SemaOverload.cpp revision 45a37da030be06bb7babf5e65a64d62cd0def7e6
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34
35namespace clang {
36using namespace sema;
37
38/// A convenience routine for creating a decayed reference to a
39/// function.
40static ExprResult
41CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
42                      SourceLocation Loc = SourceLocation(),
43                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
44  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
45                                                 VK_LValue, Loc, LocInfo);
46  if (HadMultipleCandidates)
47    DRE->setHadMultipleCandidates(true);
48  ExprResult E = S.Owned(DRE);
49  E = S.DefaultFunctionArrayConversion(E.take());
50  if (E.isInvalid())
51    return ExprError();
52  return E;
53}
54
55static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
56                                 bool InOverloadResolution,
57                                 StandardConversionSequence &SCS,
58                                 bool CStyle,
59                                 bool AllowObjCWritebackConversion);
60
61static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
62                                                 QualType &ToType,
63                                                 bool InOverloadResolution,
64                                                 StandardConversionSequence &SCS,
65                                                 bool CStyle);
66static OverloadingResult
67IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
68                        UserDefinedConversionSequence& User,
69                        OverloadCandidateSet& Conversions,
70                        bool AllowExplicit);
71
72
73static ImplicitConversionSequence::CompareKind
74CompareStandardConversionSequences(Sema &S,
75                                   const StandardConversionSequence& SCS1,
76                                   const StandardConversionSequence& SCS2);
77
78static ImplicitConversionSequence::CompareKind
79CompareQualificationConversions(Sema &S,
80                                const StandardConversionSequence& SCS1,
81                                const StandardConversionSequence& SCS2);
82
83static ImplicitConversionSequence::CompareKind
84CompareDerivedToBaseConversions(Sema &S,
85                                const StandardConversionSequence& SCS1,
86                                const StandardConversionSequence& SCS2);
87
88
89
90/// GetConversionCategory - Retrieve the implicit conversion
91/// category corresponding to the given implicit conversion kind.
92ImplicitConversionCategory
93GetConversionCategory(ImplicitConversionKind Kind) {
94  static const ImplicitConversionCategory
95    Category[(int)ICK_Num_Conversion_Kinds] = {
96    ICC_Identity,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Lvalue_Transformation,
100    ICC_Identity,
101    ICC_Qualification_Adjustment,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Promotion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion,
117    ICC_Conversion
118  };
119  return Category[(int)Kind];
120}
121
122/// GetConversionRank - Retrieve the implicit conversion rank
123/// corresponding to the given implicit conversion kind.
124ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
125  static const ImplicitConversionRank
126    Rank[(int)ICK_Num_Conversion_Kinds] = {
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Exact_Match,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Promotion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Conversion,
147    ICR_Complex_Real_Conversion,
148    ICR_Conversion,
149    ICR_Conversion,
150    ICR_Writeback_Conversion
151  };
152  return Rank[(int)Kind];
153}
154
155/// GetImplicitConversionName - Return the name of this kind of
156/// implicit conversion.
157const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159    "No conversion",
160    "Lvalue-to-rvalue",
161    "Array-to-pointer",
162    "Function-to-pointer",
163    "Noreturn adjustment",
164    "Qualification",
165    "Integral promotion",
166    "Floating point promotion",
167    "Complex promotion",
168    "Integral conversion",
169    "Floating conversion",
170    "Complex conversion",
171    "Floating-integral conversion",
172    "Pointer conversion",
173    "Pointer-to-member conversion",
174    "Boolean conversion",
175    "Compatible-types conversion",
176    "Derived-to-base conversion",
177    "Vector conversion",
178    "Vector splat",
179    "Complex-real conversion",
180    "Block Pointer conversion",
181    "Transparent Union Conversion"
182    "Writeback conversion"
183  };
184  return Name[Kind];
185}
186
187/// StandardConversionSequence - Set the standard conversion
188/// sequence to the identity conversion.
189void StandardConversionSequence::setAsIdentityConversion() {
190  First = ICK_Identity;
191  Second = ICK_Identity;
192  Third = ICK_Identity;
193  DeprecatedStringLiteralToCharPtr = false;
194  QualificationIncludesObjCLifetime = false;
195  ReferenceBinding = false;
196  DirectBinding = false;
197  IsLvalueReference = true;
198  BindsToFunctionLvalue = false;
199  BindsToRvalue = false;
200  BindsImplicitObjectArgumentWithoutRefQualifier = false;
201  ObjCLifetimeConversionBinding = false;
202  CopyConstructor = 0;
203}
204
205/// getRank - Retrieve the rank of this standard conversion sequence
206/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
207/// implicit conversions.
208ImplicitConversionRank StandardConversionSequence::getRank() const {
209  ImplicitConversionRank Rank = ICR_Exact_Match;
210  if  (GetConversionRank(First) > Rank)
211    Rank = GetConversionRank(First);
212  if  (GetConversionRank(Second) > Rank)
213    Rank = GetConversionRank(Second);
214  if  (GetConversionRank(Third) > Rank)
215    Rank = GetConversionRank(Third);
216  return Rank;
217}
218
219/// isPointerConversionToBool - Determines whether this conversion is
220/// a conversion of a pointer or pointer-to-member to bool. This is
221/// used as part of the ranking of standard conversion sequences
222/// (C++ 13.3.3.2p4).
223bool StandardConversionSequence::isPointerConversionToBool() const {
224  // Note that FromType has not necessarily been transformed by the
225  // array-to-pointer or function-to-pointer implicit conversions, so
226  // check for their presence as well as checking whether FromType is
227  // a pointer.
228  if (getToType(1)->isBooleanType() &&
229      (getFromType()->isPointerType() ||
230       getFromType()->isObjCObjectPointerType() ||
231       getFromType()->isBlockPointerType() ||
232       getFromType()->isNullPtrType() ||
233       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
234    return true;
235
236  return false;
237}
238
239/// isPointerConversionToVoidPointer - Determines whether this
240/// conversion is a conversion of a pointer to a void pointer. This is
241/// used as part of the ranking of standard conversion sequences (C++
242/// 13.3.3.2p4).
243bool
244StandardConversionSequence::
245isPointerConversionToVoidPointer(ASTContext& Context) const {
246  QualType FromType = getFromType();
247  QualType ToType = getToType(1);
248
249  // Note that FromType has not necessarily been transformed by the
250  // array-to-pointer implicit conversion, so check for its presence
251  // and redo the conversion to get a pointer.
252  if (First == ICK_Array_To_Pointer)
253    FromType = Context.getArrayDecayedType(FromType);
254
255  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
256    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
257      return ToPtrType->getPointeeType()->isVoidType();
258
259  return false;
260}
261
262/// Skip any implicit casts which could be either part of a narrowing conversion
263/// or after one in an implicit conversion.
264static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
265  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
266    switch (ICE->getCastKind()) {
267    case CK_NoOp:
268    case CK_IntegralCast:
269    case CK_IntegralToBoolean:
270    case CK_IntegralToFloating:
271    case CK_FloatingToIntegral:
272    case CK_FloatingToBoolean:
273    case CK_FloatingCast:
274      Converted = ICE->getSubExpr();
275      continue;
276
277    default:
278      return Converted;
279    }
280  }
281
282  return Converted;
283}
284
285/// Check if this standard conversion sequence represents a narrowing
286/// conversion, according to C++11 [dcl.init.list]p7.
287///
288/// \param Ctx  The AST context.
289/// \param Converted  The result of applying this standard conversion sequence.
290/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
291///        value of the expression prior to the narrowing conversion.
292/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
293///        type of the expression prior to the narrowing conversion.
294NarrowingKind
295StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
296                                             const Expr *Converted,
297                                             APValue &ConstantValue,
298                                             QualType &ConstantType) const {
299  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
300
301  // C++11 [dcl.init.list]p7:
302  //   A narrowing conversion is an implicit conversion ...
303  QualType FromType = getToType(0);
304  QualType ToType = getToType(1);
305  switch (Second) {
306  // -- from a floating-point type to an integer type, or
307  //
308  // -- from an integer type or unscoped enumeration type to a floating-point
309  //    type, except where the source is a constant expression and the actual
310  //    value after conversion will fit into the target type and will produce
311  //    the original value when converted back to the original type, or
312  case ICK_Floating_Integral:
313    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
314      return NK_Type_Narrowing;
315    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
316      llvm::APSInt IntConstantValue;
317      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
318      if (Initializer &&
319          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
320        // Convert the integer to the floating type.
321        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
322        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
323                                llvm::APFloat::rmNearestTiesToEven);
324        // And back.
325        llvm::APSInt ConvertedValue = IntConstantValue;
326        bool ignored;
327        Result.convertToInteger(ConvertedValue,
328                                llvm::APFloat::rmTowardZero, &ignored);
329        // If the resulting value is different, this was a narrowing conversion.
330        if (IntConstantValue != ConvertedValue) {
331          ConstantValue = APValue(IntConstantValue);
332          ConstantType = Initializer->getType();
333          return NK_Constant_Narrowing;
334        }
335      } else {
336        // Variables are always narrowings.
337        return NK_Variable_Narrowing;
338      }
339    }
340    return NK_Not_Narrowing;
341
342  // -- from long double to double or float, or from double to float, except
343  //    where the source is a constant expression and the actual value after
344  //    conversion is within the range of values that can be represented (even
345  //    if it cannot be represented exactly), or
346  case ICK_Floating_Conversion:
347    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
348        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
349      // FromType is larger than ToType.
350      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
351      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
352        // Constant!
353        assert(ConstantValue.isFloat());
354        llvm::APFloat FloatVal = ConstantValue.getFloat();
355        // Convert the source value into the target type.
356        bool ignored;
357        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
358          Ctx.getFloatTypeSemantics(ToType),
359          llvm::APFloat::rmNearestTiesToEven, &ignored);
360        // If there was no overflow, the source value is within the range of
361        // values that can be represented.
362        if (ConvertStatus & llvm::APFloat::opOverflow) {
363          ConstantType = Initializer->getType();
364          return NK_Constant_Narrowing;
365        }
366      } else {
367        return NK_Variable_Narrowing;
368      }
369    }
370    return NK_Not_Narrowing;
371
372  // -- from an integer type or unscoped enumeration type to an integer type
373  //    that cannot represent all the values of the original type, except where
374  //    the source is a constant expression and the actual value after
375  //    conversion will fit into the target type and will produce the original
376  //    value when converted back to the original type.
377  case ICK_Boolean_Conversion:  // Bools are integers too.
378    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
379      // Boolean conversions can be from pointers and pointers to members
380      // [conv.bool], and those aren't considered narrowing conversions.
381      return NK_Not_Narrowing;
382    }  // Otherwise, fall through to the integral case.
383  case ICK_Integral_Conversion: {
384    assert(FromType->isIntegralOrUnscopedEnumerationType());
385    assert(ToType->isIntegralOrUnscopedEnumerationType());
386    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
387    const unsigned FromWidth = Ctx.getIntWidth(FromType);
388    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
389    const unsigned ToWidth = Ctx.getIntWidth(ToType);
390
391    if (FromWidth > ToWidth ||
392        (FromWidth == ToWidth && FromSigned != ToSigned) ||
393        (FromSigned && !ToSigned)) {
394      // Not all values of FromType can be represented in ToType.
395      llvm::APSInt InitializerValue;
396      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
397      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
398        // Such conversions on variables are always narrowing.
399        return NK_Variable_Narrowing;
400      }
401      bool Narrowing = false;
402      if (FromWidth < ToWidth) {
403        // Negative -> unsigned is narrowing. Otherwise, more bits is never
404        // narrowing.
405        if (InitializerValue.isSigned() && InitializerValue.isNegative())
406          Narrowing = true;
407      } else {
408        // Add a bit to the InitializerValue so we don't have to worry about
409        // signed vs. unsigned comparisons.
410        InitializerValue = InitializerValue.extend(
411          InitializerValue.getBitWidth() + 1);
412        // Convert the initializer to and from the target width and signed-ness.
413        llvm::APSInt ConvertedValue = InitializerValue;
414        ConvertedValue = ConvertedValue.trunc(ToWidth);
415        ConvertedValue.setIsSigned(ToSigned);
416        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
417        ConvertedValue.setIsSigned(InitializerValue.isSigned());
418        // If the result is different, this was a narrowing conversion.
419        if (ConvertedValue != InitializerValue)
420          Narrowing = true;
421      }
422      if (Narrowing) {
423        ConstantType = Initializer->getType();
424        ConstantValue = APValue(InitializerValue);
425        return NK_Constant_Narrowing;
426      }
427    }
428    return NK_Not_Narrowing;
429  }
430
431  default:
432    // Other kinds of conversions are not narrowings.
433    return NK_Not_Narrowing;
434  }
435}
436
437/// DebugPrint - Print this standard conversion sequence to standard
438/// error. Useful for debugging overloading issues.
439void StandardConversionSequence::DebugPrint() const {
440  raw_ostream &OS = llvm::errs();
441  bool PrintedSomething = false;
442  if (First != ICK_Identity) {
443    OS << GetImplicitConversionName(First);
444    PrintedSomething = true;
445  }
446
447  if (Second != ICK_Identity) {
448    if (PrintedSomething) {
449      OS << " -> ";
450    }
451    OS << GetImplicitConversionName(Second);
452
453    if (CopyConstructor) {
454      OS << " (by copy constructor)";
455    } else if (DirectBinding) {
456      OS << " (direct reference binding)";
457    } else if (ReferenceBinding) {
458      OS << " (reference binding)";
459    }
460    PrintedSomething = true;
461  }
462
463  if (Third != ICK_Identity) {
464    if (PrintedSomething) {
465      OS << " -> ";
466    }
467    OS << GetImplicitConversionName(Third);
468    PrintedSomething = true;
469  }
470
471  if (!PrintedSomething) {
472    OS << "No conversions required";
473  }
474}
475
476/// DebugPrint - Print this user-defined conversion sequence to standard
477/// error. Useful for debugging overloading issues.
478void UserDefinedConversionSequence::DebugPrint() const {
479  raw_ostream &OS = llvm::errs();
480  if (Before.First || Before.Second || Before.Third) {
481    Before.DebugPrint();
482    OS << " -> ";
483  }
484  if (ConversionFunction)
485    OS << '\'' << *ConversionFunction << '\'';
486  else
487    OS << "aggregate initialization";
488  if (After.First || After.Second || After.Third) {
489    OS << " -> ";
490    After.DebugPrint();
491  }
492}
493
494/// DebugPrint - Print this implicit conversion sequence to standard
495/// error. Useful for debugging overloading issues.
496void ImplicitConversionSequence::DebugPrint() const {
497  raw_ostream &OS = llvm::errs();
498  switch (ConversionKind) {
499  case StandardConversion:
500    OS << "Standard conversion: ";
501    Standard.DebugPrint();
502    break;
503  case UserDefinedConversion:
504    OS << "User-defined conversion: ";
505    UserDefined.DebugPrint();
506    break;
507  case EllipsisConversion:
508    OS << "Ellipsis conversion";
509    break;
510  case AmbiguousConversion:
511    OS << "Ambiguous conversion";
512    break;
513  case BadConversion:
514    OS << "Bad conversion";
515    break;
516  }
517
518  OS << "\n";
519}
520
521void AmbiguousConversionSequence::construct() {
522  new (&conversions()) ConversionSet();
523}
524
525void AmbiguousConversionSequence::destruct() {
526  conversions().~ConversionSet();
527}
528
529void
530AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
531  FromTypePtr = O.FromTypePtr;
532  ToTypePtr = O.ToTypePtr;
533  new (&conversions()) ConversionSet(O.conversions());
534}
535
536namespace {
537  // Structure used by OverloadCandidate::DeductionFailureInfo to store
538  // template parameter and template argument information.
539  struct DFIParamWithArguments {
540    TemplateParameter Param;
541    TemplateArgument FirstArg;
542    TemplateArgument SecondArg;
543  };
544}
545
546/// \brief Convert from Sema's representation of template deduction information
547/// to the form used in overload-candidate information.
548OverloadCandidate::DeductionFailureInfo
549static MakeDeductionFailureInfo(ASTContext &Context,
550                                Sema::TemplateDeductionResult TDK,
551                                TemplateDeductionInfo &Info) {
552  OverloadCandidate::DeductionFailureInfo Result;
553  Result.Result = static_cast<unsigned>(TDK);
554  Result.HasDiagnostic = false;
555  Result.Data = 0;
556  switch (TDK) {
557  case Sema::TDK_Success:
558  case Sema::TDK_Invalid:
559  case Sema::TDK_InstantiationDepth:
560  case Sema::TDK_TooManyArguments:
561  case Sema::TDK_TooFewArguments:
562    break;
563
564  case Sema::TDK_Incomplete:
565  case Sema::TDK_InvalidExplicitArguments:
566    Result.Data = Info.Param.getOpaqueValue();
567    break;
568
569  case Sema::TDK_Inconsistent:
570  case Sema::TDK_Underqualified: {
571    // FIXME: Should allocate from normal heap so that we can free this later.
572    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
573    Saved->Param = Info.Param;
574    Saved->FirstArg = Info.FirstArg;
575    Saved->SecondArg = Info.SecondArg;
576    Result.Data = Saved;
577    break;
578  }
579
580  case Sema::TDK_SubstitutionFailure:
581    Result.Data = Info.take();
582    if (Info.hasSFINAEDiagnostic()) {
583      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
584          SourceLocation(), PartialDiagnostic::NullDiagnostic());
585      Info.takeSFINAEDiagnostic(*Diag);
586      Result.HasDiagnostic = true;
587    }
588    break;
589
590  case Sema::TDK_NonDeducedMismatch:
591  case Sema::TDK_FailedOverloadResolution:
592    break;
593  }
594
595  return Result;
596}
597
598void OverloadCandidate::DeductionFailureInfo::Destroy() {
599  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
600  case Sema::TDK_Success:
601  case Sema::TDK_Invalid:
602  case Sema::TDK_InstantiationDepth:
603  case Sema::TDK_Incomplete:
604  case Sema::TDK_TooManyArguments:
605  case Sema::TDK_TooFewArguments:
606  case Sema::TDK_InvalidExplicitArguments:
607    break;
608
609  case Sema::TDK_Inconsistent:
610  case Sema::TDK_Underqualified:
611    // FIXME: Destroy the data?
612    Data = 0;
613    break;
614
615  case Sema::TDK_SubstitutionFailure:
616    // FIXME: Destroy the template argument list?
617    Data = 0;
618    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
619      Diag->~PartialDiagnosticAt();
620      HasDiagnostic = false;
621    }
622    break;
623
624  // Unhandled
625  case Sema::TDK_NonDeducedMismatch:
626  case Sema::TDK_FailedOverloadResolution:
627    break;
628  }
629}
630
631PartialDiagnosticAt *
632OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
633  if (HasDiagnostic)
634    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
635  return 0;
636}
637
638TemplateParameter
639OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
640  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
641  case Sema::TDK_Success:
642  case Sema::TDK_Invalid:
643  case Sema::TDK_InstantiationDepth:
644  case Sema::TDK_TooManyArguments:
645  case Sema::TDK_TooFewArguments:
646  case Sema::TDK_SubstitutionFailure:
647    return TemplateParameter();
648
649  case Sema::TDK_Incomplete:
650  case Sema::TDK_InvalidExplicitArguments:
651    return TemplateParameter::getFromOpaqueValue(Data);
652
653  case Sema::TDK_Inconsistent:
654  case Sema::TDK_Underqualified:
655    return static_cast<DFIParamWithArguments*>(Data)->Param;
656
657  // Unhandled
658  case Sema::TDK_NonDeducedMismatch:
659  case Sema::TDK_FailedOverloadResolution:
660    break;
661  }
662
663  return TemplateParameter();
664}
665
666TemplateArgumentList *
667OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
668  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
669    case Sema::TDK_Success:
670    case Sema::TDK_Invalid:
671    case Sema::TDK_InstantiationDepth:
672    case Sema::TDK_TooManyArguments:
673    case Sema::TDK_TooFewArguments:
674    case Sema::TDK_Incomplete:
675    case Sema::TDK_InvalidExplicitArguments:
676    case Sema::TDK_Inconsistent:
677    case Sema::TDK_Underqualified:
678      return 0;
679
680    case Sema::TDK_SubstitutionFailure:
681      return static_cast<TemplateArgumentList*>(Data);
682
683    // Unhandled
684    case Sema::TDK_NonDeducedMismatch:
685    case Sema::TDK_FailedOverloadResolution:
686      break;
687  }
688
689  return 0;
690}
691
692const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
693  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
694  case Sema::TDK_Success:
695  case Sema::TDK_Invalid:
696  case Sema::TDK_InstantiationDepth:
697  case Sema::TDK_Incomplete:
698  case Sema::TDK_TooManyArguments:
699  case Sema::TDK_TooFewArguments:
700  case Sema::TDK_InvalidExplicitArguments:
701  case Sema::TDK_SubstitutionFailure:
702    return 0;
703
704  case Sema::TDK_Inconsistent:
705  case Sema::TDK_Underqualified:
706    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
707
708  // Unhandled
709  case Sema::TDK_NonDeducedMismatch:
710  case Sema::TDK_FailedOverloadResolution:
711    break;
712  }
713
714  return 0;
715}
716
717const TemplateArgument *
718OverloadCandidate::DeductionFailureInfo::getSecondArg() {
719  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
720  case Sema::TDK_Success:
721  case Sema::TDK_Invalid:
722  case Sema::TDK_InstantiationDepth:
723  case Sema::TDK_Incomplete:
724  case Sema::TDK_TooManyArguments:
725  case Sema::TDK_TooFewArguments:
726  case Sema::TDK_InvalidExplicitArguments:
727  case Sema::TDK_SubstitutionFailure:
728    return 0;
729
730  case Sema::TDK_Inconsistent:
731  case Sema::TDK_Underqualified:
732    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
733
734  // Unhandled
735  case Sema::TDK_NonDeducedMismatch:
736  case Sema::TDK_FailedOverloadResolution:
737    break;
738  }
739
740  return 0;
741}
742
743void OverloadCandidateSet::destroyCandidates() {
744  for (iterator i = begin(), e = end(); i != e; ++i) {
745    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
746      i->Conversions[ii].~ImplicitConversionSequence();
747    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
748      i->DeductionFailure.Destroy();
749  }
750}
751
752void OverloadCandidateSet::clear() {
753  destroyCandidates();
754  NumInlineSequences = 0;
755  Candidates.clear();
756  Functions.clear();
757}
758
759namespace {
760  class UnbridgedCastsSet {
761    struct Entry {
762      Expr **Addr;
763      Expr *Saved;
764    };
765    SmallVector<Entry, 2> Entries;
766
767  public:
768    void save(Sema &S, Expr *&E) {
769      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
770      Entry entry = { &E, E };
771      Entries.push_back(entry);
772      E = S.stripARCUnbridgedCast(E);
773    }
774
775    void restore() {
776      for (SmallVectorImpl<Entry>::iterator
777             i = Entries.begin(), e = Entries.end(); i != e; ++i)
778        *i->Addr = i->Saved;
779    }
780  };
781}
782
783/// checkPlaceholderForOverload - Do any interesting placeholder-like
784/// preprocessing on the given expression.
785///
786/// \param unbridgedCasts a collection to which to add unbridged casts;
787///   without this, they will be immediately diagnosed as errors
788///
789/// Return true on unrecoverable error.
790static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
791                                        UnbridgedCastsSet *unbridgedCasts = 0) {
792  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
793    // We can't handle overloaded expressions here because overload
794    // resolution might reasonably tweak them.
795    if (placeholder->getKind() == BuiltinType::Overload) return false;
796
797    // If the context potentially accepts unbridged ARC casts, strip
798    // the unbridged cast and add it to the collection for later restoration.
799    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
800        unbridgedCasts) {
801      unbridgedCasts->save(S, E);
802      return false;
803    }
804
805    // Go ahead and check everything else.
806    ExprResult result = S.CheckPlaceholderExpr(E);
807    if (result.isInvalid())
808      return true;
809
810    E = result.take();
811    return false;
812  }
813
814  // Nothing to do.
815  return false;
816}
817
818/// checkArgPlaceholdersForOverload - Check a set of call operands for
819/// placeholders.
820static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
821                                            unsigned numArgs,
822                                            UnbridgedCastsSet &unbridged) {
823  for (unsigned i = 0; i != numArgs; ++i)
824    if (checkPlaceholderForOverload(S, args[i], &unbridged))
825      return true;
826
827  return false;
828}
829
830// IsOverload - Determine whether the given New declaration is an
831// overload of the declarations in Old. This routine returns false if
832// New and Old cannot be overloaded, e.g., if New has the same
833// signature as some function in Old (C++ 1.3.10) or if the Old
834// declarations aren't functions (or function templates) at all. When
835// it does return false, MatchedDecl will point to the decl that New
836// cannot be overloaded with.  This decl may be a UsingShadowDecl on
837// top of the underlying declaration.
838//
839// Example: Given the following input:
840//
841//   void f(int, float); // #1
842//   void f(int, int); // #2
843//   int f(int, int); // #3
844//
845// When we process #1, there is no previous declaration of "f",
846// so IsOverload will not be used.
847//
848// When we process #2, Old contains only the FunctionDecl for #1.  By
849// comparing the parameter types, we see that #1 and #2 are overloaded
850// (since they have different signatures), so this routine returns
851// false; MatchedDecl is unchanged.
852//
853// When we process #3, Old is an overload set containing #1 and #2. We
854// compare the signatures of #3 to #1 (they're overloaded, so we do
855// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
856// identical (return types of functions are not part of the
857// signature), IsOverload returns false and MatchedDecl will be set to
858// point to the FunctionDecl for #2.
859//
860// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
861// into a class by a using declaration.  The rules for whether to hide
862// shadow declarations ignore some properties which otherwise figure
863// into a function template's signature.
864Sema::OverloadKind
865Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
866                    NamedDecl *&Match, bool NewIsUsingDecl) {
867  for (LookupResult::iterator I = Old.begin(), E = Old.end();
868         I != E; ++I) {
869    NamedDecl *OldD = *I;
870
871    bool OldIsUsingDecl = false;
872    if (isa<UsingShadowDecl>(OldD)) {
873      OldIsUsingDecl = true;
874
875      // We can always introduce two using declarations into the same
876      // context, even if they have identical signatures.
877      if (NewIsUsingDecl) continue;
878
879      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
880    }
881
882    // If either declaration was introduced by a using declaration,
883    // we'll need to use slightly different rules for matching.
884    // Essentially, these rules are the normal rules, except that
885    // function templates hide function templates with different
886    // return types or template parameter lists.
887    bool UseMemberUsingDeclRules =
888      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
889
890    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
891      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
892        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
893          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
894          continue;
895        }
896
897        Match = *I;
898        return Ovl_Match;
899      }
900    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
901      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
902        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
903          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
904          continue;
905        }
906
907        Match = *I;
908        return Ovl_Match;
909      }
910    } else if (isa<UsingDecl>(OldD)) {
911      // We can overload with these, which can show up when doing
912      // redeclaration checks for UsingDecls.
913      assert(Old.getLookupKind() == LookupUsingDeclName);
914    } else if (isa<TagDecl>(OldD)) {
915      // We can always overload with tags by hiding them.
916    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
917      // Optimistically assume that an unresolved using decl will
918      // overload; if it doesn't, we'll have to diagnose during
919      // template instantiation.
920    } else {
921      // (C++ 13p1):
922      //   Only function declarations can be overloaded; object and type
923      //   declarations cannot be overloaded.
924      Match = *I;
925      return Ovl_NonFunction;
926    }
927  }
928
929  return Ovl_Overload;
930}
931
932bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
933                      bool UseUsingDeclRules) {
934  // If both of the functions are extern "C", then they are not
935  // overloads.
936  if (Old->isExternC() && New->isExternC())
937    return false;
938
939  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
940  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
941
942  // C++ [temp.fct]p2:
943  //   A function template can be overloaded with other function templates
944  //   and with normal (non-template) functions.
945  if ((OldTemplate == 0) != (NewTemplate == 0))
946    return true;
947
948  // Is the function New an overload of the function Old?
949  QualType OldQType = Context.getCanonicalType(Old->getType());
950  QualType NewQType = Context.getCanonicalType(New->getType());
951
952  // Compare the signatures (C++ 1.3.10) of the two functions to
953  // determine whether they are overloads. If we find any mismatch
954  // in the signature, they are overloads.
955
956  // If either of these functions is a K&R-style function (no
957  // prototype), then we consider them to have matching signatures.
958  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
959      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
960    return false;
961
962  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
963  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
964
965  // The signature of a function includes the types of its
966  // parameters (C++ 1.3.10), which includes the presence or absence
967  // of the ellipsis; see C++ DR 357).
968  if (OldQType != NewQType &&
969      (OldType->getNumArgs() != NewType->getNumArgs() ||
970       OldType->isVariadic() != NewType->isVariadic() ||
971       !FunctionArgTypesAreEqual(OldType, NewType)))
972    return true;
973
974  // C++ [temp.over.link]p4:
975  //   The signature of a function template consists of its function
976  //   signature, its return type and its template parameter list. The names
977  //   of the template parameters are significant only for establishing the
978  //   relationship between the template parameters and the rest of the
979  //   signature.
980  //
981  // We check the return type and template parameter lists for function
982  // templates first; the remaining checks follow.
983  //
984  // However, we don't consider either of these when deciding whether
985  // a member introduced by a shadow declaration is hidden.
986  if (!UseUsingDeclRules && NewTemplate &&
987      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
988                                       OldTemplate->getTemplateParameters(),
989                                       false, TPL_TemplateMatch) ||
990       OldType->getResultType() != NewType->getResultType()))
991    return true;
992
993  // If the function is a class member, its signature includes the
994  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
995  //
996  // As part of this, also check whether one of the member functions
997  // is static, in which case they are not overloads (C++
998  // 13.1p2). While not part of the definition of the signature,
999  // this check is important to determine whether these functions
1000  // can be overloaded.
1001  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1002  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1003  if (OldMethod && NewMethod &&
1004      !OldMethod->isStatic() && !NewMethod->isStatic() &&
1005      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
1006       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
1007    if (!UseUsingDeclRules &&
1008        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
1009        (OldMethod->getRefQualifier() == RQ_None ||
1010         NewMethod->getRefQualifier() == RQ_None)) {
1011      // C++0x [over.load]p2:
1012      //   - Member function declarations with the same name and the same
1013      //     parameter-type-list as well as member function template
1014      //     declarations with the same name, the same parameter-type-list, and
1015      //     the same template parameter lists cannot be overloaded if any of
1016      //     them, but not all, have a ref-qualifier (8.3.5).
1017      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1018        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1019      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1020    }
1021
1022    return true;
1023  }
1024
1025  // The signatures match; this is not an overload.
1026  return false;
1027}
1028
1029/// \brief Checks availability of the function depending on the current
1030/// function context. Inside an unavailable function, unavailability is ignored.
1031///
1032/// \returns true if \arg FD is unavailable and current context is inside
1033/// an available function, false otherwise.
1034bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1035  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1036}
1037
1038/// \brief Tries a user-defined conversion from From to ToType.
1039///
1040/// Produces an implicit conversion sequence for when a standard conversion
1041/// is not an option. See TryImplicitConversion for more information.
1042static ImplicitConversionSequence
1043TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1044                         bool SuppressUserConversions,
1045                         bool AllowExplicit,
1046                         bool InOverloadResolution,
1047                         bool CStyle,
1048                         bool AllowObjCWritebackConversion) {
1049  ImplicitConversionSequence ICS;
1050
1051  if (SuppressUserConversions) {
1052    // We're not in the case above, so there is no conversion that
1053    // we can perform.
1054    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1055    return ICS;
1056  }
1057
1058  // Attempt user-defined conversion.
1059  OverloadCandidateSet Conversions(From->getExprLoc());
1060  OverloadingResult UserDefResult
1061    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1062                              AllowExplicit);
1063
1064  if (UserDefResult == OR_Success) {
1065    ICS.setUserDefined();
1066    // C++ [over.ics.user]p4:
1067    //   A conversion of an expression of class type to the same class
1068    //   type is given Exact Match rank, and a conversion of an
1069    //   expression of class type to a base class of that type is
1070    //   given Conversion rank, in spite of the fact that a copy
1071    //   constructor (i.e., a user-defined conversion function) is
1072    //   called for those cases.
1073    if (CXXConstructorDecl *Constructor
1074          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1075      QualType FromCanon
1076        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1077      QualType ToCanon
1078        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1079      if (Constructor->isCopyConstructor() &&
1080          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1081        // Turn this into a "standard" conversion sequence, so that it
1082        // gets ranked with standard conversion sequences.
1083        ICS.setStandard();
1084        ICS.Standard.setAsIdentityConversion();
1085        ICS.Standard.setFromType(From->getType());
1086        ICS.Standard.setAllToTypes(ToType);
1087        ICS.Standard.CopyConstructor = Constructor;
1088        if (ToCanon != FromCanon)
1089          ICS.Standard.Second = ICK_Derived_To_Base;
1090      }
1091    }
1092
1093    // C++ [over.best.ics]p4:
1094    //   However, when considering the argument of a user-defined
1095    //   conversion function that is a candidate by 13.3.1.3 when
1096    //   invoked for the copying of the temporary in the second step
1097    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1098    //   13.3.1.6 in all cases, only standard conversion sequences and
1099    //   ellipsis conversion sequences are allowed.
1100    if (SuppressUserConversions && ICS.isUserDefined()) {
1101      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1102    }
1103  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1104    ICS.setAmbiguous();
1105    ICS.Ambiguous.setFromType(From->getType());
1106    ICS.Ambiguous.setToType(ToType);
1107    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1108         Cand != Conversions.end(); ++Cand)
1109      if (Cand->Viable)
1110        ICS.Ambiguous.addConversion(Cand->Function);
1111  } else {
1112    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1113  }
1114
1115  return ICS;
1116}
1117
1118/// TryImplicitConversion - Attempt to perform an implicit conversion
1119/// from the given expression (Expr) to the given type (ToType). This
1120/// function returns an implicit conversion sequence that can be used
1121/// to perform the initialization. Given
1122///
1123///   void f(float f);
1124///   void g(int i) { f(i); }
1125///
1126/// this routine would produce an implicit conversion sequence to
1127/// describe the initialization of f from i, which will be a standard
1128/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1129/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1130//
1131/// Note that this routine only determines how the conversion can be
1132/// performed; it does not actually perform the conversion. As such,
1133/// it will not produce any diagnostics if no conversion is available,
1134/// but will instead return an implicit conversion sequence of kind
1135/// "BadConversion".
1136///
1137/// If @p SuppressUserConversions, then user-defined conversions are
1138/// not permitted.
1139/// If @p AllowExplicit, then explicit user-defined conversions are
1140/// permitted.
1141///
1142/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1143/// writeback conversion, which allows __autoreleasing id* parameters to
1144/// be initialized with __strong id* or __weak id* arguments.
1145static ImplicitConversionSequence
1146TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1147                      bool SuppressUserConversions,
1148                      bool AllowExplicit,
1149                      bool InOverloadResolution,
1150                      bool CStyle,
1151                      bool AllowObjCWritebackConversion) {
1152  ImplicitConversionSequence ICS;
1153  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1154                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1155    ICS.setStandard();
1156    return ICS;
1157  }
1158
1159  if (!S.getLangOpts().CPlusPlus) {
1160    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1161    return ICS;
1162  }
1163
1164  // C++ [over.ics.user]p4:
1165  //   A conversion of an expression of class type to the same class
1166  //   type is given Exact Match rank, and a conversion of an
1167  //   expression of class type to a base class of that type is
1168  //   given Conversion rank, in spite of the fact that a copy/move
1169  //   constructor (i.e., a user-defined conversion function) is
1170  //   called for those cases.
1171  QualType FromType = From->getType();
1172  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1173      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1174       S.IsDerivedFrom(FromType, ToType))) {
1175    ICS.setStandard();
1176    ICS.Standard.setAsIdentityConversion();
1177    ICS.Standard.setFromType(FromType);
1178    ICS.Standard.setAllToTypes(ToType);
1179
1180    // We don't actually check at this point whether there is a valid
1181    // copy/move constructor, since overloading just assumes that it
1182    // exists. When we actually perform initialization, we'll find the
1183    // appropriate constructor to copy the returned object, if needed.
1184    ICS.Standard.CopyConstructor = 0;
1185
1186    // Determine whether this is considered a derived-to-base conversion.
1187    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1188      ICS.Standard.Second = ICK_Derived_To_Base;
1189
1190    return ICS;
1191  }
1192
1193  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1194                                  AllowExplicit, InOverloadResolution, CStyle,
1195                                  AllowObjCWritebackConversion);
1196}
1197
1198ImplicitConversionSequence
1199Sema::TryImplicitConversion(Expr *From, QualType ToType,
1200                            bool SuppressUserConversions,
1201                            bool AllowExplicit,
1202                            bool InOverloadResolution,
1203                            bool CStyle,
1204                            bool AllowObjCWritebackConversion) {
1205  return clang::TryImplicitConversion(*this, From, ToType,
1206                                      SuppressUserConversions, AllowExplicit,
1207                                      InOverloadResolution, CStyle,
1208                                      AllowObjCWritebackConversion);
1209}
1210
1211/// PerformImplicitConversion - Perform an implicit conversion of the
1212/// expression From to the type ToType. Returns the
1213/// converted expression. Flavor is the kind of conversion we're
1214/// performing, used in the error message. If @p AllowExplicit,
1215/// explicit user-defined conversions are permitted.
1216ExprResult
1217Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1218                                AssignmentAction Action, bool AllowExplicit) {
1219  ImplicitConversionSequence ICS;
1220  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1221}
1222
1223ExprResult
1224Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1225                                AssignmentAction Action, bool AllowExplicit,
1226                                ImplicitConversionSequence& ICS) {
1227  if (checkPlaceholderForOverload(*this, From))
1228    return ExprError();
1229
1230  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1231  bool AllowObjCWritebackConversion
1232    = getLangOpts().ObjCAutoRefCount &&
1233      (Action == AA_Passing || Action == AA_Sending);
1234
1235  ICS = clang::TryImplicitConversion(*this, From, ToType,
1236                                     /*SuppressUserConversions=*/false,
1237                                     AllowExplicit,
1238                                     /*InOverloadResolution=*/false,
1239                                     /*CStyle=*/false,
1240                                     AllowObjCWritebackConversion);
1241  return PerformImplicitConversion(From, ToType, ICS, Action);
1242}
1243
1244/// \brief Determine whether the conversion from FromType to ToType is a valid
1245/// conversion that strips "noreturn" off the nested function type.
1246bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1247                                QualType &ResultTy) {
1248  if (Context.hasSameUnqualifiedType(FromType, ToType))
1249    return false;
1250
1251  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1252  // where F adds one of the following at most once:
1253  //   - a pointer
1254  //   - a member pointer
1255  //   - a block pointer
1256  CanQualType CanTo = Context.getCanonicalType(ToType);
1257  CanQualType CanFrom = Context.getCanonicalType(FromType);
1258  Type::TypeClass TyClass = CanTo->getTypeClass();
1259  if (TyClass != CanFrom->getTypeClass()) return false;
1260  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1261    if (TyClass == Type::Pointer) {
1262      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1263      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1264    } else if (TyClass == Type::BlockPointer) {
1265      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1266      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1267    } else if (TyClass == Type::MemberPointer) {
1268      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1269      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1270    } else {
1271      return false;
1272    }
1273
1274    TyClass = CanTo->getTypeClass();
1275    if (TyClass != CanFrom->getTypeClass()) return false;
1276    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1277      return false;
1278  }
1279
1280  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1281  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1282  if (!EInfo.getNoReturn()) return false;
1283
1284  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1285  assert(QualType(FromFn, 0).isCanonical());
1286  if (QualType(FromFn, 0) != CanTo) return false;
1287
1288  ResultTy = ToType;
1289  return true;
1290}
1291
1292/// \brief Determine whether the conversion from FromType to ToType is a valid
1293/// vector conversion.
1294///
1295/// \param ICK Will be set to the vector conversion kind, if this is a vector
1296/// conversion.
1297static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1298                               QualType ToType, ImplicitConversionKind &ICK) {
1299  // We need at least one of these types to be a vector type to have a vector
1300  // conversion.
1301  if (!ToType->isVectorType() && !FromType->isVectorType())
1302    return false;
1303
1304  // Identical types require no conversions.
1305  if (Context.hasSameUnqualifiedType(FromType, ToType))
1306    return false;
1307
1308  // There are no conversions between extended vector types, only identity.
1309  if (ToType->isExtVectorType()) {
1310    // There are no conversions between extended vector types other than the
1311    // identity conversion.
1312    if (FromType->isExtVectorType())
1313      return false;
1314
1315    // Vector splat from any arithmetic type to a vector.
1316    if (FromType->isArithmeticType()) {
1317      ICK = ICK_Vector_Splat;
1318      return true;
1319    }
1320  }
1321
1322  // We can perform the conversion between vector types in the following cases:
1323  // 1)vector types are equivalent AltiVec and GCC vector types
1324  // 2)lax vector conversions are permitted and the vector types are of the
1325  //   same size
1326  if (ToType->isVectorType() && FromType->isVectorType()) {
1327    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1328        (Context.getLangOpts().LaxVectorConversions &&
1329         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1330      ICK = ICK_Vector_Conversion;
1331      return true;
1332    }
1333  }
1334
1335  return false;
1336}
1337
1338static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1339                                bool InOverloadResolution,
1340                                StandardConversionSequence &SCS,
1341                                bool CStyle);
1342
1343/// IsStandardConversion - Determines whether there is a standard
1344/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1345/// expression From to the type ToType. Standard conversion sequences
1346/// only consider non-class types; for conversions that involve class
1347/// types, use TryImplicitConversion. If a conversion exists, SCS will
1348/// contain the standard conversion sequence required to perform this
1349/// conversion and this routine will return true. Otherwise, this
1350/// routine will return false and the value of SCS is unspecified.
1351static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1352                                 bool InOverloadResolution,
1353                                 StandardConversionSequence &SCS,
1354                                 bool CStyle,
1355                                 bool AllowObjCWritebackConversion) {
1356  QualType FromType = From->getType();
1357
1358  // Standard conversions (C++ [conv])
1359  SCS.setAsIdentityConversion();
1360  SCS.DeprecatedStringLiteralToCharPtr = false;
1361  SCS.IncompatibleObjC = false;
1362  SCS.setFromType(FromType);
1363  SCS.CopyConstructor = 0;
1364
1365  // There are no standard conversions for class types in C++, so
1366  // abort early. When overloading in C, however, we do permit
1367  if (FromType->isRecordType() || ToType->isRecordType()) {
1368    if (S.getLangOpts().CPlusPlus)
1369      return false;
1370
1371    // When we're overloading in C, we allow, as standard conversions,
1372  }
1373
1374  // The first conversion can be an lvalue-to-rvalue conversion,
1375  // array-to-pointer conversion, or function-to-pointer conversion
1376  // (C++ 4p1).
1377
1378  if (FromType == S.Context.OverloadTy) {
1379    DeclAccessPair AccessPair;
1380    if (FunctionDecl *Fn
1381          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1382                                                 AccessPair)) {
1383      // We were able to resolve the address of the overloaded function,
1384      // so we can convert to the type of that function.
1385      FromType = Fn->getType();
1386
1387      // we can sometimes resolve &foo<int> regardless of ToType, so check
1388      // if the type matches (identity) or we are converting to bool
1389      if (!S.Context.hasSameUnqualifiedType(
1390                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1391        QualType resultTy;
1392        // if the function type matches except for [[noreturn]], it's ok
1393        if (!S.IsNoReturnConversion(FromType,
1394              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1395          // otherwise, only a boolean conversion is standard
1396          if (!ToType->isBooleanType())
1397            return false;
1398      }
1399
1400      // Check if the "from" expression is taking the address of an overloaded
1401      // function and recompute the FromType accordingly. Take advantage of the
1402      // fact that non-static member functions *must* have such an address-of
1403      // expression.
1404      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1405      if (Method && !Method->isStatic()) {
1406        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1407               "Non-unary operator on non-static member address");
1408        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1409               == UO_AddrOf &&
1410               "Non-address-of operator on non-static member address");
1411        const Type *ClassType
1412          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1413        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1414      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1415        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1416               UO_AddrOf &&
1417               "Non-address-of operator for overloaded function expression");
1418        FromType = S.Context.getPointerType(FromType);
1419      }
1420
1421      // Check that we've computed the proper type after overload resolution.
1422      assert(S.Context.hasSameType(
1423        FromType,
1424        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1425    } else {
1426      return false;
1427    }
1428  }
1429  // Lvalue-to-rvalue conversion (C++11 4.1):
1430  //   A glvalue (3.10) of a non-function, non-array type T can
1431  //   be converted to a prvalue.
1432  bool argIsLValue = From->isGLValue();
1433  if (argIsLValue &&
1434      !FromType->isFunctionType() && !FromType->isArrayType() &&
1435      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1436    SCS.First = ICK_Lvalue_To_Rvalue;
1437
1438    // C11 6.3.2.1p2:
1439    //   ... if the lvalue has atomic type, the value has the non-atomic version
1440    //   of the type of the lvalue ...
1441    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1442      FromType = Atomic->getValueType();
1443
1444    // If T is a non-class type, the type of the rvalue is the
1445    // cv-unqualified version of T. Otherwise, the type of the rvalue
1446    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1447    // just strip the qualifiers because they don't matter.
1448    FromType = FromType.getUnqualifiedType();
1449  } else if (FromType->isArrayType()) {
1450    // Array-to-pointer conversion (C++ 4.2)
1451    SCS.First = ICK_Array_To_Pointer;
1452
1453    // An lvalue or rvalue of type "array of N T" or "array of unknown
1454    // bound of T" can be converted to an rvalue of type "pointer to
1455    // T" (C++ 4.2p1).
1456    FromType = S.Context.getArrayDecayedType(FromType);
1457
1458    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1459      // This conversion is deprecated. (C++ D.4).
1460      SCS.DeprecatedStringLiteralToCharPtr = true;
1461
1462      // For the purpose of ranking in overload resolution
1463      // (13.3.3.1.1), this conversion is considered an
1464      // array-to-pointer conversion followed by a qualification
1465      // conversion (4.4). (C++ 4.2p2)
1466      SCS.Second = ICK_Identity;
1467      SCS.Third = ICK_Qualification;
1468      SCS.QualificationIncludesObjCLifetime = false;
1469      SCS.setAllToTypes(FromType);
1470      return true;
1471    }
1472  } else if (FromType->isFunctionType() && argIsLValue) {
1473    // Function-to-pointer conversion (C++ 4.3).
1474    SCS.First = ICK_Function_To_Pointer;
1475
1476    // An lvalue of function type T can be converted to an rvalue of
1477    // type "pointer to T." The result is a pointer to the
1478    // function. (C++ 4.3p1).
1479    FromType = S.Context.getPointerType(FromType);
1480  } else {
1481    // We don't require any conversions for the first step.
1482    SCS.First = ICK_Identity;
1483  }
1484  SCS.setToType(0, FromType);
1485
1486  // The second conversion can be an integral promotion, floating
1487  // point promotion, integral conversion, floating point conversion,
1488  // floating-integral conversion, pointer conversion,
1489  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1490  // For overloading in C, this can also be a "compatible-type"
1491  // conversion.
1492  bool IncompatibleObjC = false;
1493  ImplicitConversionKind SecondICK = ICK_Identity;
1494  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1495    // The unqualified versions of the types are the same: there's no
1496    // conversion to do.
1497    SCS.Second = ICK_Identity;
1498  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1499    // Integral promotion (C++ 4.5).
1500    SCS.Second = ICK_Integral_Promotion;
1501    FromType = ToType.getUnqualifiedType();
1502  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1503    // Floating point promotion (C++ 4.6).
1504    SCS.Second = ICK_Floating_Promotion;
1505    FromType = ToType.getUnqualifiedType();
1506  } else if (S.IsComplexPromotion(FromType, ToType)) {
1507    // Complex promotion (Clang extension)
1508    SCS.Second = ICK_Complex_Promotion;
1509    FromType = ToType.getUnqualifiedType();
1510  } else if (ToType->isBooleanType() &&
1511             (FromType->isArithmeticType() ||
1512              FromType->isAnyPointerType() ||
1513              FromType->isBlockPointerType() ||
1514              FromType->isMemberPointerType() ||
1515              FromType->isNullPtrType())) {
1516    // Boolean conversions (C++ 4.12).
1517    SCS.Second = ICK_Boolean_Conversion;
1518    FromType = S.Context.BoolTy;
1519  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1520             ToType->isIntegralType(S.Context)) {
1521    // Integral conversions (C++ 4.7).
1522    SCS.Second = ICK_Integral_Conversion;
1523    FromType = ToType.getUnqualifiedType();
1524  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1525    // Complex conversions (C99 6.3.1.6)
1526    SCS.Second = ICK_Complex_Conversion;
1527    FromType = ToType.getUnqualifiedType();
1528  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1529             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1530    // Complex-real conversions (C99 6.3.1.7)
1531    SCS.Second = ICK_Complex_Real;
1532    FromType = ToType.getUnqualifiedType();
1533  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1534    // Floating point conversions (C++ 4.8).
1535    SCS.Second = ICK_Floating_Conversion;
1536    FromType = ToType.getUnqualifiedType();
1537  } else if ((FromType->isRealFloatingType() &&
1538              ToType->isIntegralType(S.Context)) ||
1539             (FromType->isIntegralOrUnscopedEnumerationType() &&
1540              ToType->isRealFloatingType())) {
1541    // Floating-integral conversions (C++ 4.9).
1542    SCS.Second = ICK_Floating_Integral;
1543    FromType = ToType.getUnqualifiedType();
1544  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1545    SCS.Second = ICK_Block_Pointer_Conversion;
1546  } else if (AllowObjCWritebackConversion &&
1547             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1548    SCS.Second = ICK_Writeback_Conversion;
1549  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1550                                   FromType, IncompatibleObjC)) {
1551    // Pointer conversions (C++ 4.10).
1552    SCS.Second = ICK_Pointer_Conversion;
1553    SCS.IncompatibleObjC = IncompatibleObjC;
1554    FromType = FromType.getUnqualifiedType();
1555  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1556                                         InOverloadResolution, FromType)) {
1557    // Pointer to member conversions (4.11).
1558    SCS.Second = ICK_Pointer_Member;
1559  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1560    SCS.Second = SecondICK;
1561    FromType = ToType.getUnqualifiedType();
1562  } else if (!S.getLangOpts().CPlusPlus &&
1563             S.Context.typesAreCompatible(ToType, FromType)) {
1564    // Compatible conversions (Clang extension for C function overloading)
1565    SCS.Second = ICK_Compatible_Conversion;
1566    FromType = ToType.getUnqualifiedType();
1567  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1568    // Treat a conversion that strips "noreturn" as an identity conversion.
1569    SCS.Second = ICK_NoReturn_Adjustment;
1570  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1571                                             InOverloadResolution,
1572                                             SCS, CStyle)) {
1573    SCS.Second = ICK_TransparentUnionConversion;
1574    FromType = ToType;
1575  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1576                                 CStyle)) {
1577    // tryAtomicConversion has updated the standard conversion sequence
1578    // appropriately.
1579    return true;
1580  } else {
1581    // No second conversion required.
1582    SCS.Second = ICK_Identity;
1583  }
1584  SCS.setToType(1, FromType);
1585
1586  QualType CanonFrom;
1587  QualType CanonTo;
1588  // The third conversion can be a qualification conversion (C++ 4p1).
1589  bool ObjCLifetimeConversion;
1590  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1591                                  ObjCLifetimeConversion)) {
1592    SCS.Third = ICK_Qualification;
1593    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1594    FromType = ToType;
1595    CanonFrom = S.Context.getCanonicalType(FromType);
1596    CanonTo = S.Context.getCanonicalType(ToType);
1597  } else {
1598    // No conversion required
1599    SCS.Third = ICK_Identity;
1600
1601    // C++ [over.best.ics]p6:
1602    //   [...] Any difference in top-level cv-qualification is
1603    //   subsumed by the initialization itself and does not constitute
1604    //   a conversion. [...]
1605    CanonFrom = S.Context.getCanonicalType(FromType);
1606    CanonTo = S.Context.getCanonicalType(ToType);
1607    if (CanonFrom.getLocalUnqualifiedType()
1608                                       == CanonTo.getLocalUnqualifiedType() &&
1609        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1610         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1611         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1612      FromType = ToType;
1613      CanonFrom = CanonTo;
1614    }
1615  }
1616  SCS.setToType(2, FromType);
1617
1618  // If we have not converted the argument type to the parameter type,
1619  // this is a bad conversion sequence.
1620  if (CanonFrom != CanonTo)
1621    return false;
1622
1623  return true;
1624}
1625
1626static bool
1627IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1628                                     QualType &ToType,
1629                                     bool InOverloadResolution,
1630                                     StandardConversionSequence &SCS,
1631                                     bool CStyle) {
1632
1633  const RecordType *UT = ToType->getAsUnionType();
1634  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1635    return false;
1636  // The field to initialize within the transparent union.
1637  RecordDecl *UD = UT->getDecl();
1638  // It's compatible if the expression matches any of the fields.
1639  for (RecordDecl::field_iterator it = UD->field_begin(),
1640       itend = UD->field_end();
1641       it != itend; ++it) {
1642    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1643                             CStyle, /*ObjCWritebackConversion=*/false)) {
1644      ToType = it->getType();
1645      return true;
1646    }
1647  }
1648  return false;
1649}
1650
1651/// IsIntegralPromotion - Determines whether the conversion from the
1652/// expression From (whose potentially-adjusted type is FromType) to
1653/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1654/// sets PromotedType to the promoted type.
1655bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1656  const BuiltinType *To = ToType->getAs<BuiltinType>();
1657  // All integers are built-in.
1658  if (!To) {
1659    return false;
1660  }
1661
1662  // An rvalue of type char, signed char, unsigned char, short int, or
1663  // unsigned short int can be converted to an rvalue of type int if
1664  // int can represent all the values of the source type; otherwise,
1665  // the source rvalue can be converted to an rvalue of type unsigned
1666  // int (C++ 4.5p1).
1667  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1668      !FromType->isEnumeralType()) {
1669    if (// We can promote any signed, promotable integer type to an int
1670        (FromType->isSignedIntegerType() ||
1671         // We can promote any unsigned integer type whose size is
1672         // less than int to an int.
1673         (!FromType->isSignedIntegerType() &&
1674          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1675      return To->getKind() == BuiltinType::Int;
1676    }
1677
1678    return To->getKind() == BuiltinType::UInt;
1679  }
1680
1681  // C++11 [conv.prom]p3:
1682  //   A prvalue of an unscoped enumeration type whose underlying type is not
1683  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1684  //   following types that can represent all the values of the enumeration
1685  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1686  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1687  //   long long int. If none of the types in that list can represent all the
1688  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1689  //   type can be converted to an rvalue a prvalue of the extended integer type
1690  //   with lowest integer conversion rank (4.13) greater than the rank of long
1691  //   long in which all the values of the enumeration can be represented. If
1692  //   there are two such extended types, the signed one is chosen.
1693  // C++11 [conv.prom]p4:
1694  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1695  //   can be converted to a prvalue of its underlying type. Moreover, if
1696  //   integral promotion can be applied to its underlying type, a prvalue of an
1697  //   unscoped enumeration type whose underlying type is fixed can also be
1698  //   converted to a prvalue of the promoted underlying type.
1699  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1700    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1701    // provided for a scoped enumeration.
1702    if (FromEnumType->getDecl()->isScoped())
1703      return false;
1704
1705    // We can perform an integral promotion to the underlying type of the enum,
1706    // even if that's not the promoted type.
1707    if (FromEnumType->getDecl()->isFixed()) {
1708      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1709      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1710             IsIntegralPromotion(From, Underlying, ToType);
1711    }
1712
1713    // We have already pre-calculated the promotion type, so this is trivial.
1714    if (ToType->isIntegerType() &&
1715        !RequireCompleteType(From->getLocStart(), FromType, 0))
1716      return Context.hasSameUnqualifiedType(ToType,
1717                                FromEnumType->getDecl()->getPromotionType());
1718  }
1719
1720  // C++0x [conv.prom]p2:
1721  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1722  //   to an rvalue a prvalue of the first of the following types that can
1723  //   represent all the values of its underlying type: int, unsigned int,
1724  //   long int, unsigned long int, long long int, or unsigned long long int.
1725  //   If none of the types in that list can represent all the values of its
1726  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1727  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1728  //   type.
1729  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1730      ToType->isIntegerType()) {
1731    // Determine whether the type we're converting from is signed or
1732    // unsigned.
1733    bool FromIsSigned = FromType->isSignedIntegerType();
1734    uint64_t FromSize = Context.getTypeSize(FromType);
1735
1736    // The types we'll try to promote to, in the appropriate
1737    // order. Try each of these types.
1738    QualType PromoteTypes[6] = {
1739      Context.IntTy, Context.UnsignedIntTy,
1740      Context.LongTy, Context.UnsignedLongTy ,
1741      Context.LongLongTy, Context.UnsignedLongLongTy
1742    };
1743    for (int Idx = 0; Idx < 6; ++Idx) {
1744      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1745      if (FromSize < ToSize ||
1746          (FromSize == ToSize &&
1747           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1748        // We found the type that we can promote to. If this is the
1749        // type we wanted, we have a promotion. Otherwise, no
1750        // promotion.
1751        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1752      }
1753    }
1754  }
1755
1756  // An rvalue for an integral bit-field (9.6) can be converted to an
1757  // rvalue of type int if int can represent all the values of the
1758  // bit-field; otherwise, it can be converted to unsigned int if
1759  // unsigned int can represent all the values of the bit-field. If
1760  // the bit-field is larger yet, no integral promotion applies to
1761  // it. If the bit-field has an enumerated type, it is treated as any
1762  // other value of that type for promotion purposes (C++ 4.5p3).
1763  // FIXME: We should delay checking of bit-fields until we actually perform the
1764  // conversion.
1765  using llvm::APSInt;
1766  if (From)
1767    if (FieldDecl *MemberDecl = From->getBitField()) {
1768      APSInt BitWidth;
1769      if (FromType->isIntegralType(Context) &&
1770          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1771        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1772        ToSize = Context.getTypeSize(ToType);
1773
1774        // Are we promoting to an int from a bitfield that fits in an int?
1775        if (BitWidth < ToSize ||
1776            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1777          return To->getKind() == BuiltinType::Int;
1778        }
1779
1780        // Are we promoting to an unsigned int from an unsigned bitfield
1781        // that fits into an unsigned int?
1782        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1783          return To->getKind() == BuiltinType::UInt;
1784        }
1785
1786        return false;
1787      }
1788    }
1789
1790  // An rvalue of type bool can be converted to an rvalue of type int,
1791  // with false becoming zero and true becoming one (C++ 4.5p4).
1792  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1793    return true;
1794  }
1795
1796  return false;
1797}
1798
1799/// IsFloatingPointPromotion - Determines whether the conversion from
1800/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1801/// returns true and sets PromotedType to the promoted type.
1802bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1803  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1804    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1805      /// An rvalue of type float can be converted to an rvalue of type
1806      /// double. (C++ 4.6p1).
1807      if (FromBuiltin->getKind() == BuiltinType::Float &&
1808          ToBuiltin->getKind() == BuiltinType::Double)
1809        return true;
1810
1811      // C99 6.3.1.5p1:
1812      //   When a float is promoted to double or long double, or a
1813      //   double is promoted to long double [...].
1814      if (!getLangOpts().CPlusPlus &&
1815          (FromBuiltin->getKind() == BuiltinType::Float ||
1816           FromBuiltin->getKind() == BuiltinType::Double) &&
1817          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1818        return true;
1819
1820      // Half can be promoted to float.
1821      if (FromBuiltin->getKind() == BuiltinType::Half &&
1822          ToBuiltin->getKind() == BuiltinType::Float)
1823        return true;
1824    }
1825
1826  return false;
1827}
1828
1829/// \brief Determine if a conversion is a complex promotion.
1830///
1831/// A complex promotion is defined as a complex -> complex conversion
1832/// where the conversion between the underlying real types is a
1833/// floating-point or integral promotion.
1834bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1835  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1836  if (!FromComplex)
1837    return false;
1838
1839  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1840  if (!ToComplex)
1841    return false;
1842
1843  return IsFloatingPointPromotion(FromComplex->getElementType(),
1844                                  ToComplex->getElementType()) ||
1845    IsIntegralPromotion(0, FromComplex->getElementType(),
1846                        ToComplex->getElementType());
1847}
1848
1849/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1850/// the pointer type FromPtr to a pointer to type ToPointee, with the
1851/// same type qualifiers as FromPtr has on its pointee type. ToType,
1852/// if non-empty, will be a pointer to ToType that may or may not have
1853/// the right set of qualifiers on its pointee.
1854///
1855static QualType
1856BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1857                                   QualType ToPointee, QualType ToType,
1858                                   ASTContext &Context,
1859                                   bool StripObjCLifetime = false) {
1860  assert((FromPtr->getTypeClass() == Type::Pointer ||
1861          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1862         "Invalid similarly-qualified pointer type");
1863
1864  /// Conversions to 'id' subsume cv-qualifier conversions.
1865  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1866    return ToType.getUnqualifiedType();
1867
1868  QualType CanonFromPointee
1869    = Context.getCanonicalType(FromPtr->getPointeeType());
1870  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1871  Qualifiers Quals = CanonFromPointee.getQualifiers();
1872
1873  if (StripObjCLifetime)
1874    Quals.removeObjCLifetime();
1875
1876  // Exact qualifier match -> return the pointer type we're converting to.
1877  if (CanonToPointee.getLocalQualifiers() == Quals) {
1878    // ToType is exactly what we need. Return it.
1879    if (!ToType.isNull())
1880      return ToType.getUnqualifiedType();
1881
1882    // Build a pointer to ToPointee. It has the right qualifiers
1883    // already.
1884    if (isa<ObjCObjectPointerType>(ToType))
1885      return Context.getObjCObjectPointerType(ToPointee);
1886    return Context.getPointerType(ToPointee);
1887  }
1888
1889  // Just build a canonical type that has the right qualifiers.
1890  QualType QualifiedCanonToPointee
1891    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1892
1893  if (isa<ObjCObjectPointerType>(ToType))
1894    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1895  return Context.getPointerType(QualifiedCanonToPointee);
1896}
1897
1898static bool isNullPointerConstantForConversion(Expr *Expr,
1899                                               bool InOverloadResolution,
1900                                               ASTContext &Context) {
1901  // Handle value-dependent integral null pointer constants correctly.
1902  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1903  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1904      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1905    return !InOverloadResolution;
1906
1907  return Expr->isNullPointerConstant(Context,
1908                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1909                                        : Expr::NPC_ValueDependentIsNull);
1910}
1911
1912/// IsPointerConversion - Determines whether the conversion of the
1913/// expression From, which has the (possibly adjusted) type FromType,
1914/// can be converted to the type ToType via a pointer conversion (C++
1915/// 4.10). If so, returns true and places the converted type (that
1916/// might differ from ToType in its cv-qualifiers at some level) into
1917/// ConvertedType.
1918///
1919/// This routine also supports conversions to and from block pointers
1920/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1921/// pointers to interfaces. FIXME: Once we've determined the
1922/// appropriate overloading rules for Objective-C, we may want to
1923/// split the Objective-C checks into a different routine; however,
1924/// GCC seems to consider all of these conversions to be pointer
1925/// conversions, so for now they live here. IncompatibleObjC will be
1926/// set if the conversion is an allowed Objective-C conversion that
1927/// should result in a warning.
1928bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1929                               bool InOverloadResolution,
1930                               QualType& ConvertedType,
1931                               bool &IncompatibleObjC) {
1932  IncompatibleObjC = false;
1933  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1934                              IncompatibleObjC))
1935    return true;
1936
1937  // Conversion from a null pointer constant to any Objective-C pointer type.
1938  if (ToType->isObjCObjectPointerType() &&
1939      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1940    ConvertedType = ToType;
1941    return true;
1942  }
1943
1944  // Blocks: Block pointers can be converted to void*.
1945  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1946      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1947    ConvertedType = ToType;
1948    return true;
1949  }
1950  // Blocks: A null pointer constant can be converted to a block
1951  // pointer type.
1952  if (ToType->isBlockPointerType() &&
1953      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1954    ConvertedType = ToType;
1955    return true;
1956  }
1957
1958  // If the left-hand-side is nullptr_t, the right side can be a null
1959  // pointer constant.
1960  if (ToType->isNullPtrType() &&
1961      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1962    ConvertedType = ToType;
1963    return true;
1964  }
1965
1966  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1967  if (!ToTypePtr)
1968    return false;
1969
1970  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1971  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1972    ConvertedType = ToType;
1973    return true;
1974  }
1975
1976  // Beyond this point, both types need to be pointers
1977  // , including objective-c pointers.
1978  QualType ToPointeeType = ToTypePtr->getPointeeType();
1979  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1980      !getLangOpts().ObjCAutoRefCount) {
1981    ConvertedType = BuildSimilarlyQualifiedPointerType(
1982                                      FromType->getAs<ObjCObjectPointerType>(),
1983                                                       ToPointeeType,
1984                                                       ToType, Context);
1985    return true;
1986  }
1987  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1988  if (!FromTypePtr)
1989    return false;
1990
1991  QualType FromPointeeType = FromTypePtr->getPointeeType();
1992
1993  // If the unqualified pointee types are the same, this can't be a
1994  // pointer conversion, so don't do all of the work below.
1995  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1996    return false;
1997
1998  // An rvalue of type "pointer to cv T," where T is an object type,
1999  // can be converted to an rvalue of type "pointer to cv void" (C++
2000  // 4.10p2).
2001  if (FromPointeeType->isIncompleteOrObjectType() &&
2002      ToPointeeType->isVoidType()) {
2003    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2004                                                       ToPointeeType,
2005                                                       ToType, Context,
2006                                                   /*StripObjCLifetime=*/true);
2007    return true;
2008  }
2009
2010  // MSVC allows implicit function to void* type conversion.
2011  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2012      ToPointeeType->isVoidType()) {
2013    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2014                                                       ToPointeeType,
2015                                                       ToType, Context);
2016    return true;
2017  }
2018
2019  // When we're overloading in C, we allow a special kind of pointer
2020  // conversion for compatible-but-not-identical pointee types.
2021  if (!getLangOpts().CPlusPlus &&
2022      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2023    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2024                                                       ToPointeeType,
2025                                                       ToType, Context);
2026    return true;
2027  }
2028
2029  // C++ [conv.ptr]p3:
2030  //
2031  //   An rvalue of type "pointer to cv D," where D is a class type,
2032  //   can be converted to an rvalue of type "pointer to cv B," where
2033  //   B is a base class (clause 10) of D. If B is an inaccessible
2034  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2035  //   necessitates this conversion is ill-formed. The result of the
2036  //   conversion is a pointer to the base class sub-object of the
2037  //   derived class object. The null pointer value is converted to
2038  //   the null pointer value of the destination type.
2039  //
2040  // Note that we do not check for ambiguity or inaccessibility
2041  // here. That is handled by CheckPointerConversion.
2042  if (getLangOpts().CPlusPlus &&
2043      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2044      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2045      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2046      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2047    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2048                                                       ToPointeeType,
2049                                                       ToType, Context);
2050    return true;
2051  }
2052
2053  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2054      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2055    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2056                                                       ToPointeeType,
2057                                                       ToType, Context);
2058    return true;
2059  }
2060
2061  return false;
2062}
2063
2064/// \brief Adopt the given qualifiers for the given type.
2065static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2066  Qualifiers TQs = T.getQualifiers();
2067
2068  // Check whether qualifiers already match.
2069  if (TQs == Qs)
2070    return T;
2071
2072  if (Qs.compatiblyIncludes(TQs))
2073    return Context.getQualifiedType(T, Qs);
2074
2075  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2076}
2077
2078/// isObjCPointerConversion - Determines whether this is an
2079/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2080/// with the same arguments and return values.
2081bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2082                                   QualType& ConvertedType,
2083                                   bool &IncompatibleObjC) {
2084  if (!getLangOpts().ObjC1)
2085    return false;
2086
2087  // The set of qualifiers on the type we're converting from.
2088  Qualifiers FromQualifiers = FromType.getQualifiers();
2089
2090  // First, we handle all conversions on ObjC object pointer types.
2091  const ObjCObjectPointerType* ToObjCPtr =
2092    ToType->getAs<ObjCObjectPointerType>();
2093  const ObjCObjectPointerType *FromObjCPtr =
2094    FromType->getAs<ObjCObjectPointerType>();
2095
2096  if (ToObjCPtr && FromObjCPtr) {
2097    // If the pointee types are the same (ignoring qualifications),
2098    // then this is not a pointer conversion.
2099    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2100                                       FromObjCPtr->getPointeeType()))
2101      return false;
2102
2103    // Check for compatible
2104    // Objective C++: We're able to convert between "id" or "Class" and a
2105    // pointer to any interface (in both directions).
2106    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2107      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2108      return true;
2109    }
2110    // Conversions with Objective-C's id<...>.
2111    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2112         ToObjCPtr->isObjCQualifiedIdType()) &&
2113        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2114                                                  /*compare=*/false)) {
2115      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2116      return true;
2117    }
2118    // Objective C++: We're able to convert from a pointer to an
2119    // interface to a pointer to a different interface.
2120    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2121      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2122      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2123      if (getLangOpts().CPlusPlus && LHS && RHS &&
2124          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2125                                                FromObjCPtr->getPointeeType()))
2126        return false;
2127      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2128                                                   ToObjCPtr->getPointeeType(),
2129                                                         ToType, Context);
2130      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2131      return true;
2132    }
2133
2134    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2135      // Okay: this is some kind of implicit downcast of Objective-C
2136      // interfaces, which is permitted. However, we're going to
2137      // complain about it.
2138      IncompatibleObjC = true;
2139      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2140                                                   ToObjCPtr->getPointeeType(),
2141                                                         ToType, Context);
2142      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2143      return true;
2144    }
2145  }
2146  // Beyond this point, both types need to be C pointers or block pointers.
2147  QualType ToPointeeType;
2148  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2149    ToPointeeType = ToCPtr->getPointeeType();
2150  else if (const BlockPointerType *ToBlockPtr =
2151            ToType->getAs<BlockPointerType>()) {
2152    // Objective C++: We're able to convert from a pointer to any object
2153    // to a block pointer type.
2154    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2155      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2156      return true;
2157    }
2158    ToPointeeType = ToBlockPtr->getPointeeType();
2159  }
2160  else if (FromType->getAs<BlockPointerType>() &&
2161           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2162    // Objective C++: We're able to convert from a block pointer type to a
2163    // pointer to any object.
2164    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2165    return true;
2166  }
2167  else
2168    return false;
2169
2170  QualType FromPointeeType;
2171  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2172    FromPointeeType = FromCPtr->getPointeeType();
2173  else if (const BlockPointerType *FromBlockPtr =
2174           FromType->getAs<BlockPointerType>())
2175    FromPointeeType = FromBlockPtr->getPointeeType();
2176  else
2177    return false;
2178
2179  // If we have pointers to pointers, recursively check whether this
2180  // is an Objective-C conversion.
2181  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2182      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2183                              IncompatibleObjC)) {
2184    // We always complain about this conversion.
2185    IncompatibleObjC = true;
2186    ConvertedType = Context.getPointerType(ConvertedType);
2187    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2188    return true;
2189  }
2190  // Allow conversion of pointee being objective-c pointer to another one;
2191  // as in I* to id.
2192  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2193      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2194      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2195                              IncompatibleObjC)) {
2196
2197    ConvertedType = Context.getPointerType(ConvertedType);
2198    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2199    return true;
2200  }
2201
2202  // If we have pointers to functions or blocks, check whether the only
2203  // differences in the argument and result types are in Objective-C
2204  // pointer conversions. If so, we permit the conversion (but
2205  // complain about it).
2206  const FunctionProtoType *FromFunctionType
2207    = FromPointeeType->getAs<FunctionProtoType>();
2208  const FunctionProtoType *ToFunctionType
2209    = ToPointeeType->getAs<FunctionProtoType>();
2210  if (FromFunctionType && ToFunctionType) {
2211    // If the function types are exactly the same, this isn't an
2212    // Objective-C pointer conversion.
2213    if (Context.getCanonicalType(FromPointeeType)
2214          == Context.getCanonicalType(ToPointeeType))
2215      return false;
2216
2217    // Perform the quick checks that will tell us whether these
2218    // function types are obviously different.
2219    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2220        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2221        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2222      return false;
2223
2224    bool HasObjCConversion = false;
2225    if (Context.getCanonicalType(FromFunctionType->getResultType())
2226          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2227      // Okay, the types match exactly. Nothing to do.
2228    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2229                                       ToFunctionType->getResultType(),
2230                                       ConvertedType, IncompatibleObjC)) {
2231      // Okay, we have an Objective-C pointer conversion.
2232      HasObjCConversion = true;
2233    } else {
2234      // Function types are too different. Abort.
2235      return false;
2236    }
2237
2238    // Check argument types.
2239    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2240         ArgIdx != NumArgs; ++ArgIdx) {
2241      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2242      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2243      if (Context.getCanonicalType(FromArgType)
2244            == Context.getCanonicalType(ToArgType)) {
2245        // Okay, the types match exactly. Nothing to do.
2246      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2247                                         ConvertedType, IncompatibleObjC)) {
2248        // Okay, we have an Objective-C pointer conversion.
2249        HasObjCConversion = true;
2250      } else {
2251        // Argument types are too different. Abort.
2252        return false;
2253      }
2254    }
2255
2256    if (HasObjCConversion) {
2257      // We had an Objective-C conversion. Allow this pointer
2258      // conversion, but complain about it.
2259      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2260      IncompatibleObjC = true;
2261      return true;
2262    }
2263  }
2264
2265  return false;
2266}
2267
2268/// \brief Determine whether this is an Objective-C writeback conversion,
2269/// used for parameter passing when performing automatic reference counting.
2270///
2271/// \param FromType The type we're converting form.
2272///
2273/// \param ToType The type we're converting to.
2274///
2275/// \param ConvertedType The type that will be produced after applying
2276/// this conversion.
2277bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2278                                     QualType &ConvertedType) {
2279  if (!getLangOpts().ObjCAutoRefCount ||
2280      Context.hasSameUnqualifiedType(FromType, ToType))
2281    return false;
2282
2283  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2284  QualType ToPointee;
2285  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2286    ToPointee = ToPointer->getPointeeType();
2287  else
2288    return false;
2289
2290  Qualifiers ToQuals = ToPointee.getQualifiers();
2291  if (!ToPointee->isObjCLifetimeType() ||
2292      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2293      !ToQuals.withoutObjCLifetime().empty())
2294    return false;
2295
2296  // Argument must be a pointer to __strong to __weak.
2297  QualType FromPointee;
2298  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2299    FromPointee = FromPointer->getPointeeType();
2300  else
2301    return false;
2302
2303  Qualifiers FromQuals = FromPointee.getQualifiers();
2304  if (!FromPointee->isObjCLifetimeType() ||
2305      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2306       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2307    return false;
2308
2309  // Make sure that we have compatible qualifiers.
2310  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2311  if (!ToQuals.compatiblyIncludes(FromQuals))
2312    return false;
2313
2314  // Remove qualifiers from the pointee type we're converting from; they
2315  // aren't used in the compatibility check belong, and we'll be adding back
2316  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2317  FromPointee = FromPointee.getUnqualifiedType();
2318
2319  // The unqualified form of the pointee types must be compatible.
2320  ToPointee = ToPointee.getUnqualifiedType();
2321  bool IncompatibleObjC;
2322  if (Context.typesAreCompatible(FromPointee, ToPointee))
2323    FromPointee = ToPointee;
2324  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2325                                    IncompatibleObjC))
2326    return false;
2327
2328  /// \brief Construct the type we're converting to, which is a pointer to
2329  /// __autoreleasing pointee.
2330  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2331  ConvertedType = Context.getPointerType(FromPointee);
2332  return true;
2333}
2334
2335bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2336                                    QualType& ConvertedType) {
2337  QualType ToPointeeType;
2338  if (const BlockPointerType *ToBlockPtr =
2339        ToType->getAs<BlockPointerType>())
2340    ToPointeeType = ToBlockPtr->getPointeeType();
2341  else
2342    return false;
2343
2344  QualType FromPointeeType;
2345  if (const BlockPointerType *FromBlockPtr =
2346      FromType->getAs<BlockPointerType>())
2347    FromPointeeType = FromBlockPtr->getPointeeType();
2348  else
2349    return false;
2350  // We have pointer to blocks, check whether the only
2351  // differences in the argument and result types are in Objective-C
2352  // pointer conversions. If so, we permit the conversion.
2353
2354  const FunctionProtoType *FromFunctionType
2355    = FromPointeeType->getAs<FunctionProtoType>();
2356  const FunctionProtoType *ToFunctionType
2357    = ToPointeeType->getAs<FunctionProtoType>();
2358
2359  if (!FromFunctionType || !ToFunctionType)
2360    return false;
2361
2362  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2363    return true;
2364
2365  // Perform the quick checks that will tell us whether these
2366  // function types are obviously different.
2367  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2368      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2369    return false;
2370
2371  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2372  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2373  if (FromEInfo != ToEInfo)
2374    return false;
2375
2376  bool IncompatibleObjC = false;
2377  if (Context.hasSameType(FromFunctionType->getResultType(),
2378                          ToFunctionType->getResultType())) {
2379    // Okay, the types match exactly. Nothing to do.
2380  } else {
2381    QualType RHS = FromFunctionType->getResultType();
2382    QualType LHS = ToFunctionType->getResultType();
2383    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2384        !RHS.hasQualifiers() && LHS.hasQualifiers())
2385       LHS = LHS.getUnqualifiedType();
2386
2387     if (Context.hasSameType(RHS,LHS)) {
2388       // OK exact match.
2389     } else if (isObjCPointerConversion(RHS, LHS,
2390                                        ConvertedType, IncompatibleObjC)) {
2391     if (IncompatibleObjC)
2392       return false;
2393     // Okay, we have an Objective-C pointer conversion.
2394     }
2395     else
2396       return false;
2397   }
2398
2399   // Check argument types.
2400   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2401        ArgIdx != NumArgs; ++ArgIdx) {
2402     IncompatibleObjC = false;
2403     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2404     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2405     if (Context.hasSameType(FromArgType, ToArgType)) {
2406       // Okay, the types match exactly. Nothing to do.
2407     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2408                                        ConvertedType, IncompatibleObjC)) {
2409       if (IncompatibleObjC)
2410         return false;
2411       // Okay, we have an Objective-C pointer conversion.
2412     } else
2413       // Argument types are too different. Abort.
2414       return false;
2415   }
2416   if (LangOpts.ObjCAutoRefCount &&
2417       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2418                                                    ToFunctionType))
2419     return false;
2420
2421   ConvertedType = ToType;
2422   return true;
2423}
2424
2425enum {
2426  ft_default,
2427  ft_different_class,
2428  ft_parameter_arity,
2429  ft_parameter_mismatch,
2430  ft_return_type,
2431  ft_qualifer_mismatch
2432};
2433
2434/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2435/// function types.  Catches different number of parameter, mismatch in
2436/// parameter types, and different return types.
2437void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2438                                      QualType FromType, QualType ToType) {
2439  // If either type is not valid, include no extra info.
2440  if (FromType.isNull() || ToType.isNull()) {
2441    PDiag << ft_default;
2442    return;
2443  }
2444
2445  // Get the function type from the pointers.
2446  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2447    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2448                            *ToMember = ToType->getAs<MemberPointerType>();
2449    if (FromMember->getClass() != ToMember->getClass()) {
2450      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2451            << QualType(FromMember->getClass(), 0);
2452      return;
2453    }
2454    FromType = FromMember->getPointeeType();
2455    ToType = ToMember->getPointeeType();
2456  }
2457
2458  if (FromType->isPointerType())
2459    FromType = FromType->getPointeeType();
2460  if (ToType->isPointerType())
2461    ToType = ToType->getPointeeType();
2462
2463  // Remove references.
2464  FromType = FromType.getNonReferenceType();
2465  ToType = ToType.getNonReferenceType();
2466
2467  // Don't print extra info for non-specialized template functions.
2468  if (FromType->isInstantiationDependentType() &&
2469      !FromType->getAs<TemplateSpecializationType>()) {
2470    PDiag << ft_default;
2471    return;
2472  }
2473
2474  // No extra info for same types.
2475  if (Context.hasSameType(FromType, ToType)) {
2476    PDiag << ft_default;
2477    return;
2478  }
2479
2480  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2481                          *ToFunction = ToType->getAs<FunctionProtoType>();
2482
2483  // Both types need to be function types.
2484  if (!FromFunction || !ToFunction) {
2485    PDiag << ft_default;
2486    return;
2487  }
2488
2489  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2490    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2491          << FromFunction->getNumArgs();
2492    return;
2493  }
2494
2495  // Handle different parameter types.
2496  unsigned ArgPos;
2497  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2498    PDiag << ft_parameter_mismatch << ArgPos + 1
2499          << ToFunction->getArgType(ArgPos)
2500          << FromFunction->getArgType(ArgPos);
2501    return;
2502  }
2503
2504  // Handle different return type.
2505  if (!Context.hasSameType(FromFunction->getResultType(),
2506                           ToFunction->getResultType())) {
2507    PDiag << ft_return_type << ToFunction->getResultType()
2508          << FromFunction->getResultType();
2509    return;
2510  }
2511
2512  unsigned FromQuals = FromFunction->getTypeQuals(),
2513           ToQuals = ToFunction->getTypeQuals();
2514  if (FromQuals != ToQuals) {
2515    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2516    return;
2517  }
2518
2519  // Unable to find a difference, so add no extra info.
2520  PDiag << ft_default;
2521}
2522
2523/// FunctionArgTypesAreEqual - This routine checks two function proto types
2524/// for equality of their argument types. Caller has already checked that
2525/// they have same number of arguments. This routine assumes that Objective-C
2526/// pointer types which only differ in their protocol qualifiers are equal.
2527/// If the parameters are different, ArgPos will have the parameter index
2528/// of the first different parameter.
2529bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2530                                    const FunctionProtoType *NewType,
2531                                    unsigned *ArgPos) {
2532  if (!getLangOpts().ObjC1) {
2533    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2534         N = NewType->arg_type_begin(),
2535         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2536      if (!Context.hasSameType(*O, *N)) {
2537        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2538        return false;
2539      }
2540    }
2541    return true;
2542  }
2543
2544  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2545       N = NewType->arg_type_begin(),
2546       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2547    QualType ToType = (*O);
2548    QualType FromType = (*N);
2549    if (!Context.hasSameType(ToType, FromType)) {
2550      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2551        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2552          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2553               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2554              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2555               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2556            continue;
2557      }
2558      else if (const ObjCObjectPointerType *PTTo =
2559                 ToType->getAs<ObjCObjectPointerType>()) {
2560        if (const ObjCObjectPointerType *PTFr =
2561              FromType->getAs<ObjCObjectPointerType>())
2562          if (Context.hasSameUnqualifiedType(
2563                PTTo->getObjectType()->getBaseType(),
2564                PTFr->getObjectType()->getBaseType()))
2565            continue;
2566      }
2567      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2568      return false;
2569    }
2570  }
2571  return true;
2572}
2573
2574/// CheckPointerConversion - Check the pointer conversion from the
2575/// expression From to the type ToType. This routine checks for
2576/// ambiguous or inaccessible derived-to-base pointer
2577/// conversions for which IsPointerConversion has already returned
2578/// true. It returns true and produces a diagnostic if there was an
2579/// error, or returns false otherwise.
2580bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2581                                  CastKind &Kind,
2582                                  CXXCastPath& BasePath,
2583                                  bool IgnoreBaseAccess) {
2584  QualType FromType = From->getType();
2585  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2586
2587  Kind = CK_BitCast;
2588
2589  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2590      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2591      Expr::NPCK_ZeroExpression) {
2592    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2593      DiagRuntimeBehavior(From->getExprLoc(), From,
2594                          PDiag(diag::warn_impcast_bool_to_null_pointer)
2595                            << ToType << From->getSourceRange());
2596    else if (!isUnevaluatedContext())
2597      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2598        << ToType << From->getSourceRange();
2599  }
2600  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2601    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2602      QualType FromPointeeType = FromPtrType->getPointeeType(),
2603               ToPointeeType   = ToPtrType->getPointeeType();
2604
2605      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2606          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2607        // We must have a derived-to-base conversion. Check an
2608        // ambiguous or inaccessible conversion.
2609        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2610                                         From->getExprLoc(),
2611                                         From->getSourceRange(), &BasePath,
2612                                         IgnoreBaseAccess))
2613          return true;
2614
2615        // The conversion was successful.
2616        Kind = CK_DerivedToBase;
2617      }
2618    }
2619  } else if (const ObjCObjectPointerType *ToPtrType =
2620               ToType->getAs<ObjCObjectPointerType>()) {
2621    if (const ObjCObjectPointerType *FromPtrType =
2622          FromType->getAs<ObjCObjectPointerType>()) {
2623      // Objective-C++ conversions are always okay.
2624      // FIXME: We should have a different class of conversions for the
2625      // Objective-C++ implicit conversions.
2626      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2627        return false;
2628    } else if (FromType->isBlockPointerType()) {
2629      Kind = CK_BlockPointerToObjCPointerCast;
2630    } else {
2631      Kind = CK_CPointerToObjCPointerCast;
2632    }
2633  } else if (ToType->isBlockPointerType()) {
2634    if (!FromType->isBlockPointerType())
2635      Kind = CK_AnyPointerToBlockPointerCast;
2636  }
2637
2638  // We shouldn't fall into this case unless it's valid for other
2639  // reasons.
2640  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2641    Kind = CK_NullToPointer;
2642
2643  return false;
2644}
2645
2646/// IsMemberPointerConversion - Determines whether the conversion of the
2647/// expression From, which has the (possibly adjusted) type FromType, can be
2648/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2649/// If so, returns true and places the converted type (that might differ from
2650/// ToType in its cv-qualifiers at some level) into ConvertedType.
2651bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2652                                     QualType ToType,
2653                                     bool InOverloadResolution,
2654                                     QualType &ConvertedType) {
2655  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2656  if (!ToTypePtr)
2657    return false;
2658
2659  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2660  if (From->isNullPointerConstant(Context,
2661                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2662                                        : Expr::NPC_ValueDependentIsNull)) {
2663    ConvertedType = ToType;
2664    return true;
2665  }
2666
2667  // Otherwise, both types have to be member pointers.
2668  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2669  if (!FromTypePtr)
2670    return false;
2671
2672  // A pointer to member of B can be converted to a pointer to member of D,
2673  // where D is derived from B (C++ 4.11p2).
2674  QualType FromClass(FromTypePtr->getClass(), 0);
2675  QualType ToClass(ToTypePtr->getClass(), 0);
2676
2677  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2678      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2679      IsDerivedFrom(ToClass, FromClass)) {
2680    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2681                                                 ToClass.getTypePtr());
2682    return true;
2683  }
2684
2685  return false;
2686}
2687
2688/// CheckMemberPointerConversion - Check the member pointer conversion from the
2689/// expression From to the type ToType. This routine checks for ambiguous or
2690/// virtual or inaccessible base-to-derived member pointer conversions
2691/// for which IsMemberPointerConversion has already returned true. It returns
2692/// true and produces a diagnostic if there was an error, or returns false
2693/// otherwise.
2694bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2695                                        CastKind &Kind,
2696                                        CXXCastPath &BasePath,
2697                                        bool IgnoreBaseAccess) {
2698  QualType FromType = From->getType();
2699  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2700  if (!FromPtrType) {
2701    // This must be a null pointer to member pointer conversion
2702    assert(From->isNullPointerConstant(Context,
2703                                       Expr::NPC_ValueDependentIsNull) &&
2704           "Expr must be null pointer constant!");
2705    Kind = CK_NullToMemberPointer;
2706    return false;
2707  }
2708
2709  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2710  assert(ToPtrType && "No member pointer cast has a target type "
2711                      "that is not a member pointer.");
2712
2713  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2714  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2715
2716  // FIXME: What about dependent types?
2717  assert(FromClass->isRecordType() && "Pointer into non-class.");
2718  assert(ToClass->isRecordType() && "Pointer into non-class.");
2719
2720  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2721                     /*DetectVirtual=*/true);
2722  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2723  assert(DerivationOkay &&
2724         "Should not have been called if derivation isn't OK.");
2725  (void)DerivationOkay;
2726
2727  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2728                                  getUnqualifiedType())) {
2729    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2730    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2731      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2732    return true;
2733  }
2734
2735  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2736    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2737      << FromClass << ToClass << QualType(VBase, 0)
2738      << From->getSourceRange();
2739    return true;
2740  }
2741
2742  if (!IgnoreBaseAccess)
2743    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2744                         Paths.front(),
2745                         diag::err_downcast_from_inaccessible_base);
2746
2747  // Must be a base to derived member conversion.
2748  BuildBasePathArray(Paths, BasePath);
2749  Kind = CK_BaseToDerivedMemberPointer;
2750  return false;
2751}
2752
2753/// IsQualificationConversion - Determines whether the conversion from
2754/// an rvalue of type FromType to ToType is a qualification conversion
2755/// (C++ 4.4).
2756///
2757/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2758/// when the qualification conversion involves a change in the Objective-C
2759/// object lifetime.
2760bool
2761Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2762                                bool CStyle, bool &ObjCLifetimeConversion) {
2763  FromType = Context.getCanonicalType(FromType);
2764  ToType = Context.getCanonicalType(ToType);
2765  ObjCLifetimeConversion = false;
2766
2767  // If FromType and ToType are the same type, this is not a
2768  // qualification conversion.
2769  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2770    return false;
2771
2772  // (C++ 4.4p4):
2773  //   A conversion can add cv-qualifiers at levels other than the first
2774  //   in multi-level pointers, subject to the following rules: [...]
2775  bool PreviousToQualsIncludeConst = true;
2776  bool UnwrappedAnyPointer = false;
2777  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2778    // Within each iteration of the loop, we check the qualifiers to
2779    // determine if this still looks like a qualification
2780    // conversion. Then, if all is well, we unwrap one more level of
2781    // pointers or pointers-to-members and do it all again
2782    // until there are no more pointers or pointers-to-members left to
2783    // unwrap.
2784    UnwrappedAnyPointer = true;
2785
2786    Qualifiers FromQuals = FromType.getQualifiers();
2787    Qualifiers ToQuals = ToType.getQualifiers();
2788
2789    // Objective-C ARC:
2790    //   Check Objective-C lifetime conversions.
2791    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2792        UnwrappedAnyPointer) {
2793      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2794        ObjCLifetimeConversion = true;
2795        FromQuals.removeObjCLifetime();
2796        ToQuals.removeObjCLifetime();
2797      } else {
2798        // Qualification conversions cannot cast between different
2799        // Objective-C lifetime qualifiers.
2800        return false;
2801      }
2802    }
2803
2804    // Allow addition/removal of GC attributes but not changing GC attributes.
2805    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2806        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2807      FromQuals.removeObjCGCAttr();
2808      ToQuals.removeObjCGCAttr();
2809    }
2810
2811    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2812    //      2,j, and similarly for volatile.
2813    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2814      return false;
2815
2816    //   -- if the cv 1,j and cv 2,j are different, then const is in
2817    //      every cv for 0 < k < j.
2818    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2819        && !PreviousToQualsIncludeConst)
2820      return false;
2821
2822    // Keep track of whether all prior cv-qualifiers in the "to" type
2823    // include const.
2824    PreviousToQualsIncludeConst
2825      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2826  }
2827
2828  // We are left with FromType and ToType being the pointee types
2829  // after unwrapping the original FromType and ToType the same number
2830  // of types. If we unwrapped any pointers, and if FromType and
2831  // ToType have the same unqualified type (since we checked
2832  // qualifiers above), then this is a qualification conversion.
2833  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2834}
2835
2836/// \brief - Determine whether this is a conversion from a scalar type to an
2837/// atomic type.
2838///
2839/// If successful, updates \c SCS's second and third steps in the conversion
2840/// sequence to finish the conversion.
2841static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2842                                bool InOverloadResolution,
2843                                StandardConversionSequence &SCS,
2844                                bool CStyle) {
2845  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2846  if (!ToAtomic)
2847    return false;
2848
2849  StandardConversionSequence InnerSCS;
2850  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2851                            InOverloadResolution, InnerSCS,
2852                            CStyle, /*AllowObjCWritebackConversion=*/false))
2853    return false;
2854
2855  SCS.Second = InnerSCS.Second;
2856  SCS.setToType(1, InnerSCS.getToType(1));
2857  SCS.Third = InnerSCS.Third;
2858  SCS.QualificationIncludesObjCLifetime
2859    = InnerSCS.QualificationIncludesObjCLifetime;
2860  SCS.setToType(2, InnerSCS.getToType(2));
2861  return true;
2862}
2863
2864static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2865                                              CXXConstructorDecl *Constructor,
2866                                              QualType Type) {
2867  const FunctionProtoType *CtorType =
2868      Constructor->getType()->getAs<FunctionProtoType>();
2869  if (CtorType->getNumArgs() > 0) {
2870    QualType FirstArg = CtorType->getArgType(0);
2871    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2872      return true;
2873  }
2874  return false;
2875}
2876
2877static OverloadingResult
2878IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2879                                       CXXRecordDecl *To,
2880                                       UserDefinedConversionSequence &User,
2881                                       OverloadCandidateSet &CandidateSet,
2882                                       bool AllowExplicit) {
2883  DeclContext::lookup_iterator Con, ConEnd;
2884  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
2885       Con != ConEnd; ++Con) {
2886    NamedDecl *D = *Con;
2887    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2888
2889    // Find the constructor (which may be a template).
2890    CXXConstructorDecl *Constructor = 0;
2891    FunctionTemplateDecl *ConstructorTmpl
2892      = dyn_cast<FunctionTemplateDecl>(D);
2893    if (ConstructorTmpl)
2894      Constructor
2895        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2896    else
2897      Constructor = cast<CXXConstructorDecl>(D);
2898
2899    bool Usable = !Constructor->isInvalidDecl() &&
2900                  S.isInitListConstructor(Constructor) &&
2901                  (AllowExplicit || !Constructor->isExplicit());
2902    if (Usable) {
2903      // If the first argument is (a reference to) the target type,
2904      // suppress conversions.
2905      bool SuppressUserConversions =
2906          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2907      if (ConstructorTmpl)
2908        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2909                                       /*ExplicitArgs*/ 0,
2910                                       From, CandidateSet,
2911                                       SuppressUserConversions);
2912      else
2913        S.AddOverloadCandidate(Constructor, FoundDecl,
2914                               From, CandidateSet,
2915                               SuppressUserConversions);
2916    }
2917  }
2918
2919  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2920
2921  OverloadCandidateSet::iterator Best;
2922  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2923  case OR_Success: {
2924    // Record the standard conversion we used and the conversion function.
2925    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2926    QualType ThisType = Constructor->getThisType(S.Context);
2927    // Initializer lists don't have conversions as such.
2928    User.Before.setAsIdentityConversion();
2929    User.HadMultipleCandidates = HadMultipleCandidates;
2930    User.ConversionFunction = Constructor;
2931    User.FoundConversionFunction = Best->FoundDecl;
2932    User.After.setAsIdentityConversion();
2933    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2934    User.After.setAllToTypes(ToType);
2935    return OR_Success;
2936  }
2937
2938  case OR_No_Viable_Function:
2939    return OR_No_Viable_Function;
2940  case OR_Deleted:
2941    return OR_Deleted;
2942  case OR_Ambiguous:
2943    return OR_Ambiguous;
2944  }
2945
2946  llvm_unreachable("Invalid OverloadResult!");
2947}
2948
2949/// Determines whether there is a user-defined conversion sequence
2950/// (C++ [over.ics.user]) that converts expression From to the type
2951/// ToType. If such a conversion exists, User will contain the
2952/// user-defined conversion sequence that performs such a conversion
2953/// and this routine will return true. Otherwise, this routine returns
2954/// false and User is unspecified.
2955///
2956/// \param AllowExplicit  true if the conversion should consider C++0x
2957/// "explicit" conversion functions as well as non-explicit conversion
2958/// functions (C++0x [class.conv.fct]p2).
2959static OverloadingResult
2960IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2961                        UserDefinedConversionSequence &User,
2962                        OverloadCandidateSet &CandidateSet,
2963                        bool AllowExplicit) {
2964  // Whether we will only visit constructors.
2965  bool ConstructorsOnly = false;
2966
2967  // If the type we are conversion to is a class type, enumerate its
2968  // constructors.
2969  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2970    // C++ [over.match.ctor]p1:
2971    //   When objects of class type are direct-initialized (8.5), or
2972    //   copy-initialized from an expression of the same or a
2973    //   derived class type (8.5), overload resolution selects the
2974    //   constructor. [...] For copy-initialization, the candidate
2975    //   functions are all the converting constructors (12.3.1) of
2976    //   that class. The argument list is the expression-list within
2977    //   the parentheses of the initializer.
2978    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2979        (From->getType()->getAs<RecordType>() &&
2980         S.IsDerivedFrom(From->getType(), ToType)))
2981      ConstructorsOnly = true;
2982
2983    S.RequireCompleteType(From->getLocStart(), ToType, 0);
2984    // RequireCompleteType may have returned true due to some invalid decl
2985    // during template instantiation, but ToType may be complete enough now
2986    // to try to recover.
2987    if (ToType->isIncompleteType()) {
2988      // We're not going to find any constructors.
2989    } else if (CXXRecordDecl *ToRecordDecl
2990                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2991
2992      Expr **Args = &From;
2993      unsigned NumArgs = 1;
2994      bool ListInitializing = false;
2995      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2996        // But first, see if there is an init-list-contructor that will work.
2997        OverloadingResult Result = IsInitializerListConstructorConversion(
2998            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
2999        if (Result != OR_No_Viable_Function)
3000          return Result;
3001        // Never mind.
3002        CandidateSet.clear();
3003
3004        // If we're list-initializing, we pass the individual elements as
3005        // arguments, not the entire list.
3006        Args = InitList->getInits();
3007        NumArgs = InitList->getNumInits();
3008        ListInitializing = true;
3009      }
3010
3011      DeclContext::lookup_iterator Con, ConEnd;
3012      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
3013           Con != ConEnd; ++Con) {
3014        NamedDecl *D = *Con;
3015        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3016
3017        // Find the constructor (which may be a template).
3018        CXXConstructorDecl *Constructor = 0;
3019        FunctionTemplateDecl *ConstructorTmpl
3020          = dyn_cast<FunctionTemplateDecl>(D);
3021        if (ConstructorTmpl)
3022          Constructor
3023            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3024        else
3025          Constructor = cast<CXXConstructorDecl>(D);
3026
3027        bool Usable = !Constructor->isInvalidDecl();
3028        if (ListInitializing)
3029          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3030        else
3031          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3032        if (Usable) {
3033          bool SuppressUserConversions = !ConstructorsOnly;
3034          if (SuppressUserConversions && ListInitializing) {
3035            SuppressUserConversions = false;
3036            if (NumArgs == 1) {
3037              // If the first argument is (a reference to) the target type,
3038              // suppress conversions.
3039              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3040                                                S.Context, Constructor, ToType);
3041            }
3042          }
3043          if (ConstructorTmpl)
3044            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3045                                           /*ExplicitArgs*/ 0,
3046                                           llvm::makeArrayRef(Args, NumArgs),
3047                                           CandidateSet, SuppressUserConversions);
3048          else
3049            // Allow one user-defined conversion when user specifies a
3050            // From->ToType conversion via an static cast (c-style, etc).
3051            S.AddOverloadCandidate(Constructor, FoundDecl,
3052                                   llvm::makeArrayRef(Args, NumArgs),
3053                                   CandidateSet, SuppressUserConversions);
3054        }
3055      }
3056    }
3057  }
3058
3059  // Enumerate conversion functions, if we're allowed to.
3060  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3061  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3062    // No conversion functions from incomplete types.
3063  } else if (const RecordType *FromRecordType
3064                                   = From->getType()->getAs<RecordType>()) {
3065    if (CXXRecordDecl *FromRecordDecl
3066         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3067      // Add all of the conversion functions as candidates.
3068      const UnresolvedSetImpl *Conversions
3069        = FromRecordDecl->getVisibleConversionFunctions();
3070      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3071             E = Conversions->end(); I != E; ++I) {
3072        DeclAccessPair FoundDecl = I.getPair();
3073        NamedDecl *D = FoundDecl.getDecl();
3074        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3075        if (isa<UsingShadowDecl>(D))
3076          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3077
3078        CXXConversionDecl *Conv;
3079        FunctionTemplateDecl *ConvTemplate;
3080        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3081          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3082        else
3083          Conv = cast<CXXConversionDecl>(D);
3084
3085        if (AllowExplicit || !Conv->isExplicit()) {
3086          if (ConvTemplate)
3087            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3088                                             ActingContext, From, ToType,
3089                                             CandidateSet);
3090          else
3091            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3092                                     From, ToType, CandidateSet);
3093        }
3094      }
3095    }
3096  }
3097
3098  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3099
3100  OverloadCandidateSet::iterator Best;
3101  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3102  case OR_Success:
3103    // Record the standard conversion we used and the conversion function.
3104    if (CXXConstructorDecl *Constructor
3105          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3106      // C++ [over.ics.user]p1:
3107      //   If the user-defined conversion is specified by a
3108      //   constructor (12.3.1), the initial standard conversion
3109      //   sequence converts the source type to the type required by
3110      //   the argument of the constructor.
3111      //
3112      QualType ThisType = Constructor->getThisType(S.Context);
3113      if (isa<InitListExpr>(From)) {
3114        // Initializer lists don't have conversions as such.
3115        User.Before.setAsIdentityConversion();
3116      } else {
3117        if (Best->Conversions[0].isEllipsis())
3118          User.EllipsisConversion = true;
3119        else {
3120          User.Before = Best->Conversions[0].Standard;
3121          User.EllipsisConversion = false;
3122        }
3123      }
3124      User.HadMultipleCandidates = HadMultipleCandidates;
3125      User.ConversionFunction = Constructor;
3126      User.FoundConversionFunction = Best->FoundDecl;
3127      User.After.setAsIdentityConversion();
3128      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3129      User.After.setAllToTypes(ToType);
3130      return OR_Success;
3131    }
3132    if (CXXConversionDecl *Conversion
3133                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3134      // C++ [over.ics.user]p1:
3135      //
3136      //   [...] If the user-defined conversion is specified by a
3137      //   conversion function (12.3.2), the initial standard
3138      //   conversion sequence converts the source type to the
3139      //   implicit object parameter of the conversion function.
3140      User.Before = Best->Conversions[0].Standard;
3141      User.HadMultipleCandidates = HadMultipleCandidates;
3142      User.ConversionFunction = Conversion;
3143      User.FoundConversionFunction = Best->FoundDecl;
3144      User.EllipsisConversion = false;
3145
3146      // C++ [over.ics.user]p2:
3147      //   The second standard conversion sequence converts the
3148      //   result of the user-defined conversion to the target type
3149      //   for the sequence. Since an implicit conversion sequence
3150      //   is an initialization, the special rules for
3151      //   initialization by user-defined conversion apply when
3152      //   selecting the best user-defined conversion for a
3153      //   user-defined conversion sequence (see 13.3.3 and
3154      //   13.3.3.1).
3155      User.After = Best->FinalConversion;
3156      return OR_Success;
3157    }
3158    llvm_unreachable("Not a constructor or conversion function?");
3159
3160  case OR_No_Viable_Function:
3161    return OR_No_Viable_Function;
3162  case OR_Deleted:
3163    // No conversion here! We're done.
3164    return OR_Deleted;
3165
3166  case OR_Ambiguous:
3167    return OR_Ambiguous;
3168  }
3169
3170  llvm_unreachable("Invalid OverloadResult!");
3171}
3172
3173bool
3174Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3175  ImplicitConversionSequence ICS;
3176  OverloadCandidateSet CandidateSet(From->getExprLoc());
3177  OverloadingResult OvResult =
3178    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3179                            CandidateSet, false);
3180  if (OvResult == OR_Ambiguous)
3181    Diag(From->getLocStart(),
3182         diag::err_typecheck_ambiguous_condition)
3183          << From->getType() << ToType << From->getSourceRange();
3184  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
3185    Diag(From->getLocStart(),
3186         diag::err_typecheck_nonviable_condition)
3187    << From->getType() << ToType << From->getSourceRange();
3188  else
3189    return false;
3190  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3191  return true;
3192}
3193
3194/// \brief Compare the user-defined conversion functions or constructors
3195/// of two user-defined conversion sequences to determine whether any ordering
3196/// is possible.
3197static ImplicitConversionSequence::CompareKind
3198compareConversionFunctions(Sema &S,
3199                           FunctionDecl *Function1,
3200                           FunctionDecl *Function2) {
3201  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
3202    return ImplicitConversionSequence::Indistinguishable;
3203
3204  // Objective-C++:
3205  //   If both conversion functions are implicitly-declared conversions from
3206  //   a lambda closure type to a function pointer and a block pointer,
3207  //   respectively, always prefer the conversion to a function pointer,
3208  //   because the function pointer is more lightweight and is more likely
3209  //   to keep code working.
3210  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3211  if (!Conv1)
3212    return ImplicitConversionSequence::Indistinguishable;
3213
3214  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3215  if (!Conv2)
3216    return ImplicitConversionSequence::Indistinguishable;
3217
3218  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3219    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3220    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3221    if (Block1 != Block2)
3222      return Block1? ImplicitConversionSequence::Worse
3223                   : ImplicitConversionSequence::Better;
3224  }
3225
3226  return ImplicitConversionSequence::Indistinguishable;
3227}
3228
3229/// CompareImplicitConversionSequences - Compare two implicit
3230/// conversion sequences to determine whether one is better than the
3231/// other or if they are indistinguishable (C++ 13.3.3.2).
3232static ImplicitConversionSequence::CompareKind
3233CompareImplicitConversionSequences(Sema &S,
3234                                   const ImplicitConversionSequence& ICS1,
3235                                   const ImplicitConversionSequence& ICS2)
3236{
3237  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3238  // conversion sequences (as defined in 13.3.3.1)
3239  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3240  //      conversion sequence than a user-defined conversion sequence or
3241  //      an ellipsis conversion sequence, and
3242  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3243  //      conversion sequence than an ellipsis conversion sequence
3244  //      (13.3.3.1.3).
3245  //
3246  // C++0x [over.best.ics]p10:
3247  //   For the purpose of ranking implicit conversion sequences as
3248  //   described in 13.3.3.2, the ambiguous conversion sequence is
3249  //   treated as a user-defined sequence that is indistinguishable
3250  //   from any other user-defined conversion sequence.
3251  if (ICS1.getKindRank() < ICS2.getKindRank())
3252    return ImplicitConversionSequence::Better;
3253  if (ICS2.getKindRank() < ICS1.getKindRank())
3254    return ImplicitConversionSequence::Worse;
3255
3256  // The following checks require both conversion sequences to be of
3257  // the same kind.
3258  if (ICS1.getKind() != ICS2.getKind())
3259    return ImplicitConversionSequence::Indistinguishable;
3260
3261  ImplicitConversionSequence::CompareKind Result =
3262      ImplicitConversionSequence::Indistinguishable;
3263
3264  // Two implicit conversion sequences of the same form are
3265  // indistinguishable conversion sequences unless one of the
3266  // following rules apply: (C++ 13.3.3.2p3):
3267  if (ICS1.isStandard())
3268    Result = CompareStandardConversionSequences(S,
3269                                                ICS1.Standard, ICS2.Standard);
3270  else if (ICS1.isUserDefined()) {
3271    // User-defined conversion sequence U1 is a better conversion
3272    // sequence than another user-defined conversion sequence U2 if
3273    // they contain the same user-defined conversion function or
3274    // constructor and if the second standard conversion sequence of
3275    // U1 is better than the second standard conversion sequence of
3276    // U2 (C++ 13.3.3.2p3).
3277    if (ICS1.UserDefined.ConversionFunction ==
3278          ICS2.UserDefined.ConversionFunction)
3279      Result = CompareStandardConversionSequences(S,
3280                                                  ICS1.UserDefined.After,
3281                                                  ICS2.UserDefined.After);
3282    else
3283      Result = compareConversionFunctions(S,
3284                                          ICS1.UserDefined.ConversionFunction,
3285                                          ICS2.UserDefined.ConversionFunction);
3286  }
3287
3288  // List-initialization sequence L1 is a better conversion sequence than
3289  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3290  // for some X and L2 does not.
3291  if (Result == ImplicitConversionSequence::Indistinguishable &&
3292      !ICS1.isBad() &&
3293      ICS1.isListInitializationSequence() &&
3294      ICS2.isListInitializationSequence()) {
3295    if (ICS1.isStdInitializerListElement() &&
3296        !ICS2.isStdInitializerListElement())
3297      return ImplicitConversionSequence::Better;
3298    if (!ICS1.isStdInitializerListElement() &&
3299        ICS2.isStdInitializerListElement())
3300      return ImplicitConversionSequence::Worse;
3301  }
3302
3303  return Result;
3304}
3305
3306static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3307  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3308    Qualifiers Quals;
3309    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3310    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3311  }
3312
3313  return Context.hasSameUnqualifiedType(T1, T2);
3314}
3315
3316// Per 13.3.3.2p3, compare the given standard conversion sequences to
3317// determine if one is a proper subset of the other.
3318static ImplicitConversionSequence::CompareKind
3319compareStandardConversionSubsets(ASTContext &Context,
3320                                 const StandardConversionSequence& SCS1,
3321                                 const StandardConversionSequence& SCS2) {
3322  ImplicitConversionSequence::CompareKind Result
3323    = ImplicitConversionSequence::Indistinguishable;
3324
3325  // the identity conversion sequence is considered to be a subsequence of
3326  // any non-identity conversion sequence
3327  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3328    return ImplicitConversionSequence::Better;
3329  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3330    return ImplicitConversionSequence::Worse;
3331
3332  if (SCS1.Second != SCS2.Second) {
3333    if (SCS1.Second == ICK_Identity)
3334      Result = ImplicitConversionSequence::Better;
3335    else if (SCS2.Second == ICK_Identity)
3336      Result = ImplicitConversionSequence::Worse;
3337    else
3338      return ImplicitConversionSequence::Indistinguishable;
3339  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3340    return ImplicitConversionSequence::Indistinguishable;
3341
3342  if (SCS1.Third == SCS2.Third) {
3343    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3344                             : ImplicitConversionSequence::Indistinguishable;
3345  }
3346
3347  if (SCS1.Third == ICK_Identity)
3348    return Result == ImplicitConversionSequence::Worse
3349             ? ImplicitConversionSequence::Indistinguishable
3350             : ImplicitConversionSequence::Better;
3351
3352  if (SCS2.Third == ICK_Identity)
3353    return Result == ImplicitConversionSequence::Better
3354             ? ImplicitConversionSequence::Indistinguishable
3355             : ImplicitConversionSequence::Worse;
3356
3357  return ImplicitConversionSequence::Indistinguishable;
3358}
3359
3360/// \brief Determine whether one of the given reference bindings is better
3361/// than the other based on what kind of bindings they are.
3362static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3363                                       const StandardConversionSequence &SCS2) {
3364  // C++0x [over.ics.rank]p3b4:
3365  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3366  //      implicit object parameter of a non-static member function declared
3367  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3368  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3369  //      lvalue reference to a function lvalue and S2 binds an rvalue
3370  //      reference*.
3371  //
3372  // FIXME: Rvalue references. We're going rogue with the above edits,
3373  // because the semantics in the current C++0x working paper (N3225 at the
3374  // time of this writing) break the standard definition of std::forward
3375  // and std::reference_wrapper when dealing with references to functions.
3376  // Proposed wording changes submitted to CWG for consideration.
3377  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3378      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3379    return false;
3380
3381  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3382          SCS2.IsLvalueReference) ||
3383         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3384          !SCS2.IsLvalueReference);
3385}
3386
3387/// CompareStandardConversionSequences - Compare two standard
3388/// conversion sequences to determine whether one is better than the
3389/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3390static ImplicitConversionSequence::CompareKind
3391CompareStandardConversionSequences(Sema &S,
3392                                   const StandardConversionSequence& SCS1,
3393                                   const StandardConversionSequence& SCS2)
3394{
3395  // Standard conversion sequence S1 is a better conversion sequence
3396  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3397
3398  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3399  //     sequences in the canonical form defined by 13.3.3.1.1,
3400  //     excluding any Lvalue Transformation; the identity conversion
3401  //     sequence is considered to be a subsequence of any
3402  //     non-identity conversion sequence) or, if not that,
3403  if (ImplicitConversionSequence::CompareKind CK
3404        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3405    return CK;
3406
3407  //  -- the rank of S1 is better than the rank of S2 (by the rules
3408  //     defined below), or, if not that,
3409  ImplicitConversionRank Rank1 = SCS1.getRank();
3410  ImplicitConversionRank Rank2 = SCS2.getRank();
3411  if (Rank1 < Rank2)
3412    return ImplicitConversionSequence::Better;
3413  else if (Rank2 < Rank1)
3414    return ImplicitConversionSequence::Worse;
3415
3416  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3417  // are indistinguishable unless one of the following rules
3418  // applies:
3419
3420  //   A conversion that is not a conversion of a pointer, or
3421  //   pointer to member, to bool is better than another conversion
3422  //   that is such a conversion.
3423  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3424    return SCS2.isPointerConversionToBool()
3425             ? ImplicitConversionSequence::Better
3426             : ImplicitConversionSequence::Worse;
3427
3428  // C++ [over.ics.rank]p4b2:
3429  //
3430  //   If class B is derived directly or indirectly from class A,
3431  //   conversion of B* to A* is better than conversion of B* to
3432  //   void*, and conversion of A* to void* is better than conversion
3433  //   of B* to void*.
3434  bool SCS1ConvertsToVoid
3435    = SCS1.isPointerConversionToVoidPointer(S.Context);
3436  bool SCS2ConvertsToVoid
3437    = SCS2.isPointerConversionToVoidPointer(S.Context);
3438  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3439    // Exactly one of the conversion sequences is a conversion to
3440    // a void pointer; it's the worse conversion.
3441    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3442                              : ImplicitConversionSequence::Worse;
3443  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3444    // Neither conversion sequence converts to a void pointer; compare
3445    // their derived-to-base conversions.
3446    if (ImplicitConversionSequence::CompareKind DerivedCK
3447          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3448      return DerivedCK;
3449  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3450             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3451    // Both conversion sequences are conversions to void
3452    // pointers. Compare the source types to determine if there's an
3453    // inheritance relationship in their sources.
3454    QualType FromType1 = SCS1.getFromType();
3455    QualType FromType2 = SCS2.getFromType();
3456
3457    // Adjust the types we're converting from via the array-to-pointer
3458    // conversion, if we need to.
3459    if (SCS1.First == ICK_Array_To_Pointer)
3460      FromType1 = S.Context.getArrayDecayedType(FromType1);
3461    if (SCS2.First == ICK_Array_To_Pointer)
3462      FromType2 = S.Context.getArrayDecayedType(FromType2);
3463
3464    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3465    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3466
3467    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3468      return ImplicitConversionSequence::Better;
3469    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3470      return ImplicitConversionSequence::Worse;
3471
3472    // Objective-C++: If one interface is more specific than the
3473    // other, it is the better one.
3474    const ObjCObjectPointerType* FromObjCPtr1
3475      = FromType1->getAs<ObjCObjectPointerType>();
3476    const ObjCObjectPointerType* FromObjCPtr2
3477      = FromType2->getAs<ObjCObjectPointerType>();
3478    if (FromObjCPtr1 && FromObjCPtr2) {
3479      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3480                                                          FromObjCPtr2);
3481      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3482                                                           FromObjCPtr1);
3483      if (AssignLeft != AssignRight) {
3484        return AssignLeft? ImplicitConversionSequence::Better
3485                         : ImplicitConversionSequence::Worse;
3486      }
3487    }
3488  }
3489
3490  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3491  // bullet 3).
3492  if (ImplicitConversionSequence::CompareKind QualCK
3493        = CompareQualificationConversions(S, SCS1, SCS2))
3494    return QualCK;
3495
3496  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3497    // Check for a better reference binding based on the kind of bindings.
3498    if (isBetterReferenceBindingKind(SCS1, SCS2))
3499      return ImplicitConversionSequence::Better;
3500    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3501      return ImplicitConversionSequence::Worse;
3502
3503    // C++ [over.ics.rank]p3b4:
3504    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3505    //      which the references refer are the same type except for
3506    //      top-level cv-qualifiers, and the type to which the reference
3507    //      initialized by S2 refers is more cv-qualified than the type
3508    //      to which the reference initialized by S1 refers.
3509    QualType T1 = SCS1.getToType(2);
3510    QualType T2 = SCS2.getToType(2);
3511    T1 = S.Context.getCanonicalType(T1);
3512    T2 = S.Context.getCanonicalType(T2);
3513    Qualifiers T1Quals, T2Quals;
3514    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3515    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3516    if (UnqualT1 == UnqualT2) {
3517      // Objective-C++ ARC: If the references refer to objects with different
3518      // lifetimes, prefer bindings that don't change lifetime.
3519      if (SCS1.ObjCLifetimeConversionBinding !=
3520                                          SCS2.ObjCLifetimeConversionBinding) {
3521        return SCS1.ObjCLifetimeConversionBinding
3522                                           ? ImplicitConversionSequence::Worse
3523                                           : ImplicitConversionSequence::Better;
3524      }
3525
3526      // If the type is an array type, promote the element qualifiers to the
3527      // type for comparison.
3528      if (isa<ArrayType>(T1) && T1Quals)
3529        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3530      if (isa<ArrayType>(T2) && T2Quals)
3531        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3532      if (T2.isMoreQualifiedThan(T1))
3533        return ImplicitConversionSequence::Better;
3534      else if (T1.isMoreQualifiedThan(T2))
3535        return ImplicitConversionSequence::Worse;
3536    }
3537  }
3538
3539  // In Microsoft mode, prefer an integral conversion to a
3540  // floating-to-integral conversion if the integral conversion
3541  // is between types of the same size.
3542  // For example:
3543  // void f(float);
3544  // void f(int);
3545  // int main {
3546  //    long a;
3547  //    f(a);
3548  // }
3549  // Here, MSVC will call f(int) instead of generating a compile error
3550  // as clang will do in standard mode.
3551  if (S.getLangOpts().MicrosoftMode &&
3552      SCS1.Second == ICK_Integral_Conversion &&
3553      SCS2.Second == ICK_Floating_Integral &&
3554      S.Context.getTypeSize(SCS1.getFromType()) ==
3555      S.Context.getTypeSize(SCS1.getToType(2)))
3556    return ImplicitConversionSequence::Better;
3557
3558  return ImplicitConversionSequence::Indistinguishable;
3559}
3560
3561/// CompareQualificationConversions - Compares two standard conversion
3562/// sequences to determine whether they can be ranked based on their
3563/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3564ImplicitConversionSequence::CompareKind
3565CompareQualificationConversions(Sema &S,
3566                                const StandardConversionSequence& SCS1,
3567                                const StandardConversionSequence& SCS2) {
3568  // C++ 13.3.3.2p3:
3569  //  -- S1 and S2 differ only in their qualification conversion and
3570  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3571  //     cv-qualification signature of type T1 is a proper subset of
3572  //     the cv-qualification signature of type T2, and S1 is not the
3573  //     deprecated string literal array-to-pointer conversion (4.2).
3574  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3575      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3576    return ImplicitConversionSequence::Indistinguishable;
3577
3578  // FIXME: the example in the standard doesn't use a qualification
3579  // conversion (!)
3580  QualType T1 = SCS1.getToType(2);
3581  QualType T2 = SCS2.getToType(2);
3582  T1 = S.Context.getCanonicalType(T1);
3583  T2 = S.Context.getCanonicalType(T2);
3584  Qualifiers T1Quals, T2Quals;
3585  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3586  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3587
3588  // If the types are the same, we won't learn anything by unwrapped
3589  // them.
3590  if (UnqualT1 == UnqualT2)
3591    return ImplicitConversionSequence::Indistinguishable;
3592
3593  // If the type is an array type, promote the element qualifiers to the type
3594  // for comparison.
3595  if (isa<ArrayType>(T1) && T1Quals)
3596    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3597  if (isa<ArrayType>(T2) && T2Quals)
3598    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3599
3600  ImplicitConversionSequence::CompareKind Result
3601    = ImplicitConversionSequence::Indistinguishable;
3602
3603  // Objective-C++ ARC:
3604  //   Prefer qualification conversions not involving a change in lifetime
3605  //   to qualification conversions that do not change lifetime.
3606  if (SCS1.QualificationIncludesObjCLifetime !=
3607                                      SCS2.QualificationIncludesObjCLifetime) {
3608    Result = SCS1.QualificationIncludesObjCLifetime
3609               ? ImplicitConversionSequence::Worse
3610               : ImplicitConversionSequence::Better;
3611  }
3612
3613  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3614    // Within each iteration of the loop, we check the qualifiers to
3615    // determine if this still looks like a qualification
3616    // conversion. Then, if all is well, we unwrap one more level of
3617    // pointers or pointers-to-members and do it all again
3618    // until there are no more pointers or pointers-to-members left
3619    // to unwrap. This essentially mimics what
3620    // IsQualificationConversion does, but here we're checking for a
3621    // strict subset of qualifiers.
3622    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3623      // The qualifiers are the same, so this doesn't tell us anything
3624      // about how the sequences rank.
3625      ;
3626    else if (T2.isMoreQualifiedThan(T1)) {
3627      // T1 has fewer qualifiers, so it could be the better sequence.
3628      if (Result == ImplicitConversionSequence::Worse)
3629        // Neither has qualifiers that are a subset of the other's
3630        // qualifiers.
3631        return ImplicitConversionSequence::Indistinguishable;
3632
3633      Result = ImplicitConversionSequence::Better;
3634    } else if (T1.isMoreQualifiedThan(T2)) {
3635      // T2 has fewer qualifiers, so it could be the better sequence.
3636      if (Result == ImplicitConversionSequence::Better)
3637        // Neither has qualifiers that are a subset of the other's
3638        // qualifiers.
3639        return ImplicitConversionSequence::Indistinguishable;
3640
3641      Result = ImplicitConversionSequence::Worse;
3642    } else {
3643      // Qualifiers are disjoint.
3644      return ImplicitConversionSequence::Indistinguishable;
3645    }
3646
3647    // If the types after this point are equivalent, we're done.
3648    if (S.Context.hasSameUnqualifiedType(T1, T2))
3649      break;
3650  }
3651
3652  // Check that the winning standard conversion sequence isn't using
3653  // the deprecated string literal array to pointer conversion.
3654  switch (Result) {
3655  case ImplicitConversionSequence::Better:
3656    if (SCS1.DeprecatedStringLiteralToCharPtr)
3657      Result = ImplicitConversionSequence::Indistinguishable;
3658    break;
3659
3660  case ImplicitConversionSequence::Indistinguishable:
3661    break;
3662
3663  case ImplicitConversionSequence::Worse:
3664    if (SCS2.DeprecatedStringLiteralToCharPtr)
3665      Result = ImplicitConversionSequence::Indistinguishable;
3666    break;
3667  }
3668
3669  return Result;
3670}
3671
3672/// CompareDerivedToBaseConversions - Compares two standard conversion
3673/// sequences to determine whether they can be ranked based on their
3674/// various kinds of derived-to-base conversions (C++
3675/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3676/// conversions between Objective-C interface types.
3677ImplicitConversionSequence::CompareKind
3678CompareDerivedToBaseConversions(Sema &S,
3679                                const StandardConversionSequence& SCS1,
3680                                const StandardConversionSequence& SCS2) {
3681  QualType FromType1 = SCS1.getFromType();
3682  QualType ToType1 = SCS1.getToType(1);
3683  QualType FromType2 = SCS2.getFromType();
3684  QualType ToType2 = SCS2.getToType(1);
3685
3686  // Adjust the types we're converting from via the array-to-pointer
3687  // conversion, if we need to.
3688  if (SCS1.First == ICK_Array_To_Pointer)
3689    FromType1 = S.Context.getArrayDecayedType(FromType1);
3690  if (SCS2.First == ICK_Array_To_Pointer)
3691    FromType2 = S.Context.getArrayDecayedType(FromType2);
3692
3693  // Canonicalize all of the types.
3694  FromType1 = S.Context.getCanonicalType(FromType1);
3695  ToType1 = S.Context.getCanonicalType(ToType1);
3696  FromType2 = S.Context.getCanonicalType(FromType2);
3697  ToType2 = S.Context.getCanonicalType(ToType2);
3698
3699  // C++ [over.ics.rank]p4b3:
3700  //
3701  //   If class B is derived directly or indirectly from class A and
3702  //   class C is derived directly or indirectly from B,
3703  //
3704  // Compare based on pointer conversions.
3705  if (SCS1.Second == ICK_Pointer_Conversion &&
3706      SCS2.Second == ICK_Pointer_Conversion &&
3707      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3708      FromType1->isPointerType() && FromType2->isPointerType() &&
3709      ToType1->isPointerType() && ToType2->isPointerType()) {
3710    QualType FromPointee1
3711      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3712    QualType ToPointee1
3713      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3714    QualType FromPointee2
3715      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3716    QualType ToPointee2
3717      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3718
3719    //   -- conversion of C* to B* is better than conversion of C* to A*,
3720    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3721      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3722        return ImplicitConversionSequence::Better;
3723      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3724        return ImplicitConversionSequence::Worse;
3725    }
3726
3727    //   -- conversion of B* to A* is better than conversion of C* to A*,
3728    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3729      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3730        return ImplicitConversionSequence::Better;
3731      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3732        return ImplicitConversionSequence::Worse;
3733    }
3734  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3735             SCS2.Second == ICK_Pointer_Conversion) {
3736    const ObjCObjectPointerType *FromPtr1
3737      = FromType1->getAs<ObjCObjectPointerType>();
3738    const ObjCObjectPointerType *FromPtr2
3739      = FromType2->getAs<ObjCObjectPointerType>();
3740    const ObjCObjectPointerType *ToPtr1
3741      = ToType1->getAs<ObjCObjectPointerType>();
3742    const ObjCObjectPointerType *ToPtr2
3743      = ToType2->getAs<ObjCObjectPointerType>();
3744
3745    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3746      // Apply the same conversion ranking rules for Objective-C pointer types
3747      // that we do for C++ pointers to class types. However, we employ the
3748      // Objective-C pseudo-subtyping relationship used for assignment of
3749      // Objective-C pointer types.
3750      bool FromAssignLeft
3751        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3752      bool FromAssignRight
3753        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3754      bool ToAssignLeft
3755        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3756      bool ToAssignRight
3757        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3758
3759      // A conversion to an a non-id object pointer type or qualified 'id'
3760      // type is better than a conversion to 'id'.
3761      if (ToPtr1->isObjCIdType() &&
3762          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3763        return ImplicitConversionSequence::Worse;
3764      if (ToPtr2->isObjCIdType() &&
3765          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3766        return ImplicitConversionSequence::Better;
3767
3768      // A conversion to a non-id object pointer type is better than a
3769      // conversion to a qualified 'id' type
3770      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3771        return ImplicitConversionSequence::Worse;
3772      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3773        return ImplicitConversionSequence::Better;
3774
3775      // A conversion to an a non-Class object pointer type or qualified 'Class'
3776      // type is better than a conversion to 'Class'.
3777      if (ToPtr1->isObjCClassType() &&
3778          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3779        return ImplicitConversionSequence::Worse;
3780      if (ToPtr2->isObjCClassType() &&
3781          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3782        return ImplicitConversionSequence::Better;
3783
3784      // A conversion to a non-Class object pointer type is better than a
3785      // conversion to a qualified 'Class' type.
3786      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3787        return ImplicitConversionSequence::Worse;
3788      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3789        return ImplicitConversionSequence::Better;
3790
3791      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3792      if (S.Context.hasSameType(FromType1, FromType2) &&
3793          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3794          (ToAssignLeft != ToAssignRight))
3795        return ToAssignLeft? ImplicitConversionSequence::Worse
3796                           : ImplicitConversionSequence::Better;
3797
3798      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3799      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3800          (FromAssignLeft != FromAssignRight))
3801        return FromAssignLeft? ImplicitConversionSequence::Better
3802        : ImplicitConversionSequence::Worse;
3803    }
3804  }
3805
3806  // Ranking of member-pointer types.
3807  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3808      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3809      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3810    const MemberPointerType * FromMemPointer1 =
3811                                        FromType1->getAs<MemberPointerType>();
3812    const MemberPointerType * ToMemPointer1 =
3813                                          ToType1->getAs<MemberPointerType>();
3814    const MemberPointerType * FromMemPointer2 =
3815                                          FromType2->getAs<MemberPointerType>();
3816    const MemberPointerType * ToMemPointer2 =
3817                                          ToType2->getAs<MemberPointerType>();
3818    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3819    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3820    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3821    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3822    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3823    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3824    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3825    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3826    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3827    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3828      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3829        return ImplicitConversionSequence::Worse;
3830      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3831        return ImplicitConversionSequence::Better;
3832    }
3833    // conversion of B::* to C::* is better than conversion of A::* to C::*
3834    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3835      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3836        return ImplicitConversionSequence::Better;
3837      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3838        return ImplicitConversionSequence::Worse;
3839    }
3840  }
3841
3842  if (SCS1.Second == ICK_Derived_To_Base) {
3843    //   -- conversion of C to B is better than conversion of C to A,
3844    //   -- binding of an expression of type C to a reference of type
3845    //      B& is better than binding an expression of type C to a
3846    //      reference of type A&,
3847    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3848        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3849      if (S.IsDerivedFrom(ToType1, ToType2))
3850        return ImplicitConversionSequence::Better;
3851      else if (S.IsDerivedFrom(ToType2, ToType1))
3852        return ImplicitConversionSequence::Worse;
3853    }
3854
3855    //   -- conversion of B to A is better than conversion of C to A.
3856    //   -- binding of an expression of type B to a reference of type
3857    //      A& is better than binding an expression of type C to a
3858    //      reference of type A&,
3859    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3860        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3861      if (S.IsDerivedFrom(FromType2, FromType1))
3862        return ImplicitConversionSequence::Better;
3863      else if (S.IsDerivedFrom(FromType1, FromType2))
3864        return ImplicitConversionSequence::Worse;
3865    }
3866  }
3867
3868  return ImplicitConversionSequence::Indistinguishable;
3869}
3870
3871/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3872/// determine whether they are reference-related,
3873/// reference-compatible, reference-compatible with added
3874/// qualification, or incompatible, for use in C++ initialization by
3875/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3876/// type, and the first type (T1) is the pointee type of the reference
3877/// type being initialized.
3878Sema::ReferenceCompareResult
3879Sema::CompareReferenceRelationship(SourceLocation Loc,
3880                                   QualType OrigT1, QualType OrigT2,
3881                                   bool &DerivedToBase,
3882                                   bool &ObjCConversion,
3883                                   bool &ObjCLifetimeConversion) {
3884  assert(!OrigT1->isReferenceType() &&
3885    "T1 must be the pointee type of the reference type");
3886  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3887
3888  QualType T1 = Context.getCanonicalType(OrigT1);
3889  QualType T2 = Context.getCanonicalType(OrigT2);
3890  Qualifiers T1Quals, T2Quals;
3891  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3892  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3893
3894  // C++ [dcl.init.ref]p4:
3895  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3896  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3897  //   T1 is a base class of T2.
3898  DerivedToBase = false;
3899  ObjCConversion = false;
3900  ObjCLifetimeConversion = false;
3901  if (UnqualT1 == UnqualT2) {
3902    // Nothing to do.
3903  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3904           IsDerivedFrom(UnqualT2, UnqualT1))
3905    DerivedToBase = true;
3906  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3907           UnqualT2->isObjCObjectOrInterfaceType() &&
3908           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3909    ObjCConversion = true;
3910  else
3911    return Ref_Incompatible;
3912
3913  // At this point, we know that T1 and T2 are reference-related (at
3914  // least).
3915
3916  // If the type is an array type, promote the element qualifiers to the type
3917  // for comparison.
3918  if (isa<ArrayType>(T1) && T1Quals)
3919    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3920  if (isa<ArrayType>(T2) && T2Quals)
3921    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3922
3923  // C++ [dcl.init.ref]p4:
3924  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3925  //   reference-related to T2 and cv1 is the same cv-qualification
3926  //   as, or greater cv-qualification than, cv2. For purposes of
3927  //   overload resolution, cases for which cv1 is greater
3928  //   cv-qualification than cv2 are identified as
3929  //   reference-compatible with added qualification (see 13.3.3.2).
3930  //
3931  // Note that we also require equivalence of Objective-C GC and address-space
3932  // qualifiers when performing these computations, so that e.g., an int in
3933  // address space 1 is not reference-compatible with an int in address
3934  // space 2.
3935  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3936      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3937    T1Quals.removeObjCLifetime();
3938    T2Quals.removeObjCLifetime();
3939    ObjCLifetimeConversion = true;
3940  }
3941
3942  if (T1Quals == T2Quals)
3943    return Ref_Compatible;
3944  else if (T1Quals.compatiblyIncludes(T2Quals))
3945    return Ref_Compatible_With_Added_Qualification;
3946  else
3947    return Ref_Related;
3948}
3949
3950/// \brief Look for a user-defined conversion to an value reference-compatible
3951///        with DeclType. Return true if something definite is found.
3952static bool
3953FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3954                         QualType DeclType, SourceLocation DeclLoc,
3955                         Expr *Init, QualType T2, bool AllowRvalues,
3956                         bool AllowExplicit) {
3957  assert(T2->isRecordType() && "Can only find conversions of record types.");
3958  CXXRecordDecl *T2RecordDecl
3959    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3960
3961  OverloadCandidateSet CandidateSet(DeclLoc);
3962  const UnresolvedSetImpl *Conversions
3963    = T2RecordDecl->getVisibleConversionFunctions();
3964  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3965         E = Conversions->end(); I != E; ++I) {
3966    NamedDecl *D = *I;
3967    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3968    if (isa<UsingShadowDecl>(D))
3969      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3970
3971    FunctionTemplateDecl *ConvTemplate
3972      = dyn_cast<FunctionTemplateDecl>(D);
3973    CXXConversionDecl *Conv;
3974    if (ConvTemplate)
3975      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3976    else
3977      Conv = cast<CXXConversionDecl>(D);
3978
3979    // If this is an explicit conversion, and we're not allowed to consider
3980    // explicit conversions, skip it.
3981    if (!AllowExplicit && Conv->isExplicit())
3982      continue;
3983
3984    if (AllowRvalues) {
3985      bool DerivedToBase = false;
3986      bool ObjCConversion = false;
3987      bool ObjCLifetimeConversion = false;
3988
3989      // If we are initializing an rvalue reference, don't permit conversion
3990      // functions that return lvalues.
3991      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3992        const ReferenceType *RefType
3993          = Conv->getConversionType()->getAs<LValueReferenceType>();
3994        if (RefType && !RefType->getPointeeType()->isFunctionType())
3995          continue;
3996      }
3997
3998      if (!ConvTemplate &&
3999          S.CompareReferenceRelationship(
4000            DeclLoc,
4001            Conv->getConversionType().getNonReferenceType()
4002              .getUnqualifiedType(),
4003            DeclType.getNonReferenceType().getUnqualifiedType(),
4004            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4005          Sema::Ref_Incompatible)
4006        continue;
4007    } else {
4008      // If the conversion function doesn't return a reference type,
4009      // it can't be considered for this conversion. An rvalue reference
4010      // is only acceptable if its referencee is a function type.
4011
4012      const ReferenceType *RefType =
4013        Conv->getConversionType()->getAs<ReferenceType>();
4014      if (!RefType ||
4015          (!RefType->isLValueReferenceType() &&
4016           !RefType->getPointeeType()->isFunctionType()))
4017        continue;
4018    }
4019
4020    if (ConvTemplate)
4021      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4022                                       Init, DeclType, CandidateSet);
4023    else
4024      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4025                               DeclType, CandidateSet);
4026  }
4027
4028  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4029
4030  OverloadCandidateSet::iterator Best;
4031  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4032  case OR_Success:
4033    // C++ [over.ics.ref]p1:
4034    //
4035    //   [...] If the parameter binds directly to the result of
4036    //   applying a conversion function to the argument
4037    //   expression, the implicit conversion sequence is a
4038    //   user-defined conversion sequence (13.3.3.1.2), with the
4039    //   second standard conversion sequence either an identity
4040    //   conversion or, if the conversion function returns an
4041    //   entity of a type that is a derived class of the parameter
4042    //   type, a derived-to-base Conversion.
4043    if (!Best->FinalConversion.DirectBinding)
4044      return false;
4045
4046    ICS.setUserDefined();
4047    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4048    ICS.UserDefined.After = Best->FinalConversion;
4049    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4050    ICS.UserDefined.ConversionFunction = Best->Function;
4051    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4052    ICS.UserDefined.EllipsisConversion = false;
4053    assert(ICS.UserDefined.After.ReferenceBinding &&
4054           ICS.UserDefined.After.DirectBinding &&
4055           "Expected a direct reference binding!");
4056    return true;
4057
4058  case OR_Ambiguous:
4059    ICS.setAmbiguous();
4060    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4061         Cand != CandidateSet.end(); ++Cand)
4062      if (Cand->Viable)
4063        ICS.Ambiguous.addConversion(Cand->Function);
4064    return true;
4065
4066  case OR_No_Viable_Function:
4067  case OR_Deleted:
4068    // There was no suitable conversion, or we found a deleted
4069    // conversion; continue with other checks.
4070    return false;
4071  }
4072
4073  llvm_unreachable("Invalid OverloadResult!");
4074}
4075
4076/// \brief Compute an implicit conversion sequence for reference
4077/// initialization.
4078static ImplicitConversionSequence
4079TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4080                 SourceLocation DeclLoc,
4081                 bool SuppressUserConversions,
4082                 bool AllowExplicit) {
4083  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4084
4085  // Most paths end in a failed conversion.
4086  ImplicitConversionSequence ICS;
4087  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4088
4089  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4090  QualType T2 = Init->getType();
4091
4092  // If the initializer is the address of an overloaded function, try
4093  // to resolve the overloaded function. If all goes well, T2 is the
4094  // type of the resulting function.
4095  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4096    DeclAccessPair Found;
4097    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4098                                                                false, Found))
4099      T2 = Fn->getType();
4100  }
4101
4102  // Compute some basic properties of the types and the initializer.
4103  bool isRValRef = DeclType->isRValueReferenceType();
4104  bool DerivedToBase = false;
4105  bool ObjCConversion = false;
4106  bool ObjCLifetimeConversion = false;
4107  Expr::Classification InitCategory = Init->Classify(S.Context);
4108  Sema::ReferenceCompareResult RefRelationship
4109    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4110                                     ObjCConversion, ObjCLifetimeConversion);
4111
4112
4113  // C++0x [dcl.init.ref]p5:
4114  //   A reference to type "cv1 T1" is initialized by an expression
4115  //   of type "cv2 T2" as follows:
4116
4117  //     -- If reference is an lvalue reference and the initializer expression
4118  if (!isRValRef) {
4119    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4120    //        reference-compatible with "cv2 T2," or
4121    //
4122    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4123    if (InitCategory.isLValue() &&
4124        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4125      // C++ [over.ics.ref]p1:
4126      //   When a parameter of reference type binds directly (8.5.3)
4127      //   to an argument expression, the implicit conversion sequence
4128      //   is the identity conversion, unless the argument expression
4129      //   has a type that is a derived class of the parameter type,
4130      //   in which case the implicit conversion sequence is a
4131      //   derived-to-base Conversion (13.3.3.1).
4132      ICS.setStandard();
4133      ICS.Standard.First = ICK_Identity;
4134      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4135                         : ObjCConversion? ICK_Compatible_Conversion
4136                         : ICK_Identity;
4137      ICS.Standard.Third = ICK_Identity;
4138      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4139      ICS.Standard.setToType(0, T2);
4140      ICS.Standard.setToType(1, T1);
4141      ICS.Standard.setToType(2, T1);
4142      ICS.Standard.ReferenceBinding = true;
4143      ICS.Standard.DirectBinding = true;
4144      ICS.Standard.IsLvalueReference = !isRValRef;
4145      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4146      ICS.Standard.BindsToRvalue = false;
4147      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4148      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4149      ICS.Standard.CopyConstructor = 0;
4150
4151      // Nothing more to do: the inaccessibility/ambiguity check for
4152      // derived-to-base conversions is suppressed when we're
4153      // computing the implicit conversion sequence (C++
4154      // [over.best.ics]p2).
4155      return ICS;
4156    }
4157
4158    //       -- has a class type (i.e., T2 is a class type), where T1 is
4159    //          not reference-related to T2, and can be implicitly
4160    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4161    //          is reference-compatible with "cv3 T3" 92) (this
4162    //          conversion is selected by enumerating the applicable
4163    //          conversion functions (13.3.1.6) and choosing the best
4164    //          one through overload resolution (13.3)),
4165    if (!SuppressUserConversions && T2->isRecordType() &&
4166        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4167        RefRelationship == Sema::Ref_Incompatible) {
4168      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4169                                   Init, T2, /*AllowRvalues=*/false,
4170                                   AllowExplicit))
4171        return ICS;
4172    }
4173  }
4174
4175  //     -- Otherwise, the reference shall be an lvalue reference to a
4176  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4177  //        shall be an rvalue reference.
4178  //
4179  // We actually handle one oddity of C++ [over.ics.ref] at this
4180  // point, which is that, due to p2 (which short-circuits reference
4181  // binding by only attempting a simple conversion for non-direct
4182  // bindings) and p3's strange wording, we allow a const volatile
4183  // reference to bind to an rvalue. Hence the check for the presence
4184  // of "const" rather than checking for "const" being the only
4185  // qualifier.
4186  // This is also the point where rvalue references and lvalue inits no longer
4187  // go together.
4188  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4189    return ICS;
4190
4191  //       -- If the initializer expression
4192  //
4193  //            -- is an xvalue, class prvalue, array prvalue or function
4194  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4195  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4196      (InitCategory.isXValue() ||
4197      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4198      (InitCategory.isLValue() && T2->isFunctionType()))) {
4199    ICS.setStandard();
4200    ICS.Standard.First = ICK_Identity;
4201    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4202                      : ObjCConversion? ICK_Compatible_Conversion
4203                      : ICK_Identity;
4204    ICS.Standard.Third = ICK_Identity;
4205    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4206    ICS.Standard.setToType(0, T2);
4207    ICS.Standard.setToType(1, T1);
4208    ICS.Standard.setToType(2, T1);
4209    ICS.Standard.ReferenceBinding = true;
4210    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4211    // binding unless we're binding to a class prvalue.
4212    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4213    // allow the use of rvalue references in C++98/03 for the benefit of
4214    // standard library implementors; therefore, we need the xvalue check here.
4215    ICS.Standard.DirectBinding =
4216      S.getLangOpts().CPlusPlus0x ||
4217      (InitCategory.isPRValue() && !T2->isRecordType());
4218    ICS.Standard.IsLvalueReference = !isRValRef;
4219    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4220    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4221    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4222    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4223    ICS.Standard.CopyConstructor = 0;
4224    return ICS;
4225  }
4226
4227  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4228  //               reference-related to T2, and can be implicitly converted to
4229  //               an xvalue, class prvalue, or function lvalue of type
4230  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4231  //               "cv3 T3",
4232  //
4233  //          then the reference is bound to the value of the initializer
4234  //          expression in the first case and to the result of the conversion
4235  //          in the second case (or, in either case, to an appropriate base
4236  //          class subobject).
4237  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4238      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4239      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4240                               Init, T2, /*AllowRvalues=*/true,
4241                               AllowExplicit)) {
4242    // In the second case, if the reference is an rvalue reference
4243    // and the second standard conversion sequence of the
4244    // user-defined conversion sequence includes an lvalue-to-rvalue
4245    // conversion, the program is ill-formed.
4246    if (ICS.isUserDefined() && isRValRef &&
4247        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4248      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4249
4250    return ICS;
4251  }
4252
4253  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4254  //          initialized from the initializer expression using the
4255  //          rules for a non-reference copy initialization (8.5). The
4256  //          reference is then bound to the temporary. If T1 is
4257  //          reference-related to T2, cv1 must be the same
4258  //          cv-qualification as, or greater cv-qualification than,
4259  //          cv2; otherwise, the program is ill-formed.
4260  if (RefRelationship == Sema::Ref_Related) {
4261    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4262    // we would be reference-compatible or reference-compatible with
4263    // added qualification. But that wasn't the case, so the reference
4264    // initialization fails.
4265    //
4266    // Note that we only want to check address spaces and cvr-qualifiers here.
4267    // ObjC GC and lifetime qualifiers aren't important.
4268    Qualifiers T1Quals = T1.getQualifiers();
4269    Qualifiers T2Quals = T2.getQualifiers();
4270    T1Quals.removeObjCGCAttr();
4271    T1Quals.removeObjCLifetime();
4272    T2Quals.removeObjCGCAttr();
4273    T2Quals.removeObjCLifetime();
4274    if (!T1Quals.compatiblyIncludes(T2Quals))
4275      return ICS;
4276  }
4277
4278  // If at least one of the types is a class type, the types are not
4279  // related, and we aren't allowed any user conversions, the
4280  // reference binding fails. This case is important for breaking
4281  // recursion, since TryImplicitConversion below will attempt to
4282  // create a temporary through the use of a copy constructor.
4283  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4284      (T1->isRecordType() || T2->isRecordType()))
4285    return ICS;
4286
4287  // If T1 is reference-related to T2 and the reference is an rvalue
4288  // reference, the initializer expression shall not be an lvalue.
4289  if (RefRelationship >= Sema::Ref_Related &&
4290      isRValRef && Init->Classify(S.Context).isLValue())
4291    return ICS;
4292
4293  // C++ [over.ics.ref]p2:
4294  //   When a parameter of reference type is not bound directly to
4295  //   an argument expression, the conversion sequence is the one
4296  //   required to convert the argument expression to the
4297  //   underlying type of the reference according to
4298  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4299  //   to copy-initializing a temporary of the underlying type with
4300  //   the argument expression. Any difference in top-level
4301  //   cv-qualification is subsumed by the initialization itself
4302  //   and does not constitute a conversion.
4303  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4304                              /*AllowExplicit=*/false,
4305                              /*InOverloadResolution=*/false,
4306                              /*CStyle=*/false,
4307                              /*AllowObjCWritebackConversion=*/false);
4308
4309  // Of course, that's still a reference binding.
4310  if (ICS.isStandard()) {
4311    ICS.Standard.ReferenceBinding = true;
4312    ICS.Standard.IsLvalueReference = !isRValRef;
4313    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4314    ICS.Standard.BindsToRvalue = true;
4315    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4316    ICS.Standard.ObjCLifetimeConversionBinding = false;
4317  } else if (ICS.isUserDefined()) {
4318    // Don't allow rvalue references to bind to lvalues.
4319    if (DeclType->isRValueReferenceType()) {
4320      if (const ReferenceType *RefType
4321            = ICS.UserDefined.ConversionFunction->getResultType()
4322                ->getAs<LValueReferenceType>()) {
4323        if (!RefType->getPointeeType()->isFunctionType()) {
4324          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4325                     DeclType);
4326          return ICS;
4327        }
4328      }
4329    }
4330
4331    ICS.UserDefined.After.ReferenceBinding = true;
4332    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4333    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4334    ICS.UserDefined.After.BindsToRvalue = true;
4335    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4336    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4337  }
4338
4339  return ICS;
4340}
4341
4342static ImplicitConversionSequence
4343TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4344                      bool SuppressUserConversions,
4345                      bool InOverloadResolution,
4346                      bool AllowObjCWritebackConversion,
4347                      bool AllowExplicit = false);
4348
4349/// TryListConversion - Try to copy-initialize a value of type ToType from the
4350/// initializer list From.
4351static ImplicitConversionSequence
4352TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4353                  bool SuppressUserConversions,
4354                  bool InOverloadResolution,
4355                  bool AllowObjCWritebackConversion) {
4356  // C++11 [over.ics.list]p1:
4357  //   When an argument is an initializer list, it is not an expression and
4358  //   special rules apply for converting it to a parameter type.
4359
4360  ImplicitConversionSequence Result;
4361  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4362  Result.setListInitializationSequence();
4363
4364  // We need a complete type for what follows. Incomplete types can never be
4365  // initialized from init lists.
4366  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4367    return Result;
4368
4369  // C++11 [over.ics.list]p2:
4370  //   If the parameter type is std::initializer_list<X> or "array of X" and
4371  //   all the elements can be implicitly converted to X, the implicit
4372  //   conversion sequence is the worst conversion necessary to convert an
4373  //   element of the list to X.
4374  bool toStdInitializerList = false;
4375  QualType X;
4376  if (ToType->isArrayType())
4377    X = S.Context.getBaseElementType(ToType);
4378  else
4379    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4380  if (!X.isNull()) {
4381    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4382      Expr *Init = From->getInit(i);
4383      ImplicitConversionSequence ICS =
4384          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4385                                InOverloadResolution,
4386                                AllowObjCWritebackConversion);
4387      // If a single element isn't convertible, fail.
4388      if (ICS.isBad()) {
4389        Result = ICS;
4390        break;
4391      }
4392      // Otherwise, look for the worst conversion.
4393      if (Result.isBad() ||
4394          CompareImplicitConversionSequences(S, ICS, Result) ==
4395              ImplicitConversionSequence::Worse)
4396        Result = ICS;
4397    }
4398
4399    // For an empty list, we won't have computed any conversion sequence.
4400    // Introduce the identity conversion sequence.
4401    if (From->getNumInits() == 0) {
4402      Result.setStandard();
4403      Result.Standard.setAsIdentityConversion();
4404      Result.Standard.setFromType(ToType);
4405      Result.Standard.setAllToTypes(ToType);
4406    }
4407
4408    Result.setListInitializationSequence();
4409    Result.setStdInitializerListElement(toStdInitializerList);
4410    return Result;
4411  }
4412
4413  // C++11 [over.ics.list]p3:
4414  //   Otherwise, if the parameter is a non-aggregate class X and overload
4415  //   resolution chooses a single best constructor [...] the implicit
4416  //   conversion sequence is a user-defined conversion sequence. If multiple
4417  //   constructors are viable but none is better than the others, the
4418  //   implicit conversion sequence is a user-defined conversion sequence.
4419  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4420    // This function can deal with initializer lists.
4421    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4422                                      /*AllowExplicit=*/false,
4423                                      InOverloadResolution, /*CStyle=*/false,
4424                                      AllowObjCWritebackConversion);
4425    Result.setListInitializationSequence();
4426    return Result;
4427  }
4428
4429  // C++11 [over.ics.list]p4:
4430  //   Otherwise, if the parameter has an aggregate type which can be
4431  //   initialized from the initializer list [...] the implicit conversion
4432  //   sequence is a user-defined conversion sequence.
4433  if (ToType->isAggregateType()) {
4434    // Type is an aggregate, argument is an init list. At this point it comes
4435    // down to checking whether the initialization works.
4436    // FIXME: Find out whether this parameter is consumed or not.
4437    InitializedEntity Entity =
4438        InitializedEntity::InitializeParameter(S.Context, ToType,
4439                                               /*Consumed=*/false);
4440    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4441      Result.setUserDefined();
4442      Result.UserDefined.Before.setAsIdentityConversion();
4443      // Initializer lists don't have a type.
4444      Result.UserDefined.Before.setFromType(QualType());
4445      Result.UserDefined.Before.setAllToTypes(QualType());
4446
4447      Result.UserDefined.After.setAsIdentityConversion();
4448      Result.UserDefined.After.setFromType(ToType);
4449      Result.UserDefined.After.setAllToTypes(ToType);
4450      Result.UserDefined.ConversionFunction = 0;
4451    }
4452    return Result;
4453  }
4454
4455  // C++11 [over.ics.list]p5:
4456  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4457  if (ToType->isReferenceType()) {
4458    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4459    // mention initializer lists in any way. So we go by what list-
4460    // initialization would do and try to extrapolate from that.
4461
4462    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4463
4464    // If the initializer list has a single element that is reference-related
4465    // to the parameter type, we initialize the reference from that.
4466    if (From->getNumInits() == 1) {
4467      Expr *Init = From->getInit(0);
4468
4469      QualType T2 = Init->getType();
4470
4471      // If the initializer is the address of an overloaded function, try
4472      // to resolve the overloaded function. If all goes well, T2 is the
4473      // type of the resulting function.
4474      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4475        DeclAccessPair Found;
4476        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4477                                   Init, ToType, false, Found))
4478          T2 = Fn->getType();
4479      }
4480
4481      // Compute some basic properties of the types and the initializer.
4482      bool dummy1 = false;
4483      bool dummy2 = false;
4484      bool dummy3 = false;
4485      Sema::ReferenceCompareResult RefRelationship
4486        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4487                                         dummy2, dummy3);
4488
4489      if (RefRelationship >= Sema::Ref_Related)
4490        return TryReferenceInit(S, Init, ToType,
4491                                /*FIXME:*/From->getLocStart(),
4492                                SuppressUserConversions,
4493                                /*AllowExplicit=*/false);
4494    }
4495
4496    // Otherwise, we bind the reference to a temporary created from the
4497    // initializer list.
4498    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4499                               InOverloadResolution,
4500                               AllowObjCWritebackConversion);
4501    if (Result.isFailure())
4502      return Result;
4503    assert(!Result.isEllipsis() &&
4504           "Sub-initialization cannot result in ellipsis conversion.");
4505
4506    // Can we even bind to a temporary?
4507    if (ToType->isRValueReferenceType() ||
4508        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4509      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4510                                            Result.UserDefined.After;
4511      SCS.ReferenceBinding = true;
4512      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4513      SCS.BindsToRvalue = true;
4514      SCS.BindsToFunctionLvalue = false;
4515      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4516      SCS.ObjCLifetimeConversionBinding = false;
4517    } else
4518      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4519                    From, ToType);
4520    return Result;
4521  }
4522
4523  // C++11 [over.ics.list]p6:
4524  //   Otherwise, if the parameter type is not a class:
4525  if (!ToType->isRecordType()) {
4526    //    - if the initializer list has one element, the implicit conversion
4527    //      sequence is the one required to convert the element to the
4528    //      parameter type.
4529    unsigned NumInits = From->getNumInits();
4530    if (NumInits == 1)
4531      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4532                                     SuppressUserConversions,
4533                                     InOverloadResolution,
4534                                     AllowObjCWritebackConversion);
4535    //    - if the initializer list has no elements, the implicit conversion
4536    //      sequence is the identity conversion.
4537    else if (NumInits == 0) {
4538      Result.setStandard();
4539      Result.Standard.setAsIdentityConversion();
4540      Result.Standard.setFromType(ToType);
4541      Result.Standard.setAllToTypes(ToType);
4542    }
4543    Result.setListInitializationSequence();
4544    return Result;
4545  }
4546
4547  // C++11 [over.ics.list]p7:
4548  //   In all cases other than those enumerated above, no conversion is possible
4549  return Result;
4550}
4551
4552/// TryCopyInitialization - Try to copy-initialize a value of type
4553/// ToType from the expression From. Return the implicit conversion
4554/// sequence required to pass this argument, which may be a bad
4555/// conversion sequence (meaning that the argument cannot be passed to
4556/// a parameter of this type). If @p SuppressUserConversions, then we
4557/// do not permit any user-defined conversion sequences.
4558static ImplicitConversionSequence
4559TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4560                      bool SuppressUserConversions,
4561                      bool InOverloadResolution,
4562                      bool AllowObjCWritebackConversion,
4563                      bool AllowExplicit) {
4564  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4565    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4566                             InOverloadResolution,AllowObjCWritebackConversion);
4567
4568  if (ToType->isReferenceType())
4569    return TryReferenceInit(S, From, ToType,
4570                            /*FIXME:*/From->getLocStart(),
4571                            SuppressUserConversions,
4572                            AllowExplicit);
4573
4574  return TryImplicitConversion(S, From, ToType,
4575                               SuppressUserConversions,
4576                               /*AllowExplicit=*/false,
4577                               InOverloadResolution,
4578                               /*CStyle=*/false,
4579                               AllowObjCWritebackConversion);
4580}
4581
4582static bool TryCopyInitialization(const CanQualType FromQTy,
4583                                  const CanQualType ToQTy,
4584                                  Sema &S,
4585                                  SourceLocation Loc,
4586                                  ExprValueKind FromVK) {
4587  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4588  ImplicitConversionSequence ICS =
4589    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4590
4591  return !ICS.isBad();
4592}
4593
4594/// TryObjectArgumentInitialization - Try to initialize the object
4595/// parameter of the given member function (@c Method) from the
4596/// expression @p From.
4597static ImplicitConversionSequence
4598TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4599                                Expr::Classification FromClassification,
4600                                CXXMethodDecl *Method,
4601                                CXXRecordDecl *ActingContext) {
4602  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4603  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4604  //                 const volatile object.
4605  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4606    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4607  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4608
4609  // Set up the conversion sequence as a "bad" conversion, to allow us
4610  // to exit early.
4611  ImplicitConversionSequence ICS;
4612
4613  // We need to have an object of class type.
4614  QualType FromType = OrigFromType;
4615  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4616    FromType = PT->getPointeeType();
4617
4618    // When we had a pointer, it's implicitly dereferenced, so we
4619    // better have an lvalue.
4620    assert(FromClassification.isLValue());
4621  }
4622
4623  assert(FromType->isRecordType());
4624
4625  // C++0x [over.match.funcs]p4:
4626  //   For non-static member functions, the type of the implicit object
4627  //   parameter is
4628  //
4629  //     - "lvalue reference to cv X" for functions declared without a
4630  //        ref-qualifier or with the & ref-qualifier
4631  //     - "rvalue reference to cv X" for functions declared with the &&
4632  //        ref-qualifier
4633  //
4634  // where X is the class of which the function is a member and cv is the
4635  // cv-qualification on the member function declaration.
4636  //
4637  // However, when finding an implicit conversion sequence for the argument, we
4638  // are not allowed to create temporaries or perform user-defined conversions
4639  // (C++ [over.match.funcs]p5). We perform a simplified version of
4640  // reference binding here, that allows class rvalues to bind to
4641  // non-constant references.
4642
4643  // First check the qualifiers.
4644  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4645  if (ImplicitParamType.getCVRQualifiers()
4646                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4647      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4648    ICS.setBad(BadConversionSequence::bad_qualifiers,
4649               OrigFromType, ImplicitParamType);
4650    return ICS;
4651  }
4652
4653  // Check that we have either the same type or a derived type. It
4654  // affects the conversion rank.
4655  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4656  ImplicitConversionKind SecondKind;
4657  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4658    SecondKind = ICK_Identity;
4659  } else if (S.IsDerivedFrom(FromType, ClassType))
4660    SecondKind = ICK_Derived_To_Base;
4661  else {
4662    ICS.setBad(BadConversionSequence::unrelated_class,
4663               FromType, ImplicitParamType);
4664    return ICS;
4665  }
4666
4667  // Check the ref-qualifier.
4668  switch (Method->getRefQualifier()) {
4669  case RQ_None:
4670    // Do nothing; we don't care about lvalueness or rvalueness.
4671    break;
4672
4673  case RQ_LValue:
4674    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4675      // non-const lvalue reference cannot bind to an rvalue
4676      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4677                 ImplicitParamType);
4678      return ICS;
4679    }
4680    break;
4681
4682  case RQ_RValue:
4683    if (!FromClassification.isRValue()) {
4684      // rvalue reference cannot bind to an lvalue
4685      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4686                 ImplicitParamType);
4687      return ICS;
4688    }
4689    break;
4690  }
4691
4692  // Success. Mark this as a reference binding.
4693  ICS.setStandard();
4694  ICS.Standard.setAsIdentityConversion();
4695  ICS.Standard.Second = SecondKind;
4696  ICS.Standard.setFromType(FromType);
4697  ICS.Standard.setAllToTypes(ImplicitParamType);
4698  ICS.Standard.ReferenceBinding = true;
4699  ICS.Standard.DirectBinding = true;
4700  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4701  ICS.Standard.BindsToFunctionLvalue = false;
4702  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4703  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4704    = (Method->getRefQualifier() == RQ_None);
4705  return ICS;
4706}
4707
4708/// PerformObjectArgumentInitialization - Perform initialization of
4709/// the implicit object parameter for the given Method with the given
4710/// expression.
4711ExprResult
4712Sema::PerformObjectArgumentInitialization(Expr *From,
4713                                          NestedNameSpecifier *Qualifier,
4714                                          NamedDecl *FoundDecl,
4715                                          CXXMethodDecl *Method) {
4716  QualType FromRecordType, DestType;
4717  QualType ImplicitParamRecordType  =
4718    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4719
4720  Expr::Classification FromClassification;
4721  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4722    FromRecordType = PT->getPointeeType();
4723    DestType = Method->getThisType(Context);
4724    FromClassification = Expr::Classification::makeSimpleLValue();
4725  } else {
4726    FromRecordType = From->getType();
4727    DestType = ImplicitParamRecordType;
4728    FromClassification = From->Classify(Context);
4729  }
4730
4731  // Note that we always use the true parent context when performing
4732  // the actual argument initialization.
4733  ImplicitConversionSequence ICS
4734    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4735                                      Method, Method->getParent());
4736  if (ICS.isBad()) {
4737    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4738      Qualifiers FromQs = FromRecordType.getQualifiers();
4739      Qualifiers ToQs = DestType.getQualifiers();
4740      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4741      if (CVR) {
4742        Diag(From->getLocStart(),
4743             diag::err_member_function_call_bad_cvr)
4744          << Method->getDeclName() << FromRecordType << (CVR - 1)
4745          << From->getSourceRange();
4746        Diag(Method->getLocation(), diag::note_previous_decl)
4747          << Method->getDeclName();
4748        return ExprError();
4749      }
4750    }
4751
4752    return Diag(From->getLocStart(),
4753                diag::err_implicit_object_parameter_init)
4754       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4755  }
4756
4757  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4758    ExprResult FromRes =
4759      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4760    if (FromRes.isInvalid())
4761      return ExprError();
4762    From = FromRes.take();
4763  }
4764
4765  if (!Context.hasSameType(From->getType(), DestType))
4766    From = ImpCastExprToType(From, DestType, CK_NoOp,
4767                             From->getValueKind()).take();
4768  return Owned(From);
4769}
4770
4771/// TryContextuallyConvertToBool - Attempt to contextually convert the
4772/// expression From to bool (C++0x [conv]p3).
4773static ImplicitConversionSequence
4774TryContextuallyConvertToBool(Sema &S, Expr *From) {
4775  // FIXME: This is pretty broken.
4776  return TryImplicitConversion(S, From, S.Context.BoolTy,
4777                               // FIXME: Are these flags correct?
4778                               /*SuppressUserConversions=*/false,
4779                               /*AllowExplicit=*/true,
4780                               /*InOverloadResolution=*/false,
4781                               /*CStyle=*/false,
4782                               /*AllowObjCWritebackConversion=*/false);
4783}
4784
4785/// PerformContextuallyConvertToBool - Perform a contextual conversion
4786/// of the expression From to bool (C++0x [conv]p3).
4787ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4788  if (checkPlaceholderForOverload(*this, From))
4789    return ExprError();
4790
4791  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4792  if (!ICS.isBad())
4793    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4794
4795  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4796    return Diag(From->getLocStart(),
4797                diag::err_typecheck_bool_condition)
4798                  << From->getType() << From->getSourceRange();
4799  return ExprError();
4800}
4801
4802/// Check that the specified conversion is permitted in a converted constant
4803/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4804/// is acceptable.
4805static bool CheckConvertedConstantConversions(Sema &S,
4806                                              StandardConversionSequence &SCS) {
4807  // Since we know that the target type is an integral or unscoped enumeration
4808  // type, most conversion kinds are impossible. All possible First and Third
4809  // conversions are fine.
4810  switch (SCS.Second) {
4811  case ICK_Identity:
4812  case ICK_Integral_Promotion:
4813  case ICK_Integral_Conversion:
4814    return true;
4815
4816  case ICK_Boolean_Conversion:
4817    // Conversion from an integral or unscoped enumeration type to bool is
4818    // classified as ICK_Boolean_Conversion, but it's also an integral
4819    // conversion, so it's permitted in a converted constant expression.
4820    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4821           SCS.getToType(2)->isBooleanType();
4822
4823  case ICK_Floating_Integral:
4824  case ICK_Complex_Real:
4825    return false;
4826
4827  case ICK_Lvalue_To_Rvalue:
4828  case ICK_Array_To_Pointer:
4829  case ICK_Function_To_Pointer:
4830  case ICK_NoReturn_Adjustment:
4831  case ICK_Qualification:
4832  case ICK_Compatible_Conversion:
4833  case ICK_Vector_Conversion:
4834  case ICK_Vector_Splat:
4835  case ICK_Derived_To_Base:
4836  case ICK_Pointer_Conversion:
4837  case ICK_Pointer_Member:
4838  case ICK_Block_Pointer_Conversion:
4839  case ICK_Writeback_Conversion:
4840  case ICK_Floating_Promotion:
4841  case ICK_Complex_Promotion:
4842  case ICK_Complex_Conversion:
4843  case ICK_Floating_Conversion:
4844  case ICK_TransparentUnionConversion:
4845    llvm_unreachable("unexpected second conversion kind");
4846
4847  case ICK_Num_Conversion_Kinds:
4848    break;
4849  }
4850
4851  llvm_unreachable("unknown conversion kind");
4852}
4853
4854/// CheckConvertedConstantExpression - Check that the expression From is a
4855/// converted constant expression of type T, perform the conversion and produce
4856/// the converted expression, per C++11 [expr.const]p3.
4857ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4858                                                  llvm::APSInt &Value,
4859                                                  CCEKind CCE) {
4860  assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4861  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4862
4863  if (checkPlaceholderForOverload(*this, From))
4864    return ExprError();
4865
4866  // C++11 [expr.const]p3 with proposed wording fixes:
4867  //  A converted constant expression of type T is a core constant expression,
4868  //  implicitly converted to a prvalue of type T, where the converted
4869  //  expression is a literal constant expression and the implicit conversion
4870  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4871  //  conversions, integral promotions, and integral conversions other than
4872  //  narrowing conversions.
4873  ImplicitConversionSequence ICS =
4874    TryImplicitConversion(From, T,
4875                          /*SuppressUserConversions=*/false,
4876                          /*AllowExplicit=*/false,
4877                          /*InOverloadResolution=*/false,
4878                          /*CStyle=*/false,
4879                          /*AllowObjcWritebackConversion=*/false);
4880  StandardConversionSequence *SCS = 0;
4881  switch (ICS.getKind()) {
4882  case ImplicitConversionSequence::StandardConversion:
4883    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4884      return Diag(From->getLocStart(),
4885                  diag::err_typecheck_converted_constant_expression_disallowed)
4886               << From->getType() << From->getSourceRange() << T;
4887    SCS = &ICS.Standard;
4888    break;
4889  case ImplicitConversionSequence::UserDefinedConversion:
4890    // We are converting from class type to an integral or enumeration type, so
4891    // the Before sequence must be trivial.
4892    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4893      return Diag(From->getLocStart(),
4894                  diag::err_typecheck_converted_constant_expression_disallowed)
4895               << From->getType() << From->getSourceRange() << T;
4896    SCS = &ICS.UserDefined.After;
4897    break;
4898  case ImplicitConversionSequence::AmbiguousConversion:
4899  case ImplicitConversionSequence::BadConversion:
4900    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4901      return Diag(From->getLocStart(),
4902                  diag::err_typecheck_converted_constant_expression)
4903                    << From->getType() << From->getSourceRange() << T;
4904    return ExprError();
4905
4906  case ImplicitConversionSequence::EllipsisConversion:
4907    llvm_unreachable("ellipsis conversion in converted constant expression");
4908  }
4909
4910  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4911  if (Result.isInvalid())
4912    return Result;
4913
4914  // Check for a narrowing implicit conversion.
4915  APValue PreNarrowingValue;
4916  QualType PreNarrowingType;
4917  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4918                                PreNarrowingType)) {
4919  case NK_Variable_Narrowing:
4920    // Implicit conversion to a narrower type, and the value is not a constant
4921    // expression. We'll diagnose this in a moment.
4922  case NK_Not_Narrowing:
4923    break;
4924
4925  case NK_Constant_Narrowing:
4926    Diag(From->getLocStart(),
4927         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4928                             diag::err_cce_narrowing)
4929      << CCE << /*Constant*/1
4930      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4931    break;
4932
4933  case NK_Type_Narrowing:
4934    Diag(From->getLocStart(),
4935         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4936                             diag::err_cce_narrowing)
4937      << CCE << /*Constant*/0 << From->getType() << T;
4938    break;
4939  }
4940
4941  // Check the expression is a constant expression.
4942  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4943  Expr::EvalResult Eval;
4944  Eval.Diag = &Notes;
4945
4946  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4947    // The expression can't be folded, so we can't keep it at this position in
4948    // the AST.
4949    Result = ExprError();
4950  } else {
4951    Value = Eval.Val.getInt();
4952
4953    if (Notes.empty()) {
4954      // It's a constant expression.
4955      return Result;
4956    }
4957  }
4958
4959  // It's not a constant expression. Produce an appropriate diagnostic.
4960  if (Notes.size() == 1 &&
4961      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4962    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4963  else {
4964    Diag(From->getLocStart(), diag::err_expr_not_cce)
4965      << CCE << From->getSourceRange();
4966    for (unsigned I = 0; I < Notes.size(); ++I)
4967      Diag(Notes[I].first, Notes[I].second);
4968  }
4969  return Result;
4970}
4971
4972/// dropPointerConversions - If the given standard conversion sequence
4973/// involves any pointer conversions, remove them.  This may change
4974/// the result type of the conversion sequence.
4975static void dropPointerConversion(StandardConversionSequence &SCS) {
4976  if (SCS.Second == ICK_Pointer_Conversion) {
4977    SCS.Second = ICK_Identity;
4978    SCS.Third = ICK_Identity;
4979    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4980  }
4981}
4982
4983/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4984/// convert the expression From to an Objective-C pointer type.
4985static ImplicitConversionSequence
4986TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4987  // Do an implicit conversion to 'id'.
4988  QualType Ty = S.Context.getObjCIdType();
4989  ImplicitConversionSequence ICS
4990    = TryImplicitConversion(S, From, Ty,
4991                            // FIXME: Are these flags correct?
4992                            /*SuppressUserConversions=*/false,
4993                            /*AllowExplicit=*/true,
4994                            /*InOverloadResolution=*/false,
4995                            /*CStyle=*/false,
4996                            /*AllowObjCWritebackConversion=*/false);
4997
4998  // Strip off any final conversions to 'id'.
4999  switch (ICS.getKind()) {
5000  case ImplicitConversionSequence::BadConversion:
5001  case ImplicitConversionSequence::AmbiguousConversion:
5002  case ImplicitConversionSequence::EllipsisConversion:
5003    break;
5004
5005  case ImplicitConversionSequence::UserDefinedConversion:
5006    dropPointerConversion(ICS.UserDefined.After);
5007    break;
5008
5009  case ImplicitConversionSequence::StandardConversion:
5010    dropPointerConversion(ICS.Standard);
5011    break;
5012  }
5013
5014  return ICS;
5015}
5016
5017/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5018/// conversion of the expression From to an Objective-C pointer type.
5019ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5020  if (checkPlaceholderForOverload(*this, From))
5021    return ExprError();
5022
5023  QualType Ty = Context.getObjCIdType();
5024  ImplicitConversionSequence ICS =
5025    TryContextuallyConvertToObjCPointer(*this, From);
5026  if (!ICS.isBad())
5027    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5028  return ExprError();
5029}
5030
5031/// Determine whether the provided type is an integral type, or an enumeration
5032/// type of a permitted flavor.
5033static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
5034  return AllowScopedEnum ? T->isIntegralOrEnumerationType()
5035                         : T->isIntegralOrUnscopedEnumerationType();
5036}
5037
5038/// \brief Attempt to convert the given expression to an integral or
5039/// enumeration type.
5040///
5041/// This routine will attempt to convert an expression of class type to an
5042/// integral or enumeration type, if that class type only has a single
5043/// conversion to an integral or enumeration type.
5044///
5045/// \param Loc The source location of the construct that requires the
5046/// conversion.
5047///
5048/// \param From The expression we're converting from.
5049///
5050/// \param Diagnoser Used to output any diagnostics.
5051///
5052/// \param AllowScopedEnumerations Specifies whether conversions to scoped
5053/// enumerations should be considered.
5054///
5055/// \returns The expression, converted to an integral or enumeration type if
5056/// successful.
5057ExprResult
5058Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
5059                                         ICEConvertDiagnoser &Diagnoser,
5060                                         bool AllowScopedEnumerations) {
5061  // We can't perform any more checking for type-dependent expressions.
5062  if (From->isTypeDependent())
5063    return Owned(From);
5064
5065  // Process placeholders immediately.
5066  if (From->hasPlaceholderType()) {
5067    ExprResult result = CheckPlaceholderExpr(From);
5068    if (result.isInvalid()) return result;
5069    From = result.take();
5070  }
5071
5072  // If the expression already has integral or enumeration type, we're golden.
5073  QualType T = From->getType();
5074  if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
5075    return DefaultLvalueConversion(From);
5076
5077  // FIXME: Check for missing '()' if T is a function type?
5078
5079  // If we don't have a class type in C++, there's no way we can get an
5080  // expression of integral or enumeration type.
5081  const RecordType *RecordTy = T->getAs<RecordType>();
5082  if (!RecordTy || !getLangOpts().CPlusPlus) {
5083    if (!Diagnoser.Suppress)
5084      Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange();
5085    return Owned(From);
5086  }
5087
5088  // We must have a complete class type.
5089  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5090    ICEConvertDiagnoser &Diagnoser;
5091    Expr *From;
5092
5093    TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From)
5094      : TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {}
5095
5096    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5097      Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5098    }
5099  } IncompleteDiagnoser(Diagnoser, From);
5100
5101  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5102    return Owned(From);
5103
5104  // Look for a conversion to an integral or enumeration type.
5105  UnresolvedSet<4> ViableConversions;
5106  UnresolvedSet<4> ExplicitConversions;
5107  const UnresolvedSetImpl *Conversions
5108    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5109
5110  bool HadMultipleCandidates = (Conversions->size() > 1);
5111
5112  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5113                                   E = Conversions->end();
5114       I != E;
5115       ++I) {
5116    if (CXXConversionDecl *Conversion
5117          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
5118      if (isIntegralOrEnumerationType(
5119            Conversion->getConversionType().getNonReferenceType(),
5120            AllowScopedEnumerations)) {
5121        if (Conversion->isExplicit())
5122          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5123        else
5124          ViableConversions.addDecl(I.getDecl(), I.getAccess());
5125      }
5126    }
5127  }
5128
5129  switch (ViableConversions.size()) {
5130  case 0:
5131    if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) {
5132      DeclAccessPair Found = ExplicitConversions[0];
5133      CXXConversionDecl *Conversion
5134        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5135
5136      // The user probably meant to invoke the given explicit
5137      // conversion; use it.
5138      QualType ConvTy
5139        = Conversion->getConversionType().getNonReferenceType();
5140      std::string TypeStr;
5141      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
5142
5143      Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy)
5144        << FixItHint::CreateInsertion(From->getLocStart(),
5145                                      "static_cast<" + TypeStr + ">(")
5146        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
5147                                      ")");
5148      Diagnoser.noteExplicitConv(*this, Conversion, ConvTy);
5149
5150      // If we aren't in a SFINAE context, build a call to the
5151      // explicit conversion function.
5152      if (isSFINAEContext())
5153        return ExprError();
5154
5155      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5156      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5157                                                 HadMultipleCandidates);
5158      if (Result.isInvalid())
5159        return ExprError();
5160      // Record usage of conversion in an implicit cast.
5161      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5162                                      CK_UserDefinedConversion,
5163                                      Result.get(), 0,
5164                                      Result.get()->getValueKind());
5165    }
5166
5167    // We'll complain below about a non-integral condition type.
5168    break;
5169
5170  case 1: {
5171    // Apply this conversion.
5172    DeclAccessPair Found = ViableConversions[0];
5173    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5174
5175    CXXConversionDecl *Conversion
5176      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5177    QualType ConvTy
5178      = Conversion->getConversionType().getNonReferenceType();
5179    if (!Diagnoser.SuppressConversion) {
5180      if (isSFINAEContext())
5181        return ExprError();
5182
5183      Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy)
5184        << From->getSourceRange();
5185    }
5186
5187    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5188                                               HadMultipleCandidates);
5189    if (Result.isInvalid())
5190      return ExprError();
5191    // Record usage of conversion in an implicit cast.
5192    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5193                                    CK_UserDefinedConversion,
5194                                    Result.get(), 0,
5195                                    Result.get()->getValueKind());
5196    break;
5197  }
5198
5199  default:
5200    if (Diagnoser.Suppress)
5201      return ExprError();
5202
5203    Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange();
5204    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5205      CXXConversionDecl *Conv
5206        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5207      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5208      Diagnoser.noteAmbiguous(*this, Conv, ConvTy);
5209    }
5210    return Owned(From);
5211  }
5212
5213  if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
5214      !Diagnoser.Suppress) {
5215    Diagnoser.diagnoseNotInt(*this, Loc, From->getType())
5216      << From->getSourceRange();
5217  }
5218
5219  return DefaultLvalueConversion(From);
5220}
5221
5222/// AddOverloadCandidate - Adds the given function to the set of
5223/// candidate functions, using the given function call arguments.  If
5224/// @p SuppressUserConversions, then don't allow user-defined
5225/// conversions via constructors or conversion operators.
5226///
5227/// \param PartialOverloading true if we are performing "partial" overloading
5228/// based on an incomplete set of function arguments. This feature is used by
5229/// code completion.
5230void
5231Sema::AddOverloadCandidate(FunctionDecl *Function,
5232                           DeclAccessPair FoundDecl,
5233                           llvm::ArrayRef<Expr *> Args,
5234                           OverloadCandidateSet& CandidateSet,
5235                           bool SuppressUserConversions,
5236                           bool PartialOverloading,
5237                           bool AllowExplicit) {
5238  const FunctionProtoType* Proto
5239    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5240  assert(Proto && "Functions without a prototype cannot be overloaded");
5241  assert(!Function->getDescribedFunctionTemplate() &&
5242         "Use AddTemplateOverloadCandidate for function templates");
5243
5244  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5245    if (!isa<CXXConstructorDecl>(Method)) {
5246      // If we get here, it's because we're calling a member function
5247      // that is named without a member access expression (e.g.,
5248      // "this->f") that was either written explicitly or created
5249      // implicitly. This can happen with a qualified call to a member
5250      // function, e.g., X::f(). We use an empty type for the implied
5251      // object argument (C++ [over.call.func]p3), and the acting context
5252      // is irrelevant.
5253      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5254                         QualType(), Expr::Classification::makeSimpleLValue(),
5255                         Args, CandidateSet, SuppressUserConversions);
5256      return;
5257    }
5258    // We treat a constructor like a non-member function, since its object
5259    // argument doesn't participate in overload resolution.
5260  }
5261
5262  if (!CandidateSet.isNewCandidate(Function))
5263    return;
5264
5265  // Overload resolution is always an unevaluated context.
5266  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5267
5268  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5269    // C++ [class.copy]p3:
5270    //   A member function template is never instantiated to perform the copy
5271    //   of a class object to an object of its class type.
5272    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5273    if (Args.size() == 1 &&
5274        Constructor->isSpecializationCopyingObject() &&
5275        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5276         IsDerivedFrom(Args[0]->getType(), ClassType)))
5277      return;
5278  }
5279
5280  // Add this candidate
5281  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5282  Candidate.FoundDecl = FoundDecl;
5283  Candidate.Function = Function;
5284  Candidate.Viable = true;
5285  Candidate.IsSurrogate = false;
5286  Candidate.IgnoreObjectArgument = false;
5287  Candidate.ExplicitCallArguments = Args.size();
5288
5289  unsigned NumArgsInProto = Proto->getNumArgs();
5290
5291  // (C++ 13.3.2p2): A candidate function having fewer than m
5292  // parameters is viable only if it has an ellipsis in its parameter
5293  // list (8.3.5).
5294  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5295      !Proto->isVariadic()) {
5296    Candidate.Viable = false;
5297    Candidate.FailureKind = ovl_fail_too_many_arguments;
5298    return;
5299  }
5300
5301  // (C++ 13.3.2p2): A candidate function having more than m parameters
5302  // is viable only if the (m+1)st parameter has a default argument
5303  // (8.3.6). For the purposes of overload resolution, the
5304  // parameter list is truncated on the right, so that there are
5305  // exactly m parameters.
5306  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5307  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5308    // Not enough arguments.
5309    Candidate.Viable = false;
5310    Candidate.FailureKind = ovl_fail_too_few_arguments;
5311    return;
5312  }
5313
5314  // (CUDA B.1): Check for invalid calls between targets.
5315  if (getLangOpts().CUDA)
5316    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5317      if (CheckCUDATarget(Caller, Function)) {
5318        Candidate.Viable = false;
5319        Candidate.FailureKind = ovl_fail_bad_target;
5320        return;
5321      }
5322
5323  // Determine the implicit conversion sequences for each of the
5324  // arguments.
5325  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5326    if (ArgIdx < NumArgsInProto) {
5327      // (C++ 13.3.2p3): for F to be a viable function, there shall
5328      // exist for each argument an implicit conversion sequence
5329      // (13.3.3.1) that converts that argument to the corresponding
5330      // parameter of F.
5331      QualType ParamType = Proto->getArgType(ArgIdx);
5332      Candidate.Conversions[ArgIdx]
5333        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5334                                SuppressUserConversions,
5335                                /*InOverloadResolution=*/true,
5336                                /*AllowObjCWritebackConversion=*/
5337                                  getLangOpts().ObjCAutoRefCount,
5338                                AllowExplicit);
5339      if (Candidate.Conversions[ArgIdx].isBad()) {
5340        Candidate.Viable = false;
5341        Candidate.FailureKind = ovl_fail_bad_conversion;
5342        break;
5343      }
5344    } else {
5345      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5346      // argument for which there is no corresponding parameter is
5347      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5348      Candidate.Conversions[ArgIdx].setEllipsis();
5349    }
5350  }
5351}
5352
5353/// \brief Add all of the function declarations in the given function set to
5354/// the overload canddiate set.
5355void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5356                                 llvm::ArrayRef<Expr *> Args,
5357                                 OverloadCandidateSet& CandidateSet,
5358                                 bool SuppressUserConversions,
5359                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5360  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5361    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5362    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5363      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5364        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5365                           cast<CXXMethodDecl>(FD)->getParent(),
5366                           Args[0]->getType(), Args[0]->Classify(Context),
5367                           Args.slice(1), CandidateSet,
5368                           SuppressUserConversions);
5369      else
5370        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5371                             SuppressUserConversions);
5372    } else {
5373      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5374      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5375          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5376        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5377                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5378                                   ExplicitTemplateArgs,
5379                                   Args[0]->getType(),
5380                                   Args[0]->Classify(Context), Args.slice(1),
5381                                   CandidateSet, SuppressUserConversions);
5382      else
5383        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5384                                     ExplicitTemplateArgs, Args,
5385                                     CandidateSet, SuppressUserConversions);
5386    }
5387  }
5388}
5389
5390/// AddMethodCandidate - Adds a named decl (which is some kind of
5391/// method) as a method candidate to the given overload set.
5392void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5393                              QualType ObjectType,
5394                              Expr::Classification ObjectClassification,
5395                              Expr **Args, unsigned NumArgs,
5396                              OverloadCandidateSet& CandidateSet,
5397                              bool SuppressUserConversions) {
5398  NamedDecl *Decl = FoundDecl.getDecl();
5399  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5400
5401  if (isa<UsingShadowDecl>(Decl))
5402    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5403
5404  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5405    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5406           "Expected a member function template");
5407    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5408                               /*ExplicitArgs*/ 0,
5409                               ObjectType, ObjectClassification,
5410                               llvm::makeArrayRef(Args, NumArgs), CandidateSet,
5411                               SuppressUserConversions);
5412  } else {
5413    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5414                       ObjectType, ObjectClassification,
5415                       llvm::makeArrayRef(Args, NumArgs),
5416                       CandidateSet, SuppressUserConversions);
5417  }
5418}
5419
5420/// AddMethodCandidate - Adds the given C++ member function to the set
5421/// of candidate functions, using the given function call arguments
5422/// and the object argument (@c Object). For example, in a call
5423/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5424/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5425/// allow user-defined conversions via constructors or conversion
5426/// operators.
5427void
5428Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5429                         CXXRecordDecl *ActingContext, QualType ObjectType,
5430                         Expr::Classification ObjectClassification,
5431                         llvm::ArrayRef<Expr *> Args,
5432                         OverloadCandidateSet& CandidateSet,
5433                         bool SuppressUserConversions) {
5434  const FunctionProtoType* Proto
5435    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5436  assert(Proto && "Methods without a prototype cannot be overloaded");
5437  assert(!isa<CXXConstructorDecl>(Method) &&
5438         "Use AddOverloadCandidate for constructors");
5439
5440  if (!CandidateSet.isNewCandidate(Method))
5441    return;
5442
5443  // Overload resolution is always an unevaluated context.
5444  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5445
5446  // Add this candidate
5447  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5448  Candidate.FoundDecl = FoundDecl;
5449  Candidate.Function = Method;
5450  Candidate.IsSurrogate = false;
5451  Candidate.IgnoreObjectArgument = false;
5452  Candidate.ExplicitCallArguments = Args.size();
5453
5454  unsigned NumArgsInProto = Proto->getNumArgs();
5455
5456  // (C++ 13.3.2p2): A candidate function having fewer than m
5457  // parameters is viable only if it has an ellipsis in its parameter
5458  // list (8.3.5).
5459  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5460    Candidate.Viable = false;
5461    Candidate.FailureKind = ovl_fail_too_many_arguments;
5462    return;
5463  }
5464
5465  // (C++ 13.3.2p2): A candidate function having more than m parameters
5466  // is viable only if the (m+1)st parameter has a default argument
5467  // (8.3.6). For the purposes of overload resolution, the
5468  // parameter list is truncated on the right, so that there are
5469  // exactly m parameters.
5470  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5471  if (Args.size() < MinRequiredArgs) {
5472    // Not enough arguments.
5473    Candidate.Viable = false;
5474    Candidate.FailureKind = ovl_fail_too_few_arguments;
5475    return;
5476  }
5477
5478  Candidate.Viable = true;
5479
5480  if (Method->isStatic() || ObjectType.isNull())
5481    // The implicit object argument is ignored.
5482    Candidate.IgnoreObjectArgument = true;
5483  else {
5484    // Determine the implicit conversion sequence for the object
5485    // parameter.
5486    Candidate.Conversions[0]
5487      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5488                                        Method, ActingContext);
5489    if (Candidate.Conversions[0].isBad()) {
5490      Candidate.Viable = false;
5491      Candidate.FailureKind = ovl_fail_bad_conversion;
5492      return;
5493    }
5494  }
5495
5496  // Determine the implicit conversion sequences for each of the
5497  // arguments.
5498  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5499    if (ArgIdx < NumArgsInProto) {
5500      // (C++ 13.3.2p3): for F to be a viable function, there shall
5501      // exist for each argument an implicit conversion sequence
5502      // (13.3.3.1) that converts that argument to the corresponding
5503      // parameter of F.
5504      QualType ParamType = Proto->getArgType(ArgIdx);
5505      Candidate.Conversions[ArgIdx + 1]
5506        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5507                                SuppressUserConversions,
5508                                /*InOverloadResolution=*/true,
5509                                /*AllowObjCWritebackConversion=*/
5510                                  getLangOpts().ObjCAutoRefCount);
5511      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5512        Candidate.Viable = false;
5513        Candidate.FailureKind = ovl_fail_bad_conversion;
5514        break;
5515      }
5516    } else {
5517      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5518      // argument for which there is no corresponding parameter is
5519      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5520      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5521    }
5522  }
5523}
5524
5525/// \brief Add a C++ member function template as a candidate to the candidate
5526/// set, using template argument deduction to produce an appropriate member
5527/// function template specialization.
5528void
5529Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5530                                 DeclAccessPair FoundDecl,
5531                                 CXXRecordDecl *ActingContext,
5532                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5533                                 QualType ObjectType,
5534                                 Expr::Classification ObjectClassification,
5535                                 llvm::ArrayRef<Expr *> Args,
5536                                 OverloadCandidateSet& CandidateSet,
5537                                 bool SuppressUserConversions) {
5538  if (!CandidateSet.isNewCandidate(MethodTmpl))
5539    return;
5540
5541  // C++ [over.match.funcs]p7:
5542  //   In each case where a candidate is a function template, candidate
5543  //   function template specializations are generated using template argument
5544  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5545  //   candidate functions in the usual way.113) A given name can refer to one
5546  //   or more function templates and also to a set of overloaded non-template
5547  //   functions. In such a case, the candidate functions generated from each
5548  //   function template are combined with the set of non-template candidate
5549  //   functions.
5550  TemplateDeductionInfo Info(CandidateSet.getLocation());
5551  FunctionDecl *Specialization = 0;
5552  if (TemplateDeductionResult Result
5553      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5554                                Specialization, Info)) {
5555    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5556    Candidate.FoundDecl = FoundDecl;
5557    Candidate.Function = MethodTmpl->getTemplatedDecl();
5558    Candidate.Viable = false;
5559    Candidate.FailureKind = ovl_fail_bad_deduction;
5560    Candidate.IsSurrogate = false;
5561    Candidate.IgnoreObjectArgument = false;
5562    Candidate.ExplicitCallArguments = Args.size();
5563    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5564                                                          Info);
5565    return;
5566  }
5567
5568  // Add the function template specialization produced by template argument
5569  // deduction as a candidate.
5570  assert(Specialization && "Missing member function template specialization?");
5571  assert(isa<CXXMethodDecl>(Specialization) &&
5572         "Specialization is not a member function?");
5573  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5574                     ActingContext, ObjectType, ObjectClassification, Args,
5575                     CandidateSet, SuppressUserConversions);
5576}
5577
5578/// \brief Add a C++ function template specialization as a candidate
5579/// in the candidate set, using template argument deduction to produce
5580/// an appropriate function template specialization.
5581void
5582Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5583                                   DeclAccessPair FoundDecl,
5584                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5585                                   llvm::ArrayRef<Expr *> Args,
5586                                   OverloadCandidateSet& CandidateSet,
5587                                   bool SuppressUserConversions) {
5588  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5589    return;
5590
5591  // C++ [over.match.funcs]p7:
5592  //   In each case where a candidate is a function template, candidate
5593  //   function template specializations are generated using template argument
5594  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5595  //   candidate functions in the usual way.113) A given name can refer to one
5596  //   or more function templates and also to a set of overloaded non-template
5597  //   functions. In such a case, the candidate functions generated from each
5598  //   function template are combined with the set of non-template candidate
5599  //   functions.
5600  TemplateDeductionInfo Info(CandidateSet.getLocation());
5601  FunctionDecl *Specialization = 0;
5602  if (TemplateDeductionResult Result
5603        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5604                                  Specialization, Info)) {
5605    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5606    Candidate.FoundDecl = FoundDecl;
5607    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5608    Candidate.Viable = false;
5609    Candidate.FailureKind = ovl_fail_bad_deduction;
5610    Candidate.IsSurrogate = false;
5611    Candidate.IgnoreObjectArgument = false;
5612    Candidate.ExplicitCallArguments = Args.size();
5613    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5614                                                          Info);
5615    return;
5616  }
5617
5618  // Add the function template specialization produced by template argument
5619  // deduction as a candidate.
5620  assert(Specialization && "Missing function template specialization?");
5621  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5622                       SuppressUserConversions);
5623}
5624
5625/// AddConversionCandidate - Add a C++ conversion function as a
5626/// candidate in the candidate set (C++ [over.match.conv],
5627/// C++ [over.match.copy]). From is the expression we're converting from,
5628/// and ToType is the type that we're eventually trying to convert to
5629/// (which may or may not be the same type as the type that the
5630/// conversion function produces).
5631void
5632Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5633                             DeclAccessPair FoundDecl,
5634                             CXXRecordDecl *ActingContext,
5635                             Expr *From, QualType ToType,
5636                             OverloadCandidateSet& CandidateSet) {
5637  assert(!Conversion->getDescribedFunctionTemplate() &&
5638         "Conversion function templates use AddTemplateConversionCandidate");
5639  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5640  if (!CandidateSet.isNewCandidate(Conversion))
5641    return;
5642
5643  // Overload resolution is always an unevaluated context.
5644  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5645
5646  // Add this candidate
5647  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5648  Candidate.FoundDecl = FoundDecl;
5649  Candidate.Function = Conversion;
5650  Candidate.IsSurrogate = false;
5651  Candidate.IgnoreObjectArgument = false;
5652  Candidate.FinalConversion.setAsIdentityConversion();
5653  Candidate.FinalConversion.setFromType(ConvType);
5654  Candidate.FinalConversion.setAllToTypes(ToType);
5655  Candidate.Viable = true;
5656  Candidate.ExplicitCallArguments = 1;
5657
5658  // C++ [over.match.funcs]p4:
5659  //   For conversion functions, the function is considered to be a member of
5660  //   the class of the implicit implied object argument for the purpose of
5661  //   defining the type of the implicit object parameter.
5662  //
5663  // Determine the implicit conversion sequence for the implicit
5664  // object parameter.
5665  QualType ImplicitParamType = From->getType();
5666  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5667    ImplicitParamType = FromPtrType->getPointeeType();
5668  CXXRecordDecl *ConversionContext
5669    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5670
5671  Candidate.Conversions[0]
5672    = TryObjectArgumentInitialization(*this, From->getType(),
5673                                      From->Classify(Context),
5674                                      Conversion, ConversionContext);
5675
5676  if (Candidate.Conversions[0].isBad()) {
5677    Candidate.Viable = false;
5678    Candidate.FailureKind = ovl_fail_bad_conversion;
5679    return;
5680  }
5681
5682  // We won't go through a user-define type conversion function to convert a
5683  // derived to base as such conversions are given Conversion Rank. They only
5684  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5685  QualType FromCanon
5686    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5687  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5688  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5689    Candidate.Viable = false;
5690    Candidate.FailureKind = ovl_fail_trivial_conversion;
5691    return;
5692  }
5693
5694  // To determine what the conversion from the result of calling the
5695  // conversion function to the type we're eventually trying to
5696  // convert to (ToType), we need to synthesize a call to the
5697  // conversion function and attempt copy initialization from it. This
5698  // makes sure that we get the right semantics with respect to
5699  // lvalues/rvalues and the type. Fortunately, we can allocate this
5700  // call on the stack and we don't need its arguments to be
5701  // well-formed.
5702  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5703                            VK_LValue, From->getLocStart());
5704  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5705                                Context.getPointerType(Conversion->getType()),
5706                                CK_FunctionToPointerDecay,
5707                                &ConversionRef, VK_RValue);
5708
5709  QualType ConversionType = Conversion->getConversionType();
5710  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5711    Candidate.Viable = false;
5712    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5713    return;
5714  }
5715
5716  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5717
5718  // Note that it is safe to allocate CallExpr on the stack here because
5719  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5720  // allocator).
5721  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5722  CallExpr Call(Context, &ConversionFn, MultiExprArg(), CallResultType, VK,
5723                From->getLocStart());
5724  ImplicitConversionSequence ICS =
5725    TryCopyInitialization(*this, &Call, ToType,
5726                          /*SuppressUserConversions=*/true,
5727                          /*InOverloadResolution=*/false,
5728                          /*AllowObjCWritebackConversion=*/false);
5729
5730  switch (ICS.getKind()) {
5731  case ImplicitConversionSequence::StandardConversion:
5732    Candidate.FinalConversion = ICS.Standard;
5733
5734    // C++ [over.ics.user]p3:
5735    //   If the user-defined conversion is specified by a specialization of a
5736    //   conversion function template, the second standard conversion sequence
5737    //   shall have exact match rank.
5738    if (Conversion->getPrimaryTemplate() &&
5739        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5740      Candidate.Viable = false;
5741      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5742    }
5743
5744    // C++0x [dcl.init.ref]p5:
5745    //    In the second case, if the reference is an rvalue reference and
5746    //    the second standard conversion sequence of the user-defined
5747    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5748    //    program is ill-formed.
5749    if (ToType->isRValueReferenceType() &&
5750        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5751      Candidate.Viable = false;
5752      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5753    }
5754    break;
5755
5756  case ImplicitConversionSequence::BadConversion:
5757    Candidate.Viable = false;
5758    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5759    break;
5760
5761  default:
5762    llvm_unreachable(
5763           "Can only end up with a standard conversion sequence or failure");
5764  }
5765}
5766
5767/// \brief Adds a conversion function template specialization
5768/// candidate to the overload set, using template argument deduction
5769/// to deduce the template arguments of the conversion function
5770/// template from the type that we are converting to (C++
5771/// [temp.deduct.conv]).
5772void
5773Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5774                                     DeclAccessPair FoundDecl,
5775                                     CXXRecordDecl *ActingDC,
5776                                     Expr *From, QualType ToType,
5777                                     OverloadCandidateSet &CandidateSet) {
5778  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5779         "Only conversion function templates permitted here");
5780
5781  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5782    return;
5783
5784  TemplateDeductionInfo Info(CandidateSet.getLocation());
5785  CXXConversionDecl *Specialization = 0;
5786  if (TemplateDeductionResult Result
5787        = DeduceTemplateArguments(FunctionTemplate, ToType,
5788                                  Specialization, Info)) {
5789    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5790    Candidate.FoundDecl = FoundDecl;
5791    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5792    Candidate.Viable = false;
5793    Candidate.FailureKind = ovl_fail_bad_deduction;
5794    Candidate.IsSurrogate = false;
5795    Candidate.IgnoreObjectArgument = false;
5796    Candidate.ExplicitCallArguments = 1;
5797    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5798                                                          Info);
5799    return;
5800  }
5801
5802  // Add the conversion function template specialization produced by
5803  // template argument deduction as a candidate.
5804  assert(Specialization && "Missing function template specialization?");
5805  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5806                         CandidateSet);
5807}
5808
5809/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5810/// converts the given @c Object to a function pointer via the
5811/// conversion function @c Conversion, and then attempts to call it
5812/// with the given arguments (C++ [over.call.object]p2-4). Proto is
5813/// the type of function that we'll eventually be calling.
5814void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5815                                 DeclAccessPair FoundDecl,
5816                                 CXXRecordDecl *ActingContext,
5817                                 const FunctionProtoType *Proto,
5818                                 Expr *Object,
5819                                 llvm::ArrayRef<Expr *> Args,
5820                                 OverloadCandidateSet& CandidateSet) {
5821  if (!CandidateSet.isNewCandidate(Conversion))
5822    return;
5823
5824  // Overload resolution is always an unevaluated context.
5825  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5826
5827  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5828  Candidate.FoundDecl = FoundDecl;
5829  Candidate.Function = 0;
5830  Candidate.Surrogate = Conversion;
5831  Candidate.Viable = true;
5832  Candidate.IsSurrogate = true;
5833  Candidate.IgnoreObjectArgument = false;
5834  Candidate.ExplicitCallArguments = Args.size();
5835
5836  // Determine the implicit conversion sequence for the implicit
5837  // object parameter.
5838  ImplicitConversionSequence ObjectInit
5839    = TryObjectArgumentInitialization(*this, Object->getType(),
5840                                      Object->Classify(Context),
5841                                      Conversion, ActingContext);
5842  if (ObjectInit.isBad()) {
5843    Candidate.Viable = false;
5844    Candidate.FailureKind = ovl_fail_bad_conversion;
5845    Candidate.Conversions[0] = ObjectInit;
5846    return;
5847  }
5848
5849  // The first conversion is actually a user-defined conversion whose
5850  // first conversion is ObjectInit's standard conversion (which is
5851  // effectively a reference binding). Record it as such.
5852  Candidate.Conversions[0].setUserDefined();
5853  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5854  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5855  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5856  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5857  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5858  Candidate.Conversions[0].UserDefined.After
5859    = Candidate.Conversions[0].UserDefined.Before;
5860  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5861
5862  // Find the
5863  unsigned NumArgsInProto = Proto->getNumArgs();
5864
5865  // (C++ 13.3.2p2): A candidate function having fewer than m
5866  // parameters is viable only if it has an ellipsis in its parameter
5867  // list (8.3.5).
5868  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5869    Candidate.Viable = false;
5870    Candidate.FailureKind = ovl_fail_too_many_arguments;
5871    return;
5872  }
5873
5874  // Function types don't have any default arguments, so just check if
5875  // we have enough arguments.
5876  if (Args.size() < NumArgsInProto) {
5877    // Not enough arguments.
5878    Candidate.Viable = false;
5879    Candidate.FailureKind = ovl_fail_too_few_arguments;
5880    return;
5881  }
5882
5883  // Determine the implicit conversion sequences for each of the
5884  // arguments.
5885  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5886    if (ArgIdx < NumArgsInProto) {
5887      // (C++ 13.3.2p3): for F to be a viable function, there shall
5888      // exist for each argument an implicit conversion sequence
5889      // (13.3.3.1) that converts that argument to the corresponding
5890      // parameter of F.
5891      QualType ParamType = Proto->getArgType(ArgIdx);
5892      Candidate.Conversions[ArgIdx + 1]
5893        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5894                                /*SuppressUserConversions=*/false,
5895                                /*InOverloadResolution=*/false,
5896                                /*AllowObjCWritebackConversion=*/
5897                                  getLangOpts().ObjCAutoRefCount);
5898      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5899        Candidate.Viable = false;
5900        Candidate.FailureKind = ovl_fail_bad_conversion;
5901        break;
5902      }
5903    } else {
5904      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5905      // argument for which there is no corresponding parameter is
5906      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5907      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5908    }
5909  }
5910}
5911
5912/// \brief Add overload candidates for overloaded operators that are
5913/// member functions.
5914///
5915/// Add the overloaded operator candidates that are member functions
5916/// for the operator Op that was used in an operator expression such
5917/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5918/// CandidateSet will store the added overload candidates. (C++
5919/// [over.match.oper]).
5920void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5921                                       SourceLocation OpLoc,
5922                                       Expr **Args, unsigned NumArgs,
5923                                       OverloadCandidateSet& CandidateSet,
5924                                       SourceRange OpRange) {
5925  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5926
5927  // C++ [over.match.oper]p3:
5928  //   For a unary operator @ with an operand of a type whose
5929  //   cv-unqualified version is T1, and for a binary operator @ with
5930  //   a left operand of a type whose cv-unqualified version is T1 and
5931  //   a right operand of a type whose cv-unqualified version is T2,
5932  //   three sets of candidate functions, designated member
5933  //   candidates, non-member candidates and built-in candidates, are
5934  //   constructed as follows:
5935  QualType T1 = Args[0]->getType();
5936
5937  //     -- If T1 is a class type, the set of member candidates is the
5938  //        result of the qualified lookup of T1::operator@
5939  //        (13.3.1.1.1); otherwise, the set of member candidates is
5940  //        empty.
5941  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5942    // Complete the type if it can be completed. Otherwise, we're done.
5943    if (RequireCompleteType(OpLoc, T1, 0))
5944      return;
5945
5946    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5947    LookupQualifiedName(Operators, T1Rec->getDecl());
5948    Operators.suppressDiagnostics();
5949
5950    for (LookupResult::iterator Oper = Operators.begin(),
5951                             OperEnd = Operators.end();
5952         Oper != OperEnd;
5953         ++Oper)
5954      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5955                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5956                         CandidateSet,
5957                         /* SuppressUserConversions = */ false);
5958  }
5959}
5960
5961/// AddBuiltinCandidate - Add a candidate for a built-in
5962/// operator. ResultTy and ParamTys are the result and parameter types
5963/// of the built-in candidate, respectively. Args and NumArgs are the
5964/// arguments being passed to the candidate. IsAssignmentOperator
5965/// should be true when this built-in candidate is an assignment
5966/// operator. NumContextualBoolArguments is the number of arguments
5967/// (at the beginning of the argument list) that will be contextually
5968/// converted to bool.
5969void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5970                               Expr **Args, unsigned NumArgs,
5971                               OverloadCandidateSet& CandidateSet,
5972                               bool IsAssignmentOperator,
5973                               unsigned NumContextualBoolArguments) {
5974  // Overload resolution is always an unevaluated context.
5975  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5976
5977  // Add this candidate
5978  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5979  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5980  Candidate.Function = 0;
5981  Candidate.IsSurrogate = false;
5982  Candidate.IgnoreObjectArgument = false;
5983  Candidate.BuiltinTypes.ResultTy = ResultTy;
5984  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5985    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5986
5987  // Determine the implicit conversion sequences for each of the
5988  // arguments.
5989  Candidate.Viable = true;
5990  Candidate.ExplicitCallArguments = NumArgs;
5991  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5992    // C++ [over.match.oper]p4:
5993    //   For the built-in assignment operators, conversions of the
5994    //   left operand are restricted as follows:
5995    //     -- no temporaries are introduced to hold the left operand, and
5996    //     -- no user-defined conversions are applied to the left
5997    //        operand to achieve a type match with the left-most
5998    //        parameter of a built-in candidate.
5999    //
6000    // We block these conversions by turning off user-defined
6001    // conversions, since that is the only way that initialization of
6002    // a reference to a non-class type can occur from something that
6003    // is not of the same type.
6004    if (ArgIdx < NumContextualBoolArguments) {
6005      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6006             "Contextual conversion to bool requires bool type");
6007      Candidate.Conversions[ArgIdx]
6008        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6009    } else {
6010      Candidate.Conversions[ArgIdx]
6011        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6012                                ArgIdx == 0 && IsAssignmentOperator,
6013                                /*InOverloadResolution=*/false,
6014                                /*AllowObjCWritebackConversion=*/
6015                                  getLangOpts().ObjCAutoRefCount);
6016    }
6017    if (Candidate.Conversions[ArgIdx].isBad()) {
6018      Candidate.Viable = false;
6019      Candidate.FailureKind = ovl_fail_bad_conversion;
6020      break;
6021    }
6022  }
6023}
6024
6025/// BuiltinCandidateTypeSet - A set of types that will be used for the
6026/// candidate operator functions for built-in operators (C++
6027/// [over.built]). The types are separated into pointer types and
6028/// enumeration types.
6029class BuiltinCandidateTypeSet  {
6030  /// TypeSet - A set of types.
6031  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6032
6033  /// PointerTypes - The set of pointer types that will be used in the
6034  /// built-in candidates.
6035  TypeSet PointerTypes;
6036
6037  /// MemberPointerTypes - The set of member pointer types that will be
6038  /// used in the built-in candidates.
6039  TypeSet MemberPointerTypes;
6040
6041  /// EnumerationTypes - The set of enumeration types that will be
6042  /// used in the built-in candidates.
6043  TypeSet EnumerationTypes;
6044
6045  /// \brief The set of vector types that will be used in the built-in
6046  /// candidates.
6047  TypeSet VectorTypes;
6048
6049  /// \brief A flag indicating non-record types are viable candidates
6050  bool HasNonRecordTypes;
6051
6052  /// \brief A flag indicating whether either arithmetic or enumeration types
6053  /// were present in the candidate set.
6054  bool HasArithmeticOrEnumeralTypes;
6055
6056  /// \brief A flag indicating whether the nullptr type was present in the
6057  /// candidate set.
6058  bool HasNullPtrType;
6059
6060  /// Sema - The semantic analysis instance where we are building the
6061  /// candidate type set.
6062  Sema &SemaRef;
6063
6064  /// Context - The AST context in which we will build the type sets.
6065  ASTContext &Context;
6066
6067  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6068                                               const Qualifiers &VisibleQuals);
6069  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6070
6071public:
6072  /// iterator - Iterates through the types that are part of the set.
6073  typedef TypeSet::iterator iterator;
6074
6075  BuiltinCandidateTypeSet(Sema &SemaRef)
6076    : HasNonRecordTypes(false),
6077      HasArithmeticOrEnumeralTypes(false),
6078      HasNullPtrType(false),
6079      SemaRef(SemaRef),
6080      Context(SemaRef.Context) { }
6081
6082  void AddTypesConvertedFrom(QualType Ty,
6083                             SourceLocation Loc,
6084                             bool AllowUserConversions,
6085                             bool AllowExplicitConversions,
6086                             const Qualifiers &VisibleTypeConversionsQuals);
6087
6088  /// pointer_begin - First pointer type found;
6089  iterator pointer_begin() { return PointerTypes.begin(); }
6090
6091  /// pointer_end - Past the last pointer type found;
6092  iterator pointer_end() { return PointerTypes.end(); }
6093
6094  /// member_pointer_begin - First member pointer type found;
6095  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6096
6097  /// member_pointer_end - Past the last member pointer type found;
6098  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6099
6100  /// enumeration_begin - First enumeration type found;
6101  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6102
6103  /// enumeration_end - Past the last enumeration type found;
6104  iterator enumeration_end() { return EnumerationTypes.end(); }
6105
6106  iterator vector_begin() { return VectorTypes.begin(); }
6107  iterator vector_end() { return VectorTypes.end(); }
6108
6109  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6110  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6111  bool hasNullPtrType() const { return HasNullPtrType; }
6112};
6113
6114/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6115/// the set of pointer types along with any more-qualified variants of
6116/// that type. For example, if @p Ty is "int const *", this routine
6117/// will add "int const *", "int const volatile *", "int const
6118/// restrict *", and "int const volatile restrict *" to the set of
6119/// pointer types. Returns true if the add of @p Ty itself succeeded,
6120/// false otherwise.
6121///
6122/// FIXME: what to do about extended qualifiers?
6123bool
6124BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6125                                             const Qualifiers &VisibleQuals) {
6126
6127  // Insert this type.
6128  if (!PointerTypes.insert(Ty))
6129    return false;
6130
6131  QualType PointeeTy;
6132  const PointerType *PointerTy = Ty->getAs<PointerType>();
6133  bool buildObjCPtr = false;
6134  if (!PointerTy) {
6135    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6136    PointeeTy = PTy->getPointeeType();
6137    buildObjCPtr = true;
6138  } else {
6139    PointeeTy = PointerTy->getPointeeType();
6140  }
6141
6142  // Don't add qualified variants of arrays. For one, they're not allowed
6143  // (the qualifier would sink to the element type), and for another, the
6144  // only overload situation where it matters is subscript or pointer +- int,
6145  // and those shouldn't have qualifier variants anyway.
6146  if (PointeeTy->isArrayType())
6147    return true;
6148
6149  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6150  bool hasVolatile = VisibleQuals.hasVolatile();
6151  bool hasRestrict = VisibleQuals.hasRestrict();
6152
6153  // Iterate through all strict supersets of BaseCVR.
6154  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6155    if ((CVR | BaseCVR) != CVR) continue;
6156    // Skip over volatile if no volatile found anywhere in the types.
6157    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6158
6159    // Skip over restrict if no restrict found anywhere in the types, or if
6160    // the type cannot be restrict-qualified.
6161    if ((CVR & Qualifiers::Restrict) &&
6162        (!hasRestrict ||
6163         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6164      continue;
6165
6166    // Build qualified pointee type.
6167    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6168
6169    // Build qualified pointer type.
6170    QualType QPointerTy;
6171    if (!buildObjCPtr)
6172      QPointerTy = Context.getPointerType(QPointeeTy);
6173    else
6174      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6175
6176    // Insert qualified pointer type.
6177    PointerTypes.insert(QPointerTy);
6178  }
6179
6180  return true;
6181}
6182
6183/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6184/// to the set of pointer types along with any more-qualified variants of
6185/// that type. For example, if @p Ty is "int const *", this routine
6186/// will add "int const *", "int const volatile *", "int const
6187/// restrict *", and "int const volatile restrict *" to the set of
6188/// pointer types. Returns true if the add of @p Ty itself succeeded,
6189/// false otherwise.
6190///
6191/// FIXME: what to do about extended qualifiers?
6192bool
6193BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6194    QualType Ty) {
6195  // Insert this type.
6196  if (!MemberPointerTypes.insert(Ty))
6197    return false;
6198
6199  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6200  assert(PointerTy && "type was not a member pointer type!");
6201
6202  QualType PointeeTy = PointerTy->getPointeeType();
6203  // Don't add qualified variants of arrays. For one, they're not allowed
6204  // (the qualifier would sink to the element type), and for another, the
6205  // only overload situation where it matters is subscript or pointer +- int,
6206  // and those shouldn't have qualifier variants anyway.
6207  if (PointeeTy->isArrayType())
6208    return true;
6209  const Type *ClassTy = PointerTy->getClass();
6210
6211  // Iterate through all strict supersets of the pointee type's CVR
6212  // qualifiers.
6213  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6214  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6215    if ((CVR | BaseCVR) != CVR) continue;
6216
6217    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6218    MemberPointerTypes.insert(
6219      Context.getMemberPointerType(QPointeeTy, ClassTy));
6220  }
6221
6222  return true;
6223}
6224
6225/// AddTypesConvertedFrom - Add each of the types to which the type @p
6226/// Ty can be implicit converted to the given set of @p Types. We're
6227/// primarily interested in pointer types and enumeration types. We also
6228/// take member pointer types, for the conditional operator.
6229/// AllowUserConversions is true if we should look at the conversion
6230/// functions of a class type, and AllowExplicitConversions if we
6231/// should also include the explicit conversion functions of a class
6232/// type.
6233void
6234BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6235                                               SourceLocation Loc,
6236                                               bool AllowUserConversions,
6237                                               bool AllowExplicitConversions,
6238                                               const Qualifiers &VisibleQuals) {
6239  // Only deal with canonical types.
6240  Ty = Context.getCanonicalType(Ty);
6241
6242  // Look through reference types; they aren't part of the type of an
6243  // expression for the purposes of conversions.
6244  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6245    Ty = RefTy->getPointeeType();
6246
6247  // If we're dealing with an array type, decay to the pointer.
6248  if (Ty->isArrayType())
6249    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6250
6251  // Otherwise, we don't care about qualifiers on the type.
6252  Ty = Ty.getLocalUnqualifiedType();
6253
6254  // Flag if we ever add a non-record type.
6255  const RecordType *TyRec = Ty->getAs<RecordType>();
6256  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6257
6258  // Flag if we encounter an arithmetic type.
6259  HasArithmeticOrEnumeralTypes =
6260    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6261
6262  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6263    PointerTypes.insert(Ty);
6264  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6265    // Insert our type, and its more-qualified variants, into the set
6266    // of types.
6267    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6268      return;
6269  } else if (Ty->isMemberPointerType()) {
6270    // Member pointers are far easier, since the pointee can't be converted.
6271    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6272      return;
6273  } else if (Ty->isEnumeralType()) {
6274    HasArithmeticOrEnumeralTypes = true;
6275    EnumerationTypes.insert(Ty);
6276  } else if (Ty->isVectorType()) {
6277    // We treat vector types as arithmetic types in many contexts as an
6278    // extension.
6279    HasArithmeticOrEnumeralTypes = true;
6280    VectorTypes.insert(Ty);
6281  } else if (Ty->isNullPtrType()) {
6282    HasNullPtrType = true;
6283  } else if (AllowUserConversions && TyRec) {
6284    // No conversion functions in incomplete types.
6285    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6286      return;
6287
6288    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6289    const UnresolvedSetImpl *Conversions
6290      = ClassDecl->getVisibleConversionFunctions();
6291    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6292           E = Conversions->end(); I != E; ++I) {
6293      NamedDecl *D = I.getDecl();
6294      if (isa<UsingShadowDecl>(D))
6295        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6296
6297      // Skip conversion function templates; they don't tell us anything
6298      // about which builtin types we can convert to.
6299      if (isa<FunctionTemplateDecl>(D))
6300        continue;
6301
6302      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6303      if (AllowExplicitConversions || !Conv->isExplicit()) {
6304        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6305                              VisibleQuals);
6306      }
6307    }
6308  }
6309}
6310
6311/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6312/// the volatile- and non-volatile-qualified assignment operators for the
6313/// given type to the candidate set.
6314static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6315                                                   QualType T,
6316                                                   Expr **Args,
6317                                                   unsigned NumArgs,
6318                                    OverloadCandidateSet &CandidateSet) {
6319  QualType ParamTypes[2];
6320
6321  // T& operator=(T&, T)
6322  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6323  ParamTypes[1] = T;
6324  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6325                        /*IsAssignmentOperator=*/true);
6326
6327  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6328    // volatile T& operator=(volatile T&, T)
6329    ParamTypes[0]
6330      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6331    ParamTypes[1] = T;
6332    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6333                          /*IsAssignmentOperator=*/true);
6334  }
6335}
6336
6337/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6338/// if any, found in visible type conversion functions found in ArgExpr's type.
6339static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6340    Qualifiers VRQuals;
6341    const RecordType *TyRec;
6342    if (const MemberPointerType *RHSMPType =
6343        ArgExpr->getType()->getAs<MemberPointerType>())
6344      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6345    else
6346      TyRec = ArgExpr->getType()->getAs<RecordType>();
6347    if (!TyRec) {
6348      // Just to be safe, assume the worst case.
6349      VRQuals.addVolatile();
6350      VRQuals.addRestrict();
6351      return VRQuals;
6352    }
6353
6354    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6355    if (!ClassDecl->hasDefinition())
6356      return VRQuals;
6357
6358    const UnresolvedSetImpl *Conversions =
6359      ClassDecl->getVisibleConversionFunctions();
6360
6361    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6362           E = Conversions->end(); I != E; ++I) {
6363      NamedDecl *D = I.getDecl();
6364      if (isa<UsingShadowDecl>(D))
6365        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6366      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6367        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6368        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6369          CanTy = ResTypeRef->getPointeeType();
6370        // Need to go down the pointer/mempointer chain and add qualifiers
6371        // as see them.
6372        bool done = false;
6373        while (!done) {
6374          if (CanTy.isRestrictQualified())
6375            VRQuals.addRestrict();
6376          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6377            CanTy = ResTypePtr->getPointeeType();
6378          else if (const MemberPointerType *ResTypeMPtr =
6379                CanTy->getAs<MemberPointerType>())
6380            CanTy = ResTypeMPtr->getPointeeType();
6381          else
6382            done = true;
6383          if (CanTy.isVolatileQualified())
6384            VRQuals.addVolatile();
6385          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6386            return VRQuals;
6387        }
6388      }
6389    }
6390    return VRQuals;
6391}
6392
6393namespace {
6394
6395/// \brief Helper class to manage the addition of builtin operator overload
6396/// candidates. It provides shared state and utility methods used throughout
6397/// the process, as well as a helper method to add each group of builtin
6398/// operator overloads from the standard to a candidate set.
6399class BuiltinOperatorOverloadBuilder {
6400  // Common instance state available to all overload candidate addition methods.
6401  Sema &S;
6402  Expr **Args;
6403  unsigned NumArgs;
6404  Qualifiers VisibleTypeConversionsQuals;
6405  bool HasArithmeticOrEnumeralCandidateType;
6406  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6407  OverloadCandidateSet &CandidateSet;
6408
6409  // Define some constants used to index and iterate over the arithemetic types
6410  // provided via the getArithmeticType() method below.
6411  // The "promoted arithmetic types" are the arithmetic
6412  // types are that preserved by promotion (C++ [over.built]p2).
6413  static const unsigned FirstIntegralType = 3;
6414  static const unsigned LastIntegralType = 20;
6415  static const unsigned FirstPromotedIntegralType = 3,
6416                        LastPromotedIntegralType = 11;
6417  static const unsigned FirstPromotedArithmeticType = 0,
6418                        LastPromotedArithmeticType = 11;
6419  static const unsigned NumArithmeticTypes = 20;
6420
6421  /// \brief Get the canonical type for a given arithmetic type index.
6422  CanQualType getArithmeticType(unsigned index) {
6423    assert(index < NumArithmeticTypes);
6424    static CanQualType ASTContext::* const
6425      ArithmeticTypes[NumArithmeticTypes] = {
6426      // Start of promoted types.
6427      &ASTContext::FloatTy,
6428      &ASTContext::DoubleTy,
6429      &ASTContext::LongDoubleTy,
6430
6431      // Start of integral types.
6432      &ASTContext::IntTy,
6433      &ASTContext::LongTy,
6434      &ASTContext::LongLongTy,
6435      &ASTContext::Int128Ty,
6436      &ASTContext::UnsignedIntTy,
6437      &ASTContext::UnsignedLongTy,
6438      &ASTContext::UnsignedLongLongTy,
6439      &ASTContext::UnsignedInt128Ty,
6440      // End of promoted types.
6441
6442      &ASTContext::BoolTy,
6443      &ASTContext::CharTy,
6444      &ASTContext::WCharTy,
6445      &ASTContext::Char16Ty,
6446      &ASTContext::Char32Ty,
6447      &ASTContext::SignedCharTy,
6448      &ASTContext::ShortTy,
6449      &ASTContext::UnsignedCharTy,
6450      &ASTContext::UnsignedShortTy,
6451      // End of integral types.
6452      // FIXME: What about complex? What about half?
6453    };
6454    return S.Context.*ArithmeticTypes[index];
6455  }
6456
6457  /// \brief Gets the canonical type resulting from the usual arithemetic
6458  /// converions for the given arithmetic types.
6459  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6460    // Accelerator table for performing the usual arithmetic conversions.
6461    // The rules are basically:
6462    //   - if either is floating-point, use the wider floating-point
6463    //   - if same signedness, use the higher rank
6464    //   - if same size, use unsigned of the higher rank
6465    //   - use the larger type
6466    // These rules, together with the axiom that higher ranks are
6467    // never smaller, are sufficient to precompute all of these results
6468    // *except* when dealing with signed types of higher rank.
6469    // (we could precompute SLL x UI for all known platforms, but it's
6470    // better not to make any assumptions).
6471    // We assume that int128 has a higher rank than long long on all platforms.
6472    enum PromotedType {
6473            Dep=-1,
6474            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6475    };
6476    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6477                                        [LastPromotedArithmeticType] = {
6478/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6479/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6480/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6481/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6482/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6483/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6484/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6485/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6486/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6487/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6488/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6489    };
6490
6491    assert(L < LastPromotedArithmeticType);
6492    assert(R < LastPromotedArithmeticType);
6493    int Idx = ConversionsTable[L][R];
6494
6495    // Fast path: the table gives us a concrete answer.
6496    if (Idx != Dep) return getArithmeticType(Idx);
6497
6498    // Slow path: we need to compare widths.
6499    // An invariant is that the signed type has higher rank.
6500    CanQualType LT = getArithmeticType(L),
6501                RT = getArithmeticType(R);
6502    unsigned LW = S.Context.getIntWidth(LT),
6503             RW = S.Context.getIntWidth(RT);
6504
6505    // If they're different widths, use the signed type.
6506    if (LW > RW) return LT;
6507    else if (LW < RW) return RT;
6508
6509    // Otherwise, use the unsigned type of the signed type's rank.
6510    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6511    assert(L == SLL || R == SLL);
6512    return S.Context.UnsignedLongLongTy;
6513  }
6514
6515  /// \brief Helper method to factor out the common pattern of adding overloads
6516  /// for '++' and '--' builtin operators.
6517  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6518                                           bool HasVolatile,
6519                                           bool HasRestrict) {
6520    QualType ParamTypes[2] = {
6521      S.Context.getLValueReferenceType(CandidateTy),
6522      S.Context.IntTy
6523    };
6524
6525    // Non-volatile version.
6526    if (NumArgs == 1)
6527      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6528    else
6529      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6530
6531    // Use a heuristic to reduce number of builtin candidates in the set:
6532    // add volatile version only if there are conversions to a volatile type.
6533    if (HasVolatile) {
6534      ParamTypes[0] =
6535        S.Context.getLValueReferenceType(
6536          S.Context.getVolatileType(CandidateTy));
6537      if (NumArgs == 1)
6538        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6539      else
6540        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6541    }
6542
6543    // Add restrict version only if there are conversions to a restrict type
6544    // and our candidate type is a non-restrict-qualified pointer.
6545    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6546        !CandidateTy.isRestrictQualified()) {
6547      ParamTypes[0]
6548        = S.Context.getLValueReferenceType(
6549            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6550      if (NumArgs == 1)
6551        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6552      else
6553        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6554
6555      if (HasVolatile) {
6556        ParamTypes[0]
6557          = S.Context.getLValueReferenceType(
6558              S.Context.getCVRQualifiedType(CandidateTy,
6559                                            (Qualifiers::Volatile |
6560                                             Qualifiers::Restrict)));
6561        if (NumArgs == 1)
6562          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1,
6563                                CandidateSet);
6564        else
6565          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6566      }
6567    }
6568
6569  }
6570
6571public:
6572  BuiltinOperatorOverloadBuilder(
6573    Sema &S, Expr **Args, unsigned NumArgs,
6574    Qualifiers VisibleTypeConversionsQuals,
6575    bool HasArithmeticOrEnumeralCandidateType,
6576    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6577    OverloadCandidateSet &CandidateSet)
6578    : S(S), Args(Args), NumArgs(NumArgs),
6579      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6580      HasArithmeticOrEnumeralCandidateType(
6581        HasArithmeticOrEnumeralCandidateType),
6582      CandidateTypes(CandidateTypes),
6583      CandidateSet(CandidateSet) {
6584    // Validate some of our static helper constants in debug builds.
6585    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6586           "Invalid first promoted integral type");
6587    assert(getArithmeticType(LastPromotedIntegralType - 1)
6588             == S.Context.UnsignedInt128Ty &&
6589           "Invalid last promoted integral type");
6590    assert(getArithmeticType(FirstPromotedArithmeticType)
6591             == S.Context.FloatTy &&
6592           "Invalid first promoted arithmetic type");
6593    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6594             == S.Context.UnsignedInt128Ty &&
6595           "Invalid last promoted arithmetic type");
6596  }
6597
6598  // C++ [over.built]p3:
6599  //
6600  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6601  //   is either volatile or empty, there exist candidate operator
6602  //   functions of the form
6603  //
6604  //       VQ T&      operator++(VQ T&);
6605  //       T          operator++(VQ T&, int);
6606  //
6607  // C++ [over.built]p4:
6608  //
6609  //   For every pair (T, VQ), where T is an arithmetic type other
6610  //   than bool, and VQ is either volatile or empty, there exist
6611  //   candidate operator functions of the form
6612  //
6613  //       VQ T&      operator--(VQ T&);
6614  //       T          operator--(VQ T&, int);
6615  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6616    if (!HasArithmeticOrEnumeralCandidateType)
6617      return;
6618
6619    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6620         Arith < NumArithmeticTypes; ++Arith) {
6621      addPlusPlusMinusMinusStyleOverloads(
6622        getArithmeticType(Arith),
6623        VisibleTypeConversionsQuals.hasVolatile(),
6624        VisibleTypeConversionsQuals.hasRestrict());
6625    }
6626  }
6627
6628  // C++ [over.built]p5:
6629  //
6630  //   For every pair (T, VQ), where T is a cv-qualified or
6631  //   cv-unqualified object type, and VQ is either volatile or
6632  //   empty, there exist candidate operator functions of the form
6633  //
6634  //       T*VQ&      operator++(T*VQ&);
6635  //       T*VQ&      operator--(T*VQ&);
6636  //       T*         operator++(T*VQ&, int);
6637  //       T*         operator--(T*VQ&, int);
6638  void addPlusPlusMinusMinusPointerOverloads() {
6639    for (BuiltinCandidateTypeSet::iterator
6640              Ptr = CandidateTypes[0].pointer_begin(),
6641           PtrEnd = CandidateTypes[0].pointer_end();
6642         Ptr != PtrEnd; ++Ptr) {
6643      // Skip pointer types that aren't pointers to object types.
6644      if (!(*Ptr)->getPointeeType()->isObjectType())
6645        continue;
6646
6647      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6648        (!(*Ptr).isVolatileQualified() &&
6649         VisibleTypeConversionsQuals.hasVolatile()),
6650        (!(*Ptr).isRestrictQualified() &&
6651         VisibleTypeConversionsQuals.hasRestrict()));
6652    }
6653  }
6654
6655  // C++ [over.built]p6:
6656  //   For every cv-qualified or cv-unqualified object type T, there
6657  //   exist candidate operator functions of the form
6658  //
6659  //       T&         operator*(T*);
6660  //
6661  // C++ [over.built]p7:
6662  //   For every function type T that does not have cv-qualifiers or a
6663  //   ref-qualifier, there exist candidate operator functions of the form
6664  //       T&         operator*(T*);
6665  void addUnaryStarPointerOverloads() {
6666    for (BuiltinCandidateTypeSet::iterator
6667              Ptr = CandidateTypes[0].pointer_begin(),
6668           PtrEnd = CandidateTypes[0].pointer_end();
6669         Ptr != PtrEnd; ++Ptr) {
6670      QualType ParamTy = *Ptr;
6671      QualType PointeeTy = ParamTy->getPointeeType();
6672      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6673        continue;
6674
6675      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6676        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6677          continue;
6678
6679      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6680                            &ParamTy, Args, 1, CandidateSet);
6681    }
6682  }
6683
6684  // C++ [over.built]p9:
6685  //  For every promoted arithmetic type T, there exist candidate
6686  //  operator functions of the form
6687  //
6688  //       T         operator+(T);
6689  //       T         operator-(T);
6690  void addUnaryPlusOrMinusArithmeticOverloads() {
6691    if (!HasArithmeticOrEnumeralCandidateType)
6692      return;
6693
6694    for (unsigned Arith = FirstPromotedArithmeticType;
6695         Arith < LastPromotedArithmeticType; ++Arith) {
6696      QualType ArithTy = getArithmeticType(Arith);
6697      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6698    }
6699
6700    // Extension: We also add these operators for vector types.
6701    for (BuiltinCandidateTypeSet::iterator
6702              Vec = CandidateTypes[0].vector_begin(),
6703           VecEnd = CandidateTypes[0].vector_end();
6704         Vec != VecEnd; ++Vec) {
6705      QualType VecTy = *Vec;
6706      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6707    }
6708  }
6709
6710  // C++ [over.built]p8:
6711  //   For every type T, there exist candidate operator functions of
6712  //   the form
6713  //
6714  //       T*         operator+(T*);
6715  void addUnaryPlusPointerOverloads() {
6716    for (BuiltinCandidateTypeSet::iterator
6717              Ptr = CandidateTypes[0].pointer_begin(),
6718           PtrEnd = CandidateTypes[0].pointer_end();
6719         Ptr != PtrEnd; ++Ptr) {
6720      QualType ParamTy = *Ptr;
6721      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6722    }
6723  }
6724
6725  // C++ [over.built]p10:
6726  //   For every promoted integral type T, there exist candidate
6727  //   operator functions of the form
6728  //
6729  //        T         operator~(T);
6730  void addUnaryTildePromotedIntegralOverloads() {
6731    if (!HasArithmeticOrEnumeralCandidateType)
6732      return;
6733
6734    for (unsigned Int = FirstPromotedIntegralType;
6735         Int < LastPromotedIntegralType; ++Int) {
6736      QualType IntTy = getArithmeticType(Int);
6737      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6738    }
6739
6740    // Extension: We also add this operator for vector types.
6741    for (BuiltinCandidateTypeSet::iterator
6742              Vec = CandidateTypes[0].vector_begin(),
6743           VecEnd = CandidateTypes[0].vector_end();
6744         Vec != VecEnd; ++Vec) {
6745      QualType VecTy = *Vec;
6746      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6747    }
6748  }
6749
6750  // C++ [over.match.oper]p16:
6751  //   For every pointer to member type T, there exist candidate operator
6752  //   functions of the form
6753  //
6754  //        bool operator==(T,T);
6755  //        bool operator!=(T,T);
6756  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6757    /// Set of (canonical) types that we've already handled.
6758    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6759
6760    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6761      for (BuiltinCandidateTypeSet::iterator
6762                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6763             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6764           MemPtr != MemPtrEnd;
6765           ++MemPtr) {
6766        // Don't add the same builtin candidate twice.
6767        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6768          continue;
6769
6770        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6771        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6772                              CandidateSet);
6773      }
6774    }
6775  }
6776
6777  // C++ [over.built]p15:
6778  //
6779  //   For every T, where T is an enumeration type, a pointer type, or
6780  //   std::nullptr_t, there exist candidate operator functions of the form
6781  //
6782  //        bool       operator<(T, T);
6783  //        bool       operator>(T, T);
6784  //        bool       operator<=(T, T);
6785  //        bool       operator>=(T, T);
6786  //        bool       operator==(T, T);
6787  //        bool       operator!=(T, T);
6788  void addRelationalPointerOrEnumeralOverloads() {
6789    // C++ [over.match.oper]p3:
6790    //   [...]the built-in candidates include all of the candidate operator
6791    //   functions defined in 13.6 that, compared to the given operator, [...]
6792    //   do not have the same parameter-type-list as any non-template non-member
6793    //   candidate.
6794    //
6795    // Note that in practice, this only affects enumeration types because there
6796    // aren't any built-in candidates of record type, and a user-defined operator
6797    // must have an operand of record or enumeration type. Also, the only other
6798    // overloaded operator with enumeration arguments, operator=,
6799    // cannot be overloaded for enumeration types, so this is the only place
6800    // where we must suppress candidates like this.
6801    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6802      UserDefinedBinaryOperators;
6803
6804    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6805      if (CandidateTypes[ArgIdx].enumeration_begin() !=
6806          CandidateTypes[ArgIdx].enumeration_end()) {
6807        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6808                                         CEnd = CandidateSet.end();
6809             C != CEnd; ++C) {
6810          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6811            continue;
6812
6813          if (C->Function->isFunctionTemplateSpecialization())
6814            continue;
6815
6816          QualType FirstParamType =
6817            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6818          QualType SecondParamType =
6819            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6820
6821          // Skip if either parameter isn't of enumeral type.
6822          if (!FirstParamType->isEnumeralType() ||
6823              !SecondParamType->isEnumeralType())
6824            continue;
6825
6826          // Add this operator to the set of known user-defined operators.
6827          UserDefinedBinaryOperators.insert(
6828            std::make_pair(S.Context.getCanonicalType(FirstParamType),
6829                           S.Context.getCanonicalType(SecondParamType)));
6830        }
6831      }
6832    }
6833
6834    /// Set of (canonical) types that we've already handled.
6835    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6836
6837    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6838      for (BuiltinCandidateTypeSet::iterator
6839                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6840             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6841           Ptr != PtrEnd; ++Ptr) {
6842        // Don't add the same builtin candidate twice.
6843        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6844          continue;
6845
6846        QualType ParamTypes[2] = { *Ptr, *Ptr };
6847        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6848                              CandidateSet);
6849      }
6850      for (BuiltinCandidateTypeSet::iterator
6851                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6852             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6853           Enum != EnumEnd; ++Enum) {
6854        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6855
6856        // Don't add the same builtin candidate twice, or if a user defined
6857        // candidate exists.
6858        if (!AddedTypes.insert(CanonType) ||
6859            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6860                                                            CanonType)))
6861          continue;
6862
6863        QualType ParamTypes[2] = { *Enum, *Enum };
6864        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6865                              CandidateSet);
6866      }
6867
6868      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6869        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6870        if (AddedTypes.insert(NullPtrTy) &&
6871            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6872                                                             NullPtrTy))) {
6873          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6874          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6875                                CandidateSet);
6876        }
6877      }
6878    }
6879  }
6880
6881  // C++ [over.built]p13:
6882  //
6883  //   For every cv-qualified or cv-unqualified object type T
6884  //   there exist candidate operator functions of the form
6885  //
6886  //      T*         operator+(T*, ptrdiff_t);
6887  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
6888  //      T*         operator-(T*, ptrdiff_t);
6889  //      T*         operator+(ptrdiff_t, T*);
6890  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
6891  //
6892  // C++ [over.built]p14:
6893  //
6894  //   For every T, where T is a pointer to object type, there
6895  //   exist candidate operator functions of the form
6896  //
6897  //      ptrdiff_t  operator-(T, T);
6898  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6899    /// Set of (canonical) types that we've already handled.
6900    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6901
6902    for (int Arg = 0; Arg < 2; ++Arg) {
6903      QualType AsymetricParamTypes[2] = {
6904        S.Context.getPointerDiffType(),
6905        S.Context.getPointerDiffType(),
6906      };
6907      for (BuiltinCandidateTypeSet::iterator
6908                Ptr = CandidateTypes[Arg].pointer_begin(),
6909             PtrEnd = CandidateTypes[Arg].pointer_end();
6910           Ptr != PtrEnd; ++Ptr) {
6911        QualType PointeeTy = (*Ptr)->getPointeeType();
6912        if (!PointeeTy->isObjectType())
6913          continue;
6914
6915        AsymetricParamTypes[Arg] = *Ptr;
6916        if (Arg == 0 || Op == OO_Plus) {
6917          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6918          // T* operator+(ptrdiff_t, T*);
6919          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6920                                CandidateSet);
6921        }
6922        if (Op == OO_Minus) {
6923          // ptrdiff_t operator-(T, T);
6924          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6925            continue;
6926
6927          QualType ParamTypes[2] = { *Ptr, *Ptr };
6928          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6929                                Args, 2, CandidateSet);
6930        }
6931      }
6932    }
6933  }
6934
6935  // C++ [over.built]p12:
6936  //
6937  //   For every pair of promoted arithmetic types L and R, there
6938  //   exist candidate operator functions of the form
6939  //
6940  //        LR         operator*(L, R);
6941  //        LR         operator/(L, R);
6942  //        LR         operator+(L, R);
6943  //        LR         operator-(L, R);
6944  //        bool       operator<(L, R);
6945  //        bool       operator>(L, R);
6946  //        bool       operator<=(L, R);
6947  //        bool       operator>=(L, R);
6948  //        bool       operator==(L, R);
6949  //        bool       operator!=(L, R);
6950  //
6951  //   where LR is the result of the usual arithmetic conversions
6952  //   between types L and R.
6953  //
6954  // C++ [over.built]p24:
6955  //
6956  //   For every pair of promoted arithmetic types L and R, there exist
6957  //   candidate operator functions of the form
6958  //
6959  //        LR       operator?(bool, L, R);
6960  //
6961  //   where LR is the result of the usual arithmetic conversions
6962  //   between types L and R.
6963  // Our candidates ignore the first parameter.
6964  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6965    if (!HasArithmeticOrEnumeralCandidateType)
6966      return;
6967
6968    for (unsigned Left = FirstPromotedArithmeticType;
6969         Left < LastPromotedArithmeticType; ++Left) {
6970      for (unsigned Right = FirstPromotedArithmeticType;
6971           Right < LastPromotedArithmeticType; ++Right) {
6972        QualType LandR[2] = { getArithmeticType(Left),
6973                              getArithmeticType(Right) };
6974        QualType Result =
6975          isComparison ? S.Context.BoolTy
6976                       : getUsualArithmeticConversions(Left, Right);
6977        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6978      }
6979    }
6980
6981    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6982    // conditional operator for vector types.
6983    for (BuiltinCandidateTypeSet::iterator
6984              Vec1 = CandidateTypes[0].vector_begin(),
6985           Vec1End = CandidateTypes[0].vector_end();
6986         Vec1 != Vec1End; ++Vec1) {
6987      for (BuiltinCandidateTypeSet::iterator
6988                Vec2 = CandidateTypes[1].vector_begin(),
6989             Vec2End = CandidateTypes[1].vector_end();
6990           Vec2 != Vec2End; ++Vec2) {
6991        QualType LandR[2] = { *Vec1, *Vec2 };
6992        QualType Result = S.Context.BoolTy;
6993        if (!isComparison) {
6994          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6995            Result = *Vec1;
6996          else
6997            Result = *Vec2;
6998        }
6999
7000        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
7001      }
7002    }
7003  }
7004
7005  // C++ [over.built]p17:
7006  //
7007  //   For every pair of promoted integral types L and R, there
7008  //   exist candidate operator functions of the form
7009  //
7010  //      LR         operator%(L, R);
7011  //      LR         operator&(L, R);
7012  //      LR         operator^(L, R);
7013  //      LR         operator|(L, R);
7014  //      L          operator<<(L, R);
7015  //      L          operator>>(L, R);
7016  //
7017  //   where LR is the result of the usual arithmetic conversions
7018  //   between types L and R.
7019  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7020    if (!HasArithmeticOrEnumeralCandidateType)
7021      return;
7022
7023    for (unsigned Left = FirstPromotedIntegralType;
7024         Left < LastPromotedIntegralType; ++Left) {
7025      for (unsigned Right = FirstPromotedIntegralType;
7026           Right < LastPromotedIntegralType; ++Right) {
7027        QualType LandR[2] = { getArithmeticType(Left),
7028                              getArithmeticType(Right) };
7029        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7030            ? LandR[0]
7031            : getUsualArithmeticConversions(Left, Right);
7032        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
7033      }
7034    }
7035  }
7036
7037  // C++ [over.built]p20:
7038  //
7039  //   For every pair (T, VQ), where T is an enumeration or
7040  //   pointer to member type and VQ is either volatile or
7041  //   empty, there exist candidate operator functions of the form
7042  //
7043  //        VQ T&      operator=(VQ T&, T);
7044  void addAssignmentMemberPointerOrEnumeralOverloads() {
7045    /// Set of (canonical) types that we've already handled.
7046    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7047
7048    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7049      for (BuiltinCandidateTypeSet::iterator
7050                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7051             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7052           Enum != EnumEnd; ++Enum) {
7053        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7054          continue;
7055
7056        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
7057                                               CandidateSet);
7058      }
7059
7060      for (BuiltinCandidateTypeSet::iterator
7061                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7062             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7063           MemPtr != MemPtrEnd; ++MemPtr) {
7064        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7065          continue;
7066
7067        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
7068                                               CandidateSet);
7069      }
7070    }
7071  }
7072
7073  // C++ [over.built]p19:
7074  //
7075  //   For every pair (T, VQ), where T is any type and VQ is either
7076  //   volatile or empty, there exist candidate operator functions
7077  //   of the form
7078  //
7079  //        T*VQ&      operator=(T*VQ&, T*);
7080  //
7081  // C++ [over.built]p21:
7082  //
7083  //   For every pair (T, VQ), where T is a cv-qualified or
7084  //   cv-unqualified object type and VQ is either volatile or
7085  //   empty, there exist candidate operator functions of the form
7086  //
7087  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7088  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7089  void addAssignmentPointerOverloads(bool isEqualOp) {
7090    /// Set of (canonical) types that we've already handled.
7091    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7092
7093    for (BuiltinCandidateTypeSet::iterator
7094              Ptr = CandidateTypes[0].pointer_begin(),
7095           PtrEnd = CandidateTypes[0].pointer_end();
7096         Ptr != PtrEnd; ++Ptr) {
7097      // If this is operator=, keep track of the builtin candidates we added.
7098      if (isEqualOp)
7099        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7100      else if (!(*Ptr)->getPointeeType()->isObjectType())
7101        continue;
7102
7103      // non-volatile version
7104      QualType ParamTypes[2] = {
7105        S.Context.getLValueReferenceType(*Ptr),
7106        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7107      };
7108      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7109                            /*IsAssigmentOperator=*/ isEqualOp);
7110
7111      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7112                          VisibleTypeConversionsQuals.hasVolatile();
7113      if (NeedVolatile) {
7114        // volatile version
7115        ParamTypes[0] =
7116          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7117        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7118                              /*IsAssigmentOperator=*/isEqualOp);
7119      }
7120
7121      if (!(*Ptr).isRestrictQualified() &&
7122          VisibleTypeConversionsQuals.hasRestrict()) {
7123        // restrict version
7124        ParamTypes[0]
7125          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7126        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7127                              /*IsAssigmentOperator=*/isEqualOp);
7128
7129        if (NeedVolatile) {
7130          // volatile restrict version
7131          ParamTypes[0]
7132            = S.Context.getLValueReferenceType(
7133                S.Context.getCVRQualifiedType(*Ptr,
7134                                              (Qualifiers::Volatile |
7135                                               Qualifiers::Restrict)));
7136          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7137                                CandidateSet,
7138                                /*IsAssigmentOperator=*/isEqualOp);
7139        }
7140      }
7141    }
7142
7143    if (isEqualOp) {
7144      for (BuiltinCandidateTypeSet::iterator
7145                Ptr = CandidateTypes[1].pointer_begin(),
7146             PtrEnd = CandidateTypes[1].pointer_end();
7147           Ptr != PtrEnd; ++Ptr) {
7148        // Make sure we don't add the same candidate twice.
7149        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7150          continue;
7151
7152        QualType ParamTypes[2] = {
7153          S.Context.getLValueReferenceType(*Ptr),
7154          *Ptr,
7155        };
7156
7157        // non-volatile version
7158        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7159                              /*IsAssigmentOperator=*/true);
7160
7161        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7162                           VisibleTypeConversionsQuals.hasVolatile();
7163        if (NeedVolatile) {
7164          // volatile version
7165          ParamTypes[0] =
7166            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7167          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7168                                CandidateSet, /*IsAssigmentOperator=*/true);
7169        }
7170
7171        if (!(*Ptr).isRestrictQualified() &&
7172            VisibleTypeConversionsQuals.hasRestrict()) {
7173          // restrict version
7174          ParamTypes[0]
7175            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7176          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7177                                CandidateSet, /*IsAssigmentOperator=*/true);
7178
7179          if (NeedVolatile) {
7180            // volatile restrict version
7181            ParamTypes[0]
7182              = S.Context.getLValueReferenceType(
7183                  S.Context.getCVRQualifiedType(*Ptr,
7184                                                (Qualifiers::Volatile |
7185                                                 Qualifiers::Restrict)));
7186            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7187                                  CandidateSet, /*IsAssigmentOperator=*/true);
7188
7189          }
7190        }
7191      }
7192    }
7193  }
7194
7195  // C++ [over.built]p18:
7196  //
7197  //   For every triple (L, VQ, R), where L is an arithmetic type,
7198  //   VQ is either volatile or empty, and R is a promoted
7199  //   arithmetic type, there exist candidate operator functions of
7200  //   the form
7201  //
7202  //        VQ L&      operator=(VQ L&, R);
7203  //        VQ L&      operator*=(VQ L&, R);
7204  //        VQ L&      operator/=(VQ L&, R);
7205  //        VQ L&      operator+=(VQ L&, R);
7206  //        VQ L&      operator-=(VQ L&, R);
7207  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7208    if (!HasArithmeticOrEnumeralCandidateType)
7209      return;
7210
7211    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7212      for (unsigned Right = FirstPromotedArithmeticType;
7213           Right < LastPromotedArithmeticType; ++Right) {
7214        QualType ParamTypes[2];
7215        ParamTypes[1] = getArithmeticType(Right);
7216
7217        // Add this built-in operator as a candidate (VQ is empty).
7218        ParamTypes[0] =
7219          S.Context.getLValueReferenceType(getArithmeticType(Left));
7220        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7221                              /*IsAssigmentOperator=*/isEqualOp);
7222
7223        // Add this built-in operator as a candidate (VQ is 'volatile').
7224        if (VisibleTypeConversionsQuals.hasVolatile()) {
7225          ParamTypes[0] =
7226            S.Context.getVolatileType(getArithmeticType(Left));
7227          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7228          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7229                                CandidateSet,
7230                                /*IsAssigmentOperator=*/isEqualOp);
7231        }
7232      }
7233    }
7234
7235    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7236    for (BuiltinCandidateTypeSet::iterator
7237              Vec1 = CandidateTypes[0].vector_begin(),
7238           Vec1End = CandidateTypes[0].vector_end();
7239         Vec1 != Vec1End; ++Vec1) {
7240      for (BuiltinCandidateTypeSet::iterator
7241                Vec2 = CandidateTypes[1].vector_begin(),
7242             Vec2End = CandidateTypes[1].vector_end();
7243           Vec2 != Vec2End; ++Vec2) {
7244        QualType ParamTypes[2];
7245        ParamTypes[1] = *Vec2;
7246        // Add this built-in operator as a candidate (VQ is empty).
7247        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7248        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7249                              /*IsAssigmentOperator=*/isEqualOp);
7250
7251        // Add this built-in operator as a candidate (VQ is 'volatile').
7252        if (VisibleTypeConversionsQuals.hasVolatile()) {
7253          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7254          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7255          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7256                                CandidateSet,
7257                                /*IsAssigmentOperator=*/isEqualOp);
7258        }
7259      }
7260    }
7261  }
7262
7263  // C++ [over.built]p22:
7264  //
7265  //   For every triple (L, VQ, R), where L is an integral type, VQ
7266  //   is either volatile or empty, and R is a promoted integral
7267  //   type, there exist candidate operator functions of the form
7268  //
7269  //        VQ L&       operator%=(VQ L&, R);
7270  //        VQ L&       operator<<=(VQ L&, R);
7271  //        VQ L&       operator>>=(VQ L&, R);
7272  //        VQ L&       operator&=(VQ L&, R);
7273  //        VQ L&       operator^=(VQ L&, R);
7274  //        VQ L&       operator|=(VQ L&, R);
7275  void addAssignmentIntegralOverloads() {
7276    if (!HasArithmeticOrEnumeralCandidateType)
7277      return;
7278
7279    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7280      for (unsigned Right = FirstPromotedIntegralType;
7281           Right < LastPromotedIntegralType; ++Right) {
7282        QualType ParamTypes[2];
7283        ParamTypes[1] = getArithmeticType(Right);
7284
7285        // Add this built-in operator as a candidate (VQ is empty).
7286        ParamTypes[0] =
7287          S.Context.getLValueReferenceType(getArithmeticType(Left));
7288        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
7289        if (VisibleTypeConversionsQuals.hasVolatile()) {
7290          // Add this built-in operator as a candidate (VQ is 'volatile').
7291          ParamTypes[0] = getArithmeticType(Left);
7292          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7293          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7294          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7295                                CandidateSet);
7296        }
7297      }
7298    }
7299  }
7300
7301  // C++ [over.operator]p23:
7302  //
7303  //   There also exist candidate operator functions of the form
7304  //
7305  //        bool        operator!(bool);
7306  //        bool        operator&&(bool, bool);
7307  //        bool        operator||(bool, bool);
7308  void addExclaimOverload() {
7309    QualType ParamTy = S.Context.BoolTy;
7310    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
7311                          /*IsAssignmentOperator=*/false,
7312                          /*NumContextualBoolArguments=*/1);
7313  }
7314  void addAmpAmpOrPipePipeOverload() {
7315    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7316    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
7317                          /*IsAssignmentOperator=*/false,
7318                          /*NumContextualBoolArguments=*/2);
7319  }
7320
7321  // C++ [over.built]p13:
7322  //
7323  //   For every cv-qualified or cv-unqualified object type T there
7324  //   exist candidate operator functions of the form
7325  //
7326  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7327  //        T&         operator[](T*, ptrdiff_t);
7328  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7329  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7330  //        T&         operator[](ptrdiff_t, T*);
7331  void addSubscriptOverloads() {
7332    for (BuiltinCandidateTypeSet::iterator
7333              Ptr = CandidateTypes[0].pointer_begin(),
7334           PtrEnd = CandidateTypes[0].pointer_end();
7335         Ptr != PtrEnd; ++Ptr) {
7336      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7337      QualType PointeeType = (*Ptr)->getPointeeType();
7338      if (!PointeeType->isObjectType())
7339        continue;
7340
7341      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7342
7343      // T& operator[](T*, ptrdiff_t)
7344      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7345    }
7346
7347    for (BuiltinCandidateTypeSet::iterator
7348              Ptr = CandidateTypes[1].pointer_begin(),
7349           PtrEnd = CandidateTypes[1].pointer_end();
7350         Ptr != PtrEnd; ++Ptr) {
7351      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7352      QualType PointeeType = (*Ptr)->getPointeeType();
7353      if (!PointeeType->isObjectType())
7354        continue;
7355
7356      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7357
7358      // T& operator[](ptrdiff_t, T*)
7359      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7360    }
7361  }
7362
7363  // C++ [over.built]p11:
7364  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7365  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7366  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7367  //    there exist candidate operator functions of the form
7368  //
7369  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7370  //
7371  //    where CV12 is the union of CV1 and CV2.
7372  void addArrowStarOverloads() {
7373    for (BuiltinCandidateTypeSet::iterator
7374             Ptr = CandidateTypes[0].pointer_begin(),
7375           PtrEnd = CandidateTypes[0].pointer_end();
7376         Ptr != PtrEnd; ++Ptr) {
7377      QualType C1Ty = (*Ptr);
7378      QualType C1;
7379      QualifierCollector Q1;
7380      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7381      if (!isa<RecordType>(C1))
7382        continue;
7383      // heuristic to reduce number of builtin candidates in the set.
7384      // Add volatile/restrict version only if there are conversions to a
7385      // volatile/restrict type.
7386      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7387        continue;
7388      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7389        continue;
7390      for (BuiltinCandidateTypeSet::iterator
7391                MemPtr = CandidateTypes[1].member_pointer_begin(),
7392             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7393           MemPtr != MemPtrEnd; ++MemPtr) {
7394        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7395        QualType C2 = QualType(mptr->getClass(), 0);
7396        C2 = C2.getUnqualifiedType();
7397        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7398          break;
7399        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7400        // build CV12 T&
7401        QualType T = mptr->getPointeeType();
7402        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7403            T.isVolatileQualified())
7404          continue;
7405        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7406            T.isRestrictQualified())
7407          continue;
7408        T = Q1.apply(S.Context, T);
7409        QualType ResultTy = S.Context.getLValueReferenceType(T);
7410        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7411      }
7412    }
7413  }
7414
7415  // Note that we don't consider the first argument, since it has been
7416  // contextually converted to bool long ago. The candidates below are
7417  // therefore added as binary.
7418  //
7419  // C++ [over.built]p25:
7420  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7421  //   enumeration type, there exist candidate operator functions of the form
7422  //
7423  //        T        operator?(bool, T, T);
7424  //
7425  void addConditionalOperatorOverloads() {
7426    /// Set of (canonical) types that we've already handled.
7427    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7428
7429    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7430      for (BuiltinCandidateTypeSet::iterator
7431                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7432             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7433           Ptr != PtrEnd; ++Ptr) {
7434        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7435          continue;
7436
7437        QualType ParamTypes[2] = { *Ptr, *Ptr };
7438        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7439      }
7440
7441      for (BuiltinCandidateTypeSet::iterator
7442                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7443             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7444           MemPtr != MemPtrEnd; ++MemPtr) {
7445        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7446          continue;
7447
7448        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7449        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7450      }
7451
7452      if (S.getLangOpts().CPlusPlus0x) {
7453        for (BuiltinCandidateTypeSet::iterator
7454                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7455               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7456             Enum != EnumEnd; ++Enum) {
7457          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7458            continue;
7459
7460          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7461            continue;
7462
7463          QualType ParamTypes[2] = { *Enum, *Enum };
7464          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7465        }
7466      }
7467    }
7468  }
7469};
7470
7471} // end anonymous namespace
7472
7473/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7474/// operator overloads to the candidate set (C++ [over.built]), based
7475/// on the operator @p Op and the arguments given. For example, if the
7476/// operator is a binary '+', this routine might add "int
7477/// operator+(int, int)" to cover integer addition.
7478void
7479Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7480                                   SourceLocation OpLoc,
7481                                   Expr **Args, unsigned NumArgs,
7482                                   OverloadCandidateSet& CandidateSet) {
7483  // Find all of the types that the arguments can convert to, but only
7484  // if the operator we're looking at has built-in operator candidates
7485  // that make use of these types. Also record whether we encounter non-record
7486  // candidate types or either arithmetic or enumeral candidate types.
7487  Qualifiers VisibleTypeConversionsQuals;
7488  VisibleTypeConversionsQuals.addConst();
7489  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7490    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7491
7492  bool HasNonRecordCandidateType = false;
7493  bool HasArithmeticOrEnumeralCandidateType = false;
7494  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7495  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7496    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7497    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7498                                                 OpLoc,
7499                                                 true,
7500                                                 (Op == OO_Exclaim ||
7501                                                  Op == OO_AmpAmp ||
7502                                                  Op == OO_PipePipe),
7503                                                 VisibleTypeConversionsQuals);
7504    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7505        CandidateTypes[ArgIdx].hasNonRecordTypes();
7506    HasArithmeticOrEnumeralCandidateType =
7507        HasArithmeticOrEnumeralCandidateType ||
7508        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7509  }
7510
7511  // Exit early when no non-record types have been added to the candidate set
7512  // for any of the arguments to the operator.
7513  //
7514  // We can't exit early for !, ||, or &&, since there we have always have
7515  // 'bool' overloads.
7516  if (!HasNonRecordCandidateType &&
7517      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7518    return;
7519
7520  // Setup an object to manage the common state for building overloads.
7521  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7522                                           VisibleTypeConversionsQuals,
7523                                           HasArithmeticOrEnumeralCandidateType,
7524                                           CandidateTypes, CandidateSet);
7525
7526  // Dispatch over the operation to add in only those overloads which apply.
7527  switch (Op) {
7528  case OO_None:
7529  case NUM_OVERLOADED_OPERATORS:
7530    llvm_unreachable("Expected an overloaded operator");
7531
7532  case OO_New:
7533  case OO_Delete:
7534  case OO_Array_New:
7535  case OO_Array_Delete:
7536  case OO_Call:
7537    llvm_unreachable(
7538                    "Special operators don't use AddBuiltinOperatorCandidates");
7539
7540  case OO_Comma:
7541  case OO_Arrow:
7542    // C++ [over.match.oper]p3:
7543    //   -- For the operator ',', the unary operator '&', or the
7544    //      operator '->', the built-in candidates set is empty.
7545    break;
7546
7547  case OO_Plus: // '+' is either unary or binary
7548    if (NumArgs == 1)
7549      OpBuilder.addUnaryPlusPointerOverloads();
7550    // Fall through.
7551
7552  case OO_Minus: // '-' is either unary or binary
7553    if (NumArgs == 1) {
7554      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7555    } else {
7556      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7557      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7558    }
7559    break;
7560
7561  case OO_Star: // '*' is either unary or binary
7562    if (NumArgs == 1)
7563      OpBuilder.addUnaryStarPointerOverloads();
7564    else
7565      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7566    break;
7567
7568  case OO_Slash:
7569    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7570    break;
7571
7572  case OO_PlusPlus:
7573  case OO_MinusMinus:
7574    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7575    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7576    break;
7577
7578  case OO_EqualEqual:
7579  case OO_ExclaimEqual:
7580    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7581    // Fall through.
7582
7583  case OO_Less:
7584  case OO_Greater:
7585  case OO_LessEqual:
7586  case OO_GreaterEqual:
7587    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7588    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7589    break;
7590
7591  case OO_Percent:
7592  case OO_Caret:
7593  case OO_Pipe:
7594  case OO_LessLess:
7595  case OO_GreaterGreater:
7596    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7597    break;
7598
7599  case OO_Amp: // '&' is either unary or binary
7600    if (NumArgs == 1)
7601      // C++ [over.match.oper]p3:
7602      //   -- For the operator ',', the unary operator '&', or the
7603      //      operator '->', the built-in candidates set is empty.
7604      break;
7605
7606    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7607    break;
7608
7609  case OO_Tilde:
7610    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7611    break;
7612
7613  case OO_Equal:
7614    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7615    // Fall through.
7616
7617  case OO_PlusEqual:
7618  case OO_MinusEqual:
7619    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7620    // Fall through.
7621
7622  case OO_StarEqual:
7623  case OO_SlashEqual:
7624    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7625    break;
7626
7627  case OO_PercentEqual:
7628  case OO_LessLessEqual:
7629  case OO_GreaterGreaterEqual:
7630  case OO_AmpEqual:
7631  case OO_CaretEqual:
7632  case OO_PipeEqual:
7633    OpBuilder.addAssignmentIntegralOverloads();
7634    break;
7635
7636  case OO_Exclaim:
7637    OpBuilder.addExclaimOverload();
7638    break;
7639
7640  case OO_AmpAmp:
7641  case OO_PipePipe:
7642    OpBuilder.addAmpAmpOrPipePipeOverload();
7643    break;
7644
7645  case OO_Subscript:
7646    OpBuilder.addSubscriptOverloads();
7647    break;
7648
7649  case OO_ArrowStar:
7650    OpBuilder.addArrowStarOverloads();
7651    break;
7652
7653  case OO_Conditional:
7654    OpBuilder.addConditionalOperatorOverloads();
7655    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7656    break;
7657  }
7658}
7659
7660/// \brief Add function candidates found via argument-dependent lookup
7661/// to the set of overloading candidates.
7662///
7663/// This routine performs argument-dependent name lookup based on the
7664/// given function name (which may also be an operator name) and adds
7665/// all of the overload candidates found by ADL to the overload
7666/// candidate set (C++ [basic.lookup.argdep]).
7667void
7668Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7669                                           bool Operator, SourceLocation Loc,
7670                                           llvm::ArrayRef<Expr *> Args,
7671                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7672                                           OverloadCandidateSet& CandidateSet,
7673                                           bool PartialOverloading) {
7674  ADLResult Fns;
7675
7676  // FIXME: This approach for uniquing ADL results (and removing
7677  // redundant candidates from the set) relies on pointer-equality,
7678  // which means we need to key off the canonical decl.  However,
7679  // always going back to the canonical decl might not get us the
7680  // right set of default arguments.  What default arguments are
7681  // we supposed to consider on ADL candidates, anyway?
7682
7683  // FIXME: Pass in the explicit template arguments?
7684  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
7685
7686  // Erase all of the candidates we already knew about.
7687  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7688                                   CandEnd = CandidateSet.end();
7689       Cand != CandEnd; ++Cand)
7690    if (Cand->Function) {
7691      Fns.erase(Cand->Function);
7692      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7693        Fns.erase(FunTmpl);
7694    }
7695
7696  // For each of the ADL candidates we found, add it to the overload
7697  // set.
7698  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7699    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7700    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7701      if (ExplicitTemplateArgs)
7702        continue;
7703
7704      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7705                           PartialOverloading);
7706    } else
7707      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7708                                   FoundDecl, ExplicitTemplateArgs,
7709                                   Args, CandidateSet);
7710  }
7711}
7712
7713/// isBetterOverloadCandidate - Determines whether the first overload
7714/// candidate is a better candidate than the second (C++ 13.3.3p1).
7715bool
7716isBetterOverloadCandidate(Sema &S,
7717                          const OverloadCandidate &Cand1,
7718                          const OverloadCandidate &Cand2,
7719                          SourceLocation Loc,
7720                          bool UserDefinedConversion) {
7721  // Define viable functions to be better candidates than non-viable
7722  // functions.
7723  if (!Cand2.Viable)
7724    return Cand1.Viable;
7725  else if (!Cand1.Viable)
7726    return false;
7727
7728  // C++ [over.match.best]p1:
7729  //
7730  //   -- if F is a static member function, ICS1(F) is defined such
7731  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7732  //      any function G, and, symmetrically, ICS1(G) is neither
7733  //      better nor worse than ICS1(F).
7734  unsigned StartArg = 0;
7735  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7736    StartArg = 1;
7737
7738  // C++ [over.match.best]p1:
7739  //   A viable function F1 is defined to be a better function than another
7740  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7741  //   conversion sequence than ICSi(F2), and then...
7742  unsigned NumArgs = Cand1.NumConversions;
7743  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7744  bool HasBetterConversion = false;
7745  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7746    switch (CompareImplicitConversionSequences(S,
7747                                               Cand1.Conversions[ArgIdx],
7748                                               Cand2.Conversions[ArgIdx])) {
7749    case ImplicitConversionSequence::Better:
7750      // Cand1 has a better conversion sequence.
7751      HasBetterConversion = true;
7752      break;
7753
7754    case ImplicitConversionSequence::Worse:
7755      // Cand1 can't be better than Cand2.
7756      return false;
7757
7758    case ImplicitConversionSequence::Indistinguishable:
7759      // Do nothing.
7760      break;
7761    }
7762  }
7763
7764  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7765  //       ICSj(F2), or, if not that,
7766  if (HasBetterConversion)
7767    return true;
7768
7769  //     - F1 is a non-template function and F2 is a function template
7770  //       specialization, or, if not that,
7771  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7772      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7773    return true;
7774
7775  //   -- F1 and F2 are function template specializations, and the function
7776  //      template for F1 is more specialized than the template for F2
7777  //      according to the partial ordering rules described in 14.5.5.2, or,
7778  //      if not that,
7779  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7780      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7781    if (FunctionTemplateDecl *BetterTemplate
7782          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7783                                         Cand2.Function->getPrimaryTemplate(),
7784                                         Loc,
7785                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7786                                                             : TPOC_Call,
7787                                         Cand1.ExplicitCallArguments))
7788      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7789  }
7790
7791  //   -- the context is an initialization by user-defined conversion
7792  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7793  //      from the return type of F1 to the destination type (i.e.,
7794  //      the type of the entity being initialized) is a better
7795  //      conversion sequence than the standard conversion sequence
7796  //      from the return type of F2 to the destination type.
7797  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7798      isa<CXXConversionDecl>(Cand1.Function) &&
7799      isa<CXXConversionDecl>(Cand2.Function)) {
7800    // First check whether we prefer one of the conversion functions over the
7801    // other. This only distinguishes the results in non-standard, extension
7802    // cases such as the conversion from a lambda closure type to a function
7803    // pointer or block.
7804    ImplicitConversionSequence::CompareKind FuncResult
7805      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7806    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7807      return FuncResult;
7808
7809    switch (CompareStandardConversionSequences(S,
7810                                               Cand1.FinalConversion,
7811                                               Cand2.FinalConversion)) {
7812    case ImplicitConversionSequence::Better:
7813      // Cand1 has a better conversion sequence.
7814      return true;
7815
7816    case ImplicitConversionSequence::Worse:
7817      // Cand1 can't be better than Cand2.
7818      return false;
7819
7820    case ImplicitConversionSequence::Indistinguishable:
7821      // Do nothing
7822      break;
7823    }
7824  }
7825
7826  return false;
7827}
7828
7829/// \brief Computes the best viable function (C++ 13.3.3)
7830/// within an overload candidate set.
7831///
7832/// \param Loc The location of the function name (or operator symbol) for
7833/// which overload resolution occurs.
7834///
7835/// \param Best If overload resolution was successful or found a deleted
7836/// function, \p Best points to the candidate function found.
7837///
7838/// \returns The result of overload resolution.
7839OverloadingResult
7840OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7841                                         iterator &Best,
7842                                         bool UserDefinedConversion) {
7843  // Find the best viable function.
7844  Best = end();
7845  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7846    if (Cand->Viable)
7847      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7848                                                     UserDefinedConversion))
7849        Best = Cand;
7850  }
7851
7852  // If we didn't find any viable functions, abort.
7853  if (Best == end())
7854    return OR_No_Viable_Function;
7855
7856  // Make sure that this function is better than every other viable
7857  // function. If not, we have an ambiguity.
7858  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7859    if (Cand->Viable &&
7860        Cand != Best &&
7861        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7862                                   UserDefinedConversion)) {
7863      Best = end();
7864      return OR_Ambiguous;
7865    }
7866  }
7867
7868  // Best is the best viable function.
7869  if (Best->Function &&
7870      (Best->Function->isDeleted() ||
7871       S.isFunctionConsideredUnavailable(Best->Function)))
7872    return OR_Deleted;
7873
7874  return OR_Success;
7875}
7876
7877namespace {
7878
7879enum OverloadCandidateKind {
7880  oc_function,
7881  oc_method,
7882  oc_constructor,
7883  oc_function_template,
7884  oc_method_template,
7885  oc_constructor_template,
7886  oc_implicit_default_constructor,
7887  oc_implicit_copy_constructor,
7888  oc_implicit_move_constructor,
7889  oc_implicit_copy_assignment,
7890  oc_implicit_move_assignment,
7891  oc_implicit_inherited_constructor
7892};
7893
7894OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7895                                                FunctionDecl *Fn,
7896                                                std::string &Description) {
7897  bool isTemplate = false;
7898
7899  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7900    isTemplate = true;
7901    Description = S.getTemplateArgumentBindingsText(
7902      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7903  }
7904
7905  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7906    if (!Ctor->isImplicit())
7907      return isTemplate ? oc_constructor_template : oc_constructor;
7908
7909    if (Ctor->getInheritedConstructor())
7910      return oc_implicit_inherited_constructor;
7911
7912    if (Ctor->isDefaultConstructor())
7913      return oc_implicit_default_constructor;
7914
7915    if (Ctor->isMoveConstructor())
7916      return oc_implicit_move_constructor;
7917
7918    assert(Ctor->isCopyConstructor() &&
7919           "unexpected sort of implicit constructor");
7920    return oc_implicit_copy_constructor;
7921  }
7922
7923  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7924    // This actually gets spelled 'candidate function' for now, but
7925    // it doesn't hurt to split it out.
7926    if (!Meth->isImplicit())
7927      return isTemplate ? oc_method_template : oc_method;
7928
7929    if (Meth->isMoveAssignmentOperator())
7930      return oc_implicit_move_assignment;
7931
7932    if (Meth->isCopyAssignmentOperator())
7933      return oc_implicit_copy_assignment;
7934
7935    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
7936    return oc_method;
7937  }
7938
7939  return isTemplate ? oc_function_template : oc_function;
7940}
7941
7942void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7943  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7944  if (!Ctor) return;
7945
7946  Ctor = Ctor->getInheritedConstructor();
7947  if (!Ctor) return;
7948
7949  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7950}
7951
7952} // end anonymous namespace
7953
7954// Notes the location of an overload candidate.
7955void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7956  std::string FnDesc;
7957  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7958  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7959                             << (unsigned) K << FnDesc;
7960  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7961  Diag(Fn->getLocation(), PD);
7962  MaybeEmitInheritedConstructorNote(*this, Fn);
7963}
7964
7965//Notes the location of all overload candidates designated through
7966// OverloadedExpr
7967void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7968  assert(OverloadedExpr->getType() == Context.OverloadTy);
7969
7970  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7971  OverloadExpr *OvlExpr = Ovl.Expression;
7972
7973  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7974                            IEnd = OvlExpr->decls_end();
7975       I != IEnd; ++I) {
7976    if (FunctionTemplateDecl *FunTmpl =
7977                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7978      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7979    } else if (FunctionDecl *Fun
7980                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7981      NoteOverloadCandidate(Fun, DestType);
7982    }
7983  }
7984}
7985
7986/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7987/// "lead" diagnostic; it will be given two arguments, the source and
7988/// target types of the conversion.
7989void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7990                                 Sema &S,
7991                                 SourceLocation CaretLoc,
7992                                 const PartialDiagnostic &PDiag) const {
7993  S.Diag(CaretLoc, PDiag)
7994    << Ambiguous.getFromType() << Ambiguous.getToType();
7995  // FIXME: The note limiting machinery is borrowed from
7996  // OverloadCandidateSet::NoteCandidates; there's an opportunity for
7997  // refactoring here.
7998  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
7999  unsigned CandsShown = 0;
8000  AmbiguousConversionSequence::const_iterator I, E;
8001  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8002    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8003      break;
8004    ++CandsShown;
8005    S.NoteOverloadCandidate(*I);
8006  }
8007  if (I != E)
8008    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8009}
8010
8011namespace {
8012
8013void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8014  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8015  assert(Conv.isBad());
8016  assert(Cand->Function && "for now, candidate must be a function");
8017  FunctionDecl *Fn = Cand->Function;
8018
8019  // There's a conversion slot for the object argument if this is a
8020  // non-constructor method.  Note that 'I' corresponds the
8021  // conversion-slot index.
8022  bool isObjectArgument = false;
8023  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8024    if (I == 0)
8025      isObjectArgument = true;
8026    else
8027      I--;
8028  }
8029
8030  std::string FnDesc;
8031  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8032
8033  Expr *FromExpr = Conv.Bad.FromExpr;
8034  QualType FromTy = Conv.Bad.getFromType();
8035  QualType ToTy = Conv.Bad.getToType();
8036
8037  if (FromTy == S.Context.OverloadTy) {
8038    assert(FromExpr && "overload set argument came from implicit argument?");
8039    Expr *E = FromExpr->IgnoreParens();
8040    if (isa<UnaryOperator>(E))
8041      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8042    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8043
8044    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8045      << (unsigned) FnKind << FnDesc
8046      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8047      << ToTy << Name << I+1;
8048    MaybeEmitInheritedConstructorNote(S, Fn);
8049    return;
8050  }
8051
8052  // Do some hand-waving analysis to see if the non-viability is due
8053  // to a qualifier mismatch.
8054  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8055  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8056  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8057    CToTy = RT->getPointeeType();
8058  else {
8059    // TODO: detect and diagnose the full richness of const mismatches.
8060    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8061      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8062        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8063  }
8064
8065  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8066      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8067    Qualifiers FromQs = CFromTy.getQualifiers();
8068    Qualifiers ToQs = CToTy.getQualifiers();
8069
8070    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8071      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8072        << (unsigned) FnKind << FnDesc
8073        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8074        << FromTy
8075        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8076        << (unsigned) isObjectArgument << I+1;
8077      MaybeEmitInheritedConstructorNote(S, Fn);
8078      return;
8079    }
8080
8081    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8082      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8083        << (unsigned) FnKind << FnDesc
8084        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8085        << FromTy
8086        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8087        << (unsigned) isObjectArgument << I+1;
8088      MaybeEmitInheritedConstructorNote(S, Fn);
8089      return;
8090    }
8091
8092    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8093      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8094      << (unsigned) FnKind << FnDesc
8095      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8096      << FromTy
8097      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8098      << (unsigned) isObjectArgument << I+1;
8099      MaybeEmitInheritedConstructorNote(S, Fn);
8100      return;
8101    }
8102
8103    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8104    assert(CVR && "unexpected qualifiers mismatch");
8105
8106    if (isObjectArgument) {
8107      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8108        << (unsigned) FnKind << FnDesc
8109        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8110        << FromTy << (CVR - 1);
8111    } else {
8112      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8113        << (unsigned) FnKind << FnDesc
8114        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8115        << FromTy << (CVR - 1) << I+1;
8116    }
8117    MaybeEmitInheritedConstructorNote(S, Fn);
8118    return;
8119  }
8120
8121  // Special diagnostic for failure to convert an initializer list, since
8122  // telling the user that it has type void is not useful.
8123  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8124    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8125      << (unsigned) FnKind << FnDesc
8126      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8127      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8128    MaybeEmitInheritedConstructorNote(S, Fn);
8129    return;
8130  }
8131
8132  // Diagnose references or pointers to incomplete types differently,
8133  // since it's far from impossible that the incompleteness triggered
8134  // the failure.
8135  QualType TempFromTy = FromTy.getNonReferenceType();
8136  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8137    TempFromTy = PTy->getPointeeType();
8138  if (TempFromTy->isIncompleteType()) {
8139    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8140      << (unsigned) FnKind << FnDesc
8141      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8142      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8143    MaybeEmitInheritedConstructorNote(S, Fn);
8144    return;
8145  }
8146
8147  // Diagnose base -> derived pointer conversions.
8148  unsigned BaseToDerivedConversion = 0;
8149  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8150    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8151      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8152                                               FromPtrTy->getPointeeType()) &&
8153          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8154          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8155          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8156                          FromPtrTy->getPointeeType()))
8157        BaseToDerivedConversion = 1;
8158    }
8159  } else if (const ObjCObjectPointerType *FromPtrTy
8160                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8161    if (const ObjCObjectPointerType *ToPtrTy
8162                                        = ToTy->getAs<ObjCObjectPointerType>())
8163      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8164        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8165          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8166                                                FromPtrTy->getPointeeType()) &&
8167              FromIface->isSuperClassOf(ToIface))
8168            BaseToDerivedConversion = 2;
8169  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8170    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8171        !FromTy->isIncompleteType() &&
8172        !ToRefTy->getPointeeType()->isIncompleteType() &&
8173        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8174      BaseToDerivedConversion = 3;
8175    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8176               ToTy.getNonReferenceType().getCanonicalType() ==
8177               FromTy.getNonReferenceType().getCanonicalType()) {
8178      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8179        << (unsigned) FnKind << FnDesc
8180        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8181        << (unsigned) isObjectArgument << I + 1;
8182      MaybeEmitInheritedConstructorNote(S, Fn);
8183      return;
8184    }
8185  }
8186
8187  if (BaseToDerivedConversion) {
8188    S.Diag(Fn->getLocation(),
8189           diag::note_ovl_candidate_bad_base_to_derived_conv)
8190      << (unsigned) FnKind << FnDesc
8191      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8192      << (BaseToDerivedConversion - 1)
8193      << FromTy << ToTy << I+1;
8194    MaybeEmitInheritedConstructorNote(S, Fn);
8195    return;
8196  }
8197
8198  if (isa<ObjCObjectPointerType>(CFromTy) &&
8199      isa<PointerType>(CToTy)) {
8200      Qualifiers FromQs = CFromTy.getQualifiers();
8201      Qualifiers ToQs = CToTy.getQualifiers();
8202      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8203        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8204        << (unsigned) FnKind << FnDesc
8205        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8206        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8207        MaybeEmitInheritedConstructorNote(S, Fn);
8208        return;
8209      }
8210  }
8211
8212  // Emit the generic diagnostic and, optionally, add the hints to it.
8213  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8214  FDiag << (unsigned) FnKind << FnDesc
8215    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8216    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8217    << (unsigned) (Cand->Fix.Kind);
8218
8219  // If we can fix the conversion, suggest the FixIts.
8220  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8221       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8222    FDiag << *HI;
8223  S.Diag(Fn->getLocation(), FDiag);
8224
8225  MaybeEmitInheritedConstructorNote(S, Fn);
8226}
8227
8228void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8229                           unsigned NumFormalArgs) {
8230  // TODO: treat calls to a missing default constructor as a special case
8231
8232  FunctionDecl *Fn = Cand->Function;
8233  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8234
8235  unsigned MinParams = Fn->getMinRequiredArguments();
8236
8237  // With invalid overloaded operators, it's possible that we think we
8238  // have an arity mismatch when it fact it looks like we have the
8239  // right number of arguments, because only overloaded operators have
8240  // the weird behavior of overloading member and non-member functions.
8241  // Just don't report anything.
8242  if (Fn->isInvalidDecl() &&
8243      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8244    return;
8245
8246  // at least / at most / exactly
8247  unsigned mode, modeCount;
8248  if (NumFormalArgs < MinParams) {
8249    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8250           (Cand->FailureKind == ovl_fail_bad_deduction &&
8251            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8252    if (MinParams != FnTy->getNumArgs() ||
8253        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8254      mode = 0; // "at least"
8255    else
8256      mode = 2; // "exactly"
8257    modeCount = MinParams;
8258  } else {
8259    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8260           (Cand->FailureKind == ovl_fail_bad_deduction &&
8261            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8262    if (MinParams != FnTy->getNumArgs())
8263      mode = 1; // "at most"
8264    else
8265      mode = 2; // "exactly"
8266    modeCount = FnTy->getNumArgs();
8267  }
8268
8269  std::string Description;
8270  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8271
8272  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8273    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8274      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8275      << Fn->getParamDecl(0) << NumFormalArgs;
8276  else
8277    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8278      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8279      << modeCount << NumFormalArgs;
8280  MaybeEmitInheritedConstructorNote(S, Fn);
8281}
8282
8283/// Diagnose a failed template-argument deduction.
8284void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8285                          unsigned NumArgs) {
8286  FunctionDecl *Fn = Cand->Function; // pattern
8287
8288  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8289  NamedDecl *ParamD;
8290  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8291  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8292  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8293  switch (Cand->DeductionFailure.Result) {
8294  case Sema::TDK_Success:
8295    llvm_unreachable("TDK_success while diagnosing bad deduction");
8296
8297  case Sema::TDK_Incomplete: {
8298    assert(ParamD && "no parameter found for incomplete deduction result");
8299    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8300      << ParamD->getDeclName();
8301    MaybeEmitInheritedConstructorNote(S, Fn);
8302    return;
8303  }
8304
8305  case Sema::TDK_Underqualified: {
8306    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8307    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8308
8309    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8310
8311    // Param will have been canonicalized, but it should just be a
8312    // qualified version of ParamD, so move the qualifiers to that.
8313    QualifierCollector Qs;
8314    Qs.strip(Param);
8315    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8316    assert(S.Context.hasSameType(Param, NonCanonParam));
8317
8318    // Arg has also been canonicalized, but there's nothing we can do
8319    // about that.  It also doesn't matter as much, because it won't
8320    // have any template parameters in it (because deduction isn't
8321    // done on dependent types).
8322    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8323
8324    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8325      << ParamD->getDeclName() << Arg << NonCanonParam;
8326    MaybeEmitInheritedConstructorNote(S, Fn);
8327    return;
8328  }
8329
8330  case Sema::TDK_Inconsistent: {
8331    assert(ParamD && "no parameter found for inconsistent deduction result");
8332    int which = 0;
8333    if (isa<TemplateTypeParmDecl>(ParamD))
8334      which = 0;
8335    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8336      which = 1;
8337    else {
8338      which = 2;
8339    }
8340
8341    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8342      << which << ParamD->getDeclName()
8343      << *Cand->DeductionFailure.getFirstArg()
8344      << *Cand->DeductionFailure.getSecondArg();
8345    MaybeEmitInheritedConstructorNote(S, Fn);
8346    return;
8347  }
8348
8349  case Sema::TDK_InvalidExplicitArguments:
8350    assert(ParamD && "no parameter found for invalid explicit arguments");
8351    if (ParamD->getDeclName())
8352      S.Diag(Fn->getLocation(),
8353             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8354        << ParamD->getDeclName();
8355    else {
8356      int index = 0;
8357      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8358        index = TTP->getIndex();
8359      else if (NonTypeTemplateParmDecl *NTTP
8360                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8361        index = NTTP->getIndex();
8362      else
8363        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8364      S.Diag(Fn->getLocation(),
8365             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8366        << (index + 1);
8367    }
8368    MaybeEmitInheritedConstructorNote(S, Fn);
8369    return;
8370
8371  case Sema::TDK_TooManyArguments:
8372  case Sema::TDK_TooFewArguments:
8373    DiagnoseArityMismatch(S, Cand, NumArgs);
8374    return;
8375
8376  case Sema::TDK_InstantiationDepth:
8377    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8378    MaybeEmitInheritedConstructorNote(S, Fn);
8379    return;
8380
8381  case Sema::TDK_SubstitutionFailure: {
8382    // Format the template argument list into the argument string.
8383    llvm::SmallString<128> TemplateArgString;
8384    if (TemplateArgumentList *Args =
8385          Cand->DeductionFailure.getTemplateArgumentList()) {
8386      TemplateArgString = " ";
8387      TemplateArgString += S.getTemplateArgumentBindingsText(
8388          Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
8389    }
8390
8391    // If this candidate was disabled by enable_if, say so.
8392    PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
8393    if (PDiag && PDiag->second.getDiagID() ==
8394          diag::err_typename_nested_not_found_enable_if) {
8395      // FIXME: Use the source range of the condition, and the fully-qualified
8396      //        name of the enable_if template. These are both present in PDiag.
8397      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8398        << "'enable_if'" << TemplateArgString;
8399      return;
8400    }
8401
8402    // Format the SFINAE diagnostic into the argument string.
8403    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8404    //        formatted message in another diagnostic.
8405    llvm::SmallString<128> SFINAEArgString;
8406    SourceRange R;
8407    if (PDiag) {
8408      SFINAEArgString = ": ";
8409      R = SourceRange(PDiag->first, PDiag->first);
8410      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8411    }
8412
8413    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8414      << TemplateArgString << SFINAEArgString << R;
8415    MaybeEmitInheritedConstructorNote(S, Fn);
8416    return;
8417  }
8418
8419  // TODO: diagnose these individually, then kill off
8420  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8421  case Sema::TDK_NonDeducedMismatch:
8422  case Sema::TDK_FailedOverloadResolution:
8423    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8424    MaybeEmitInheritedConstructorNote(S, Fn);
8425    return;
8426  }
8427}
8428
8429/// CUDA: diagnose an invalid call across targets.
8430void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8431  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8432  FunctionDecl *Callee = Cand->Function;
8433
8434  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8435                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8436
8437  std::string FnDesc;
8438  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8439
8440  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8441      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8442}
8443
8444/// Generates a 'note' diagnostic for an overload candidate.  We've
8445/// already generated a primary error at the call site.
8446///
8447/// It really does need to be a single diagnostic with its caret
8448/// pointed at the candidate declaration.  Yes, this creates some
8449/// major challenges of technical writing.  Yes, this makes pointing
8450/// out problems with specific arguments quite awkward.  It's still
8451/// better than generating twenty screens of text for every failed
8452/// overload.
8453///
8454/// It would be great to be able to express per-candidate problems
8455/// more richly for those diagnostic clients that cared, but we'd
8456/// still have to be just as careful with the default diagnostics.
8457void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8458                           unsigned NumArgs) {
8459  FunctionDecl *Fn = Cand->Function;
8460
8461  // Note deleted candidates, but only if they're viable.
8462  if (Cand->Viable && (Fn->isDeleted() ||
8463      S.isFunctionConsideredUnavailable(Fn))) {
8464    std::string FnDesc;
8465    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8466
8467    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8468      << FnKind << FnDesc
8469      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8470    MaybeEmitInheritedConstructorNote(S, Fn);
8471    return;
8472  }
8473
8474  // We don't really have anything else to say about viable candidates.
8475  if (Cand->Viable) {
8476    S.NoteOverloadCandidate(Fn);
8477    return;
8478  }
8479
8480  switch (Cand->FailureKind) {
8481  case ovl_fail_too_many_arguments:
8482  case ovl_fail_too_few_arguments:
8483    return DiagnoseArityMismatch(S, Cand, NumArgs);
8484
8485  case ovl_fail_bad_deduction:
8486    return DiagnoseBadDeduction(S, Cand, NumArgs);
8487
8488  case ovl_fail_trivial_conversion:
8489  case ovl_fail_bad_final_conversion:
8490  case ovl_fail_final_conversion_not_exact:
8491    return S.NoteOverloadCandidate(Fn);
8492
8493  case ovl_fail_bad_conversion: {
8494    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8495    for (unsigned N = Cand->NumConversions; I != N; ++I)
8496      if (Cand->Conversions[I].isBad())
8497        return DiagnoseBadConversion(S, Cand, I);
8498
8499    // FIXME: this currently happens when we're called from SemaInit
8500    // when user-conversion overload fails.  Figure out how to handle
8501    // those conditions and diagnose them well.
8502    return S.NoteOverloadCandidate(Fn);
8503  }
8504
8505  case ovl_fail_bad_target:
8506    return DiagnoseBadTarget(S, Cand);
8507  }
8508}
8509
8510void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8511  // Desugar the type of the surrogate down to a function type,
8512  // retaining as many typedefs as possible while still showing
8513  // the function type (and, therefore, its parameter types).
8514  QualType FnType = Cand->Surrogate->getConversionType();
8515  bool isLValueReference = false;
8516  bool isRValueReference = false;
8517  bool isPointer = false;
8518  if (const LValueReferenceType *FnTypeRef =
8519        FnType->getAs<LValueReferenceType>()) {
8520    FnType = FnTypeRef->getPointeeType();
8521    isLValueReference = true;
8522  } else if (const RValueReferenceType *FnTypeRef =
8523               FnType->getAs<RValueReferenceType>()) {
8524    FnType = FnTypeRef->getPointeeType();
8525    isRValueReference = true;
8526  }
8527  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8528    FnType = FnTypePtr->getPointeeType();
8529    isPointer = true;
8530  }
8531  // Desugar down to a function type.
8532  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8533  // Reconstruct the pointer/reference as appropriate.
8534  if (isPointer) FnType = S.Context.getPointerType(FnType);
8535  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8536  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8537
8538  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8539    << FnType;
8540  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8541}
8542
8543void NoteBuiltinOperatorCandidate(Sema &S,
8544                                  StringRef Opc,
8545                                  SourceLocation OpLoc,
8546                                  OverloadCandidate *Cand) {
8547  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8548  std::string TypeStr("operator");
8549  TypeStr += Opc;
8550  TypeStr += "(";
8551  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8552  if (Cand->NumConversions == 1) {
8553    TypeStr += ")";
8554    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8555  } else {
8556    TypeStr += ", ";
8557    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8558    TypeStr += ")";
8559    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8560  }
8561}
8562
8563void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8564                                  OverloadCandidate *Cand) {
8565  unsigned NoOperands = Cand->NumConversions;
8566  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8567    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8568    if (ICS.isBad()) break; // all meaningless after first invalid
8569    if (!ICS.isAmbiguous()) continue;
8570
8571    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8572                              S.PDiag(diag::note_ambiguous_type_conversion));
8573  }
8574}
8575
8576SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8577  if (Cand->Function)
8578    return Cand->Function->getLocation();
8579  if (Cand->IsSurrogate)
8580    return Cand->Surrogate->getLocation();
8581  return SourceLocation();
8582}
8583
8584static unsigned
8585RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8586  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8587  case Sema::TDK_Success:
8588    llvm_unreachable("TDK_success while diagnosing bad deduction");
8589
8590  case Sema::TDK_Invalid:
8591  case Sema::TDK_Incomplete:
8592    return 1;
8593
8594  case Sema::TDK_Underqualified:
8595  case Sema::TDK_Inconsistent:
8596    return 2;
8597
8598  case Sema::TDK_SubstitutionFailure:
8599  case Sema::TDK_NonDeducedMismatch:
8600    return 3;
8601
8602  case Sema::TDK_InstantiationDepth:
8603  case Sema::TDK_FailedOverloadResolution:
8604    return 4;
8605
8606  case Sema::TDK_InvalidExplicitArguments:
8607    return 5;
8608
8609  case Sema::TDK_TooManyArguments:
8610  case Sema::TDK_TooFewArguments:
8611    return 6;
8612  }
8613  llvm_unreachable("Unhandled deduction result");
8614}
8615
8616struct CompareOverloadCandidatesForDisplay {
8617  Sema &S;
8618  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8619
8620  bool operator()(const OverloadCandidate *L,
8621                  const OverloadCandidate *R) {
8622    // Fast-path this check.
8623    if (L == R) return false;
8624
8625    // Order first by viability.
8626    if (L->Viable) {
8627      if (!R->Viable) return true;
8628
8629      // TODO: introduce a tri-valued comparison for overload
8630      // candidates.  Would be more worthwhile if we had a sort
8631      // that could exploit it.
8632      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8633      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8634    } else if (R->Viable)
8635      return false;
8636
8637    assert(L->Viable == R->Viable);
8638
8639    // Criteria by which we can sort non-viable candidates:
8640    if (!L->Viable) {
8641      // 1. Arity mismatches come after other candidates.
8642      if (L->FailureKind == ovl_fail_too_many_arguments ||
8643          L->FailureKind == ovl_fail_too_few_arguments)
8644        return false;
8645      if (R->FailureKind == ovl_fail_too_many_arguments ||
8646          R->FailureKind == ovl_fail_too_few_arguments)
8647        return true;
8648
8649      // 2. Bad conversions come first and are ordered by the number
8650      // of bad conversions and quality of good conversions.
8651      if (L->FailureKind == ovl_fail_bad_conversion) {
8652        if (R->FailureKind != ovl_fail_bad_conversion)
8653          return true;
8654
8655        // The conversion that can be fixed with a smaller number of changes,
8656        // comes first.
8657        unsigned numLFixes = L->Fix.NumConversionsFixed;
8658        unsigned numRFixes = R->Fix.NumConversionsFixed;
8659        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8660        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8661        if (numLFixes != numRFixes) {
8662          if (numLFixes < numRFixes)
8663            return true;
8664          else
8665            return false;
8666        }
8667
8668        // If there's any ordering between the defined conversions...
8669        // FIXME: this might not be transitive.
8670        assert(L->NumConversions == R->NumConversions);
8671
8672        int leftBetter = 0;
8673        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8674        for (unsigned E = L->NumConversions; I != E; ++I) {
8675          switch (CompareImplicitConversionSequences(S,
8676                                                     L->Conversions[I],
8677                                                     R->Conversions[I])) {
8678          case ImplicitConversionSequence::Better:
8679            leftBetter++;
8680            break;
8681
8682          case ImplicitConversionSequence::Worse:
8683            leftBetter--;
8684            break;
8685
8686          case ImplicitConversionSequence::Indistinguishable:
8687            break;
8688          }
8689        }
8690        if (leftBetter > 0) return true;
8691        if (leftBetter < 0) return false;
8692
8693      } else if (R->FailureKind == ovl_fail_bad_conversion)
8694        return false;
8695
8696      if (L->FailureKind == ovl_fail_bad_deduction) {
8697        if (R->FailureKind != ovl_fail_bad_deduction)
8698          return true;
8699
8700        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8701          return RankDeductionFailure(L->DeductionFailure)
8702               < RankDeductionFailure(R->DeductionFailure);
8703      } else if (R->FailureKind == ovl_fail_bad_deduction)
8704        return false;
8705
8706      // TODO: others?
8707    }
8708
8709    // Sort everything else by location.
8710    SourceLocation LLoc = GetLocationForCandidate(L);
8711    SourceLocation RLoc = GetLocationForCandidate(R);
8712
8713    // Put candidates without locations (e.g. builtins) at the end.
8714    if (LLoc.isInvalid()) return false;
8715    if (RLoc.isInvalid()) return true;
8716
8717    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8718  }
8719};
8720
8721/// CompleteNonViableCandidate - Normally, overload resolution only
8722/// computes up to the first. Produces the FixIt set if possible.
8723void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8724                                llvm::ArrayRef<Expr *> Args) {
8725  assert(!Cand->Viable);
8726
8727  // Don't do anything on failures other than bad conversion.
8728  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8729
8730  // We only want the FixIts if all the arguments can be corrected.
8731  bool Unfixable = false;
8732  // Use a implicit copy initialization to check conversion fixes.
8733  Cand->Fix.setConversionChecker(TryCopyInitialization);
8734
8735  // Skip forward to the first bad conversion.
8736  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8737  unsigned ConvCount = Cand->NumConversions;
8738  while (true) {
8739    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8740    ConvIdx++;
8741    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8742      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8743      break;
8744    }
8745  }
8746
8747  if (ConvIdx == ConvCount)
8748    return;
8749
8750  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8751         "remaining conversion is initialized?");
8752
8753  // FIXME: this should probably be preserved from the overload
8754  // operation somehow.
8755  bool SuppressUserConversions = false;
8756
8757  const FunctionProtoType* Proto;
8758  unsigned ArgIdx = ConvIdx;
8759
8760  if (Cand->IsSurrogate) {
8761    QualType ConvType
8762      = Cand->Surrogate->getConversionType().getNonReferenceType();
8763    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8764      ConvType = ConvPtrType->getPointeeType();
8765    Proto = ConvType->getAs<FunctionProtoType>();
8766    ArgIdx--;
8767  } else if (Cand->Function) {
8768    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8769    if (isa<CXXMethodDecl>(Cand->Function) &&
8770        !isa<CXXConstructorDecl>(Cand->Function))
8771      ArgIdx--;
8772  } else {
8773    // Builtin binary operator with a bad first conversion.
8774    assert(ConvCount <= 3);
8775    for (; ConvIdx != ConvCount; ++ConvIdx)
8776      Cand->Conversions[ConvIdx]
8777        = TryCopyInitialization(S, Args[ConvIdx],
8778                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
8779                                SuppressUserConversions,
8780                                /*InOverloadResolution*/ true,
8781                                /*AllowObjCWritebackConversion=*/
8782                                  S.getLangOpts().ObjCAutoRefCount);
8783    return;
8784  }
8785
8786  // Fill in the rest of the conversions.
8787  unsigned NumArgsInProto = Proto->getNumArgs();
8788  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8789    if (ArgIdx < NumArgsInProto) {
8790      Cand->Conversions[ConvIdx]
8791        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8792                                SuppressUserConversions,
8793                                /*InOverloadResolution=*/true,
8794                                /*AllowObjCWritebackConversion=*/
8795                                  S.getLangOpts().ObjCAutoRefCount);
8796      // Store the FixIt in the candidate if it exists.
8797      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8798        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8799    }
8800    else
8801      Cand->Conversions[ConvIdx].setEllipsis();
8802  }
8803}
8804
8805} // end anonymous namespace
8806
8807/// PrintOverloadCandidates - When overload resolution fails, prints
8808/// diagnostic messages containing the candidates in the candidate
8809/// set.
8810void OverloadCandidateSet::NoteCandidates(Sema &S,
8811                                          OverloadCandidateDisplayKind OCD,
8812                                          llvm::ArrayRef<Expr *> Args,
8813                                          StringRef Opc,
8814                                          SourceLocation OpLoc) {
8815  // Sort the candidates by viability and position.  Sorting directly would
8816  // be prohibitive, so we make a set of pointers and sort those.
8817  SmallVector<OverloadCandidate*, 32> Cands;
8818  if (OCD == OCD_AllCandidates) Cands.reserve(size());
8819  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8820    if (Cand->Viable)
8821      Cands.push_back(Cand);
8822    else if (OCD == OCD_AllCandidates) {
8823      CompleteNonViableCandidate(S, Cand, Args);
8824      if (Cand->Function || Cand->IsSurrogate)
8825        Cands.push_back(Cand);
8826      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
8827      // want to list every possible builtin candidate.
8828    }
8829  }
8830
8831  std::sort(Cands.begin(), Cands.end(),
8832            CompareOverloadCandidatesForDisplay(S));
8833
8834  bool ReportedAmbiguousConversions = false;
8835
8836  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8837  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8838  unsigned CandsShown = 0;
8839  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8840    OverloadCandidate *Cand = *I;
8841
8842    // Set an arbitrary limit on the number of candidate functions we'll spam
8843    // the user with.  FIXME: This limit should depend on details of the
8844    // candidate list.
8845    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
8846      break;
8847    }
8848    ++CandsShown;
8849
8850    if (Cand->Function)
8851      NoteFunctionCandidate(S, Cand, Args.size());
8852    else if (Cand->IsSurrogate)
8853      NoteSurrogateCandidate(S, Cand);
8854    else {
8855      assert(Cand->Viable &&
8856             "Non-viable built-in candidates are not added to Cands.");
8857      // Generally we only see ambiguities including viable builtin
8858      // operators if overload resolution got screwed up by an
8859      // ambiguous user-defined conversion.
8860      //
8861      // FIXME: It's quite possible for different conversions to see
8862      // different ambiguities, though.
8863      if (!ReportedAmbiguousConversions) {
8864        NoteAmbiguousUserConversions(S, OpLoc, Cand);
8865        ReportedAmbiguousConversions = true;
8866      }
8867
8868      // If this is a viable builtin, print it.
8869      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8870    }
8871  }
8872
8873  if (I != E)
8874    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8875}
8876
8877// [PossiblyAFunctionType]  -->   [Return]
8878// NonFunctionType --> NonFunctionType
8879// R (A) --> R(A)
8880// R (*)(A) --> R (A)
8881// R (&)(A) --> R (A)
8882// R (S::*)(A) --> R (A)
8883QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8884  QualType Ret = PossiblyAFunctionType;
8885  if (const PointerType *ToTypePtr =
8886    PossiblyAFunctionType->getAs<PointerType>())
8887    Ret = ToTypePtr->getPointeeType();
8888  else if (const ReferenceType *ToTypeRef =
8889    PossiblyAFunctionType->getAs<ReferenceType>())
8890    Ret = ToTypeRef->getPointeeType();
8891  else if (const MemberPointerType *MemTypePtr =
8892    PossiblyAFunctionType->getAs<MemberPointerType>())
8893    Ret = MemTypePtr->getPointeeType();
8894  Ret =
8895    Context.getCanonicalType(Ret).getUnqualifiedType();
8896  return Ret;
8897}
8898
8899// A helper class to help with address of function resolution
8900// - allows us to avoid passing around all those ugly parameters
8901class AddressOfFunctionResolver
8902{
8903  Sema& S;
8904  Expr* SourceExpr;
8905  const QualType& TargetType;
8906  QualType TargetFunctionType; // Extracted function type from target type
8907
8908  bool Complain;
8909  //DeclAccessPair& ResultFunctionAccessPair;
8910  ASTContext& Context;
8911
8912  bool TargetTypeIsNonStaticMemberFunction;
8913  bool FoundNonTemplateFunction;
8914
8915  OverloadExpr::FindResult OvlExprInfo;
8916  OverloadExpr *OvlExpr;
8917  TemplateArgumentListInfo OvlExplicitTemplateArgs;
8918  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8919
8920public:
8921  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8922                            const QualType& TargetType, bool Complain)
8923    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8924      Complain(Complain), Context(S.getASTContext()),
8925      TargetTypeIsNonStaticMemberFunction(
8926                                    !!TargetType->getAs<MemberPointerType>()),
8927      FoundNonTemplateFunction(false),
8928      OvlExprInfo(OverloadExpr::find(SourceExpr)),
8929      OvlExpr(OvlExprInfo.Expression)
8930  {
8931    ExtractUnqualifiedFunctionTypeFromTargetType();
8932
8933    if (!TargetFunctionType->isFunctionType()) {
8934      if (OvlExpr->hasExplicitTemplateArgs()) {
8935        DeclAccessPair dap;
8936        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8937                                            OvlExpr, false, &dap) ) {
8938
8939          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8940            if (!Method->isStatic()) {
8941              // If the target type is a non-function type and the function
8942              // found is a non-static member function, pretend as if that was
8943              // the target, it's the only possible type to end up with.
8944              TargetTypeIsNonStaticMemberFunction = true;
8945
8946              // And skip adding the function if its not in the proper form.
8947              // We'll diagnose this due to an empty set of functions.
8948              if (!OvlExprInfo.HasFormOfMemberPointer)
8949                return;
8950            }
8951          }
8952
8953          Matches.push_back(std::make_pair(dap,Fn));
8954        }
8955      }
8956      return;
8957    }
8958
8959    if (OvlExpr->hasExplicitTemplateArgs())
8960      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8961
8962    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8963      // C++ [over.over]p4:
8964      //   If more than one function is selected, [...]
8965      if (Matches.size() > 1) {
8966        if (FoundNonTemplateFunction)
8967          EliminateAllTemplateMatches();
8968        else
8969          EliminateAllExceptMostSpecializedTemplate();
8970      }
8971    }
8972  }
8973
8974private:
8975  bool isTargetTypeAFunction() const {
8976    return TargetFunctionType->isFunctionType();
8977  }
8978
8979  // [ToType]     [Return]
8980
8981  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8982  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8983  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
8984  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8985    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8986  }
8987
8988  // return true if any matching specializations were found
8989  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8990                                   const DeclAccessPair& CurAccessFunPair) {
8991    if (CXXMethodDecl *Method
8992              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8993      // Skip non-static function templates when converting to pointer, and
8994      // static when converting to member pointer.
8995      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8996        return false;
8997    }
8998    else if (TargetTypeIsNonStaticMemberFunction)
8999      return false;
9000
9001    // C++ [over.over]p2:
9002    //   If the name is a function template, template argument deduction is
9003    //   done (14.8.2.2), and if the argument deduction succeeds, the
9004    //   resulting template argument list is used to generate a single
9005    //   function template specialization, which is added to the set of
9006    //   overloaded functions considered.
9007    FunctionDecl *Specialization = 0;
9008    TemplateDeductionInfo Info(OvlExpr->getNameLoc());
9009    if (Sema::TemplateDeductionResult Result
9010          = S.DeduceTemplateArguments(FunctionTemplate,
9011                                      &OvlExplicitTemplateArgs,
9012                                      TargetFunctionType, Specialization,
9013                                      Info)) {
9014      // FIXME: make a note of the failed deduction for diagnostics.
9015      (void)Result;
9016      return false;
9017    }
9018
9019    // Template argument deduction ensures that we have an exact match.
9020    // This function template specicalization works.
9021    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9022    assert(TargetFunctionType
9023                      == Context.getCanonicalType(Specialization->getType()));
9024    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9025    return true;
9026  }
9027
9028  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9029                                      const DeclAccessPair& CurAccessFunPair) {
9030    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9031      // Skip non-static functions when converting to pointer, and static
9032      // when converting to member pointer.
9033      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9034        return false;
9035    }
9036    else if (TargetTypeIsNonStaticMemberFunction)
9037      return false;
9038
9039    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9040      if (S.getLangOpts().CUDA)
9041        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9042          if (S.CheckCUDATarget(Caller, FunDecl))
9043            return false;
9044
9045      QualType ResultTy;
9046      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9047                                         FunDecl->getType()) ||
9048          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9049                                 ResultTy)) {
9050        Matches.push_back(std::make_pair(CurAccessFunPair,
9051          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9052        FoundNonTemplateFunction = true;
9053        return true;
9054      }
9055    }
9056
9057    return false;
9058  }
9059
9060  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9061    bool Ret = false;
9062
9063    // If the overload expression doesn't have the form of a pointer to
9064    // member, don't try to convert it to a pointer-to-member type.
9065    if (IsInvalidFormOfPointerToMemberFunction())
9066      return false;
9067
9068    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9069                               E = OvlExpr->decls_end();
9070         I != E; ++I) {
9071      // Look through any using declarations to find the underlying function.
9072      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9073
9074      // C++ [over.over]p3:
9075      //   Non-member functions and static member functions match
9076      //   targets of type "pointer-to-function" or "reference-to-function."
9077      //   Nonstatic member functions match targets of
9078      //   type "pointer-to-member-function."
9079      // Note that according to DR 247, the containing class does not matter.
9080      if (FunctionTemplateDecl *FunctionTemplate
9081                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9082        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9083          Ret = true;
9084      }
9085      // If we have explicit template arguments supplied, skip non-templates.
9086      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9087               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9088        Ret = true;
9089    }
9090    assert(Ret || Matches.empty());
9091    return Ret;
9092  }
9093
9094  void EliminateAllExceptMostSpecializedTemplate() {
9095    //   [...] and any given function template specialization F1 is
9096    //   eliminated if the set contains a second function template
9097    //   specialization whose function template is more specialized
9098    //   than the function template of F1 according to the partial
9099    //   ordering rules of 14.5.5.2.
9100
9101    // The algorithm specified above is quadratic. We instead use a
9102    // two-pass algorithm (similar to the one used to identify the
9103    // best viable function in an overload set) that identifies the
9104    // best function template (if it exists).
9105
9106    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9107    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9108      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9109
9110    UnresolvedSetIterator Result =
9111      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
9112                           TPOC_Other, 0, SourceExpr->getLocStart(),
9113                           S.PDiag(),
9114                           S.PDiag(diag::err_addr_ovl_ambiguous)
9115                             << Matches[0].second->getDeclName(),
9116                           S.PDiag(diag::note_ovl_candidate)
9117                             << (unsigned) oc_function_template,
9118                           Complain, TargetFunctionType);
9119
9120    if (Result != MatchesCopy.end()) {
9121      // Make it the first and only element
9122      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9123      Matches[0].second = cast<FunctionDecl>(*Result);
9124      Matches.resize(1);
9125    }
9126  }
9127
9128  void EliminateAllTemplateMatches() {
9129    //   [...] any function template specializations in the set are
9130    //   eliminated if the set also contains a non-template function, [...]
9131    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9132      if (Matches[I].second->getPrimaryTemplate() == 0)
9133        ++I;
9134      else {
9135        Matches[I] = Matches[--N];
9136        Matches.set_size(N);
9137      }
9138    }
9139  }
9140
9141public:
9142  void ComplainNoMatchesFound() const {
9143    assert(Matches.empty());
9144    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9145        << OvlExpr->getName() << TargetFunctionType
9146        << OvlExpr->getSourceRange();
9147    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9148  }
9149
9150  bool IsInvalidFormOfPointerToMemberFunction() const {
9151    return TargetTypeIsNonStaticMemberFunction &&
9152      !OvlExprInfo.HasFormOfMemberPointer;
9153  }
9154
9155  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9156      // TODO: Should we condition this on whether any functions might
9157      // have matched, or is it more appropriate to do that in callers?
9158      // TODO: a fixit wouldn't hurt.
9159      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9160        << TargetType << OvlExpr->getSourceRange();
9161  }
9162
9163  void ComplainOfInvalidConversion() const {
9164    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9165      << OvlExpr->getName() << TargetType;
9166  }
9167
9168  void ComplainMultipleMatchesFound() const {
9169    assert(Matches.size() > 1);
9170    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9171      << OvlExpr->getName()
9172      << OvlExpr->getSourceRange();
9173    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9174  }
9175
9176  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9177
9178  int getNumMatches() const { return Matches.size(); }
9179
9180  FunctionDecl* getMatchingFunctionDecl() const {
9181    if (Matches.size() != 1) return 0;
9182    return Matches[0].second;
9183  }
9184
9185  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9186    if (Matches.size() != 1) return 0;
9187    return &Matches[0].first;
9188  }
9189};
9190
9191/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9192/// an overloaded function (C++ [over.over]), where @p From is an
9193/// expression with overloaded function type and @p ToType is the type
9194/// we're trying to resolve to. For example:
9195///
9196/// @code
9197/// int f(double);
9198/// int f(int);
9199///
9200/// int (*pfd)(double) = f; // selects f(double)
9201/// @endcode
9202///
9203/// This routine returns the resulting FunctionDecl if it could be
9204/// resolved, and NULL otherwise. When @p Complain is true, this
9205/// routine will emit diagnostics if there is an error.
9206FunctionDecl *
9207Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9208                                         QualType TargetType,
9209                                         bool Complain,
9210                                         DeclAccessPair &FoundResult,
9211                                         bool *pHadMultipleCandidates) {
9212  assert(AddressOfExpr->getType() == Context.OverloadTy);
9213
9214  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9215                                     Complain);
9216  int NumMatches = Resolver.getNumMatches();
9217  FunctionDecl* Fn = 0;
9218  if (NumMatches == 0 && Complain) {
9219    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9220      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9221    else
9222      Resolver.ComplainNoMatchesFound();
9223  }
9224  else if (NumMatches > 1 && Complain)
9225    Resolver.ComplainMultipleMatchesFound();
9226  else if (NumMatches == 1) {
9227    Fn = Resolver.getMatchingFunctionDecl();
9228    assert(Fn);
9229    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9230    if (Complain)
9231      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9232  }
9233
9234  if (pHadMultipleCandidates)
9235    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9236  return Fn;
9237}
9238
9239/// \brief Given an expression that refers to an overloaded function, try to
9240/// resolve that overloaded function expression down to a single function.
9241///
9242/// This routine can only resolve template-ids that refer to a single function
9243/// template, where that template-id refers to a single template whose template
9244/// arguments are either provided by the template-id or have defaults,
9245/// as described in C++0x [temp.arg.explicit]p3.
9246FunctionDecl *
9247Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9248                                                  bool Complain,
9249                                                  DeclAccessPair *FoundResult) {
9250  // C++ [over.over]p1:
9251  //   [...] [Note: any redundant set of parentheses surrounding the
9252  //   overloaded function name is ignored (5.1). ]
9253  // C++ [over.over]p1:
9254  //   [...] The overloaded function name can be preceded by the &
9255  //   operator.
9256
9257  // If we didn't actually find any template-ids, we're done.
9258  if (!ovl->hasExplicitTemplateArgs())
9259    return 0;
9260
9261  TemplateArgumentListInfo ExplicitTemplateArgs;
9262  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9263
9264  // Look through all of the overloaded functions, searching for one
9265  // whose type matches exactly.
9266  FunctionDecl *Matched = 0;
9267  for (UnresolvedSetIterator I = ovl->decls_begin(),
9268         E = ovl->decls_end(); I != E; ++I) {
9269    // C++0x [temp.arg.explicit]p3:
9270    //   [...] In contexts where deduction is done and fails, or in contexts
9271    //   where deduction is not done, if a template argument list is
9272    //   specified and it, along with any default template arguments,
9273    //   identifies a single function template specialization, then the
9274    //   template-id is an lvalue for the function template specialization.
9275    FunctionTemplateDecl *FunctionTemplate
9276      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9277
9278    // C++ [over.over]p2:
9279    //   If the name is a function template, template argument deduction is
9280    //   done (14.8.2.2), and if the argument deduction succeeds, the
9281    //   resulting template argument list is used to generate a single
9282    //   function template specialization, which is added to the set of
9283    //   overloaded functions considered.
9284    FunctionDecl *Specialization = 0;
9285    TemplateDeductionInfo Info(ovl->getNameLoc());
9286    if (TemplateDeductionResult Result
9287          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9288                                    Specialization, Info)) {
9289      // FIXME: make a note of the failed deduction for diagnostics.
9290      (void)Result;
9291      continue;
9292    }
9293
9294    assert(Specialization && "no specialization and no error?");
9295
9296    // Multiple matches; we can't resolve to a single declaration.
9297    if (Matched) {
9298      if (Complain) {
9299        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9300          << ovl->getName();
9301        NoteAllOverloadCandidates(ovl);
9302      }
9303      return 0;
9304    }
9305
9306    Matched = Specialization;
9307    if (FoundResult) *FoundResult = I.getPair();
9308  }
9309
9310  return Matched;
9311}
9312
9313
9314
9315
9316// Resolve and fix an overloaded expression that can be resolved
9317// because it identifies a single function template specialization.
9318//
9319// Last three arguments should only be supplied if Complain = true
9320//
9321// Return true if it was logically possible to so resolve the
9322// expression, regardless of whether or not it succeeded.  Always
9323// returns true if 'complain' is set.
9324bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9325                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9326                   bool complain, const SourceRange& OpRangeForComplaining,
9327                                           QualType DestTypeForComplaining,
9328                                            unsigned DiagIDForComplaining) {
9329  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9330
9331  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9332
9333  DeclAccessPair found;
9334  ExprResult SingleFunctionExpression;
9335  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9336                           ovl.Expression, /*complain*/ false, &found)) {
9337    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9338      SrcExpr = ExprError();
9339      return true;
9340    }
9341
9342    // It is only correct to resolve to an instance method if we're
9343    // resolving a form that's permitted to be a pointer to member.
9344    // Otherwise we'll end up making a bound member expression, which
9345    // is illegal in all the contexts we resolve like this.
9346    if (!ovl.HasFormOfMemberPointer &&
9347        isa<CXXMethodDecl>(fn) &&
9348        cast<CXXMethodDecl>(fn)->isInstance()) {
9349      if (!complain) return false;
9350
9351      Diag(ovl.Expression->getExprLoc(),
9352           diag::err_bound_member_function)
9353        << 0 << ovl.Expression->getSourceRange();
9354
9355      // TODO: I believe we only end up here if there's a mix of
9356      // static and non-static candidates (otherwise the expression
9357      // would have 'bound member' type, not 'overload' type).
9358      // Ideally we would note which candidate was chosen and why
9359      // the static candidates were rejected.
9360      SrcExpr = ExprError();
9361      return true;
9362    }
9363
9364    // Fix the expression to refer to 'fn'.
9365    SingleFunctionExpression =
9366      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9367
9368    // If desired, do function-to-pointer decay.
9369    if (doFunctionPointerConverion) {
9370      SingleFunctionExpression =
9371        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9372      if (SingleFunctionExpression.isInvalid()) {
9373        SrcExpr = ExprError();
9374        return true;
9375      }
9376    }
9377  }
9378
9379  if (!SingleFunctionExpression.isUsable()) {
9380    if (complain) {
9381      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9382        << ovl.Expression->getName()
9383        << DestTypeForComplaining
9384        << OpRangeForComplaining
9385        << ovl.Expression->getQualifierLoc().getSourceRange();
9386      NoteAllOverloadCandidates(SrcExpr.get());
9387
9388      SrcExpr = ExprError();
9389      return true;
9390    }
9391
9392    return false;
9393  }
9394
9395  SrcExpr = SingleFunctionExpression;
9396  return true;
9397}
9398
9399/// \brief Add a single candidate to the overload set.
9400static void AddOverloadedCallCandidate(Sema &S,
9401                                       DeclAccessPair FoundDecl,
9402                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9403                                       llvm::ArrayRef<Expr *> Args,
9404                                       OverloadCandidateSet &CandidateSet,
9405                                       bool PartialOverloading,
9406                                       bool KnownValid) {
9407  NamedDecl *Callee = FoundDecl.getDecl();
9408  if (isa<UsingShadowDecl>(Callee))
9409    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9410
9411  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9412    if (ExplicitTemplateArgs) {
9413      assert(!KnownValid && "Explicit template arguments?");
9414      return;
9415    }
9416    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9417                           PartialOverloading);
9418    return;
9419  }
9420
9421  if (FunctionTemplateDecl *FuncTemplate
9422      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9423    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9424                                   ExplicitTemplateArgs, Args, CandidateSet);
9425    return;
9426  }
9427
9428  assert(!KnownValid && "unhandled case in overloaded call candidate");
9429}
9430
9431/// \brief Add the overload candidates named by callee and/or found by argument
9432/// dependent lookup to the given overload set.
9433void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9434                                       llvm::ArrayRef<Expr *> Args,
9435                                       OverloadCandidateSet &CandidateSet,
9436                                       bool PartialOverloading) {
9437
9438#ifndef NDEBUG
9439  // Verify that ArgumentDependentLookup is consistent with the rules
9440  // in C++0x [basic.lookup.argdep]p3:
9441  //
9442  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9443  //   and let Y be the lookup set produced by argument dependent
9444  //   lookup (defined as follows). If X contains
9445  //
9446  //     -- a declaration of a class member, or
9447  //
9448  //     -- a block-scope function declaration that is not a
9449  //        using-declaration, or
9450  //
9451  //     -- a declaration that is neither a function or a function
9452  //        template
9453  //
9454  //   then Y is empty.
9455
9456  if (ULE->requiresADL()) {
9457    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9458           E = ULE->decls_end(); I != E; ++I) {
9459      assert(!(*I)->getDeclContext()->isRecord());
9460      assert(isa<UsingShadowDecl>(*I) ||
9461             !(*I)->getDeclContext()->isFunctionOrMethod());
9462      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9463    }
9464  }
9465#endif
9466
9467  // It would be nice to avoid this copy.
9468  TemplateArgumentListInfo TABuffer;
9469  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9470  if (ULE->hasExplicitTemplateArgs()) {
9471    ULE->copyTemplateArgumentsInto(TABuffer);
9472    ExplicitTemplateArgs = &TABuffer;
9473  }
9474
9475  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9476         E = ULE->decls_end(); I != E; ++I)
9477    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9478                               CandidateSet, PartialOverloading,
9479                               /*KnownValid*/ true);
9480
9481  if (ULE->requiresADL())
9482    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9483                                         ULE->getExprLoc(),
9484                                         Args, ExplicitTemplateArgs,
9485                                         CandidateSet, PartialOverloading);
9486}
9487
9488/// Attempt to recover from an ill-formed use of a non-dependent name in a
9489/// template, where the non-dependent name was declared after the template
9490/// was defined. This is common in code written for a compilers which do not
9491/// correctly implement two-stage name lookup.
9492///
9493/// Returns true if a viable candidate was found and a diagnostic was issued.
9494static bool
9495DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9496                       const CXXScopeSpec &SS, LookupResult &R,
9497                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9498                       llvm::ArrayRef<Expr *> Args) {
9499  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9500    return false;
9501
9502  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9503    if (DC->isTransparentContext())
9504      continue;
9505
9506    SemaRef.LookupQualifiedName(R, DC);
9507
9508    if (!R.empty()) {
9509      R.suppressDiagnostics();
9510
9511      if (isa<CXXRecordDecl>(DC)) {
9512        // Don't diagnose names we find in classes; we get much better
9513        // diagnostics for these from DiagnoseEmptyLookup.
9514        R.clear();
9515        return false;
9516      }
9517
9518      OverloadCandidateSet Candidates(FnLoc);
9519      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9520        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9521                                   ExplicitTemplateArgs, Args,
9522                                   Candidates, false, /*KnownValid*/ false);
9523
9524      OverloadCandidateSet::iterator Best;
9525      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9526        // No viable functions. Don't bother the user with notes for functions
9527        // which don't work and shouldn't be found anyway.
9528        R.clear();
9529        return false;
9530      }
9531
9532      // Find the namespaces where ADL would have looked, and suggest
9533      // declaring the function there instead.
9534      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9535      Sema::AssociatedClassSet AssociatedClasses;
9536      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
9537                                                 AssociatedNamespaces,
9538                                                 AssociatedClasses);
9539      // Never suggest declaring a function within namespace 'std'.
9540      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9541      if (DeclContext *Std = SemaRef.getStdNamespace()) {
9542        for (Sema::AssociatedNamespaceSet::iterator
9543               it = AssociatedNamespaces.begin(),
9544               end = AssociatedNamespaces.end(); it != end; ++it) {
9545          if (!Std->Encloses(*it))
9546            SuggestedNamespaces.insert(*it);
9547        }
9548      } else {
9549        // Lacking the 'std::' namespace, use all of the associated namespaces.
9550        SuggestedNamespaces = AssociatedNamespaces;
9551      }
9552
9553      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9554        << R.getLookupName();
9555      if (SuggestedNamespaces.empty()) {
9556        SemaRef.Diag(Best->Function->getLocation(),
9557                     diag::note_not_found_by_two_phase_lookup)
9558          << R.getLookupName() << 0;
9559      } else if (SuggestedNamespaces.size() == 1) {
9560        SemaRef.Diag(Best->Function->getLocation(),
9561                     diag::note_not_found_by_two_phase_lookup)
9562          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9563      } else {
9564        // FIXME: It would be useful to list the associated namespaces here,
9565        // but the diagnostics infrastructure doesn't provide a way to produce
9566        // a localized representation of a list of items.
9567        SemaRef.Diag(Best->Function->getLocation(),
9568                     diag::note_not_found_by_two_phase_lookup)
9569          << R.getLookupName() << 2;
9570      }
9571
9572      // Try to recover by calling this function.
9573      return true;
9574    }
9575
9576    R.clear();
9577  }
9578
9579  return false;
9580}
9581
9582/// Attempt to recover from ill-formed use of a non-dependent operator in a
9583/// template, where the non-dependent operator was declared after the template
9584/// was defined.
9585///
9586/// Returns true if a viable candidate was found and a diagnostic was issued.
9587static bool
9588DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9589                               SourceLocation OpLoc,
9590                               llvm::ArrayRef<Expr *> Args) {
9591  DeclarationName OpName =
9592    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9593  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9594  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9595                                /*ExplicitTemplateArgs=*/0, Args);
9596}
9597
9598namespace {
9599// Callback to limit the allowed keywords and to only accept typo corrections
9600// that are keywords or whose decls refer to functions (or template functions)
9601// that accept the given number of arguments.
9602class RecoveryCallCCC : public CorrectionCandidateCallback {
9603 public:
9604  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9605      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9606    WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
9607    WantRemainingKeywords = false;
9608  }
9609
9610  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9611    if (!candidate.getCorrectionDecl())
9612      return candidate.isKeyword();
9613
9614    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9615           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9616      FunctionDecl *FD = 0;
9617      NamedDecl *ND = (*DI)->getUnderlyingDecl();
9618      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9619        FD = FTD->getTemplatedDecl();
9620      if (!HasExplicitTemplateArgs && !FD) {
9621        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9622          // If the Decl is neither a function nor a template function,
9623          // determine if it is a pointer or reference to a function. If so,
9624          // check against the number of arguments expected for the pointee.
9625          QualType ValType = cast<ValueDecl>(ND)->getType();
9626          if (ValType->isAnyPointerType() || ValType->isReferenceType())
9627            ValType = ValType->getPointeeType();
9628          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9629            if (FPT->getNumArgs() == NumArgs)
9630              return true;
9631        }
9632      }
9633      if (FD && FD->getNumParams() >= NumArgs &&
9634          FD->getMinRequiredArguments() <= NumArgs)
9635        return true;
9636    }
9637    return false;
9638  }
9639
9640 private:
9641  unsigned NumArgs;
9642  bool HasExplicitTemplateArgs;
9643};
9644
9645// Callback that effectively disabled typo correction
9646class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9647 public:
9648  NoTypoCorrectionCCC() {
9649    WantTypeSpecifiers = false;
9650    WantExpressionKeywords = false;
9651    WantCXXNamedCasts = false;
9652    WantRemainingKeywords = false;
9653  }
9654
9655  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9656    return false;
9657  }
9658};
9659
9660class BuildRecoveryCallExprRAII {
9661  Sema &SemaRef;
9662public:
9663  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
9664    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
9665    SemaRef.IsBuildingRecoveryCallExpr = true;
9666  }
9667
9668  ~BuildRecoveryCallExprRAII() {
9669    SemaRef.IsBuildingRecoveryCallExpr = false;
9670  }
9671};
9672
9673}
9674
9675/// Attempts to recover from a call where no functions were found.
9676///
9677/// Returns true if new candidates were found.
9678static ExprResult
9679BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9680                      UnresolvedLookupExpr *ULE,
9681                      SourceLocation LParenLoc,
9682                      llvm::MutableArrayRef<Expr *> Args,
9683                      SourceLocation RParenLoc,
9684                      bool EmptyLookup, bool AllowTypoCorrection) {
9685  // Do not try to recover if it is already building a recovery call.
9686  // This stops infinite loops for template instantiations like
9687  //
9688  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
9689  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
9690  //
9691  if (SemaRef.IsBuildingRecoveryCallExpr)
9692    return ExprError();
9693  BuildRecoveryCallExprRAII RCE(SemaRef);
9694
9695  CXXScopeSpec SS;
9696  SS.Adopt(ULE->getQualifierLoc());
9697  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9698
9699  TemplateArgumentListInfo TABuffer;
9700  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9701  if (ULE->hasExplicitTemplateArgs()) {
9702    ULE->copyTemplateArgumentsInto(TABuffer);
9703    ExplicitTemplateArgs = &TABuffer;
9704  }
9705
9706  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9707                 Sema::LookupOrdinaryName);
9708  RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
9709  NoTypoCorrectionCCC RejectAll;
9710  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9711      (CorrectionCandidateCallback*)&Validator :
9712      (CorrectionCandidateCallback*)&RejectAll;
9713  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9714                              ExplicitTemplateArgs, Args) &&
9715      (!EmptyLookup ||
9716       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9717                                   ExplicitTemplateArgs, Args)))
9718    return ExprError();
9719
9720  assert(!R.empty() && "lookup results empty despite recovery");
9721
9722  // Build an implicit member call if appropriate.  Just drop the
9723  // casts and such from the call, we don't really care.
9724  ExprResult NewFn = ExprError();
9725  if ((*R.begin())->isCXXClassMember())
9726    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9727                                                    R, ExplicitTemplateArgs);
9728  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9729    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9730                                        ExplicitTemplateArgs);
9731  else
9732    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9733
9734  if (NewFn.isInvalid())
9735    return ExprError();
9736
9737  // This shouldn't cause an infinite loop because we're giving it
9738  // an expression with viable lookup results, which should never
9739  // end up here.
9740  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9741                               MultiExprArg(Args.data(), Args.size()),
9742                               RParenLoc);
9743}
9744
9745/// \brief Constructs and populates an OverloadedCandidateSet from
9746/// the given function.
9747/// \returns true when an the ExprResult output parameter has been set.
9748bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
9749                                  UnresolvedLookupExpr *ULE,
9750                                  Expr **Args, unsigned NumArgs,
9751                                  SourceLocation RParenLoc,
9752                                  OverloadCandidateSet *CandidateSet,
9753                                  ExprResult *Result) {
9754#ifndef NDEBUG
9755  if (ULE->requiresADL()) {
9756    // To do ADL, we must have found an unqualified name.
9757    assert(!ULE->getQualifier() && "qualified name with ADL");
9758
9759    // We don't perform ADL for implicit declarations of builtins.
9760    // Verify that this was correctly set up.
9761    FunctionDecl *F;
9762    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9763        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9764        F->getBuiltinID() && F->isImplicit())
9765      llvm_unreachable("performing ADL for builtin");
9766
9767    // We don't perform ADL in C.
9768    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9769  }
9770#endif
9771
9772  UnbridgedCastsSet UnbridgedCasts;
9773  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) {
9774    *Result = ExprError();
9775    return true;
9776  }
9777
9778  // Add the functions denoted by the callee to the set of candidate
9779  // functions, including those from argument-dependent lookup.
9780  AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
9781                              *CandidateSet);
9782
9783  // If we found nothing, try to recover.
9784  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9785  // out if it fails.
9786  if (CandidateSet->empty()) {
9787    // In Microsoft mode, if we are inside a template class member function then
9788    // create a type dependent CallExpr. The goal is to postpone name lookup
9789    // to instantiation time to be able to search into type dependent base
9790    // classes.
9791    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9792        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9793      CallExpr *CE = new (Context) CallExpr(Context, Fn,
9794                                            llvm::makeArrayRef(Args, NumArgs),
9795                                            Context.DependentTy, VK_RValue,
9796                                            RParenLoc);
9797      CE->setTypeDependent(true);
9798      *Result = Owned(CE);
9799      return true;
9800    }
9801    return false;
9802  }
9803
9804  UnbridgedCasts.restore();
9805  return false;
9806}
9807
9808/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
9809/// the completed call expression. If overload resolution fails, emits
9810/// diagnostics and returns ExprError()
9811static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9812                                           UnresolvedLookupExpr *ULE,
9813                                           SourceLocation LParenLoc,
9814                                           Expr **Args, unsigned NumArgs,
9815                                           SourceLocation RParenLoc,
9816                                           Expr *ExecConfig,
9817                                           OverloadCandidateSet *CandidateSet,
9818                                           OverloadCandidateSet::iterator *Best,
9819                                           OverloadingResult OverloadResult,
9820                                           bool AllowTypoCorrection) {
9821  if (CandidateSet->empty())
9822    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
9823                                 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9824                                 RParenLoc, /*EmptyLookup=*/true,
9825                                 AllowTypoCorrection);
9826
9827  switch (OverloadResult) {
9828  case OR_Success: {
9829    FunctionDecl *FDecl = (*Best)->Function;
9830    SemaRef.MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9831    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
9832    SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9833    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
9834    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9835                                         RParenLoc, ExecConfig);
9836  }
9837
9838  case OR_No_Viable_Function: {
9839    // Try to recover by looking for viable functions which the user might
9840    // have meant to call.
9841    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
9842                                  llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9843                                                RParenLoc,
9844                                                /*EmptyLookup=*/false,
9845                                                AllowTypoCorrection);
9846    if (!Recovery.isInvalid())
9847      return Recovery;
9848
9849    SemaRef.Diag(Fn->getLocStart(),
9850         diag::err_ovl_no_viable_function_in_call)
9851      << ULE->getName() << Fn->getSourceRange();
9852    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
9853                                 llvm::makeArrayRef(Args, NumArgs));
9854    break;
9855  }
9856
9857  case OR_Ambiguous:
9858    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
9859      << ULE->getName() << Fn->getSourceRange();
9860    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates,
9861                                 llvm::makeArrayRef(Args, NumArgs));
9862    break;
9863
9864  case OR_Deleted: {
9865    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
9866      << (*Best)->Function->isDeleted()
9867      << ULE->getName()
9868      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
9869      << Fn->getSourceRange();
9870    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates,
9871                                 llvm::makeArrayRef(Args, NumArgs));
9872
9873    // We emitted an error for the unvailable/deleted function call but keep
9874    // the call in the AST.
9875    FunctionDecl *FDecl = (*Best)->Function;
9876    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
9877    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9878                                 RParenLoc, ExecConfig);
9879  }
9880  }
9881
9882  // Overload resolution failed.
9883  return ExprError();
9884}
9885
9886/// BuildOverloadedCallExpr - Given the call expression that calls Fn
9887/// (which eventually refers to the declaration Func) and the call
9888/// arguments Args/NumArgs, attempt to resolve the function call down
9889/// to a specific function. If overload resolution succeeds, returns
9890/// the call expression produced by overload resolution.
9891/// Otherwise, emits diagnostics and returns ExprError.
9892ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
9893                                         UnresolvedLookupExpr *ULE,
9894                                         SourceLocation LParenLoc,
9895                                         Expr **Args, unsigned NumArgs,
9896                                         SourceLocation RParenLoc,
9897                                         Expr *ExecConfig,
9898                                         bool AllowTypoCorrection) {
9899  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9900  ExprResult result;
9901
9902  if (buildOverloadedCallSet(S, Fn, ULE, Args, NumArgs, LParenLoc,
9903                             &CandidateSet, &result))
9904    return result;
9905
9906  OverloadCandidateSet::iterator Best;
9907  OverloadingResult OverloadResult =
9908      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
9909
9910  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
9911                                  RParenLoc, ExecConfig, &CandidateSet,
9912                                  &Best, OverloadResult,
9913                                  AllowTypoCorrection);
9914}
9915
9916static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9917  return Functions.size() > 1 ||
9918    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9919}
9920
9921/// \brief Create a unary operation that may resolve to an overloaded
9922/// operator.
9923///
9924/// \param OpLoc The location of the operator itself (e.g., '*').
9925///
9926/// \param OpcIn The UnaryOperator::Opcode that describes this
9927/// operator.
9928///
9929/// \param Fns The set of non-member functions that will be
9930/// considered by overload resolution. The caller needs to build this
9931/// set based on the context using, e.g.,
9932/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9933/// set should not contain any member functions; those will be added
9934/// by CreateOverloadedUnaryOp().
9935///
9936/// \param Input The input argument.
9937ExprResult
9938Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9939                              const UnresolvedSetImpl &Fns,
9940                              Expr *Input) {
9941  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9942
9943  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9944  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9945  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9946  // TODO: provide better source location info.
9947  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9948
9949  if (checkPlaceholderForOverload(*this, Input))
9950    return ExprError();
9951
9952  Expr *Args[2] = { Input, 0 };
9953  unsigned NumArgs = 1;
9954
9955  // For post-increment and post-decrement, add the implicit '0' as
9956  // the second argument, so that we know this is a post-increment or
9957  // post-decrement.
9958  if (Opc == UO_PostInc || Opc == UO_PostDec) {
9959    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9960    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9961                                     SourceLocation());
9962    NumArgs = 2;
9963  }
9964
9965  if (Input->isTypeDependent()) {
9966    if (Fns.empty())
9967      return Owned(new (Context) UnaryOperator(Input,
9968                                               Opc,
9969                                               Context.DependentTy,
9970                                               VK_RValue, OK_Ordinary,
9971                                               OpLoc));
9972
9973    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9974    UnresolvedLookupExpr *Fn
9975      = UnresolvedLookupExpr::Create(Context, NamingClass,
9976                                     NestedNameSpecifierLoc(), OpNameInfo,
9977                                     /*ADL*/ true, IsOverloaded(Fns),
9978                                     Fns.begin(), Fns.end());
9979    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9980                                              llvm::makeArrayRef(Args, NumArgs),
9981                                                   Context.DependentTy,
9982                                                   VK_RValue,
9983                                                   OpLoc, false));
9984  }
9985
9986  // Build an empty overload set.
9987  OverloadCandidateSet CandidateSet(OpLoc);
9988
9989  // Add the candidates from the given function set.
9990  AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
9991                        false);
9992
9993  // Add operator candidates that are member functions.
9994  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9995
9996  // Add candidates from ADL.
9997  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9998                                       OpLoc, llvm::makeArrayRef(Args, NumArgs),
9999                                       /*ExplicitTemplateArgs*/ 0,
10000                                       CandidateSet);
10001
10002  // Add builtin operator candidates.
10003  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
10004
10005  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10006
10007  // Perform overload resolution.
10008  OverloadCandidateSet::iterator Best;
10009  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10010  case OR_Success: {
10011    // We found a built-in operator or an overloaded operator.
10012    FunctionDecl *FnDecl = Best->Function;
10013
10014    if (FnDecl) {
10015      // We matched an overloaded operator. Build a call to that
10016      // operator.
10017
10018      MarkFunctionReferenced(OpLoc, FnDecl);
10019
10020      // Convert the arguments.
10021      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10022        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
10023
10024        ExprResult InputRes =
10025          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
10026                                              Best->FoundDecl, Method);
10027        if (InputRes.isInvalid())
10028          return ExprError();
10029        Input = InputRes.take();
10030      } else {
10031        // Convert the arguments.
10032        ExprResult InputInit
10033          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10034                                                      Context,
10035                                                      FnDecl->getParamDecl(0)),
10036                                      SourceLocation(),
10037                                      Input);
10038        if (InputInit.isInvalid())
10039          return ExprError();
10040        Input = InputInit.take();
10041      }
10042
10043      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10044
10045      // Determine the result type.
10046      QualType ResultTy = FnDecl->getResultType();
10047      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10048      ResultTy = ResultTy.getNonLValueExprType(Context);
10049
10050      // Build the actual expression node.
10051      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10052                                                HadMultipleCandidates, OpLoc);
10053      if (FnExpr.isInvalid())
10054        return ExprError();
10055
10056      Args[0] = Input;
10057      CallExpr *TheCall =
10058        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10059                                          llvm::makeArrayRef(Args, NumArgs),
10060                                          ResultTy, VK, OpLoc, false);
10061
10062      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10063                              FnDecl))
10064        return ExprError();
10065
10066      return MaybeBindToTemporary(TheCall);
10067    } else {
10068      // We matched a built-in operator. Convert the arguments, then
10069      // break out so that we will build the appropriate built-in
10070      // operator node.
10071      ExprResult InputRes =
10072        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10073                                  Best->Conversions[0], AA_Passing);
10074      if (InputRes.isInvalid())
10075        return ExprError();
10076      Input = InputRes.take();
10077      break;
10078    }
10079  }
10080
10081  case OR_No_Viable_Function:
10082    // This is an erroneous use of an operator which can be overloaded by
10083    // a non-member function. Check for non-member operators which were
10084    // defined too late to be candidates.
10085    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
10086                                       llvm::makeArrayRef(Args, NumArgs)))
10087      // FIXME: Recover by calling the found function.
10088      return ExprError();
10089
10090    // No viable function; fall through to handling this as a
10091    // built-in operator, which will produce an error message for us.
10092    break;
10093
10094  case OR_Ambiguous:
10095    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10096        << UnaryOperator::getOpcodeStr(Opc)
10097        << Input->getType()
10098        << Input->getSourceRange();
10099    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10100                                llvm::makeArrayRef(Args, NumArgs),
10101                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10102    return ExprError();
10103
10104  case OR_Deleted:
10105    Diag(OpLoc, diag::err_ovl_deleted_oper)
10106      << Best->Function->isDeleted()
10107      << UnaryOperator::getOpcodeStr(Opc)
10108      << getDeletedOrUnavailableSuffix(Best->Function)
10109      << Input->getSourceRange();
10110    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10111                                llvm::makeArrayRef(Args, NumArgs),
10112                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10113    return ExprError();
10114  }
10115
10116  // Either we found no viable overloaded operator or we matched a
10117  // built-in operator. In either case, fall through to trying to
10118  // build a built-in operation.
10119  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10120}
10121
10122/// \brief Create a binary operation that may resolve to an overloaded
10123/// operator.
10124///
10125/// \param OpLoc The location of the operator itself (e.g., '+').
10126///
10127/// \param OpcIn The BinaryOperator::Opcode that describes this
10128/// operator.
10129///
10130/// \param Fns The set of non-member functions that will be
10131/// considered by overload resolution. The caller needs to build this
10132/// set based on the context using, e.g.,
10133/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10134/// set should not contain any member functions; those will be added
10135/// by CreateOverloadedBinOp().
10136///
10137/// \param LHS Left-hand argument.
10138/// \param RHS Right-hand argument.
10139ExprResult
10140Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10141                            unsigned OpcIn,
10142                            const UnresolvedSetImpl &Fns,
10143                            Expr *LHS, Expr *RHS) {
10144  Expr *Args[2] = { LHS, RHS };
10145  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10146
10147  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10148  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10149  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10150
10151  // If either side is type-dependent, create an appropriate dependent
10152  // expression.
10153  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10154    if (Fns.empty()) {
10155      // If there are no functions to store, just build a dependent
10156      // BinaryOperator or CompoundAssignment.
10157      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10158        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10159                                                  Context.DependentTy,
10160                                                  VK_RValue, OK_Ordinary,
10161                                                  OpLoc,
10162                                                  FPFeatures.fp_contract));
10163
10164      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10165                                                        Context.DependentTy,
10166                                                        VK_LValue,
10167                                                        OK_Ordinary,
10168                                                        Context.DependentTy,
10169                                                        Context.DependentTy,
10170                                                        OpLoc,
10171                                                        FPFeatures.fp_contract));
10172    }
10173
10174    // FIXME: save results of ADL from here?
10175    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10176    // TODO: provide better source location info in DNLoc component.
10177    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10178    UnresolvedLookupExpr *Fn
10179      = UnresolvedLookupExpr::Create(Context, NamingClass,
10180                                     NestedNameSpecifierLoc(), OpNameInfo,
10181                                     /*ADL*/ true, IsOverloaded(Fns),
10182                                     Fns.begin(), Fns.end());
10183    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
10184                                                Context.DependentTy, VK_RValue,
10185                                                OpLoc, FPFeatures.fp_contract));
10186  }
10187
10188  // Always do placeholder-like conversions on the RHS.
10189  if (checkPlaceholderForOverload(*this, Args[1]))
10190    return ExprError();
10191
10192  // Do placeholder-like conversion on the LHS; note that we should
10193  // not get here with a PseudoObject LHS.
10194  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10195  if (checkPlaceholderForOverload(*this, Args[0]))
10196    return ExprError();
10197
10198  // If this is the assignment operator, we only perform overload resolution
10199  // if the left-hand side is a class or enumeration type. This is actually
10200  // a hack. The standard requires that we do overload resolution between the
10201  // various built-in candidates, but as DR507 points out, this can lead to
10202  // problems. So we do it this way, which pretty much follows what GCC does.
10203  // Note that we go the traditional code path for compound assignment forms.
10204  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10205    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10206
10207  // If this is the .* operator, which is not overloadable, just
10208  // create a built-in binary operator.
10209  if (Opc == BO_PtrMemD)
10210    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10211
10212  // Build an empty overload set.
10213  OverloadCandidateSet CandidateSet(OpLoc);
10214
10215  // Add the candidates from the given function set.
10216  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10217
10218  // Add operator candidates that are member functions.
10219  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10220
10221  // Add candidates from ADL.
10222  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10223                                       OpLoc, Args,
10224                                       /*ExplicitTemplateArgs*/ 0,
10225                                       CandidateSet);
10226
10227  // Add builtin operator candidates.
10228  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
10229
10230  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10231
10232  // Perform overload resolution.
10233  OverloadCandidateSet::iterator Best;
10234  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10235    case OR_Success: {
10236      // We found a built-in operator or an overloaded operator.
10237      FunctionDecl *FnDecl = Best->Function;
10238
10239      if (FnDecl) {
10240        // We matched an overloaded operator. Build a call to that
10241        // operator.
10242
10243        MarkFunctionReferenced(OpLoc, FnDecl);
10244
10245        // Convert the arguments.
10246        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10247          // Best->Access is only meaningful for class members.
10248          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10249
10250          ExprResult Arg1 =
10251            PerformCopyInitialization(
10252              InitializedEntity::InitializeParameter(Context,
10253                                                     FnDecl->getParamDecl(0)),
10254              SourceLocation(), Owned(Args[1]));
10255          if (Arg1.isInvalid())
10256            return ExprError();
10257
10258          ExprResult Arg0 =
10259            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10260                                                Best->FoundDecl, Method);
10261          if (Arg0.isInvalid())
10262            return ExprError();
10263          Args[0] = Arg0.takeAs<Expr>();
10264          Args[1] = RHS = Arg1.takeAs<Expr>();
10265        } else {
10266          // Convert the arguments.
10267          ExprResult Arg0 = PerformCopyInitialization(
10268            InitializedEntity::InitializeParameter(Context,
10269                                                   FnDecl->getParamDecl(0)),
10270            SourceLocation(), Owned(Args[0]));
10271          if (Arg0.isInvalid())
10272            return ExprError();
10273
10274          ExprResult Arg1 =
10275            PerformCopyInitialization(
10276              InitializedEntity::InitializeParameter(Context,
10277                                                     FnDecl->getParamDecl(1)),
10278              SourceLocation(), Owned(Args[1]));
10279          if (Arg1.isInvalid())
10280            return ExprError();
10281          Args[0] = LHS = Arg0.takeAs<Expr>();
10282          Args[1] = RHS = Arg1.takeAs<Expr>();
10283        }
10284
10285        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10286
10287        // Determine the result type.
10288        QualType ResultTy = FnDecl->getResultType();
10289        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10290        ResultTy = ResultTy.getNonLValueExprType(Context);
10291
10292        // Build the actual expression node.
10293        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10294                                                  HadMultipleCandidates, OpLoc);
10295        if (FnExpr.isInvalid())
10296          return ExprError();
10297
10298        CXXOperatorCallExpr *TheCall =
10299          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10300                                            Args, ResultTy, VK, OpLoc,
10301                                            FPFeatures.fp_contract);
10302
10303        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10304                                FnDecl))
10305          return ExprError();
10306
10307        return MaybeBindToTemporary(TheCall);
10308      } else {
10309        // We matched a built-in operator. Convert the arguments, then
10310        // break out so that we will build the appropriate built-in
10311        // operator node.
10312        ExprResult ArgsRes0 =
10313          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10314                                    Best->Conversions[0], AA_Passing);
10315        if (ArgsRes0.isInvalid())
10316          return ExprError();
10317        Args[0] = ArgsRes0.take();
10318
10319        ExprResult ArgsRes1 =
10320          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10321                                    Best->Conversions[1], AA_Passing);
10322        if (ArgsRes1.isInvalid())
10323          return ExprError();
10324        Args[1] = ArgsRes1.take();
10325        break;
10326      }
10327    }
10328
10329    case OR_No_Viable_Function: {
10330      // C++ [over.match.oper]p9:
10331      //   If the operator is the operator , [...] and there are no
10332      //   viable functions, then the operator is assumed to be the
10333      //   built-in operator and interpreted according to clause 5.
10334      if (Opc == BO_Comma)
10335        break;
10336
10337      // For class as left operand for assignment or compound assigment
10338      // operator do not fall through to handling in built-in, but report that
10339      // no overloaded assignment operator found
10340      ExprResult Result = ExprError();
10341      if (Args[0]->getType()->isRecordType() &&
10342          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10343        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10344             << BinaryOperator::getOpcodeStr(Opc)
10345             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10346      } else {
10347        // This is an erroneous use of an operator which can be overloaded by
10348        // a non-member function. Check for non-member operators which were
10349        // defined too late to be candidates.
10350        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10351          // FIXME: Recover by calling the found function.
10352          return ExprError();
10353
10354        // No viable function; try to create a built-in operation, which will
10355        // produce an error. Then, show the non-viable candidates.
10356        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10357      }
10358      assert(Result.isInvalid() &&
10359             "C++ binary operator overloading is missing candidates!");
10360      if (Result.isInvalid())
10361        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10362                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10363      return Result;
10364    }
10365
10366    case OR_Ambiguous:
10367      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10368          << BinaryOperator::getOpcodeStr(Opc)
10369          << Args[0]->getType() << Args[1]->getType()
10370          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10371      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10372                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10373      return ExprError();
10374
10375    case OR_Deleted:
10376      if (isImplicitlyDeleted(Best->Function)) {
10377        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10378        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10379          << getSpecialMember(Method)
10380          << BinaryOperator::getOpcodeStr(Opc)
10381          << getDeletedOrUnavailableSuffix(Best->Function);
10382
10383        if (getSpecialMember(Method) != CXXInvalid) {
10384          // The user probably meant to call this special member. Just
10385          // explain why it's deleted.
10386          NoteDeletedFunction(Method);
10387          return ExprError();
10388        }
10389      } else {
10390        Diag(OpLoc, diag::err_ovl_deleted_oper)
10391          << Best->Function->isDeleted()
10392          << BinaryOperator::getOpcodeStr(Opc)
10393          << getDeletedOrUnavailableSuffix(Best->Function)
10394          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10395      }
10396      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10397                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10398      return ExprError();
10399  }
10400
10401  // We matched a built-in operator; build it.
10402  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10403}
10404
10405ExprResult
10406Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10407                                         SourceLocation RLoc,
10408                                         Expr *Base, Expr *Idx) {
10409  Expr *Args[2] = { Base, Idx };
10410  DeclarationName OpName =
10411      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10412
10413  // If either side is type-dependent, create an appropriate dependent
10414  // expression.
10415  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10416
10417    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10418    // CHECKME: no 'operator' keyword?
10419    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10420    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10421    UnresolvedLookupExpr *Fn
10422      = UnresolvedLookupExpr::Create(Context, NamingClass,
10423                                     NestedNameSpecifierLoc(), OpNameInfo,
10424                                     /*ADL*/ true, /*Overloaded*/ false,
10425                                     UnresolvedSetIterator(),
10426                                     UnresolvedSetIterator());
10427    // Can't add any actual overloads yet
10428
10429    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10430                                                   Args,
10431                                                   Context.DependentTy,
10432                                                   VK_RValue,
10433                                                   RLoc, false));
10434  }
10435
10436  // Handle placeholders on both operands.
10437  if (checkPlaceholderForOverload(*this, Args[0]))
10438    return ExprError();
10439  if (checkPlaceholderForOverload(*this, Args[1]))
10440    return ExprError();
10441
10442  // Build an empty overload set.
10443  OverloadCandidateSet CandidateSet(LLoc);
10444
10445  // Subscript can only be overloaded as a member function.
10446
10447  // Add operator candidates that are member functions.
10448  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10449
10450  // Add builtin operator candidates.
10451  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10452
10453  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10454
10455  // Perform overload resolution.
10456  OverloadCandidateSet::iterator Best;
10457  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10458    case OR_Success: {
10459      // We found a built-in operator or an overloaded operator.
10460      FunctionDecl *FnDecl = Best->Function;
10461
10462      if (FnDecl) {
10463        // We matched an overloaded operator. Build a call to that
10464        // operator.
10465
10466        MarkFunctionReferenced(LLoc, FnDecl);
10467
10468        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10469        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
10470
10471        // Convert the arguments.
10472        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10473        ExprResult Arg0 =
10474          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10475                                              Best->FoundDecl, Method);
10476        if (Arg0.isInvalid())
10477          return ExprError();
10478        Args[0] = Arg0.take();
10479
10480        // Convert the arguments.
10481        ExprResult InputInit
10482          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10483                                                      Context,
10484                                                      FnDecl->getParamDecl(0)),
10485                                      SourceLocation(),
10486                                      Owned(Args[1]));
10487        if (InputInit.isInvalid())
10488          return ExprError();
10489
10490        Args[1] = InputInit.takeAs<Expr>();
10491
10492        // Determine the result type
10493        QualType ResultTy = FnDecl->getResultType();
10494        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10495        ResultTy = ResultTy.getNonLValueExprType(Context);
10496
10497        // Build the actual expression node.
10498        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10499        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10500        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10501                                                  HadMultipleCandidates,
10502                                                  OpLocInfo.getLoc(),
10503                                                  OpLocInfo.getInfo());
10504        if (FnExpr.isInvalid())
10505          return ExprError();
10506
10507        CXXOperatorCallExpr *TheCall =
10508          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10509                                            FnExpr.take(), Args,
10510                                            ResultTy, VK, RLoc,
10511                                            false);
10512
10513        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10514                                FnDecl))
10515          return ExprError();
10516
10517        return MaybeBindToTemporary(TheCall);
10518      } else {
10519        // We matched a built-in operator. Convert the arguments, then
10520        // break out so that we will build the appropriate built-in
10521        // operator node.
10522        ExprResult ArgsRes0 =
10523          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10524                                    Best->Conversions[0], AA_Passing);
10525        if (ArgsRes0.isInvalid())
10526          return ExprError();
10527        Args[0] = ArgsRes0.take();
10528
10529        ExprResult ArgsRes1 =
10530          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10531                                    Best->Conversions[1], AA_Passing);
10532        if (ArgsRes1.isInvalid())
10533          return ExprError();
10534        Args[1] = ArgsRes1.take();
10535
10536        break;
10537      }
10538    }
10539
10540    case OR_No_Viable_Function: {
10541      if (CandidateSet.empty())
10542        Diag(LLoc, diag::err_ovl_no_oper)
10543          << Args[0]->getType() << /*subscript*/ 0
10544          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10545      else
10546        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10547          << Args[0]->getType()
10548          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10549      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10550                                  "[]", LLoc);
10551      return ExprError();
10552    }
10553
10554    case OR_Ambiguous:
10555      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10556          << "[]"
10557          << Args[0]->getType() << Args[1]->getType()
10558          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10559      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10560                                  "[]", LLoc);
10561      return ExprError();
10562
10563    case OR_Deleted:
10564      Diag(LLoc, diag::err_ovl_deleted_oper)
10565        << Best->Function->isDeleted() << "[]"
10566        << getDeletedOrUnavailableSuffix(Best->Function)
10567        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10568      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10569                                  "[]", LLoc);
10570      return ExprError();
10571    }
10572
10573  // We matched a built-in operator; build it.
10574  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10575}
10576
10577/// BuildCallToMemberFunction - Build a call to a member
10578/// function. MemExpr is the expression that refers to the member
10579/// function (and includes the object parameter), Args/NumArgs are the
10580/// arguments to the function call (not including the object
10581/// parameter). The caller needs to validate that the member
10582/// expression refers to a non-static member function or an overloaded
10583/// member function.
10584ExprResult
10585Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10586                                SourceLocation LParenLoc, Expr **Args,
10587                                unsigned NumArgs, SourceLocation RParenLoc) {
10588  assert(MemExprE->getType() == Context.BoundMemberTy ||
10589         MemExprE->getType() == Context.OverloadTy);
10590
10591  // Dig out the member expression. This holds both the object
10592  // argument and the member function we're referring to.
10593  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10594
10595  // Determine whether this is a call to a pointer-to-member function.
10596  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10597    assert(op->getType() == Context.BoundMemberTy);
10598    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10599
10600    QualType fnType =
10601      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10602
10603    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10604    QualType resultType = proto->getCallResultType(Context);
10605    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10606
10607    // Check that the object type isn't more qualified than the
10608    // member function we're calling.
10609    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10610
10611    QualType objectType = op->getLHS()->getType();
10612    if (op->getOpcode() == BO_PtrMemI)
10613      objectType = objectType->castAs<PointerType>()->getPointeeType();
10614    Qualifiers objectQuals = objectType.getQualifiers();
10615
10616    Qualifiers difference = objectQuals - funcQuals;
10617    difference.removeObjCGCAttr();
10618    difference.removeAddressSpace();
10619    if (difference) {
10620      std::string qualsString = difference.getAsString();
10621      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10622        << fnType.getUnqualifiedType()
10623        << qualsString
10624        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10625    }
10626
10627    CXXMemberCallExpr *call
10628      = new (Context) CXXMemberCallExpr(Context, MemExprE,
10629                                        llvm::makeArrayRef(Args, NumArgs),
10630                                        resultType, valueKind, RParenLoc);
10631
10632    if (CheckCallReturnType(proto->getResultType(),
10633                            op->getRHS()->getLocStart(),
10634                            call, 0))
10635      return ExprError();
10636
10637    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10638      return ExprError();
10639
10640    return MaybeBindToTemporary(call);
10641  }
10642
10643  UnbridgedCastsSet UnbridgedCasts;
10644  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10645    return ExprError();
10646
10647  MemberExpr *MemExpr;
10648  CXXMethodDecl *Method = 0;
10649  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10650  NestedNameSpecifier *Qualifier = 0;
10651  if (isa<MemberExpr>(NakedMemExpr)) {
10652    MemExpr = cast<MemberExpr>(NakedMemExpr);
10653    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10654    FoundDecl = MemExpr->getFoundDecl();
10655    Qualifier = MemExpr->getQualifier();
10656    UnbridgedCasts.restore();
10657  } else {
10658    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10659    Qualifier = UnresExpr->getQualifier();
10660
10661    QualType ObjectType = UnresExpr->getBaseType();
10662    Expr::Classification ObjectClassification
10663      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10664                            : UnresExpr->getBase()->Classify(Context);
10665
10666    // Add overload candidates
10667    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10668
10669    // FIXME: avoid copy.
10670    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10671    if (UnresExpr->hasExplicitTemplateArgs()) {
10672      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10673      TemplateArgs = &TemplateArgsBuffer;
10674    }
10675
10676    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10677           E = UnresExpr->decls_end(); I != E; ++I) {
10678
10679      NamedDecl *Func = *I;
10680      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10681      if (isa<UsingShadowDecl>(Func))
10682        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10683
10684
10685      // Microsoft supports direct constructor calls.
10686      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10687        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10688                             llvm::makeArrayRef(Args, NumArgs), CandidateSet);
10689      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10690        // If explicit template arguments were provided, we can't call a
10691        // non-template member function.
10692        if (TemplateArgs)
10693          continue;
10694
10695        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10696                           ObjectClassification,
10697                           llvm::makeArrayRef(Args, NumArgs), CandidateSet,
10698                           /*SuppressUserConversions=*/false);
10699      } else {
10700        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10701                                   I.getPair(), ActingDC, TemplateArgs,
10702                                   ObjectType,  ObjectClassification,
10703                                   llvm::makeArrayRef(Args, NumArgs),
10704                                   CandidateSet,
10705                                   /*SuppressUsedConversions=*/false);
10706      }
10707    }
10708
10709    DeclarationName DeclName = UnresExpr->getMemberName();
10710
10711    UnbridgedCasts.restore();
10712
10713    OverloadCandidateSet::iterator Best;
10714    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10715                                            Best)) {
10716    case OR_Success:
10717      Method = cast<CXXMethodDecl>(Best->Function);
10718      MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10719      FoundDecl = Best->FoundDecl;
10720      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10721      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10722      break;
10723
10724    case OR_No_Viable_Function:
10725      Diag(UnresExpr->getMemberLoc(),
10726           diag::err_ovl_no_viable_member_function_in_call)
10727        << DeclName << MemExprE->getSourceRange();
10728      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10729                                  llvm::makeArrayRef(Args, NumArgs));
10730      // FIXME: Leaking incoming expressions!
10731      return ExprError();
10732
10733    case OR_Ambiguous:
10734      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10735        << DeclName << MemExprE->getSourceRange();
10736      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10737                                  llvm::makeArrayRef(Args, NumArgs));
10738      // FIXME: Leaking incoming expressions!
10739      return ExprError();
10740
10741    case OR_Deleted:
10742      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10743        << Best->Function->isDeleted()
10744        << DeclName
10745        << getDeletedOrUnavailableSuffix(Best->Function)
10746        << MemExprE->getSourceRange();
10747      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10748                                  llvm::makeArrayRef(Args, NumArgs));
10749      // FIXME: Leaking incoming expressions!
10750      return ExprError();
10751    }
10752
10753    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10754
10755    // If overload resolution picked a static member, build a
10756    // non-member call based on that function.
10757    if (Method->isStatic()) {
10758      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10759                                   Args, NumArgs, RParenLoc);
10760    }
10761
10762    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10763  }
10764
10765  QualType ResultType = Method->getResultType();
10766  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10767  ResultType = ResultType.getNonLValueExprType(Context);
10768
10769  assert(Method && "Member call to something that isn't a method?");
10770  CXXMemberCallExpr *TheCall =
10771    new (Context) CXXMemberCallExpr(Context, MemExprE,
10772                                    llvm::makeArrayRef(Args, NumArgs),
10773                                    ResultType, VK, RParenLoc);
10774
10775  // Check for a valid return type.
10776  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10777                          TheCall, Method))
10778    return ExprError();
10779
10780  // Convert the object argument (for a non-static member function call).
10781  // We only need to do this if there was actually an overload; otherwise
10782  // it was done at lookup.
10783  if (!Method->isStatic()) {
10784    ExprResult ObjectArg =
10785      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10786                                          FoundDecl, Method);
10787    if (ObjectArg.isInvalid())
10788      return ExprError();
10789    MemExpr->setBase(ObjectArg.take());
10790  }
10791
10792  // Convert the rest of the arguments
10793  const FunctionProtoType *Proto =
10794    Method->getType()->getAs<FunctionProtoType>();
10795  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10796                              RParenLoc))
10797    return ExprError();
10798
10799  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10800
10801  if (CheckFunctionCall(Method, TheCall, Proto))
10802    return ExprError();
10803
10804  if ((isa<CXXConstructorDecl>(CurContext) ||
10805       isa<CXXDestructorDecl>(CurContext)) &&
10806      TheCall->getMethodDecl()->isPure()) {
10807    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10808
10809    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10810      Diag(MemExpr->getLocStart(),
10811           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10812        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10813        << MD->getParent()->getDeclName();
10814
10815      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10816    }
10817  }
10818  return MaybeBindToTemporary(TheCall);
10819}
10820
10821/// BuildCallToObjectOfClassType - Build a call to an object of class
10822/// type (C++ [over.call.object]), which can end up invoking an
10823/// overloaded function call operator (@c operator()) or performing a
10824/// user-defined conversion on the object argument.
10825ExprResult
10826Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10827                                   SourceLocation LParenLoc,
10828                                   Expr **Args, unsigned NumArgs,
10829                                   SourceLocation RParenLoc) {
10830  if (checkPlaceholderForOverload(*this, Obj))
10831    return ExprError();
10832  ExprResult Object = Owned(Obj);
10833
10834  UnbridgedCastsSet UnbridgedCasts;
10835  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10836    return ExprError();
10837
10838  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10839  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10840
10841  // C++ [over.call.object]p1:
10842  //  If the primary-expression E in the function call syntax
10843  //  evaluates to a class object of type "cv T", then the set of
10844  //  candidate functions includes at least the function call
10845  //  operators of T. The function call operators of T are obtained by
10846  //  ordinary lookup of the name operator() in the context of
10847  //  (E).operator().
10848  OverloadCandidateSet CandidateSet(LParenLoc);
10849  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10850
10851  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10852                          diag::err_incomplete_object_call, Object.get()))
10853    return true;
10854
10855  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10856  LookupQualifiedName(R, Record->getDecl());
10857  R.suppressDiagnostics();
10858
10859  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10860       Oper != OperEnd; ++Oper) {
10861    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10862                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10863                       /*SuppressUserConversions=*/ false);
10864  }
10865
10866  // C++ [over.call.object]p2:
10867  //   In addition, for each (non-explicit in C++0x) conversion function
10868  //   declared in T of the form
10869  //
10870  //        operator conversion-type-id () cv-qualifier;
10871  //
10872  //   where cv-qualifier is the same cv-qualification as, or a
10873  //   greater cv-qualification than, cv, and where conversion-type-id
10874  //   denotes the type "pointer to function of (P1,...,Pn) returning
10875  //   R", or the type "reference to pointer to function of
10876  //   (P1,...,Pn) returning R", or the type "reference to function
10877  //   of (P1,...,Pn) returning R", a surrogate call function [...]
10878  //   is also considered as a candidate function. Similarly,
10879  //   surrogate call functions are added to the set of candidate
10880  //   functions for each conversion function declared in an
10881  //   accessible base class provided the function is not hidden
10882  //   within T by another intervening declaration.
10883  const UnresolvedSetImpl *Conversions
10884    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10885  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10886         E = Conversions->end(); I != E; ++I) {
10887    NamedDecl *D = *I;
10888    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10889    if (isa<UsingShadowDecl>(D))
10890      D = cast<UsingShadowDecl>(D)->getTargetDecl();
10891
10892    // Skip over templated conversion functions; they aren't
10893    // surrogates.
10894    if (isa<FunctionTemplateDecl>(D))
10895      continue;
10896
10897    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10898    if (!Conv->isExplicit()) {
10899      // Strip the reference type (if any) and then the pointer type (if
10900      // any) to get down to what might be a function type.
10901      QualType ConvType = Conv->getConversionType().getNonReferenceType();
10902      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10903        ConvType = ConvPtrType->getPointeeType();
10904
10905      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10906      {
10907        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10908                              Object.get(), llvm::makeArrayRef(Args, NumArgs),
10909                              CandidateSet);
10910      }
10911    }
10912  }
10913
10914  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10915
10916  // Perform overload resolution.
10917  OverloadCandidateSet::iterator Best;
10918  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10919                             Best)) {
10920  case OR_Success:
10921    // Overload resolution succeeded; we'll build the appropriate call
10922    // below.
10923    break;
10924
10925  case OR_No_Viable_Function:
10926    if (CandidateSet.empty())
10927      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
10928        << Object.get()->getType() << /*call*/ 1
10929        << Object.get()->getSourceRange();
10930    else
10931      Diag(Object.get()->getLocStart(),
10932           diag::err_ovl_no_viable_object_call)
10933        << Object.get()->getType() << Object.get()->getSourceRange();
10934    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10935                                llvm::makeArrayRef(Args, NumArgs));
10936    break;
10937
10938  case OR_Ambiguous:
10939    Diag(Object.get()->getLocStart(),
10940         diag::err_ovl_ambiguous_object_call)
10941      << Object.get()->getType() << Object.get()->getSourceRange();
10942    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10943                                llvm::makeArrayRef(Args, NumArgs));
10944    break;
10945
10946  case OR_Deleted:
10947    Diag(Object.get()->getLocStart(),
10948         diag::err_ovl_deleted_object_call)
10949      << Best->Function->isDeleted()
10950      << Object.get()->getType()
10951      << getDeletedOrUnavailableSuffix(Best->Function)
10952      << Object.get()->getSourceRange();
10953    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10954                                llvm::makeArrayRef(Args, NumArgs));
10955    break;
10956  }
10957
10958  if (Best == CandidateSet.end())
10959    return true;
10960
10961  UnbridgedCasts.restore();
10962
10963  if (Best->Function == 0) {
10964    // Since there is no function declaration, this is one of the
10965    // surrogate candidates. Dig out the conversion function.
10966    CXXConversionDecl *Conv
10967      = cast<CXXConversionDecl>(
10968                         Best->Conversions[0].UserDefined.ConversionFunction);
10969
10970    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10971    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10972
10973    // We selected one of the surrogate functions that converts the
10974    // object parameter to a function pointer. Perform the conversion
10975    // on the object argument, then let ActOnCallExpr finish the job.
10976
10977    // Create an implicit member expr to refer to the conversion operator.
10978    // and then call it.
10979    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10980                                             Conv, HadMultipleCandidates);
10981    if (Call.isInvalid())
10982      return ExprError();
10983    // Record usage of conversion in an implicit cast.
10984    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10985                                          CK_UserDefinedConversion,
10986                                          Call.get(), 0, VK_RValue));
10987
10988    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10989                         RParenLoc);
10990  }
10991
10992  MarkFunctionReferenced(LParenLoc, Best->Function);
10993  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10994  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10995
10996  // We found an overloaded operator(). Build a CXXOperatorCallExpr
10997  // that calls this method, using Object for the implicit object
10998  // parameter and passing along the remaining arguments.
10999  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11000  const FunctionProtoType *Proto =
11001    Method->getType()->getAs<FunctionProtoType>();
11002
11003  unsigned NumArgsInProto = Proto->getNumArgs();
11004  unsigned NumArgsToCheck = NumArgs;
11005
11006  // Build the full argument list for the method call (the
11007  // implicit object parameter is placed at the beginning of the
11008  // list).
11009  Expr **MethodArgs;
11010  if (NumArgs < NumArgsInProto) {
11011    NumArgsToCheck = NumArgsInProto;
11012    MethodArgs = new Expr*[NumArgsInProto + 1];
11013  } else {
11014    MethodArgs = new Expr*[NumArgs + 1];
11015  }
11016  MethodArgs[0] = Object.get();
11017  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
11018    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
11019
11020  DeclarationNameInfo OpLocInfo(
11021               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11022  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11023  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
11024                                           HadMultipleCandidates,
11025                                           OpLocInfo.getLoc(),
11026                                           OpLocInfo.getInfo());
11027  if (NewFn.isInvalid())
11028    return true;
11029
11030  // Once we've built TheCall, all of the expressions are properly
11031  // owned.
11032  QualType ResultTy = Method->getResultType();
11033  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11034  ResultTy = ResultTy.getNonLValueExprType(Context);
11035
11036  CXXOperatorCallExpr *TheCall =
11037    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
11038                                      llvm::makeArrayRef(MethodArgs, NumArgs+1),
11039                                      ResultTy, VK, RParenLoc, false);
11040  delete [] MethodArgs;
11041
11042  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
11043                          Method))
11044    return true;
11045
11046  // We may have default arguments. If so, we need to allocate more
11047  // slots in the call for them.
11048  if (NumArgs < NumArgsInProto)
11049    TheCall->setNumArgs(Context, NumArgsInProto + 1);
11050  else if (NumArgs > NumArgsInProto)
11051    NumArgsToCheck = NumArgsInProto;
11052
11053  bool IsError = false;
11054
11055  // Initialize the implicit object parameter.
11056  ExprResult ObjRes =
11057    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11058                                        Best->FoundDecl, Method);
11059  if (ObjRes.isInvalid())
11060    IsError = true;
11061  else
11062    Object = ObjRes;
11063  TheCall->setArg(0, Object.take());
11064
11065  // Check the argument types.
11066  for (unsigned i = 0; i != NumArgsToCheck; i++) {
11067    Expr *Arg;
11068    if (i < NumArgs) {
11069      Arg = Args[i];
11070
11071      // Pass the argument.
11072
11073      ExprResult InputInit
11074        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11075                                                    Context,
11076                                                    Method->getParamDecl(i)),
11077                                    SourceLocation(), Arg);
11078
11079      IsError |= InputInit.isInvalid();
11080      Arg = InputInit.takeAs<Expr>();
11081    } else {
11082      ExprResult DefArg
11083        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11084      if (DefArg.isInvalid()) {
11085        IsError = true;
11086        break;
11087      }
11088
11089      Arg = DefArg.takeAs<Expr>();
11090    }
11091
11092    TheCall->setArg(i + 1, Arg);
11093  }
11094
11095  // If this is a variadic call, handle args passed through "...".
11096  if (Proto->isVariadic()) {
11097    // Promote the arguments (C99 6.5.2.2p7).
11098    for (unsigned i = NumArgsInProto; i < NumArgs; i++) {
11099      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11100      IsError |= Arg.isInvalid();
11101      TheCall->setArg(i + 1, Arg.take());
11102    }
11103  }
11104
11105  if (IsError) return true;
11106
11107  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
11108
11109  if (CheckFunctionCall(Method, TheCall, Proto))
11110    return true;
11111
11112  return MaybeBindToTemporary(TheCall);
11113}
11114
11115/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11116///  (if one exists), where @c Base is an expression of class type and
11117/// @c Member is the name of the member we're trying to find.
11118ExprResult
11119Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
11120  assert(Base->getType()->isRecordType() &&
11121         "left-hand side must have class type");
11122
11123  if (checkPlaceholderForOverload(*this, Base))
11124    return ExprError();
11125
11126  SourceLocation Loc = Base->getExprLoc();
11127
11128  // C++ [over.ref]p1:
11129  //
11130  //   [...] An expression x->m is interpreted as (x.operator->())->m
11131  //   for a class object x of type T if T::operator->() exists and if
11132  //   the operator is selected as the best match function by the
11133  //   overload resolution mechanism (13.3).
11134  DeclarationName OpName =
11135    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11136  OverloadCandidateSet CandidateSet(Loc);
11137  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11138
11139  if (RequireCompleteType(Loc, Base->getType(),
11140                          diag::err_typecheck_incomplete_tag, Base))
11141    return ExprError();
11142
11143  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11144  LookupQualifiedName(R, BaseRecord->getDecl());
11145  R.suppressDiagnostics();
11146
11147  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11148       Oper != OperEnd; ++Oper) {
11149    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11150                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
11151  }
11152
11153  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11154
11155  // Perform overload resolution.
11156  OverloadCandidateSet::iterator Best;
11157  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11158  case OR_Success:
11159    // Overload resolution succeeded; we'll build the call below.
11160    break;
11161
11162  case OR_No_Viable_Function:
11163    if (CandidateSet.empty())
11164      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11165        << Base->getType() << Base->getSourceRange();
11166    else
11167      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11168        << "operator->" << Base->getSourceRange();
11169    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11170    return ExprError();
11171
11172  case OR_Ambiguous:
11173    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11174      << "->" << Base->getType() << Base->getSourceRange();
11175    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11176    return ExprError();
11177
11178  case OR_Deleted:
11179    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11180      << Best->Function->isDeleted()
11181      << "->"
11182      << getDeletedOrUnavailableSuffix(Best->Function)
11183      << Base->getSourceRange();
11184    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11185    return ExprError();
11186  }
11187
11188  MarkFunctionReferenced(OpLoc, Best->Function);
11189  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11190  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
11191
11192  // Convert the object parameter.
11193  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11194  ExprResult BaseResult =
11195    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11196                                        Best->FoundDecl, Method);
11197  if (BaseResult.isInvalid())
11198    return ExprError();
11199  Base = BaseResult.take();
11200
11201  // Build the operator call.
11202  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
11203                                            HadMultipleCandidates, OpLoc);
11204  if (FnExpr.isInvalid())
11205    return ExprError();
11206
11207  QualType ResultTy = Method->getResultType();
11208  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11209  ResultTy = ResultTy.getNonLValueExprType(Context);
11210  CXXOperatorCallExpr *TheCall =
11211    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11212                                      Base, ResultTy, VK, OpLoc, false);
11213
11214  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11215                          Method))
11216          return ExprError();
11217
11218  return MaybeBindToTemporary(TheCall);
11219}
11220
11221/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11222/// a literal operator described by the provided lookup results.
11223ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11224                                          DeclarationNameInfo &SuffixInfo,
11225                                          ArrayRef<Expr*> Args,
11226                                          SourceLocation LitEndLoc,
11227                                       TemplateArgumentListInfo *TemplateArgs) {
11228  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11229
11230  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11231  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11232                        TemplateArgs);
11233
11234  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11235
11236  // Perform overload resolution. This will usually be trivial, but might need
11237  // to perform substitutions for a literal operator template.
11238  OverloadCandidateSet::iterator Best;
11239  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11240  case OR_Success:
11241  case OR_Deleted:
11242    break;
11243
11244  case OR_No_Viable_Function:
11245    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11246      << R.getLookupName();
11247    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11248    return ExprError();
11249
11250  case OR_Ambiguous:
11251    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11252    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11253    return ExprError();
11254  }
11255
11256  FunctionDecl *FD = Best->Function;
11257  MarkFunctionReferenced(UDSuffixLoc, FD);
11258  DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
11259
11260  ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
11261                                        SuffixInfo.getLoc(),
11262                                        SuffixInfo.getInfo());
11263  if (Fn.isInvalid())
11264    return true;
11265
11266  // Check the argument types. This should almost always be a no-op, except
11267  // that array-to-pointer decay is applied to string literals.
11268  Expr *ConvArgs[2];
11269  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
11270    ExprResult InputInit = PerformCopyInitialization(
11271      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11272      SourceLocation(), Args[ArgIdx]);
11273    if (InputInit.isInvalid())
11274      return true;
11275    ConvArgs[ArgIdx] = InputInit.take();
11276  }
11277
11278  QualType ResultTy = FD->getResultType();
11279  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11280  ResultTy = ResultTy.getNonLValueExprType(Context);
11281
11282  UserDefinedLiteral *UDL =
11283    new (Context) UserDefinedLiteral(Context, Fn.take(),
11284                                     llvm::makeArrayRef(ConvArgs, Args.size()),
11285                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11286
11287  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11288    return ExprError();
11289
11290  if (CheckFunctionCall(FD, UDL, NULL))
11291    return ExprError();
11292
11293  return MaybeBindToTemporary(UDL);
11294}
11295
11296/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11297/// given LookupResult is non-empty, it is assumed to describe a member which
11298/// will be invoked. Otherwise, the function will be found via argument
11299/// dependent lookup.
11300/// CallExpr is set to a valid expression and FRS_Success returned on success,
11301/// otherwise CallExpr is set to ExprError() and some non-success value
11302/// is returned.
11303Sema::ForRangeStatus
11304Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11305                                SourceLocation RangeLoc, VarDecl *Decl,
11306                                BeginEndFunction BEF,
11307                                const DeclarationNameInfo &NameInfo,
11308                                LookupResult &MemberLookup,
11309                                OverloadCandidateSet *CandidateSet,
11310                                Expr *Range, ExprResult *CallExpr) {
11311  CandidateSet->clear();
11312  if (!MemberLookup.empty()) {
11313    ExprResult MemberRef =
11314        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11315                                 /*IsPtr=*/false, CXXScopeSpec(),
11316                                 /*TemplateKWLoc=*/SourceLocation(),
11317                                 /*FirstQualifierInScope=*/0,
11318                                 MemberLookup,
11319                                 /*TemplateArgs=*/0);
11320    if (MemberRef.isInvalid()) {
11321      *CallExpr = ExprError();
11322      Diag(Range->getLocStart(), diag::note_in_for_range)
11323          << RangeLoc << BEF << Range->getType();
11324      return FRS_DiagnosticIssued;
11325    }
11326    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(), Loc, 0);
11327    if (CallExpr->isInvalid()) {
11328      *CallExpr = ExprError();
11329      Diag(Range->getLocStart(), diag::note_in_for_range)
11330          << RangeLoc << BEF << Range->getType();
11331      return FRS_DiagnosticIssued;
11332    }
11333  } else {
11334    UnresolvedSet<0> FoundNames;
11335    UnresolvedLookupExpr *Fn =
11336      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11337                                   NestedNameSpecifierLoc(), NameInfo,
11338                                   /*NeedsADL=*/true, /*Overloaded=*/false,
11339                                   FoundNames.begin(), FoundNames.end());
11340
11341    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, &Range, 1, Loc,
11342                                                    CandidateSet, CallExpr);
11343    if (CandidateSet->empty() || CandidateSetError) {
11344      *CallExpr = ExprError();
11345      return FRS_NoViableFunction;
11346    }
11347    OverloadCandidateSet::iterator Best;
11348    OverloadingResult OverloadResult =
11349        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11350
11351    if (OverloadResult == OR_No_Viable_Function) {
11352      *CallExpr = ExprError();
11353      return FRS_NoViableFunction;
11354    }
11355    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, &Range, 1,
11356                                         Loc, 0, CandidateSet, &Best,
11357                                         OverloadResult,
11358                                         /*AllowTypoCorrection=*/false);
11359    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11360      *CallExpr = ExprError();
11361      Diag(Range->getLocStart(), diag::note_in_for_range)
11362          << RangeLoc << BEF << Range->getType();
11363      return FRS_DiagnosticIssued;
11364    }
11365  }
11366  return FRS_Success;
11367}
11368
11369
11370/// FixOverloadedFunctionReference - E is an expression that refers to
11371/// a C++ overloaded function (possibly with some parentheses and
11372/// perhaps a '&' around it). We have resolved the overloaded function
11373/// to the function declaration Fn, so patch up the expression E to
11374/// refer (possibly indirectly) to Fn. Returns the new expr.
11375Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11376                                           FunctionDecl *Fn) {
11377  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11378    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11379                                                   Found, Fn);
11380    if (SubExpr == PE->getSubExpr())
11381      return PE;
11382
11383    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11384  }
11385
11386  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11387    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11388                                                   Found, Fn);
11389    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11390                               SubExpr->getType()) &&
11391           "Implicit cast type cannot be determined from overload");
11392    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11393    if (SubExpr == ICE->getSubExpr())
11394      return ICE;
11395
11396    return ImplicitCastExpr::Create(Context, ICE->getType(),
11397                                    ICE->getCastKind(),
11398                                    SubExpr, 0,
11399                                    ICE->getValueKind());
11400  }
11401
11402  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11403    assert(UnOp->getOpcode() == UO_AddrOf &&
11404           "Can only take the address of an overloaded function");
11405    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11406      if (Method->isStatic()) {
11407        // Do nothing: static member functions aren't any different
11408        // from non-member functions.
11409      } else {
11410        // Fix the sub expression, which really has to be an
11411        // UnresolvedLookupExpr holding an overloaded member function
11412        // or template.
11413        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11414                                                       Found, Fn);
11415        if (SubExpr == UnOp->getSubExpr())
11416          return UnOp;
11417
11418        assert(isa<DeclRefExpr>(SubExpr)
11419               && "fixed to something other than a decl ref");
11420        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11421               && "fixed to a member ref with no nested name qualifier");
11422
11423        // We have taken the address of a pointer to member
11424        // function. Perform the computation here so that we get the
11425        // appropriate pointer to member type.
11426        QualType ClassType
11427          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11428        QualType MemPtrType
11429          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11430
11431        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11432                                           VK_RValue, OK_Ordinary,
11433                                           UnOp->getOperatorLoc());
11434      }
11435    }
11436    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11437                                                   Found, Fn);
11438    if (SubExpr == UnOp->getSubExpr())
11439      return UnOp;
11440
11441    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11442                                     Context.getPointerType(SubExpr->getType()),
11443                                       VK_RValue, OK_Ordinary,
11444                                       UnOp->getOperatorLoc());
11445  }
11446
11447  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11448    // FIXME: avoid copy.
11449    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11450    if (ULE->hasExplicitTemplateArgs()) {
11451      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11452      TemplateArgs = &TemplateArgsBuffer;
11453    }
11454
11455    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11456                                           ULE->getQualifierLoc(),
11457                                           ULE->getTemplateKeywordLoc(),
11458                                           Fn,
11459                                           /*enclosing*/ false, // FIXME?
11460                                           ULE->getNameLoc(),
11461                                           Fn->getType(),
11462                                           VK_LValue,
11463                                           Found.getDecl(),
11464                                           TemplateArgs);
11465    MarkDeclRefReferenced(DRE);
11466    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11467    return DRE;
11468  }
11469
11470  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11471    // FIXME: avoid copy.
11472    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11473    if (MemExpr->hasExplicitTemplateArgs()) {
11474      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11475      TemplateArgs = &TemplateArgsBuffer;
11476    }
11477
11478    Expr *Base;
11479
11480    // If we're filling in a static method where we used to have an
11481    // implicit member access, rewrite to a simple decl ref.
11482    if (MemExpr->isImplicitAccess()) {
11483      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11484        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11485                                               MemExpr->getQualifierLoc(),
11486                                               MemExpr->getTemplateKeywordLoc(),
11487                                               Fn,
11488                                               /*enclosing*/ false,
11489                                               MemExpr->getMemberLoc(),
11490                                               Fn->getType(),
11491                                               VK_LValue,
11492                                               Found.getDecl(),
11493                                               TemplateArgs);
11494        MarkDeclRefReferenced(DRE);
11495        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11496        return DRE;
11497      } else {
11498        SourceLocation Loc = MemExpr->getMemberLoc();
11499        if (MemExpr->getQualifier())
11500          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11501        CheckCXXThisCapture(Loc);
11502        Base = new (Context) CXXThisExpr(Loc,
11503                                         MemExpr->getBaseType(),
11504                                         /*isImplicit=*/true);
11505      }
11506    } else
11507      Base = MemExpr->getBase();
11508
11509    ExprValueKind valueKind;
11510    QualType type;
11511    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11512      valueKind = VK_LValue;
11513      type = Fn->getType();
11514    } else {
11515      valueKind = VK_RValue;
11516      type = Context.BoundMemberTy;
11517    }
11518
11519    MemberExpr *ME = MemberExpr::Create(Context, Base,
11520                                        MemExpr->isArrow(),
11521                                        MemExpr->getQualifierLoc(),
11522                                        MemExpr->getTemplateKeywordLoc(),
11523                                        Fn,
11524                                        Found,
11525                                        MemExpr->getMemberNameInfo(),
11526                                        TemplateArgs,
11527                                        type, valueKind, OK_Ordinary);
11528    ME->setHadMultipleCandidates(true);
11529    return ME;
11530  }
11531
11532  llvm_unreachable("Invalid reference to overloaded function");
11533}
11534
11535ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11536                                                DeclAccessPair Found,
11537                                                FunctionDecl *Fn) {
11538  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11539}
11540
11541} // end namespace clang
11542