 = Context.getCanonicalType(FromType1);
1747  ToType1 = Context.getCanonicalType(ToType1);
1748  FromType2 = Context.getCanonicalType(FromType2);
1749  ToType2 = Context.getCanonicalType(ToType2);
1750
1751  // C++ [over.ics.rank]p4b3:
1752  //
1753  //   If class B is derived directly or indirectly from class A and
1754  //   class C is derived directly or indirectly from B,
1755  //
1756  // For Objective-C, we let A, B, and C also be Objective-C
1757  // interfaces.
1758
1759  // Compare based on pointer conversions.
1760  if (SCS1.Second == ICK_Pointer_Conversion &&
1761      SCS2.Second == ICK_Pointer_Conversion &&
1762      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1763      FromType1->isPointerType() && FromType2->isPointerType() &&
1764      ToType1->isPointerType() && ToType2->isPointerType()) {
1765    QualType FromPointee1
1766      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1767    QualType ToPointee1
1768      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1769    QualType FromPointee2
1770      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1771    QualType ToPointee2
1772      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1773
1774    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1775    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1776    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1777    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1778
1779    //   -- conversion of C* to B* is better than conversion of C* to A*,
1780    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1781      if (IsDerivedFrom(ToPointee1, ToPointee2))
1782        return ImplicitConversionSequence::Better;
1783      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1784        return ImplicitConversionSequence::Worse;
1785
1786      if (ToIface1 && ToIface2) {
1787        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1788          return ImplicitConversionSequence::Better;
1789        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1790          return ImplicitConversionSequence::Worse;
1791      }
1792    }
1793
1794    //   -- conversion of B* to A* is better than conversion of C* to A*,
1795    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1796      if (IsDerivedFrom(FromPointee2, FromPointee1))
1797        return ImplicitConversionSequence::Better;
1798      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1799        return ImplicitConversionSequence::Worse;
1800
1801      if (FromIface1 && FromIface2) {
1802        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1803          return ImplicitConversionSequence::Better;
1804        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1805          return ImplicitConversionSequence::Worse;
1806      }
1807    }
1808  }
1809
1810  // Compare based on reference bindings.
1811  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1812      SCS1.Second == ICK_Derived_To_Base) {
1813    //   -- binding of an expression of type C to a reference of type
1814    //      B& is better than binding an expression of type C to a
1815    //      reference of type A&,
1816    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1817        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1818      if (IsDerivedFrom(ToType1, ToType2))
1819        return ImplicitConversionSequence::Better;
1820      else if (IsDerivedFrom(ToType2, ToType1))
1821        return ImplicitConversionSequence::Worse;
1822    }
1823
1824    //   -- binding of an expression of type B to a reference of type
1825    //      A& is better than binding an expression of type C to a
1826    //      reference of type A&,
1827    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1828        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1829      if (IsDerivedFrom(FromType2, FromType1))
1830        return ImplicitConversionSequence::Better;
1831      else if (IsDerivedFrom(FromType1, FromType2))
1832        return ImplicitConversionSequence::Worse;
1833    }
1834  }
1835
1836
1837  // FIXME: conversion of A::* to B::* is better than conversion of
1838  // A::* to C::*,
1839
1840  // FIXME: conversion of B::* to C::* is better than conversion of
1841  // A::* to C::*, and
1842
1843  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1844      SCS1.Second == ICK_Derived_To_Base) {
1845    //   -- conversion of C to B is better than conversion of C to A,
1846    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1847        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1848      if (IsDerivedFrom(ToType1, ToType2))
1849        return ImplicitConversionSequence::Better;
1850      else if (IsDerivedFrom(ToType2, ToType1))
1851        return ImplicitConversionSequence::Worse;
1852    }
1853
1854    //   -- conversion of B to A is better than conversion of C to A.
1855    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1856        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1857      if (IsDerivedFrom(FromType2, FromType1))
1858        return ImplicitConversionSequence::Better;
1859      else if (IsDerivedFrom(FromType1, FromType2))
1860        return ImplicitConversionSequence::Worse;
1861    }
1862  }
1863
1864  return ImplicitConversionSequence::Indistinguishable;
1865}
1866
1867/// TryCopyInitialization - Try to copy-initialize a value of type
1868/// ToType from the expression From. Return the implicit conversion
1869/// sequence required to pass this argument, which may be a bad
1870/// conversion sequence (meaning that the argument cannot be passed to
1871/// a parameter of this type). If @p SuppressUserConversions, then we
1872/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1873/// then we treat @p From as an rvalue, even if it is an lvalue.
1874ImplicitConversionSequence
1875Sema::TryCopyInitialization(Expr *From, QualType ToType,
1876                            bool SuppressUserConversions, bool ForceRValue) {
1877  if (ToType->isReferenceType()) {
1878    ImplicitConversionSequence ICS;
1879    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1880                       /*AllowExplicit=*/false, ForceRValue);
1881    return ICS;
1882  } else {
1883    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1884                                 ForceRValue);
1885  }
1886}
1887
1888/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1889/// the expression @p From. Returns true (and emits a diagnostic) if there was
1890/// an error, returns false if the initialization succeeded. Elidable should
1891/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1892/// differently in C++0x for this case.
1893bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1894                                     const char* Flavor, bool Elidable) {
1895  if (!getLangOptions().CPlusPlus) {
1896    // In C, argument passing is the same as performing an assignment.
1897    QualType FromType = From->getType();
1898
1899    AssignConvertType ConvTy =
1900      CheckSingleAssignmentConstraints(ToType, From);
1901    if (ConvTy != Compatible &&
1902        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1903      ConvTy = Compatible;
1904
1905    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1906                                    FromType, From, Flavor);
1907  }
1908
1909  if (ToType->isReferenceType())
1910    return CheckReferenceInit(From, ToType);
1911
1912  if (!PerformImplicitConversion(From, ToType, Flavor,
1913                                 /*AllowExplicit=*/false, Elidable))
1914    return false;
1915
1916  return Diag(From->getSourceRange().getBegin(),
1917              diag::err_typecheck_convert_incompatible)
1918    << ToType << From->getType() << Flavor << From->getSourceRange();
1919}
1920
1921/// TryObjectArgumentInitialization - Try to initialize the object
1922/// parameter of the given member function (@c Method) from the
1923/// expression @p From.
1924ImplicitConversionSequence
1925Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1926  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1927  unsigned MethodQuals = Method->getTypeQualifiers();
1928  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1929
1930  // Set up the conversion sequence as a "bad" conversion, to allow us
1931  // to exit early.
1932  ImplicitConversionSequence ICS;
1933  ICS.Standard.setAsIdentityConversion();
1934  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1935
1936  // We need to have an object of class type.
1937  QualType FromType = From->getType();
1938  if (const PointerType *PT = FromType->getAsPointerType())
1939    FromType = PT->getPointeeType();
1940
1941  assert(FromType->isRecordType());
1942
1943  // The implicit object parmeter is has the type "reference to cv X",
1944  // where X is the class of which the function is a member
1945  // (C++ [over.match.funcs]p4). However, when finding an implicit
1946  // conversion sequence for the argument, we are not allowed to
1947  // create temporaries or perform user-defined conversions
1948  // (C++ [over.match.funcs]p5). We perform a simplified version of
1949  // reference binding here, that allows class rvalues to bind to
1950  // non-constant references.
1951
1952  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1953  // with the implicit object parameter (C++ [over.match.funcs]p5).
1954  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1955  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1956      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1957    return ICS;
1958
1959  // Check that we have either the same type or a derived type. It
1960  // affects the conversion rank.
1961  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1962  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1963    ICS.Standard.Second = ICK_Identity;
1964  else if (IsDerivedFrom(FromType, ClassType))
1965    ICS.Standard.Second = ICK_Derived_To_Base;
1966  else
1967    return ICS;
1968
1969  // Success. Mark this as a reference binding.
1970  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1971  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1972  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1973  ICS.Standard.ReferenceBinding = true;
1974  ICS.Standard.DirectBinding = true;
1975  ICS.Standard.RRefBinding = false;
1976  return ICS;
1977}
1978
1979/// PerformObjectArgumentInitialization - Perform initialization of
1980/// the implicit object parameter for the given Method with the given
1981/// expression.
1982bool
1983Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1984  QualType FromRecordType, DestType;
1985  QualType ImplicitParamRecordType  =
1986    Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1987
1988  if (const PointerType *PT = From->getType()->getAsPointerType()) {
1989    FromRecordType = PT->getPointeeType();
1990    DestType = Method->getThisType(Context);
1991  } else {
1992    FromRecordType = From->getType();
1993    DestType = ImplicitParamRecordType;
1994  }
1995
1996  ImplicitConversionSequence ICS
1997    = TryObjectArgumentInitialization(From, Method);
1998  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1999    return Diag(From->getSourceRange().getBegin(),
2000                diag::err_implicit_object_parameter_init)
2001       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2002
2003  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2004      CheckDerivedToBaseConversion(FromRecordType,
2005                                   ImplicitParamRecordType,
2006                                   From->getSourceRange().getBegin(),
2007                                   From->getSourceRange()))
2008    return true;
2009
2010  ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2011  return false;
2012}
2013
2014/// TryContextuallyConvertToBool - Attempt to contextually convert the
2015/// expression From to bool (C++0x [conv]p3).
2016ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2017  return TryImplicitConversion(From, Context.BoolTy, false, true);
2018}
2019
2020/// PerformContextuallyConvertToBool - Perform a contextual conversion
2021/// of the expression From to bool (C++0x [conv]p3).
2022bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2023  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2024  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2025    return false;
2026
2027  return Diag(From->getSourceRange().getBegin(),
2028              diag::err_typecheck_bool_condition)
2029    << From->getType() << From->getSourceRange();
2030}
2031
2032/// AddOverloadCandidate - Adds the given function to the set of
2033/// candidate functions, using the given function call arguments.  If
2034/// @p SuppressUserConversions, then don't allow user-defined
2035/// conversions via constructors or conversion operators.
2036/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2037/// hacky way to implement the overloading rules for elidable copy
2038/// initialization in C++0x (C++0x 12.8p15).
2039void
2040Sema::AddOverloadCandidate(FunctionDecl *Function,
2041                           Expr **Args, unsigned NumArgs,
2042                           OverloadCandidateSet& CandidateSet,
2043                           bool SuppressUserConversions,
2044                           bool ForceRValue)
2045{
2046  const FunctionProtoType* Proto
2047    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2048  assert(Proto && "Functions without a prototype cannot be overloaded");
2049  assert(!isa<CXXConversionDecl>(Function) &&
2050         "Use AddConversionCandidate for conversion functions");
2051
2052  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2053    if (!isa<CXXConstructorDecl>(Method)) {
2054      // If we get here, it's because we're calling a member function
2055      // that is named without a member access expression (e.g.,
2056      // "this->f") that was either written explicitly or created
2057      // implicitly. This can happen with a qualified call to a member
2058      // function, e.g., X::f(). We use a NULL object as the implied
2059      // object argument (C++ [over.call.func]p3).
2060      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2061                         SuppressUserConversions, ForceRValue);
2062      return;
2063    }
2064    // We treat a constructor like a non-member function, since its object
2065    // argument doesn't participate in overload resolution.
2066  }
2067
2068
2069  // Add this candidate
2070  CandidateSet.push_back(OverloadCandidate());
2071  OverloadCandidate& Candidate = CandidateSet.back();
2072  Candidate.Function = Function;
2073  Candidate.Viable = true;
2074  Candidate.IsSurrogate = false;
2075  Candidate.IgnoreObjectArgument = false;
2076
2077  unsigned NumArgsInProto = Proto->getNumArgs();
2078
2079  // (C++ 13.3.2p2): A candidate function having fewer than m
2080  // parameters is viable only if it has an ellipsis in its parameter
2081  // list (8.3.5).
2082  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2083    Candidate.Viable = false;
2084    return;
2085  }
2086
2087  // (C++ 13.3.2p2): A candidate function having more than m parameters
2088  // is viable only if the (m+1)st parameter has a default argument
2089  // (8.3.6). For the purposes of overload resolution, the
2090  // parameter list is truncated on the right, so that there are
2091  // exactly m parameters.
2092  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2093  if (NumArgs < MinRequiredArgs) {
2094    // Not enough arguments.
2095    Candidate.Viable = false;
2096    return;
2097  }
2098
2099  // Determine the implicit conversion sequences for each of the
2100  // arguments.
2101  Candidate.Conversions.resize(NumArgs);
2102  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2103    if (ArgIdx < NumArgsInProto) {
2104      // (C++ 13.3.2p3): for F to be a viable function, there shall
2105      // exist for each argument an implicit conversion sequence
2106      // (13.3.3.1) that converts that argument to the corresponding
2107      // parameter of F.
2108      QualType ParamType = Proto->getArgType(ArgIdx);
2109      Candidate.Conversions[ArgIdx]
2110        = TryCopyInitialization(Args[ArgIdx], ParamType,
2111                                SuppressUserConversions, ForceRValue);
2112      if (Candidate.Conversions[ArgIdx].ConversionKind
2113            == ImplicitConversionSequence::BadConversion) {
2114        Candidate.Viable = false;
2115        break;
2116      }
2117    } else {
2118      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2119      // argument for which there is no corresponding parameter is
2120      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2121      Candidate.Conversions[ArgIdx].ConversionKind
2122        = ImplicitConversionSequence::EllipsisConversion;
2123    }
2124  }
2125}
2126
2127/// \brief Add all of the function declarations in the given function set to
2128/// the overload canddiate set.
2129void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2130                                 Expr **Args, unsigned NumArgs,
2131                                 OverloadCandidateSet& CandidateSet,
2132                                 bool SuppressUserConversions) {
2133  for (FunctionSet::const_iterator F = Functions.begin(),
2134                                FEnd = Functions.end();
2135       F != FEnd; ++F)
2136    AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2137                         SuppressUserConversions);
2138}
2139
2140/// AddMethodCandidate - Adds the given C++ member function to the set
2141/// of candidate functions, using the given function call arguments
2142/// and the object argument (@c Object). For example, in a call
2143/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2144/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2145/// allow user-defined conversions via constructors or conversion
2146/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2147/// a slightly hacky way to implement the overloading rules for elidable copy
2148/// initialization in C++0x (C++0x 12.8p15).
2149void
2150Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2151                         Expr **Args, unsigned NumArgs,
2152                         OverloadCandidateSet& CandidateSet,
2153                         bool SuppressUserConversions, bool ForceRValue)
2154{
2155  const FunctionProtoType* Proto
2156    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2157  assert(Proto && "Methods without a prototype cannot be overloaded");
2158  assert(!isa<CXXConversionDecl>(Method) &&
2159         "Use AddConversionCandidate for conversion functions");
2160  assert(!isa<CXXConstructorDecl>(Method) &&
2161         "Use AddOverloadCandidate for constructors");
2162
2163  // Add this candidate
2164  CandidateSet.push_back(OverloadCandidate());
2165  OverloadCandidate& Candidate = CandidateSet.back();
2166  Candidate.Function = Method;
2167  Candidate.IsSurrogate = false;
2168  Candidate.IgnoreObjectArgument = false;
2169
2170  unsigned NumArgsInProto = Proto->getNumArgs();
2171
2172  // (C++ 13.3.2p2): A candidate function having fewer than m
2173  // parameters is viable only if it has an ellipsis in its parameter
2174  // list (8.3.5).
2175  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2176    Candidate.Viable = false;
2177    return;
2178  }
2179
2180  // (C++ 13.3.2p2): A candidate function having more than m parameters
2181  // is viable only if the (m+1)st parameter has a default argument
2182  // (8.3.6). For the purposes of overload resolution, the
2183  // parameter list is truncated on the right, so that there are
2184  // exactly m parameters.
2185  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2186  if (NumArgs < MinRequiredArgs) {
2187    // Not enough arguments.
2188    Candidate.Viable = false;
2189    return;
2190  }
2191
2192  Candidate.Viable = true;
2193  Candidate.Conversions.resize(NumArgs + 1);
2194
2195  if (Method->isStatic() || !Object)
2196    // The implicit object argument is ignored.
2197    Candidate.IgnoreObjectArgument = true;
2198  else {
2199    // Determine the implicit conversion sequence for the object
2200    // parameter.
2201    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2202    if (Candidate.Conversions[0].ConversionKind
2203          == ImplicitConversionSequence::BadConversion) {
2204      Candidate.Viable = false;
2205      return;
2206    }
2207  }
2208
2209  // Determine the implicit conversion sequences for each of the
2210  // arguments.
2211  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2212    if (ArgIdx < NumArgsInProto) {
2213      // (C++ 13.3.2p3): for F to be a viable function, there shall
2214      // exist for each argument an implicit conversion sequence
2215      // (13.3.3.1) that converts that argument to the corresponding
2216      // parameter of F.
2217      QualType ParamType = Proto->getArgType(ArgIdx);
2218      Candidate.Conversions[ArgIdx + 1]
2219        = TryCopyInitialization(Args[ArgIdx], ParamType,
2220                                SuppressUserConversions, ForceRValue);
2221      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2222            == ImplicitConversionSequence::BadConversion) {
2223        Candidate.Viable = false;
2224        break;
2225      }
2226    } else {
2227      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2228      // argument for which there is no corresponding parameter is
2229      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2230      Candidate.Conversions[ArgIdx + 1].ConversionKind
2231        = ImplicitConversionSequence::EllipsisConversion;
2232    }
2233  }
2234}
2235
2236/// AddConversionCandidate - Add a C++ conversion function as a
2237/// candidate in the candidate set (C++ [over.match.conv],
2238/// C++ [over.match.copy]). From is the expression we're converting from,
2239/// and ToType is the type that we're eventually trying to convert to
2240/// (which may or may not be the same type as the type that the
2241/// conversion function produces).
2242void
2243Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2244                             Expr *From, QualType ToType,
2245                             OverloadCandidateSet& CandidateSet) {
2246  // Add this candidate
2247  CandidateSet.push_back(OverloadCandidate());
2248  OverloadCandidate& Candidate = CandidateSet.back();
2249  Candidate.Function = Conversion;
2250  Candidate.IsSurrogate = false;
2251  Candidate.IgnoreObjectArgument = false;
2252  Candidate.FinalConversion.setAsIdentityConversion();
2253  Candidate.FinalConversion.FromTypePtr
2254    = Conversion->getConversionType().getAsOpaquePtr();
2255  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2256
2257  // Determine the implicit conversion sequence for the implicit
2258  // object parameter.
2259  Candidate.Viable = true;
2260  Candidate.Conversions.resize(1);
2261  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2262
2263  if (Candidate.Conversions[0].ConversionKind
2264      == ImplicitConversionSequence::BadConversion) {
2265    Candidate.Viable = false;
2266    return;
2267  }
2268
2269  // To determine what the conversion from the result of calling the
2270  // conversion function to the type we're eventually trying to
2271  // convert to (ToType), we need to synthesize a call to the
2272  // conversion function and attempt copy initialization from it. This
2273  // makes sure that we get the right semantics with respect to
2274  // lvalues/rvalues and the type. Fortunately, we can allocate this
2275  // call on the stack and we don't need its arguments to be
2276  // well-formed.
2277  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2278                            SourceLocation());
2279  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2280                                &ConversionRef, false);
2281
2282  // Note that it is safe to allocate CallExpr on the stack here because
2283  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2284  // allocator).
2285  CallExpr Call(Context, &ConversionFn, 0, 0,
2286                Conversion->getConversionType().getNonReferenceType(),
2287                SourceLocation());
2288  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2289  switch (ICS.ConversionKind) {
2290  case ImplicitConversionSequence::StandardConversion:
2291    Candidate.FinalConversion = ICS.Standard;
2292    break;
2293
2294  case ImplicitConversionSequence::BadConversion:
2295    Candidate.Viable = false;
2296    break;
2297
2298  default:
2299    assert(false &&
2300           "Can only end up with a standard conversion sequence or failure");
2301  }
2302}
2303
2304/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2305/// converts the given @c Object to a function pointer via the
2306/// conversion function @c Conversion, and then attempts to call it
2307/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2308/// the type of function that we'll eventually be calling.
2309void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2310                                 const FunctionProtoType *Proto,
2311                                 Expr *Object, Expr **Args, unsigned NumArgs,
2312                                 OverloadCandidateSet& CandidateSet) {
2313  CandidateSet.push_back(OverloadCandidate());
2314  OverloadCandidate& Candidate = CandidateSet.back();
2315  Candidate.Function = 0;
2316  Candidate.Surrogate = Conversion;
2317  Candidate.Viable = true;
2318  Candidate.IsSurrogate = true;
2319  Candidate.IgnoreObjectArgument = false;
2320  Candidate.Conversions.resize(NumArgs + 1);
2321
2322  // Determine the implicit conversion sequence for the implicit
2323  // object parameter.
2324  ImplicitConversionSequence ObjectInit
2325    = TryObjectArgumentInitialization(Object, Conversion);
2326  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2327    Candidate.Viable = false;
2328    return;
2329  }
2330
2331  // The first conversion is actually a user-defined conversion whose
2332  // first conversion is ObjectInit's standard conversion (which is
2333  // effectively a reference binding). Record it as such.
2334  Candidate.Conversions[0].ConversionKind
2335    = ImplicitConversionSequence::UserDefinedConversion;
2336  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2337  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2338  Candidate.Conversions[0].UserDefined.After
2339    = Candidate.Conversions[0].UserDefined.Before;
2340  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2341
2342  // Find the
2343  unsigned NumArgsInProto = Proto->getNumArgs();
2344
2345  // (C++ 13.3.2p2): A candidate function having fewer than m
2346  // parameters is viable only if it has an ellipsis in its parameter
2347  // list (8.3.5).
2348  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2349    Candidate.Viable = false;
2350    return;
2351  }
2352
2353  // Function types don't have any default arguments, so just check if
2354  // we have enough arguments.
2355  if (NumArgs < NumArgsInProto) {
2356    // Not enough arguments.
2357    Candidate.Viable = false;
2358    return;
2359  }
2360
2361  // Determine the implicit conversion sequences for each of the
2362  // arguments.
2363  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2364    if (ArgIdx < NumArgsInProto) {
2365      // (C++ 13.3.2p3): for F to be a viable function, there shall
2366      // exist for each argument an implicit conversion sequence
2367      // (13.3.3.1) that converts that argument to the corresponding
2368      // parameter of F.
2369      QualType ParamType = Proto->getArgType(ArgIdx);
2370      Candidate.Conversions[ArgIdx + 1]
2371        = TryCopyInitialization(Args[ArgIdx], ParamType,
2372                                /*SuppressUserConversions=*/false);
2373      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2374            == ImplicitConversionSequence::BadConversion) {
2375        Candidate.Viable = false;
2376        break;
2377      }
2378    } else {
2379      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2380      // argument for which there is no corresponding parameter is
2381      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2382      Candidate.Conversions[ArgIdx + 1].ConversionKind
2383        = ImplicitConversionSequence::EllipsisConversion;
2384    }
2385  }
2386}
2387
2388// FIXME: This will eventually be removed, once we've migrated all of the
2389// operator overloading logic over to the scheme used by binary operators, which
2390// works for template instantiation.
2391void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2392                                 SourceLocation OpLoc,
2393                                 Expr **Args, unsigned NumArgs,
2394                                 OverloadCandidateSet& CandidateSet,
2395                                 SourceRange OpRange) {
2396
2397  FunctionSet Functions;
2398
2399  QualType T1 = Args[0]->getType();
2400  QualType T2;
2401  if (NumArgs > 1)
2402    T2 = Args[1]->getType();
2403
2404  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2405  LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2406  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2407  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2408  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2409  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2410}
2411
2412/// \brief Add overload candidates for overloaded operators that are
2413/// member functions.
2414///
2415/// Add the overloaded operator candidates that are member functions
2416/// for the operator Op that was used in an operator expression such
2417/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2418/// CandidateSet will store the added overload candidates. (C++
2419/// [over.match.oper]).
2420void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2421                                       SourceLocation OpLoc,
2422                                       Expr **Args, unsigned NumArgs,
2423                                       OverloadCandidateSet& CandidateSet,
2424                                       SourceRange OpRange) {
2425  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2426
2427  // C++ [over.match.oper]p3:
2428  //   For a unary operator @ with an operand of a type whose
2429  //   cv-unqualified version is T1, and for a binary operator @ with
2430  //   a left operand of a type whose cv-unqualified version is T1 and
2431  //   a right operand of a type whose cv-unqualified version is T2,
2432  //   three sets of candidate functions, designated member
2433  //   candidates, non-member candidates and built-in candidates, are
2434  //   constructed as follows:
2435  QualType T1 = Args[0]->getType();
2436  QualType T2;
2437  if (NumArgs > 1)
2438    T2 = Args[1]->getType();
2439
2440  //     -- If T1 is a class type, the set of member candidates is the
2441  //        result of the qualified lookup of T1::operator@
2442  //        (13.3.1.1.1); otherwise, the set of member candidates is
2443  //        empty.
2444  // FIXME: Lookup in base classes, too!
2445  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2446    DeclContext::lookup_const_iterator Oper, OperEnd;
2447    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
2448         Oper != OperEnd; ++Oper)
2449      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2450                         Args+1, NumArgs - 1, CandidateSet,
2451                         /*SuppressUserConversions=*/false);
2452  }
2453}
2454
2455/// AddBuiltinCandidate - Add a candidate for a built-in
2456/// operator. ResultTy and ParamTys are the result and parameter types
2457/// of the built-in candidate, respectively. Args and NumArgs are the
2458/// arguments being passed to the candidate. IsAssignmentOperator
2459/// should be true when this built-in candidate is an assignment
2460/// operator. NumContextualBoolArguments is the number of arguments
2461/// (at the beginning of the argument list) that will be contextually
2462/// converted to bool.
2463void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2464                               Expr **Args, unsigned NumArgs,
2465                               OverloadCandidateSet& CandidateSet,
2466                               bool IsAssignmentOperator,
2467                               unsigned NumContextualBoolArguments) {
2468  // Add this candidate
2469  CandidateSet.push_back(OverloadCandidate());
2470  OverloadCandidate& Candidate = CandidateSet.back();
2471  Candidate.Function = 0;
2472  Candidate.IsSurrogate = false;
2473  Candidate.IgnoreObjectArgument = false;
2474  Candidate.BuiltinTypes.ResultTy = ResultTy;
2475  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2476    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2477
2478  // Determine the implicit conversion sequences for each of the
2479  // arguments.
2480  Candidate.Viable = true;
2481  Candidate.Conversions.resize(NumArgs);
2482  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2483    // C++ [over.match.oper]p4:
2484    //   For the built-in assignment operators, conversions of the
2485    //   left operand are restricted as follows:
2486    //     -- no temporaries are introduced to hold the left operand, and
2487    //     -- no user-defined conversions are applied to the left
2488    //        operand to achieve a type match with the left-most
2489    //        parameter of a built-in candidate.
2490    //
2491    // We block these conversions by turning off user-defined
2492    // conversions, since that is the only way that initialization of
2493    // a reference to a non-class type can occur from something that
2494    // is not of the same type.
2495    if (ArgIdx < NumContextualBoolArguments) {
2496      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2497             "Contextual conversion to bool requires bool type");
2498      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2499    } else {
2500      Candidate.Conversions[ArgIdx]
2501        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2502                                ArgIdx == 0 && IsAssignmentOperator);
2503    }
2504    if (Candidate.Conversions[ArgIdx].ConversionKind
2505        == ImplicitConversionSequence::BadConversion) {
2506      Candidate.Viable = false;
2507      break;
2508    }
2509  }
2510}
2511
2512/// BuiltinCandidateTypeSet - A set of types that will be used for the
2513/// candidate operator functions for built-in operators (C++
2514/// [over.built]). The types are separated into pointer types and
2515/// enumeration types.
2516class BuiltinCandidateTypeSet  {
2517  /// TypeSet - A set of types.
2518  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2519
2520  /// PointerTypes - The set of pointer types that will be used in the
2521  /// built-in candidates.
2522  TypeSet PointerTypes;
2523
2524  /// MemberPointerTypes - The set of member pointer types that will be
2525  /// used in the built-in candidates.
2526  TypeSet MemberPointerTypes;
2527
2528  /// EnumerationTypes - The set of enumeration types that will be
2529  /// used in the built-in candidates.
2530  TypeSet EnumerationTypes;
2531
2532  /// Context - The AST context in which we will build the type sets.
2533  ASTContext &Context;
2534
2535  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2536  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2537
2538public:
2539  /// iterator - Iterates through the types that are part of the set.
2540  typedef TypeSet::iterator iterator;
2541
2542  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2543
2544  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2545                             bool AllowExplicitConversions);
2546
2547  /// pointer_begin - First pointer type found;
2548  iterator pointer_begin() { return PointerTypes.begin(); }
2549
2550  /// pointer_end - Past the last pointer type found;
2551  iterator pointer_end() { return PointerTypes.end(); }
2552
2553  /// member_pointer_begin - First member pointer type found;
2554  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2555
2556  /// member_pointer_end - Past the last member pointer type found;
2557  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2558
2559  /// enumeration_begin - First enumeration type found;
2560  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2561
2562  /// enumeration_end - Past the last enumeration type found;
2563  iterator enumeration_end() { return EnumerationTypes.end(); }
2564};
2565
2566/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2567/// the set of pointer types along with any more-qualified variants of
2568/// that type. For example, if @p Ty is "int const *", this routine
2569/// will add "int const *", "int const volatile *", "int const
2570/// restrict *", and "int const volatile restrict *" to the set of
2571/// pointer types. Returns true if the add of @p Ty itself succeeded,
2572/// false otherwise.
2573bool
2574BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2575  // Insert this type.
2576  if (!PointerTypes.insert(Ty))
2577    return false;
2578
2579  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2580    QualType PointeeTy = PointerTy->getPointeeType();
2581    // FIXME: Optimize this so that we don't keep trying to add the same types.
2582
2583    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2584    // pointer conversions that don't cast away constness?
2585    if (!PointeeTy.isConstQualified())
2586      AddPointerWithMoreQualifiedTypeVariants
2587        (Context.getPointerType(PointeeTy.withConst()));
2588    if (!PointeeTy.isVolatileQualified())
2589      AddPointerWithMoreQualifiedTypeVariants
2590        (Context.getPointerType(PointeeTy.withVolatile()));
2591    if (!PointeeTy.isRestrictQualified())
2592      AddPointerWithMoreQualifiedTypeVariants
2593        (Context.getPointerType(PointeeTy.withRestrict()));
2594  }
2595
2596  return true;
2597}
2598
2599/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2600/// to the set of pointer types along with any more-qualified variants of
2601/// that type. For example, if @p Ty is "int const *", this routine
2602/// will add "int const *", "int const volatile *", "int const
2603/// restrict *", and "int const volatile restrict *" to the set of
2604/// pointer types. Returns true if the add of @p Ty itself succeeded,
2605/// false otherwise.
2606bool
2607BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2608    QualType Ty) {
2609  // Insert this type.
2610  if (!MemberPointerTypes.insert(Ty))
2611    return false;
2612
2613  if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2614    QualType PointeeTy = PointerTy->getPointeeType();
2615    const Type *ClassTy = PointerTy->getClass();
2616    // FIXME: Optimize this so that we don't keep trying to add the same types.
2617
2618    if (!PointeeTy.isConstQualified())
2619      AddMemberPointerWithMoreQualifiedTypeVariants
2620        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2621    if (!PointeeTy.isVolatileQualified())
2622      AddMemberPointerWithMoreQualifiedTypeVariants
2623        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2624    if (!PointeeTy.isRestrictQualified())
2625      AddMemberPointerWithMoreQualifiedTypeVariants
2626        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2627  }
2628
2629  return true;
2630}
2631
2632/// AddTypesConvertedFrom - Add each of the types to which the type @p
2633/// Ty can be implicit converted to the given set of @p Types. We're
2634/// primarily interested in pointer types and enumeration types. We also
2635/// take member pointer types, for the conditional operator.
2636/// AllowUserConversions is true if we should look at the conversion
2637/// functions of a class type, and AllowExplicitConversions if we
2638/// should also include the explicit conversion functions of a class
2639/// type.
2640void
2641BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2642                                               bool AllowUserConversions,
2643                                               bool AllowExplicitConversions) {
2644  // Only deal with canonical types.
2645  Ty = Context.getCanonicalType(Ty);
2646
2647  // Look through reference types; they aren't part of the type of an
2648  // expression for the purposes of conversions.
2649  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2650    Ty = RefTy->getPointeeType();
2651
2652  // We don't care about qualifiers on the type.
2653  Ty = Ty.getUnqualifiedType();
2654
2655  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2656    QualType PointeeTy = PointerTy->getPointeeType();
2657
2658    // Insert our type, and its more-qualified variants, into the set
2659    // of types.
2660    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2661      return;
2662
2663    // Add 'cv void*' to our set of types.
2664    if (!Ty->isVoidType()) {
2665      QualType QualVoid
2666        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2667      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2668    }
2669
2670    // If this is a pointer to a class type, add pointers to its bases
2671    // (with the same level of cv-qualification as the original
2672    // derived class, of course).
2673    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2674      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2675      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2676           Base != ClassDecl->bases_end(); ++Base) {
2677        QualType BaseTy = Context.getCanonicalType(Base->getType());
2678        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2679
2680        // Add the pointer type, recursively, so that we get all of
2681        // the indirect base classes, too.
2682        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2683      }
2684    }
2685  } else if (Ty->isMemberPointerType()) {
2686    // Member pointers are far easier, since the pointee can't be converted.
2687    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2688      return;
2689  } else if (Ty->isEnumeralType()) {
2690    EnumerationTypes.insert(Ty);
2691  } else if (AllowUserConversions) {
2692    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2693      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2694      // FIXME: Visit conversion functions in the base classes, too.
2695      OverloadedFunctionDecl *Conversions
2696        = ClassDecl->getConversionFunctions();
2697      for (OverloadedFunctionDecl::function_iterator Func
2698             = Conversions->function_begin();
2699           Func != Conversions->function_end(); ++Func) {
2700        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2701        if (AllowExplicitConversions || !Conv->isExplicit())
2702          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2703      }
2704    }
2705  }
2706}
2707
2708/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2709/// operator overloads to the candidate set (C++ [over.built]), based
2710/// on the operator @p Op and the arguments given. For example, if the
2711/// operator is a binary '+', this routine might add "int
2712/// operator+(int, int)" to cover integer addition.
2713void
2714Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2715                                   Expr **Args, unsigned NumArgs,
2716                                   OverloadCandidateSet& CandidateSet) {
2717  // The set of "promoted arithmetic types", which are the arithmetic
2718  // types are that preserved by promotion (C++ [over.built]p2). Note
2719  // that the first few of these types are the promoted integral
2720  // types; these types need to be first.
2721  // FIXME: What about complex?
2722  const unsigned FirstIntegralType = 0;
2723  const unsigned LastIntegralType = 13;
2724  const unsigned FirstPromotedIntegralType = 7,
2725                 LastPromotedIntegralType = 13;
2726  const unsigned FirstPromotedArithmeticType = 7,
2727                 LastPromotedArithmeticType = 16;
2728  const unsigned NumArithmeticTypes = 16;
2729  QualType ArithmeticTypes[NumArithmeticTypes] = {
2730    Context.BoolTy, Context.CharTy, Context.WCharTy,
2731    Context.SignedCharTy, Context.ShortTy,
2732    Context.UnsignedCharTy, Context.UnsignedShortTy,
2733    Context.IntTy, Context.LongTy, Context.LongLongTy,
2734    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2735    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2736  };
2737
2738  // Find all of the types that the arguments can convert to, but only
2739  // if the operator we're looking at has built-in operator candidates
2740  // that make use of these types.
2741  BuiltinCandidateTypeSet CandidateTypes(Context);
2742  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2743      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2744      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2745      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2746      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2747      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2748    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2749      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2750                                           true,
2751                                           (Op == OO_Exclaim ||
2752                                            Op == OO_AmpAmp ||
2753                                            Op == OO_PipePipe));
2754  }
2755
2756  bool isComparison = false;
2757  switch (Op) {
2758  case OO_None:
2759  case NUM_OVERLOADED_OPERATORS:
2760    assert(false && "Expected an overloaded operator");
2761    break;
2762
2763  case OO_Star: // '*' is either unary or binary
2764    if (NumArgs == 1)
2765      goto UnaryStar;
2766    else
2767      goto BinaryStar;
2768    break;
2769
2770  case OO_Plus: // '+' is either unary or binary
2771    if (NumArgs == 1)
2772      goto UnaryPlus;
2773    else
2774      goto BinaryPlus;
2775    break;
2776
2777  case OO_Minus: // '-' is either unary or binary
2778    if (NumArgs == 1)
2779      goto UnaryMinus;
2780    else
2781      goto BinaryMinus;
2782    break;
2783
2784  case OO_Amp: // '&' is either unary or binary
2785    if (NumArgs == 1)
2786      goto UnaryAmp;
2787    else
2788      goto BinaryAmp;
2789
2790  case OO_PlusPlus:
2791  case OO_MinusMinus:
2792    // C++ [over.built]p3:
2793    //
2794    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2795    //   is either volatile or empty, there exist candidate operator
2796    //   functions of the form
2797    //
2798    //       VQ T&      operator++(VQ T&);
2799    //       T          operator++(VQ T&, int);
2800    //
2801    // C++ [over.built]p4:
2802    //
2803    //   For every pair (T, VQ), where T is an arithmetic type other
2804    //   than bool, and VQ is either volatile or empty, there exist
2805    //   candidate operator functions of the form
2806    //
2807    //       VQ T&      operator--(VQ T&);
2808    //       T          operator--(VQ T&, int);
2809    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2810         Arith < NumArithmeticTypes; ++Arith) {
2811      QualType ArithTy = ArithmeticTypes[Arith];
2812      QualType ParamTypes[2]
2813        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2814
2815      // Non-volatile version.
2816      if (NumArgs == 1)
2817        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2818      else
2819        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2820
2821      // Volatile version
2822      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2823      if (NumArgs == 1)
2824        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2825      else
2826        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2827    }
2828
2829    // C++ [over.built]p5:
2830    //
2831    //   For every pair (T, VQ), where T is a cv-qualified or
2832    //   cv-unqualified object type, and VQ is either volatile or
2833    //   empty, there exist candidate operator functions of the form
2834    //
2835    //       T*VQ&      operator++(T*VQ&);
2836    //       T*VQ&      operator--(T*VQ&);
2837    //       T*         operator++(T*VQ&, int);
2838    //       T*         operator--(T*VQ&, int);
2839    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2840         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2841      // Skip pointer types that aren't pointers to object types.
2842      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2843        continue;
2844
2845      QualType ParamTypes[2] = {
2846        Context.getLValueReferenceType(*Ptr), Context.IntTy
2847      };
2848
2849      // Without volatile
2850      if (NumArgs == 1)
2851        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2852      else
2853        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2854
2855      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2856        // With volatile
2857        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2858        if (NumArgs == 1)
2859          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2860        else
2861          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2862      }
2863    }
2864    break;
2865
2866  UnaryStar:
2867    // C++ [over.built]p6:
2868    //   For every cv-qualified or cv-unqualified object type T, there
2869    //   exist candidate operator functions of the form
2870    //
2871    //       T&         operator*(T*);
2872    //
2873    // C++ [over.built]p7:
2874    //   For every function type T, there exist candidate operator
2875    //   functions of the form
2876    //       T&         operator*(T*);
2877    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2878         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2879      QualType ParamTy = *Ptr;
2880      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2881      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2882                          &ParamTy, Args, 1, CandidateSet);
2883    }
2884    break;
2885
2886  UnaryPlus:
2887    // C++ [over.built]p8:
2888    //   For every type T, there exist candidate operator functions of
2889    //   the form
2890    //
2891    //       T*         operator+(T*);
2892    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2893         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2894      QualType ParamTy = *Ptr;
2895      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2896    }
2897
2898    // Fall through
2899
2900  UnaryMinus:
2901    // C++ [over.built]p9:
2902    //  For every promoted arithmetic type T, there exist candidate
2903    //  operator functions of the form
2904    //
2905    //       T         operator+(T);
2906    //       T         operator-(T);
2907    for (unsigned Arith = FirstPromotedArithmeticType;
2908         Arith < LastPromotedArithmeticType; ++Arith) {
2909      QualType ArithTy = ArithmeticTypes[Arith];
2910      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2911    }
2912    break;
2913
2914  case OO_Tilde:
2915    // C++ [over.built]p10:
2916    //   For every promoted integral type T, there exist candidate
2917    //   operator functions of the form
2918    //
2919    //        T         operator~(T);
2920    for (unsigned Int = FirstPromotedIntegralType;
2921         Int < LastPromotedIntegralType; ++Int) {
2922      QualType IntTy = ArithmeticTypes[Int];
2923      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2924    }
2925    break;
2926
2927  case OO_New:
2928  case OO_Delete:
2929  case OO_Array_New:
2930  case OO_Array_Delete:
2931  case OO_Call:
2932    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2933    break;
2934
2935  case OO_Comma:
2936  UnaryAmp:
2937  case OO_Arrow:
2938    // C++ [over.match.oper]p3:
2939    //   -- For the operator ',', the unary operator '&', or the
2940    //      operator '->', the built-in candidates set is empty.
2941    break;
2942
2943  case OO_Less:
2944  case OO_Greater:
2945  case OO_LessEqual:
2946  case OO_GreaterEqual:
2947  case OO_EqualEqual:
2948  case OO_ExclaimEqual:
2949    // C++ [over.built]p15:
2950    //
2951    //   For every pointer or enumeration type T, there exist
2952    //   candidate operator functions of the form
2953    //
2954    //        bool       operator<(T, T);
2955    //        bool       operator>(T, T);
2956    //        bool       operator<=(T, T);
2957    //        bool       operator>=(T, T);
2958    //        bool       operator==(T, T);
2959    //        bool       operator!=(T, T);
2960    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2961         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2962      QualType ParamTypes[2] = { *Ptr, *Ptr };
2963      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2964    }
2965    for (BuiltinCandidateTypeSet::iterator Enum
2966           = CandidateTypes.enumeration_begin();
2967         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2968      QualType ParamTypes[2] = { *Enum, *Enum };
2969      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2970    }
2971
2972    // Fall through.
2973    isComparison = true;
2974
2975  BinaryPlus:
2976  BinaryMinus:
2977    if (!isComparison) {
2978      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2979
2980      // C++ [over.built]p13:
2981      //
2982      //   For every cv-qualified or cv-unqualified object type T
2983      //   there exist candidate operator functions of the form
2984      //
2985      //      T*         operator+(T*, ptrdiff_t);
2986      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2987      //      T*         operator-(T*, ptrdiff_t);
2988      //      T*         operator+(ptrdiff_t, T*);
2989      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2990      //
2991      // C++ [over.built]p14:
2992      //
2993      //   For every T, where T is a pointer to object type, there
2994      //   exist candidate operator functions of the form
2995      //
2996      //      ptrdiff_t  operator-(T, T);
2997      for (BuiltinCandidateTypeSet::iterator Ptr
2998             = CandidateTypes.pointer_begin();
2999           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3000        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3001
3002        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3003        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3004
3005        if (Op == OO_Plus) {
3006          // T* operator+(ptrdiff_t, T*);
3007          ParamTypes[0] = ParamTypes[1];
3008          ParamTypes[1] = *Ptr;
3009          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3010        } else {
3011          // ptrdiff_t operator-(T, T);
3012          ParamTypes[1] = *Ptr;
3013          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3014                              Args, 2, CandidateSet);
3015        }
3016      }
3017    }
3018    // Fall through
3019
3020  case OO_Slash:
3021  BinaryStar:
3022  Conditional:
3023    // C++ [over.built]p12:
3024    //
3025    //   For every pair of promoted arithmetic types L and R, there
3026    //   exist candidate operator functions of the form
3027    //
3028    //        LR         operator*(L, R);
3029    //        LR         operator/(L, R);
3030    //        LR         operator+(L, R);
3031    //        LR         operator-(L, R);
3032    //        bool       operator<(L, R);
3033    //        bool       operator>(L, R);
3034    //        bool       operator<=(L, R);
3035    //        bool       operator>=(L, R);
3036    //        bool       operator==(L, R);
3037    //        bool       operator!=(L, R);
3038    //
3039    //   where LR is the result of the usual arithmetic conversions
3040    //   between types L and R.
3041    //
3042    // C++ [over.built]p24:
3043    //
3044    //   For every pair of promoted arithmetic types L and R, there exist
3045    //   candidate operator functions of the form
3046    //
3047    //        LR       operator?(bool, L, R);
3048    //
3049    //   where LR is the result of the usual arithmetic conversions
3050    //   between types L and R.
3051    // Our candidates ignore the first parameter.
3052    for (unsigned Left = FirstPromotedArithmeticType;
3053         Left < LastPromotedArithmeticType; ++Left) {
3054      for (unsigned Right = FirstPromotedArithmeticType;
3055           Right < LastPromotedArithmeticType; ++Right) {
3056        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3057        QualType Result
3058          = isComparison? Context.BoolTy
3059                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3060        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3061      }
3062    }
3063    break;
3064
3065  case OO_Percent:
3066  BinaryAmp:
3067  case OO_Caret:
3068  case OO_Pipe:
3069  case OO_LessLess:
3070  case OO_GreaterGreater:
3071    // C++ [over.built]p17:
3072    //
3073    //   For every pair of promoted integral types L and R, there
3074    //   exist candidate operator functions of the form
3075    //
3076    //      LR         operator%(L, R);
3077    //      LR         operator&(L, R);
3078    //      LR         operator^(L, R);
3079    //      LR         operator|(L, R);
3080    //      L          operator<<(L, R);
3081    //      L          operator>>(L, R);
3082    //
3083    //   where LR is the result of the usual arithmetic conversions
3084    //   between types L and R.
3085    for (unsigned Left = FirstPromotedIntegralType;
3086         Left < LastPromotedIntegralType; ++Left) {
3087      for (unsigned Right = FirstPromotedIntegralType;
3088           Right < LastPromotedIntegralType; ++Right) {
3089        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3090        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3091            ? LandR[0]
3092            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3093        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3094      }
3095    }
3096    break;
3097
3098  case OO_Equal:
3099    // C++ [over.built]p20:
3100    //
3101    //   For every pair (T, VQ), where T is an enumeration or
3102    //   (FIXME:) pointer to member type and VQ is either volatile or
3103    //   empty, there exist candidate operator functions of the form
3104    //
3105    //        VQ T&      operator=(VQ T&, T);
3106    for (BuiltinCandidateTypeSet::iterator Enum
3107           = CandidateTypes.enumeration_begin();
3108         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3109      QualType ParamTypes[2];
3110
3111      // T& operator=(T&, T)
3112      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3113      ParamTypes[1] = *Enum;
3114      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3115                          /*IsAssignmentOperator=*/false);
3116
3117      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3118        // volatile T& operator=(volatile T&, T)
3119        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3120        ParamTypes[1] = *Enum;
3121        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3122                            /*IsAssignmentOperator=*/false);
3123      }
3124    }
3125    // Fall through.
3126
3127  case OO_PlusEqual:
3128  case OO_MinusEqual:
3129    // C++ [over.built]p19:
3130    //
3131    //   For every pair (T, VQ), where T is any type and VQ is either
3132    //   volatile or empty, there exist candidate operator functions
3133    //   of the form
3134    //
3135    //        T*VQ&      operator=(T*VQ&, T*);
3136    //
3137    // C++ [over.built]p21:
3138    //
3139    //   For every pair (T, VQ), where T is a cv-qualified or
3140    //   cv-unqualified object type and VQ is either volatile or
3141    //   empty, there exist candidate operator functions of the form
3142    //
3143    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3144    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3145    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3146         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3147      QualType ParamTypes[2];
3148      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3149
3150      // non-volatile version
3151      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3152      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3153                          /*IsAssigmentOperator=*/Op == OO_Equal);
3154
3155      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3156        // volatile version
3157        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3158        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3159                            /*IsAssigmentOperator=*/Op == OO_Equal);
3160      }
3161    }
3162    // Fall through.
3163
3164  case OO_StarEqual:
3165  case OO_SlashEqual:
3166    // C++ [over.built]p18:
3167    //
3168    //   For every triple (L, VQ, R), where L is an arithmetic type,
3169    //   VQ is either volatile or empty, and R is a promoted
3170    //   arithmetic type, there exist candidate operator functions of
3171    //   the form
3172    //
3173    //        VQ L&      operator=(VQ L&, R);
3174    //        VQ L&      operator*=(VQ L&, R);
3175    //        VQ L&      operator/=(VQ L&, R);
3176    //        VQ L&      operator+=(VQ L&, R);
3177    //        VQ L&      operator-=(VQ L&, R);
3178    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3179      for (unsigned Right = FirstPromotedArithmeticType;
3180           Right < LastPromotedArithmeticType; ++Right) {
3181        QualType ParamTypes[2];
3182        ParamTypes[1] = ArithmeticTypes[Right];
3183
3184        // Add this built-in operator as a candidate (VQ is empty).
3185        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3186        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3187                            /*IsAssigmentOperator=*/Op == OO_Equal);
3188
3189        // Add this built-in operator as a candidate (VQ is 'volatile').
3190        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3191        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3192        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3193                            /*IsAssigmentOperator=*/Op == OO_Equal);
3194      }
3195    }
3196    break;
3197
3198  case OO_PercentEqual:
3199  case OO_LessLessEqual:
3200  case OO_GreaterGreaterEqual:
3201  case OO_AmpEqual:
3202  case OO_CaretEqual:
3203  case OO_PipeEqual:
3204    // C++ [over.built]p22:
3205    //
3206    //   For every triple (L, VQ, R), where L is an integral type, VQ
3207    //   is either volatile or empty, and R is a promoted integral
3208    //   type, there exist candidate operator functions of the form
3209    //
3210    //        VQ L&       operator%=(VQ L&, R);
3211    //        VQ L&       operator<<=(VQ L&, R);
3212    //        VQ L&       operator>>=(VQ L&, R);
3213    //        VQ L&       operator&=(VQ L&, R);
3214    //        VQ L&       operator^=(VQ L&, R);
3215    //        VQ L&       operator|=(VQ L&, R);
3216    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3217      for (unsigned Right = FirstPromotedIntegralType;
3218           Right < LastPromotedIntegralType; ++Right) {
3219        QualType ParamTypes[2];
3220        ParamTypes[1] = ArithmeticTypes[Right];
3221
3222        // Add this built-in operator as a candidate (VQ is empty).
3223        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3224        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3225
3226        // Add this built-in operator as a candidate (VQ is 'volatile').
3227        ParamTypes[0] = ArithmeticTypes[Left];
3228        ParamTypes[0].addVolatile();
3229        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3230        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3231      }
3232    }
3233    break;
3234
3235  case OO_Exclaim: {
3236    // C++ [over.operator]p23:
3237    //
3238    //   There also exist candidate operator functions of the form
3239    //
3240    //        bool        operator!(bool);
3241    //        bool        operator&&(bool, bool);     [BELOW]
3242    //        bool        operator||(bool, bool);     [BELOW]
3243    QualType ParamTy = Context.BoolTy;
3244    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3245                        /*IsAssignmentOperator=*/false,
3246                        /*NumContextualBoolArguments=*/1);
3247    break;
3248  }
3249
3250  case OO_AmpAmp:
3251  case OO_PipePipe: {
3252    // C++ [over.operator]p23:
3253    //
3254    //   There also exist candidate operator functions of the form
3255    //
3256    //        bool        operator!(bool);            [ABOVE]
3257    //        bool        operator&&(bool, bool);
3258    //        bool        operator||(bool, bool);
3259    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3260    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3261                        /*IsAssignmentOperator=*/false,
3262                        /*NumContextualBoolArguments=*/2);
3263    break;
3264  }
3265
3266  case OO_Subscript:
3267    // C++ [over.built]p13:
3268    //
3269    //   For every cv-qualified or cv-unqualified object type T there
3270    //   exist candidate operator functions of the form
3271    //
3272    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3273    //        T&         operator[](T*, ptrdiff_t);
3274    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3275    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3276    //        T&         operator[](ptrdiff_t, T*);
3277    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3278         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3279      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3280      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3281      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3282
3283      // T& operator[](T*, ptrdiff_t)
3284      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3285
3286      // T& operator[](ptrdiff_t, T*);
3287      ParamTypes[0] = ParamTypes[1];
3288      ParamTypes[1] = *Ptr;
3289      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3290    }
3291    break;
3292
3293  case OO_ArrowStar:
3294    // FIXME: No support for pointer-to-members yet.
3295    break;
3296
3297  case OO_Conditional:
3298    // Note that we don't consider the first argument, since it has been
3299    // contextually converted to bool long ago. The candidates below are
3300    // therefore added as binary.
3301    //
3302    // C++ [over.built]p24:
3303    //   For every type T, where T is a pointer or pointer-to-member type,
3304    //   there exist candidate operator functions of the form
3305    //
3306    //        T        operator?(bool, T, T);
3307    //
3308    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3309         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3310      QualType ParamTypes[2] = { *Ptr, *Ptr };
3311      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3312    }
3313    for (BuiltinCandidateTypeSet::iterator Ptr =
3314           CandidateTypes.member_pointer_begin(),
3315         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3316      QualType ParamTypes[2] = { *Ptr, *Ptr };
3317      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3318    }
3319    goto Conditional;
3320  }
3321}
3322
3323/// \brief Add function candidates found via argument-dependent lookup
3324/// to the set of overloading candidates.
3325///
3326/// This routine performs argument-dependent name lookup based on the
3327/// given function name (which may also be an operator name) and adds
3328/// all of the overload candidates found by ADL to the overload
3329/// candidate set (C++ [basic.lookup.argdep]).
3330void
3331Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3332                                           Expr **Args, unsigned NumArgs,
3333                                           OverloadCandidateSet& CandidateSet) {
3334  FunctionSet Functions;
3335
3336  // Record all of the function candidates that we've already
3337  // added to the overload set, so that we don't add those same
3338  // candidates a second time.
3339  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3340                                   CandEnd = CandidateSet.end();
3341       Cand != CandEnd; ++Cand)
3342    if (Cand->Function)
3343      Functions.insert(Cand->Function);
3344
3345  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3346
3347  // Erase all of the candidates we already knew about.
3348  // FIXME: This is suboptimal. Is there a better way?
3349  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3350                                   CandEnd = CandidateSet.end();
3351       Cand != CandEnd; ++Cand)
3352    if (Cand->Function)
3353      Functions.erase(Cand->Function);
3354
3355  // For each of the ADL candidates we found, add it to the overload
3356  // set.
3357  for (FunctionSet::iterator Func = Functions.begin(),
3358                          FuncEnd = Functions.end();
3359       Func != FuncEnd; ++Func)
3360    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3361}
3362
3363/// isBetterOverloadCandidate - Determines whether the first overload
3364/// candidate is a better candidate than the second (C++ 13.3.3p1).
3365bool
3366Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3367                                const OverloadCandidate& Cand2)
3368{
3369  // Define viable functions to be better candidates than non-viable
3370  // functions.
3371  if (!Cand2.Viable)
3372    return Cand1.Viable;
3373  else if (!Cand1.Viable)
3374    return false;
3375
3376  // C++ [over.match.best]p1:
3377  //
3378  //   -- if F is a static member function, ICS1(F) is defined such
3379  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3380  //      any function G, and, symmetrically, ICS1(G) is neither
3381  //      better nor worse than ICS1(F).
3382  unsigned StartArg = 0;
3383  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3384    StartArg = 1;
3385
3386  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3387  // function than another viable function F2 if for all arguments i,
3388  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3389  // then...
3390  unsigned NumArgs = Cand1.Conversions.size();
3391  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3392  bool HasBetterConversion = false;
3393  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3394    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3395                                               Cand2.Conversions[ArgIdx])) {
3396    case ImplicitConversionSequence::Better:
3397      // Cand1 has a better conversion sequence.
3398      HasBetterConversion = true;
3399      break;
3400
3401    case ImplicitConversionSequence::Worse:
3402      // Cand1 can't be better than Cand2.
3403      return false;
3404
3405    case ImplicitConversionSequence::Indistinguishable:
3406      // Do nothing.
3407      break;
3408    }
3409  }
3410
3411  if (HasBetterConversion)
3412    return true;
3413
3414  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3415  // implemented, but they require template support.
3416
3417  // C++ [over.match.best]p1b4:
3418  //
3419  //   -- the context is an initialization by user-defined conversion
3420  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3421  //      from the return type of F1 to the destination type (i.e.,
3422  //      the type of the entity being initialized) is a better
3423  //      conversion sequence than the standard conversion sequence
3424  //      from the return type of F2 to the destination type.
3425  if (Cand1.Function && Cand2.Function &&
3426      isa<CXXConversionDecl>(Cand1.Function) &&
3427      isa<CXXConversionDecl>(Cand2.Function)) {
3428    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3429                                               Cand2.FinalConversion)) {
3430    case ImplicitConversionSequence::Better:
3431      // Cand1 has a better conversion sequence.
3432      return true;
3433
3434    case ImplicitConversionSequence::Worse:
3435      // Cand1 can't be better than Cand2.
3436      return false;
3437
3438    case ImplicitConversionSequence::Indistinguishable:
3439      // Do nothing
3440      break;
3441    }
3442  }
3443
3444  return false;
3445}
3446
3447/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3448/// within an overload candidate set. If overloading is successful,
3449/// the result will be OR_Success and Best will be set to point to the
3450/// best viable function within the candidate set. Otherwise, one of
3451/// several kinds of errors will be returned; see
3452/// Sema::OverloadingResult.
3453Sema::OverloadingResult
3454Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3455                         OverloadCandidateSet::iterator& Best)
3456{
3457  // Find the best viable function.
3458  Best = CandidateSet.end();
3459  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3460       Cand != CandidateSet.end(); ++Cand) {
3461    if (Cand->Viable) {
3462      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3463        Best = Cand;
3464    }
3465  }
3466
3467  // If we didn't find any viable functions, abort.
3468  if (Best == CandidateSet.end())
3469    return OR_No_Viable_Function;
3470
3471  // Make sure that this function is better than every other viable
3472  // function. If not, we have an ambiguity.
3473  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3474       Cand != CandidateSet.end(); ++Cand) {
3475    if (Cand->Viable &&
3476        Cand != Best &&
3477        !isBetterOverloadCandidate(*Best, *Cand)) {
3478      Best = CandidateSet.end();
3479      return OR_Ambiguous;
3480    }
3481  }
3482
3483  // Best is the best viable function.
3484  if (Best->Function &&
3485      (Best->Function->isDeleted() ||
3486       Best->Function->getAttr<UnavailableAttr>()))
3487    return OR_Deleted;
3488
3489  // If Best refers to a function that is either deleted (C++0x) or
3490  // unavailable (Clang extension) report an error.
3491
3492  return OR_Success;
3493}
3494
3495/// PrintOverloadCandidates - When overload resolution fails, prints
3496/// diagnostic messages containing the candidates in the candidate
3497/// set. If OnlyViable is true, only viable candidates will be printed.
3498void
3499Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3500                              bool OnlyViable)
3501{
3502  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3503                             LastCand = CandidateSet.end();
3504  for (; Cand != LastCand; ++Cand) {
3505    if (Cand->Viable || !OnlyViable) {
3506      if (Cand->Function) {
3507        if (Cand->Function->isDeleted() ||
3508            Cand->Function->getAttr<UnavailableAttr>()) {
3509          // Deleted or "unavailable" function.
3510          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3511            << Cand->Function->isDeleted();
3512        } else {
3513          // Normal function
3514          // FIXME: Give a better reason!
3515          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3516        }
3517      } else if (Cand->IsSurrogate) {
3518        // Desugar the type of the surrogate down to a function type,
3519        // retaining as many typedefs as possible while still showing
3520        // the function type (and, therefore, its parameter types).
3521        QualType FnType = Cand->Surrogate->getConversionType();
3522        bool isLValueReference = false;
3523        bool isRValueReference = false;
3524        bool isPointer = false;
3525        if (const LValueReferenceType *FnTypeRef =
3526              FnType->getAsLValueReferenceType()) {
3527          FnType = FnTypeRef->getPointeeType();
3528          isLValueReference = true;
3529        } else if (const RValueReferenceType *FnTypeRef =
3530                     FnType->getAsRValueReferenceType()) {
3531          FnType = FnTypeRef->getPointeeType();
3532          isRValueReference = true;
3533        }
3534        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3535          FnType = FnTypePtr->getPointeeType();
3536          isPointer = true;
3537        }
3538        // Desugar down to a function type.
3539        FnType = QualType(FnType->getAsFunctionType(), 0);
3540        // Reconstruct the pointer/reference as appropriate.
3541        if (isPointer) FnType = Context.getPointerType(FnType);
3542        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3543        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3544
3545        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3546          << FnType;
3547      } else {
3548        // FIXME: We need to get the identifier in here
3549        // FIXME: Do we want the error message to point at the operator?
3550        // (built-ins won't have a location)
3551        QualType FnType
3552          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3553                                    Cand->BuiltinTypes.ParamTypes,
3554                                    Cand->Conversions.size(),
3555                                    false, 0);
3556
3557        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3558      }
3559    }
3560  }
3561}
3562
3563/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3564/// an overloaded function (C++ [over.over]), where @p From is an
3565/// expression with overloaded function type and @p ToType is the type
3566/// we're trying to resolve to. For example:
3567///
3568/// @code
3569/// int f(double);
3570/// int f(int);
3571///
3572/// int (*pfd)(double) = f; // selects f(double)
3573/// @endcode
3574///
3575/// This routine returns the resulting FunctionDecl if it could be
3576/// resolved, and NULL otherwise. When @p Complain is true, this
3577/// routine will emit diagnostics if there is an error.
3578FunctionDecl *
3579Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3580                                         bool Complain) {
3581  QualType FunctionType = ToType;
3582  bool IsMember = false;
3583  if (const PointerType *ToTypePtr = ToType->getAsPointerType())
3584    FunctionType = ToTypePtr->getPointeeType();
3585  else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3586    FunctionType = ToTypeRef->getPointeeType();
3587  else if (const MemberPointerType *MemTypePtr =
3588                    ToType->getAsMemberPointerType()) {
3589    FunctionType = MemTypePtr->getPointeeType();
3590    IsMember = true;
3591  }
3592
3593  // We only look at pointers or references to functions.
3594  if (!FunctionType->isFunctionType())
3595    return 0;
3596
3597  // Find the actual overloaded function declaration.
3598  OverloadedFunctionDecl *Ovl = 0;
3599
3600  // C++ [over.over]p1:
3601  //   [...] [Note: any redundant set of parentheses surrounding the
3602  //   overloaded function name is ignored (5.1). ]
3603  Expr *OvlExpr = From->IgnoreParens();
3604
3605  // C++ [over.over]p1:
3606  //   [...] The overloaded function name can be preceded by the &
3607  //   operator.
3608  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3609    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3610      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3611  }
3612
3613  // Try to dig out the overloaded function.
3614  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3615    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3616
3617  // If there's no overloaded function declaration, we're done.
3618  if (!Ovl)
3619    return 0;
3620
3621  // Look through all of the overloaded functions, searching for one
3622  // whose type matches exactly.
3623  // FIXME: When templates or using declarations come along, we'll actually
3624  // have to deal with duplicates, partial ordering, etc. For now, we
3625  // can just do a simple search.
3626  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3627  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3628       Fun != Ovl->function_end(); ++Fun) {
3629    // C++ [over.over]p3:
3630    //   Non-member functions and static member functions match
3631    //   targets of type "pointer-to-function" or "reference-to-function."
3632    //   Nonstatic member functions match targets of
3633    //   type "pointer-to-member-function."
3634    // Note that according to DR 247, the containing class does not matter.
3635    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3636      // Skip non-static functions when converting to pointer, and static
3637      // when converting to member pointer.
3638      if (Method->isStatic() == IsMember)
3639        continue;
3640    } else if (IsMember)
3641      continue;
3642
3643    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3644      return *Fun;
3645  }
3646
3647  return 0;
3648}
3649
3650/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3651/// (which eventually refers to the declaration Func) and the call
3652/// arguments Args/NumArgs, attempt to resolve the function call down
3653/// to a specific function. If overload resolution succeeds, returns
3654/// the function declaration produced by overload
3655/// resolution. Otherwise, emits diagnostics, deletes all of the
3656/// arguments and Fn, and returns NULL.
3657FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3658                                            DeclarationName UnqualifiedName,
3659                                            SourceLocation LParenLoc,
3660                                            Expr **Args, unsigned NumArgs,
3661                                            SourceLocation *CommaLocs,
3662                                            SourceLocation RParenLoc,
3663                                            bool &ArgumentDependentLookup) {
3664  OverloadCandidateSet CandidateSet;
3665
3666  // Add the functions denoted by Callee to the set of candidate
3667  // functions. While we're doing so, track whether argument-dependent
3668  // lookup still applies, per:
3669  //
3670  // C++0x [basic.lookup.argdep]p3:
3671  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3672  //   and let Y be the lookup set produced by argument dependent
3673  //   lookup (defined as follows). If X contains
3674  //
3675  //     -- a declaration of a class member, or
3676  //
3677  //     -- a block-scope function declaration that is not a
3678  //        using-declaration, or
3679  //
3680  //     -- a declaration that is neither a function or a function
3681  //        template
3682  //
3683  //   then Y is empty.
3684  if (OverloadedFunctionDecl *Ovl
3685        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3686    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3687                                                FuncEnd = Ovl->function_end();
3688         Func != FuncEnd; ++Func) {
3689      AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3690
3691      if ((*Func)->getDeclContext()->isRecord() ||
3692          (*Func)->getDeclContext()->isFunctionOrMethod())
3693        ArgumentDependentLookup = false;
3694    }
3695  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3696    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3697
3698    if (Func->getDeclContext()->isRecord() ||
3699        Func->getDeclContext()->isFunctionOrMethod())
3700      ArgumentDependentLookup = false;
3701  }
3702
3703  if (Callee)
3704    UnqualifiedName = Callee->getDeclName();
3705
3706  if (ArgumentDependentLookup)
3707    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3708                                         CandidateSet);
3709
3710  OverloadCandidateSet::iterator Best;
3711  switch (BestViableFunction(CandidateSet, Best)) {
3712  case OR_Success:
3713    return Best->Function;
3714
3715  case OR_No_Viable_Function:
3716    Diag(Fn->getSourceRange().getBegin(),
3717         diag::err_ovl_no_viable_function_in_call)
3718      << UnqualifiedName << Fn->getSourceRange();
3719    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3720    break;
3721
3722  case OR_Ambiguous:
3723    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3724      << UnqualifiedName << Fn->getSourceRange();
3725    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3726    break;
3727
3728  case OR_Deleted:
3729    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3730      << Best->Function->isDeleted()
3731      << UnqualifiedName
3732      << Fn->getSourceRange();
3733    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3734    break;
3735  }
3736
3737  // Overload resolution failed. Destroy all of the subexpressions and
3738  // return NULL.
3739  Fn->Destroy(Context);
3740  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3741    Args[Arg]->Destroy(Context);
3742  return 0;
3743}
3744
3745/// \brief Create a unary operation that may resolve to an overloaded
3746/// operator.
3747///
3748/// \param OpLoc The location of the operator itself (e.g., '*').
3749///
3750/// \param OpcIn The UnaryOperator::Opcode that describes this
3751/// operator.
3752///
3753/// \param Functions The set of non-member functions that will be
3754/// considered by overload resolution. The caller needs to build this
3755/// set based on the context using, e.g.,
3756/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3757/// set should not contain any member functions; those will be added
3758/// by CreateOverloadedUnaryOp().
3759///
3760/// \param input The input argument.
3761Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3762                                                     unsigned OpcIn,
3763                                                     FunctionSet &Functions,
3764                                                     ExprArg input) {
3765  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3766  Expr *Input = (Expr *)input.get();
3767
3768  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3769  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3770  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3771
3772  Expr *Args[2] = { Input, 0 };
3773  unsigned NumArgs = 1;
3774
3775  // For post-increment and post-decrement, add the implicit '0' as
3776  // the second argument, so that we know this is a post-increment or
3777  // post-decrement.
3778  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3779    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3780    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3781                                           SourceLocation());
3782    NumArgs = 2;
3783  }
3784
3785  if (Input->isTypeDependent()) {
3786    OverloadedFunctionDecl *Overloads
3787      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3788    for (FunctionSet::iterator Func = Functions.begin(),
3789                            FuncEnd = Functions.end();
3790         Func != FuncEnd; ++Func)
3791      Overloads->addOverload(*Func);
3792
3793    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3794                                                OpLoc, false, false);
3795
3796    input.release();
3797    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3798                                                   &Args[0], NumArgs,
3799                                                   Context.DependentTy,
3800                                                   OpLoc));
3801  }
3802
3803  // Build an empty overload set.
3804  OverloadCandidateSet CandidateSet;
3805
3806  // Add the candidates from the given function set.
3807  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3808
3809  // Add operator candidates that are member functions.
3810  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3811
3812  // Add builtin operator candidates.
3813  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3814
3815  // Perform overload resolution.
3816  OverloadCandidateSet::iterator Best;
3817  switch (BestViableFunction(CandidateSet, Best)) {
3818  case OR_Success: {
3819    // We found a built-in operator or an overloaded operator.
3820    FunctionDecl *FnDecl = Best->Function;
3821
3822    if (FnDecl) {
3823      // We matched an overloaded operator. Build a call to that
3824      // operator.
3825
3826      // Convert the arguments.
3827      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3828        if (PerformObjectArgumentInitialization(Input, Method))
3829          return ExprError();
3830      } else {
3831        // Convert the arguments.
3832        if (PerformCopyInitialization(Input,
3833                                      FnDecl->getParamDecl(0)->getType(),
3834                                      "passing"))
3835          return ExprError();
3836      }
3837
3838      // Determine the result type
3839      QualType ResultTy
3840        = FnDecl->getType()->getAsFunctionType()->getResultType();
3841      ResultTy = ResultTy.getNonReferenceType();
3842
3843      // Build the actual expression node.
3844      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3845                                               SourceLocation());
3846      UsualUnaryConversions(FnExpr);
3847
3848      input.release();
3849      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3850                                                     &Input, 1, ResultTy,
3851                                                     OpLoc));
3852    } else {
3853      // We matched a built-in operator. Convert the arguments, then
3854      // break out so that we will build the appropriate built-in
3855      // operator node.
3856        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3857                                      Best->Conversions[0], "passing"))
3858          return ExprError();
3859
3860        break;
3861      }
3862    }
3863
3864    case OR_No_Viable_Function:
3865      // No viable function; fall through to handling this as a
3866      // built-in operator, which will produce an error message for us.
3867      break;
3868
3869    case OR_Ambiguous:
3870      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3871          << UnaryOperator::getOpcodeStr(Opc)
3872          << Input->getSourceRange();
3873      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3874      return ExprError();
3875
3876    case OR_Deleted:
3877      Diag(OpLoc, diag::err_ovl_deleted_oper)
3878        << Best->Function->isDeleted()
3879        << UnaryOperator::getOpcodeStr(Opc)
3880        << Input->getSourceRange();
3881      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3882      return ExprError();
3883    }
3884
3885  // Either we found no viable overloaded operator or we matched a
3886  // built-in operator. In either case, fall through to trying to
3887  // build a built-in operation.
3888  input.release();
3889  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3890}
3891
3892/// \brief Create a binary operation that may resolve to an overloaded
3893/// operator.
3894///
3895/// \param OpLoc The location of the operator itself (e.g., '+').
3896///
3897/// \param OpcIn The BinaryOperator::Opcode that describes this
3898/// operator.
3899///
3900/// \param Functions The set of non-member functions that will be
3901/// considered by overload resolution. The caller needs to build this
3902/// set based on the context using, e.g.,
3903/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3904/// set should not contain any member functions; those will be added
3905/// by CreateOverloadedBinOp().
3906///
3907/// \param LHS Left-hand argument.
3908/// \param RHS Right-hand argument.
3909Sema::OwningExprResult
3910Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3911                            unsigned OpcIn,
3912                            FunctionSet &Functions,
3913                            Expr *LHS, Expr *RHS) {
3914  Expr *Args[2] = { LHS, RHS };
3915
3916  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3917  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3918  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3919
3920  // If either side is type-dependent, create an appropriate dependent
3921  // expression.
3922  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3923    // .* cannot be overloaded.
3924    if (Opc == BinaryOperator::PtrMemD)
3925      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3926                                                Context.DependentTy, OpLoc));
3927
3928    OverloadedFunctionDecl *Overloads
3929      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3930    for (FunctionSet::iterator Func = Functions.begin(),
3931                            FuncEnd = Functions.end();
3932         Func != FuncEnd; ++Func)
3933      Overloads->addOverload(*Func);
3934
3935    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3936                                                OpLoc, false, false);
3937
3938    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3939                                                   Args, 2,
3940                                                   Context.DependentTy,
3941                                                   OpLoc));
3942  }
3943
3944  // If this is the .* operator, which is not overloadable, just
3945  // create a built-in binary operator.
3946  if (Opc == BinaryOperator::PtrMemD)
3947    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3948
3949  // If this is one of the assignment operators, we only perform
3950  // overload resolution if the left-hand side is a class or
3951  // enumeration type (C++ [expr.ass]p3).
3952  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3953      !LHS->getType()->isOverloadableType())
3954    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3955
3956  // Build an empty overload set.
3957  OverloadCandidateSet CandidateSet;
3958
3959  // Add the candidates from the given function set.
3960  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3961
3962  // Add operator candidates that are member functions.
3963  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3964
3965  // Add builtin operator candidates.
3966  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3967
3968  // Perform overload resolution.
3969  OverloadCandidateSet::iterator Best;
3970  switch (BestViableFunction(CandidateSet, Best)) {
3971    case OR_Success: {
3972      // We found a built-in operator or an overloaded operator.
3973      FunctionDecl *FnDecl = Best->Function;
3974
3975      if (FnDecl) {
3976        // We matched an overloaded operator. Build a call to that
3977        // operator.
3978
3979        // Convert the arguments.
3980        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3981          if (PerformObjectArgumentInitialization(LHS, Method) ||
3982              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3983                                        "passing"))
3984            return ExprError();
3985        } else {
3986          // Convert the arguments.
3987          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3988                                        "passing") ||
3989              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3990                                        "passing"))
3991            return ExprError();
3992        }
3993
3994        // Determine the result type
3995        QualType ResultTy
3996          = FnDecl->getType()->getAsFunctionType()->getResultType();
3997        ResultTy = ResultTy.getNonReferenceType();
3998
3999        // Build the actual expression node.
4000        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4001                                                 SourceLocation());
4002        UsualUnaryConversions(FnExpr);
4003
4004        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4005                                                       Args, 2, ResultTy,
4006                                                       OpLoc));
4007      } else {
4008        // We matched a built-in operator. Convert the arguments, then
4009        // break out so that we will build the appropriate built-in
4010        // operator node.
4011        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4012                                      Best->Conversions[0], "passing") ||
4013            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4014                                      Best->Conversions[1], "passing"))
4015          return ExprError();
4016
4017        break;
4018      }
4019    }
4020
4021    case OR_No_Viable_Function:
4022      // No viable function; fall through to handling this as a
4023      // built-in operator, which will produce an error message for us.
4024      break;
4025
4026    case OR_Ambiguous:
4027      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4028          << BinaryOperator::getOpcodeStr(Opc)
4029          << LHS->getSourceRange() << RHS->getSourceRange();
4030      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4031      return ExprError();
4032
4033    case OR_Deleted:
4034      Diag(OpLoc, diag::err_ovl_deleted_oper)
4035        << Best->Function->isDeleted()
4036        << BinaryOperator::getOpcodeStr(Opc)
4037        << LHS->getSourceRange() << RHS->getSourceRange();
4038      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4039      return ExprError();
4040    }
4041
4042  // Either we found no viable overloaded operator or we matched a
4043  // built-in operator. In either case, try to build a built-in
4044  // operation.
4045  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4046}
4047
4048/// BuildCallToMemberFunction - Build a call to a member
4049/// function. MemExpr is the expression that refers to the member
4050/// function (and includes the object parameter), Args/NumArgs are the
4051/// arguments to the function call (not including the object
4052/// parameter). The caller needs to validate that the member
4053/// expression refers to a member function or an overloaded member
4054/// function.
4055Sema::ExprResult
4056Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4057                                SourceLocation LParenLoc, Expr **Args,
4058                                unsigned NumArgs, SourceLocation *CommaLocs,
4059                                SourceLocation RParenLoc) {
4060  // Dig out the member expression. This holds both the object
4061  // argument and the member function we're referring to.
4062  MemberExpr *MemExpr = 0;
4063  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4064    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4065  else
4066    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4067  assert(MemExpr && "Building member call without member expression");
4068
4069  // Extract the object argument.
4070  Expr *ObjectArg = MemExpr->getBase();
4071
4072  CXXMethodDecl *Method = 0;
4073  if (OverloadedFunctionDecl *Ovl
4074        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4075    // Add overload candidates
4076    OverloadCandidateSet CandidateSet;
4077    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4078                                                FuncEnd = Ovl->function_end();
4079         Func != FuncEnd; ++Func) {
4080      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4081      Method = cast<CXXMethodDecl>(*Func);
4082      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4083                         /*SuppressUserConversions=*/false);
4084    }
4085
4086    OverloadCandidateSet::iterator Best;
4087    switch (BestViableFunction(CandidateSet, Best)) {
4088    case OR_Success:
4089      Method = cast<CXXMethodDecl>(Best->Function);
4090      break;
4091
4092    case OR_No_Viable_Function:
4093      Diag(MemExpr->getSourceRange().getBegin(),
4094           diag::err_ovl_no_viable_member_function_in_call)
4095        << Ovl->getDeclName() << MemExprE->getSourceRange();
4096      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4097      // FIXME: Leaking incoming expressions!
4098      return true;
4099
4100    case OR_Ambiguous:
4101      Diag(MemExpr->getSourceRange().getBegin(),
4102           diag::err_ovl_ambiguous_member_call)
4103        << Ovl->getDeclName() << MemExprE->getSourceRange();
4104      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4105      // FIXME: Leaking incoming expressions!
4106      return true;
4107
4108    case OR_Deleted:
4109      Diag(MemExpr->getSourceRange().getBegin(),
4110           diag::err_ovl_deleted_member_call)
4111        << Best->Function->isDeleted()
4112        << Ovl->getDeclName() << MemExprE->getSourceRange();
4113      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4114      // FIXME: Leaking incoming expressions!
4115      return true;
4116    }
4117
4118    FixOverloadedFunctionReference(MemExpr, Method);
4119  } else {
4120    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4121  }
4122
4123  assert(Method && "Member call to something that isn't a method?");
4124  ExprOwningPtr<CXXMemberCallExpr>
4125    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4126                                                  NumArgs,
4127                                  Method->getResultType().getNonReferenceType(),
4128                                  RParenLoc));
4129
4130  // Convert the object argument (for a non-static member function call).
4131  if (!Method->isStatic() &&
4132      PerformObjectArgumentInitialization(ObjectArg, Method))
4133    return true;
4134  MemExpr->setBase(ObjectArg);
4135
4136  // Convert the rest of the arguments
4137  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4138  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4139                              RParenLoc))
4140    return true;
4141
4142  return CheckFunctionCall(Method, TheCall.take()).release();
4143}
4144
4145/// BuildCallToObjectOfClassType - Build a call to an object of class
4146/// type (C++ [over.call.object]), which can end up invoking an
4147/// overloaded function call operator (@c operator()) or performing a
4148/// user-defined conversion on the object argument.
4149Sema::ExprResult
4150Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4151                                   SourceLocation LParenLoc,
4152                                   Expr **Args, unsigned NumArgs,
4153                                   SourceLocation *CommaLocs,
4154                                   SourceLocation RParenLoc) {
4155  assert(Object->getType()->isRecordType() && "Requires object type argument");
4156  const RecordType *Record = Object->getType()->getAsRecordType();
4157
4158  // C++ [over.call.object]p1:
4159  //  If the primary-expression E in the function call syntax
4160  //  evaluates to a class object of type “cv T”, then the set of
4161  //  candidate functions includes at least the function call
4162  //  operators of T. The function call operators of T are obtained by
4163  //  ordinary lookup of the name operator() in the context of
4164  //  (E).operator().
4165  OverloadCandidateSet CandidateSet;
4166  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4167  DeclContext::lookup_const_iterator Oper, OperEnd;
4168  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
4169       Oper != OperEnd; ++Oper)
4170    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4171                       CandidateSet, /*SuppressUserConversions=*/false);
4172
4173  // C++ [over.call.object]p2:
4174  //   In addition, for each conversion function declared in T of the
4175  //   form
4176  //
4177  //        operator conversion-type-id () cv-qualifier;
4178  //
4179  //   where cv-qualifier is the same cv-qualification as, or a
4180  //   greater cv-qualification than, cv, and where conversion-type-id
4181  //   denotes the type "pointer to function of (P1,...,Pn) returning
4182  //   R", or the type "reference to pointer to function of
4183  //   (P1,...,Pn) returning R", or the type "reference to function
4184  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4185  //   is also considered as a candidate function. Similarly,
4186  //   surrogate call functions are added to the set of candidate
4187  //   functions for each conversion function declared in an
4188  //   accessible base class provided the function is not hidden
4189  //   within T by another intervening declaration.
4190  //
4191  // FIXME: Look in base classes for more conversion operators!
4192  OverloadedFunctionDecl *Conversions
4193    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4194  for (OverloadedFunctionDecl::function_iterator
4195         Func = Conversions->function_begin(),
4196         FuncEnd = Conversions->function_end();
4197       Func != FuncEnd; ++Func) {
4198    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4199
4200    // Strip the reference type (if any) and then the pointer type (if
4201    // any) to get down to what might be a function type.
4202    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4203    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4204      ConvType = ConvPtrType->getPointeeType();
4205
4206    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4207      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4208  }
4209
4210  // Perform overload resolution.
4211  OverloadCandidateSet::iterator Best;
4212  switch (BestViableFunction(CandidateSet, Best)) {
4213  case OR_Success:
4214    // Overload resolution succeeded; we'll build the appropriate call
4215    // below.
4216    break;
4217
4218  case OR_No_Viable_Function:
4219    Diag(Object->getSourceRange().getBegin(),
4220         diag::err_ovl_no_viable_object_call)
4221      << Object->getType() << Object->getSourceRange();
4222    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4223    break;
4224
4225  case OR_Ambiguous:
4226    Diag(Object->getSourceRange().getBegin(),
4227         diag::err_ovl_ambiguous_object_call)
4228      << Object->getType() << Object->getSourceRange();
4229    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4230    break;
4231
4232  case OR_Deleted:
4233    Diag(Object->getSourceRange().getBegin(),
4234         diag::err_ovl_deleted_object_call)
4235      << Best->Function->isDeleted()
4236      << Object->getType() << Object->getSourceRange();
4237    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4238    break;
4239  }
4240
4241  if (Best == CandidateSet.end()) {
4242    // We had an error; delete all of the subexpressions and return
4243    // the error.
4244    Object->Destroy(Context);
4245    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4246      Args[ArgIdx]->Destroy(Context);
4247    return true;
4248  }
4249
4250  if (Best->Function == 0) {
4251    // Since there is no function declaration, this is one of the
4252    // surrogate candidates. Dig out the conversion function.
4253    CXXConversionDecl *Conv
4254      = cast<CXXConversionDecl>(
4255                         Best->Conversions[0].UserDefined.ConversionFunction);
4256
4257    // We selected one of the surrogate functions that converts the
4258    // object parameter to a function pointer. Perform the conversion
4259    // on the object argument, then let ActOnCallExpr finish the job.
4260    // FIXME: Represent the user-defined conversion in the AST!
4261    ImpCastExprToType(Object,
4262                      Conv->getConversionType().getNonReferenceType(),
4263                      Conv->getConversionType()->isLValueReferenceType());
4264    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4265                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4266                         CommaLocs, RParenLoc).release();
4267  }
4268
4269  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4270  // that calls this method, using Object for the implicit object
4271  // parameter and passing along the remaining arguments.
4272  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4273  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4274
4275  unsigned NumArgsInProto = Proto->getNumArgs();
4276  unsigned NumArgsToCheck = NumArgs;
4277
4278  // Build the full argument list for the method call (the
4279  // implicit object parameter is placed at the beginning of the
4280  // list).
4281  Expr **MethodArgs;
4282  if (NumArgs < NumArgsInProto) {
4283    NumArgsToCheck = NumArgsInProto;
4284    MethodArgs = new Expr*[NumArgsInProto + 1];
4285  } else {
4286    MethodArgs = new Expr*[NumArgs + 1];
4287  }
4288  MethodArgs[0] = Object;
4289  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4290    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4291
4292  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4293                                          SourceLocation());
4294  UsualUnaryConversions(NewFn);
4295
4296  // Once we've built TheCall, all of the expressions are properly
4297  // owned.
4298  QualType ResultTy = Method->getResultType().getNonReferenceType();
4299  ExprOwningPtr<CXXOperatorCallExpr>
4300    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4301                                                    MethodArgs, NumArgs + 1,
4302                                                    ResultTy, RParenLoc));
4303  delete [] MethodArgs;
4304
4305  // We may have default arguments. If so, we need to allocate more
4306  // slots in the call for them.
4307  if (NumArgs < NumArgsInProto)
4308    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4309  else if (NumArgs > NumArgsInProto)
4310    NumArgsToCheck = NumArgsInProto;
4311
4312  bool IsError = false;
4313
4314  // Initialize the implicit object parameter.
4315  IsError |= PerformObjectArgumentInitialization(Object, Method);
4316  TheCall->setArg(0, Object);
4317
4318
4319  // Check the argument types.
4320  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4321    Expr *Arg;
4322    if (i < NumArgs) {
4323      Arg = Args[i];
4324
4325      // Pass the argument.
4326      QualType ProtoArgType = Proto->getArgType(i);
4327      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4328    } else {
4329      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4330    }
4331
4332    TheCall->setArg(i + 1, Arg);
4333  }
4334
4335  // If this is a variadic call, handle args passed through "...".
4336  if (Proto->isVariadic()) {
4337    // Promote the arguments (C99 6.5.2.2p7).
4338    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4339      Expr *Arg = Args[i];
4340      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4341      TheCall->setArg(i + 1, Arg);
4342    }
4343  }
4344
4345  if (IsError) return true;
4346
4347  return CheckFunctionCall(Method, TheCall.take()).release();
4348}
4349
4350/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4351///  (if one exists), where @c Base is an expression of class type and
4352/// @c Member is the name of the member we're trying to find.
4353Action::ExprResult
4354Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4355                               SourceLocation MemberLoc,
4356                               IdentifierInfo &Member) {
4357  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4358
4359  // C++ [over.ref]p1:
4360  //
4361  //   [...] An expression x->m is interpreted as (x.operator->())->m
4362  //   for a class object x of type T if T::operator->() exists and if
4363  //   the operator is selected as the best match function by the
4364  //   overload resolution mechanism (13.3).
4365  // FIXME: look in base classes.
4366  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4367  OverloadCandidateSet CandidateSet;
4368  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4369
4370  DeclContext::lookup_const_iterator Oper, OperEnd;
4371  for (llvm::tie(Oper, OperEnd)
4372         = BaseRecord->getDecl()->lookup(Context, OpName);
4373       Oper != OperEnd; ++Oper)
4374    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4375                       /*SuppressUserConversions=*/false);
4376
4377  ExprOwningPtr<Expr> BasePtr(this, Base);
4378
4379  // Perform overload resolution.
4380  OverloadCandidateSet::iterator Best;
4381  switch (BestViableFunction(CandidateSet, Best)) {
4382  case OR_Success:
4383    // Overload resolution succeeded; we'll build the call below.
4384    break;
4385
4386  case OR_No_Viable_Function:
4387    if (CandidateSet.empty())
4388      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4389        << BasePtr->getType() << BasePtr->getSourceRange();
4390    else
4391      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4392        << "operator->" << BasePtr->getSourceRange();
4393    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4394    return true;
4395
4396  case OR_Ambiguous:
4397    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4398      << "operator->" << BasePtr->getSourceRange();
4399    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4400    return true;
4401
4402  case OR_Deleted:
4403    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4404      << Best->Function->isDeleted()
4405      << "operator->" << BasePtr->getSourceRange();
4406    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4407    return true;
4408  }
4409
4410  // Convert the object parameter.
4411  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4412  if (PerformObjectArgumentInitialization(Base, Method))
4413    return true;
4414
4415  // No concerns about early exits now.
4416  BasePtr.take();
4417
4418  // Build the operator call.
4419  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4420                                           SourceLocation());
4421  UsualUnaryConversions(FnExpr);
4422  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4423                                 Method->getResultType().getNonReferenceType(),
4424                                 OpLoc);
4425  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4426                                  MemberLoc, Member, DeclPtrTy()).release();
4427}
4428
4429/// FixOverloadedFunctionReference - E is an expression that refers to
4430/// a C++ overloaded function (possibly with some parentheses and
4431/// perhaps a '&' around it). We have resolved the overloaded function
4432/// to the function declaration Fn, so patch up the expression E to
4433/// refer (possibly indirectly) to Fn.
4434void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4435  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4436    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4437    E->setType(PE->getSubExpr()->getType());
4438  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4439    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4440           "Can only take the address of an overloaded function");
4441    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4442      if (Method->isStatic()) {
4443        // Do nothing: static member functions aren't any different
4444        // from non-member functions.
4445      }
4446      else if (QualifiedDeclRefExpr *DRE
4447                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4448        // We have taken the address of a pointer to member
4449        // function. Perform the computation here so that we get the
4450        // appropriate pointer to member type.
4451        DRE->setDecl(Fn);
4452        DRE->setType(Fn->getType());
4453        QualType ClassType
4454          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4455        E->setType(Context.getMemberPointerType(Fn->getType(),
4456                                                ClassType.getTypePtr()));
4457        return;
4458      }
4459    }
4460    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4461    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4462  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4463    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4464           "Expected overloaded function");
4465    DR->setDecl(Fn);
4466    E->setType(Fn->getType());
4467  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4468    MemExpr->setMemberDecl(Fn);
4469    E->setType(Fn->getType());
4470  } else {
4471    assert(false && "Invalid reference to overloaded function");
4472  }
4473}
4474
4475} // end namespace clang
4476