SemaOverload.cpp revision 60095fbee65d50c0d1150be917b8e4d1f522023c
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407/// If @p UserCast, the implicit conversion is being done for a user-specified
408/// cast.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue,
413                            bool InOverloadResolution,
414                            bool UserCast) {
415  ImplicitConversionSequence ICS;
416  OverloadCandidateSet Conversions;
417  OverloadingResult UserDefResult = OR_Success;
418  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
419    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
420  else if (getLangOptions().CPlusPlus &&
421           (UserDefResult = IsUserDefinedConversion(From, ToType,
422                                   ICS.UserDefined,
423                                   Conversions,
424                                   !SuppressUserConversions, AllowExplicit,
425				   ForceRValue, UserCast)) == OR_Success) {
426    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
427    // C++ [over.ics.user]p4:
428    //   A conversion of an expression of class type to the same class
429    //   type is given Exact Match rank, and a conversion of an
430    //   expression of class type to a base class of that type is
431    //   given Conversion rank, in spite of the fact that a copy
432    //   constructor (i.e., a user-defined conversion function) is
433    //   called for those cases.
434    if (CXXConstructorDecl *Constructor
435          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
436      QualType FromCanon
437        = Context.getCanonicalType(From->getType().getUnqualifiedType());
438      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
439      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
440        // Turn this into a "standard" conversion sequence, so that it
441        // gets ranked with standard conversion sequences.
442        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
443        ICS.Standard.setAsIdentityConversion();
444        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
445        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
446        ICS.Standard.CopyConstructor = Constructor;
447        if (ToCanon != FromCanon)
448          ICS.Standard.Second = ICK_Derived_To_Base;
449      }
450    }
451
452    // C++ [over.best.ics]p4:
453    //   However, when considering the argument of a user-defined
454    //   conversion function that is a candidate by 13.3.1.3 when
455    //   invoked for the copying of the temporary in the second step
456    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
457    //   13.3.1.6 in all cases, only standard conversion sequences and
458    //   ellipsis conversion sequences are allowed.
459    if (SuppressUserConversions &&
460        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
461      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
462  } else {
463    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
464    if (UserDefResult == OR_Ambiguous) {
465      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
466           Cand != Conversions.end(); ++Cand)
467        if (Cand->Viable)
468          ICS.ConversionFunctionSet.push_back(Cand->Function);
469    }
470  }
471
472  return ICS;
473}
474
475/// IsStandardConversion - Determines whether there is a standard
476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
477/// expression From to the type ToType. Standard conversion sequences
478/// only consider non-class types; for conversions that involve class
479/// types, use TryImplicitConversion. If a conversion exists, SCS will
480/// contain the standard conversion sequence required to perform this
481/// conversion and this routine will return true. Otherwise, this
482/// routine will return false and the value of SCS is unspecified.
483bool
484Sema::IsStandardConversion(Expr* From, QualType ToType,
485                           bool InOverloadResolution,
486                           StandardConversionSequence &SCS) {
487  QualType FromType = From->getType();
488
489  // Standard conversions (C++ [conv])
490  SCS.setAsIdentityConversion();
491  SCS.Deprecated = false;
492  SCS.IncompatibleObjC = false;
493  SCS.FromTypePtr = FromType.getAsOpaquePtr();
494  SCS.CopyConstructor = 0;
495
496  // There are no standard conversions for class types in C++, so
497  // abort early. When overloading in C, however, we do permit
498  if (FromType->isRecordType() || ToType->isRecordType()) {
499    if (getLangOptions().CPlusPlus)
500      return false;
501
502    // When we're overloading in C, we allow, as standard conversions,
503  }
504
505  // The first conversion can be an lvalue-to-rvalue conversion,
506  // array-to-pointer conversion, or function-to-pointer conversion
507  // (C++ 4p1).
508
509  // Lvalue-to-rvalue conversion (C++ 4.1):
510  //   An lvalue (3.10) of a non-function, non-array type T can be
511  //   converted to an rvalue.
512  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
513  if (argIsLvalue == Expr::LV_Valid &&
514      !FromType->isFunctionType() && !FromType->isArrayType() &&
515      Context.getCanonicalType(FromType) != Context.OverloadTy) {
516    SCS.First = ICK_Lvalue_To_Rvalue;
517
518    // If T is a non-class type, the type of the rvalue is the
519    // cv-unqualified version of T. Otherwise, the type of the rvalue
520    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
521    // just strip the qualifiers because they don't matter.
522
523    // FIXME: Doesn't see through to qualifiers behind a typedef!
524    FromType = FromType.getUnqualifiedType();
525  } else if (FromType->isArrayType()) {
526    // Array-to-pointer conversion (C++ 4.2)
527    SCS.First = ICK_Array_To_Pointer;
528
529    // An lvalue or rvalue of type "array of N T" or "array of unknown
530    // bound of T" can be converted to an rvalue of type "pointer to
531    // T" (C++ 4.2p1).
532    FromType = Context.getArrayDecayedType(FromType);
533
534    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
535      // This conversion is deprecated. (C++ D.4).
536      SCS.Deprecated = true;
537
538      // For the purpose of ranking in overload resolution
539      // (13.3.3.1.1), this conversion is considered an
540      // array-to-pointer conversion followed by a qualification
541      // conversion (4.4). (C++ 4.2p2)
542      SCS.Second = ICK_Identity;
543      SCS.Third = ICK_Qualification;
544      SCS.ToTypePtr = ToType.getAsOpaquePtr();
545      return true;
546    }
547  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
548    // Function-to-pointer conversion (C++ 4.3).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // An lvalue of function type T can be converted to an rvalue of
552    // type "pointer to T." The result is a pointer to the
553    // function. (C++ 4.3p1).
554    FromType = Context.getPointerType(FromType);
555  } else if (FunctionDecl *Fn
556             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
557    // Address of overloaded function (C++ [over.over]).
558    SCS.First = ICK_Function_To_Pointer;
559
560    // We were able to resolve the address of the overloaded function,
561    // so we can convert to the type of that function.
562    FromType = Fn->getType();
563    if (ToType->isLValueReferenceType())
564      FromType = Context.getLValueReferenceType(FromType);
565    else if (ToType->isRValueReferenceType())
566      FromType = Context.getRValueReferenceType(FromType);
567    else if (ToType->isMemberPointerType()) {
568      // Resolve address only succeeds if both sides are member pointers,
569      // but it doesn't have to be the same class. See DR 247.
570      // Note that this means that the type of &Derived::fn can be
571      // Ret (Base::*)(Args) if the fn overload actually found is from the
572      // base class, even if it was brought into the derived class via a
573      // using declaration. The standard isn't clear on this issue at all.
574      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
575      FromType = Context.getMemberPointerType(FromType,
576                    Context.getTypeDeclType(M->getParent()).getTypePtr());
577    } else
578      FromType = Context.getPointerType(FromType);
579  } else {
580    // We don't require any conversions for the first step.
581    SCS.First = ICK_Identity;
582  }
583
584  // The second conversion can be an integral promotion, floating
585  // point promotion, integral conversion, floating point conversion,
586  // floating-integral conversion, pointer conversion,
587  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
588  // For overloading in C, this can also be a "compatible-type"
589  // conversion.
590  bool IncompatibleObjC = false;
591  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
592    // The unqualified versions of the types are the same: there's no
593    // conversion to do.
594    SCS.Second = ICK_Identity;
595  } else if (IsIntegralPromotion(From, FromType, ToType)) {
596    // Integral promotion (C++ 4.5).
597    SCS.Second = ICK_Integral_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsFloatingPointPromotion(FromType, ToType)) {
600    // Floating point promotion (C++ 4.6).
601    SCS.Second = ICK_Floating_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (IsComplexPromotion(FromType, ToType)) {
604    // Complex promotion (Clang extension)
605    SCS.Second = ICK_Complex_Promotion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
608           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
609    // Integral conversions (C++ 4.7).
610    // FIXME: isIntegralType shouldn't be true for enums in C++.
611    SCS.Second = ICK_Integral_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
614    // Floating point conversions (C++ 4.8).
615    SCS.Second = ICK_Floating_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if (FromType->isComplexType() && ToType->isComplexType()) {
618    // Complex conversions (C99 6.3.1.6)
619    SCS.Second = ICK_Complex_Conversion;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isFloatingType() &&
622              ToType->isIntegralType() && (!ToType->isBooleanType() &&
623                                           !ToType->isEnumeralType())) ||
624             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625              ToType->isFloatingType())) {
626    // Floating-integral conversions (C++ 4.9).
627    // FIXME: isIntegralType shouldn't be true for enums in C++.
628    SCS.Second = ICK_Floating_Integral;
629    FromType = ToType.getUnqualifiedType();
630  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631             (ToType->isComplexType() && FromType->isArithmeticType())) {
632    // Complex-real conversions (C99 6.3.1.7)
633    SCS.Second = ICK_Complex_Real;
634    FromType = ToType.getUnqualifiedType();
635  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
636                                 FromType, IncompatibleObjC)) {
637    // Pointer conversions (C++ 4.10).
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  } else if (IsMemberPointerConversion(From, FromType, ToType,
641                                       InOverloadResolution, FromType)) {
642    // Pointer to member conversions (4.11).
643    SCS.Second = ICK_Pointer_Member;
644  } else if (ToType->isBooleanType() &&
645             (FromType->isArithmeticType() ||
646              FromType->isEnumeralType() ||
647              FromType->isPointerType() ||
648              FromType->isBlockPointerType() ||
649              FromType->isMemberPointerType() ||
650              FromType->isNullPtrType())) {
651    // Boolean conversions (C++ 4.12).
652    SCS.Second = ICK_Boolean_Conversion;
653    FromType = Context.BoolTy;
654  } else if (!getLangOptions().CPlusPlus &&
655             Context.typesAreCompatible(ToType, FromType)) {
656    // Compatible conversions (Clang extension for C function overloading)
657    SCS.Second = ICK_Compatible_Conversion;
658  } else {
659    // No second conversion required.
660    SCS.Second = ICK_Identity;
661  }
662
663  QualType CanonFrom;
664  QualType CanonTo;
665  // The third conversion can be a qualification conversion (C++ 4p1).
666  if (IsQualificationConversion(FromType, ToType)) {
667    SCS.Third = ICK_Qualification;
668    FromType = ToType;
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671  } else {
672    // No conversion required
673    SCS.Third = ICK_Identity;
674
675    // C++ [over.best.ics]p6:
676    //   [...] Any difference in top-level cv-qualification is
677    //   subsumed by the initialization itself and does not constitute
678    //   a conversion. [...]
679    CanonFrom = Context.getCanonicalType(FromType);
680    CanonTo = Context.getCanonicalType(ToType);
681    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
682        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
683      FromType = ToType;
684      CanonFrom = CanonTo;
685    }
686  }
687
688  // If we have not converted the argument type to the parameter type,
689  // this is a bad conversion sequence.
690  if (CanonFrom != CanonTo)
691    return false;
692
693  SCS.ToTypePtr = FromType.getAsOpaquePtr();
694  return true;
695}
696
697/// IsIntegralPromotion - Determines whether the conversion from the
698/// expression From (whose potentially-adjusted type is FromType) to
699/// ToType is an integral promotion (C++ 4.5). If so, returns true and
700/// sets PromotedType to the promoted type.
701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
702  const BuiltinType *To = ToType->getAs<BuiltinType>();
703  // All integers are built-in.
704  if (!To) {
705    return false;
706  }
707
708  // An rvalue of type char, signed char, unsigned char, short int, or
709  // unsigned short int can be converted to an rvalue of type int if
710  // int can represent all the values of the source type; otherwise,
711  // the source rvalue can be converted to an rvalue of type unsigned
712  // int (C++ 4.5p1).
713  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
714    if (// We can promote any signed, promotable integer type to an int
715        (FromType->isSignedIntegerType() ||
716         // We can promote any unsigned integer type whose size is
717         // less than int to an int.
718         (!FromType->isSignedIntegerType() &&
719          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
720      return To->getKind() == BuiltinType::Int;
721    }
722
723    return To->getKind() == BuiltinType::UInt;
724  }
725
726  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
727  // can be converted to an rvalue of the first of the following types
728  // that can represent all the values of its underlying type: int,
729  // unsigned int, long, or unsigned long (C++ 4.5p2).
730  if ((FromType->isEnumeralType() || FromType->isWideCharType())
731      && ToType->isIntegerType()) {
732    // Determine whether the type we're converting from is signed or
733    // unsigned.
734    bool FromIsSigned;
735    uint64_t FromSize = Context.getTypeSize(FromType);
736    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
737      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
738      FromIsSigned = UnderlyingType->isSignedIntegerType();
739    } else {
740      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
741      FromIsSigned = true;
742    }
743
744    // The types we'll try to promote to, in the appropriate
745    // order. Try each of these types.
746    QualType PromoteTypes[6] = {
747      Context.IntTy, Context.UnsignedIntTy,
748      Context.LongTy, Context.UnsignedLongTy ,
749      Context.LongLongTy, Context.UnsignedLongLongTy
750    };
751    for (int Idx = 0; Idx < 6; ++Idx) {
752      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
753      if (FromSize < ToSize ||
754          (FromSize == ToSize &&
755           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
756        // We found the type that we can promote to. If this is the
757        // type we wanted, we have a promotion. Otherwise, no
758        // promotion.
759        return Context.getCanonicalType(ToType).getUnqualifiedType()
760          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
761      }
762    }
763  }
764
765  // An rvalue for an integral bit-field (9.6) can be converted to an
766  // rvalue of type int if int can represent all the values of the
767  // bit-field; otherwise, it can be converted to unsigned int if
768  // unsigned int can represent all the values of the bit-field. If
769  // the bit-field is larger yet, no integral promotion applies to
770  // it. If the bit-field has an enumerated type, it is treated as any
771  // other value of that type for promotion purposes (C++ 4.5p3).
772  // FIXME: We should delay checking of bit-fields until we actually perform the
773  // conversion.
774  using llvm::APSInt;
775  if (From)
776    if (FieldDecl *MemberDecl = From->getBitField()) {
777      APSInt BitWidth;
778      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
779          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
780        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
781        ToSize = Context.getTypeSize(ToType);
782
783        // Are we promoting to an int from a bitfield that fits in an int?
784        if (BitWidth < ToSize ||
785            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
786          return To->getKind() == BuiltinType::Int;
787        }
788
789        // Are we promoting to an unsigned int from an unsigned bitfield
790        // that fits into an unsigned int?
791        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
792          return To->getKind() == BuiltinType::UInt;
793        }
794
795        return false;
796      }
797    }
798
799  // An rvalue of type bool can be converted to an rvalue of type int,
800  // with false becoming zero and true becoming one (C++ 4.5p4).
801  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
802    return true;
803  }
804
805  return false;
806}
807
808/// IsFloatingPointPromotion - Determines whether the conversion from
809/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
810/// returns true and sets PromotedType to the promoted type.
811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
812  /// An rvalue of type float can be converted to an rvalue of type
813  /// double. (C++ 4.6p1).
814  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
815    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
816      if (FromBuiltin->getKind() == BuiltinType::Float &&
817          ToBuiltin->getKind() == BuiltinType::Double)
818        return true;
819
820      // C99 6.3.1.5p1:
821      //   When a float is promoted to double or long double, or a
822      //   double is promoted to long double [...].
823      if (!getLangOptions().CPlusPlus &&
824          (FromBuiltin->getKind() == BuiltinType::Float ||
825           FromBuiltin->getKind() == BuiltinType::Double) &&
826          (ToBuiltin->getKind() == BuiltinType::LongDouble))
827        return true;
828    }
829
830  return false;
831}
832
833/// \brief Determine if a conversion is a complex promotion.
834///
835/// A complex promotion is defined as a complex -> complex conversion
836/// where the conversion between the underlying real types is a
837/// floating-point or integral promotion.
838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
839  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
840  if (!FromComplex)
841    return false;
842
843  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
844  if (!ToComplex)
845    return false;
846
847  return IsFloatingPointPromotion(FromComplex->getElementType(),
848                                  ToComplex->getElementType()) ||
849    IsIntegralPromotion(0, FromComplex->getElementType(),
850                        ToComplex->getElementType());
851}
852
853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
854/// the pointer type FromPtr to a pointer to type ToPointee, with the
855/// same type qualifiers as FromPtr has on its pointee type. ToType,
856/// if non-empty, will be a pointer to ToType that may or may not have
857/// the right set of qualifiers on its pointee.
858static QualType
859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
860                                   QualType ToPointee, QualType ToType,
861                                   ASTContext &Context) {
862  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
863  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
864  Qualifiers Quals = CanonFromPointee.getQualifiers();
865
866  // Exact qualifier match -> return the pointer type we're converting to.
867  if (CanonToPointee.getQualifiers() == Quals) {
868    // ToType is exactly what we need. Return it.
869    if (!ToType.isNull())
870      return ToType;
871
872    // Build a pointer to ToPointee. It has the right qualifiers
873    // already.
874    return Context.getPointerType(ToPointee);
875  }
876
877  // Just build a canonical type that has the right qualifiers.
878  return Context.getPointerType(
879         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
880}
881
882static bool isNullPointerConstantForConversion(Expr *Expr,
883                                               bool InOverloadResolution,
884                                               ASTContext &Context) {
885  // Handle value-dependent integral null pointer constants correctly.
886  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
887  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
888      Expr->getType()->isIntegralType())
889    return !InOverloadResolution;
890
891  return Expr->isNullPointerConstant(Context,
892                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
893                                        : Expr::NPC_ValueDependentIsNull);
894}
895
896/// IsPointerConversion - Determines whether the conversion of the
897/// expression From, which has the (possibly adjusted) type FromType,
898/// can be converted to the type ToType via a pointer conversion (C++
899/// 4.10). If so, returns true and places the converted type (that
900/// might differ from ToType in its cv-qualifiers at some level) into
901/// ConvertedType.
902///
903/// This routine also supports conversions to and from block pointers
904/// and conversions with Objective-C's 'id', 'id<protocols...>', and
905/// pointers to interfaces. FIXME: Once we've determined the
906/// appropriate overloading rules for Objective-C, we may want to
907/// split the Objective-C checks into a different routine; however,
908/// GCC seems to consider all of these conversions to be pointer
909/// conversions, so for now they live here. IncompatibleObjC will be
910/// set if the conversion is an allowed Objective-C conversion that
911/// should result in a warning.
912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
913                               bool InOverloadResolution,
914                               QualType& ConvertedType,
915                               bool &IncompatibleObjC) {
916  IncompatibleObjC = false;
917  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
918    return true;
919
920  // Conversion from a null pointer constant to any Objective-C pointer type.
921  if (ToType->isObjCObjectPointerType() &&
922      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
923    ConvertedType = ToType;
924    return true;
925  }
926
927  // Blocks: Block pointers can be converted to void*.
928  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
929      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
930    ConvertedType = ToType;
931    return true;
932  }
933  // Blocks: A null pointer constant can be converted to a block
934  // pointer type.
935  if (ToType->isBlockPointerType() &&
936      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // If the left-hand-side is nullptr_t, the right side can be a null
942  // pointer constant.
943  if (ToType->isNullPtrType() &&
944      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
950  if (!ToTypePtr)
951    return false;
952
953  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
954  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
955    ConvertedType = ToType;
956    return true;
957  }
958
959  // Beyond this point, both types need to be pointers.
960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
961  if (!FromTypePtr)
962    return false;
963
964  QualType FromPointeeType = FromTypePtr->getPointeeType();
965  QualType ToPointeeType = ToTypePtr->getPointeeType();
966
967  // An rvalue of type "pointer to cv T," where T is an object type,
968  // can be converted to an rvalue of type "pointer to cv void" (C++
969  // 4.10p2).
970  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // When we're overloading in C, we allow a special kind of pointer
978  // conversion for compatible-but-not-identical pointee types.
979  if (!getLangOptions().CPlusPlus &&
980      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
981    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
982                                                       ToPointeeType,
983                                                       ToType, Context);
984    return true;
985  }
986
987  // C++ [conv.ptr]p3:
988  //
989  //   An rvalue of type "pointer to cv D," where D is a class type,
990  //   can be converted to an rvalue of type "pointer to cv B," where
991  //   B is a base class (clause 10) of D. If B is an inaccessible
992  //   (clause 11) or ambiguous (10.2) base class of D, a program that
993  //   necessitates this conversion is ill-formed. The result of the
994  //   conversion is a pointer to the base class sub-object of the
995  //   derived class object. The null pointer value is converted to
996  //   the null pointer value of the destination type.
997  //
998  // Note that we do not check for ambiguity or inaccessibility
999  // here. That is handled by CheckPointerConversion.
1000  if (getLangOptions().CPlusPlus &&
1001      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1002      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1003    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1004                                                       ToPointeeType,
1005                                                       ToType, Context);
1006    return true;
1007  }
1008
1009  return false;
1010}
1011
1012/// isObjCPointerConversion - Determines whether this is an
1013/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1014/// with the same arguments and return values.
1015bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1016                                   QualType& ConvertedType,
1017                                   bool &IncompatibleObjC) {
1018  if (!getLangOptions().ObjC1)
1019    return false;
1020
1021  // First, we handle all conversions on ObjC object pointer types.
1022  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1023  const ObjCObjectPointerType *FromObjCPtr =
1024    FromType->getAs<ObjCObjectPointerType>();
1025
1026  if (ToObjCPtr && FromObjCPtr) {
1027    // Objective C++: We're able to convert between "id" or "Class" and a
1028    // pointer to any interface (in both directions).
1029    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1030      ConvertedType = ToType;
1031      return true;
1032    }
1033    // Conversions with Objective-C's id<...>.
1034    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1035         ToObjCPtr->isObjCQualifiedIdType()) &&
1036        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1037                                                  /*compare=*/false)) {
1038      ConvertedType = ToType;
1039      return true;
1040    }
1041    // Objective C++: We're able to convert from a pointer to an
1042    // interface to a pointer to a different interface.
1043    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1044      ConvertedType = ToType;
1045      return true;
1046    }
1047
1048    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1049      // Okay: this is some kind of implicit downcast of Objective-C
1050      // interfaces, which is permitted. However, we're going to
1051      // complain about it.
1052      IncompatibleObjC = true;
1053      ConvertedType = FromType;
1054      return true;
1055    }
1056  }
1057  // Beyond this point, both types need to be C pointers or block pointers.
1058  QualType ToPointeeType;
1059  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1060    ToPointeeType = ToCPtr->getPointeeType();
1061  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1062    ToPointeeType = ToBlockPtr->getPointeeType();
1063  else
1064    return false;
1065
1066  QualType FromPointeeType;
1067  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1068    FromPointeeType = FromCPtr->getPointeeType();
1069  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1070    FromPointeeType = FromBlockPtr->getPointeeType();
1071  else
1072    return false;
1073
1074  // If we have pointers to pointers, recursively check whether this
1075  // is an Objective-C conversion.
1076  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1077      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1078                              IncompatibleObjC)) {
1079    // We always complain about this conversion.
1080    IncompatibleObjC = true;
1081    ConvertedType = ToType;
1082    return true;
1083  }
1084  // If we have pointers to functions or blocks, check whether the only
1085  // differences in the argument and result types are in Objective-C
1086  // pointer conversions. If so, we permit the conversion (but
1087  // complain about it).
1088  const FunctionProtoType *FromFunctionType
1089    = FromPointeeType->getAs<FunctionProtoType>();
1090  const FunctionProtoType *ToFunctionType
1091    = ToPointeeType->getAs<FunctionProtoType>();
1092  if (FromFunctionType && ToFunctionType) {
1093    // If the function types are exactly the same, this isn't an
1094    // Objective-C pointer conversion.
1095    if (Context.getCanonicalType(FromPointeeType)
1096          == Context.getCanonicalType(ToPointeeType))
1097      return false;
1098
1099    // Perform the quick checks that will tell us whether these
1100    // function types are obviously different.
1101    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1102        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1103        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1104      return false;
1105
1106    bool HasObjCConversion = false;
1107    if (Context.getCanonicalType(FromFunctionType->getResultType())
1108          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1109      // Okay, the types match exactly. Nothing to do.
1110    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1111                                       ToFunctionType->getResultType(),
1112                                       ConvertedType, IncompatibleObjC)) {
1113      // Okay, we have an Objective-C pointer conversion.
1114      HasObjCConversion = true;
1115    } else {
1116      // Function types are too different. Abort.
1117      return false;
1118    }
1119
1120    // Check argument types.
1121    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1122         ArgIdx != NumArgs; ++ArgIdx) {
1123      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1124      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1125      if (Context.getCanonicalType(FromArgType)
1126            == Context.getCanonicalType(ToArgType)) {
1127        // Okay, the types match exactly. Nothing to do.
1128      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1129                                         ConvertedType, IncompatibleObjC)) {
1130        // Okay, we have an Objective-C pointer conversion.
1131        HasObjCConversion = true;
1132      } else {
1133        // Argument types are too different. Abort.
1134        return false;
1135      }
1136    }
1137
1138    if (HasObjCConversion) {
1139      // We had an Objective-C conversion. Allow this pointer
1140      // conversion, but complain about it.
1141      ConvertedType = ToType;
1142      IncompatibleObjC = true;
1143      return true;
1144    }
1145  }
1146
1147  return false;
1148}
1149
1150/// CheckPointerConversion - Check the pointer conversion from the
1151/// expression From to the type ToType. This routine checks for
1152/// ambiguous or inaccessible derived-to-base pointer
1153/// conversions for which IsPointerConversion has already returned
1154/// true. It returns true and produces a diagnostic if there was an
1155/// error, or returns false otherwise.
1156bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1157                                  CastExpr::CastKind &Kind) {
1158  QualType FromType = From->getType();
1159
1160  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1161    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1162      QualType FromPointeeType = FromPtrType->getPointeeType(),
1163               ToPointeeType   = ToPtrType->getPointeeType();
1164
1165      if (FromPointeeType->isRecordType() &&
1166          ToPointeeType->isRecordType()) {
1167        // We must have a derived-to-base conversion. Check an
1168        // ambiguous or inaccessible conversion.
1169        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1170                                         From->getExprLoc(),
1171                                         From->getSourceRange()))
1172          return true;
1173
1174        // The conversion was successful.
1175        Kind = CastExpr::CK_DerivedToBase;
1176      }
1177    }
1178  if (const ObjCObjectPointerType *FromPtrType =
1179        FromType->getAs<ObjCObjectPointerType>())
1180    if (const ObjCObjectPointerType *ToPtrType =
1181          ToType->getAs<ObjCObjectPointerType>()) {
1182      // Objective-C++ conversions are always okay.
1183      // FIXME: We should have a different class of conversions for the
1184      // Objective-C++ implicit conversions.
1185      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1186        return false;
1187
1188  }
1189  return false;
1190}
1191
1192/// IsMemberPointerConversion - Determines whether the conversion of the
1193/// expression From, which has the (possibly adjusted) type FromType, can be
1194/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1195/// If so, returns true and places the converted type (that might differ from
1196/// ToType in its cv-qualifiers at some level) into ConvertedType.
1197bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1198                                     QualType ToType,
1199                                     bool InOverloadResolution,
1200                                     QualType &ConvertedType) {
1201  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1202  if (!ToTypePtr)
1203    return false;
1204
1205  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1206  if (From->isNullPointerConstant(Context,
1207                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1208                                        : Expr::NPC_ValueDependentIsNull)) {
1209    ConvertedType = ToType;
1210    return true;
1211  }
1212
1213  // Otherwise, both types have to be member pointers.
1214  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1215  if (!FromTypePtr)
1216    return false;
1217
1218  // A pointer to member of B can be converted to a pointer to member of D,
1219  // where D is derived from B (C++ 4.11p2).
1220  QualType FromClass(FromTypePtr->getClass(), 0);
1221  QualType ToClass(ToTypePtr->getClass(), 0);
1222  // FIXME: What happens when these are dependent? Is this function even called?
1223
1224  if (IsDerivedFrom(ToClass, FromClass)) {
1225    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1226                                                 ToClass.getTypePtr());
1227    return true;
1228  }
1229
1230  return false;
1231}
1232
1233/// CheckMemberPointerConversion - Check the member pointer conversion from the
1234/// expression From to the type ToType. This routine checks for ambiguous or
1235/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1236/// for which IsMemberPointerConversion has already returned true. It returns
1237/// true and produces a diagnostic if there was an error, or returns false
1238/// otherwise.
1239bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1240                                        CastExpr::CastKind &Kind) {
1241  QualType FromType = From->getType();
1242  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1243  if (!FromPtrType) {
1244    // This must be a null pointer to member pointer conversion
1245    assert(From->isNullPointerConstant(Context,
1246                                       Expr::NPC_ValueDependentIsNull) &&
1247           "Expr must be null pointer constant!");
1248    Kind = CastExpr::CK_NullToMemberPointer;
1249    return false;
1250  }
1251
1252  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1253  assert(ToPtrType && "No member pointer cast has a target type "
1254                      "that is not a member pointer.");
1255
1256  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1257  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1258
1259  // FIXME: What about dependent types?
1260  assert(FromClass->isRecordType() && "Pointer into non-class.");
1261  assert(ToClass->isRecordType() && "Pointer into non-class.");
1262
1263  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1264                     /*DetectVirtual=*/true);
1265  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1266  assert(DerivationOkay &&
1267         "Should not have been called if derivation isn't OK.");
1268  (void)DerivationOkay;
1269
1270  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1271                                  getUnqualifiedType())) {
1272    // Derivation is ambiguous. Redo the check to find the exact paths.
1273    Paths.clear();
1274    Paths.setRecordingPaths(true);
1275    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1276    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1277    (void)StillOkay;
1278
1279    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1280    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1281      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1282    return true;
1283  }
1284
1285  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1286    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1287      << FromClass << ToClass << QualType(VBase, 0)
1288      << From->getSourceRange();
1289    return true;
1290  }
1291
1292  // Must be a base to derived member conversion.
1293  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1294  return false;
1295}
1296
1297/// IsQualificationConversion - Determines whether the conversion from
1298/// an rvalue of type FromType to ToType is a qualification conversion
1299/// (C++ 4.4).
1300bool
1301Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1302  FromType = Context.getCanonicalType(FromType);
1303  ToType = Context.getCanonicalType(ToType);
1304
1305  // If FromType and ToType are the same type, this is not a
1306  // qualification conversion.
1307  if (FromType == ToType)
1308    return false;
1309
1310  // (C++ 4.4p4):
1311  //   A conversion can add cv-qualifiers at levels other than the first
1312  //   in multi-level pointers, subject to the following rules: [...]
1313  bool PreviousToQualsIncludeConst = true;
1314  bool UnwrappedAnyPointer = false;
1315  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1316    // Within each iteration of the loop, we check the qualifiers to
1317    // determine if this still looks like a qualification
1318    // conversion. Then, if all is well, we unwrap one more level of
1319    // pointers or pointers-to-members and do it all again
1320    // until there are no more pointers or pointers-to-members left to
1321    // unwrap.
1322    UnwrappedAnyPointer = true;
1323
1324    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1325    //      2,j, and similarly for volatile.
1326    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1327      return false;
1328
1329    //   -- if the cv 1,j and cv 2,j are different, then const is in
1330    //      every cv for 0 < k < j.
1331    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1332        && !PreviousToQualsIncludeConst)
1333      return false;
1334
1335    // Keep track of whether all prior cv-qualifiers in the "to" type
1336    // include const.
1337    PreviousToQualsIncludeConst
1338      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1339  }
1340
1341  // We are left with FromType and ToType being the pointee types
1342  // after unwrapping the original FromType and ToType the same number
1343  // of types. If we unwrapped any pointers, and if FromType and
1344  // ToType have the same unqualified type (since we checked
1345  // qualifiers above), then this is a qualification conversion.
1346  return UnwrappedAnyPointer &&
1347    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1348}
1349
1350/// \brief Given a function template or function, extract the function template
1351/// declaration (if any) and the underlying function declaration.
1352template<typename T>
1353static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1354                                   FunctionTemplateDecl *&FunctionTemplate) {
1355  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1356  if (FunctionTemplate)
1357    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1358  else
1359    Function = cast<T>(Orig);
1360}
1361
1362/// Determines whether there is a user-defined conversion sequence
1363/// (C++ [over.ics.user]) that converts expression From to the type
1364/// ToType. If such a conversion exists, User will contain the
1365/// user-defined conversion sequence that performs such a conversion
1366/// and this routine will return true. Otherwise, this routine returns
1367/// false and User is unspecified.
1368///
1369/// \param AllowConversionFunctions true if the conversion should
1370/// consider conversion functions at all. If false, only constructors
1371/// will be considered.
1372///
1373/// \param AllowExplicit  true if the conversion should consider C++0x
1374/// "explicit" conversion functions as well as non-explicit conversion
1375/// functions (C++0x [class.conv.fct]p2).
1376///
1377/// \param ForceRValue  true if the expression should be treated as an rvalue
1378/// for overload resolution.
1379/// \param UserCast true if looking for user defined conversion for a static
1380/// cast.
1381Sema::OverloadingResult Sema::IsUserDefinedConversion(
1382                                   Expr *From, QualType ToType,
1383                                   UserDefinedConversionSequence& User,
1384                                   OverloadCandidateSet& CandidateSet,
1385                                   bool AllowConversionFunctions,
1386                                   bool AllowExplicit, bool ForceRValue,
1387                                   bool UserCast) {
1388  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1389    if (CXXRecordDecl *ToRecordDecl
1390          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1391      // C++ [over.match.ctor]p1:
1392      //   When objects of class type are direct-initialized (8.5), or
1393      //   copy-initialized from an expression of the same or a
1394      //   derived class type (8.5), overload resolution selects the
1395      //   constructor. [...] For copy-initialization, the candidate
1396      //   functions are all the converting constructors (12.3.1) of
1397      //   that class. The argument list is the expression-list within
1398      //   the parentheses of the initializer.
1399      DeclarationName ConstructorName
1400        = Context.DeclarationNames.getCXXConstructorName(
1401                          Context.getCanonicalType(ToType).getUnqualifiedType());
1402      DeclContext::lookup_iterator Con, ConEnd;
1403      for (llvm::tie(Con, ConEnd)
1404             = ToRecordDecl->lookup(ConstructorName);
1405           Con != ConEnd; ++Con) {
1406        // Find the constructor (which may be a template).
1407        CXXConstructorDecl *Constructor = 0;
1408        FunctionTemplateDecl *ConstructorTmpl
1409          = dyn_cast<FunctionTemplateDecl>(*Con);
1410        if (ConstructorTmpl)
1411          Constructor
1412            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1413        else
1414          Constructor = cast<CXXConstructorDecl>(*Con);
1415
1416        if (!Constructor->isInvalidDecl() &&
1417            Constructor->isConvertingConstructor(AllowExplicit)) {
1418          if (ConstructorTmpl)
1419            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1420                                         1, CandidateSet,
1421                                         /*SuppressUserConversions=*/!UserCast,
1422                                         ForceRValue);
1423          else
1424            // Allow one user-defined conversion when user specifies a
1425            // From->ToType conversion via an static cast (c-style, etc).
1426            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1427                                 /*SuppressUserConversions=*/!UserCast,
1428                                 ForceRValue);
1429        }
1430      }
1431    }
1432  }
1433
1434  if (!AllowConversionFunctions) {
1435    // Don't allow any conversion functions to enter the overload set.
1436  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1437                                 PDiag(0)
1438                                   << From->getSourceRange())) {
1439    // No conversion functions from incomplete types.
1440  } else if (const RecordType *FromRecordType
1441               = From->getType()->getAs<RecordType>()) {
1442    if (CXXRecordDecl *FromRecordDecl
1443         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1444      // Add all of the conversion functions as candidates.
1445      OverloadedFunctionDecl *Conversions
1446        = FromRecordDecl->getVisibleConversionFunctions();
1447      for (OverloadedFunctionDecl::function_iterator Func
1448             = Conversions->function_begin();
1449           Func != Conversions->function_end(); ++Func) {
1450        CXXConversionDecl *Conv;
1451        FunctionTemplateDecl *ConvTemplate;
1452        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1453        if (ConvTemplate)
1454          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1455        else
1456          Conv = dyn_cast<CXXConversionDecl>(*Func);
1457
1458        if (AllowExplicit || !Conv->isExplicit()) {
1459          if (ConvTemplate)
1460            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1461                                           CandidateSet);
1462          else
1463            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1464        }
1465      }
1466    }
1467  }
1468
1469  OverloadCandidateSet::iterator Best;
1470  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1471    case OR_Success:
1472      // Record the standard conversion we used and the conversion function.
1473      if (CXXConstructorDecl *Constructor
1474            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1475        // C++ [over.ics.user]p1:
1476        //   If the user-defined conversion is specified by a
1477        //   constructor (12.3.1), the initial standard conversion
1478        //   sequence converts the source type to the type required by
1479        //   the argument of the constructor.
1480        //
1481        // FIXME: What about ellipsis conversions?
1482        QualType ThisType = Constructor->getThisType(Context);
1483        User.Before = Best->Conversions[0].Standard;
1484        User.ConversionFunction = Constructor;
1485        User.After.setAsIdentityConversion();
1486        User.After.FromTypePtr
1487          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1488        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1489        return OR_Success;
1490      } else if (CXXConversionDecl *Conversion
1491                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1492        // C++ [over.ics.user]p1:
1493        //
1494        //   [...] If the user-defined conversion is specified by a
1495        //   conversion function (12.3.2), the initial standard
1496        //   conversion sequence converts the source type to the
1497        //   implicit object parameter of the conversion function.
1498        User.Before = Best->Conversions[0].Standard;
1499        User.ConversionFunction = Conversion;
1500
1501        // C++ [over.ics.user]p2:
1502        //   The second standard conversion sequence converts the
1503        //   result of the user-defined conversion to the target type
1504        //   for the sequence. Since an implicit conversion sequence
1505        //   is an initialization, the special rules for
1506        //   initialization by user-defined conversion apply when
1507        //   selecting the best user-defined conversion for a
1508        //   user-defined conversion sequence (see 13.3.3 and
1509        //   13.3.3.1).
1510        User.After = Best->FinalConversion;
1511        return OR_Success;
1512      } else {
1513        assert(false && "Not a constructor or conversion function?");
1514        return OR_No_Viable_Function;
1515      }
1516
1517    case OR_No_Viable_Function:
1518      return OR_No_Viable_Function;
1519    case OR_Deleted:
1520      // No conversion here! We're done.
1521      return OR_Deleted;
1522
1523    case OR_Ambiguous:
1524      return OR_Ambiguous;
1525    }
1526
1527  return OR_No_Viable_Function;
1528}
1529
1530bool
1531Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1532  ImplicitConversionSequence ICS;
1533  OverloadCandidateSet CandidateSet;
1534  OverloadingResult OvResult =
1535    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1536                            CandidateSet, true, false, false);
1537  if (OvResult != OR_Ambiguous)
1538    return false;
1539  Diag(From->getSourceRange().getBegin(),
1540       diag::err_typecheck_ambiguous_condition)
1541  << From->getType() << ToType << From->getSourceRange();
1542    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1543  return true;
1544}
1545
1546/// CompareImplicitConversionSequences - Compare two implicit
1547/// conversion sequences to determine whether one is better than the
1548/// other or if they are indistinguishable (C++ 13.3.3.2).
1549ImplicitConversionSequence::CompareKind
1550Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1551                                         const ImplicitConversionSequence& ICS2)
1552{
1553  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1554  // conversion sequences (as defined in 13.3.3.1)
1555  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1556  //      conversion sequence than a user-defined conversion sequence or
1557  //      an ellipsis conversion sequence, and
1558  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1559  //      conversion sequence than an ellipsis conversion sequence
1560  //      (13.3.3.1.3).
1561  //
1562  if (ICS1.ConversionKind < ICS2.ConversionKind)
1563    return ImplicitConversionSequence::Better;
1564  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1565    return ImplicitConversionSequence::Worse;
1566
1567  // Two implicit conversion sequences of the same form are
1568  // indistinguishable conversion sequences unless one of the
1569  // following rules apply: (C++ 13.3.3.2p3):
1570  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1571    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1572  else if (ICS1.ConversionKind ==
1573             ImplicitConversionSequence::UserDefinedConversion) {
1574    // User-defined conversion sequence U1 is a better conversion
1575    // sequence than another user-defined conversion sequence U2 if
1576    // they contain the same user-defined conversion function or
1577    // constructor and if the second standard conversion sequence of
1578    // U1 is better than the second standard conversion sequence of
1579    // U2 (C++ 13.3.3.2p3).
1580    if (ICS1.UserDefined.ConversionFunction ==
1581          ICS2.UserDefined.ConversionFunction)
1582      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1583                                                ICS2.UserDefined.After);
1584  }
1585
1586  return ImplicitConversionSequence::Indistinguishable;
1587}
1588
1589/// CompareStandardConversionSequences - Compare two standard
1590/// conversion sequences to determine whether one is better than the
1591/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1592ImplicitConversionSequence::CompareKind
1593Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1594                                         const StandardConversionSequence& SCS2)
1595{
1596  // Standard conversion sequence S1 is a better conversion sequence
1597  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1598
1599  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1600  //     sequences in the canonical form defined by 13.3.3.1.1,
1601  //     excluding any Lvalue Transformation; the identity conversion
1602  //     sequence is considered to be a subsequence of any
1603  //     non-identity conversion sequence) or, if not that,
1604  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1605    // Neither is a proper subsequence of the other. Do nothing.
1606    ;
1607  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1608           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1609           (SCS1.Second == ICK_Identity &&
1610            SCS1.Third == ICK_Identity))
1611    // SCS1 is a proper subsequence of SCS2.
1612    return ImplicitConversionSequence::Better;
1613  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1614           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1615           (SCS2.Second == ICK_Identity &&
1616            SCS2.Third == ICK_Identity))
1617    // SCS2 is a proper subsequence of SCS1.
1618    return ImplicitConversionSequence::Worse;
1619
1620  //  -- the rank of S1 is better than the rank of S2 (by the rules
1621  //     defined below), or, if not that,
1622  ImplicitConversionRank Rank1 = SCS1.getRank();
1623  ImplicitConversionRank Rank2 = SCS2.getRank();
1624  if (Rank1 < Rank2)
1625    return ImplicitConversionSequence::Better;
1626  else if (Rank2 < Rank1)
1627    return ImplicitConversionSequence::Worse;
1628
1629  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1630  // are indistinguishable unless one of the following rules
1631  // applies:
1632
1633  //   A conversion that is not a conversion of a pointer, or
1634  //   pointer to member, to bool is better than another conversion
1635  //   that is such a conversion.
1636  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1637    return SCS2.isPointerConversionToBool()
1638             ? ImplicitConversionSequence::Better
1639             : ImplicitConversionSequence::Worse;
1640
1641  // C++ [over.ics.rank]p4b2:
1642  //
1643  //   If class B is derived directly or indirectly from class A,
1644  //   conversion of B* to A* is better than conversion of B* to
1645  //   void*, and conversion of A* to void* is better than conversion
1646  //   of B* to void*.
1647  bool SCS1ConvertsToVoid
1648    = SCS1.isPointerConversionToVoidPointer(Context);
1649  bool SCS2ConvertsToVoid
1650    = SCS2.isPointerConversionToVoidPointer(Context);
1651  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1652    // Exactly one of the conversion sequences is a conversion to
1653    // a void pointer; it's the worse conversion.
1654    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1655                              : ImplicitConversionSequence::Worse;
1656  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1657    // Neither conversion sequence converts to a void pointer; compare
1658    // their derived-to-base conversions.
1659    if (ImplicitConversionSequence::CompareKind DerivedCK
1660          = CompareDerivedToBaseConversions(SCS1, SCS2))
1661      return DerivedCK;
1662  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1663    // Both conversion sequences are conversions to void
1664    // pointers. Compare the source types to determine if there's an
1665    // inheritance relationship in their sources.
1666    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1667    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1668
1669    // Adjust the types we're converting from via the array-to-pointer
1670    // conversion, if we need to.
1671    if (SCS1.First == ICK_Array_To_Pointer)
1672      FromType1 = Context.getArrayDecayedType(FromType1);
1673    if (SCS2.First == ICK_Array_To_Pointer)
1674      FromType2 = Context.getArrayDecayedType(FromType2);
1675
1676    QualType FromPointee1
1677      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1678    QualType FromPointee2
1679      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1680
1681    if (IsDerivedFrom(FromPointee2, FromPointee1))
1682      return ImplicitConversionSequence::Better;
1683    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1684      return ImplicitConversionSequence::Worse;
1685
1686    // Objective-C++: If one interface is more specific than the
1687    // other, it is the better one.
1688    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1689    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1690    if (FromIface1 && FromIface1) {
1691      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1692        return ImplicitConversionSequence::Better;
1693      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1694        return ImplicitConversionSequence::Worse;
1695    }
1696  }
1697
1698  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1699  // bullet 3).
1700  if (ImplicitConversionSequence::CompareKind QualCK
1701        = CompareQualificationConversions(SCS1, SCS2))
1702    return QualCK;
1703
1704  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1705    // C++0x [over.ics.rank]p3b4:
1706    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1707    //      implicit object parameter of a non-static member function declared
1708    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1709    //      rvalue and S2 binds an lvalue reference.
1710    // FIXME: We don't know if we're dealing with the implicit object parameter,
1711    // or if the member function in this case has a ref qualifier.
1712    // (Of course, we don't have ref qualifiers yet.)
1713    if (SCS1.RRefBinding != SCS2.RRefBinding)
1714      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1715                              : ImplicitConversionSequence::Worse;
1716
1717    // C++ [over.ics.rank]p3b4:
1718    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1719    //      which the references refer are the same type except for
1720    //      top-level cv-qualifiers, and the type to which the reference
1721    //      initialized by S2 refers is more cv-qualified than the type
1722    //      to which the reference initialized by S1 refers.
1723    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1724    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1725    T1 = Context.getCanonicalType(T1);
1726    T2 = Context.getCanonicalType(T2);
1727    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1728      if (T2.isMoreQualifiedThan(T1))
1729        return ImplicitConversionSequence::Better;
1730      else if (T1.isMoreQualifiedThan(T2))
1731        return ImplicitConversionSequence::Worse;
1732    }
1733  }
1734
1735  return ImplicitConversionSequence::Indistinguishable;
1736}
1737
1738/// CompareQualificationConversions - Compares two standard conversion
1739/// sequences to determine whether they can be ranked based on their
1740/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1741ImplicitConversionSequence::CompareKind
1742Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1743                                      const StandardConversionSequence& SCS2) {
1744  // C++ 13.3.3.2p3:
1745  //  -- S1 and S2 differ only in their qualification conversion and
1746  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1747  //     cv-qualification signature of type T1 is a proper subset of
1748  //     the cv-qualification signature of type T2, and S1 is not the
1749  //     deprecated string literal array-to-pointer conversion (4.2).
1750  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1751      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1752    return ImplicitConversionSequence::Indistinguishable;
1753
1754  // FIXME: the example in the standard doesn't use a qualification
1755  // conversion (!)
1756  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1757  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1758  T1 = Context.getCanonicalType(T1);
1759  T2 = Context.getCanonicalType(T2);
1760
1761  // If the types are the same, we won't learn anything by unwrapped
1762  // them.
1763  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1764    return ImplicitConversionSequence::Indistinguishable;
1765
1766  ImplicitConversionSequence::CompareKind Result
1767    = ImplicitConversionSequence::Indistinguishable;
1768  while (UnwrapSimilarPointerTypes(T1, T2)) {
1769    // Within each iteration of the loop, we check the qualifiers to
1770    // determine if this still looks like a qualification
1771    // conversion. Then, if all is well, we unwrap one more level of
1772    // pointers or pointers-to-members and do it all again
1773    // until there are no more pointers or pointers-to-members left
1774    // to unwrap. This essentially mimics what
1775    // IsQualificationConversion does, but here we're checking for a
1776    // strict subset of qualifiers.
1777    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1778      // The qualifiers are the same, so this doesn't tell us anything
1779      // about how the sequences rank.
1780      ;
1781    else if (T2.isMoreQualifiedThan(T1)) {
1782      // T1 has fewer qualifiers, so it could be the better sequence.
1783      if (Result == ImplicitConversionSequence::Worse)
1784        // Neither has qualifiers that are a subset of the other's
1785        // qualifiers.
1786        return ImplicitConversionSequence::Indistinguishable;
1787
1788      Result = ImplicitConversionSequence::Better;
1789    } else if (T1.isMoreQualifiedThan(T2)) {
1790      // T2 has fewer qualifiers, so it could be the better sequence.
1791      if (Result == ImplicitConversionSequence::Better)
1792        // Neither has qualifiers that are a subset of the other's
1793        // qualifiers.
1794        return ImplicitConversionSequence::Indistinguishable;
1795
1796      Result = ImplicitConversionSequence::Worse;
1797    } else {
1798      // Qualifiers are disjoint.
1799      return ImplicitConversionSequence::Indistinguishable;
1800    }
1801
1802    // If the types after this point are equivalent, we're done.
1803    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1804      break;
1805  }
1806
1807  // Check that the winning standard conversion sequence isn't using
1808  // the deprecated string literal array to pointer conversion.
1809  switch (Result) {
1810  case ImplicitConversionSequence::Better:
1811    if (SCS1.Deprecated)
1812      Result = ImplicitConversionSequence::Indistinguishable;
1813    break;
1814
1815  case ImplicitConversionSequence::Indistinguishable:
1816    break;
1817
1818  case ImplicitConversionSequence::Worse:
1819    if (SCS2.Deprecated)
1820      Result = ImplicitConversionSequence::Indistinguishable;
1821    break;
1822  }
1823
1824  return Result;
1825}
1826
1827/// CompareDerivedToBaseConversions - Compares two standard conversion
1828/// sequences to determine whether they can be ranked based on their
1829/// various kinds of derived-to-base conversions (C++
1830/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1831/// conversions between Objective-C interface types.
1832ImplicitConversionSequence::CompareKind
1833Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1834                                      const StandardConversionSequence& SCS2) {
1835  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1836  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1837  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1838  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1839
1840  // Adjust the types we're converting from via the array-to-pointer
1841  // conversion, if we need to.
1842  if (SCS1.First == ICK_Array_To_Pointer)
1843    FromType1 = Context.getArrayDecayedType(FromType1);
1844  if (SCS2.First == ICK_Array_To_Pointer)
1845    FromType2 = Context.getArrayDecayedType(FromType2);
1846
1847  // Canonicalize all of the types.
1848  FromType1 = Context.getCanonicalType(FromType1);
1849  ToType1 = Context.getCanonicalType(ToType1);
1850  FromType2 = Context.getCanonicalType(FromType2);
1851  ToType2 = Context.getCanonicalType(ToType2);
1852
1853  // C++ [over.ics.rank]p4b3:
1854  //
1855  //   If class B is derived directly or indirectly from class A and
1856  //   class C is derived directly or indirectly from B,
1857  //
1858  // For Objective-C, we let A, B, and C also be Objective-C
1859  // interfaces.
1860
1861  // Compare based on pointer conversions.
1862  if (SCS1.Second == ICK_Pointer_Conversion &&
1863      SCS2.Second == ICK_Pointer_Conversion &&
1864      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1865      FromType1->isPointerType() && FromType2->isPointerType() &&
1866      ToType1->isPointerType() && ToType2->isPointerType()) {
1867    QualType FromPointee1
1868      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1869    QualType ToPointee1
1870      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1871    QualType FromPointee2
1872      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1873    QualType ToPointee2
1874      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1875
1876    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1877    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1878    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1879    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1880
1881    //   -- conversion of C* to B* is better than conversion of C* to A*,
1882    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1883      if (IsDerivedFrom(ToPointee1, ToPointee2))
1884        return ImplicitConversionSequence::Better;
1885      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1886        return ImplicitConversionSequence::Worse;
1887
1888      if (ToIface1 && ToIface2) {
1889        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1890          return ImplicitConversionSequence::Better;
1891        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1892          return ImplicitConversionSequence::Worse;
1893      }
1894    }
1895
1896    //   -- conversion of B* to A* is better than conversion of C* to A*,
1897    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1898      if (IsDerivedFrom(FromPointee2, FromPointee1))
1899        return ImplicitConversionSequence::Better;
1900      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1901        return ImplicitConversionSequence::Worse;
1902
1903      if (FromIface1 && FromIface2) {
1904        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1905          return ImplicitConversionSequence::Better;
1906        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1907          return ImplicitConversionSequence::Worse;
1908      }
1909    }
1910  }
1911
1912  // Compare based on reference bindings.
1913  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1914      SCS1.Second == ICK_Derived_To_Base) {
1915    //   -- binding of an expression of type C to a reference of type
1916    //      B& is better than binding an expression of type C to a
1917    //      reference of type A&,
1918    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1919        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1920      if (IsDerivedFrom(ToType1, ToType2))
1921        return ImplicitConversionSequence::Better;
1922      else if (IsDerivedFrom(ToType2, ToType1))
1923        return ImplicitConversionSequence::Worse;
1924    }
1925
1926    //   -- binding of an expression of type B to a reference of type
1927    //      A& is better than binding an expression of type C to a
1928    //      reference of type A&,
1929    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1930        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1931      if (IsDerivedFrom(FromType2, FromType1))
1932        return ImplicitConversionSequence::Better;
1933      else if (IsDerivedFrom(FromType1, FromType2))
1934        return ImplicitConversionSequence::Worse;
1935    }
1936  }
1937
1938  // Ranking of member-pointer types.
1939  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1940      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1941      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1942    const MemberPointerType * FromMemPointer1 =
1943                                        FromType1->getAs<MemberPointerType>();
1944    const MemberPointerType * ToMemPointer1 =
1945                                          ToType1->getAs<MemberPointerType>();
1946    const MemberPointerType * FromMemPointer2 =
1947                                          FromType2->getAs<MemberPointerType>();
1948    const MemberPointerType * ToMemPointer2 =
1949                                          ToType2->getAs<MemberPointerType>();
1950    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1951    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1952    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1953    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1954    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1955    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1956    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1957    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1958    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1959    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1960      if (IsDerivedFrom(ToPointee1, ToPointee2))
1961        return ImplicitConversionSequence::Worse;
1962      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1963        return ImplicitConversionSequence::Better;
1964    }
1965    // conversion of B::* to C::* is better than conversion of A::* to C::*
1966    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1967      if (IsDerivedFrom(FromPointee1, FromPointee2))
1968        return ImplicitConversionSequence::Better;
1969      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1970        return ImplicitConversionSequence::Worse;
1971    }
1972  }
1973
1974  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1975      SCS1.Second == ICK_Derived_To_Base) {
1976    //   -- conversion of C to B is better than conversion of C to A,
1977    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1978        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1979      if (IsDerivedFrom(ToType1, ToType2))
1980        return ImplicitConversionSequence::Better;
1981      else if (IsDerivedFrom(ToType2, ToType1))
1982        return ImplicitConversionSequence::Worse;
1983    }
1984
1985    //   -- conversion of B to A is better than conversion of C to A.
1986    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1987        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1988      if (IsDerivedFrom(FromType2, FromType1))
1989        return ImplicitConversionSequence::Better;
1990      else if (IsDerivedFrom(FromType1, FromType2))
1991        return ImplicitConversionSequence::Worse;
1992    }
1993  }
1994
1995  return ImplicitConversionSequence::Indistinguishable;
1996}
1997
1998/// TryCopyInitialization - Try to copy-initialize a value of type
1999/// ToType from the expression From. Return the implicit conversion
2000/// sequence required to pass this argument, which may be a bad
2001/// conversion sequence (meaning that the argument cannot be passed to
2002/// a parameter of this type). If @p SuppressUserConversions, then we
2003/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2004/// then we treat @p From as an rvalue, even if it is an lvalue.
2005ImplicitConversionSequence
2006Sema::TryCopyInitialization(Expr *From, QualType ToType,
2007                            bool SuppressUserConversions, bool ForceRValue,
2008                            bool InOverloadResolution) {
2009  if (ToType->isReferenceType()) {
2010    ImplicitConversionSequence ICS;
2011    CheckReferenceInit(From, ToType,
2012                       /*FIXME:*/From->getLocStart(),
2013                       SuppressUserConversions,
2014                       /*AllowExplicit=*/false,
2015                       ForceRValue,
2016                       &ICS);
2017    return ICS;
2018  } else {
2019    return TryImplicitConversion(From, ToType,
2020                                 SuppressUserConversions,
2021                                 /*AllowExplicit=*/false,
2022                                 ForceRValue,
2023                                 InOverloadResolution);
2024  }
2025}
2026
2027/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2028/// the expression @p From. Returns true (and emits a diagnostic) if there was
2029/// an error, returns false if the initialization succeeded. Elidable should
2030/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2031/// differently in C++0x for this case.
2032bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2033                                     const char* Flavor, bool Elidable) {
2034  if (!getLangOptions().CPlusPlus) {
2035    // In C, argument passing is the same as performing an assignment.
2036    QualType FromType = From->getType();
2037
2038    AssignConvertType ConvTy =
2039      CheckSingleAssignmentConstraints(ToType, From);
2040    if (ConvTy != Compatible &&
2041        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2042      ConvTy = Compatible;
2043
2044    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2045                                    FromType, From, Flavor);
2046  }
2047
2048  if (ToType->isReferenceType())
2049    return CheckReferenceInit(From, ToType,
2050                              /*FIXME:*/From->getLocStart(),
2051                              /*SuppressUserConversions=*/false,
2052                              /*AllowExplicit=*/false,
2053                              /*ForceRValue=*/false);
2054
2055  if (!PerformImplicitConversion(From, ToType, Flavor,
2056                                 /*AllowExplicit=*/false, Elidable))
2057    return false;
2058  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2059    return Diag(From->getSourceRange().getBegin(),
2060                diag::err_typecheck_convert_incompatible)
2061      << ToType << From->getType() << Flavor << From->getSourceRange();
2062  return true;
2063}
2064
2065/// TryObjectArgumentInitialization - Try to initialize the object
2066/// parameter of the given member function (@c Method) from the
2067/// expression @p From.
2068ImplicitConversionSequence
2069Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2070  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2071  QualType ImplicitParamType
2072    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2073
2074  // Set up the conversion sequence as a "bad" conversion, to allow us
2075  // to exit early.
2076  ImplicitConversionSequence ICS;
2077  ICS.Standard.setAsIdentityConversion();
2078  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2079
2080  // We need to have an object of class type.
2081  QualType FromType = From->getType();
2082  if (const PointerType *PT = FromType->getAs<PointerType>())
2083    FromType = PT->getPointeeType();
2084
2085  assert(FromType->isRecordType());
2086
2087  // The implicit object parmeter is has the type "reference to cv X",
2088  // where X is the class of which the function is a member
2089  // (C++ [over.match.funcs]p4). However, when finding an implicit
2090  // conversion sequence for the argument, we are not allowed to
2091  // create temporaries or perform user-defined conversions
2092  // (C++ [over.match.funcs]p5). We perform a simplified version of
2093  // reference binding here, that allows class rvalues to bind to
2094  // non-constant references.
2095
2096  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2097  // with the implicit object parameter (C++ [over.match.funcs]p5).
2098  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2099  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2100      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2101    return ICS;
2102
2103  // Check that we have either the same type or a derived type. It
2104  // affects the conversion rank.
2105  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2106  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2107    ICS.Standard.Second = ICK_Identity;
2108  else if (IsDerivedFrom(FromType, ClassType))
2109    ICS.Standard.Second = ICK_Derived_To_Base;
2110  else
2111    return ICS;
2112
2113  // Success. Mark this as a reference binding.
2114  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2115  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2116  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2117  ICS.Standard.ReferenceBinding = true;
2118  ICS.Standard.DirectBinding = true;
2119  ICS.Standard.RRefBinding = false;
2120  return ICS;
2121}
2122
2123/// PerformObjectArgumentInitialization - Perform initialization of
2124/// the implicit object parameter for the given Method with the given
2125/// expression.
2126bool
2127Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2128  QualType FromRecordType, DestType;
2129  QualType ImplicitParamRecordType  =
2130    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2131
2132  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2133    FromRecordType = PT->getPointeeType();
2134    DestType = Method->getThisType(Context);
2135  } else {
2136    FromRecordType = From->getType();
2137    DestType = ImplicitParamRecordType;
2138  }
2139
2140  ImplicitConversionSequence ICS
2141    = TryObjectArgumentInitialization(From, Method);
2142  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2143    return Diag(From->getSourceRange().getBegin(),
2144                diag::err_implicit_object_parameter_init)
2145       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2146
2147  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2148      CheckDerivedToBaseConversion(FromRecordType,
2149                                   ImplicitParamRecordType,
2150                                   From->getSourceRange().getBegin(),
2151                                   From->getSourceRange()))
2152    return true;
2153
2154  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2155                    /*isLvalue=*/true);
2156  return false;
2157}
2158
2159/// TryContextuallyConvertToBool - Attempt to contextually convert the
2160/// expression From to bool (C++0x [conv]p3).
2161ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2162  return TryImplicitConversion(From, Context.BoolTy,
2163                               // FIXME: Are these flags correct?
2164                               /*SuppressUserConversions=*/false,
2165                               /*AllowExplicit=*/true,
2166                               /*ForceRValue=*/false,
2167                               /*InOverloadResolution=*/false);
2168}
2169
2170/// PerformContextuallyConvertToBool - Perform a contextual conversion
2171/// of the expression From to bool (C++0x [conv]p3).
2172bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2173  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2174  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2175    return false;
2176
2177  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2178    return  Diag(From->getSourceRange().getBegin(),
2179                 diag::err_typecheck_bool_condition)
2180                  << From->getType() << From->getSourceRange();
2181  return true;
2182}
2183
2184/// AddOverloadCandidate - Adds the given function to the set of
2185/// candidate functions, using the given function call arguments.  If
2186/// @p SuppressUserConversions, then don't allow user-defined
2187/// conversions via constructors or conversion operators.
2188/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2189/// hacky way to implement the overloading rules for elidable copy
2190/// initialization in C++0x (C++0x 12.8p15).
2191///
2192/// \para PartialOverloading true if we are performing "partial" overloading
2193/// based on an incomplete set of function arguments. This feature is used by
2194/// code completion.
2195void
2196Sema::AddOverloadCandidate(FunctionDecl *Function,
2197                           Expr **Args, unsigned NumArgs,
2198                           OverloadCandidateSet& CandidateSet,
2199                           bool SuppressUserConversions,
2200                           bool ForceRValue,
2201                           bool PartialOverloading) {
2202  const FunctionProtoType* Proto
2203    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2204  assert(Proto && "Functions without a prototype cannot be overloaded");
2205  assert(!isa<CXXConversionDecl>(Function) &&
2206         "Use AddConversionCandidate for conversion functions");
2207  assert(!Function->getDescribedFunctionTemplate() &&
2208         "Use AddTemplateOverloadCandidate for function templates");
2209
2210  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2211    if (!isa<CXXConstructorDecl>(Method)) {
2212      // If we get here, it's because we're calling a member function
2213      // that is named without a member access expression (e.g.,
2214      // "this->f") that was either written explicitly or created
2215      // implicitly. This can happen with a qualified call to a member
2216      // function, e.g., X::f(). We use a NULL object as the implied
2217      // object argument (C++ [over.call.func]p3).
2218      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2219                         SuppressUserConversions, ForceRValue);
2220      return;
2221    }
2222    // We treat a constructor like a non-member function, since its object
2223    // argument doesn't participate in overload resolution.
2224  }
2225
2226  if (!CandidateSet.isNewCandidate(Function))
2227    return;
2228
2229  // Add this candidate
2230  CandidateSet.push_back(OverloadCandidate());
2231  OverloadCandidate& Candidate = CandidateSet.back();
2232  Candidate.Function = Function;
2233  Candidate.Viable = true;
2234  Candidate.IsSurrogate = false;
2235  Candidate.IgnoreObjectArgument = false;
2236
2237  unsigned NumArgsInProto = Proto->getNumArgs();
2238
2239  // (C++ 13.3.2p2): A candidate function having fewer than m
2240  // parameters is viable only if it has an ellipsis in its parameter
2241  // list (8.3.5).
2242  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2243      !Proto->isVariadic()) {
2244    Candidate.Viable = false;
2245    return;
2246  }
2247
2248  // (C++ 13.3.2p2): A candidate function having more than m parameters
2249  // is viable only if the (m+1)st parameter has a default argument
2250  // (8.3.6). For the purposes of overload resolution, the
2251  // parameter list is truncated on the right, so that there are
2252  // exactly m parameters.
2253  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2254  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2255    // Not enough arguments.
2256    Candidate.Viable = false;
2257    return;
2258  }
2259
2260  // Determine the implicit conversion sequences for each of the
2261  // arguments.
2262  Candidate.Conversions.resize(NumArgs);
2263  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2264    if (ArgIdx < NumArgsInProto) {
2265      // (C++ 13.3.2p3): for F to be a viable function, there shall
2266      // exist for each argument an implicit conversion sequence
2267      // (13.3.3.1) that converts that argument to the corresponding
2268      // parameter of F.
2269      QualType ParamType = Proto->getArgType(ArgIdx);
2270      Candidate.Conversions[ArgIdx]
2271        = TryCopyInitialization(Args[ArgIdx], ParamType,
2272                                SuppressUserConversions, ForceRValue,
2273                                /*InOverloadResolution=*/true);
2274      if (Candidate.Conversions[ArgIdx].ConversionKind
2275            == ImplicitConversionSequence::BadConversion) {
2276      // 13.3.3.1-p10 If several different sequences of conversions exist that
2277      // each convert the argument to the parameter type, the implicit conversion
2278      // sequence associated with the parameter is defined to be the unique conversion
2279      // sequence designated the ambiguous conversion sequence. For the purpose of
2280      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2281      // conversion sequence is treated as a user-defined sequence that is
2282      // indistinguishable from any other user-defined conversion sequence
2283        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2284          Candidate.Conversions[ArgIdx].ConversionKind =
2285            ImplicitConversionSequence::UserDefinedConversion;
2286          // Set the conversion function to one of them. As due to ambiguity,
2287          // they carry the same weight and is needed for overload resolution
2288          // later.
2289          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2290            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2291        }
2292        else {
2293          Candidate.Viable = false;
2294          break;
2295        }
2296      }
2297    } else {
2298      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2299      // argument for which there is no corresponding parameter is
2300      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2301      Candidate.Conversions[ArgIdx].ConversionKind
2302        = ImplicitConversionSequence::EllipsisConversion;
2303    }
2304  }
2305}
2306
2307/// \brief Add all of the function declarations in the given function set to
2308/// the overload canddiate set.
2309void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2310                                 Expr **Args, unsigned NumArgs,
2311                                 OverloadCandidateSet& CandidateSet,
2312                                 bool SuppressUserConversions) {
2313  for (FunctionSet::const_iterator F = Functions.begin(),
2314                                FEnd = Functions.end();
2315       F != FEnd; ++F) {
2316    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2317      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2318        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2319                           Args[0], Args + 1, NumArgs - 1,
2320                           CandidateSet, SuppressUserConversions);
2321      else
2322        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2323                             SuppressUserConversions);
2324    } else {
2325      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2326      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2327          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2328        AddMethodTemplateCandidate(FunTmpl,
2329                                   /*FIXME: explicit args */false, 0, 0,
2330                                   Args[0], Args + 1, NumArgs - 1,
2331                                   CandidateSet,
2332                                   SuppressUserConversions);
2333      else
2334        AddTemplateOverloadCandidate(FunTmpl,
2335                                     /*FIXME: explicit args */false, 0, 0,
2336                                     Args, NumArgs, CandidateSet,
2337                                     SuppressUserConversions);
2338    }
2339  }
2340}
2341
2342/// AddMethodCandidate - Adds the given C++ member function to the set
2343/// of candidate functions, using the given function call arguments
2344/// and the object argument (@c Object). For example, in a call
2345/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2346/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2347/// allow user-defined conversions via constructors or conversion
2348/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2349/// a slightly hacky way to implement the overloading rules for elidable copy
2350/// initialization in C++0x (C++0x 12.8p15).
2351void
2352Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2353                         Expr **Args, unsigned NumArgs,
2354                         OverloadCandidateSet& CandidateSet,
2355                         bool SuppressUserConversions, bool ForceRValue) {
2356  const FunctionProtoType* Proto
2357    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2358  assert(Proto && "Methods without a prototype cannot be overloaded");
2359  assert(!isa<CXXConversionDecl>(Method) &&
2360         "Use AddConversionCandidate for conversion functions");
2361  assert(!isa<CXXConstructorDecl>(Method) &&
2362         "Use AddOverloadCandidate for constructors");
2363
2364  if (!CandidateSet.isNewCandidate(Method))
2365    return;
2366
2367  // Add this candidate
2368  CandidateSet.push_back(OverloadCandidate());
2369  OverloadCandidate& Candidate = CandidateSet.back();
2370  Candidate.Function = Method;
2371  Candidate.IsSurrogate = false;
2372  Candidate.IgnoreObjectArgument = false;
2373
2374  unsigned NumArgsInProto = Proto->getNumArgs();
2375
2376  // (C++ 13.3.2p2): A candidate function having fewer than m
2377  // parameters is viable only if it has an ellipsis in its parameter
2378  // list (8.3.5).
2379  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2380    Candidate.Viable = false;
2381    return;
2382  }
2383
2384  // (C++ 13.3.2p2): A candidate function having more than m parameters
2385  // is viable only if the (m+1)st parameter has a default argument
2386  // (8.3.6). For the purposes of overload resolution, the
2387  // parameter list is truncated on the right, so that there are
2388  // exactly m parameters.
2389  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2390  if (NumArgs < MinRequiredArgs) {
2391    // Not enough arguments.
2392    Candidate.Viable = false;
2393    return;
2394  }
2395
2396  Candidate.Viable = true;
2397  Candidate.Conversions.resize(NumArgs + 1);
2398
2399  if (Method->isStatic() || !Object)
2400    // The implicit object argument is ignored.
2401    Candidate.IgnoreObjectArgument = true;
2402  else {
2403    // Determine the implicit conversion sequence for the object
2404    // parameter.
2405    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2406    if (Candidate.Conversions[0].ConversionKind
2407          == ImplicitConversionSequence::BadConversion) {
2408      Candidate.Viable = false;
2409      return;
2410    }
2411  }
2412
2413  // Determine the implicit conversion sequences for each of the
2414  // arguments.
2415  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2416    if (ArgIdx < NumArgsInProto) {
2417      // (C++ 13.3.2p3): for F to be a viable function, there shall
2418      // exist for each argument an implicit conversion sequence
2419      // (13.3.3.1) that converts that argument to the corresponding
2420      // parameter of F.
2421      QualType ParamType = Proto->getArgType(ArgIdx);
2422      Candidate.Conversions[ArgIdx + 1]
2423        = TryCopyInitialization(Args[ArgIdx], ParamType,
2424                                SuppressUserConversions, ForceRValue,
2425                                /*InOverloadResolution=*/true);
2426      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2427            == ImplicitConversionSequence::BadConversion) {
2428        Candidate.Viable = false;
2429        break;
2430      }
2431    } else {
2432      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2433      // argument for which there is no corresponding parameter is
2434      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2435      Candidate.Conversions[ArgIdx + 1].ConversionKind
2436        = ImplicitConversionSequence::EllipsisConversion;
2437    }
2438  }
2439}
2440
2441/// \brief Add a C++ member function template as a candidate to the candidate
2442/// set, using template argument deduction to produce an appropriate member
2443/// function template specialization.
2444void
2445Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2446                                 bool HasExplicitTemplateArgs,
2447                                 const TemplateArgument *ExplicitTemplateArgs,
2448                                 unsigned NumExplicitTemplateArgs,
2449                                 Expr *Object, Expr **Args, unsigned NumArgs,
2450                                 OverloadCandidateSet& CandidateSet,
2451                                 bool SuppressUserConversions,
2452                                 bool ForceRValue) {
2453  if (!CandidateSet.isNewCandidate(MethodTmpl))
2454    return;
2455
2456  // C++ [over.match.funcs]p7:
2457  //   In each case where a candidate is a function template, candidate
2458  //   function template specializations are generated using template argument
2459  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2460  //   candidate functions in the usual way.113) A given name can refer to one
2461  //   or more function templates and also to a set of overloaded non-template
2462  //   functions. In such a case, the candidate functions generated from each
2463  //   function template are combined with the set of non-template candidate
2464  //   functions.
2465  TemplateDeductionInfo Info(Context);
2466  FunctionDecl *Specialization = 0;
2467  if (TemplateDeductionResult Result
2468      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2469                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2470                                Args, NumArgs, Specialization, Info)) {
2471        // FIXME: Record what happened with template argument deduction, so
2472        // that we can give the user a beautiful diagnostic.
2473        (void)Result;
2474        return;
2475      }
2476
2477  // Add the function template specialization produced by template argument
2478  // deduction as a candidate.
2479  assert(Specialization && "Missing member function template specialization?");
2480  assert(isa<CXXMethodDecl>(Specialization) &&
2481         "Specialization is not a member function?");
2482  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2483                     CandidateSet, SuppressUserConversions, ForceRValue);
2484}
2485
2486/// \brief Add a C++ function template specialization as a candidate
2487/// in the candidate set, using template argument deduction to produce
2488/// an appropriate function template specialization.
2489void
2490Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2491                                   bool HasExplicitTemplateArgs,
2492                                 const TemplateArgument *ExplicitTemplateArgs,
2493                                   unsigned NumExplicitTemplateArgs,
2494                                   Expr **Args, unsigned NumArgs,
2495                                   OverloadCandidateSet& CandidateSet,
2496                                   bool SuppressUserConversions,
2497                                   bool ForceRValue) {
2498  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2499    return;
2500
2501  // C++ [over.match.funcs]p7:
2502  //   In each case where a candidate is a function template, candidate
2503  //   function template specializations are generated using template argument
2504  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2505  //   candidate functions in the usual way.113) A given name can refer to one
2506  //   or more function templates and also to a set of overloaded non-template
2507  //   functions. In such a case, the candidate functions generated from each
2508  //   function template are combined with the set of non-template candidate
2509  //   functions.
2510  TemplateDeductionInfo Info(Context);
2511  FunctionDecl *Specialization = 0;
2512  if (TemplateDeductionResult Result
2513        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2514                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2515                                  Args, NumArgs, Specialization, Info)) {
2516    // FIXME: Record what happened with template argument deduction, so
2517    // that we can give the user a beautiful diagnostic.
2518    (void)Result;
2519    return;
2520  }
2521
2522  // Add the function template specialization produced by template argument
2523  // deduction as a candidate.
2524  assert(Specialization && "Missing function template specialization?");
2525  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2526                       SuppressUserConversions, ForceRValue);
2527}
2528
2529/// AddConversionCandidate - Add a C++ conversion function as a
2530/// candidate in the candidate set (C++ [over.match.conv],
2531/// C++ [over.match.copy]). From is the expression we're converting from,
2532/// and ToType is the type that we're eventually trying to convert to
2533/// (which may or may not be the same type as the type that the
2534/// conversion function produces).
2535void
2536Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2537                             Expr *From, QualType ToType,
2538                             OverloadCandidateSet& CandidateSet) {
2539  assert(!Conversion->getDescribedFunctionTemplate() &&
2540         "Conversion function templates use AddTemplateConversionCandidate");
2541
2542  if (!CandidateSet.isNewCandidate(Conversion))
2543    return;
2544
2545  // Add this candidate
2546  CandidateSet.push_back(OverloadCandidate());
2547  OverloadCandidate& Candidate = CandidateSet.back();
2548  Candidate.Function = Conversion;
2549  Candidate.IsSurrogate = false;
2550  Candidate.IgnoreObjectArgument = false;
2551  Candidate.FinalConversion.setAsIdentityConversion();
2552  Candidate.FinalConversion.FromTypePtr
2553    = Conversion->getConversionType().getAsOpaquePtr();
2554  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2555
2556  // Determine the implicit conversion sequence for the implicit
2557  // object parameter.
2558  Candidate.Viable = true;
2559  Candidate.Conversions.resize(1);
2560  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2561  // Conversion functions to a different type in the base class is visible in
2562  // the derived class.  So, a derived to base conversion should not participate
2563  // in overload resolution.
2564  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2565    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2566  if (Candidate.Conversions[0].ConversionKind
2567      == ImplicitConversionSequence::BadConversion) {
2568    Candidate.Viable = false;
2569    return;
2570  }
2571
2572  // We won't go through a user-define type conversion function to convert a
2573  // derived to base as such conversions are given Conversion Rank. They only
2574  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2575  QualType FromCanon
2576    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2577  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2578  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2579    Candidate.Viable = false;
2580    return;
2581  }
2582
2583
2584  // To determine what the conversion from the result of calling the
2585  // conversion function to the type we're eventually trying to
2586  // convert to (ToType), we need to synthesize a call to the
2587  // conversion function and attempt copy initialization from it. This
2588  // makes sure that we get the right semantics with respect to
2589  // lvalues/rvalues and the type. Fortunately, we can allocate this
2590  // call on the stack and we don't need its arguments to be
2591  // well-formed.
2592  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2593                            SourceLocation());
2594  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2595                                CastExpr::CK_FunctionToPointerDecay,
2596                                &ConversionRef, false);
2597
2598  // Note that it is safe to allocate CallExpr on the stack here because
2599  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2600  // allocator).
2601  CallExpr Call(Context, &ConversionFn, 0, 0,
2602                Conversion->getConversionType().getNonReferenceType(),
2603                SourceLocation());
2604  ImplicitConversionSequence ICS =
2605    TryCopyInitialization(&Call, ToType,
2606                          /*SuppressUserConversions=*/true,
2607                          /*ForceRValue=*/false,
2608                          /*InOverloadResolution=*/false);
2609
2610  switch (ICS.ConversionKind) {
2611  case ImplicitConversionSequence::StandardConversion:
2612    Candidate.FinalConversion = ICS.Standard;
2613    break;
2614
2615  case ImplicitConversionSequence::BadConversion:
2616    Candidate.Viable = false;
2617    break;
2618
2619  default:
2620    assert(false &&
2621           "Can only end up with a standard conversion sequence or failure");
2622  }
2623}
2624
2625/// \brief Adds a conversion function template specialization
2626/// candidate to the overload set, using template argument deduction
2627/// to deduce the template arguments of the conversion function
2628/// template from the type that we are converting to (C++
2629/// [temp.deduct.conv]).
2630void
2631Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2632                                     Expr *From, QualType ToType,
2633                                     OverloadCandidateSet &CandidateSet) {
2634  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2635         "Only conversion function templates permitted here");
2636
2637  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2638    return;
2639
2640  TemplateDeductionInfo Info(Context);
2641  CXXConversionDecl *Specialization = 0;
2642  if (TemplateDeductionResult Result
2643        = DeduceTemplateArguments(FunctionTemplate, ToType,
2644                                  Specialization, Info)) {
2645    // FIXME: Record what happened with template argument deduction, so
2646    // that we can give the user a beautiful diagnostic.
2647    (void)Result;
2648    return;
2649  }
2650
2651  // Add the conversion function template specialization produced by
2652  // template argument deduction as a candidate.
2653  assert(Specialization && "Missing function template specialization?");
2654  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2655}
2656
2657/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2658/// converts the given @c Object to a function pointer via the
2659/// conversion function @c Conversion, and then attempts to call it
2660/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2661/// the type of function that we'll eventually be calling.
2662void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2663                                 const FunctionProtoType *Proto,
2664                                 Expr *Object, Expr **Args, unsigned NumArgs,
2665                                 OverloadCandidateSet& CandidateSet) {
2666  if (!CandidateSet.isNewCandidate(Conversion))
2667    return;
2668
2669  CandidateSet.push_back(OverloadCandidate());
2670  OverloadCandidate& Candidate = CandidateSet.back();
2671  Candidate.Function = 0;
2672  Candidate.Surrogate = Conversion;
2673  Candidate.Viable = true;
2674  Candidate.IsSurrogate = true;
2675  Candidate.IgnoreObjectArgument = false;
2676  Candidate.Conversions.resize(NumArgs + 1);
2677
2678  // Determine the implicit conversion sequence for the implicit
2679  // object parameter.
2680  ImplicitConversionSequence ObjectInit
2681    = TryObjectArgumentInitialization(Object, Conversion);
2682  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2683    Candidate.Viable = false;
2684    return;
2685  }
2686
2687  // The first conversion is actually a user-defined conversion whose
2688  // first conversion is ObjectInit's standard conversion (which is
2689  // effectively a reference binding). Record it as such.
2690  Candidate.Conversions[0].ConversionKind
2691    = ImplicitConversionSequence::UserDefinedConversion;
2692  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2693  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2694  Candidate.Conversions[0].UserDefined.After
2695    = Candidate.Conversions[0].UserDefined.Before;
2696  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2697
2698  // Find the
2699  unsigned NumArgsInProto = Proto->getNumArgs();
2700
2701  // (C++ 13.3.2p2): A candidate function having fewer than m
2702  // parameters is viable only if it has an ellipsis in its parameter
2703  // list (8.3.5).
2704  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2705    Candidate.Viable = false;
2706    return;
2707  }
2708
2709  // Function types don't have any default arguments, so just check if
2710  // we have enough arguments.
2711  if (NumArgs < NumArgsInProto) {
2712    // Not enough arguments.
2713    Candidate.Viable = false;
2714    return;
2715  }
2716
2717  // Determine the implicit conversion sequences for each of the
2718  // arguments.
2719  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2720    if (ArgIdx < NumArgsInProto) {
2721      // (C++ 13.3.2p3): for F to be a viable function, there shall
2722      // exist for each argument an implicit conversion sequence
2723      // (13.3.3.1) that converts that argument to the corresponding
2724      // parameter of F.
2725      QualType ParamType = Proto->getArgType(ArgIdx);
2726      Candidate.Conversions[ArgIdx + 1]
2727        = TryCopyInitialization(Args[ArgIdx], ParamType,
2728                                /*SuppressUserConversions=*/false,
2729                                /*ForceRValue=*/false,
2730                                /*InOverloadResolution=*/false);
2731      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2732            == ImplicitConversionSequence::BadConversion) {
2733        Candidate.Viable = false;
2734        break;
2735      }
2736    } else {
2737      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2738      // argument for which there is no corresponding parameter is
2739      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2740      Candidate.Conversions[ArgIdx + 1].ConversionKind
2741        = ImplicitConversionSequence::EllipsisConversion;
2742    }
2743  }
2744}
2745
2746// FIXME: This will eventually be removed, once we've migrated all of the
2747// operator overloading logic over to the scheme used by binary operators, which
2748// works for template instantiation.
2749void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2750                                 SourceLocation OpLoc,
2751                                 Expr **Args, unsigned NumArgs,
2752                                 OverloadCandidateSet& CandidateSet,
2753                                 SourceRange OpRange) {
2754  FunctionSet Functions;
2755
2756  QualType T1 = Args[0]->getType();
2757  QualType T2;
2758  if (NumArgs > 1)
2759    T2 = Args[1]->getType();
2760
2761  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2762  if (S)
2763    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2764  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2765  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2766  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2767  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2768}
2769
2770/// \brief Add overload candidates for overloaded operators that are
2771/// member functions.
2772///
2773/// Add the overloaded operator candidates that are member functions
2774/// for the operator Op that was used in an operator expression such
2775/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2776/// CandidateSet will store the added overload candidates. (C++
2777/// [over.match.oper]).
2778void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2779                                       SourceLocation OpLoc,
2780                                       Expr **Args, unsigned NumArgs,
2781                                       OverloadCandidateSet& CandidateSet,
2782                                       SourceRange OpRange) {
2783  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2784
2785  // C++ [over.match.oper]p3:
2786  //   For a unary operator @ with an operand of a type whose
2787  //   cv-unqualified version is T1, and for a binary operator @ with
2788  //   a left operand of a type whose cv-unqualified version is T1 and
2789  //   a right operand of a type whose cv-unqualified version is T2,
2790  //   three sets of candidate functions, designated member
2791  //   candidates, non-member candidates and built-in candidates, are
2792  //   constructed as follows:
2793  QualType T1 = Args[0]->getType();
2794  QualType T2;
2795  if (NumArgs > 1)
2796    T2 = Args[1]->getType();
2797
2798  //     -- If T1 is a class type, the set of member candidates is the
2799  //        result of the qualified lookup of T1::operator@
2800  //        (13.3.1.1.1); otherwise, the set of member candidates is
2801  //        empty.
2802  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2803    // Complete the type if it can be completed. Otherwise, we're done.
2804    if (RequireCompleteType(OpLoc, T1, PDiag()))
2805      return;
2806
2807    LookupResult Operators;
2808    LookupQualifiedName(Operators, T1Rec->getDecl(), OpName,
2809                        LookupOrdinaryName, false);
2810    for (LookupResult::iterator Oper = Operators.begin(),
2811                             OperEnd = Operators.end();
2812         Oper != OperEnd;
2813         ++Oper) {
2814      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) {
2815        AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2816                           /*SuppressUserConversions=*/false);
2817        continue;
2818      }
2819
2820      assert(isa<FunctionTemplateDecl>(*Oper) &&
2821             isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper)
2822                                                        ->getTemplatedDecl()) &&
2823             "Expected a member function template");
2824      AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0,
2825                                 Args[0], Args+1, NumArgs - 1, CandidateSet,
2826                                 /*SuppressUserConversions=*/false);
2827    }
2828  }
2829}
2830
2831/// AddBuiltinCandidate - Add a candidate for a built-in
2832/// operator. ResultTy and ParamTys are the result and parameter types
2833/// of the built-in candidate, respectively. Args and NumArgs are the
2834/// arguments being passed to the candidate. IsAssignmentOperator
2835/// should be true when this built-in candidate is an assignment
2836/// operator. NumContextualBoolArguments is the number of arguments
2837/// (at the beginning of the argument list) that will be contextually
2838/// converted to bool.
2839void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2840                               Expr **Args, unsigned NumArgs,
2841                               OverloadCandidateSet& CandidateSet,
2842                               bool IsAssignmentOperator,
2843                               unsigned NumContextualBoolArguments) {
2844  // Add this candidate
2845  CandidateSet.push_back(OverloadCandidate());
2846  OverloadCandidate& Candidate = CandidateSet.back();
2847  Candidate.Function = 0;
2848  Candidate.IsSurrogate = false;
2849  Candidate.IgnoreObjectArgument = false;
2850  Candidate.BuiltinTypes.ResultTy = ResultTy;
2851  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2852    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2853
2854  // Determine the implicit conversion sequences for each of the
2855  // arguments.
2856  Candidate.Viable = true;
2857  Candidate.Conversions.resize(NumArgs);
2858  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2859    // C++ [over.match.oper]p4:
2860    //   For the built-in assignment operators, conversions of the
2861    //   left operand are restricted as follows:
2862    //     -- no temporaries are introduced to hold the left operand, and
2863    //     -- no user-defined conversions are applied to the left
2864    //        operand to achieve a type match with the left-most
2865    //        parameter of a built-in candidate.
2866    //
2867    // We block these conversions by turning off user-defined
2868    // conversions, since that is the only way that initialization of
2869    // a reference to a non-class type can occur from something that
2870    // is not of the same type.
2871    if (ArgIdx < NumContextualBoolArguments) {
2872      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2873             "Contextual conversion to bool requires bool type");
2874      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2875    } else {
2876      Candidate.Conversions[ArgIdx]
2877        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2878                                ArgIdx == 0 && IsAssignmentOperator,
2879                                /*ForceRValue=*/false,
2880                                /*InOverloadResolution=*/false);
2881    }
2882    if (Candidate.Conversions[ArgIdx].ConversionKind
2883        == ImplicitConversionSequence::BadConversion) {
2884      Candidate.Viable = false;
2885      break;
2886    }
2887  }
2888}
2889
2890/// BuiltinCandidateTypeSet - A set of types that will be used for the
2891/// candidate operator functions for built-in operators (C++
2892/// [over.built]). The types are separated into pointer types and
2893/// enumeration types.
2894class BuiltinCandidateTypeSet  {
2895  /// TypeSet - A set of types.
2896  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2897
2898  /// PointerTypes - The set of pointer types that will be used in the
2899  /// built-in candidates.
2900  TypeSet PointerTypes;
2901
2902  /// MemberPointerTypes - The set of member pointer types that will be
2903  /// used in the built-in candidates.
2904  TypeSet MemberPointerTypes;
2905
2906  /// EnumerationTypes - The set of enumeration types that will be
2907  /// used in the built-in candidates.
2908  TypeSet EnumerationTypes;
2909
2910  /// Sema - The semantic analysis instance where we are building the
2911  /// candidate type set.
2912  Sema &SemaRef;
2913
2914  /// Context - The AST context in which we will build the type sets.
2915  ASTContext &Context;
2916
2917  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2918                                               const Qualifiers &VisibleQuals);
2919  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2920
2921public:
2922  /// iterator - Iterates through the types that are part of the set.
2923  typedef TypeSet::iterator iterator;
2924
2925  BuiltinCandidateTypeSet(Sema &SemaRef)
2926    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2927
2928  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2929                             bool AllowExplicitConversions,
2930                             const Qualifiers &VisibleTypeConversionsQuals);
2931
2932  /// pointer_begin - First pointer type found;
2933  iterator pointer_begin() { return PointerTypes.begin(); }
2934
2935  /// pointer_end - Past the last pointer type found;
2936  iterator pointer_end() { return PointerTypes.end(); }
2937
2938  /// member_pointer_begin - First member pointer type found;
2939  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2940
2941  /// member_pointer_end - Past the last member pointer type found;
2942  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2943
2944  /// enumeration_begin - First enumeration type found;
2945  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2946
2947  /// enumeration_end - Past the last enumeration type found;
2948  iterator enumeration_end() { return EnumerationTypes.end(); }
2949};
2950
2951/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2952/// the set of pointer types along with any more-qualified variants of
2953/// that type. For example, if @p Ty is "int const *", this routine
2954/// will add "int const *", "int const volatile *", "int const
2955/// restrict *", and "int const volatile restrict *" to the set of
2956/// pointer types. Returns true if the add of @p Ty itself succeeded,
2957/// false otherwise.
2958///
2959/// FIXME: what to do about extended qualifiers?
2960bool
2961BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty
2962                                            ,const Qualifiers &VisibleQuals) {
2963
2964  // Insert this type.
2965  if (!PointerTypes.insert(Ty))
2966    return false;
2967
2968  const PointerType *PointerTy = Ty->getAs<PointerType>();
2969  assert(PointerTy && "type was not a pointer type!");
2970
2971  QualType PointeeTy = PointerTy->getPointeeType();
2972  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2973  bool hasVolatile = VisibleQuals.hasVolatile();
2974  bool hasRestrict = VisibleQuals.hasRestrict();
2975
2976  // Iterate through all strict supersets of BaseCVR.
2977  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2978    if ((CVR | BaseCVR) != CVR) continue;
2979    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
2980    // in the types.
2981    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
2982    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
2983    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2984    PointerTypes.insert(Context.getPointerType(QPointeeTy));
2985  }
2986
2987  return true;
2988}
2989
2990/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2991/// to the set of pointer types along with any more-qualified variants of
2992/// that type. For example, if @p Ty is "int const *", this routine
2993/// will add "int const *", "int const volatile *", "int const
2994/// restrict *", and "int const volatile restrict *" to the set of
2995/// pointer types. Returns true if the add of @p Ty itself succeeded,
2996/// false otherwise.
2997///
2998/// FIXME: what to do about extended qualifiers?
2999bool
3000BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3001    QualType Ty) {
3002  // Insert this type.
3003  if (!MemberPointerTypes.insert(Ty))
3004    return false;
3005
3006  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3007  assert(PointerTy && "type was not a member pointer type!");
3008
3009  QualType PointeeTy = PointerTy->getPointeeType();
3010  const Type *ClassTy = PointerTy->getClass();
3011
3012  // Iterate through all strict supersets of the pointee type's CVR
3013  // qualifiers.
3014  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3015  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3016    if ((CVR | BaseCVR) != CVR) continue;
3017
3018    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3019    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3020  }
3021
3022  return true;
3023}
3024
3025/// AddTypesConvertedFrom - Add each of the types to which the type @p
3026/// Ty can be implicit converted to the given set of @p Types. We're
3027/// primarily interested in pointer types and enumeration types. We also
3028/// take member pointer types, for the conditional operator.
3029/// AllowUserConversions is true if we should look at the conversion
3030/// functions of a class type, and AllowExplicitConversions if we
3031/// should also include the explicit conversion functions of a class
3032/// type.
3033void
3034BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3035                                               bool AllowUserConversions,
3036                                               bool AllowExplicitConversions,
3037                                               const Qualifiers &VisibleQuals) {
3038  // Only deal with canonical types.
3039  Ty = Context.getCanonicalType(Ty);
3040
3041  // Look through reference types; they aren't part of the type of an
3042  // expression for the purposes of conversions.
3043  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3044    Ty = RefTy->getPointeeType();
3045
3046  // We don't care about qualifiers on the type.
3047  Ty = Ty.getUnqualifiedType();
3048
3049  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3050    QualType PointeeTy = PointerTy->getPointeeType();
3051
3052    // Insert our type, and its more-qualified variants, into the set
3053    // of types.
3054    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3055      return;
3056
3057    // Add 'cv void*' to our set of types.
3058    if (!Ty->isVoidType()) {
3059      QualType QualVoid
3060        = Context.getCVRQualifiedType(Context.VoidTy,
3061                                   PointeeTy.getCVRQualifiers());
3062      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid),
3063                                              VisibleQuals);
3064    }
3065
3066    // If this is a pointer to a class type, add pointers to its bases
3067    // (with the same level of cv-qualification as the original
3068    // derived class, of course).
3069    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
3070      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
3071      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3072           Base != ClassDecl->bases_end(); ++Base) {
3073        QualType BaseTy = Context.getCanonicalType(Base->getType());
3074        BaseTy = Context.getCVRQualifiedType(BaseTy.getUnqualifiedType(),
3075                                          PointeeTy.getCVRQualifiers());
3076        // Add the pointer type, recursively, so that we get all of
3077        // the indirect base classes, too.
3078        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false,
3079                              VisibleQuals);
3080      }
3081    }
3082  } else if (Ty->isMemberPointerType()) {
3083    // Member pointers are far easier, since the pointee can't be converted.
3084    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3085      return;
3086  } else if (Ty->isEnumeralType()) {
3087    EnumerationTypes.insert(Ty);
3088  } else if (AllowUserConversions) {
3089    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3090      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
3091        // No conversion functions in incomplete types.
3092        return;
3093      }
3094
3095      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3096      OverloadedFunctionDecl *Conversions
3097        = ClassDecl->getVisibleConversionFunctions();
3098      for (OverloadedFunctionDecl::function_iterator Func
3099             = Conversions->function_begin();
3100           Func != Conversions->function_end(); ++Func) {
3101        CXXConversionDecl *Conv;
3102        FunctionTemplateDecl *ConvTemplate;
3103        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
3104
3105        // Skip conversion function templates; they don't tell us anything
3106        // about which builtin types we can convert to.
3107        if (ConvTemplate)
3108          continue;
3109
3110        if (AllowExplicitConversions || !Conv->isExplicit()) {
3111          AddTypesConvertedFrom(Conv->getConversionType(), false, false,
3112                                VisibleQuals);
3113        }
3114      }
3115    }
3116  }
3117}
3118
3119/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3120/// the volatile- and non-volatile-qualified assignment operators for the
3121/// given type to the candidate set.
3122static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3123                                                   QualType T,
3124                                                   Expr **Args,
3125                                                   unsigned NumArgs,
3126                                    OverloadCandidateSet &CandidateSet) {
3127  QualType ParamTypes[2];
3128
3129  // T& operator=(T&, T)
3130  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3131  ParamTypes[1] = T;
3132  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3133                        /*IsAssignmentOperator=*/true);
3134
3135  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3136    // volatile T& operator=(volatile T&, T)
3137    ParamTypes[0]
3138      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3139    ParamTypes[1] = T;
3140    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3141                          /*IsAssignmentOperator=*/true);
3142  }
3143}
3144
3145/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers
3146/// , if any, found in visible type conversion functions found in ArgExpr's
3147/// type.
3148static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3149    Qualifiers VRQuals;
3150    const RecordType *TyRec;
3151    if (const MemberPointerType *RHSMPType =
3152        ArgExpr->getType()->getAs<MemberPointerType>())
3153      TyRec = cast<RecordType>(RHSMPType->getClass());
3154    else
3155      TyRec = ArgExpr->getType()->getAs<RecordType>();
3156    if (!TyRec) {
3157      // Just to be safe, assume the worst case.
3158      VRQuals.addVolatile();
3159      VRQuals.addRestrict();
3160      return VRQuals;
3161    }
3162
3163    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3164    OverloadedFunctionDecl *Conversions =
3165    ClassDecl->getVisibleConversionFunctions();
3166
3167    for (OverloadedFunctionDecl::function_iterator Func
3168         = Conversions->function_begin();
3169         Func != Conversions->function_end(); ++Func) {
3170      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) {
3171        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3172        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3173          CanTy = ResTypeRef->getPointeeType();
3174        // Need to go down the pointer/mempointer chain and add qualifiers
3175        // as see them.
3176        bool done = false;
3177        while (!done) {
3178          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3179            CanTy = ResTypePtr->getPointeeType();
3180          else if (const MemberPointerType *ResTypeMPtr =
3181                CanTy->getAs<MemberPointerType>())
3182            CanTy = ResTypeMPtr->getPointeeType();
3183          else
3184            done = true;
3185          if (CanTy.isVolatileQualified())
3186            VRQuals.addVolatile();
3187          if (CanTy.isRestrictQualified())
3188            VRQuals.addRestrict();
3189          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3190            return VRQuals;
3191        }
3192      }
3193    }
3194    return VRQuals;
3195}
3196
3197/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3198/// operator overloads to the candidate set (C++ [over.built]), based
3199/// on the operator @p Op and the arguments given. For example, if the
3200/// operator is a binary '+', this routine might add "int
3201/// operator+(int, int)" to cover integer addition.
3202void
3203Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3204                                   Expr **Args, unsigned NumArgs,
3205                                   OverloadCandidateSet& CandidateSet) {
3206  // The set of "promoted arithmetic types", which are the arithmetic
3207  // types are that preserved by promotion (C++ [over.built]p2). Note
3208  // that the first few of these types are the promoted integral
3209  // types; these types need to be first.
3210  // FIXME: What about complex?
3211  const unsigned FirstIntegralType = 0;
3212  const unsigned LastIntegralType = 13;
3213  const unsigned FirstPromotedIntegralType = 7,
3214                 LastPromotedIntegralType = 13;
3215  const unsigned FirstPromotedArithmeticType = 7,
3216                 LastPromotedArithmeticType = 16;
3217  const unsigned NumArithmeticTypes = 16;
3218  QualType ArithmeticTypes[NumArithmeticTypes] = {
3219    Context.BoolTy, Context.CharTy, Context.WCharTy,
3220// FIXME:   Context.Char16Ty, Context.Char32Ty,
3221    Context.SignedCharTy, Context.ShortTy,
3222    Context.UnsignedCharTy, Context.UnsignedShortTy,
3223    Context.IntTy, Context.LongTy, Context.LongLongTy,
3224    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3225    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3226  };
3227
3228  // Find all of the types that the arguments can convert to, but only
3229  // if the operator we're looking at has built-in operator candidates
3230  // that make use of these types.
3231  Qualifiers VisibleTypeConversionsQuals;
3232  VisibleTypeConversionsQuals.addConst();
3233  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3234    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3235
3236  BuiltinCandidateTypeSet CandidateTypes(*this);
3237  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3238      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3239      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3240      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3241      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3242      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3243    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3244      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3245                                           true,
3246                                           (Op == OO_Exclaim ||
3247                                            Op == OO_AmpAmp ||
3248                                            Op == OO_PipePipe),
3249                                           VisibleTypeConversionsQuals);
3250  }
3251
3252  bool isComparison = false;
3253  switch (Op) {
3254  case OO_None:
3255  case NUM_OVERLOADED_OPERATORS:
3256    assert(false && "Expected an overloaded operator");
3257    break;
3258
3259  case OO_Star: // '*' is either unary or binary
3260    if (NumArgs == 1)
3261      goto UnaryStar;
3262    else
3263      goto BinaryStar;
3264    break;
3265
3266  case OO_Plus: // '+' is either unary or binary
3267    if (NumArgs == 1)
3268      goto UnaryPlus;
3269    else
3270      goto BinaryPlus;
3271    break;
3272
3273  case OO_Minus: // '-' is either unary or binary
3274    if (NumArgs == 1)
3275      goto UnaryMinus;
3276    else
3277      goto BinaryMinus;
3278    break;
3279
3280  case OO_Amp: // '&' is either unary or binary
3281    if (NumArgs == 1)
3282      goto UnaryAmp;
3283    else
3284      goto BinaryAmp;
3285
3286  case OO_PlusPlus:
3287  case OO_MinusMinus:
3288    // C++ [over.built]p3:
3289    //
3290    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3291    //   is either volatile or empty, there exist candidate operator
3292    //   functions of the form
3293    //
3294    //       VQ T&      operator++(VQ T&);
3295    //       T          operator++(VQ T&, int);
3296    //
3297    // C++ [over.built]p4:
3298    //
3299    //   For every pair (T, VQ), where T is an arithmetic type other
3300    //   than bool, and VQ is either volatile or empty, there exist
3301    //   candidate operator functions of the form
3302    //
3303    //       VQ T&      operator--(VQ T&);
3304    //       T          operator--(VQ T&, int);
3305    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3306         Arith < NumArithmeticTypes; ++Arith) {
3307      QualType ArithTy = ArithmeticTypes[Arith];
3308      QualType ParamTypes[2]
3309        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3310
3311      // Non-volatile version.
3312      if (NumArgs == 1)
3313        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3314      else
3315        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3316      // heuristic to reduce number of builtin candidates in the set.
3317      // Add volatile version only if there are conversions to a volatile type.
3318      if (VisibleTypeConversionsQuals.hasVolatile()) {
3319        // Volatile version
3320        ParamTypes[0]
3321          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3322        if (NumArgs == 1)
3323          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3324        else
3325          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3326      }
3327    }
3328
3329    // C++ [over.built]p5:
3330    //
3331    //   For every pair (T, VQ), where T is a cv-qualified or
3332    //   cv-unqualified object type, and VQ is either volatile or
3333    //   empty, there exist candidate operator functions of the form
3334    //
3335    //       T*VQ&      operator++(T*VQ&);
3336    //       T*VQ&      operator--(T*VQ&);
3337    //       T*         operator++(T*VQ&, int);
3338    //       T*         operator--(T*VQ&, int);
3339    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3340         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3341      // Skip pointer types that aren't pointers to object types.
3342      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3343        continue;
3344
3345      QualType ParamTypes[2] = {
3346        Context.getLValueReferenceType(*Ptr), Context.IntTy
3347      };
3348
3349      // Without volatile
3350      if (NumArgs == 1)
3351        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3352      else
3353        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3354
3355      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3356          VisibleTypeConversionsQuals.hasVolatile()) {
3357        // With volatile
3358        ParamTypes[0]
3359          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3360        if (NumArgs == 1)
3361          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3362        else
3363          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3364      }
3365    }
3366    break;
3367
3368  UnaryStar:
3369    // C++ [over.built]p6:
3370    //   For every cv-qualified or cv-unqualified object type T, there
3371    //   exist candidate operator functions of the form
3372    //
3373    //       T&         operator*(T*);
3374    //
3375    // C++ [over.built]p7:
3376    //   For every function type T, there exist candidate operator
3377    //   functions of the form
3378    //       T&         operator*(T*);
3379    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3380         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3381      QualType ParamTy = *Ptr;
3382      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3383      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3384                          &ParamTy, Args, 1, CandidateSet);
3385    }
3386    break;
3387
3388  UnaryPlus:
3389    // C++ [over.built]p8:
3390    //   For every type T, there exist candidate operator functions of
3391    //   the form
3392    //
3393    //       T*         operator+(T*);
3394    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3395         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3396      QualType ParamTy = *Ptr;
3397      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3398    }
3399
3400    // Fall through
3401
3402  UnaryMinus:
3403    // C++ [over.built]p9:
3404    //  For every promoted arithmetic type T, there exist candidate
3405    //  operator functions of the form
3406    //
3407    //       T         operator+(T);
3408    //       T         operator-(T);
3409    for (unsigned Arith = FirstPromotedArithmeticType;
3410         Arith < LastPromotedArithmeticType; ++Arith) {
3411      QualType ArithTy = ArithmeticTypes[Arith];
3412      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3413    }
3414    break;
3415
3416  case OO_Tilde:
3417    // C++ [over.built]p10:
3418    //   For every promoted integral type T, there exist candidate
3419    //   operator functions of the form
3420    //
3421    //        T         operator~(T);
3422    for (unsigned Int = FirstPromotedIntegralType;
3423         Int < LastPromotedIntegralType; ++Int) {
3424      QualType IntTy = ArithmeticTypes[Int];
3425      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3426    }
3427    break;
3428
3429  case OO_New:
3430  case OO_Delete:
3431  case OO_Array_New:
3432  case OO_Array_Delete:
3433  case OO_Call:
3434    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3435    break;
3436
3437  case OO_Comma:
3438  UnaryAmp:
3439  case OO_Arrow:
3440    // C++ [over.match.oper]p3:
3441    //   -- For the operator ',', the unary operator '&', or the
3442    //      operator '->', the built-in candidates set is empty.
3443    break;
3444
3445  case OO_EqualEqual:
3446  case OO_ExclaimEqual:
3447    // C++ [over.match.oper]p16:
3448    //   For every pointer to member type T, there exist candidate operator
3449    //   functions of the form
3450    //
3451    //        bool operator==(T,T);
3452    //        bool operator!=(T,T);
3453    for (BuiltinCandidateTypeSet::iterator
3454           MemPtr = CandidateTypes.member_pointer_begin(),
3455           MemPtrEnd = CandidateTypes.member_pointer_end();
3456         MemPtr != MemPtrEnd;
3457         ++MemPtr) {
3458      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3459      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3460    }
3461
3462    // Fall through
3463
3464  case OO_Less:
3465  case OO_Greater:
3466  case OO_LessEqual:
3467  case OO_GreaterEqual:
3468    // C++ [over.built]p15:
3469    //
3470    //   For every pointer or enumeration type T, there exist
3471    //   candidate operator functions of the form
3472    //
3473    //        bool       operator<(T, T);
3474    //        bool       operator>(T, T);
3475    //        bool       operator<=(T, T);
3476    //        bool       operator>=(T, T);
3477    //        bool       operator==(T, T);
3478    //        bool       operator!=(T, T);
3479    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3480         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3481      QualType ParamTypes[2] = { *Ptr, *Ptr };
3482      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3483    }
3484    for (BuiltinCandidateTypeSet::iterator Enum
3485           = CandidateTypes.enumeration_begin();
3486         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3487      QualType ParamTypes[2] = { *Enum, *Enum };
3488      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3489    }
3490
3491    // Fall through.
3492    isComparison = true;
3493
3494  BinaryPlus:
3495  BinaryMinus:
3496    if (!isComparison) {
3497      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3498
3499      // C++ [over.built]p13:
3500      //
3501      //   For every cv-qualified or cv-unqualified object type T
3502      //   there exist candidate operator functions of the form
3503      //
3504      //      T*         operator+(T*, ptrdiff_t);
3505      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3506      //      T*         operator-(T*, ptrdiff_t);
3507      //      T*         operator+(ptrdiff_t, T*);
3508      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3509      //
3510      // C++ [over.built]p14:
3511      //
3512      //   For every T, where T is a pointer to object type, there
3513      //   exist candidate operator functions of the form
3514      //
3515      //      ptrdiff_t  operator-(T, T);
3516      for (BuiltinCandidateTypeSet::iterator Ptr
3517             = CandidateTypes.pointer_begin();
3518           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3519        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3520
3521        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3522        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3523
3524        if (Op == OO_Plus) {
3525          // T* operator+(ptrdiff_t, T*);
3526          ParamTypes[0] = ParamTypes[1];
3527          ParamTypes[1] = *Ptr;
3528          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3529        } else {
3530          // ptrdiff_t operator-(T, T);
3531          ParamTypes[1] = *Ptr;
3532          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3533                              Args, 2, CandidateSet);
3534        }
3535      }
3536    }
3537    // Fall through
3538
3539  case OO_Slash:
3540  BinaryStar:
3541  Conditional:
3542    // C++ [over.built]p12:
3543    //
3544    //   For every pair of promoted arithmetic types L and R, there
3545    //   exist candidate operator functions of the form
3546    //
3547    //        LR         operator*(L, R);
3548    //        LR         operator/(L, R);
3549    //        LR         operator+(L, R);
3550    //        LR         operator-(L, R);
3551    //        bool       operator<(L, R);
3552    //        bool       operator>(L, R);
3553    //        bool       operator<=(L, R);
3554    //        bool       operator>=(L, R);
3555    //        bool       operator==(L, R);
3556    //        bool       operator!=(L, R);
3557    //
3558    //   where LR is the result of the usual arithmetic conversions
3559    //   between types L and R.
3560    //
3561    // C++ [over.built]p24:
3562    //
3563    //   For every pair of promoted arithmetic types L and R, there exist
3564    //   candidate operator functions of the form
3565    //
3566    //        LR       operator?(bool, L, R);
3567    //
3568    //   where LR is the result of the usual arithmetic conversions
3569    //   between types L and R.
3570    // Our candidates ignore the first parameter.
3571    for (unsigned Left = FirstPromotedArithmeticType;
3572         Left < LastPromotedArithmeticType; ++Left) {
3573      for (unsigned Right = FirstPromotedArithmeticType;
3574           Right < LastPromotedArithmeticType; ++Right) {
3575        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3576        QualType Result
3577          = isComparison
3578          ? Context.BoolTy
3579          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3580        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3581      }
3582    }
3583    break;
3584
3585  case OO_Percent:
3586  BinaryAmp:
3587  case OO_Caret:
3588  case OO_Pipe:
3589  case OO_LessLess:
3590  case OO_GreaterGreater:
3591    // C++ [over.built]p17:
3592    //
3593    //   For every pair of promoted integral types L and R, there
3594    //   exist candidate operator functions of the form
3595    //
3596    //      LR         operator%(L, R);
3597    //      LR         operator&(L, R);
3598    //      LR         operator^(L, R);
3599    //      LR         operator|(L, R);
3600    //      L          operator<<(L, R);
3601    //      L          operator>>(L, R);
3602    //
3603    //   where LR is the result of the usual arithmetic conversions
3604    //   between types L and R.
3605    for (unsigned Left = FirstPromotedIntegralType;
3606         Left < LastPromotedIntegralType; ++Left) {
3607      for (unsigned Right = FirstPromotedIntegralType;
3608           Right < LastPromotedIntegralType; ++Right) {
3609        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3610        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3611            ? LandR[0]
3612            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3613        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3614      }
3615    }
3616    break;
3617
3618  case OO_Equal:
3619    // C++ [over.built]p20:
3620    //
3621    //   For every pair (T, VQ), where T is an enumeration or
3622    //   pointer to member type and VQ is either volatile or
3623    //   empty, there exist candidate operator functions of the form
3624    //
3625    //        VQ T&      operator=(VQ T&, T);
3626    for (BuiltinCandidateTypeSet::iterator
3627           Enum = CandidateTypes.enumeration_begin(),
3628           EnumEnd = CandidateTypes.enumeration_end();
3629         Enum != EnumEnd; ++Enum)
3630      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3631                                             CandidateSet);
3632    for (BuiltinCandidateTypeSet::iterator
3633           MemPtr = CandidateTypes.member_pointer_begin(),
3634         MemPtrEnd = CandidateTypes.member_pointer_end();
3635         MemPtr != MemPtrEnd; ++MemPtr)
3636      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3637                                             CandidateSet);
3638      // Fall through.
3639
3640  case OO_PlusEqual:
3641  case OO_MinusEqual:
3642    // C++ [over.built]p19:
3643    //
3644    //   For every pair (T, VQ), where T is any type and VQ is either
3645    //   volatile or empty, there exist candidate operator functions
3646    //   of the form
3647    //
3648    //        T*VQ&      operator=(T*VQ&, T*);
3649    //
3650    // C++ [over.built]p21:
3651    //
3652    //   For every pair (T, VQ), where T is a cv-qualified or
3653    //   cv-unqualified object type and VQ is either volatile or
3654    //   empty, there exist candidate operator functions of the form
3655    //
3656    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3657    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3658    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3659         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3660      QualType ParamTypes[2];
3661      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3662
3663      // non-volatile version
3664      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3665      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3666                          /*IsAssigmentOperator=*/Op == OO_Equal);
3667
3668      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3669          VisibleTypeConversionsQuals.hasVolatile()) {
3670        // volatile version
3671        ParamTypes[0]
3672          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3673        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3674                            /*IsAssigmentOperator=*/Op == OO_Equal);
3675      }
3676    }
3677    // Fall through.
3678
3679  case OO_StarEqual:
3680  case OO_SlashEqual:
3681    // C++ [over.built]p18:
3682    //
3683    //   For every triple (L, VQ, R), where L is an arithmetic type,
3684    //   VQ is either volatile or empty, and R is a promoted
3685    //   arithmetic type, there exist candidate operator functions of
3686    //   the form
3687    //
3688    //        VQ L&      operator=(VQ L&, R);
3689    //        VQ L&      operator*=(VQ L&, R);
3690    //        VQ L&      operator/=(VQ L&, R);
3691    //        VQ L&      operator+=(VQ L&, R);
3692    //        VQ L&      operator-=(VQ L&, R);
3693    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3694      for (unsigned Right = FirstPromotedArithmeticType;
3695           Right < LastPromotedArithmeticType; ++Right) {
3696        QualType ParamTypes[2];
3697        ParamTypes[1] = ArithmeticTypes[Right];
3698
3699        // Add this built-in operator as a candidate (VQ is empty).
3700        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3701        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3702                            /*IsAssigmentOperator=*/Op == OO_Equal);
3703
3704        // Add this built-in operator as a candidate (VQ is 'volatile').
3705        if (VisibleTypeConversionsQuals.hasVolatile()) {
3706          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3707          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3708          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3709                              /*IsAssigmentOperator=*/Op == OO_Equal);
3710        }
3711      }
3712    }
3713    break;
3714
3715  case OO_PercentEqual:
3716  case OO_LessLessEqual:
3717  case OO_GreaterGreaterEqual:
3718  case OO_AmpEqual:
3719  case OO_CaretEqual:
3720  case OO_PipeEqual:
3721    // C++ [over.built]p22:
3722    //
3723    //   For every triple (L, VQ, R), where L is an integral type, VQ
3724    //   is either volatile or empty, and R is a promoted integral
3725    //   type, there exist candidate operator functions of the form
3726    //
3727    //        VQ L&       operator%=(VQ L&, R);
3728    //        VQ L&       operator<<=(VQ L&, R);
3729    //        VQ L&       operator>>=(VQ L&, R);
3730    //        VQ L&       operator&=(VQ L&, R);
3731    //        VQ L&       operator^=(VQ L&, R);
3732    //        VQ L&       operator|=(VQ L&, R);
3733    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3734      for (unsigned Right = FirstPromotedIntegralType;
3735           Right < LastPromotedIntegralType; ++Right) {
3736        QualType ParamTypes[2];
3737        ParamTypes[1] = ArithmeticTypes[Right];
3738
3739        // Add this built-in operator as a candidate (VQ is empty).
3740        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3741        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3742        if (VisibleTypeConversionsQuals.hasVolatile()) {
3743          // Add this built-in operator as a candidate (VQ is 'volatile').
3744          ParamTypes[0] = ArithmeticTypes[Left];
3745          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3746          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3747          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3748        }
3749      }
3750    }
3751    break;
3752
3753  case OO_Exclaim: {
3754    // C++ [over.operator]p23:
3755    //
3756    //   There also exist candidate operator functions of the form
3757    //
3758    //        bool        operator!(bool);
3759    //        bool        operator&&(bool, bool);     [BELOW]
3760    //        bool        operator||(bool, bool);     [BELOW]
3761    QualType ParamTy = Context.BoolTy;
3762    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3763                        /*IsAssignmentOperator=*/false,
3764                        /*NumContextualBoolArguments=*/1);
3765    break;
3766  }
3767
3768  case OO_AmpAmp:
3769  case OO_PipePipe: {
3770    // C++ [over.operator]p23:
3771    //
3772    //   There also exist candidate operator functions of the form
3773    //
3774    //        bool        operator!(bool);            [ABOVE]
3775    //        bool        operator&&(bool, bool);
3776    //        bool        operator||(bool, bool);
3777    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3778    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3779                        /*IsAssignmentOperator=*/false,
3780                        /*NumContextualBoolArguments=*/2);
3781    break;
3782  }
3783
3784  case OO_Subscript:
3785    // C++ [over.built]p13:
3786    //
3787    //   For every cv-qualified or cv-unqualified object type T there
3788    //   exist candidate operator functions of the form
3789    //
3790    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3791    //        T&         operator[](T*, ptrdiff_t);
3792    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3793    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3794    //        T&         operator[](ptrdiff_t, T*);
3795    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3796         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3797      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3798      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3799      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3800
3801      // T& operator[](T*, ptrdiff_t)
3802      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3803
3804      // T& operator[](ptrdiff_t, T*);
3805      ParamTypes[0] = ParamTypes[1];
3806      ParamTypes[1] = *Ptr;
3807      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3808    }
3809    break;
3810
3811  case OO_ArrowStar:
3812    // C++ [over.built]p11:
3813    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3814    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3815    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3816    //    there exist candidate operator functions of the form
3817    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3818    //    where CV12 is the union of CV1 and CV2.
3819    {
3820      for (BuiltinCandidateTypeSet::iterator Ptr =
3821             CandidateTypes.pointer_begin();
3822           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3823        QualType C1Ty = (*Ptr);
3824        QualType C1;
3825        QualifierCollector Q1;
3826        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3827          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3828          if (!isa<RecordType>(C1))
3829            continue;
3830          // heuristic to reduce number of builtin candidates in the set.
3831          // Add volatile/restrict version only if there are conversions to a
3832          // volatile/restrict type.
3833          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3834            continue;
3835          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3836            continue;
3837        }
3838        for (BuiltinCandidateTypeSet::iterator
3839             MemPtr = CandidateTypes.member_pointer_begin(),
3840             MemPtrEnd = CandidateTypes.member_pointer_end();
3841             MemPtr != MemPtrEnd; ++MemPtr) {
3842          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3843          QualType C2 = QualType(mptr->getClass(), 0);
3844          C2 = C2.getUnqualifiedType();
3845          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3846            break;
3847          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3848          // build CV12 T&
3849          QualType T = mptr->getPointeeType();
3850          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3851              T.isVolatileQualified())
3852            continue;
3853          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3854              T.isRestrictQualified())
3855            continue;
3856          T = Q1.apply(T);
3857          QualType ResultTy = Context.getLValueReferenceType(T);
3858          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3859        }
3860      }
3861    }
3862    break;
3863
3864  case OO_Conditional:
3865    // Note that we don't consider the first argument, since it has been
3866    // contextually converted to bool long ago. The candidates below are
3867    // therefore added as binary.
3868    //
3869    // C++ [over.built]p24:
3870    //   For every type T, where T is a pointer or pointer-to-member type,
3871    //   there exist candidate operator functions of the form
3872    //
3873    //        T        operator?(bool, T, T);
3874    //
3875    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3876         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3877      QualType ParamTypes[2] = { *Ptr, *Ptr };
3878      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3879    }
3880    for (BuiltinCandidateTypeSet::iterator Ptr =
3881           CandidateTypes.member_pointer_begin(),
3882         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3883      QualType ParamTypes[2] = { *Ptr, *Ptr };
3884      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3885    }
3886    goto Conditional;
3887  }
3888}
3889
3890/// \brief Add function candidates found via argument-dependent lookup
3891/// to the set of overloading candidates.
3892///
3893/// This routine performs argument-dependent name lookup based on the
3894/// given function name (which may also be an operator name) and adds
3895/// all of the overload candidates found by ADL to the overload
3896/// candidate set (C++ [basic.lookup.argdep]).
3897void
3898Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3899                                           Expr **Args, unsigned NumArgs,
3900                                           bool HasExplicitTemplateArgs,
3901                                const TemplateArgument *ExplicitTemplateArgs,
3902                                           unsigned NumExplicitTemplateArgs,
3903                                           OverloadCandidateSet& CandidateSet,
3904                                           bool PartialOverloading) {
3905  FunctionSet Functions;
3906
3907  // FIXME: Should we be trafficking in canonical function decls throughout?
3908
3909  // Record all of the function candidates that we've already
3910  // added to the overload set, so that we don't add those same
3911  // candidates a second time.
3912  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3913                                   CandEnd = CandidateSet.end();
3914       Cand != CandEnd; ++Cand)
3915    if (Cand->Function) {
3916      Functions.insert(Cand->Function);
3917      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3918        Functions.insert(FunTmpl);
3919    }
3920
3921  // FIXME: Pass in the explicit template arguments?
3922  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3923
3924  // Erase all of the candidates we already knew about.
3925  // FIXME: This is suboptimal. Is there a better way?
3926  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3927                                   CandEnd = CandidateSet.end();
3928       Cand != CandEnd; ++Cand)
3929    if (Cand->Function) {
3930      Functions.erase(Cand->Function);
3931      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3932        Functions.erase(FunTmpl);
3933    }
3934
3935  // For each of the ADL candidates we found, add it to the overload
3936  // set.
3937  for (FunctionSet::iterator Func = Functions.begin(),
3938                          FuncEnd = Functions.end();
3939       Func != FuncEnd; ++Func) {
3940    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3941      if (HasExplicitTemplateArgs)
3942        continue;
3943
3944      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3945                           false, false, PartialOverloading);
3946    } else
3947      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3948                                   HasExplicitTemplateArgs,
3949                                   ExplicitTemplateArgs,
3950                                   NumExplicitTemplateArgs,
3951                                   Args, NumArgs, CandidateSet);
3952  }
3953}
3954
3955/// isBetterOverloadCandidate - Determines whether the first overload
3956/// candidate is a better candidate than the second (C++ 13.3.3p1).
3957bool
3958Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3959                                const OverloadCandidate& Cand2) {
3960  // Define viable functions to be better candidates than non-viable
3961  // functions.
3962  if (!Cand2.Viable)
3963    return Cand1.Viable;
3964  else if (!Cand1.Viable)
3965    return false;
3966
3967  // C++ [over.match.best]p1:
3968  //
3969  //   -- if F is a static member function, ICS1(F) is defined such
3970  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3971  //      any function G, and, symmetrically, ICS1(G) is neither
3972  //      better nor worse than ICS1(F).
3973  unsigned StartArg = 0;
3974  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3975    StartArg = 1;
3976
3977  // C++ [over.match.best]p1:
3978  //   A viable function F1 is defined to be a better function than another
3979  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3980  //   conversion sequence than ICSi(F2), and then...
3981  unsigned NumArgs = Cand1.Conversions.size();
3982  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3983  bool HasBetterConversion = false;
3984  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3985    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3986                                               Cand2.Conversions[ArgIdx])) {
3987    case ImplicitConversionSequence::Better:
3988      // Cand1 has a better conversion sequence.
3989      HasBetterConversion = true;
3990      break;
3991
3992    case ImplicitConversionSequence::Worse:
3993      // Cand1 can't be better than Cand2.
3994      return false;
3995
3996    case ImplicitConversionSequence::Indistinguishable:
3997      // Do nothing.
3998      break;
3999    }
4000  }
4001
4002  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4003  //       ICSj(F2), or, if not that,
4004  if (HasBetterConversion)
4005    return true;
4006
4007  //     - F1 is a non-template function and F2 is a function template
4008  //       specialization, or, if not that,
4009  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4010      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4011    return true;
4012
4013  //   -- F1 and F2 are function template specializations, and the function
4014  //      template for F1 is more specialized than the template for F2
4015  //      according to the partial ordering rules described in 14.5.5.2, or,
4016  //      if not that,
4017  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4018      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4019    if (FunctionTemplateDecl *BetterTemplate
4020          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4021                                       Cand2.Function->getPrimaryTemplate(),
4022                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4023                                                             : TPOC_Call))
4024      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4025
4026  //   -- the context is an initialization by user-defined conversion
4027  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4028  //      from the return type of F1 to the destination type (i.e.,
4029  //      the type of the entity being initialized) is a better
4030  //      conversion sequence than the standard conversion sequence
4031  //      from the return type of F2 to the destination type.
4032  if (Cand1.Function && Cand2.Function &&
4033      isa<CXXConversionDecl>(Cand1.Function) &&
4034      isa<CXXConversionDecl>(Cand2.Function)) {
4035    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4036                                               Cand2.FinalConversion)) {
4037    case ImplicitConversionSequence::Better:
4038      // Cand1 has a better conversion sequence.
4039      return true;
4040
4041    case ImplicitConversionSequence::Worse:
4042      // Cand1 can't be better than Cand2.
4043      return false;
4044
4045    case ImplicitConversionSequence::Indistinguishable:
4046      // Do nothing
4047      break;
4048    }
4049  }
4050
4051  return false;
4052}
4053
4054/// \brief Computes the best viable function (C++ 13.3.3)
4055/// within an overload candidate set.
4056///
4057/// \param CandidateSet the set of candidate functions.
4058///
4059/// \param Loc the location of the function name (or operator symbol) for
4060/// which overload resolution occurs.
4061///
4062/// \param Best f overload resolution was successful or found a deleted
4063/// function, Best points to the candidate function found.
4064///
4065/// \returns The result of overload resolution.
4066Sema::OverloadingResult
4067Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4068                         SourceLocation Loc,
4069                         OverloadCandidateSet::iterator& Best) {
4070  // Find the best viable function.
4071  Best = CandidateSet.end();
4072  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4073       Cand != CandidateSet.end(); ++Cand) {
4074    if (Cand->Viable) {
4075      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4076        Best = Cand;
4077    }
4078  }
4079
4080  // If we didn't find any viable functions, abort.
4081  if (Best == CandidateSet.end())
4082    return OR_No_Viable_Function;
4083
4084  // Make sure that this function is better than every other viable
4085  // function. If not, we have an ambiguity.
4086  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4087       Cand != CandidateSet.end(); ++Cand) {
4088    if (Cand->Viable &&
4089        Cand != Best &&
4090        !isBetterOverloadCandidate(*Best, *Cand)) {
4091      Best = CandidateSet.end();
4092      return OR_Ambiguous;
4093    }
4094  }
4095
4096  // Best is the best viable function.
4097  if (Best->Function &&
4098      (Best->Function->isDeleted() ||
4099       Best->Function->getAttr<UnavailableAttr>()))
4100    return OR_Deleted;
4101
4102  // C++ [basic.def.odr]p2:
4103  //   An overloaded function is used if it is selected by overload resolution
4104  //   when referred to from a potentially-evaluated expression. [Note: this
4105  //   covers calls to named functions (5.2.2), operator overloading
4106  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4107  //   placement new (5.3.4), as well as non-default initialization (8.5).
4108  if (Best->Function)
4109    MarkDeclarationReferenced(Loc, Best->Function);
4110  return OR_Success;
4111}
4112
4113/// PrintOverloadCandidates - When overload resolution fails, prints
4114/// diagnostic messages containing the candidates in the candidate
4115/// set. If OnlyViable is true, only viable candidates will be printed.
4116void
4117Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4118                              bool OnlyViable,
4119                              const char *Opc,
4120                              SourceLocation OpLoc) {
4121  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4122                             LastCand = CandidateSet.end();
4123  bool Reported = false;
4124  for (; Cand != LastCand; ++Cand) {
4125    if (Cand->Viable || !OnlyViable) {
4126      if (Cand->Function) {
4127        if (Cand->Function->isDeleted() ||
4128            Cand->Function->getAttr<UnavailableAttr>()) {
4129          // Deleted or "unavailable" function.
4130          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4131            << Cand->Function->isDeleted();
4132        } else if (FunctionTemplateDecl *FunTmpl
4133                     = Cand->Function->getPrimaryTemplate()) {
4134          // Function template specialization
4135          // FIXME: Give a better reason!
4136          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4137            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4138                              *Cand->Function->getTemplateSpecializationArgs());
4139        } else {
4140          // Normal function
4141          bool errReported = false;
4142          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4143            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4144              const ImplicitConversionSequence &Conversion =
4145                                                        Cand->Conversions[i];
4146              if ((Conversion.ConversionKind !=
4147                   ImplicitConversionSequence::BadConversion) ||
4148                  Conversion.ConversionFunctionSet.size() == 0)
4149                continue;
4150              Diag(Cand->Function->getLocation(),
4151                   diag::err_ovl_candidate_not_viable) << (i+1);
4152              errReported = true;
4153              for (int j = Conversion.ConversionFunctionSet.size()-1;
4154                   j >= 0; j--) {
4155                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4156                Diag(Func->getLocation(), diag::err_ovl_candidate);
4157              }
4158            }
4159          }
4160          if (!errReported)
4161            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4162        }
4163      } else if (Cand->IsSurrogate) {
4164        // Desugar the type of the surrogate down to a function type,
4165        // retaining as many typedefs as possible while still showing
4166        // the function type (and, therefore, its parameter types).
4167        QualType FnType = Cand->Surrogate->getConversionType();
4168        bool isLValueReference = false;
4169        bool isRValueReference = false;
4170        bool isPointer = false;
4171        if (const LValueReferenceType *FnTypeRef =
4172              FnType->getAs<LValueReferenceType>()) {
4173          FnType = FnTypeRef->getPointeeType();
4174          isLValueReference = true;
4175        } else if (const RValueReferenceType *FnTypeRef =
4176                     FnType->getAs<RValueReferenceType>()) {
4177          FnType = FnTypeRef->getPointeeType();
4178          isRValueReference = true;
4179        }
4180        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4181          FnType = FnTypePtr->getPointeeType();
4182          isPointer = true;
4183        }
4184        // Desugar down to a function type.
4185        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4186        // Reconstruct the pointer/reference as appropriate.
4187        if (isPointer) FnType = Context.getPointerType(FnType);
4188        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4189        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4190
4191        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4192          << FnType;
4193      } else if (OnlyViable) {
4194        assert(Cand->Conversions.size() <= 2 &&
4195               "builtin-binary-operator-not-binary");
4196        std::string TypeStr("operator");
4197        TypeStr += Opc;
4198        TypeStr += "(";
4199        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4200        if (Cand->Conversions.size() == 1) {
4201          TypeStr += ")";
4202          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4203        }
4204        else {
4205          TypeStr += ", ";
4206          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4207          TypeStr += ")";
4208          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4209        }
4210      }
4211      else if (!Cand->Viable && !Reported) {
4212        // Non-viability might be due to ambiguous user-defined conversions,
4213        // needed for built-in operators. Report them as well, but only once
4214        // as we have typically many built-in candidates.
4215        unsigned NoOperands = Cand->Conversions.size();
4216        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4217          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4218          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4219              ICS.ConversionFunctionSet.empty())
4220            continue;
4221          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4222                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4223            QualType FromTy =
4224              QualType(
4225                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4226            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4227                  << FromTy << Func->getConversionType();
4228          }
4229          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4230            FunctionDecl *Func =
4231              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4232            Diag(Func->getLocation(),diag::err_ovl_candidate);
4233          }
4234        }
4235        Reported = true;
4236      }
4237    }
4238  }
4239}
4240
4241/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4242/// an overloaded function (C++ [over.over]), where @p From is an
4243/// expression with overloaded function type and @p ToType is the type
4244/// we're trying to resolve to. For example:
4245///
4246/// @code
4247/// int f(double);
4248/// int f(int);
4249///
4250/// int (*pfd)(double) = f; // selects f(double)
4251/// @endcode
4252///
4253/// This routine returns the resulting FunctionDecl if it could be
4254/// resolved, and NULL otherwise. When @p Complain is true, this
4255/// routine will emit diagnostics if there is an error.
4256FunctionDecl *
4257Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4258                                         bool Complain) {
4259  QualType FunctionType = ToType;
4260  bool IsMember = false;
4261  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4262    FunctionType = ToTypePtr->getPointeeType();
4263  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4264    FunctionType = ToTypeRef->getPointeeType();
4265  else if (const MemberPointerType *MemTypePtr =
4266                    ToType->getAs<MemberPointerType>()) {
4267    FunctionType = MemTypePtr->getPointeeType();
4268    IsMember = true;
4269  }
4270
4271  // We only look at pointers or references to functions.
4272  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4273  if (!FunctionType->isFunctionType())
4274    return 0;
4275
4276  // Find the actual overloaded function declaration.
4277  OverloadedFunctionDecl *Ovl = 0;
4278
4279  // C++ [over.over]p1:
4280  //   [...] [Note: any redundant set of parentheses surrounding the
4281  //   overloaded function name is ignored (5.1). ]
4282  Expr *OvlExpr = From->IgnoreParens();
4283
4284  // C++ [over.over]p1:
4285  //   [...] The overloaded function name can be preceded by the &
4286  //   operator.
4287  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4288    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4289      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4290  }
4291
4292  // Try to dig out the overloaded function.
4293  FunctionTemplateDecl *FunctionTemplate = 0;
4294  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4295    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4296    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4297  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4298    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4299    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4300    // FIXME: Explicit template arguments
4301  }
4302  // FIXME: TemplateIdRefExpr?
4303
4304  // If there's no overloaded function declaration or function template,
4305  // we're done.
4306  if (!Ovl && !FunctionTemplate)
4307    return 0;
4308
4309  OverloadIterator Fun;
4310  if (Ovl)
4311    Fun = Ovl;
4312  else
4313    Fun = FunctionTemplate;
4314
4315  // Look through all of the overloaded functions, searching for one
4316  // whose type matches exactly.
4317  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4318  bool FoundNonTemplateFunction = false;
4319  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4320    // C++ [over.over]p3:
4321    //   Non-member functions and static member functions match
4322    //   targets of type "pointer-to-function" or "reference-to-function."
4323    //   Nonstatic member functions match targets of
4324    //   type "pointer-to-member-function."
4325    // Note that according to DR 247, the containing class does not matter.
4326
4327    if (FunctionTemplateDecl *FunctionTemplate
4328          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4329      if (CXXMethodDecl *Method
4330            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4331        // Skip non-static function templates when converting to pointer, and
4332        // static when converting to member pointer.
4333        if (Method->isStatic() == IsMember)
4334          continue;
4335      } else if (IsMember)
4336        continue;
4337
4338      // C++ [over.over]p2:
4339      //   If the name is a function template, template argument deduction is
4340      //   done (14.8.2.2), and if the argument deduction succeeds, the
4341      //   resulting template argument list is used to generate a single
4342      //   function template specialization, which is added to the set of
4343      //   overloaded functions considered.
4344      // FIXME: We don't really want to build the specialization here, do we?
4345      FunctionDecl *Specialization = 0;
4346      TemplateDeductionInfo Info(Context);
4347      if (TemplateDeductionResult Result
4348            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
4349                                      /*FIXME:*/0, /*FIXME:*/0,
4350                                      FunctionType, Specialization, Info)) {
4351        // FIXME: make a note of the failed deduction for diagnostics.
4352        (void)Result;
4353      } else {
4354        // FIXME: If the match isn't exact, shouldn't we just drop this as
4355        // a candidate? Find a testcase before changing the code.
4356        assert(FunctionType
4357                 == Context.getCanonicalType(Specialization->getType()));
4358        Matches.insert(
4359                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4360      }
4361    }
4362
4363    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4364      // Skip non-static functions when converting to pointer, and static
4365      // when converting to member pointer.
4366      if (Method->isStatic() == IsMember)
4367        continue;
4368    } else if (IsMember)
4369      continue;
4370
4371    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4372      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4373        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4374        FoundNonTemplateFunction = true;
4375      }
4376    }
4377  }
4378
4379  // If there were 0 or 1 matches, we're done.
4380  if (Matches.empty())
4381    return 0;
4382  else if (Matches.size() == 1) {
4383    FunctionDecl *Result = *Matches.begin();
4384    MarkDeclarationReferenced(From->getLocStart(), Result);
4385    return Result;
4386  }
4387
4388  // C++ [over.over]p4:
4389  //   If more than one function is selected, [...]
4390  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4391  if (!FoundNonTemplateFunction) {
4392    //   [...] and any given function template specialization F1 is
4393    //   eliminated if the set contains a second function template
4394    //   specialization whose function template is more specialized
4395    //   than the function template of F1 according to the partial
4396    //   ordering rules of 14.5.5.2.
4397
4398    // The algorithm specified above is quadratic. We instead use a
4399    // two-pass algorithm (similar to the one used to identify the
4400    // best viable function in an overload set) that identifies the
4401    // best function template (if it exists).
4402    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4403                                                         Matches.end());
4404    FunctionDecl *Result =
4405        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4406                           TPOC_Other, From->getLocStart(),
4407                           PDiag(),
4408                           PDiag(diag::err_addr_ovl_ambiguous)
4409                               << TemplateMatches[0]->getDeclName(),
4410                           PDiag(diag::err_ovl_template_candidate));
4411    MarkDeclarationReferenced(From->getLocStart(), Result);
4412    return Result;
4413  }
4414
4415  //   [...] any function template specializations in the set are
4416  //   eliminated if the set also contains a non-template function, [...]
4417  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4418  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4419    if ((*M)->getPrimaryTemplate() == 0)
4420      RemainingMatches.push_back(*M);
4421
4422  // [...] After such eliminations, if any, there shall remain exactly one
4423  // selected function.
4424  if (RemainingMatches.size() == 1) {
4425    FunctionDecl *Result = RemainingMatches.front();
4426    MarkDeclarationReferenced(From->getLocStart(), Result);
4427    return Result;
4428  }
4429
4430  // FIXME: We should probably return the same thing that BestViableFunction
4431  // returns (even if we issue the diagnostics here).
4432  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4433    << RemainingMatches[0]->getDeclName();
4434  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4435    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4436  return 0;
4437}
4438
4439/// \brief Add a single candidate to the overload set.
4440static void AddOverloadedCallCandidate(Sema &S,
4441                                       AnyFunctionDecl Callee,
4442                                       bool &ArgumentDependentLookup,
4443                                       bool HasExplicitTemplateArgs,
4444                                 const TemplateArgument *ExplicitTemplateArgs,
4445                                       unsigned NumExplicitTemplateArgs,
4446                                       Expr **Args, unsigned NumArgs,
4447                                       OverloadCandidateSet &CandidateSet,
4448                                       bool PartialOverloading) {
4449  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4450    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4451    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4452                           PartialOverloading);
4453
4454    if (Func->getDeclContext()->isRecord() ||
4455        Func->getDeclContext()->isFunctionOrMethod())
4456      ArgumentDependentLookup = false;
4457    return;
4458  }
4459
4460  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4461  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4462                                 ExplicitTemplateArgs,
4463                                 NumExplicitTemplateArgs,
4464                                 Args, NumArgs, CandidateSet);
4465
4466  if (FuncTemplate->getDeclContext()->isRecord())
4467    ArgumentDependentLookup = false;
4468}
4469
4470/// \brief Add the overload candidates named by callee and/or found by argument
4471/// dependent lookup to the given overload set.
4472void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4473                                       DeclarationName &UnqualifiedName,
4474                                       bool &ArgumentDependentLookup,
4475                                       bool HasExplicitTemplateArgs,
4476                                  const TemplateArgument *ExplicitTemplateArgs,
4477                                       unsigned NumExplicitTemplateArgs,
4478                                       Expr **Args, unsigned NumArgs,
4479                                       OverloadCandidateSet &CandidateSet,
4480                                       bool PartialOverloading) {
4481  // Add the functions denoted by Callee to the set of candidate
4482  // functions. While we're doing so, track whether argument-dependent
4483  // lookup still applies, per:
4484  //
4485  // C++0x [basic.lookup.argdep]p3:
4486  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4487  //   and let Y be the lookup set produced by argument dependent
4488  //   lookup (defined as follows). If X contains
4489  //
4490  //     -- a declaration of a class member, or
4491  //
4492  //     -- a block-scope function declaration that is not a
4493  //        using-declaration (FIXME: check for using declaration), or
4494  //
4495  //     -- a declaration that is neither a function or a function
4496  //        template
4497  //
4498  //   then Y is empty.
4499  if (!Callee) {
4500    // Nothing to do.
4501  } else if (OverloadedFunctionDecl *Ovl
4502               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4503    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4504                                                FuncEnd = Ovl->function_end();
4505         Func != FuncEnd; ++Func)
4506      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4507                                 HasExplicitTemplateArgs,
4508                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4509                                 Args, NumArgs, CandidateSet,
4510                                 PartialOverloading);
4511  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4512    AddOverloadedCallCandidate(*this,
4513                               AnyFunctionDecl::getFromNamedDecl(Callee),
4514                               ArgumentDependentLookup,
4515                               HasExplicitTemplateArgs,
4516                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4517                               Args, NumArgs, CandidateSet,
4518                               PartialOverloading);
4519  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4520  // checking dynamically.
4521
4522  if (Callee)
4523    UnqualifiedName = Callee->getDeclName();
4524
4525  if (ArgumentDependentLookup)
4526    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4527                                         HasExplicitTemplateArgs,
4528                                         ExplicitTemplateArgs,
4529                                         NumExplicitTemplateArgs,
4530                                         CandidateSet,
4531                                         PartialOverloading);
4532}
4533
4534/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4535/// (which eventually refers to the declaration Func) and the call
4536/// arguments Args/NumArgs, attempt to resolve the function call down
4537/// to a specific function. If overload resolution succeeds, returns
4538/// the function declaration produced by overload
4539/// resolution. Otherwise, emits diagnostics, deletes all of the
4540/// arguments and Fn, and returns NULL.
4541FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4542                                            DeclarationName UnqualifiedName,
4543                                            bool HasExplicitTemplateArgs,
4544                                 const TemplateArgument *ExplicitTemplateArgs,
4545                                            unsigned NumExplicitTemplateArgs,
4546                                            SourceLocation LParenLoc,
4547                                            Expr **Args, unsigned NumArgs,
4548                                            SourceLocation *CommaLocs,
4549                                            SourceLocation RParenLoc,
4550                                            bool &ArgumentDependentLookup) {
4551  OverloadCandidateSet CandidateSet;
4552
4553  // Add the functions denoted by Callee to the set of candidate
4554  // functions.
4555  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4556                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4557                              NumExplicitTemplateArgs, Args, NumArgs,
4558                              CandidateSet);
4559  OverloadCandidateSet::iterator Best;
4560  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4561  case OR_Success:
4562    return Best->Function;
4563
4564  case OR_No_Viable_Function:
4565    Diag(Fn->getSourceRange().getBegin(),
4566         diag::err_ovl_no_viable_function_in_call)
4567      << UnqualifiedName << Fn->getSourceRange();
4568    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4569    break;
4570
4571  case OR_Ambiguous:
4572    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4573      << UnqualifiedName << Fn->getSourceRange();
4574    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4575    break;
4576
4577  case OR_Deleted:
4578    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4579      << Best->Function->isDeleted()
4580      << UnqualifiedName
4581      << Fn->getSourceRange();
4582    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4583    break;
4584  }
4585
4586  // Overload resolution failed. Destroy all of the subexpressions and
4587  // return NULL.
4588  Fn->Destroy(Context);
4589  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4590    Args[Arg]->Destroy(Context);
4591  return 0;
4592}
4593
4594/// \brief Create a unary operation that may resolve to an overloaded
4595/// operator.
4596///
4597/// \param OpLoc The location of the operator itself (e.g., '*').
4598///
4599/// \param OpcIn The UnaryOperator::Opcode that describes this
4600/// operator.
4601///
4602/// \param Functions The set of non-member functions that will be
4603/// considered by overload resolution. The caller needs to build this
4604/// set based on the context using, e.g.,
4605/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4606/// set should not contain any member functions; those will be added
4607/// by CreateOverloadedUnaryOp().
4608///
4609/// \param input The input argument.
4610Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4611                                                     unsigned OpcIn,
4612                                                     FunctionSet &Functions,
4613                                                     ExprArg input) {
4614  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4615  Expr *Input = (Expr *)input.get();
4616
4617  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4618  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4619  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4620
4621  Expr *Args[2] = { Input, 0 };
4622  unsigned NumArgs = 1;
4623
4624  // For post-increment and post-decrement, add the implicit '0' as
4625  // the second argument, so that we know this is a post-increment or
4626  // post-decrement.
4627  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4628    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4629    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4630                                           SourceLocation());
4631    NumArgs = 2;
4632  }
4633
4634  if (Input->isTypeDependent()) {
4635    OverloadedFunctionDecl *Overloads
4636      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4637    for (FunctionSet::iterator Func = Functions.begin(),
4638                            FuncEnd = Functions.end();
4639         Func != FuncEnd; ++Func)
4640      Overloads->addOverload(*Func);
4641
4642    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4643                                                OpLoc, false, false);
4644
4645    input.release();
4646    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4647                                                   &Args[0], NumArgs,
4648                                                   Context.DependentTy,
4649                                                   OpLoc));
4650  }
4651
4652  // Build an empty overload set.
4653  OverloadCandidateSet CandidateSet;
4654
4655  // Add the candidates from the given function set.
4656  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4657
4658  // Add operator candidates that are member functions.
4659  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4660
4661  // Add builtin operator candidates.
4662  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4663
4664  // Perform overload resolution.
4665  OverloadCandidateSet::iterator Best;
4666  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4667  case OR_Success: {
4668    // We found a built-in operator or an overloaded operator.
4669    FunctionDecl *FnDecl = Best->Function;
4670
4671    if (FnDecl) {
4672      // We matched an overloaded operator. Build a call to that
4673      // operator.
4674
4675      // Convert the arguments.
4676      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4677        if (PerformObjectArgumentInitialization(Input, Method))
4678          return ExprError();
4679      } else {
4680        // Convert the arguments.
4681        if (PerformCopyInitialization(Input,
4682                                      FnDecl->getParamDecl(0)->getType(),
4683                                      "passing"))
4684          return ExprError();
4685      }
4686
4687      // Determine the result type
4688      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4689
4690      // Build the actual expression node.
4691      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4692                                               SourceLocation());
4693      UsualUnaryConversions(FnExpr);
4694
4695      input.release();
4696
4697      ExprOwningPtr<CallExpr> TheCall(this,
4698        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4699                                          &Input, 1, ResultTy, OpLoc));
4700
4701      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4702                              FnDecl))
4703        return ExprError();
4704
4705      return MaybeBindToTemporary(TheCall.release());
4706    } else {
4707      // We matched a built-in operator. Convert the arguments, then
4708      // break out so that we will build the appropriate built-in
4709      // operator node.
4710        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4711                                      Best->Conversions[0], "passing"))
4712          return ExprError();
4713
4714        break;
4715      }
4716    }
4717
4718    case OR_No_Viable_Function:
4719      // No viable function; fall through to handling this as a
4720      // built-in operator, which will produce an error message for us.
4721      break;
4722
4723    case OR_Ambiguous:
4724      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4725          << UnaryOperator::getOpcodeStr(Opc)
4726          << Input->getSourceRange();
4727      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4728                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4729      return ExprError();
4730
4731    case OR_Deleted:
4732      Diag(OpLoc, diag::err_ovl_deleted_oper)
4733        << Best->Function->isDeleted()
4734        << UnaryOperator::getOpcodeStr(Opc)
4735        << Input->getSourceRange();
4736      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4737      return ExprError();
4738    }
4739
4740  // Either we found no viable overloaded operator or we matched a
4741  // built-in operator. In either case, fall through to trying to
4742  // build a built-in operation.
4743  input.release();
4744  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4745}
4746
4747/// \brief Create a binary operation that may resolve to an overloaded
4748/// operator.
4749///
4750/// \param OpLoc The location of the operator itself (e.g., '+').
4751///
4752/// \param OpcIn The BinaryOperator::Opcode that describes this
4753/// operator.
4754///
4755/// \param Functions The set of non-member functions that will be
4756/// considered by overload resolution. The caller needs to build this
4757/// set based on the context using, e.g.,
4758/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4759/// set should not contain any member functions; those will be added
4760/// by CreateOverloadedBinOp().
4761///
4762/// \param LHS Left-hand argument.
4763/// \param RHS Right-hand argument.
4764Sema::OwningExprResult
4765Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4766                            unsigned OpcIn,
4767                            FunctionSet &Functions,
4768                            Expr *LHS, Expr *RHS) {
4769  Expr *Args[2] = { LHS, RHS };
4770  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4771
4772  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4773  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4774  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4775
4776  // If either side is type-dependent, create an appropriate dependent
4777  // expression.
4778  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4779    // .* cannot be overloaded.
4780    if (Opc == BinaryOperator::PtrMemD)
4781      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4782                                                Context.DependentTy, OpLoc));
4783
4784    OverloadedFunctionDecl *Overloads
4785      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4786    for (FunctionSet::iterator Func = Functions.begin(),
4787                            FuncEnd = Functions.end();
4788         Func != FuncEnd; ++Func)
4789      Overloads->addOverload(*Func);
4790
4791    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4792                                                OpLoc, false, false);
4793
4794    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4795                                                   Args, 2,
4796                                                   Context.DependentTy,
4797                                                   OpLoc));
4798  }
4799
4800  // If this is the .* operator, which is not overloadable, just
4801  // create a built-in binary operator.
4802  if (Opc == BinaryOperator::PtrMemD)
4803    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4804
4805  // If this is one of the assignment operators, we only perform
4806  // overload resolution if the left-hand side is a class or
4807  // enumeration type (C++ [expr.ass]p3).
4808  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4809      !Args[0]->getType()->isOverloadableType())
4810    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4811
4812  // Build an empty overload set.
4813  OverloadCandidateSet CandidateSet;
4814
4815  // Add the candidates from the given function set.
4816  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4817
4818  // Add operator candidates that are member functions.
4819  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4820
4821  // Add builtin operator candidates.
4822  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4823
4824  // Perform overload resolution.
4825  OverloadCandidateSet::iterator Best;
4826  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4827    case OR_Success: {
4828      // We found a built-in operator or an overloaded operator.
4829      FunctionDecl *FnDecl = Best->Function;
4830
4831      if (FnDecl) {
4832        // We matched an overloaded operator. Build a call to that
4833        // operator.
4834
4835        // Convert the arguments.
4836        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4837          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4838              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4839                                        "passing"))
4840            return ExprError();
4841        } else {
4842          // Convert the arguments.
4843          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4844                                        "passing") ||
4845              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4846                                        "passing"))
4847            return ExprError();
4848        }
4849
4850        // Determine the result type
4851        QualType ResultTy
4852          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4853        ResultTy = ResultTy.getNonReferenceType();
4854
4855        // Build the actual expression node.
4856        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4857                                                 OpLoc);
4858        UsualUnaryConversions(FnExpr);
4859
4860        ExprOwningPtr<CXXOperatorCallExpr>
4861          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4862                                                          Args, 2, ResultTy,
4863                                                          OpLoc));
4864
4865        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4866                                FnDecl))
4867          return ExprError();
4868
4869        return MaybeBindToTemporary(TheCall.release());
4870      } else {
4871        // We matched a built-in operator. Convert the arguments, then
4872        // break out so that we will build the appropriate built-in
4873        // operator node.
4874        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4875                                      Best->Conversions[0], "passing") ||
4876            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4877                                      Best->Conversions[1], "passing"))
4878          return ExprError();
4879
4880        break;
4881      }
4882    }
4883
4884    case OR_No_Viable_Function: {
4885      // C++ [over.match.oper]p9:
4886      //   If the operator is the operator , [...] and there are no
4887      //   viable functions, then the operator is assumed to be the
4888      //   built-in operator and interpreted according to clause 5.
4889      if (Opc == BinaryOperator::Comma)
4890        break;
4891
4892      // For class as left operand for assignment or compound assigment operator
4893      // do not fall through to handling in built-in, but report that no overloaded
4894      // assignment operator found
4895      OwningExprResult Result = ExprError();
4896      if (Args[0]->getType()->isRecordType() &&
4897          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4898        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4899             << BinaryOperator::getOpcodeStr(Opc)
4900             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4901      } else {
4902        // No viable function; try to create a built-in operation, which will
4903        // produce an error. Then, show the non-viable candidates.
4904        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4905      }
4906      assert(Result.isInvalid() &&
4907             "C++ binary operator overloading is missing candidates!");
4908      if (Result.isInvalid())
4909        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4910                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4911      return move(Result);
4912    }
4913
4914    case OR_Ambiguous:
4915      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4916          << BinaryOperator::getOpcodeStr(Opc)
4917          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4918      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4919                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4920      return ExprError();
4921
4922    case OR_Deleted:
4923      Diag(OpLoc, diag::err_ovl_deleted_oper)
4924        << Best->Function->isDeleted()
4925        << BinaryOperator::getOpcodeStr(Opc)
4926        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4927      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4928      return ExprError();
4929    }
4930
4931  // We matched a built-in operator; build it.
4932  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4933}
4934
4935/// BuildCallToMemberFunction - Build a call to a member
4936/// function. MemExpr is the expression that refers to the member
4937/// function (and includes the object parameter), Args/NumArgs are the
4938/// arguments to the function call (not including the object
4939/// parameter). The caller needs to validate that the member
4940/// expression refers to a member function or an overloaded member
4941/// function.
4942Sema::ExprResult
4943Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4944                                SourceLocation LParenLoc, Expr **Args,
4945                                unsigned NumArgs, SourceLocation *CommaLocs,
4946                                SourceLocation RParenLoc) {
4947  // Dig out the member expression. This holds both the object
4948  // argument and the member function we're referring to.
4949  MemberExpr *MemExpr = 0;
4950  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4951    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4952  else
4953    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4954  assert(MemExpr && "Building member call without member expression");
4955
4956  // Extract the object argument.
4957  Expr *ObjectArg = MemExpr->getBase();
4958
4959  CXXMethodDecl *Method = 0;
4960  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4961      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4962    // Add overload candidates
4963    OverloadCandidateSet CandidateSet;
4964    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4965
4966    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4967         Func != FuncEnd; ++Func) {
4968      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4969        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4970                           /*SuppressUserConversions=*/false);
4971      else
4972        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4973                                   MemExpr->hasExplicitTemplateArgumentList(),
4974                                   MemExpr->getTemplateArgs(),
4975                                   MemExpr->getNumTemplateArgs(),
4976                                   ObjectArg, Args, NumArgs,
4977                                   CandidateSet,
4978                                   /*SuppressUsedConversions=*/false);
4979    }
4980
4981    OverloadCandidateSet::iterator Best;
4982    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4983    case OR_Success:
4984      Method = cast<CXXMethodDecl>(Best->Function);
4985      break;
4986
4987    case OR_No_Viable_Function:
4988      Diag(MemExpr->getSourceRange().getBegin(),
4989           diag::err_ovl_no_viable_member_function_in_call)
4990        << DeclName << MemExprE->getSourceRange();
4991      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4992      // FIXME: Leaking incoming expressions!
4993      return true;
4994
4995    case OR_Ambiguous:
4996      Diag(MemExpr->getSourceRange().getBegin(),
4997           diag::err_ovl_ambiguous_member_call)
4998        << DeclName << MemExprE->getSourceRange();
4999      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5000      // FIXME: Leaking incoming expressions!
5001      return true;
5002
5003    case OR_Deleted:
5004      Diag(MemExpr->getSourceRange().getBegin(),
5005           diag::err_ovl_deleted_member_call)
5006        << Best->Function->isDeleted()
5007        << DeclName << MemExprE->getSourceRange();
5008      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5009      // FIXME: Leaking incoming expressions!
5010      return true;
5011    }
5012
5013    FixOverloadedFunctionReference(MemExpr, Method);
5014  } else {
5015    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5016  }
5017
5018  assert(Method && "Member call to something that isn't a method?");
5019  ExprOwningPtr<CXXMemberCallExpr>
5020    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5021                                                  NumArgs,
5022                                  Method->getResultType().getNonReferenceType(),
5023                                  RParenLoc));
5024
5025  // Check for a valid return type.
5026  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5027                          TheCall.get(), Method))
5028    return true;
5029
5030  // Convert the object argument (for a non-static member function call).
5031  if (!Method->isStatic() &&
5032      PerformObjectArgumentInitialization(ObjectArg, Method))
5033    return true;
5034  MemExpr->setBase(ObjectArg);
5035
5036  // Convert the rest of the arguments
5037  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5038  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5039                              RParenLoc))
5040    return true;
5041
5042  if (CheckFunctionCall(Method, TheCall.get()))
5043    return true;
5044
5045  return MaybeBindToTemporary(TheCall.release()).release();
5046}
5047
5048/// BuildCallToObjectOfClassType - Build a call to an object of class
5049/// type (C++ [over.call.object]), which can end up invoking an
5050/// overloaded function call operator (@c operator()) or performing a
5051/// user-defined conversion on the object argument.
5052Sema::ExprResult
5053Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5054                                   SourceLocation LParenLoc,
5055                                   Expr **Args, unsigned NumArgs,
5056                                   SourceLocation *CommaLocs,
5057                                   SourceLocation RParenLoc) {
5058  assert(Object->getType()->isRecordType() && "Requires object type argument");
5059  const RecordType *Record = Object->getType()->getAs<RecordType>();
5060
5061  // C++ [over.call.object]p1:
5062  //  If the primary-expression E in the function call syntax
5063  //  evaluates to a class object of type "cv T", then the set of
5064  //  candidate functions includes at least the function call
5065  //  operators of T. The function call operators of T are obtained by
5066  //  ordinary lookup of the name operator() in the context of
5067  //  (E).operator().
5068  OverloadCandidateSet CandidateSet;
5069  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5070  DeclContext::lookup_const_iterator Oper, OperEnd;
5071  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
5072       Oper != OperEnd; ++Oper)
5073    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
5074                       CandidateSet, /*SuppressUserConversions=*/false);
5075
5076  // C++ [over.call.object]p2:
5077  //   In addition, for each conversion function declared in T of the
5078  //   form
5079  //
5080  //        operator conversion-type-id () cv-qualifier;
5081  //
5082  //   where cv-qualifier is the same cv-qualification as, or a
5083  //   greater cv-qualification than, cv, and where conversion-type-id
5084  //   denotes the type "pointer to function of (P1,...,Pn) returning
5085  //   R", or the type "reference to pointer to function of
5086  //   (P1,...,Pn) returning R", or the type "reference to function
5087  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5088  //   is also considered as a candidate function. Similarly,
5089  //   surrogate call functions are added to the set of candidate
5090  //   functions for each conversion function declared in an
5091  //   accessible base class provided the function is not hidden
5092  //   within T by another intervening declaration.
5093
5094  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
5095    // FIXME: Look in base classes for more conversion operators!
5096    OverloadedFunctionDecl *Conversions
5097      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5098    for (OverloadedFunctionDecl::function_iterator
5099           Func = Conversions->function_begin(),
5100           FuncEnd = Conversions->function_end();
5101         Func != FuncEnd; ++Func) {
5102      CXXConversionDecl *Conv;
5103      FunctionTemplateDecl *ConvTemplate;
5104      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
5105
5106      // Skip over templated conversion functions; they aren't
5107      // surrogates.
5108      if (ConvTemplate)
5109        continue;
5110
5111      // Strip the reference type (if any) and then the pointer type (if
5112      // any) to get down to what might be a function type.
5113      QualType ConvType = Conv->getConversionType().getNonReferenceType();
5114      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5115        ConvType = ConvPtrType->getPointeeType();
5116
5117      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5118        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5119    }
5120  }
5121
5122  // Perform overload resolution.
5123  OverloadCandidateSet::iterator Best;
5124  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5125  case OR_Success:
5126    // Overload resolution succeeded; we'll build the appropriate call
5127    // below.
5128    break;
5129
5130  case OR_No_Viable_Function:
5131    Diag(Object->getSourceRange().getBegin(),
5132         diag::err_ovl_no_viable_object_call)
5133      << Object->getType() << Object->getSourceRange();
5134    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5135    break;
5136
5137  case OR_Ambiguous:
5138    Diag(Object->getSourceRange().getBegin(),
5139         diag::err_ovl_ambiguous_object_call)
5140      << Object->getType() << Object->getSourceRange();
5141    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5142    break;
5143
5144  case OR_Deleted:
5145    Diag(Object->getSourceRange().getBegin(),
5146         diag::err_ovl_deleted_object_call)
5147      << Best->Function->isDeleted()
5148      << Object->getType() << Object->getSourceRange();
5149    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5150    break;
5151  }
5152
5153  if (Best == CandidateSet.end()) {
5154    // We had an error; delete all of the subexpressions and return
5155    // the error.
5156    Object->Destroy(Context);
5157    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5158      Args[ArgIdx]->Destroy(Context);
5159    return true;
5160  }
5161
5162  if (Best->Function == 0) {
5163    // Since there is no function declaration, this is one of the
5164    // surrogate candidates. Dig out the conversion function.
5165    CXXConversionDecl *Conv
5166      = cast<CXXConversionDecl>(
5167                         Best->Conversions[0].UserDefined.ConversionFunction);
5168
5169    // We selected one of the surrogate functions that converts the
5170    // object parameter to a function pointer. Perform the conversion
5171    // on the object argument, then let ActOnCallExpr finish the job.
5172
5173    // Create an implicit member expr to refer to the conversion operator.
5174    // and then call it.
5175    CXXMemberCallExpr *CE =
5176    BuildCXXMemberCallExpr(Object, Conv);
5177
5178    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5179                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5180                         CommaLocs, RParenLoc).release();
5181  }
5182
5183  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5184  // that calls this method, using Object for the implicit object
5185  // parameter and passing along the remaining arguments.
5186  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5187  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5188
5189  unsigned NumArgsInProto = Proto->getNumArgs();
5190  unsigned NumArgsToCheck = NumArgs;
5191
5192  // Build the full argument list for the method call (the
5193  // implicit object parameter is placed at the beginning of the
5194  // list).
5195  Expr **MethodArgs;
5196  if (NumArgs < NumArgsInProto) {
5197    NumArgsToCheck = NumArgsInProto;
5198    MethodArgs = new Expr*[NumArgsInProto + 1];
5199  } else {
5200    MethodArgs = new Expr*[NumArgs + 1];
5201  }
5202  MethodArgs[0] = Object;
5203  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5204    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5205
5206  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5207                                          SourceLocation());
5208  UsualUnaryConversions(NewFn);
5209
5210  // Once we've built TheCall, all of the expressions are properly
5211  // owned.
5212  QualType ResultTy = Method->getResultType().getNonReferenceType();
5213  ExprOwningPtr<CXXOperatorCallExpr>
5214    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5215                                                    MethodArgs, NumArgs + 1,
5216                                                    ResultTy, RParenLoc));
5217  delete [] MethodArgs;
5218
5219  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5220                          Method))
5221    return true;
5222
5223  // We may have default arguments. If so, we need to allocate more
5224  // slots in the call for them.
5225  if (NumArgs < NumArgsInProto)
5226    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5227  else if (NumArgs > NumArgsInProto)
5228    NumArgsToCheck = NumArgsInProto;
5229
5230  bool IsError = false;
5231
5232  // Initialize the implicit object parameter.
5233  IsError |= PerformObjectArgumentInitialization(Object, Method);
5234  TheCall->setArg(0, Object);
5235
5236
5237  // Check the argument types.
5238  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5239    Expr *Arg;
5240    if (i < NumArgs) {
5241      Arg = Args[i];
5242
5243      // Pass the argument.
5244      QualType ProtoArgType = Proto->getArgType(i);
5245      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5246    } else {
5247      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
5248    }
5249
5250    TheCall->setArg(i + 1, Arg);
5251  }
5252
5253  // If this is a variadic call, handle args passed through "...".
5254  if (Proto->isVariadic()) {
5255    // Promote the arguments (C99 6.5.2.2p7).
5256    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5257      Expr *Arg = Args[i];
5258      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5259      TheCall->setArg(i + 1, Arg);
5260    }
5261  }
5262
5263  if (IsError) return true;
5264
5265  if (CheckFunctionCall(Method, TheCall.get()))
5266    return true;
5267
5268  return MaybeBindToTemporary(TheCall.release()).release();
5269}
5270
5271/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5272///  (if one exists), where @c Base is an expression of class type and
5273/// @c Member is the name of the member we're trying to find.
5274Sema::OwningExprResult
5275Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5276  Expr *Base = static_cast<Expr *>(BaseIn.get());
5277  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5278
5279  // C++ [over.ref]p1:
5280  //
5281  //   [...] An expression x->m is interpreted as (x.operator->())->m
5282  //   for a class object x of type T if T::operator->() exists and if
5283  //   the operator is selected as the best match function by the
5284  //   overload resolution mechanism (13.3).
5285  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5286  OverloadCandidateSet CandidateSet;
5287  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5288
5289  LookupResult R;
5290  LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName);
5291
5292  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5293       Oper != OperEnd; ++Oper)
5294    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5295                       /*SuppressUserConversions=*/false);
5296
5297  // Perform overload resolution.
5298  OverloadCandidateSet::iterator Best;
5299  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5300  case OR_Success:
5301    // Overload resolution succeeded; we'll build the call below.
5302    break;
5303
5304  case OR_No_Viable_Function:
5305    if (CandidateSet.empty())
5306      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5307        << Base->getType() << Base->getSourceRange();
5308    else
5309      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5310        << "operator->" << Base->getSourceRange();
5311    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5312    return ExprError();
5313
5314  case OR_Ambiguous:
5315    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5316      << "->" << Base->getSourceRange();
5317    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5318    return ExprError();
5319
5320  case OR_Deleted:
5321    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5322      << Best->Function->isDeleted()
5323      << "->" << Base->getSourceRange();
5324    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5325    return ExprError();
5326  }
5327
5328  // Convert the object parameter.
5329  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5330  if (PerformObjectArgumentInitialization(Base, Method))
5331    return ExprError();
5332
5333  // No concerns about early exits now.
5334  BaseIn.release();
5335
5336  // Build the operator call.
5337  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5338                                           SourceLocation());
5339  UsualUnaryConversions(FnExpr);
5340
5341  QualType ResultTy = Method->getResultType().getNonReferenceType();
5342  ExprOwningPtr<CXXOperatorCallExpr>
5343    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5344                                                    &Base, 1, ResultTy, OpLoc));
5345
5346  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5347                          Method))
5348          return ExprError();
5349  return move(TheCall);
5350}
5351
5352/// FixOverloadedFunctionReference - E is an expression that refers to
5353/// a C++ overloaded function (possibly with some parentheses and
5354/// perhaps a '&' around it). We have resolved the overloaded function
5355/// to the function declaration Fn, so patch up the expression E to
5356/// refer (possibly indirectly) to Fn.
5357/// Returns true if the function reference used an explicit address-of operator.
5358bool Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5359  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5360    bool ret = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5361    E->setType(PE->getSubExpr()->getType());
5362    return ret;
5363  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5364    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5365           "Can only take the address of an overloaded function");
5366    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5367      if (Method->isStatic()) {
5368        // Do nothing: static member functions aren't any different
5369        // from non-member functions.
5370      } else if (QualifiedDeclRefExpr *DRE
5371                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
5372        // We have taken the address of a pointer to member
5373        // function. Perform the computation here so that we get the
5374        // appropriate pointer to member type.
5375        DRE->setDecl(Fn);
5376        DRE->setType(Fn->getType());
5377        QualType ClassType
5378          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5379        E->setType(Context.getMemberPointerType(Fn->getType(),
5380                                                ClassType.getTypePtr()));
5381        return true;
5382      }
5383    }
5384    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5385    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
5386    return true;
5387  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5388    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5389            isa<FunctionTemplateDecl>(DR->getDecl())) &&
5390           "Expected overloaded function or function template");
5391    DR->setDecl(Fn);
5392    E->setType(Fn->getType());
5393  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5394    MemExpr->setMemberDecl(Fn);
5395    E->setType(Fn->getType());
5396  } else {
5397    assert(false && "Invalid reference to overloaded function");
5398  }
5399  return false;
5400}
5401
5402} // end namespace clang
5403