SemaOverload.cpp revision 621c92a582546e2fa5ae28cf8b7e14d5a60fab11
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation()) {
42  ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc));
43  E = S.DefaultFunctionArrayConversion(E.take());
44  if (E.isInvalid())
45    return ExprError();
46  return move(E);
47}
48
49static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
50                                 bool InOverloadResolution,
51                                 StandardConversionSequence &SCS,
52                                 bool CStyle);
53
54static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
55                                                 QualType &ToType,
56                                                 bool InOverloadResolution,
57                                                 StandardConversionSequence &SCS,
58                                                 bool CStyle);
59static OverloadingResult
60IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
61                        UserDefinedConversionSequence& User,
62                        OverloadCandidateSet& Conversions,
63                        bool AllowExplicit);
64
65
66static ImplicitConversionSequence::CompareKind
67CompareStandardConversionSequences(Sema &S,
68                                   const StandardConversionSequence& SCS1,
69                                   const StandardConversionSequence& SCS2);
70
71static ImplicitConversionSequence::CompareKind
72CompareQualificationConversions(Sema &S,
73                                const StandardConversionSequence& SCS1,
74                                const StandardConversionSequence& SCS2);
75
76static ImplicitConversionSequence::CompareKind
77CompareDerivedToBaseConversions(Sema &S,
78                                const StandardConversionSequence& SCS1,
79                                const StandardConversionSequence& SCS2);
80
81
82
83/// GetConversionCategory - Retrieve the implicit conversion
84/// category corresponding to the given implicit conversion kind.
85ImplicitConversionCategory
86GetConversionCategory(ImplicitConversionKind Kind) {
87  static const ImplicitConversionCategory
88    Category[(int)ICK_Num_Conversion_Kinds] = {
89    ICC_Identity,
90    ICC_Lvalue_Transformation,
91    ICC_Lvalue_Transformation,
92    ICC_Lvalue_Transformation,
93    ICC_Identity,
94    ICC_Qualification_Adjustment,
95    ICC_Promotion,
96    ICC_Promotion,
97    ICC_Promotion,
98    ICC_Conversion,
99    ICC_Conversion,
100    ICC_Conversion,
101    ICC_Conversion,
102    ICC_Conversion,
103    ICC_Conversion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion
110  };
111  return Category[(int)Kind];
112}
113
114/// GetConversionRank - Retrieve the implicit conversion rank
115/// corresponding to the given implicit conversion kind.
116ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
117  static const ImplicitConversionRank
118    Rank[(int)ICK_Num_Conversion_Kinds] = {
119    ICR_Exact_Match,
120    ICR_Exact_Match,
121    ICR_Exact_Match,
122    ICR_Exact_Match,
123    ICR_Exact_Match,
124    ICR_Exact_Match,
125    ICR_Promotion,
126    ICR_Promotion,
127    ICR_Promotion,
128    ICR_Conversion,
129    ICR_Conversion,
130    ICR_Conversion,
131    ICR_Conversion,
132    ICR_Conversion,
133    ICR_Conversion,
134    ICR_Conversion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Complex_Real_Conversion,
140    ICR_Conversion,
141    ICR_Conversion
142  };
143  return Rank[(int)Kind];
144}
145
146/// GetImplicitConversionName - Return the name of this kind of
147/// implicit conversion.
148const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
149  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
150    "No conversion",
151    "Lvalue-to-rvalue",
152    "Array-to-pointer",
153    "Function-to-pointer",
154    "Noreturn adjustment",
155    "Qualification",
156    "Integral promotion",
157    "Floating point promotion",
158    "Complex promotion",
159    "Integral conversion",
160    "Floating conversion",
161    "Complex conversion",
162    "Floating-integral conversion",
163    "Pointer conversion",
164    "Pointer-to-member conversion",
165    "Boolean conversion",
166    "Compatible-types conversion",
167    "Derived-to-base conversion",
168    "Vector conversion",
169    "Vector splat",
170    "Complex-real conversion",
171    "Block Pointer conversion",
172    "Transparent Union Conversion"
173  };
174  return Name[Kind];
175}
176
177/// StandardConversionSequence - Set the standard conversion
178/// sequence to the identity conversion.
179void StandardConversionSequence::setAsIdentityConversion() {
180  First = ICK_Identity;
181  Second = ICK_Identity;
182  Third = ICK_Identity;
183  DeprecatedStringLiteralToCharPtr = false;
184  ReferenceBinding = false;
185  DirectBinding = false;
186  IsLvalueReference = true;
187  BindsToFunctionLvalue = false;
188  BindsToRvalue = false;
189  BindsImplicitObjectArgumentWithoutRefQualifier = false;
190  CopyConstructor = 0;
191}
192
193/// getRank - Retrieve the rank of this standard conversion sequence
194/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
195/// implicit conversions.
196ImplicitConversionRank StandardConversionSequence::getRank() const {
197  ImplicitConversionRank Rank = ICR_Exact_Match;
198  if  (GetConversionRank(First) > Rank)
199    Rank = GetConversionRank(First);
200  if  (GetConversionRank(Second) > Rank)
201    Rank = GetConversionRank(Second);
202  if  (GetConversionRank(Third) > Rank)
203    Rank = GetConversionRank(Third);
204  return Rank;
205}
206
207/// isPointerConversionToBool - Determines whether this conversion is
208/// a conversion of a pointer or pointer-to-member to bool. This is
209/// used as part of the ranking of standard conversion sequences
210/// (C++ 13.3.3.2p4).
211bool StandardConversionSequence::isPointerConversionToBool() const {
212  // Note that FromType has not necessarily been transformed by the
213  // array-to-pointer or function-to-pointer implicit conversions, so
214  // check for their presence as well as checking whether FromType is
215  // a pointer.
216  if (getToType(1)->isBooleanType() &&
217      (getFromType()->isPointerType() ||
218       getFromType()->isObjCObjectPointerType() ||
219       getFromType()->isBlockPointerType() ||
220       getFromType()->isNullPtrType() ||
221       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
222    return true;
223
224  return false;
225}
226
227/// isPointerConversionToVoidPointer - Determines whether this
228/// conversion is a conversion of a pointer to a void pointer. This is
229/// used as part of the ranking of standard conversion sequences (C++
230/// 13.3.3.2p4).
231bool
232StandardConversionSequence::
233isPointerConversionToVoidPointer(ASTContext& Context) const {
234  QualType FromType = getFromType();
235  QualType ToType = getToType(1);
236
237  // Note that FromType has not necessarily been transformed by the
238  // array-to-pointer implicit conversion, so check for its presence
239  // and redo the conversion to get a pointer.
240  if (First == ICK_Array_To_Pointer)
241    FromType = Context.getArrayDecayedType(FromType);
242
243  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
244    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
245      return ToPtrType->getPointeeType()->isVoidType();
246
247  return false;
248}
249
250/// DebugPrint - Print this standard conversion sequence to standard
251/// error. Useful for debugging overloading issues.
252void StandardConversionSequence::DebugPrint() const {
253  llvm::raw_ostream &OS = llvm::errs();
254  bool PrintedSomething = false;
255  if (First != ICK_Identity) {
256    OS << GetImplicitConversionName(First);
257    PrintedSomething = true;
258  }
259
260  if (Second != ICK_Identity) {
261    if (PrintedSomething) {
262      OS << " -> ";
263    }
264    OS << GetImplicitConversionName(Second);
265
266    if (CopyConstructor) {
267      OS << " (by copy constructor)";
268    } else if (DirectBinding) {
269      OS << " (direct reference binding)";
270    } else if (ReferenceBinding) {
271      OS << " (reference binding)";
272    }
273    PrintedSomething = true;
274  }
275
276  if (Third != ICK_Identity) {
277    if (PrintedSomething) {
278      OS << " -> ";
279    }
280    OS << GetImplicitConversionName(Third);
281    PrintedSomething = true;
282  }
283
284  if (!PrintedSomething) {
285    OS << "No conversions required";
286  }
287}
288
289/// DebugPrint - Print this user-defined conversion sequence to standard
290/// error. Useful for debugging overloading issues.
291void UserDefinedConversionSequence::DebugPrint() const {
292  llvm::raw_ostream &OS = llvm::errs();
293  if (Before.First || Before.Second || Before.Third) {
294    Before.DebugPrint();
295    OS << " -> ";
296  }
297  OS << '\'' << ConversionFunction << '\'';
298  if (After.First || After.Second || After.Third) {
299    OS << " -> ";
300    After.DebugPrint();
301  }
302}
303
304/// DebugPrint - Print this implicit conversion sequence to standard
305/// error. Useful for debugging overloading issues.
306void ImplicitConversionSequence::DebugPrint() const {
307  llvm::raw_ostream &OS = llvm::errs();
308  switch (ConversionKind) {
309  case StandardConversion:
310    OS << "Standard conversion: ";
311    Standard.DebugPrint();
312    break;
313  case UserDefinedConversion:
314    OS << "User-defined conversion: ";
315    UserDefined.DebugPrint();
316    break;
317  case EllipsisConversion:
318    OS << "Ellipsis conversion";
319    break;
320  case AmbiguousConversion:
321    OS << "Ambiguous conversion";
322    break;
323  case BadConversion:
324    OS << "Bad conversion";
325    break;
326  }
327
328  OS << "\n";
329}
330
331void AmbiguousConversionSequence::construct() {
332  new (&conversions()) ConversionSet();
333}
334
335void AmbiguousConversionSequence::destruct() {
336  conversions().~ConversionSet();
337}
338
339void
340AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
341  FromTypePtr = O.FromTypePtr;
342  ToTypePtr = O.ToTypePtr;
343  new (&conversions()) ConversionSet(O.conversions());
344}
345
346namespace {
347  // Structure used by OverloadCandidate::DeductionFailureInfo to store
348  // template parameter and template argument information.
349  struct DFIParamWithArguments {
350    TemplateParameter Param;
351    TemplateArgument FirstArg;
352    TemplateArgument SecondArg;
353  };
354}
355
356/// \brief Convert from Sema's representation of template deduction information
357/// to the form used in overload-candidate information.
358OverloadCandidate::DeductionFailureInfo
359static MakeDeductionFailureInfo(ASTContext &Context,
360                                Sema::TemplateDeductionResult TDK,
361                                TemplateDeductionInfo &Info) {
362  OverloadCandidate::DeductionFailureInfo Result;
363  Result.Result = static_cast<unsigned>(TDK);
364  Result.Data = 0;
365  switch (TDK) {
366  case Sema::TDK_Success:
367  case Sema::TDK_InstantiationDepth:
368  case Sema::TDK_TooManyArguments:
369  case Sema::TDK_TooFewArguments:
370    break;
371
372  case Sema::TDK_Incomplete:
373  case Sema::TDK_InvalidExplicitArguments:
374    Result.Data = Info.Param.getOpaqueValue();
375    break;
376
377  case Sema::TDK_Inconsistent:
378  case Sema::TDK_Underqualified: {
379    // FIXME: Should allocate from normal heap so that we can free this later.
380    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
381    Saved->Param = Info.Param;
382    Saved->FirstArg = Info.FirstArg;
383    Saved->SecondArg = Info.SecondArg;
384    Result.Data = Saved;
385    break;
386  }
387
388  case Sema::TDK_SubstitutionFailure:
389    Result.Data = Info.take();
390    break;
391
392  case Sema::TDK_NonDeducedMismatch:
393  case Sema::TDK_FailedOverloadResolution:
394    break;
395  }
396
397  return Result;
398}
399
400void OverloadCandidate::DeductionFailureInfo::Destroy() {
401  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
402  case Sema::TDK_Success:
403  case Sema::TDK_InstantiationDepth:
404  case Sema::TDK_Incomplete:
405  case Sema::TDK_TooManyArguments:
406  case Sema::TDK_TooFewArguments:
407  case Sema::TDK_InvalidExplicitArguments:
408    break;
409
410  case Sema::TDK_Inconsistent:
411  case Sema::TDK_Underqualified:
412    // FIXME: Destroy the data?
413    Data = 0;
414    break;
415
416  case Sema::TDK_SubstitutionFailure:
417    // FIXME: Destroy the template arugment list?
418    Data = 0;
419    break;
420
421  // Unhandled
422  case Sema::TDK_NonDeducedMismatch:
423  case Sema::TDK_FailedOverloadResolution:
424    break;
425  }
426}
427
428TemplateParameter
429OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
430  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
431  case Sema::TDK_Success:
432  case Sema::TDK_InstantiationDepth:
433  case Sema::TDK_TooManyArguments:
434  case Sema::TDK_TooFewArguments:
435  case Sema::TDK_SubstitutionFailure:
436    return TemplateParameter();
437
438  case Sema::TDK_Incomplete:
439  case Sema::TDK_InvalidExplicitArguments:
440    return TemplateParameter::getFromOpaqueValue(Data);
441
442  case Sema::TDK_Inconsistent:
443  case Sema::TDK_Underqualified:
444    return static_cast<DFIParamWithArguments*>(Data)->Param;
445
446  // Unhandled
447  case Sema::TDK_NonDeducedMismatch:
448  case Sema::TDK_FailedOverloadResolution:
449    break;
450  }
451
452  return TemplateParameter();
453}
454
455TemplateArgumentList *
456OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
457  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
458    case Sema::TDK_Success:
459    case Sema::TDK_InstantiationDepth:
460    case Sema::TDK_TooManyArguments:
461    case Sema::TDK_TooFewArguments:
462    case Sema::TDK_Incomplete:
463    case Sema::TDK_InvalidExplicitArguments:
464    case Sema::TDK_Inconsistent:
465    case Sema::TDK_Underqualified:
466      return 0;
467
468    case Sema::TDK_SubstitutionFailure:
469      return static_cast<TemplateArgumentList*>(Data);
470
471    // Unhandled
472    case Sema::TDK_NonDeducedMismatch:
473    case Sema::TDK_FailedOverloadResolution:
474      break;
475  }
476
477  return 0;
478}
479
480const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
481  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
482  case Sema::TDK_Success:
483  case Sema::TDK_InstantiationDepth:
484  case Sema::TDK_Incomplete:
485  case Sema::TDK_TooManyArguments:
486  case Sema::TDK_TooFewArguments:
487  case Sema::TDK_InvalidExplicitArguments:
488  case Sema::TDK_SubstitutionFailure:
489    return 0;
490
491  case Sema::TDK_Inconsistent:
492  case Sema::TDK_Underqualified:
493    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
494
495  // Unhandled
496  case Sema::TDK_NonDeducedMismatch:
497  case Sema::TDK_FailedOverloadResolution:
498    break;
499  }
500
501  return 0;
502}
503
504const TemplateArgument *
505OverloadCandidate::DeductionFailureInfo::getSecondArg() {
506  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
507  case Sema::TDK_Success:
508  case Sema::TDK_InstantiationDepth:
509  case Sema::TDK_Incomplete:
510  case Sema::TDK_TooManyArguments:
511  case Sema::TDK_TooFewArguments:
512  case Sema::TDK_InvalidExplicitArguments:
513  case Sema::TDK_SubstitutionFailure:
514    return 0;
515
516  case Sema::TDK_Inconsistent:
517  case Sema::TDK_Underqualified:
518    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
519
520  // Unhandled
521  case Sema::TDK_NonDeducedMismatch:
522  case Sema::TDK_FailedOverloadResolution:
523    break;
524  }
525
526  return 0;
527}
528
529void OverloadCandidateSet::clear() {
530  inherited::clear();
531  Functions.clear();
532}
533
534// IsOverload - Determine whether the given New declaration is an
535// overload of the declarations in Old. This routine returns false if
536// New and Old cannot be overloaded, e.g., if New has the same
537// signature as some function in Old (C++ 1.3.10) or if the Old
538// declarations aren't functions (or function templates) at all. When
539// it does return false, MatchedDecl will point to the decl that New
540// cannot be overloaded with.  This decl may be a UsingShadowDecl on
541// top of the underlying declaration.
542//
543// Example: Given the following input:
544//
545//   void f(int, float); // #1
546//   void f(int, int); // #2
547//   int f(int, int); // #3
548//
549// When we process #1, there is no previous declaration of "f",
550// so IsOverload will not be used.
551//
552// When we process #2, Old contains only the FunctionDecl for #1.  By
553// comparing the parameter types, we see that #1 and #2 are overloaded
554// (since they have different signatures), so this routine returns
555// false; MatchedDecl is unchanged.
556//
557// When we process #3, Old is an overload set containing #1 and #2. We
558// compare the signatures of #3 to #1 (they're overloaded, so we do
559// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
560// identical (return types of functions are not part of the
561// signature), IsOverload returns false and MatchedDecl will be set to
562// point to the FunctionDecl for #2.
563//
564// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
565// into a class by a using declaration.  The rules for whether to hide
566// shadow declarations ignore some properties which otherwise figure
567// into a function template's signature.
568Sema::OverloadKind
569Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
570                    NamedDecl *&Match, bool NewIsUsingDecl) {
571  for (LookupResult::iterator I = Old.begin(), E = Old.end();
572         I != E; ++I) {
573    NamedDecl *OldD = *I;
574
575    bool OldIsUsingDecl = false;
576    if (isa<UsingShadowDecl>(OldD)) {
577      OldIsUsingDecl = true;
578
579      // We can always introduce two using declarations into the same
580      // context, even if they have identical signatures.
581      if (NewIsUsingDecl) continue;
582
583      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
584    }
585
586    // If either declaration was introduced by a using declaration,
587    // we'll need to use slightly different rules for matching.
588    // Essentially, these rules are the normal rules, except that
589    // function templates hide function templates with different
590    // return types or template parameter lists.
591    bool UseMemberUsingDeclRules =
592      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
593
594    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
595      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
596        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
597          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
598          continue;
599        }
600
601        Match = *I;
602        return Ovl_Match;
603      }
604    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
605      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
606        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
607          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
608          continue;
609        }
610
611        Match = *I;
612        return Ovl_Match;
613      }
614    } else if (isa<UsingDecl>(OldD)) {
615      // We can overload with these, which can show up when doing
616      // redeclaration checks for UsingDecls.
617      assert(Old.getLookupKind() == LookupUsingDeclName);
618    } else if (isa<TagDecl>(OldD)) {
619      // We can always overload with tags by hiding them.
620    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
621      // Optimistically assume that an unresolved using decl will
622      // overload; if it doesn't, we'll have to diagnose during
623      // template instantiation.
624    } else {
625      // (C++ 13p1):
626      //   Only function declarations can be overloaded; object and type
627      //   declarations cannot be overloaded.
628      Match = *I;
629      return Ovl_NonFunction;
630    }
631  }
632
633  return Ovl_Overload;
634}
635
636bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
637                      bool UseUsingDeclRules) {
638  // If both of the functions are extern "C", then they are not
639  // overloads.
640  if (Old->isExternC() && New->isExternC())
641    return false;
642
643  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
644  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
645
646  // C++ [temp.fct]p2:
647  //   A function template can be overloaded with other function templates
648  //   and with normal (non-template) functions.
649  if ((OldTemplate == 0) != (NewTemplate == 0))
650    return true;
651
652  // Is the function New an overload of the function Old?
653  QualType OldQType = Context.getCanonicalType(Old->getType());
654  QualType NewQType = Context.getCanonicalType(New->getType());
655
656  // Compare the signatures (C++ 1.3.10) of the two functions to
657  // determine whether they are overloads. If we find any mismatch
658  // in the signature, they are overloads.
659
660  // If either of these functions is a K&R-style function (no
661  // prototype), then we consider them to have matching signatures.
662  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
663      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
664    return false;
665
666  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
667  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
668
669  // The signature of a function includes the types of its
670  // parameters (C++ 1.3.10), which includes the presence or absence
671  // of the ellipsis; see C++ DR 357).
672  if (OldQType != NewQType &&
673      (OldType->getNumArgs() != NewType->getNumArgs() ||
674       OldType->isVariadic() != NewType->isVariadic() ||
675       !FunctionArgTypesAreEqual(OldType, NewType)))
676    return true;
677
678  // C++ [temp.over.link]p4:
679  //   The signature of a function template consists of its function
680  //   signature, its return type and its template parameter list. The names
681  //   of the template parameters are significant only for establishing the
682  //   relationship between the template parameters and the rest of the
683  //   signature.
684  //
685  // We check the return type and template parameter lists for function
686  // templates first; the remaining checks follow.
687  //
688  // However, we don't consider either of these when deciding whether
689  // a member introduced by a shadow declaration is hidden.
690  if (!UseUsingDeclRules && NewTemplate &&
691      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
692                                       OldTemplate->getTemplateParameters(),
693                                       false, TPL_TemplateMatch) ||
694       OldType->getResultType() != NewType->getResultType()))
695    return true;
696
697  // If the function is a class member, its signature includes the
698  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
699  //
700  // As part of this, also check whether one of the member functions
701  // is static, in which case they are not overloads (C++
702  // 13.1p2). While not part of the definition of the signature,
703  // this check is important to determine whether these functions
704  // can be overloaded.
705  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
706  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
707  if (OldMethod && NewMethod &&
708      !OldMethod->isStatic() && !NewMethod->isStatic() &&
709      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
710       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
711    if (!UseUsingDeclRules &&
712        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
713        (OldMethod->getRefQualifier() == RQ_None ||
714         NewMethod->getRefQualifier() == RQ_None)) {
715      // C++0x [over.load]p2:
716      //   - Member function declarations with the same name and the same
717      //     parameter-type-list as well as member function template
718      //     declarations with the same name, the same parameter-type-list, and
719      //     the same template parameter lists cannot be overloaded if any of
720      //     them, but not all, have a ref-qualifier (8.3.5).
721      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
722        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
723      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
724    }
725
726    return true;
727  }
728
729  // The signatures match; this is not an overload.
730  return false;
731}
732
733/// TryImplicitConversion - Attempt to perform an implicit conversion
734/// from the given expression (Expr) to the given type (ToType). This
735/// function returns an implicit conversion sequence that can be used
736/// to perform the initialization. Given
737///
738///   void f(float f);
739///   void g(int i) { f(i); }
740///
741/// this routine would produce an implicit conversion sequence to
742/// describe the initialization of f from i, which will be a standard
743/// conversion sequence containing an lvalue-to-rvalue conversion (C++
744/// 4.1) followed by a floating-integral conversion (C++ 4.9).
745//
746/// Note that this routine only determines how the conversion can be
747/// performed; it does not actually perform the conversion. As such,
748/// it will not produce any diagnostics if no conversion is available,
749/// but will instead return an implicit conversion sequence of kind
750/// "BadConversion".
751///
752/// If @p SuppressUserConversions, then user-defined conversions are
753/// not permitted.
754/// If @p AllowExplicit, then explicit user-defined conversions are
755/// permitted.
756static ImplicitConversionSequence
757TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
758                      bool SuppressUserConversions,
759                      bool AllowExplicit,
760                      bool InOverloadResolution,
761                      bool CStyle) {
762  ImplicitConversionSequence ICS;
763  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
764                           ICS.Standard, CStyle)) {
765    ICS.setStandard();
766    return ICS;
767  }
768
769  if (!S.getLangOptions().CPlusPlus) {
770    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
771    return ICS;
772  }
773
774  // C++ [over.ics.user]p4:
775  //   A conversion of an expression of class type to the same class
776  //   type is given Exact Match rank, and a conversion of an
777  //   expression of class type to a base class of that type is
778  //   given Conversion rank, in spite of the fact that a copy/move
779  //   constructor (i.e., a user-defined conversion function) is
780  //   called for those cases.
781  QualType FromType = From->getType();
782  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
783      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
784       S.IsDerivedFrom(FromType, ToType))) {
785    ICS.setStandard();
786    ICS.Standard.setAsIdentityConversion();
787    ICS.Standard.setFromType(FromType);
788    ICS.Standard.setAllToTypes(ToType);
789
790    // We don't actually check at this point whether there is a valid
791    // copy/move constructor, since overloading just assumes that it
792    // exists. When we actually perform initialization, we'll find the
793    // appropriate constructor to copy the returned object, if needed.
794    ICS.Standard.CopyConstructor = 0;
795
796    // Determine whether this is considered a derived-to-base conversion.
797    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
798      ICS.Standard.Second = ICK_Derived_To_Base;
799
800    return ICS;
801  }
802
803  if (SuppressUserConversions) {
804    // We're not in the case above, so there is no conversion that
805    // we can perform.
806    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
807    return ICS;
808  }
809
810  // Attempt user-defined conversion.
811  OverloadCandidateSet Conversions(From->getExprLoc());
812  OverloadingResult UserDefResult
813    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
814                              AllowExplicit);
815
816  if (UserDefResult == OR_Success) {
817    ICS.setUserDefined();
818    // C++ [over.ics.user]p4:
819    //   A conversion of an expression of class type to the same class
820    //   type is given Exact Match rank, and a conversion of an
821    //   expression of class type to a base class of that type is
822    //   given Conversion rank, in spite of the fact that a copy
823    //   constructor (i.e., a user-defined conversion function) is
824    //   called for those cases.
825    if (CXXConstructorDecl *Constructor
826          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
827      QualType FromCanon
828        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
829      QualType ToCanon
830        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
831      if (Constructor->isCopyConstructor() &&
832          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
833        // Turn this into a "standard" conversion sequence, so that it
834        // gets ranked with standard conversion sequences.
835        ICS.setStandard();
836        ICS.Standard.setAsIdentityConversion();
837        ICS.Standard.setFromType(From->getType());
838        ICS.Standard.setAllToTypes(ToType);
839        ICS.Standard.CopyConstructor = Constructor;
840        if (ToCanon != FromCanon)
841          ICS.Standard.Second = ICK_Derived_To_Base;
842      }
843    }
844
845    // C++ [over.best.ics]p4:
846    //   However, when considering the argument of a user-defined
847    //   conversion function that is a candidate by 13.3.1.3 when
848    //   invoked for the copying of the temporary in the second step
849    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
850    //   13.3.1.6 in all cases, only standard conversion sequences and
851    //   ellipsis conversion sequences are allowed.
852    if (SuppressUserConversions && ICS.isUserDefined()) {
853      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
854    }
855  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
856    ICS.setAmbiguous();
857    ICS.Ambiguous.setFromType(From->getType());
858    ICS.Ambiguous.setToType(ToType);
859    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
860         Cand != Conversions.end(); ++Cand)
861      if (Cand->Viable)
862        ICS.Ambiguous.addConversion(Cand->Function);
863  } else {
864    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
865  }
866
867  return ICS;
868}
869
870bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
871                                 const InitializedEntity &Entity,
872                                 Expr *Initializer,
873                                 bool SuppressUserConversions,
874                                 bool AllowExplicitConversions,
875                                 bool InOverloadResolution,
876                                 bool CStyle) {
877  ImplicitConversionSequence ICS
878    = clang::TryImplicitConversion(*this, Initializer, Entity.getType(),
879                                   SuppressUserConversions,
880                                   AllowExplicitConversions,
881                                   InOverloadResolution,
882                                   CStyle);
883  if (ICS.isBad()) return true;
884
885  // Perform the actual conversion.
886  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
887  return false;
888}
889
890/// PerformImplicitConversion - Perform an implicit conversion of the
891/// expression From to the type ToType. Returns the
892/// converted expression. Flavor is the kind of conversion we're
893/// performing, used in the error message. If @p AllowExplicit,
894/// explicit user-defined conversions are permitted.
895ExprResult
896Sema::PerformImplicitConversion(Expr *From, QualType ToType,
897                                AssignmentAction Action, bool AllowExplicit) {
898  ImplicitConversionSequence ICS;
899  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
900}
901
902ExprResult
903Sema::PerformImplicitConversion(Expr *From, QualType ToType,
904                                AssignmentAction Action, bool AllowExplicit,
905                                ImplicitConversionSequence& ICS) {
906  ICS = clang::TryImplicitConversion(*this, From, ToType,
907                                     /*SuppressUserConversions=*/false,
908                                     AllowExplicit,
909                                     /*InOverloadResolution=*/false,
910                                     /*CStyle=*/false);
911  return PerformImplicitConversion(From, ToType, ICS, Action);
912}
913
914/// \brief Determine whether the conversion from FromType to ToType is a valid
915/// conversion that strips "noreturn" off the nested function type.
916static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
917                                 QualType ToType, QualType &ResultTy) {
918  if (Context.hasSameUnqualifiedType(FromType, ToType))
919    return false;
920
921  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
922  // where F adds one of the following at most once:
923  //   - a pointer
924  //   - a member pointer
925  //   - a block pointer
926  CanQualType CanTo = Context.getCanonicalType(ToType);
927  CanQualType CanFrom = Context.getCanonicalType(FromType);
928  Type::TypeClass TyClass = CanTo->getTypeClass();
929  if (TyClass != CanFrom->getTypeClass()) return false;
930  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
931    if (TyClass == Type::Pointer) {
932      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
933      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
934    } else if (TyClass == Type::BlockPointer) {
935      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
936      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
937    } else if (TyClass == Type::MemberPointer) {
938      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
939      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
940    } else {
941      return false;
942    }
943
944    TyClass = CanTo->getTypeClass();
945    if (TyClass != CanFrom->getTypeClass()) return false;
946    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
947      return false;
948  }
949
950  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
951  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
952  if (!EInfo.getNoReturn()) return false;
953
954  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
955  assert(QualType(FromFn, 0).isCanonical());
956  if (QualType(FromFn, 0) != CanTo) return false;
957
958  ResultTy = ToType;
959  return true;
960}
961
962/// \brief Determine whether the conversion from FromType to ToType is a valid
963/// vector conversion.
964///
965/// \param ICK Will be set to the vector conversion kind, if this is a vector
966/// conversion.
967static bool IsVectorConversion(ASTContext &Context, QualType FromType,
968                               QualType ToType, ImplicitConversionKind &ICK) {
969  // We need at least one of these types to be a vector type to have a vector
970  // conversion.
971  if (!ToType->isVectorType() && !FromType->isVectorType())
972    return false;
973
974  // Identical types require no conversions.
975  if (Context.hasSameUnqualifiedType(FromType, ToType))
976    return false;
977
978  // There are no conversions between extended vector types, only identity.
979  if (ToType->isExtVectorType()) {
980    // There are no conversions between extended vector types other than the
981    // identity conversion.
982    if (FromType->isExtVectorType())
983      return false;
984
985    // Vector splat from any arithmetic type to a vector.
986    if (FromType->isArithmeticType()) {
987      ICK = ICK_Vector_Splat;
988      return true;
989    }
990  }
991
992  // We can perform the conversion between vector types in the following cases:
993  // 1)vector types are equivalent AltiVec and GCC vector types
994  // 2)lax vector conversions are permitted and the vector types are of the
995  //   same size
996  if (ToType->isVectorType() && FromType->isVectorType()) {
997    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
998        (Context.getLangOptions().LaxVectorConversions &&
999         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1000      ICK = ICK_Vector_Conversion;
1001      return true;
1002    }
1003  }
1004
1005  return false;
1006}
1007
1008/// IsStandardConversion - Determines whether there is a standard
1009/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1010/// expression From to the type ToType. Standard conversion sequences
1011/// only consider non-class types; for conversions that involve class
1012/// types, use TryImplicitConversion. If a conversion exists, SCS will
1013/// contain the standard conversion sequence required to perform this
1014/// conversion and this routine will return true. Otherwise, this
1015/// routine will return false and the value of SCS is unspecified.
1016static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1017                                 bool InOverloadResolution,
1018                                 StandardConversionSequence &SCS,
1019                                 bool CStyle) {
1020  QualType FromType = From->getType();
1021
1022  // Standard conversions (C++ [conv])
1023  SCS.setAsIdentityConversion();
1024  SCS.DeprecatedStringLiteralToCharPtr = false;
1025  SCS.IncompatibleObjC = false;
1026  SCS.setFromType(FromType);
1027  SCS.CopyConstructor = 0;
1028
1029  // There are no standard conversions for class types in C++, so
1030  // abort early. When overloading in C, however, we do permit
1031  if (FromType->isRecordType() || ToType->isRecordType()) {
1032    if (S.getLangOptions().CPlusPlus)
1033      return false;
1034
1035    // When we're overloading in C, we allow, as standard conversions,
1036  }
1037
1038  // The first conversion can be an lvalue-to-rvalue conversion,
1039  // array-to-pointer conversion, or function-to-pointer conversion
1040  // (C++ 4p1).
1041
1042  if (FromType == S.Context.OverloadTy) {
1043    DeclAccessPair AccessPair;
1044    if (FunctionDecl *Fn
1045          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1046                                                 AccessPair)) {
1047      // We were able to resolve the address of the overloaded function,
1048      // so we can convert to the type of that function.
1049      FromType = Fn->getType();
1050
1051      // we can sometimes resolve &foo<int> regardless of ToType, so check
1052      // if the type matches (identity) or we are converting to bool
1053      if (!S.Context.hasSameUnqualifiedType(
1054                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1055        QualType resultTy;
1056        // if the function type matches except for [[noreturn]], it's ok
1057        if (!IsNoReturnConversion(S.Context, FromType,
1058              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1059          // otherwise, only a boolean conversion is standard
1060          if (!ToType->isBooleanType())
1061            return false;
1062      }
1063
1064      // Check if the "from" expression is taking the address of an overloaded
1065      // function and recompute the FromType accordingly. Take advantage of the
1066      // fact that non-static member functions *must* have such an address-of
1067      // expression.
1068      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1069      if (Method && !Method->isStatic()) {
1070        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1071               "Non-unary operator on non-static member address");
1072        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1073               == UO_AddrOf &&
1074               "Non-address-of operator on non-static member address");
1075        const Type *ClassType
1076          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1077        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1078      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1079        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1080               UO_AddrOf &&
1081               "Non-address-of operator for overloaded function expression");
1082        FromType = S.Context.getPointerType(FromType);
1083      }
1084
1085      // Check that we've computed the proper type after overload resolution.
1086      assert(S.Context.hasSameType(
1087        FromType,
1088        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1089    } else {
1090      return false;
1091    }
1092  }
1093  // Lvalue-to-rvalue conversion (C++ 4.1):
1094  //   An lvalue (3.10) of a non-function, non-array type T can be
1095  //   converted to an rvalue.
1096  bool argIsLValue = From->isLValue();
1097  if (argIsLValue &&
1098      !FromType->isFunctionType() && !FromType->isArrayType() &&
1099      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1100    SCS.First = ICK_Lvalue_To_Rvalue;
1101
1102    // If T is a non-class type, the type of the rvalue is the
1103    // cv-unqualified version of T. Otherwise, the type of the rvalue
1104    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1105    // just strip the qualifiers because they don't matter.
1106    FromType = FromType.getUnqualifiedType();
1107  } else if (FromType->isArrayType()) {
1108    // Array-to-pointer conversion (C++ 4.2)
1109    SCS.First = ICK_Array_To_Pointer;
1110
1111    // An lvalue or rvalue of type "array of N T" or "array of unknown
1112    // bound of T" can be converted to an rvalue of type "pointer to
1113    // T" (C++ 4.2p1).
1114    FromType = S.Context.getArrayDecayedType(FromType);
1115
1116    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1117      // This conversion is deprecated. (C++ D.4).
1118      SCS.DeprecatedStringLiteralToCharPtr = true;
1119
1120      // For the purpose of ranking in overload resolution
1121      // (13.3.3.1.1), this conversion is considered an
1122      // array-to-pointer conversion followed by a qualification
1123      // conversion (4.4). (C++ 4.2p2)
1124      SCS.Second = ICK_Identity;
1125      SCS.Third = ICK_Qualification;
1126      SCS.setAllToTypes(FromType);
1127      return true;
1128    }
1129  } else if (FromType->isFunctionType() && argIsLValue) {
1130    // Function-to-pointer conversion (C++ 4.3).
1131    SCS.First = ICK_Function_To_Pointer;
1132
1133    // An lvalue of function type T can be converted to an rvalue of
1134    // type "pointer to T." The result is a pointer to the
1135    // function. (C++ 4.3p1).
1136    FromType = S.Context.getPointerType(FromType);
1137  } else {
1138    // We don't require any conversions for the first step.
1139    SCS.First = ICK_Identity;
1140  }
1141  SCS.setToType(0, FromType);
1142
1143  // The second conversion can be an integral promotion, floating
1144  // point promotion, integral conversion, floating point conversion,
1145  // floating-integral conversion, pointer conversion,
1146  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1147  // For overloading in C, this can also be a "compatible-type"
1148  // conversion.
1149  bool IncompatibleObjC = false;
1150  ImplicitConversionKind SecondICK = ICK_Identity;
1151  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1152    // The unqualified versions of the types are the same: there's no
1153    // conversion to do.
1154    SCS.Second = ICK_Identity;
1155  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1156    // Integral promotion (C++ 4.5).
1157    SCS.Second = ICK_Integral_Promotion;
1158    FromType = ToType.getUnqualifiedType();
1159  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1160    // Floating point promotion (C++ 4.6).
1161    SCS.Second = ICK_Floating_Promotion;
1162    FromType = ToType.getUnqualifiedType();
1163  } else if (S.IsComplexPromotion(FromType, ToType)) {
1164    // Complex promotion (Clang extension)
1165    SCS.Second = ICK_Complex_Promotion;
1166    FromType = ToType.getUnqualifiedType();
1167  } else if (ToType->isBooleanType() &&
1168             (FromType->isArithmeticType() ||
1169              FromType->isAnyPointerType() ||
1170              FromType->isBlockPointerType() ||
1171              FromType->isMemberPointerType() ||
1172              FromType->isNullPtrType())) {
1173    // Boolean conversions (C++ 4.12).
1174    SCS.Second = ICK_Boolean_Conversion;
1175    FromType = S.Context.BoolTy;
1176  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1177             ToType->isIntegralType(S.Context)) {
1178    // Integral conversions (C++ 4.7).
1179    SCS.Second = ICK_Integral_Conversion;
1180    FromType = ToType.getUnqualifiedType();
1181  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1182    // Complex conversions (C99 6.3.1.6)
1183    SCS.Second = ICK_Complex_Conversion;
1184    FromType = ToType.getUnqualifiedType();
1185  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1186             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1187    // Complex-real conversions (C99 6.3.1.7)
1188    SCS.Second = ICK_Complex_Real;
1189    FromType = ToType.getUnqualifiedType();
1190  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1191    // Floating point conversions (C++ 4.8).
1192    SCS.Second = ICK_Floating_Conversion;
1193    FromType = ToType.getUnqualifiedType();
1194  } else if ((FromType->isRealFloatingType() &&
1195              ToType->isIntegralType(S.Context)) ||
1196             (FromType->isIntegralOrUnscopedEnumerationType() &&
1197              ToType->isRealFloatingType())) {
1198    // Floating-integral conversions (C++ 4.9).
1199    SCS.Second = ICK_Floating_Integral;
1200    FromType = ToType.getUnqualifiedType();
1201  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1202               SCS.Second = ICK_Block_Pointer_Conversion;
1203  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1204                                   FromType, IncompatibleObjC)) {
1205    // Pointer conversions (C++ 4.10).
1206    SCS.Second = ICK_Pointer_Conversion;
1207    SCS.IncompatibleObjC = IncompatibleObjC;
1208  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1209                                         InOverloadResolution, FromType)) {
1210    // Pointer to member conversions (4.11).
1211    SCS.Second = ICK_Pointer_Member;
1212  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1213    SCS.Second = SecondICK;
1214    FromType = ToType.getUnqualifiedType();
1215  } else if (!S.getLangOptions().CPlusPlus &&
1216             S.Context.typesAreCompatible(ToType, FromType)) {
1217    // Compatible conversions (Clang extension for C function overloading)
1218    SCS.Second = ICK_Compatible_Conversion;
1219    FromType = ToType.getUnqualifiedType();
1220  } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) {
1221    // Treat a conversion that strips "noreturn" as an identity conversion.
1222    SCS.Second = ICK_NoReturn_Adjustment;
1223  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1224                                             InOverloadResolution,
1225                                             SCS, CStyle)) {
1226    SCS.Second = ICK_TransparentUnionConversion;
1227    FromType = ToType;
1228  } else {
1229    // No second conversion required.
1230    SCS.Second = ICK_Identity;
1231  }
1232  SCS.setToType(1, FromType);
1233
1234  QualType CanonFrom;
1235  QualType CanonTo;
1236  // The third conversion can be a qualification conversion (C++ 4p1).
1237  if (S.IsQualificationConversion(FromType, ToType, CStyle)) {
1238    SCS.Third = ICK_Qualification;
1239    FromType = ToType;
1240    CanonFrom = S.Context.getCanonicalType(FromType);
1241    CanonTo = S.Context.getCanonicalType(ToType);
1242  } else {
1243    // No conversion required
1244    SCS.Third = ICK_Identity;
1245
1246    // C++ [over.best.ics]p6:
1247    //   [...] Any difference in top-level cv-qualification is
1248    //   subsumed by the initialization itself and does not constitute
1249    //   a conversion. [...]
1250    CanonFrom = S.Context.getCanonicalType(FromType);
1251    CanonTo = S.Context.getCanonicalType(ToType);
1252    if (CanonFrom.getLocalUnqualifiedType()
1253                                       == CanonTo.getLocalUnqualifiedType() &&
1254        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1255         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1256      FromType = ToType;
1257      CanonFrom = CanonTo;
1258    }
1259  }
1260  SCS.setToType(2, FromType);
1261
1262  // If we have not converted the argument type to the parameter type,
1263  // this is a bad conversion sequence.
1264  if (CanonFrom != CanonTo)
1265    return false;
1266
1267  return true;
1268}
1269
1270static bool
1271IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1272                                     QualType &ToType,
1273                                     bool InOverloadResolution,
1274                                     StandardConversionSequence &SCS,
1275                                     bool CStyle) {
1276
1277  const RecordType *UT = ToType->getAsUnionType();
1278  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1279    return false;
1280  // The field to initialize within the transparent union.
1281  RecordDecl *UD = UT->getDecl();
1282  // It's compatible if the expression matches any of the fields.
1283  for (RecordDecl::field_iterator it = UD->field_begin(),
1284       itend = UD->field_end();
1285       it != itend; ++it) {
1286    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, CStyle)) {
1287      ToType = it->getType();
1288      return true;
1289    }
1290  }
1291  return false;
1292}
1293
1294/// IsIntegralPromotion - Determines whether the conversion from the
1295/// expression From (whose potentially-adjusted type is FromType) to
1296/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1297/// sets PromotedType to the promoted type.
1298bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1299  const BuiltinType *To = ToType->getAs<BuiltinType>();
1300  // All integers are built-in.
1301  if (!To) {
1302    return false;
1303  }
1304
1305  // An rvalue of type char, signed char, unsigned char, short int, or
1306  // unsigned short int can be converted to an rvalue of type int if
1307  // int can represent all the values of the source type; otherwise,
1308  // the source rvalue can be converted to an rvalue of type unsigned
1309  // int (C++ 4.5p1).
1310  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1311      !FromType->isEnumeralType()) {
1312    if (// We can promote any signed, promotable integer type to an int
1313        (FromType->isSignedIntegerType() ||
1314         // We can promote any unsigned integer type whose size is
1315         // less than int to an int.
1316         (!FromType->isSignedIntegerType() &&
1317          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1318      return To->getKind() == BuiltinType::Int;
1319    }
1320
1321    return To->getKind() == BuiltinType::UInt;
1322  }
1323
1324  // C++0x [conv.prom]p3:
1325  //   A prvalue of an unscoped enumeration type whose underlying type is not
1326  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1327  //   following types that can represent all the values of the enumeration
1328  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1329  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1330  //   long long int. If none of the types in that list can represent all the
1331  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1332  //   type can be converted to an rvalue a prvalue of the extended integer type
1333  //   with lowest integer conversion rank (4.13) greater than the rank of long
1334  //   long in which all the values of the enumeration can be represented. If
1335  //   there are two such extended types, the signed one is chosen.
1336  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1337    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1338    // provided for a scoped enumeration.
1339    if (FromEnumType->getDecl()->isScoped())
1340      return false;
1341
1342    // We have already pre-calculated the promotion type, so this is trivial.
1343    if (ToType->isIntegerType() &&
1344        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1345      return Context.hasSameUnqualifiedType(ToType,
1346                                FromEnumType->getDecl()->getPromotionType());
1347  }
1348
1349  // C++0x [conv.prom]p2:
1350  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1351  //   to an rvalue a prvalue of the first of the following types that can
1352  //   represent all the values of its underlying type: int, unsigned int,
1353  //   long int, unsigned long int, long long int, or unsigned long long int.
1354  //   If none of the types in that list can represent all the values of its
1355  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1356  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1357  //   type.
1358  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1359      ToType->isIntegerType()) {
1360    // Determine whether the type we're converting from is signed or
1361    // unsigned.
1362    bool FromIsSigned;
1363    uint64_t FromSize = Context.getTypeSize(FromType);
1364
1365    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1366    FromIsSigned = true;
1367
1368    // The types we'll try to promote to, in the appropriate
1369    // order. Try each of these types.
1370    QualType PromoteTypes[6] = {
1371      Context.IntTy, Context.UnsignedIntTy,
1372      Context.LongTy, Context.UnsignedLongTy ,
1373      Context.LongLongTy, Context.UnsignedLongLongTy
1374    };
1375    for (int Idx = 0; Idx < 6; ++Idx) {
1376      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1377      if (FromSize < ToSize ||
1378          (FromSize == ToSize &&
1379           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1380        // We found the type that we can promote to. If this is the
1381        // type we wanted, we have a promotion. Otherwise, no
1382        // promotion.
1383        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1384      }
1385    }
1386  }
1387
1388  // An rvalue for an integral bit-field (9.6) can be converted to an
1389  // rvalue of type int if int can represent all the values of the
1390  // bit-field; otherwise, it can be converted to unsigned int if
1391  // unsigned int can represent all the values of the bit-field. If
1392  // the bit-field is larger yet, no integral promotion applies to
1393  // it. If the bit-field has an enumerated type, it is treated as any
1394  // other value of that type for promotion purposes (C++ 4.5p3).
1395  // FIXME: We should delay checking of bit-fields until we actually perform the
1396  // conversion.
1397  using llvm::APSInt;
1398  if (From)
1399    if (FieldDecl *MemberDecl = From->getBitField()) {
1400      APSInt BitWidth;
1401      if (FromType->isIntegralType(Context) &&
1402          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1403        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1404        ToSize = Context.getTypeSize(ToType);
1405
1406        // Are we promoting to an int from a bitfield that fits in an int?
1407        if (BitWidth < ToSize ||
1408            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1409          return To->getKind() == BuiltinType::Int;
1410        }
1411
1412        // Are we promoting to an unsigned int from an unsigned bitfield
1413        // that fits into an unsigned int?
1414        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1415          return To->getKind() == BuiltinType::UInt;
1416        }
1417
1418        return false;
1419      }
1420    }
1421
1422  // An rvalue of type bool can be converted to an rvalue of type int,
1423  // with false becoming zero and true becoming one (C++ 4.5p4).
1424  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1425    return true;
1426  }
1427
1428  return false;
1429}
1430
1431/// IsFloatingPointPromotion - Determines whether the conversion from
1432/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1433/// returns true and sets PromotedType to the promoted type.
1434bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1435  /// An rvalue of type float can be converted to an rvalue of type
1436  /// double. (C++ 4.6p1).
1437  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1438    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1439      if (FromBuiltin->getKind() == BuiltinType::Float &&
1440          ToBuiltin->getKind() == BuiltinType::Double)
1441        return true;
1442
1443      // C99 6.3.1.5p1:
1444      //   When a float is promoted to double or long double, or a
1445      //   double is promoted to long double [...].
1446      if (!getLangOptions().CPlusPlus &&
1447          (FromBuiltin->getKind() == BuiltinType::Float ||
1448           FromBuiltin->getKind() == BuiltinType::Double) &&
1449          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1450        return true;
1451    }
1452
1453  return false;
1454}
1455
1456/// \brief Determine if a conversion is a complex promotion.
1457///
1458/// A complex promotion is defined as a complex -> complex conversion
1459/// where the conversion between the underlying real types is a
1460/// floating-point or integral promotion.
1461bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1462  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1463  if (!FromComplex)
1464    return false;
1465
1466  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1467  if (!ToComplex)
1468    return false;
1469
1470  return IsFloatingPointPromotion(FromComplex->getElementType(),
1471                                  ToComplex->getElementType()) ||
1472    IsIntegralPromotion(0, FromComplex->getElementType(),
1473                        ToComplex->getElementType());
1474}
1475
1476/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1477/// the pointer type FromPtr to a pointer to type ToPointee, with the
1478/// same type qualifiers as FromPtr has on its pointee type. ToType,
1479/// if non-empty, will be a pointer to ToType that may or may not have
1480/// the right set of qualifiers on its pointee.
1481static QualType
1482BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1483                                   QualType ToPointee, QualType ToType,
1484                                   ASTContext &Context) {
1485  assert((FromPtr->getTypeClass() == Type::Pointer ||
1486          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1487         "Invalid similarly-qualified pointer type");
1488
1489  /// \brief Conversions to 'id' subsume cv-qualifier conversions.
1490  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1491    return ToType.getUnqualifiedType();
1492
1493  QualType CanonFromPointee
1494    = Context.getCanonicalType(FromPtr->getPointeeType());
1495  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1496  Qualifiers Quals = CanonFromPointee.getQualifiers();
1497
1498  // Exact qualifier match -> return the pointer type we're converting to.
1499  if (CanonToPointee.getLocalQualifiers() == Quals) {
1500    // ToType is exactly what we need. Return it.
1501    if (!ToType.isNull())
1502      return ToType.getUnqualifiedType();
1503
1504    // Build a pointer to ToPointee. It has the right qualifiers
1505    // already.
1506    if (isa<ObjCObjectPointerType>(ToType))
1507      return Context.getObjCObjectPointerType(ToPointee);
1508    return Context.getPointerType(ToPointee);
1509  }
1510
1511  // Just build a canonical type that has the right qualifiers.
1512  QualType QualifiedCanonToPointee
1513    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1514
1515  if (isa<ObjCObjectPointerType>(ToType))
1516    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1517  return Context.getPointerType(QualifiedCanonToPointee);
1518}
1519
1520static bool isNullPointerConstantForConversion(Expr *Expr,
1521                                               bool InOverloadResolution,
1522                                               ASTContext &Context) {
1523  // Handle value-dependent integral null pointer constants correctly.
1524  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1525  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1526      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1527    return !InOverloadResolution;
1528
1529  return Expr->isNullPointerConstant(Context,
1530                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1531                                        : Expr::NPC_ValueDependentIsNull);
1532}
1533
1534/// IsPointerConversion - Determines whether the conversion of the
1535/// expression From, which has the (possibly adjusted) type FromType,
1536/// can be converted to the type ToType via a pointer conversion (C++
1537/// 4.10). If so, returns true and places the converted type (that
1538/// might differ from ToType in its cv-qualifiers at some level) into
1539/// ConvertedType.
1540///
1541/// This routine also supports conversions to and from block pointers
1542/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1543/// pointers to interfaces. FIXME: Once we've determined the
1544/// appropriate overloading rules for Objective-C, we may want to
1545/// split the Objective-C checks into a different routine; however,
1546/// GCC seems to consider all of these conversions to be pointer
1547/// conversions, so for now they live here. IncompatibleObjC will be
1548/// set if the conversion is an allowed Objective-C conversion that
1549/// should result in a warning.
1550bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1551                               bool InOverloadResolution,
1552                               QualType& ConvertedType,
1553                               bool &IncompatibleObjC) {
1554  IncompatibleObjC = false;
1555  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1556                              IncompatibleObjC))
1557    return true;
1558
1559  // Conversion from a null pointer constant to any Objective-C pointer type.
1560  if (ToType->isObjCObjectPointerType() &&
1561      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1562    ConvertedType = ToType;
1563    return true;
1564  }
1565
1566  // Blocks: Block pointers can be converted to void*.
1567  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1568      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1569    ConvertedType = ToType;
1570    return true;
1571  }
1572  // Blocks: A null pointer constant can be converted to a block
1573  // pointer type.
1574  if (ToType->isBlockPointerType() &&
1575      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1576    ConvertedType = ToType;
1577    return true;
1578  }
1579
1580  // If the left-hand-side is nullptr_t, the right side can be a null
1581  // pointer constant.
1582  if (ToType->isNullPtrType() &&
1583      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1584    ConvertedType = ToType;
1585    return true;
1586  }
1587
1588  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1589  if (!ToTypePtr)
1590    return false;
1591
1592  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1593  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1594    ConvertedType = ToType;
1595    return true;
1596  }
1597
1598  // Beyond this point, both types need to be pointers
1599  // , including objective-c pointers.
1600  QualType ToPointeeType = ToTypePtr->getPointeeType();
1601  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1602    ConvertedType = BuildSimilarlyQualifiedPointerType(
1603                                      FromType->getAs<ObjCObjectPointerType>(),
1604                                                       ToPointeeType,
1605                                                       ToType, Context);
1606    return true;
1607  }
1608  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1609  if (!FromTypePtr)
1610    return false;
1611
1612  QualType FromPointeeType = FromTypePtr->getPointeeType();
1613
1614  // If the unqualified pointee types are the same, this can't be a
1615  // pointer conversion, so don't do all of the work below.
1616  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1617    return false;
1618
1619  // An rvalue of type "pointer to cv T," where T is an object type,
1620  // can be converted to an rvalue of type "pointer to cv void" (C++
1621  // 4.10p2).
1622  if (FromPointeeType->isIncompleteOrObjectType() &&
1623      ToPointeeType->isVoidType()) {
1624    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1625                                                       ToPointeeType,
1626                                                       ToType, Context);
1627    return true;
1628  }
1629
1630  // When we're overloading in C, we allow a special kind of pointer
1631  // conversion for compatible-but-not-identical pointee types.
1632  if (!getLangOptions().CPlusPlus &&
1633      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1634    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1635                                                       ToPointeeType,
1636                                                       ToType, Context);
1637    return true;
1638  }
1639
1640  // C++ [conv.ptr]p3:
1641  //
1642  //   An rvalue of type "pointer to cv D," where D is a class type,
1643  //   can be converted to an rvalue of type "pointer to cv B," where
1644  //   B is a base class (clause 10) of D. If B is an inaccessible
1645  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1646  //   necessitates this conversion is ill-formed. The result of the
1647  //   conversion is a pointer to the base class sub-object of the
1648  //   derived class object. The null pointer value is converted to
1649  //   the null pointer value of the destination type.
1650  //
1651  // Note that we do not check for ambiguity or inaccessibility
1652  // here. That is handled by CheckPointerConversion.
1653  if (getLangOptions().CPlusPlus &&
1654      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1655      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1656      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1657      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1658    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1659                                                       ToPointeeType,
1660                                                       ToType, Context);
1661    return true;
1662  }
1663
1664  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1665      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1666    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1667                                                       ToPointeeType,
1668                                                       ToType, Context);
1669    return true;
1670  }
1671
1672  return false;
1673}
1674
1675/// isObjCPointerConversion - Determines whether this is an
1676/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1677/// with the same arguments and return values.
1678bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1679                                   QualType& ConvertedType,
1680                                   bool &IncompatibleObjC) {
1681  if (!getLangOptions().ObjC1)
1682    return false;
1683
1684  // First, we handle all conversions on ObjC object pointer types.
1685  const ObjCObjectPointerType* ToObjCPtr =
1686    ToType->getAs<ObjCObjectPointerType>();
1687  const ObjCObjectPointerType *FromObjCPtr =
1688    FromType->getAs<ObjCObjectPointerType>();
1689
1690  if (ToObjCPtr && FromObjCPtr) {
1691    // If the pointee types are the same (ignoring qualifications),
1692    // then this is not a pointer conversion.
1693    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1694                                       FromObjCPtr->getPointeeType()))
1695      return false;
1696
1697    // Objective C++: We're able to convert between "id" or "Class" and a
1698    // pointer to any interface (in both directions).
1699    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1700      ConvertedType = ToType;
1701      return true;
1702    }
1703    // Conversions with Objective-C's id<...>.
1704    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1705         ToObjCPtr->isObjCQualifiedIdType()) &&
1706        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1707                                                  /*compare=*/false)) {
1708      ConvertedType = ToType;
1709      return true;
1710    }
1711    // Objective C++: We're able to convert from a pointer to an
1712    // interface to a pointer to a different interface.
1713    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1714      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1715      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1716      if (getLangOptions().CPlusPlus && LHS && RHS &&
1717          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1718                                                FromObjCPtr->getPointeeType()))
1719        return false;
1720      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1721                                                   ToObjCPtr->getPointeeType(),
1722                                                         ToType, Context);
1723      return true;
1724    }
1725
1726    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1727      // Okay: this is some kind of implicit downcast of Objective-C
1728      // interfaces, which is permitted. However, we're going to
1729      // complain about it.
1730      IncompatibleObjC = true;
1731      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1732                                                   ToObjCPtr->getPointeeType(),
1733                                                         ToType, Context);
1734      return true;
1735    }
1736  }
1737  // Beyond this point, both types need to be C pointers or block pointers.
1738  QualType ToPointeeType;
1739  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1740    ToPointeeType = ToCPtr->getPointeeType();
1741  else if (const BlockPointerType *ToBlockPtr =
1742            ToType->getAs<BlockPointerType>()) {
1743    // Objective C++: We're able to convert from a pointer to any object
1744    // to a block pointer type.
1745    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1746      ConvertedType = ToType;
1747      return true;
1748    }
1749    ToPointeeType = ToBlockPtr->getPointeeType();
1750  }
1751  else if (FromType->getAs<BlockPointerType>() &&
1752           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1753    // Objective C++: We're able to convert from a block pointer type to a
1754    // pointer to any object.
1755    ConvertedType = ToType;
1756    return true;
1757  }
1758  else
1759    return false;
1760
1761  QualType FromPointeeType;
1762  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1763    FromPointeeType = FromCPtr->getPointeeType();
1764  else if (const BlockPointerType *FromBlockPtr =
1765           FromType->getAs<BlockPointerType>())
1766    FromPointeeType = FromBlockPtr->getPointeeType();
1767  else
1768    return false;
1769
1770  // If we have pointers to pointers, recursively check whether this
1771  // is an Objective-C conversion.
1772  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1773      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1774                              IncompatibleObjC)) {
1775    // We always complain about this conversion.
1776    IncompatibleObjC = true;
1777    ConvertedType = Context.getPointerType(ConvertedType);
1778    return true;
1779  }
1780  // Allow conversion of pointee being objective-c pointer to another one;
1781  // as in I* to id.
1782  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1783      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1784      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1785                              IncompatibleObjC)) {
1786    ConvertedType = Context.getPointerType(ConvertedType);
1787    return true;
1788  }
1789
1790  // If we have pointers to functions or blocks, check whether the only
1791  // differences in the argument and result types are in Objective-C
1792  // pointer conversions. If so, we permit the conversion (but
1793  // complain about it).
1794  const FunctionProtoType *FromFunctionType
1795    = FromPointeeType->getAs<FunctionProtoType>();
1796  const FunctionProtoType *ToFunctionType
1797    = ToPointeeType->getAs<FunctionProtoType>();
1798  if (FromFunctionType && ToFunctionType) {
1799    // If the function types are exactly the same, this isn't an
1800    // Objective-C pointer conversion.
1801    if (Context.getCanonicalType(FromPointeeType)
1802          == Context.getCanonicalType(ToPointeeType))
1803      return false;
1804
1805    // Perform the quick checks that will tell us whether these
1806    // function types are obviously different.
1807    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1808        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1809        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1810      return false;
1811
1812    bool HasObjCConversion = false;
1813    if (Context.getCanonicalType(FromFunctionType->getResultType())
1814          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1815      // Okay, the types match exactly. Nothing to do.
1816    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1817                                       ToFunctionType->getResultType(),
1818                                       ConvertedType, IncompatibleObjC)) {
1819      // Okay, we have an Objective-C pointer conversion.
1820      HasObjCConversion = true;
1821    } else {
1822      // Function types are too different. Abort.
1823      return false;
1824    }
1825
1826    // Check argument types.
1827    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1828         ArgIdx != NumArgs; ++ArgIdx) {
1829      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1830      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1831      if (Context.getCanonicalType(FromArgType)
1832            == Context.getCanonicalType(ToArgType)) {
1833        // Okay, the types match exactly. Nothing to do.
1834      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1835                                         ConvertedType, IncompatibleObjC)) {
1836        // Okay, we have an Objective-C pointer conversion.
1837        HasObjCConversion = true;
1838      } else {
1839        // Argument types are too different. Abort.
1840        return false;
1841      }
1842    }
1843
1844    if (HasObjCConversion) {
1845      // We had an Objective-C conversion. Allow this pointer
1846      // conversion, but complain about it.
1847      ConvertedType = ToType;
1848      IncompatibleObjC = true;
1849      return true;
1850    }
1851  }
1852
1853  return false;
1854}
1855
1856bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
1857                                    QualType& ConvertedType) {
1858  QualType ToPointeeType;
1859  if (const BlockPointerType *ToBlockPtr =
1860        ToType->getAs<BlockPointerType>())
1861    ToPointeeType = ToBlockPtr->getPointeeType();
1862  else
1863    return false;
1864
1865  QualType FromPointeeType;
1866  if (const BlockPointerType *FromBlockPtr =
1867      FromType->getAs<BlockPointerType>())
1868    FromPointeeType = FromBlockPtr->getPointeeType();
1869  else
1870    return false;
1871  // We have pointer to blocks, check whether the only
1872  // differences in the argument and result types are in Objective-C
1873  // pointer conversions. If so, we permit the conversion.
1874
1875  const FunctionProtoType *FromFunctionType
1876    = FromPointeeType->getAs<FunctionProtoType>();
1877  const FunctionProtoType *ToFunctionType
1878    = ToPointeeType->getAs<FunctionProtoType>();
1879
1880  if (!FromFunctionType || !ToFunctionType)
1881    return false;
1882
1883  if (Context.hasSameType(FromPointeeType, ToPointeeType))
1884    return true;
1885
1886  // Perform the quick checks that will tell us whether these
1887  // function types are obviously different.
1888  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1889      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
1890    return false;
1891
1892  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
1893  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
1894  if (FromEInfo != ToEInfo)
1895    return false;
1896
1897  bool IncompatibleObjC = false;
1898  if (Context.hasSameType(FromFunctionType->getResultType(),
1899                          ToFunctionType->getResultType())) {
1900    // Okay, the types match exactly. Nothing to do.
1901  } else {
1902    QualType RHS = FromFunctionType->getResultType();
1903    QualType LHS = ToFunctionType->getResultType();
1904    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
1905        !RHS.hasQualifiers() && LHS.hasQualifiers())
1906       LHS = LHS.getUnqualifiedType();
1907
1908     if (Context.hasSameType(RHS,LHS)) {
1909       // OK exact match.
1910     } else if (isObjCPointerConversion(RHS, LHS,
1911                                        ConvertedType, IncompatibleObjC)) {
1912     if (IncompatibleObjC)
1913       return false;
1914     // Okay, we have an Objective-C pointer conversion.
1915     }
1916     else
1917       return false;
1918   }
1919
1920   // Check argument types.
1921   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1922        ArgIdx != NumArgs; ++ArgIdx) {
1923     IncompatibleObjC = false;
1924     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1925     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1926     if (Context.hasSameType(FromArgType, ToArgType)) {
1927       // Okay, the types match exactly. Nothing to do.
1928     } else if (isObjCPointerConversion(ToArgType, FromArgType,
1929                                        ConvertedType, IncompatibleObjC)) {
1930       if (IncompatibleObjC)
1931         return false;
1932       // Okay, we have an Objective-C pointer conversion.
1933     } else
1934       // Argument types are too different. Abort.
1935       return false;
1936   }
1937   ConvertedType = ToType;
1938   return true;
1939}
1940
1941/// FunctionArgTypesAreEqual - This routine checks two function proto types
1942/// for equlity of their argument types. Caller has already checked that
1943/// they have same number of arguments. This routine assumes that Objective-C
1944/// pointer types which only differ in their protocol qualifiers are equal.
1945bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
1946                                    const FunctionProtoType *NewType) {
1947  if (!getLangOptions().ObjC1)
1948    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1949                      NewType->arg_type_begin());
1950
1951  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1952       N = NewType->arg_type_begin(),
1953       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1954    QualType ToType = (*O);
1955    QualType FromType = (*N);
1956    if (ToType != FromType) {
1957      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1958        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1959          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1960               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1961              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1962               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1963            continue;
1964      }
1965      else if (const ObjCObjectPointerType *PTTo =
1966                 ToType->getAs<ObjCObjectPointerType>()) {
1967        if (const ObjCObjectPointerType *PTFr =
1968              FromType->getAs<ObjCObjectPointerType>())
1969          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1970            continue;
1971      }
1972      return false;
1973    }
1974  }
1975  return true;
1976}
1977
1978/// CheckPointerConversion - Check the pointer conversion from the
1979/// expression From to the type ToType. This routine checks for
1980/// ambiguous or inaccessible derived-to-base pointer
1981/// conversions for which IsPointerConversion has already returned
1982/// true. It returns true and produces a diagnostic if there was an
1983/// error, or returns false otherwise.
1984bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1985                                  CastKind &Kind,
1986                                  CXXCastPath& BasePath,
1987                                  bool IgnoreBaseAccess) {
1988  QualType FromType = From->getType();
1989  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
1990
1991  Kind = CK_BitCast;
1992
1993  if (!IsCStyleOrFunctionalCast &&
1994      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
1995      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
1996    DiagRuntimeBehavior(From->getExprLoc(), From,
1997                        PDiag(diag::warn_impcast_bool_to_null_pointer)
1998                          << ToType << From->getSourceRange());
1999
2000  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
2001    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2002      QualType FromPointeeType = FromPtrType->getPointeeType(),
2003               ToPointeeType   = ToPtrType->getPointeeType();
2004
2005      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2006          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2007        // We must have a derived-to-base conversion. Check an
2008        // ambiguous or inaccessible conversion.
2009        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2010                                         From->getExprLoc(),
2011                                         From->getSourceRange(), &BasePath,
2012                                         IgnoreBaseAccess))
2013          return true;
2014
2015        // The conversion was successful.
2016        Kind = CK_DerivedToBase;
2017      }
2018    }
2019  if (const ObjCObjectPointerType *FromPtrType =
2020        FromType->getAs<ObjCObjectPointerType>()) {
2021    if (const ObjCObjectPointerType *ToPtrType =
2022          ToType->getAs<ObjCObjectPointerType>()) {
2023      // Objective-C++ conversions are always okay.
2024      // FIXME: We should have a different class of conversions for the
2025      // Objective-C++ implicit conversions.
2026      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2027        return false;
2028    }
2029  }
2030
2031  // We shouldn't fall into this case unless it's valid for other
2032  // reasons.
2033  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2034    Kind = CK_NullToPointer;
2035
2036  return false;
2037}
2038
2039/// IsMemberPointerConversion - Determines whether the conversion of the
2040/// expression From, which has the (possibly adjusted) type FromType, can be
2041/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2042/// If so, returns true and places the converted type (that might differ from
2043/// ToType in its cv-qualifiers at some level) into ConvertedType.
2044bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2045                                     QualType ToType,
2046                                     bool InOverloadResolution,
2047                                     QualType &ConvertedType) {
2048  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2049  if (!ToTypePtr)
2050    return false;
2051
2052  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2053  if (From->isNullPointerConstant(Context,
2054                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2055                                        : Expr::NPC_ValueDependentIsNull)) {
2056    ConvertedType = ToType;
2057    return true;
2058  }
2059
2060  // Otherwise, both types have to be member pointers.
2061  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2062  if (!FromTypePtr)
2063    return false;
2064
2065  // A pointer to member of B can be converted to a pointer to member of D,
2066  // where D is derived from B (C++ 4.11p2).
2067  QualType FromClass(FromTypePtr->getClass(), 0);
2068  QualType ToClass(ToTypePtr->getClass(), 0);
2069
2070  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2071      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2072      IsDerivedFrom(ToClass, FromClass)) {
2073    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2074                                                 ToClass.getTypePtr());
2075    return true;
2076  }
2077
2078  return false;
2079}
2080
2081/// CheckMemberPointerConversion - Check the member pointer conversion from the
2082/// expression From to the type ToType. This routine checks for ambiguous or
2083/// virtual or inaccessible base-to-derived member pointer conversions
2084/// for which IsMemberPointerConversion has already returned true. It returns
2085/// true and produces a diagnostic if there was an error, or returns false
2086/// otherwise.
2087bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2088                                        CastKind &Kind,
2089                                        CXXCastPath &BasePath,
2090                                        bool IgnoreBaseAccess) {
2091  QualType FromType = From->getType();
2092  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2093  if (!FromPtrType) {
2094    // This must be a null pointer to member pointer conversion
2095    assert(From->isNullPointerConstant(Context,
2096                                       Expr::NPC_ValueDependentIsNull) &&
2097           "Expr must be null pointer constant!");
2098    Kind = CK_NullToMemberPointer;
2099    return false;
2100  }
2101
2102  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2103  assert(ToPtrType && "No member pointer cast has a target type "
2104                      "that is not a member pointer.");
2105
2106  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2107  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2108
2109  // FIXME: What about dependent types?
2110  assert(FromClass->isRecordType() && "Pointer into non-class.");
2111  assert(ToClass->isRecordType() && "Pointer into non-class.");
2112
2113  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2114                     /*DetectVirtual=*/true);
2115  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2116  assert(DerivationOkay &&
2117         "Should not have been called if derivation isn't OK.");
2118  (void)DerivationOkay;
2119
2120  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2121                                  getUnqualifiedType())) {
2122    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2123    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2124      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2125    return true;
2126  }
2127
2128  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2129    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2130      << FromClass << ToClass << QualType(VBase, 0)
2131      << From->getSourceRange();
2132    return true;
2133  }
2134
2135  if (!IgnoreBaseAccess)
2136    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2137                         Paths.front(),
2138                         diag::err_downcast_from_inaccessible_base);
2139
2140  // Must be a base to derived member conversion.
2141  BuildBasePathArray(Paths, BasePath);
2142  Kind = CK_BaseToDerivedMemberPointer;
2143  return false;
2144}
2145
2146/// IsQualificationConversion - Determines whether the conversion from
2147/// an rvalue of type FromType to ToType is a qualification conversion
2148/// (C++ 4.4).
2149bool
2150Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2151                                bool CStyle) {
2152  FromType = Context.getCanonicalType(FromType);
2153  ToType = Context.getCanonicalType(ToType);
2154
2155  // If FromType and ToType are the same type, this is not a
2156  // qualification conversion.
2157  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2158    return false;
2159
2160  // (C++ 4.4p4):
2161  //   A conversion can add cv-qualifiers at levels other than the first
2162  //   in multi-level pointers, subject to the following rules: [...]
2163  bool PreviousToQualsIncludeConst = true;
2164  bool UnwrappedAnyPointer = false;
2165  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2166    // Within each iteration of the loop, we check the qualifiers to
2167    // determine if this still looks like a qualification
2168    // conversion. Then, if all is well, we unwrap one more level of
2169    // pointers or pointers-to-members and do it all again
2170    // until there are no more pointers or pointers-to-members left to
2171    // unwrap.
2172    UnwrappedAnyPointer = true;
2173
2174    Qualifiers FromQuals = FromType.getQualifiers();
2175    Qualifiers ToQuals = ToType.getQualifiers();
2176
2177    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2178    //      2,j, and similarly for volatile.
2179    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2180      return false;
2181
2182    //   -- if the cv 1,j and cv 2,j are different, then const is in
2183    //      every cv for 0 < k < j.
2184    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2185        && !PreviousToQualsIncludeConst)
2186      return false;
2187
2188    // Keep track of whether all prior cv-qualifiers in the "to" type
2189    // include const.
2190    PreviousToQualsIncludeConst
2191      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2192  }
2193
2194  // We are left with FromType and ToType being the pointee types
2195  // after unwrapping the original FromType and ToType the same number
2196  // of types. If we unwrapped any pointers, and if FromType and
2197  // ToType have the same unqualified type (since we checked
2198  // qualifiers above), then this is a qualification conversion.
2199  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2200}
2201
2202/// Determines whether there is a user-defined conversion sequence
2203/// (C++ [over.ics.user]) that converts expression From to the type
2204/// ToType. If such a conversion exists, User will contain the
2205/// user-defined conversion sequence that performs such a conversion
2206/// and this routine will return true. Otherwise, this routine returns
2207/// false and User is unspecified.
2208///
2209/// \param AllowExplicit  true if the conversion should consider C++0x
2210/// "explicit" conversion functions as well as non-explicit conversion
2211/// functions (C++0x [class.conv.fct]p2).
2212static OverloadingResult
2213IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2214                        UserDefinedConversionSequence& User,
2215                        OverloadCandidateSet& CandidateSet,
2216                        bool AllowExplicit) {
2217  // Whether we will only visit constructors.
2218  bool ConstructorsOnly = false;
2219
2220  // If the type we are conversion to is a class type, enumerate its
2221  // constructors.
2222  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2223    // C++ [over.match.ctor]p1:
2224    //   When objects of class type are direct-initialized (8.5), or
2225    //   copy-initialized from an expression of the same or a
2226    //   derived class type (8.5), overload resolution selects the
2227    //   constructor. [...] For copy-initialization, the candidate
2228    //   functions are all the converting constructors (12.3.1) of
2229    //   that class. The argument list is the expression-list within
2230    //   the parentheses of the initializer.
2231    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2232        (From->getType()->getAs<RecordType>() &&
2233         S.IsDerivedFrom(From->getType(), ToType)))
2234      ConstructorsOnly = true;
2235
2236    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2237    // RequireCompleteType may have returned true due to some invalid decl
2238    // during template instantiation, but ToType may be complete enough now
2239    // to try to recover.
2240    if (ToType->isIncompleteType()) {
2241      // We're not going to find any constructors.
2242    } else if (CXXRecordDecl *ToRecordDecl
2243                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2244      DeclContext::lookup_iterator Con, ConEnd;
2245      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2246           Con != ConEnd; ++Con) {
2247        NamedDecl *D = *Con;
2248        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2249
2250        // Find the constructor (which may be a template).
2251        CXXConstructorDecl *Constructor = 0;
2252        FunctionTemplateDecl *ConstructorTmpl
2253          = dyn_cast<FunctionTemplateDecl>(D);
2254        if (ConstructorTmpl)
2255          Constructor
2256            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2257        else
2258          Constructor = cast<CXXConstructorDecl>(D);
2259
2260        if (!Constructor->isInvalidDecl() &&
2261            Constructor->isConvertingConstructor(AllowExplicit)) {
2262          if (ConstructorTmpl)
2263            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2264                                           /*ExplicitArgs*/ 0,
2265                                           &From, 1, CandidateSet,
2266                                           /*SuppressUserConversions=*/
2267                                             !ConstructorsOnly);
2268          else
2269            // Allow one user-defined conversion when user specifies a
2270            // From->ToType conversion via an static cast (c-style, etc).
2271            S.AddOverloadCandidate(Constructor, FoundDecl,
2272                                   &From, 1, CandidateSet,
2273                                   /*SuppressUserConversions=*/
2274                                     !ConstructorsOnly);
2275        }
2276      }
2277    }
2278  }
2279
2280  // Enumerate conversion functions, if we're allowed to.
2281  if (ConstructorsOnly) {
2282  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2283                                   S.PDiag(0) << From->getSourceRange())) {
2284    // No conversion functions from incomplete types.
2285  } else if (const RecordType *FromRecordType
2286                                   = From->getType()->getAs<RecordType>()) {
2287    if (CXXRecordDecl *FromRecordDecl
2288         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2289      // Add all of the conversion functions as candidates.
2290      const UnresolvedSetImpl *Conversions
2291        = FromRecordDecl->getVisibleConversionFunctions();
2292      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2293             E = Conversions->end(); I != E; ++I) {
2294        DeclAccessPair FoundDecl = I.getPair();
2295        NamedDecl *D = FoundDecl.getDecl();
2296        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2297        if (isa<UsingShadowDecl>(D))
2298          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2299
2300        CXXConversionDecl *Conv;
2301        FunctionTemplateDecl *ConvTemplate;
2302        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2303          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2304        else
2305          Conv = cast<CXXConversionDecl>(D);
2306
2307        if (AllowExplicit || !Conv->isExplicit()) {
2308          if (ConvTemplate)
2309            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2310                                             ActingContext, From, ToType,
2311                                             CandidateSet);
2312          else
2313            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2314                                     From, ToType, CandidateSet);
2315        }
2316      }
2317    }
2318  }
2319
2320  OverloadCandidateSet::iterator Best;
2321  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2322  case OR_Success:
2323    // Record the standard conversion we used and the conversion function.
2324    if (CXXConstructorDecl *Constructor
2325          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2326      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2327
2328      // C++ [over.ics.user]p1:
2329      //   If the user-defined conversion is specified by a
2330      //   constructor (12.3.1), the initial standard conversion
2331      //   sequence converts the source type to the type required by
2332      //   the argument of the constructor.
2333      //
2334      QualType ThisType = Constructor->getThisType(S.Context);
2335      if (Best->Conversions[0].isEllipsis())
2336        User.EllipsisConversion = true;
2337      else {
2338        User.Before = Best->Conversions[0].Standard;
2339        User.EllipsisConversion = false;
2340      }
2341      User.ConversionFunction = Constructor;
2342      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2343      User.After.setAsIdentityConversion();
2344      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2345      User.After.setAllToTypes(ToType);
2346      return OR_Success;
2347    } else if (CXXConversionDecl *Conversion
2348                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2349      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2350
2351      // C++ [over.ics.user]p1:
2352      //
2353      //   [...] If the user-defined conversion is specified by a
2354      //   conversion function (12.3.2), the initial standard
2355      //   conversion sequence converts the source type to the
2356      //   implicit object parameter of the conversion function.
2357      User.Before = Best->Conversions[0].Standard;
2358      User.ConversionFunction = Conversion;
2359      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2360      User.EllipsisConversion = false;
2361
2362      // C++ [over.ics.user]p2:
2363      //   The second standard conversion sequence converts the
2364      //   result of the user-defined conversion to the target type
2365      //   for the sequence. Since an implicit conversion sequence
2366      //   is an initialization, the special rules for
2367      //   initialization by user-defined conversion apply when
2368      //   selecting the best user-defined conversion for a
2369      //   user-defined conversion sequence (see 13.3.3 and
2370      //   13.3.3.1).
2371      User.After = Best->FinalConversion;
2372      return OR_Success;
2373    } else {
2374      llvm_unreachable("Not a constructor or conversion function?");
2375      return OR_No_Viable_Function;
2376    }
2377
2378  case OR_No_Viable_Function:
2379    return OR_No_Viable_Function;
2380  case OR_Deleted:
2381    // No conversion here! We're done.
2382    return OR_Deleted;
2383
2384  case OR_Ambiguous:
2385    return OR_Ambiguous;
2386  }
2387
2388  return OR_No_Viable_Function;
2389}
2390
2391bool
2392Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2393  ImplicitConversionSequence ICS;
2394  OverloadCandidateSet CandidateSet(From->getExprLoc());
2395  OverloadingResult OvResult =
2396    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2397                            CandidateSet, false);
2398  if (OvResult == OR_Ambiguous)
2399    Diag(From->getSourceRange().getBegin(),
2400         diag::err_typecheck_ambiguous_condition)
2401          << From->getType() << ToType << From->getSourceRange();
2402  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2403    Diag(From->getSourceRange().getBegin(),
2404         diag::err_typecheck_nonviable_condition)
2405    << From->getType() << ToType << From->getSourceRange();
2406  else
2407    return false;
2408  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2409  return true;
2410}
2411
2412/// CompareImplicitConversionSequences - Compare two implicit
2413/// conversion sequences to determine whether one is better than the
2414/// other or if they are indistinguishable (C++ 13.3.3.2).
2415static ImplicitConversionSequence::CompareKind
2416CompareImplicitConversionSequences(Sema &S,
2417                                   const ImplicitConversionSequence& ICS1,
2418                                   const ImplicitConversionSequence& ICS2)
2419{
2420  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2421  // conversion sequences (as defined in 13.3.3.1)
2422  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2423  //      conversion sequence than a user-defined conversion sequence or
2424  //      an ellipsis conversion sequence, and
2425  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2426  //      conversion sequence than an ellipsis conversion sequence
2427  //      (13.3.3.1.3).
2428  //
2429  // C++0x [over.best.ics]p10:
2430  //   For the purpose of ranking implicit conversion sequences as
2431  //   described in 13.3.3.2, the ambiguous conversion sequence is
2432  //   treated as a user-defined sequence that is indistinguishable
2433  //   from any other user-defined conversion sequence.
2434  if (ICS1.getKindRank() < ICS2.getKindRank())
2435    return ImplicitConversionSequence::Better;
2436  else if (ICS2.getKindRank() < ICS1.getKindRank())
2437    return ImplicitConversionSequence::Worse;
2438
2439  // The following checks require both conversion sequences to be of
2440  // the same kind.
2441  if (ICS1.getKind() != ICS2.getKind())
2442    return ImplicitConversionSequence::Indistinguishable;
2443
2444  // Two implicit conversion sequences of the same form are
2445  // indistinguishable conversion sequences unless one of the
2446  // following rules apply: (C++ 13.3.3.2p3):
2447  if (ICS1.isStandard())
2448    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2449  else if (ICS1.isUserDefined()) {
2450    // User-defined conversion sequence U1 is a better conversion
2451    // sequence than another user-defined conversion sequence U2 if
2452    // they contain the same user-defined conversion function or
2453    // constructor and if the second standard conversion sequence of
2454    // U1 is better than the second standard conversion sequence of
2455    // U2 (C++ 13.3.3.2p3).
2456    if (ICS1.UserDefined.ConversionFunction ==
2457          ICS2.UserDefined.ConversionFunction)
2458      return CompareStandardConversionSequences(S,
2459                                                ICS1.UserDefined.After,
2460                                                ICS2.UserDefined.After);
2461  }
2462
2463  return ImplicitConversionSequence::Indistinguishable;
2464}
2465
2466static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2467  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2468    Qualifiers Quals;
2469    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2470    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2471  }
2472
2473  return Context.hasSameUnqualifiedType(T1, T2);
2474}
2475
2476// Per 13.3.3.2p3, compare the given standard conversion sequences to
2477// determine if one is a proper subset of the other.
2478static ImplicitConversionSequence::CompareKind
2479compareStandardConversionSubsets(ASTContext &Context,
2480                                 const StandardConversionSequence& SCS1,
2481                                 const StandardConversionSequence& SCS2) {
2482  ImplicitConversionSequence::CompareKind Result
2483    = ImplicitConversionSequence::Indistinguishable;
2484
2485  // the identity conversion sequence is considered to be a subsequence of
2486  // any non-identity conversion sequence
2487  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2488    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2489      return ImplicitConversionSequence::Better;
2490    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2491      return ImplicitConversionSequence::Worse;
2492  }
2493
2494  if (SCS1.Second != SCS2.Second) {
2495    if (SCS1.Second == ICK_Identity)
2496      Result = ImplicitConversionSequence::Better;
2497    else if (SCS2.Second == ICK_Identity)
2498      Result = ImplicitConversionSequence::Worse;
2499    else
2500      return ImplicitConversionSequence::Indistinguishable;
2501  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2502    return ImplicitConversionSequence::Indistinguishable;
2503
2504  if (SCS1.Third == SCS2.Third) {
2505    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2506                             : ImplicitConversionSequence::Indistinguishable;
2507  }
2508
2509  if (SCS1.Third == ICK_Identity)
2510    return Result == ImplicitConversionSequence::Worse
2511             ? ImplicitConversionSequence::Indistinguishable
2512             : ImplicitConversionSequence::Better;
2513
2514  if (SCS2.Third == ICK_Identity)
2515    return Result == ImplicitConversionSequence::Better
2516             ? ImplicitConversionSequence::Indistinguishable
2517             : ImplicitConversionSequence::Worse;
2518
2519  return ImplicitConversionSequence::Indistinguishable;
2520}
2521
2522/// \brief Determine whether one of the given reference bindings is better
2523/// than the other based on what kind of bindings they are.
2524static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2525                                       const StandardConversionSequence &SCS2) {
2526  // C++0x [over.ics.rank]p3b4:
2527  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2528  //      implicit object parameter of a non-static member function declared
2529  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2530  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2531  //      lvalue reference to a function lvalue and S2 binds an rvalue
2532  //      reference*.
2533  //
2534  // FIXME: Rvalue references. We're going rogue with the above edits,
2535  // because the semantics in the current C++0x working paper (N3225 at the
2536  // time of this writing) break the standard definition of std::forward
2537  // and std::reference_wrapper when dealing with references to functions.
2538  // Proposed wording changes submitted to CWG for consideration.
2539  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2540      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2541    return false;
2542
2543  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2544          SCS2.IsLvalueReference) ||
2545         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2546          !SCS2.IsLvalueReference);
2547}
2548
2549/// CompareStandardConversionSequences - Compare two standard
2550/// conversion sequences to determine whether one is better than the
2551/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2552static ImplicitConversionSequence::CompareKind
2553CompareStandardConversionSequences(Sema &S,
2554                                   const StandardConversionSequence& SCS1,
2555                                   const StandardConversionSequence& SCS2)
2556{
2557  // Standard conversion sequence S1 is a better conversion sequence
2558  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2559
2560  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2561  //     sequences in the canonical form defined by 13.3.3.1.1,
2562  //     excluding any Lvalue Transformation; the identity conversion
2563  //     sequence is considered to be a subsequence of any
2564  //     non-identity conversion sequence) or, if not that,
2565  if (ImplicitConversionSequence::CompareKind CK
2566        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2567    return CK;
2568
2569  //  -- the rank of S1 is better than the rank of S2 (by the rules
2570  //     defined below), or, if not that,
2571  ImplicitConversionRank Rank1 = SCS1.getRank();
2572  ImplicitConversionRank Rank2 = SCS2.getRank();
2573  if (Rank1 < Rank2)
2574    return ImplicitConversionSequence::Better;
2575  else if (Rank2 < Rank1)
2576    return ImplicitConversionSequence::Worse;
2577
2578  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2579  // are indistinguishable unless one of the following rules
2580  // applies:
2581
2582  //   A conversion that is not a conversion of a pointer, or
2583  //   pointer to member, to bool is better than another conversion
2584  //   that is such a conversion.
2585  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2586    return SCS2.isPointerConversionToBool()
2587             ? ImplicitConversionSequence::Better
2588             : ImplicitConversionSequence::Worse;
2589
2590  // C++ [over.ics.rank]p4b2:
2591  //
2592  //   If class B is derived directly or indirectly from class A,
2593  //   conversion of B* to A* is better than conversion of B* to
2594  //   void*, and conversion of A* to void* is better than conversion
2595  //   of B* to void*.
2596  bool SCS1ConvertsToVoid
2597    = SCS1.isPointerConversionToVoidPointer(S.Context);
2598  bool SCS2ConvertsToVoid
2599    = SCS2.isPointerConversionToVoidPointer(S.Context);
2600  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2601    // Exactly one of the conversion sequences is a conversion to
2602    // a void pointer; it's the worse conversion.
2603    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2604                              : ImplicitConversionSequence::Worse;
2605  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2606    // Neither conversion sequence converts to a void pointer; compare
2607    // their derived-to-base conversions.
2608    if (ImplicitConversionSequence::CompareKind DerivedCK
2609          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2610      return DerivedCK;
2611  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2612    // Both conversion sequences are conversions to void
2613    // pointers. Compare the source types to determine if there's an
2614    // inheritance relationship in their sources.
2615    QualType FromType1 = SCS1.getFromType();
2616    QualType FromType2 = SCS2.getFromType();
2617
2618    // Adjust the types we're converting from via the array-to-pointer
2619    // conversion, if we need to.
2620    if (SCS1.First == ICK_Array_To_Pointer)
2621      FromType1 = S.Context.getArrayDecayedType(FromType1);
2622    if (SCS2.First == ICK_Array_To_Pointer)
2623      FromType2 = S.Context.getArrayDecayedType(FromType2);
2624
2625    QualType FromPointee1
2626      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2627    QualType FromPointee2
2628      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2629
2630    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2631      return ImplicitConversionSequence::Better;
2632    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2633      return ImplicitConversionSequence::Worse;
2634
2635    // Objective-C++: If one interface is more specific than the
2636    // other, it is the better one.
2637    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2638    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2639    if (FromIface1 && FromIface1) {
2640      if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2641        return ImplicitConversionSequence::Better;
2642      else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2643        return ImplicitConversionSequence::Worse;
2644    }
2645  }
2646
2647  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2648  // bullet 3).
2649  if (ImplicitConversionSequence::CompareKind QualCK
2650        = CompareQualificationConversions(S, SCS1, SCS2))
2651    return QualCK;
2652
2653  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2654    // Check for a better reference binding based on the kind of bindings.
2655    if (isBetterReferenceBindingKind(SCS1, SCS2))
2656      return ImplicitConversionSequence::Better;
2657    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2658      return ImplicitConversionSequence::Worse;
2659
2660    // C++ [over.ics.rank]p3b4:
2661    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2662    //      which the references refer are the same type except for
2663    //      top-level cv-qualifiers, and the type to which the reference
2664    //      initialized by S2 refers is more cv-qualified than the type
2665    //      to which the reference initialized by S1 refers.
2666    QualType T1 = SCS1.getToType(2);
2667    QualType T2 = SCS2.getToType(2);
2668    T1 = S.Context.getCanonicalType(T1);
2669    T2 = S.Context.getCanonicalType(T2);
2670    Qualifiers T1Quals, T2Quals;
2671    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2672    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2673    if (UnqualT1 == UnqualT2) {
2674      // If the type is an array type, promote the element qualifiers to the
2675      // type for comparison.
2676      if (isa<ArrayType>(T1) && T1Quals)
2677        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2678      if (isa<ArrayType>(T2) && T2Quals)
2679        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2680      if (T2.isMoreQualifiedThan(T1))
2681        return ImplicitConversionSequence::Better;
2682      else if (T1.isMoreQualifiedThan(T2))
2683        return ImplicitConversionSequence::Worse;
2684    }
2685  }
2686
2687  return ImplicitConversionSequence::Indistinguishable;
2688}
2689
2690/// CompareQualificationConversions - Compares two standard conversion
2691/// sequences to determine whether they can be ranked based on their
2692/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2693ImplicitConversionSequence::CompareKind
2694CompareQualificationConversions(Sema &S,
2695                                const StandardConversionSequence& SCS1,
2696                                const StandardConversionSequence& SCS2) {
2697  // C++ 13.3.3.2p3:
2698  //  -- S1 and S2 differ only in their qualification conversion and
2699  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2700  //     cv-qualification signature of type T1 is a proper subset of
2701  //     the cv-qualification signature of type T2, and S1 is not the
2702  //     deprecated string literal array-to-pointer conversion (4.2).
2703  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2704      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2705    return ImplicitConversionSequence::Indistinguishable;
2706
2707  // FIXME: the example in the standard doesn't use a qualification
2708  // conversion (!)
2709  QualType T1 = SCS1.getToType(2);
2710  QualType T2 = SCS2.getToType(2);
2711  T1 = S.Context.getCanonicalType(T1);
2712  T2 = S.Context.getCanonicalType(T2);
2713  Qualifiers T1Quals, T2Quals;
2714  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2715  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2716
2717  // If the types are the same, we won't learn anything by unwrapped
2718  // them.
2719  if (UnqualT1 == UnqualT2)
2720    return ImplicitConversionSequence::Indistinguishable;
2721
2722  // If the type is an array type, promote the element qualifiers to the type
2723  // for comparison.
2724  if (isa<ArrayType>(T1) && T1Quals)
2725    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2726  if (isa<ArrayType>(T2) && T2Quals)
2727    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2728
2729  ImplicitConversionSequence::CompareKind Result
2730    = ImplicitConversionSequence::Indistinguishable;
2731  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2732    // Within each iteration of the loop, we check the qualifiers to
2733    // determine if this still looks like a qualification
2734    // conversion. Then, if all is well, we unwrap one more level of
2735    // pointers or pointers-to-members and do it all again
2736    // until there are no more pointers or pointers-to-members left
2737    // to unwrap. This essentially mimics what
2738    // IsQualificationConversion does, but here we're checking for a
2739    // strict subset of qualifiers.
2740    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2741      // The qualifiers are the same, so this doesn't tell us anything
2742      // about how the sequences rank.
2743      ;
2744    else if (T2.isMoreQualifiedThan(T1)) {
2745      // T1 has fewer qualifiers, so it could be the better sequence.
2746      if (Result == ImplicitConversionSequence::Worse)
2747        // Neither has qualifiers that are a subset of the other's
2748        // qualifiers.
2749        return ImplicitConversionSequence::Indistinguishable;
2750
2751      Result = ImplicitConversionSequence::Better;
2752    } else if (T1.isMoreQualifiedThan(T2)) {
2753      // T2 has fewer qualifiers, so it could be the better sequence.
2754      if (Result == ImplicitConversionSequence::Better)
2755        // Neither has qualifiers that are a subset of the other's
2756        // qualifiers.
2757        return ImplicitConversionSequence::Indistinguishable;
2758
2759      Result = ImplicitConversionSequence::Worse;
2760    } else {
2761      // Qualifiers are disjoint.
2762      return ImplicitConversionSequence::Indistinguishable;
2763    }
2764
2765    // If the types after this point are equivalent, we're done.
2766    if (S.Context.hasSameUnqualifiedType(T1, T2))
2767      break;
2768  }
2769
2770  // Check that the winning standard conversion sequence isn't using
2771  // the deprecated string literal array to pointer conversion.
2772  switch (Result) {
2773  case ImplicitConversionSequence::Better:
2774    if (SCS1.DeprecatedStringLiteralToCharPtr)
2775      Result = ImplicitConversionSequence::Indistinguishable;
2776    break;
2777
2778  case ImplicitConversionSequence::Indistinguishable:
2779    break;
2780
2781  case ImplicitConversionSequence::Worse:
2782    if (SCS2.DeprecatedStringLiteralToCharPtr)
2783      Result = ImplicitConversionSequence::Indistinguishable;
2784    break;
2785  }
2786
2787  return Result;
2788}
2789
2790/// CompareDerivedToBaseConversions - Compares two standard conversion
2791/// sequences to determine whether they can be ranked based on their
2792/// various kinds of derived-to-base conversions (C++
2793/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2794/// conversions between Objective-C interface types.
2795ImplicitConversionSequence::CompareKind
2796CompareDerivedToBaseConversions(Sema &S,
2797                                const StandardConversionSequence& SCS1,
2798                                const StandardConversionSequence& SCS2) {
2799  QualType FromType1 = SCS1.getFromType();
2800  QualType ToType1 = SCS1.getToType(1);
2801  QualType FromType2 = SCS2.getFromType();
2802  QualType ToType2 = SCS2.getToType(1);
2803
2804  // Adjust the types we're converting from via the array-to-pointer
2805  // conversion, if we need to.
2806  if (SCS1.First == ICK_Array_To_Pointer)
2807    FromType1 = S.Context.getArrayDecayedType(FromType1);
2808  if (SCS2.First == ICK_Array_To_Pointer)
2809    FromType2 = S.Context.getArrayDecayedType(FromType2);
2810
2811  // Canonicalize all of the types.
2812  FromType1 = S.Context.getCanonicalType(FromType1);
2813  ToType1 = S.Context.getCanonicalType(ToType1);
2814  FromType2 = S.Context.getCanonicalType(FromType2);
2815  ToType2 = S.Context.getCanonicalType(ToType2);
2816
2817  // C++ [over.ics.rank]p4b3:
2818  //
2819  //   If class B is derived directly or indirectly from class A and
2820  //   class C is derived directly or indirectly from B,
2821  //
2822  // Compare based on pointer conversions.
2823  if (SCS1.Second == ICK_Pointer_Conversion &&
2824      SCS2.Second == ICK_Pointer_Conversion &&
2825      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2826      FromType1->isPointerType() && FromType2->isPointerType() &&
2827      ToType1->isPointerType() && ToType2->isPointerType()) {
2828    QualType FromPointee1
2829      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2830    QualType ToPointee1
2831      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2832    QualType FromPointee2
2833      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2834    QualType ToPointee2
2835      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2836
2837    //   -- conversion of C* to B* is better than conversion of C* to A*,
2838    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2839      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2840        return ImplicitConversionSequence::Better;
2841      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2842        return ImplicitConversionSequence::Worse;
2843    }
2844
2845    //   -- conversion of B* to A* is better than conversion of C* to A*,
2846    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2847      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2848        return ImplicitConversionSequence::Better;
2849      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2850        return ImplicitConversionSequence::Worse;
2851    }
2852  } else if (SCS1.Second == ICK_Pointer_Conversion &&
2853             SCS2.Second == ICK_Pointer_Conversion) {
2854    const ObjCObjectPointerType *FromPtr1
2855      = FromType1->getAs<ObjCObjectPointerType>();
2856    const ObjCObjectPointerType *FromPtr2
2857      = FromType2->getAs<ObjCObjectPointerType>();
2858    const ObjCObjectPointerType *ToPtr1
2859      = ToType1->getAs<ObjCObjectPointerType>();
2860    const ObjCObjectPointerType *ToPtr2
2861      = ToType2->getAs<ObjCObjectPointerType>();
2862
2863    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
2864      // Apply the same conversion ranking rules for Objective-C pointer types
2865      // that we do for C++ pointers to class types. However, we employ the
2866      // Objective-C pseudo-subtyping relationship used for assignment of
2867      // Objective-C pointer types.
2868      bool FromAssignLeft
2869        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
2870      bool FromAssignRight
2871        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
2872      bool ToAssignLeft
2873        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
2874      bool ToAssignRight
2875        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
2876
2877      // A conversion to an a non-id object pointer type or qualified 'id'
2878      // type is better than a conversion to 'id'.
2879      if (ToPtr1->isObjCIdType() &&
2880          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
2881        return ImplicitConversionSequence::Worse;
2882      if (ToPtr2->isObjCIdType() &&
2883          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
2884        return ImplicitConversionSequence::Better;
2885
2886      // A conversion to a non-id object pointer type is better than a
2887      // conversion to a qualified 'id' type
2888      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
2889        return ImplicitConversionSequence::Worse;
2890      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
2891        return ImplicitConversionSequence::Better;
2892
2893      // A conversion to an a non-Class object pointer type or qualified 'Class'
2894      // type is better than a conversion to 'Class'.
2895      if (ToPtr1->isObjCClassType() &&
2896          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
2897        return ImplicitConversionSequence::Worse;
2898      if (ToPtr2->isObjCClassType() &&
2899          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
2900        return ImplicitConversionSequence::Better;
2901
2902      // A conversion to a non-Class object pointer type is better than a
2903      // conversion to a qualified 'Class' type.
2904      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
2905        return ImplicitConversionSequence::Worse;
2906      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
2907        return ImplicitConversionSequence::Better;
2908
2909      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
2910      if (S.Context.hasSameType(FromType1, FromType2) &&
2911          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
2912          (ToAssignLeft != ToAssignRight))
2913        return ToAssignLeft? ImplicitConversionSequence::Worse
2914                           : ImplicitConversionSequence::Better;
2915
2916      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
2917      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
2918          (FromAssignLeft != FromAssignRight))
2919        return FromAssignLeft? ImplicitConversionSequence::Better
2920        : ImplicitConversionSequence::Worse;
2921    }
2922  }
2923
2924  // Ranking of member-pointer types.
2925  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2926      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2927      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2928    const MemberPointerType * FromMemPointer1 =
2929                                        FromType1->getAs<MemberPointerType>();
2930    const MemberPointerType * ToMemPointer1 =
2931                                          ToType1->getAs<MemberPointerType>();
2932    const MemberPointerType * FromMemPointer2 =
2933                                          FromType2->getAs<MemberPointerType>();
2934    const MemberPointerType * ToMemPointer2 =
2935                                          ToType2->getAs<MemberPointerType>();
2936    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2937    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2938    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2939    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2940    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2941    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2942    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2943    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2944    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2945    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2946      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2947        return ImplicitConversionSequence::Worse;
2948      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2949        return ImplicitConversionSequence::Better;
2950    }
2951    // conversion of B::* to C::* is better than conversion of A::* to C::*
2952    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2953      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2954        return ImplicitConversionSequence::Better;
2955      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2956        return ImplicitConversionSequence::Worse;
2957    }
2958  }
2959
2960  if (SCS1.Second == ICK_Derived_To_Base) {
2961    //   -- conversion of C to B is better than conversion of C to A,
2962    //   -- binding of an expression of type C to a reference of type
2963    //      B& is better than binding an expression of type C to a
2964    //      reference of type A&,
2965    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2966        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2967      if (S.IsDerivedFrom(ToType1, ToType2))
2968        return ImplicitConversionSequence::Better;
2969      else if (S.IsDerivedFrom(ToType2, ToType1))
2970        return ImplicitConversionSequence::Worse;
2971    }
2972
2973    //   -- conversion of B to A is better than conversion of C to A.
2974    //   -- binding of an expression of type B to a reference of type
2975    //      A& is better than binding an expression of type C to a
2976    //      reference of type A&,
2977    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2978        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2979      if (S.IsDerivedFrom(FromType2, FromType1))
2980        return ImplicitConversionSequence::Better;
2981      else if (S.IsDerivedFrom(FromType1, FromType2))
2982        return ImplicitConversionSequence::Worse;
2983    }
2984  }
2985
2986  return ImplicitConversionSequence::Indistinguishable;
2987}
2988
2989/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2990/// determine whether they are reference-related,
2991/// reference-compatible, reference-compatible with added
2992/// qualification, or incompatible, for use in C++ initialization by
2993/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2994/// type, and the first type (T1) is the pointee type of the reference
2995/// type being initialized.
2996Sema::ReferenceCompareResult
2997Sema::CompareReferenceRelationship(SourceLocation Loc,
2998                                   QualType OrigT1, QualType OrigT2,
2999                                   bool &DerivedToBase,
3000                                   bool &ObjCConversion) {
3001  assert(!OrigT1->isReferenceType() &&
3002    "T1 must be the pointee type of the reference type");
3003  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3004
3005  QualType T1 = Context.getCanonicalType(OrigT1);
3006  QualType T2 = Context.getCanonicalType(OrigT2);
3007  Qualifiers T1Quals, T2Quals;
3008  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3009  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3010
3011  // C++ [dcl.init.ref]p4:
3012  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3013  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3014  //   T1 is a base class of T2.
3015  DerivedToBase = false;
3016  ObjCConversion = false;
3017  if (UnqualT1 == UnqualT2) {
3018    // Nothing to do.
3019  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3020           IsDerivedFrom(UnqualT2, UnqualT1))
3021    DerivedToBase = true;
3022  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3023           UnqualT2->isObjCObjectOrInterfaceType() &&
3024           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3025    ObjCConversion = true;
3026  else
3027    return Ref_Incompatible;
3028
3029  // At this point, we know that T1 and T2 are reference-related (at
3030  // least).
3031
3032  // If the type is an array type, promote the element qualifiers to the type
3033  // for comparison.
3034  if (isa<ArrayType>(T1) && T1Quals)
3035    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3036  if (isa<ArrayType>(T2) && T2Quals)
3037    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3038
3039  // C++ [dcl.init.ref]p4:
3040  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3041  //   reference-related to T2 and cv1 is the same cv-qualification
3042  //   as, or greater cv-qualification than, cv2. For purposes of
3043  //   overload resolution, cases for which cv1 is greater
3044  //   cv-qualification than cv2 are identified as
3045  //   reference-compatible with added qualification (see 13.3.3.2).
3046  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
3047    return Ref_Compatible;
3048  else if (T1.isMoreQualifiedThan(T2))
3049    return Ref_Compatible_With_Added_Qualification;
3050  else
3051    return Ref_Related;
3052}
3053
3054/// \brief Look for a user-defined conversion to an value reference-compatible
3055///        with DeclType. Return true if something definite is found.
3056static bool
3057FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3058                         QualType DeclType, SourceLocation DeclLoc,
3059                         Expr *Init, QualType T2, bool AllowRvalues,
3060                         bool AllowExplicit) {
3061  assert(T2->isRecordType() && "Can only find conversions of record types.");
3062  CXXRecordDecl *T2RecordDecl
3063    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3064
3065  OverloadCandidateSet CandidateSet(DeclLoc);
3066  const UnresolvedSetImpl *Conversions
3067    = T2RecordDecl->getVisibleConversionFunctions();
3068  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3069         E = Conversions->end(); I != E; ++I) {
3070    NamedDecl *D = *I;
3071    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3072    if (isa<UsingShadowDecl>(D))
3073      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3074
3075    FunctionTemplateDecl *ConvTemplate
3076      = dyn_cast<FunctionTemplateDecl>(D);
3077    CXXConversionDecl *Conv;
3078    if (ConvTemplate)
3079      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3080    else
3081      Conv = cast<CXXConversionDecl>(D);
3082
3083    // If this is an explicit conversion, and we're not allowed to consider
3084    // explicit conversions, skip it.
3085    if (!AllowExplicit && Conv->isExplicit())
3086      continue;
3087
3088    if (AllowRvalues) {
3089      bool DerivedToBase = false;
3090      bool ObjCConversion = false;
3091      if (!ConvTemplate &&
3092          S.CompareReferenceRelationship(
3093            DeclLoc,
3094            Conv->getConversionType().getNonReferenceType()
3095              .getUnqualifiedType(),
3096            DeclType.getNonReferenceType().getUnqualifiedType(),
3097            DerivedToBase, ObjCConversion) ==
3098          Sema::Ref_Incompatible)
3099        continue;
3100    } else {
3101      // If the conversion function doesn't return a reference type,
3102      // it can't be considered for this conversion. An rvalue reference
3103      // is only acceptable if its referencee is a function type.
3104
3105      const ReferenceType *RefType =
3106        Conv->getConversionType()->getAs<ReferenceType>();
3107      if (!RefType ||
3108          (!RefType->isLValueReferenceType() &&
3109           !RefType->getPointeeType()->isFunctionType()))
3110        continue;
3111    }
3112
3113    if (ConvTemplate)
3114      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3115                                       Init, DeclType, CandidateSet);
3116    else
3117      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3118                               DeclType, CandidateSet);
3119  }
3120
3121  OverloadCandidateSet::iterator Best;
3122  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3123  case OR_Success:
3124    // C++ [over.ics.ref]p1:
3125    //
3126    //   [...] If the parameter binds directly to the result of
3127    //   applying a conversion function to the argument
3128    //   expression, the implicit conversion sequence is a
3129    //   user-defined conversion sequence (13.3.3.1.2), with the
3130    //   second standard conversion sequence either an identity
3131    //   conversion or, if the conversion function returns an
3132    //   entity of a type that is a derived class of the parameter
3133    //   type, a derived-to-base Conversion.
3134    if (!Best->FinalConversion.DirectBinding)
3135      return false;
3136
3137    if (Best->Function)
3138      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3139    ICS.setUserDefined();
3140    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3141    ICS.UserDefined.After = Best->FinalConversion;
3142    ICS.UserDefined.ConversionFunction = Best->Function;
3143    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
3144    ICS.UserDefined.EllipsisConversion = false;
3145    assert(ICS.UserDefined.After.ReferenceBinding &&
3146           ICS.UserDefined.After.DirectBinding &&
3147           "Expected a direct reference binding!");
3148    return true;
3149
3150  case OR_Ambiguous:
3151    ICS.setAmbiguous();
3152    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3153         Cand != CandidateSet.end(); ++Cand)
3154      if (Cand->Viable)
3155        ICS.Ambiguous.addConversion(Cand->Function);
3156    return true;
3157
3158  case OR_No_Viable_Function:
3159  case OR_Deleted:
3160    // There was no suitable conversion, or we found a deleted
3161    // conversion; continue with other checks.
3162    return false;
3163  }
3164
3165  return false;
3166}
3167
3168/// \brief Compute an implicit conversion sequence for reference
3169/// initialization.
3170static ImplicitConversionSequence
3171TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3172                 SourceLocation DeclLoc,
3173                 bool SuppressUserConversions,
3174                 bool AllowExplicit) {
3175  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3176
3177  // Most paths end in a failed conversion.
3178  ImplicitConversionSequence ICS;
3179  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3180
3181  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3182  QualType T2 = Init->getType();
3183
3184  // If the initializer is the address of an overloaded function, try
3185  // to resolve the overloaded function. If all goes well, T2 is the
3186  // type of the resulting function.
3187  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3188    DeclAccessPair Found;
3189    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3190                                                                false, Found))
3191      T2 = Fn->getType();
3192  }
3193
3194  // Compute some basic properties of the types and the initializer.
3195  bool isRValRef = DeclType->isRValueReferenceType();
3196  bool DerivedToBase = false;
3197  bool ObjCConversion = false;
3198  Expr::Classification InitCategory = Init->Classify(S.Context);
3199  Sema::ReferenceCompareResult RefRelationship
3200    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3201                                     ObjCConversion);
3202
3203
3204  // C++0x [dcl.init.ref]p5:
3205  //   A reference to type "cv1 T1" is initialized by an expression
3206  //   of type "cv2 T2" as follows:
3207
3208  //     -- If reference is an lvalue reference and the initializer expression
3209  if (!isRValRef) {
3210    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3211    //        reference-compatible with "cv2 T2," or
3212    //
3213    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3214    if (InitCategory.isLValue() &&
3215        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3216      // C++ [over.ics.ref]p1:
3217      //   When a parameter of reference type binds directly (8.5.3)
3218      //   to an argument expression, the implicit conversion sequence
3219      //   is the identity conversion, unless the argument expression
3220      //   has a type that is a derived class of the parameter type,
3221      //   in which case the implicit conversion sequence is a
3222      //   derived-to-base Conversion (13.3.3.1).
3223      ICS.setStandard();
3224      ICS.Standard.First = ICK_Identity;
3225      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3226                         : ObjCConversion? ICK_Compatible_Conversion
3227                         : ICK_Identity;
3228      ICS.Standard.Third = ICK_Identity;
3229      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3230      ICS.Standard.setToType(0, T2);
3231      ICS.Standard.setToType(1, T1);
3232      ICS.Standard.setToType(2, T1);
3233      ICS.Standard.ReferenceBinding = true;
3234      ICS.Standard.DirectBinding = true;
3235      ICS.Standard.IsLvalueReference = !isRValRef;
3236      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3237      ICS.Standard.BindsToRvalue = false;
3238      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3239      ICS.Standard.CopyConstructor = 0;
3240
3241      // Nothing more to do: the inaccessibility/ambiguity check for
3242      // derived-to-base conversions is suppressed when we're
3243      // computing the implicit conversion sequence (C++
3244      // [over.best.ics]p2).
3245      return ICS;
3246    }
3247
3248    //       -- has a class type (i.e., T2 is a class type), where T1 is
3249    //          not reference-related to T2, and can be implicitly
3250    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3251    //          is reference-compatible with "cv3 T3" 92) (this
3252    //          conversion is selected by enumerating the applicable
3253    //          conversion functions (13.3.1.6) and choosing the best
3254    //          one through overload resolution (13.3)),
3255    if (!SuppressUserConversions && T2->isRecordType() &&
3256        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3257        RefRelationship == Sema::Ref_Incompatible) {
3258      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3259                                   Init, T2, /*AllowRvalues=*/false,
3260                                   AllowExplicit))
3261        return ICS;
3262    }
3263  }
3264
3265  //     -- Otherwise, the reference shall be an lvalue reference to a
3266  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3267  //        shall be an rvalue reference.
3268  //
3269  // We actually handle one oddity of C++ [over.ics.ref] at this
3270  // point, which is that, due to p2 (which short-circuits reference
3271  // binding by only attempting a simple conversion for non-direct
3272  // bindings) and p3's strange wording, we allow a const volatile
3273  // reference to bind to an rvalue. Hence the check for the presence
3274  // of "const" rather than checking for "const" being the only
3275  // qualifier.
3276  // This is also the point where rvalue references and lvalue inits no longer
3277  // go together.
3278  if (!isRValRef && !T1.isConstQualified())
3279    return ICS;
3280
3281  //       -- If the initializer expression
3282  //
3283  //            -- is an xvalue, class prvalue, array prvalue or function
3284  //               lvalue and "cv1T1" is reference-compatible with "cv2 T2", or
3285  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3286      (InitCategory.isXValue() ||
3287      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3288      (InitCategory.isLValue() && T2->isFunctionType()))) {
3289    ICS.setStandard();
3290    ICS.Standard.First = ICK_Identity;
3291    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3292                      : ObjCConversion? ICK_Compatible_Conversion
3293                      : ICK_Identity;
3294    ICS.Standard.Third = ICK_Identity;
3295    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3296    ICS.Standard.setToType(0, T2);
3297    ICS.Standard.setToType(1, T1);
3298    ICS.Standard.setToType(2, T1);
3299    ICS.Standard.ReferenceBinding = true;
3300    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3301    // binding unless we're binding to a class prvalue.
3302    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3303    // allow the use of rvalue references in C++98/03 for the benefit of
3304    // standard library implementors; therefore, we need the xvalue check here.
3305    ICS.Standard.DirectBinding =
3306      S.getLangOptions().CPlusPlus0x ||
3307      (InitCategory.isPRValue() && !T2->isRecordType());
3308    ICS.Standard.IsLvalueReference = !isRValRef;
3309    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3310    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3311    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3312    ICS.Standard.CopyConstructor = 0;
3313    return ICS;
3314  }
3315
3316  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3317  //               reference-related to T2, and can be implicitly converted to
3318  //               an xvalue, class prvalue, or function lvalue of type
3319  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3320  //               "cv3 T3",
3321  //
3322  //          then the reference is bound to the value of the initializer
3323  //          expression in the first case and to the result of the conversion
3324  //          in the second case (or, in either case, to an appropriate base
3325  //          class subobject).
3326  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3327      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3328      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3329                               Init, T2, /*AllowRvalues=*/true,
3330                               AllowExplicit)) {
3331    // In the second case, if the reference is an rvalue reference
3332    // and the second standard conversion sequence of the
3333    // user-defined conversion sequence includes an lvalue-to-rvalue
3334    // conversion, the program is ill-formed.
3335    if (ICS.isUserDefined() && isRValRef &&
3336        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3337      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3338
3339    return ICS;
3340  }
3341
3342  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3343  //          initialized from the initializer expression using the
3344  //          rules for a non-reference copy initialization (8.5). The
3345  //          reference is then bound to the temporary. If T1 is
3346  //          reference-related to T2, cv1 must be the same
3347  //          cv-qualification as, or greater cv-qualification than,
3348  //          cv2; otherwise, the program is ill-formed.
3349  if (RefRelationship == Sema::Ref_Related) {
3350    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3351    // we would be reference-compatible or reference-compatible with
3352    // added qualification. But that wasn't the case, so the reference
3353    // initialization fails.
3354    return ICS;
3355  }
3356
3357  // If at least one of the types is a class type, the types are not
3358  // related, and we aren't allowed any user conversions, the
3359  // reference binding fails. This case is important for breaking
3360  // recursion, since TryImplicitConversion below will attempt to
3361  // create a temporary through the use of a copy constructor.
3362  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3363      (T1->isRecordType() || T2->isRecordType()))
3364    return ICS;
3365
3366  // If T1 is reference-related to T2 and the reference is an rvalue
3367  // reference, the initializer expression shall not be an lvalue.
3368  if (RefRelationship >= Sema::Ref_Related &&
3369      isRValRef && Init->Classify(S.Context).isLValue())
3370    return ICS;
3371
3372  // C++ [over.ics.ref]p2:
3373  //   When a parameter of reference type is not bound directly to
3374  //   an argument expression, the conversion sequence is the one
3375  //   required to convert the argument expression to the
3376  //   underlying type of the reference according to
3377  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3378  //   to copy-initializing a temporary of the underlying type with
3379  //   the argument expression. Any difference in top-level
3380  //   cv-qualification is subsumed by the initialization itself
3381  //   and does not constitute a conversion.
3382  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3383                              /*AllowExplicit=*/false,
3384                              /*InOverloadResolution=*/false,
3385                              /*CStyle=*/false);
3386
3387  // Of course, that's still a reference binding.
3388  if (ICS.isStandard()) {
3389    ICS.Standard.ReferenceBinding = true;
3390    ICS.Standard.IsLvalueReference = !isRValRef;
3391    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3392    ICS.Standard.BindsToRvalue = true;
3393    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3394  } else if (ICS.isUserDefined()) {
3395    ICS.UserDefined.After.ReferenceBinding = true;
3396    ICS.Standard.IsLvalueReference = !isRValRef;
3397    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3398    ICS.Standard.BindsToRvalue = true;
3399    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3400  }
3401
3402  return ICS;
3403}
3404
3405/// TryCopyInitialization - Try to copy-initialize a value of type
3406/// ToType from the expression From. Return the implicit conversion
3407/// sequence required to pass this argument, which may be a bad
3408/// conversion sequence (meaning that the argument cannot be passed to
3409/// a parameter of this type). If @p SuppressUserConversions, then we
3410/// do not permit any user-defined conversion sequences.
3411static ImplicitConversionSequence
3412TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3413                      bool SuppressUserConversions,
3414                      bool InOverloadResolution) {
3415  if (ToType->isReferenceType())
3416    return TryReferenceInit(S, From, ToType,
3417                            /*FIXME:*/From->getLocStart(),
3418                            SuppressUserConversions,
3419                            /*AllowExplicit=*/false);
3420
3421  return TryImplicitConversion(S, From, ToType,
3422                               SuppressUserConversions,
3423                               /*AllowExplicit=*/false,
3424                               InOverloadResolution,
3425                               /*CStyle=*/false);
3426}
3427
3428/// TryObjectArgumentInitialization - Try to initialize the object
3429/// parameter of the given member function (@c Method) from the
3430/// expression @p From.
3431static ImplicitConversionSequence
3432TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3433                                Expr::Classification FromClassification,
3434                                CXXMethodDecl *Method,
3435                                CXXRecordDecl *ActingContext) {
3436  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3437  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3438  //                 const volatile object.
3439  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3440    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3441  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3442
3443  // Set up the conversion sequence as a "bad" conversion, to allow us
3444  // to exit early.
3445  ImplicitConversionSequence ICS;
3446
3447  // We need to have an object of class type.
3448  QualType FromType = OrigFromType;
3449  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3450    FromType = PT->getPointeeType();
3451
3452    // When we had a pointer, it's implicitly dereferenced, so we
3453    // better have an lvalue.
3454    assert(FromClassification.isLValue());
3455  }
3456
3457  assert(FromType->isRecordType());
3458
3459  // C++0x [over.match.funcs]p4:
3460  //   For non-static member functions, the type of the implicit object
3461  //   parameter is
3462  //
3463  //     - "lvalue reference to cv X" for functions declared without a
3464  //        ref-qualifier or with the & ref-qualifier
3465  //     - "rvalue reference to cv X" for functions declared with the &&
3466  //        ref-qualifier
3467  //
3468  // where X is the class of which the function is a member and cv is the
3469  // cv-qualification on the member function declaration.
3470  //
3471  // However, when finding an implicit conversion sequence for the argument, we
3472  // are not allowed to create temporaries or perform user-defined conversions
3473  // (C++ [over.match.funcs]p5). We perform a simplified version of
3474  // reference binding here, that allows class rvalues to bind to
3475  // non-constant references.
3476
3477  // First check the qualifiers.
3478  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3479  if (ImplicitParamType.getCVRQualifiers()
3480                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3481      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3482    ICS.setBad(BadConversionSequence::bad_qualifiers,
3483               OrigFromType, ImplicitParamType);
3484    return ICS;
3485  }
3486
3487  // Check that we have either the same type or a derived type. It
3488  // affects the conversion rank.
3489  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3490  ImplicitConversionKind SecondKind;
3491  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3492    SecondKind = ICK_Identity;
3493  } else if (S.IsDerivedFrom(FromType, ClassType))
3494    SecondKind = ICK_Derived_To_Base;
3495  else {
3496    ICS.setBad(BadConversionSequence::unrelated_class,
3497               FromType, ImplicitParamType);
3498    return ICS;
3499  }
3500
3501  // Check the ref-qualifier.
3502  switch (Method->getRefQualifier()) {
3503  case RQ_None:
3504    // Do nothing; we don't care about lvalueness or rvalueness.
3505    break;
3506
3507  case RQ_LValue:
3508    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3509      // non-const lvalue reference cannot bind to an rvalue
3510      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3511                 ImplicitParamType);
3512      return ICS;
3513    }
3514    break;
3515
3516  case RQ_RValue:
3517    if (!FromClassification.isRValue()) {
3518      // rvalue reference cannot bind to an lvalue
3519      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3520                 ImplicitParamType);
3521      return ICS;
3522    }
3523    break;
3524  }
3525
3526  // Success. Mark this as a reference binding.
3527  ICS.setStandard();
3528  ICS.Standard.setAsIdentityConversion();
3529  ICS.Standard.Second = SecondKind;
3530  ICS.Standard.setFromType(FromType);
3531  ICS.Standard.setAllToTypes(ImplicitParamType);
3532  ICS.Standard.ReferenceBinding = true;
3533  ICS.Standard.DirectBinding = true;
3534  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3535  ICS.Standard.BindsToFunctionLvalue = false;
3536  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
3537  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
3538    = (Method->getRefQualifier() == RQ_None);
3539  return ICS;
3540}
3541
3542/// PerformObjectArgumentInitialization - Perform initialization of
3543/// the implicit object parameter for the given Method with the given
3544/// expression.
3545ExprResult
3546Sema::PerformObjectArgumentInitialization(Expr *From,
3547                                          NestedNameSpecifier *Qualifier,
3548                                          NamedDecl *FoundDecl,
3549                                          CXXMethodDecl *Method) {
3550  QualType FromRecordType, DestType;
3551  QualType ImplicitParamRecordType  =
3552    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3553
3554  Expr::Classification FromClassification;
3555  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3556    FromRecordType = PT->getPointeeType();
3557    DestType = Method->getThisType(Context);
3558    FromClassification = Expr::Classification::makeSimpleLValue();
3559  } else {
3560    FromRecordType = From->getType();
3561    DestType = ImplicitParamRecordType;
3562    FromClassification = From->Classify(Context);
3563  }
3564
3565  // Note that we always use the true parent context when performing
3566  // the actual argument initialization.
3567  ImplicitConversionSequence ICS
3568    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3569                                      Method, Method->getParent());
3570  if (ICS.isBad()) {
3571    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3572      Qualifiers FromQs = FromRecordType.getQualifiers();
3573      Qualifiers ToQs = DestType.getQualifiers();
3574      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3575      if (CVR) {
3576        Diag(From->getSourceRange().getBegin(),
3577             diag::err_member_function_call_bad_cvr)
3578          << Method->getDeclName() << FromRecordType << (CVR - 1)
3579          << From->getSourceRange();
3580        Diag(Method->getLocation(), diag::note_previous_decl)
3581          << Method->getDeclName();
3582        return ExprError();
3583      }
3584    }
3585
3586    return Diag(From->getSourceRange().getBegin(),
3587                diag::err_implicit_object_parameter_init)
3588       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3589  }
3590
3591  if (ICS.Standard.Second == ICK_Derived_To_Base) {
3592    ExprResult FromRes =
3593      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3594    if (FromRes.isInvalid())
3595      return ExprError();
3596    From = FromRes.take();
3597  }
3598
3599  if (!Context.hasSameType(From->getType(), DestType))
3600    From = ImpCastExprToType(From, DestType, CK_NoOp,
3601                      From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
3602  return Owned(From);
3603}
3604
3605/// TryContextuallyConvertToBool - Attempt to contextually convert the
3606/// expression From to bool (C++0x [conv]p3).
3607static ImplicitConversionSequence
3608TryContextuallyConvertToBool(Sema &S, Expr *From) {
3609  // FIXME: This is pretty broken.
3610  return TryImplicitConversion(S, From, S.Context.BoolTy,
3611                               // FIXME: Are these flags correct?
3612                               /*SuppressUserConversions=*/false,
3613                               /*AllowExplicit=*/true,
3614                               /*InOverloadResolution=*/false,
3615                               /*CStyle=*/false);
3616}
3617
3618/// PerformContextuallyConvertToBool - Perform a contextual conversion
3619/// of the expression From to bool (C++0x [conv]p3).
3620ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
3621  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3622  if (!ICS.isBad())
3623    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3624
3625  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3626    return  Diag(From->getSourceRange().getBegin(),
3627                 diag::err_typecheck_bool_condition)
3628                  << From->getType() << From->getSourceRange();
3629  return ExprError();
3630}
3631
3632/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3633/// expression From to 'id'.
3634static ImplicitConversionSequence
3635TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3636  QualType Ty = S.Context.getObjCIdType();
3637  return TryImplicitConversion(S, From, Ty,
3638                               // FIXME: Are these flags correct?
3639                               /*SuppressUserConversions=*/false,
3640                               /*AllowExplicit=*/true,
3641                               /*InOverloadResolution=*/false,
3642                               /*CStyle=*/false);
3643}
3644
3645/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3646/// of the expression From to 'id'.
3647ExprResult Sema::PerformContextuallyConvertToObjCId(Expr *From) {
3648  QualType Ty = Context.getObjCIdType();
3649  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3650  if (!ICS.isBad())
3651    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3652  return ExprError();
3653}
3654
3655/// \brief Attempt to convert the given expression to an integral or
3656/// enumeration type.
3657///
3658/// This routine will attempt to convert an expression of class type to an
3659/// integral or enumeration type, if that class type only has a single
3660/// conversion to an integral or enumeration type.
3661///
3662/// \param Loc The source location of the construct that requires the
3663/// conversion.
3664///
3665/// \param FromE The expression we're converting from.
3666///
3667/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3668/// have integral or enumeration type.
3669///
3670/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3671/// incomplete class type.
3672///
3673/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3674/// explicit conversion function (because no implicit conversion functions
3675/// were available). This is a recovery mode.
3676///
3677/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3678/// showing which conversion was picked.
3679///
3680/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3681/// conversion function that could convert to integral or enumeration type.
3682///
3683/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3684/// usable conversion function.
3685///
3686/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3687/// function, which may be an extension in this case.
3688///
3689/// \returns The expression, converted to an integral or enumeration type if
3690/// successful.
3691ExprResult
3692Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3693                                         const PartialDiagnostic &NotIntDiag,
3694                                       const PartialDiagnostic &IncompleteDiag,
3695                                     const PartialDiagnostic &ExplicitConvDiag,
3696                                     const PartialDiagnostic &ExplicitConvNote,
3697                                         const PartialDiagnostic &AmbigDiag,
3698                                         const PartialDiagnostic &AmbigNote,
3699                                         const PartialDiagnostic &ConvDiag) {
3700  // We can't perform any more checking for type-dependent expressions.
3701  if (From->isTypeDependent())
3702    return Owned(From);
3703
3704  // If the expression already has integral or enumeration type, we're golden.
3705  QualType T = From->getType();
3706  if (T->isIntegralOrEnumerationType())
3707    return Owned(From);
3708
3709  // FIXME: Check for missing '()' if T is a function type?
3710
3711  // If we don't have a class type in C++, there's no way we can get an
3712  // expression of integral or enumeration type.
3713  const RecordType *RecordTy = T->getAs<RecordType>();
3714  if (!RecordTy || !getLangOptions().CPlusPlus) {
3715    Diag(Loc, NotIntDiag)
3716      << T << From->getSourceRange();
3717    return Owned(From);
3718  }
3719
3720  // We must have a complete class type.
3721  if (RequireCompleteType(Loc, T, IncompleteDiag))
3722    return Owned(From);
3723
3724  // Look for a conversion to an integral or enumeration type.
3725  UnresolvedSet<4> ViableConversions;
3726  UnresolvedSet<4> ExplicitConversions;
3727  const UnresolvedSetImpl *Conversions
3728    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3729
3730  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3731                                   E = Conversions->end();
3732       I != E;
3733       ++I) {
3734    if (CXXConversionDecl *Conversion
3735          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3736      if (Conversion->getConversionType().getNonReferenceType()
3737            ->isIntegralOrEnumerationType()) {
3738        if (Conversion->isExplicit())
3739          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3740        else
3741          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3742      }
3743  }
3744
3745  switch (ViableConversions.size()) {
3746  case 0:
3747    if (ExplicitConversions.size() == 1) {
3748      DeclAccessPair Found = ExplicitConversions[0];
3749      CXXConversionDecl *Conversion
3750        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3751
3752      // The user probably meant to invoke the given explicit
3753      // conversion; use it.
3754      QualType ConvTy
3755        = Conversion->getConversionType().getNonReferenceType();
3756      std::string TypeStr;
3757      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3758
3759      Diag(Loc, ExplicitConvDiag)
3760        << T << ConvTy
3761        << FixItHint::CreateInsertion(From->getLocStart(),
3762                                      "static_cast<" + TypeStr + ">(")
3763        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3764                                      ")");
3765      Diag(Conversion->getLocation(), ExplicitConvNote)
3766        << ConvTy->isEnumeralType() << ConvTy;
3767
3768      // If we aren't in a SFINAE context, build a call to the
3769      // explicit conversion function.
3770      if (isSFINAEContext())
3771        return ExprError();
3772
3773      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3774      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3775      if (Result.isInvalid())
3776        return ExprError();
3777
3778      From = Result.get();
3779    }
3780
3781    // We'll complain below about a non-integral condition type.
3782    break;
3783
3784  case 1: {
3785    // Apply this conversion.
3786    DeclAccessPair Found = ViableConversions[0];
3787    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3788
3789    CXXConversionDecl *Conversion
3790      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3791    QualType ConvTy
3792      = Conversion->getConversionType().getNonReferenceType();
3793    if (ConvDiag.getDiagID()) {
3794      if (isSFINAEContext())
3795        return ExprError();
3796
3797      Diag(Loc, ConvDiag)
3798        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3799    }
3800
3801    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
3802                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3803    if (Result.isInvalid())
3804      return ExprError();
3805
3806    From = Result.get();
3807    break;
3808  }
3809
3810  default:
3811    Diag(Loc, AmbigDiag)
3812      << T << From->getSourceRange();
3813    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3814      CXXConversionDecl *Conv
3815        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3816      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3817      Diag(Conv->getLocation(), AmbigNote)
3818        << ConvTy->isEnumeralType() << ConvTy;
3819    }
3820    return Owned(From);
3821  }
3822
3823  if (!From->getType()->isIntegralOrEnumerationType())
3824    Diag(Loc, NotIntDiag)
3825      << From->getType() << From->getSourceRange();
3826
3827  return Owned(From);
3828}
3829
3830/// AddOverloadCandidate - Adds the given function to the set of
3831/// candidate functions, using the given function call arguments.  If
3832/// @p SuppressUserConversions, then don't allow user-defined
3833/// conversions via constructors or conversion operators.
3834///
3835/// \para PartialOverloading true if we are performing "partial" overloading
3836/// based on an incomplete set of function arguments. This feature is used by
3837/// code completion.
3838void
3839Sema::AddOverloadCandidate(FunctionDecl *Function,
3840                           DeclAccessPair FoundDecl,
3841                           Expr **Args, unsigned NumArgs,
3842                           OverloadCandidateSet& CandidateSet,
3843                           bool SuppressUserConversions,
3844                           bool PartialOverloading) {
3845  const FunctionProtoType* Proto
3846    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3847  assert(Proto && "Functions without a prototype cannot be overloaded");
3848  assert(!Function->getDescribedFunctionTemplate() &&
3849         "Use AddTemplateOverloadCandidate for function templates");
3850
3851  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3852    if (!isa<CXXConstructorDecl>(Method)) {
3853      // If we get here, it's because we're calling a member function
3854      // that is named without a member access expression (e.g.,
3855      // "this->f") that was either written explicitly or created
3856      // implicitly. This can happen with a qualified call to a member
3857      // function, e.g., X::f(). We use an empty type for the implied
3858      // object argument (C++ [over.call.func]p3), and the acting context
3859      // is irrelevant.
3860      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3861                         QualType(), Expr::Classification::makeSimpleLValue(),
3862                         Args, NumArgs, CandidateSet,
3863                         SuppressUserConversions);
3864      return;
3865    }
3866    // We treat a constructor like a non-member function, since its object
3867    // argument doesn't participate in overload resolution.
3868  }
3869
3870  if (!CandidateSet.isNewCandidate(Function))
3871    return;
3872
3873  // Overload resolution is always an unevaluated context.
3874  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3875
3876  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3877    // C++ [class.copy]p3:
3878    //   A member function template is never instantiated to perform the copy
3879    //   of a class object to an object of its class type.
3880    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3881    if (NumArgs == 1 &&
3882        Constructor->isSpecializationCopyingObject() &&
3883        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3884         IsDerivedFrom(Args[0]->getType(), ClassType)))
3885      return;
3886  }
3887
3888  // Add this candidate
3889  CandidateSet.push_back(OverloadCandidate());
3890  OverloadCandidate& Candidate = CandidateSet.back();
3891  Candidate.FoundDecl = FoundDecl;
3892  Candidate.Function = Function;
3893  Candidate.Viable = true;
3894  Candidate.IsSurrogate = false;
3895  Candidate.IgnoreObjectArgument = false;
3896  Candidate.ExplicitCallArguments = NumArgs;
3897
3898  unsigned NumArgsInProto = Proto->getNumArgs();
3899
3900  // (C++ 13.3.2p2): A candidate function having fewer than m
3901  // parameters is viable only if it has an ellipsis in its parameter
3902  // list (8.3.5).
3903  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3904      !Proto->isVariadic()) {
3905    Candidate.Viable = false;
3906    Candidate.FailureKind = ovl_fail_too_many_arguments;
3907    return;
3908  }
3909
3910  // (C++ 13.3.2p2): A candidate function having more than m parameters
3911  // is viable only if the (m+1)st parameter has a default argument
3912  // (8.3.6). For the purposes of overload resolution, the
3913  // parameter list is truncated on the right, so that there are
3914  // exactly m parameters.
3915  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3916  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3917    // Not enough arguments.
3918    Candidate.Viable = false;
3919    Candidate.FailureKind = ovl_fail_too_few_arguments;
3920    return;
3921  }
3922
3923  // Determine the implicit conversion sequences for each of the
3924  // arguments.
3925  Candidate.Conversions.resize(NumArgs);
3926  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3927    if (ArgIdx < NumArgsInProto) {
3928      // (C++ 13.3.2p3): for F to be a viable function, there shall
3929      // exist for each argument an implicit conversion sequence
3930      // (13.3.3.1) that converts that argument to the corresponding
3931      // parameter of F.
3932      QualType ParamType = Proto->getArgType(ArgIdx);
3933      Candidate.Conversions[ArgIdx]
3934        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3935                                SuppressUserConversions,
3936                                /*InOverloadResolution=*/true);
3937      if (Candidate.Conversions[ArgIdx].isBad()) {
3938        Candidate.Viable = false;
3939        Candidate.FailureKind = ovl_fail_bad_conversion;
3940        break;
3941      }
3942    } else {
3943      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3944      // argument for which there is no corresponding parameter is
3945      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3946      Candidate.Conversions[ArgIdx].setEllipsis();
3947    }
3948  }
3949}
3950
3951/// \brief Add all of the function declarations in the given function set to
3952/// the overload canddiate set.
3953void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3954                                 Expr **Args, unsigned NumArgs,
3955                                 OverloadCandidateSet& CandidateSet,
3956                                 bool SuppressUserConversions) {
3957  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3958    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3959    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3960      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3961        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3962                           cast<CXXMethodDecl>(FD)->getParent(),
3963                           Args[0]->getType(), Args[0]->Classify(Context),
3964                           Args + 1, NumArgs - 1,
3965                           CandidateSet, SuppressUserConversions);
3966      else
3967        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3968                             SuppressUserConversions);
3969    } else {
3970      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3971      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3972          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3973        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3974                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3975                                   /*FIXME: explicit args */ 0,
3976                                   Args[0]->getType(),
3977                                   Args[0]->Classify(Context),
3978                                   Args + 1, NumArgs - 1,
3979                                   CandidateSet,
3980                                   SuppressUserConversions);
3981      else
3982        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3983                                     /*FIXME: explicit args */ 0,
3984                                     Args, NumArgs, CandidateSet,
3985                                     SuppressUserConversions);
3986    }
3987  }
3988}
3989
3990/// AddMethodCandidate - Adds a named decl (which is some kind of
3991/// method) as a method candidate to the given overload set.
3992void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3993                              QualType ObjectType,
3994                              Expr::Classification ObjectClassification,
3995                              Expr **Args, unsigned NumArgs,
3996                              OverloadCandidateSet& CandidateSet,
3997                              bool SuppressUserConversions) {
3998  NamedDecl *Decl = FoundDecl.getDecl();
3999  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4000
4001  if (isa<UsingShadowDecl>(Decl))
4002    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4003
4004  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4005    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4006           "Expected a member function template");
4007    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4008                               /*ExplicitArgs*/ 0,
4009                               ObjectType, ObjectClassification, Args, NumArgs,
4010                               CandidateSet,
4011                               SuppressUserConversions);
4012  } else {
4013    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4014                       ObjectType, ObjectClassification, Args, NumArgs,
4015                       CandidateSet, SuppressUserConversions);
4016  }
4017}
4018
4019/// AddMethodCandidate - Adds the given C++ member function to the set
4020/// of candidate functions, using the given function call arguments
4021/// and the object argument (@c Object). For example, in a call
4022/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4023/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4024/// allow user-defined conversions via constructors or conversion
4025/// operators.
4026void
4027Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4028                         CXXRecordDecl *ActingContext, QualType ObjectType,
4029                         Expr::Classification ObjectClassification,
4030                         Expr **Args, unsigned NumArgs,
4031                         OverloadCandidateSet& CandidateSet,
4032                         bool SuppressUserConversions) {
4033  const FunctionProtoType* Proto
4034    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4035  assert(Proto && "Methods without a prototype cannot be overloaded");
4036  assert(!isa<CXXConstructorDecl>(Method) &&
4037         "Use AddOverloadCandidate for constructors");
4038
4039  if (!CandidateSet.isNewCandidate(Method))
4040    return;
4041
4042  // Overload resolution is always an unevaluated context.
4043  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4044
4045  // Add this candidate
4046  CandidateSet.push_back(OverloadCandidate());
4047  OverloadCandidate& Candidate = CandidateSet.back();
4048  Candidate.FoundDecl = FoundDecl;
4049  Candidate.Function = Method;
4050  Candidate.IsSurrogate = false;
4051  Candidate.IgnoreObjectArgument = false;
4052  Candidate.ExplicitCallArguments = NumArgs;
4053
4054  unsigned NumArgsInProto = Proto->getNumArgs();
4055
4056  // (C++ 13.3.2p2): A candidate function having fewer than m
4057  // parameters is viable only if it has an ellipsis in its parameter
4058  // list (8.3.5).
4059  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4060    Candidate.Viable = false;
4061    Candidate.FailureKind = ovl_fail_too_many_arguments;
4062    return;
4063  }
4064
4065  // (C++ 13.3.2p2): A candidate function having more than m parameters
4066  // is viable only if the (m+1)st parameter has a default argument
4067  // (8.3.6). For the purposes of overload resolution, the
4068  // parameter list is truncated on the right, so that there are
4069  // exactly m parameters.
4070  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4071  if (NumArgs < MinRequiredArgs) {
4072    // Not enough arguments.
4073    Candidate.Viable = false;
4074    Candidate.FailureKind = ovl_fail_too_few_arguments;
4075    return;
4076  }
4077
4078  Candidate.Viable = true;
4079  Candidate.Conversions.resize(NumArgs + 1);
4080
4081  if (Method->isStatic() || ObjectType.isNull())
4082    // The implicit object argument is ignored.
4083    Candidate.IgnoreObjectArgument = true;
4084  else {
4085    // Determine the implicit conversion sequence for the object
4086    // parameter.
4087    Candidate.Conversions[0]
4088      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4089                                        Method, ActingContext);
4090    if (Candidate.Conversions[0].isBad()) {
4091      Candidate.Viable = false;
4092      Candidate.FailureKind = ovl_fail_bad_conversion;
4093      return;
4094    }
4095  }
4096
4097  // Determine the implicit conversion sequences for each of the
4098  // arguments.
4099  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4100    if (ArgIdx < NumArgsInProto) {
4101      // (C++ 13.3.2p3): for F to be a viable function, there shall
4102      // exist for each argument an implicit conversion sequence
4103      // (13.3.3.1) that converts that argument to the corresponding
4104      // parameter of F.
4105      QualType ParamType = Proto->getArgType(ArgIdx);
4106      Candidate.Conversions[ArgIdx + 1]
4107        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4108                                SuppressUserConversions,
4109                                /*InOverloadResolution=*/true);
4110      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4111        Candidate.Viable = false;
4112        Candidate.FailureKind = ovl_fail_bad_conversion;
4113        break;
4114      }
4115    } else {
4116      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4117      // argument for which there is no corresponding parameter is
4118      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4119      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4120    }
4121  }
4122}
4123
4124/// \brief Add a C++ member function template as a candidate to the candidate
4125/// set, using template argument deduction to produce an appropriate member
4126/// function template specialization.
4127void
4128Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4129                                 DeclAccessPair FoundDecl,
4130                                 CXXRecordDecl *ActingContext,
4131                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4132                                 QualType ObjectType,
4133                                 Expr::Classification ObjectClassification,
4134                                 Expr **Args, unsigned NumArgs,
4135                                 OverloadCandidateSet& CandidateSet,
4136                                 bool SuppressUserConversions) {
4137  if (!CandidateSet.isNewCandidate(MethodTmpl))
4138    return;
4139
4140  // C++ [over.match.funcs]p7:
4141  //   In each case where a candidate is a function template, candidate
4142  //   function template specializations are generated using template argument
4143  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4144  //   candidate functions in the usual way.113) A given name can refer to one
4145  //   or more function templates and also to a set of overloaded non-template
4146  //   functions. In such a case, the candidate functions generated from each
4147  //   function template are combined with the set of non-template candidate
4148  //   functions.
4149  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4150  FunctionDecl *Specialization = 0;
4151  if (TemplateDeductionResult Result
4152      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4153                                Args, NumArgs, Specialization, Info)) {
4154    CandidateSet.push_back(OverloadCandidate());
4155    OverloadCandidate &Candidate = CandidateSet.back();
4156    Candidate.FoundDecl = FoundDecl;
4157    Candidate.Function = MethodTmpl->getTemplatedDecl();
4158    Candidate.Viable = false;
4159    Candidate.FailureKind = ovl_fail_bad_deduction;
4160    Candidate.IsSurrogate = false;
4161    Candidate.IgnoreObjectArgument = false;
4162    Candidate.ExplicitCallArguments = NumArgs;
4163    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4164                                                          Info);
4165    return;
4166  }
4167
4168  // Add the function template specialization produced by template argument
4169  // deduction as a candidate.
4170  assert(Specialization && "Missing member function template specialization?");
4171  assert(isa<CXXMethodDecl>(Specialization) &&
4172         "Specialization is not a member function?");
4173  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4174                     ActingContext, ObjectType, ObjectClassification,
4175                     Args, NumArgs, CandidateSet, SuppressUserConversions);
4176}
4177
4178/// \brief Add a C++ function template specialization as a candidate
4179/// in the candidate set, using template argument deduction to produce
4180/// an appropriate function template specialization.
4181void
4182Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4183                                   DeclAccessPair FoundDecl,
4184                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4185                                   Expr **Args, unsigned NumArgs,
4186                                   OverloadCandidateSet& CandidateSet,
4187                                   bool SuppressUserConversions) {
4188  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4189    return;
4190
4191  // C++ [over.match.funcs]p7:
4192  //   In each case where a candidate is a function template, candidate
4193  //   function template specializations are generated using template argument
4194  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4195  //   candidate functions in the usual way.113) A given name can refer to one
4196  //   or more function templates and also to a set of overloaded non-template
4197  //   functions. In such a case, the candidate functions generated from each
4198  //   function template are combined with the set of non-template candidate
4199  //   functions.
4200  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4201  FunctionDecl *Specialization = 0;
4202  if (TemplateDeductionResult Result
4203        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4204                                  Args, NumArgs, Specialization, Info)) {
4205    CandidateSet.push_back(OverloadCandidate());
4206    OverloadCandidate &Candidate = CandidateSet.back();
4207    Candidate.FoundDecl = FoundDecl;
4208    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4209    Candidate.Viable = false;
4210    Candidate.FailureKind = ovl_fail_bad_deduction;
4211    Candidate.IsSurrogate = false;
4212    Candidate.IgnoreObjectArgument = false;
4213    Candidate.ExplicitCallArguments = NumArgs;
4214    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4215                                                          Info);
4216    return;
4217  }
4218
4219  // Add the function template specialization produced by template argument
4220  // deduction as a candidate.
4221  assert(Specialization && "Missing function template specialization?");
4222  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4223                       SuppressUserConversions);
4224}
4225
4226/// AddConversionCandidate - Add a C++ conversion function as a
4227/// candidate in the candidate set (C++ [over.match.conv],
4228/// C++ [over.match.copy]). From is the expression we're converting from,
4229/// and ToType is the type that we're eventually trying to convert to
4230/// (which may or may not be the same type as the type that the
4231/// conversion function produces).
4232void
4233Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4234                             DeclAccessPair FoundDecl,
4235                             CXXRecordDecl *ActingContext,
4236                             Expr *From, QualType ToType,
4237                             OverloadCandidateSet& CandidateSet) {
4238  assert(!Conversion->getDescribedFunctionTemplate() &&
4239         "Conversion function templates use AddTemplateConversionCandidate");
4240  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4241  if (!CandidateSet.isNewCandidate(Conversion))
4242    return;
4243
4244  // Overload resolution is always an unevaluated context.
4245  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4246
4247  // Add this candidate
4248  CandidateSet.push_back(OverloadCandidate());
4249  OverloadCandidate& Candidate = CandidateSet.back();
4250  Candidate.FoundDecl = FoundDecl;
4251  Candidate.Function = Conversion;
4252  Candidate.IsSurrogate = false;
4253  Candidate.IgnoreObjectArgument = false;
4254  Candidate.FinalConversion.setAsIdentityConversion();
4255  Candidate.FinalConversion.setFromType(ConvType);
4256  Candidate.FinalConversion.setAllToTypes(ToType);
4257  Candidate.Viable = true;
4258  Candidate.Conversions.resize(1);
4259  Candidate.ExplicitCallArguments = 1;
4260
4261  // C++ [over.match.funcs]p4:
4262  //   For conversion functions, the function is considered to be a member of
4263  //   the class of the implicit implied object argument for the purpose of
4264  //   defining the type of the implicit object parameter.
4265  //
4266  // Determine the implicit conversion sequence for the implicit
4267  // object parameter.
4268  QualType ImplicitParamType = From->getType();
4269  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4270    ImplicitParamType = FromPtrType->getPointeeType();
4271  CXXRecordDecl *ConversionContext
4272    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4273
4274  Candidate.Conversions[0]
4275    = TryObjectArgumentInitialization(*this, From->getType(),
4276                                      From->Classify(Context),
4277                                      Conversion, ConversionContext);
4278
4279  if (Candidate.Conversions[0].isBad()) {
4280    Candidate.Viable = false;
4281    Candidate.FailureKind = ovl_fail_bad_conversion;
4282    return;
4283  }
4284
4285  // We won't go through a user-define type conversion function to convert a
4286  // derived to base as such conversions are given Conversion Rank. They only
4287  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4288  QualType FromCanon
4289    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4290  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4291  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4292    Candidate.Viable = false;
4293    Candidate.FailureKind = ovl_fail_trivial_conversion;
4294    return;
4295  }
4296
4297  // To determine what the conversion from the result of calling the
4298  // conversion function to the type we're eventually trying to
4299  // convert to (ToType), we need to synthesize a call to the
4300  // conversion function and attempt copy initialization from it. This
4301  // makes sure that we get the right semantics with respect to
4302  // lvalues/rvalues and the type. Fortunately, we can allocate this
4303  // call on the stack and we don't need its arguments to be
4304  // well-formed.
4305  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4306                            VK_LValue, From->getLocStart());
4307  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4308                                Context.getPointerType(Conversion->getType()),
4309                                CK_FunctionToPointerDecay,
4310                                &ConversionRef, VK_RValue);
4311
4312  QualType CallResultType
4313    = Conversion->getConversionType().getNonLValueExprType(Context);
4314  if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) {
4315    Candidate.Viable = false;
4316    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4317    return;
4318  }
4319
4320  ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType());
4321
4322  // Note that it is safe to allocate CallExpr on the stack here because
4323  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4324  // allocator).
4325  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4326                From->getLocStart());
4327  ImplicitConversionSequence ICS =
4328    TryCopyInitialization(*this, &Call, ToType,
4329                          /*SuppressUserConversions=*/true,
4330                          /*InOverloadResolution=*/false);
4331
4332  switch (ICS.getKind()) {
4333  case ImplicitConversionSequence::StandardConversion:
4334    Candidate.FinalConversion = ICS.Standard;
4335
4336    // C++ [over.ics.user]p3:
4337    //   If the user-defined conversion is specified by a specialization of a
4338    //   conversion function template, the second standard conversion sequence
4339    //   shall have exact match rank.
4340    if (Conversion->getPrimaryTemplate() &&
4341        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4342      Candidate.Viable = false;
4343      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4344    }
4345
4346    // C++0x [dcl.init.ref]p5:
4347    //    In the second case, if the reference is an rvalue reference and
4348    //    the second standard conversion sequence of the user-defined
4349    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4350    //    program is ill-formed.
4351    if (ToType->isRValueReferenceType() &&
4352        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4353      Candidate.Viable = false;
4354      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4355    }
4356    break;
4357
4358  case ImplicitConversionSequence::BadConversion:
4359    Candidate.Viable = false;
4360    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4361    break;
4362
4363  default:
4364    assert(false &&
4365           "Can only end up with a standard conversion sequence or failure");
4366  }
4367}
4368
4369/// \brief Adds a conversion function template specialization
4370/// candidate to the overload set, using template argument deduction
4371/// to deduce the template arguments of the conversion function
4372/// template from the type that we are converting to (C++
4373/// [temp.deduct.conv]).
4374void
4375Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4376                                     DeclAccessPair FoundDecl,
4377                                     CXXRecordDecl *ActingDC,
4378                                     Expr *From, QualType ToType,
4379                                     OverloadCandidateSet &CandidateSet) {
4380  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4381         "Only conversion function templates permitted here");
4382
4383  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4384    return;
4385
4386  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4387  CXXConversionDecl *Specialization = 0;
4388  if (TemplateDeductionResult Result
4389        = DeduceTemplateArguments(FunctionTemplate, ToType,
4390                                  Specialization, Info)) {
4391    CandidateSet.push_back(OverloadCandidate());
4392    OverloadCandidate &Candidate = CandidateSet.back();
4393    Candidate.FoundDecl = FoundDecl;
4394    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4395    Candidate.Viable = false;
4396    Candidate.FailureKind = ovl_fail_bad_deduction;
4397    Candidate.IsSurrogate = false;
4398    Candidate.IgnoreObjectArgument = false;
4399    Candidate.ExplicitCallArguments = 1;
4400    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4401                                                          Info);
4402    return;
4403  }
4404
4405  // Add the conversion function template specialization produced by
4406  // template argument deduction as a candidate.
4407  assert(Specialization && "Missing function template specialization?");
4408  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4409                         CandidateSet);
4410}
4411
4412/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4413/// converts the given @c Object to a function pointer via the
4414/// conversion function @c Conversion, and then attempts to call it
4415/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4416/// the type of function that we'll eventually be calling.
4417void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4418                                 DeclAccessPair FoundDecl,
4419                                 CXXRecordDecl *ActingContext,
4420                                 const FunctionProtoType *Proto,
4421                                 Expr *Object,
4422                                 Expr **Args, unsigned NumArgs,
4423                                 OverloadCandidateSet& CandidateSet) {
4424  if (!CandidateSet.isNewCandidate(Conversion))
4425    return;
4426
4427  // Overload resolution is always an unevaluated context.
4428  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4429
4430  CandidateSet.push_back(OverloadCandidate());
4431  OverloadCandidate& Candidate = CandidateSet.back();
4432  Candidate.FoundDecl = FoundDecl;
4433  Candidate.Function = 0;
4434  Candidate.Surrogate = Conversion;
4435  Candidate.Viable = true;
4436  Candidate.IsSurrogate = true;
4437  Candidate.IgnoreObjectArgument = false;
4438  Candidate.Conversions.resize(NumArgs + 1);
4439  Candidate.ExplicitCallArguments = NumArgs;
4440
4441  // Determine the implicit conversion sequence for the implicit
4442  // object parameter.
4443  ImplicitConversionSequence ObjectInit
4444    = TryObjectArgumentInitialization(*this, Object->getType(),
4445                                      Object->Classify(Context),
4446                                      Conversion, ActingContext);
4447  if (ObjectInit.isBad()) {
4448    Candidate.Viable = false;
4449    Candidate.FailureKind = ovl_fail_bad_conversion;
4450    Candidate.Conversions[0] = ObjectInit;
4451    return;
4452  }
4453
4454  // The first conversion is actually a user-defined conversion whose
4455  // first conversion is ObjectInit's standard conversion (which is
4456  // effectively a reference binding). Record it as such.
4457  Candidate.Conversions[0].setUserDefined();
4458  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4459  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4460  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4461  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4462    = FoundDecl.getDecl();
4463  Candidate.Conversions[0].UserDefined.After
4464    = Candidate.Conversions[0].UserDefined.Before;
4465  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4466
4467  // Find the
4468  unsigned NumArgsInProto = Proto->getNumArgs();
4469
4470  // (C++ 13.3.2p2): A candidate function having fewer than m
4471  // parameters is viable only if it has an ellipsis in its parameter
4472  // list (8.3.5).
4473  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4474    Candidate.Viable = false;
4475    Candidate.FailureKind = ovl_fail_too_many_arguments;
4476    return;
4477  }
4478
4479  // Function types don't have any default arguments, so just check if
4480  // we have enough arguments.
4481  if (NumArgs < NumArgsInProto) {
4482    // Not enough arguments.
4483    Candidate.Viable = false;
4484    Candidate.FailureKind = ovl_fail_too_few_arguments;
4485    return;
4486  }
4487
4488  // Determine the implicit conversion sequences for each of the
4489  // arguments.
4490  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4491    if (ArgIdx < NumArgsInProto) {
4492      // (C++ 13.3.2p3): for F to be a viable function, there shall
4493      // exist for each argument an implicit conversion sequence
4494      // (13.3.3.1) that converts that argument to the corresponding
4495      // parameter of F.
4496      QualType ParamType = Proto->getArgType(ArgIdx);
4497      Candidate.Conversions[ArgIdx + 1]
4498        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4499                                /*SuppressUserConversions=*/false,
4500                                /*InOverloadResolution=*/false);
4501      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4502        Candidate.Viable = false;
4503        Candidate.FailureKind = ovl_fail_bad_conversion;
4504        break;
4505      }
4506    } else {
4507      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4508      // argument for which there is no corresponding parameter is
4509      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4510      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4511    }
4512  }
4513}
4514
4515/// \brief Add overload candidates for overloaded operators that are
4516/// member functions.
4517///
4518/// Add the overloaded operator candidates that are member functions
4519/// for the operator Op that was used in an operator expression such
4520/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4521/// CandidateSet will store the added overload candidates. (C++
4522/// [over.match.oper]).
4523void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4524                                       SourceLocation OpLoc,
4525                                       Expr **Args, unsigned NumArgs,
4526                                       OverloadCandidateSet& CandidateSet,
4527                                       SourceRange OpRange) {
4528  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4529
4530  // C++ [over.match.oper]p3:
4531  //   For a unary operator @ with an operand of a type whose
4532  //   cv-unqualified version is T1, and for a binary operator @ with
4533  //   a left operand of a type whose cv-unqualified version is T1 and
4534  //   a right operand of a type whose cv-unqualified version is T2,
4535  //   three sets of candidate functions, designated member
4536  //   candidates, non-member candidates and built-in candidates, are
4537  //   constructed as follows:
4538  QualType T1 = Args[0]->getType();
4539
4540  //     -- If T1 is a class type, the set of member candidates is the
4541  //        result of the qualified lookup of T1::operator@
4542  //        (13.3.1.1.1); otherwise, the set of member candidates is
4543  //        empty.
4544  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4545    // Complete the type if it can be completed. Otherwise, we're done.
4546    if (RequireCompleteType(OpLoc, T1, PDiag()))
4547      return;
4548
4549    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4550    LookupQualifiedName(Operators, T1Rec->getDecl());
4551    Operators.suppressDiagnostics();
4552
4553    for (LookupResult::iterator Oper = Operators.begin(),
4554                             OperEnd = Operators.end();
4555         Oper != OperEnd;
4556         ++Oper)
4557      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4558                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4559                         CandidateSet,
4560                         /* SuppressUserConversions = */ false);
4561  }
4562}
4563
4564/// AddBuiltinCandidate - Add a candidate for a built-in
4565/// operator. ResultTy and ParamTys are the result and parameter types
4566/// of the built-in candidate, respectively. Args and NumArgs are the
4567/// arguments being passed to the candidate. IsAssignmentOperator
4568/// should be true when this built-in candidate is an assignment
4569/// operator. NumContextualBoolArguments is the number of arguments
4570/// (at the beginning of the argument list) that will be contextually
4571/// converted to bool.
4572void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4573                               Expr **Args, unsigned NumArgs,
4574                               OverloadCandidateSet& CandidateSet,
4575                               bool IsAssignmentOperator,
4576                               unsigned NumContextualBoolArguments) {
4577  // Overload resolution is always an unevaluated context.
4578  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4579
4580  // Add this candidate
4581  CandidateSet.push_back(OverloadCandidate());
4582  OverloadCandidate& Candidate = CandidateSet.back();
4583  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4584  Candidate.Function = 0;
4585  Candidate.IsSurrogate = false;
4586  Candidate.IgnoreObjectArgument = false;
4587  Candidate.BuiltinTypes.ResultTy = ResultTy;
4588  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4589    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4590
4591  // Determine the implicit conversion sequences for each of the
4592  // arguments.
4593  Candidate.Viable = true;
4594  Candidate.Conversions.resize(NumArgs);
4595  Candidate.ExplicitCallArguments = NumArgs;
4596  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4597    // C++ [over.match.oper]p4:
4598    //   For the built-in assignment operators, conversions of the
4599    //   left operand are restricted as follows:
4600    //     -- no temporaries are introduced to hold the left operand, and
4601    //     -- no user-defined conversions are applied to the left
4602    //        operand to achieve a type match with the left-most
4603    //        parameter of a built-in candidate.
4604    //
4605    // We block these conversions by turning off user-defined
4606    // conversions, since that is the only way that initialization of
4607    // a reference to a non-class type can occur from something that
4608    // is not of the same type.
4609    if (ArgIdx < NumContextualBoolArguments) {
4610      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4611             "Contextual conversion to bool requires bool type");
4612      Candidate.Conversions[ArgIdx]
4613        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4614    } else {
4615      Candidate.Conversions[ArgIdx]
4616        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4617                                ArgIdx == 0 && IsAssignmentOperator,
4618                                /*InOverloadResolution=*/false);
4619    }
4620    if (Candidate.Conversions[ArgIdx].isBad()) {
4621      Candidate.Viable = false;
4622      Candidate.FailureKind = ovl_fail_bad_conversion;
4623      break;
4624    }
4625  }
4626}
4627
4628/// BuiltinCandidateTypeSet - A set of types that will be used for the
4629/// candidate operator functions for built-in operators (C++
4630/// [over.built]). The types are separated into pointer types and
4631/// enumeration types.
4632class BuiltinCandidateTypeSet  {
4633  /// TypeSet - A set of types.
4634  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4635
4636  /// PointerTypes - The set of pointer types that will be used in the
4637  /// built-in candidates.
4638  TypeSet PointerTypes;
4639
4640  /// MemberPointerTypes - The set of member pointer types that will be
4641  /// used in the built-in candidates.
4642  TypeSet MemberPointerTypes;
4643
4644  /// EnumerationTypes - The set of enumeration types that will be
4645  /// used in the built-in candidates.
4646  TypeSet EnumerationTypes;
4647
4648  /// \brief The set of vector types that will be used in the built-in
4649  /// candidates.
4650  TypeSet VectorTypes;
4651
4652  /// \brief A flag indicating non-record types are viable candidates
4653  bool HasNonRecordTypes;
4654
4655  /// \brief A flag indicating whether either arithmetic or enumeration types
4656  /// were present in the candidate set.
4657  bool HasArithmeticOrEnumeralTypes;
4658
4659  /// Sema - The semantic analysis instance where we are building the
4660  /// candidate type set.
4661  Sema &SemaRef;
4662
4663  /// Context - The AST context in which we will build the type sets.
4664  ASTContext &Context;
4665
4666  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4667                                               const Qualifiers &VisibleQuals);
4668  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4669
4670public:
4671  /// iterator - Iterates through the types that are part of the set.
4672  typedef TypeSet::iterator iterator;
4673
4674  BuiltinCandidateTypeSet(Sema &SemaRef)
4675    : HasNonRecordTypes(false),
4676      HasArithmeticOrEnumeralTypes(false),
4677      SemaRef(SemaRef),
4678      Context(SemaRef.Context) { }
4679
4680  void AddTypesConvertedFrom(QualType Ty,
4681                             SourceLocation Loc,
4682                             bool AllowUserConversions,
4683                             bool AllowExplicitConversions,
4684                             const Qualifiers &VisibleTypeConversionsQuals);
4685
4686  /// pointer_begin - First pointer type found;
4687  iterator pointer_begin() { return PointerTypes.begin(); }
4688
4689  /// pointer_end - Past the last pointer type found;
4690  iterator pointer_end() { return PointerTypes.end(); }
4691
4692  /// member_pointer_begin - First member pointer type found;
4693  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4694
4695  /// member_pointer_end - Past the last member pointer type found;
4696  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4697
4698  /// enumeration_begin - First enumeration type found;
4699  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4700
4701  /// enumeration_end - Past the last enumeration type found;
4702  iterator enumeration_end() { return EnumerationTypes.end(); }
4703
4704  iterator vector_begin() { return VectorTypes.begin(); }
4705  iterator vector_end() { return VectorTypes.end(); }
4706
4707  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4708  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4709};
4710
4711/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4712/// the set of pointer types along with any more-qualified variants of
4713/// that type. For example, if @p Ty is "int const *", this routine
4714/// will add "int const *", "int const volatile *", "int const
4715/// restrict *", and "int const volatile restrict *" to the set of
4716/// pointer types. Returns true if the add of @p Ty itself succeeded,
4717/// false otherwise.
4718///
4719/// FIXME: what to do about extended qualifiers?
4720bool
4721BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4722                                             const Qualifiers &VisibleQuals) {
4723
4724  // Insert this type.
4725  if (!PointerTypes.insert(Ty))
4726    return false;
4727
4728  QualType PointeeTy;
4729  const PointerType *PointerTy = Ty->getAs<PointerType>();
4730  bool buildObjCPtr = false;
4731  if (!PointerTy) {
4732    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4733      PointeeTy = PTy->getPointeeType();
4734      buildObjCPtr = true;
4735    }
4736    else
4737      assert(false && "type was not a pointer type!");
4738  }
4739  else
4740    PointeeTy = PointerTy->getPointeeType();
4741
4742  // Don't add qualified variants of arrays. For one, they're not allowed
4743  // (the qualifier would sink to the element type), and for another, the
4744  // only overload situation where it matters is subscript or pointer +- int,
4745  // and those shouldn't have qualifier variants anyway.
4746  if (PointeeTy->isArrayType())
4747    return true;
4748  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4749  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4750    BaseCVR = Array->getElementType().getCVRQualifiers();
4751  bool hasVolatile = VisibleQuals.hasVolatile();
4752  bool hasRestrict = VisibleQuals.hasRestrict();
4753
4754  // Iterate through all strict supersets of BaseCVR.
4755  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4756    if ((CVR | BaseCVR) != CVR) continue;
4757    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4758    // in the types.
4759    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4760    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4761    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4762    if (!buildObjCPtr)
4763      PointerTypes.insert(Context.getPointerType(QPointeeTy));
4764    else
4765      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
4766  }
4767
4768  return true;
4769}
4770
4771/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4772/// to the set of pointer types along with any more-qualified variants of
4773/// that type. For example, if @p Ty is "int const *", this routine
4774/// will add "int const *", "int const volatile *", "int const
4775/// restrict *", and "int const volatile restrict *" to the set of
4776/// pointer types. Returns true if the add of @p Ty itself succeeded,
4777/// false otherwise.
4778///
4779/// FIXME: what to do about extended qualifiers?
4780bool
4781BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4782    QualType Ty) {
4783  // Insert this type.
4784  if (!MemberPointerTypes.insert(Ty))
4785    return false;
4786
4787  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4788  assert(PointerTy && "type was not a member pointer type!");
4789
4790  QualType PointeeTy = PointerTy->getPointeeType();
4791  // Don't add qualified variants of arrays. For one, they're not allowed
4792  // (the qualifier would sink to the element type), and for another, the
4793  // only overload situation where it matters is subscript or pointer +- int,
4794  // and those shouldn't have qualifier variants anyway.
4795  if (PointeeTy->isArrayType())
4796    return true;
4797  const Type *ClassTy = PointerTy->getClass();
4798
4799  // Iterate through all strict supersets of the pointee type's CVR
4800  // qualifiers.
4801  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4802  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4803    if ((CVR | BaseCVR) != CVR) continue;
4804
4805    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4806    MemberPointerTypes.insert(
4807      Context.getMemberPointerType(QPointeeTy, ClassTy));
4808  }
4809
4810  return true;
4811}
4812
4813/// AddTypesConvertedFrom - Add each of the types to which the type @p
4814/// Ty can be implicit converted to the given set of @p Types. We're
4815/// primarily interested in pointer types and enumeration types. We also
4816/// take member pointer types, for the conditional operator.
4817/// AllowUserConversions is true if we should look at the conversion
4818/// functions of a class type, and AllowExplicitConversions if we
4819/// should also include the explicit conversion functions of a class
4820/// type.
4821void
4822BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4823                                               SourceLocation Loc,
4824                                               bool AllowUserConversions,
4825                                               bool AllowExplicitConversions,
4826                                               const Qualifiers &VisibleQuals) {
4827  // Only deal with canonical types.
4828  Ty = Context.getCanonicalType(Ty);
4829
4830  // Look through reference types; they aren't part of the type of an
4831  // expression for the purposes of conversions.
4832  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4833    Ty = RefTy->getPointeeType();
4834
4835  // If we're dealing with an array type, decay to the pointer.
4836  if (Ty->isArrayType())
4837    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4838
4839  // Otherwise, we don't care about qualifiers on the type.
4840  Ty = Ty.getLocalUnqualifiedType();
4841
4842  // Flag if we ever add a non-record type.
4843  const RecordType *TyRec = Ty->getAs<RecordType>();
4844  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
4845
4846  // Flag if we encounter an arithmetic type.
4847  HasArithmeticOrEnumeralTypes =
4848    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
4849
4850  if (Ty->isObjCIdType() || Ty->isObjCClassType())
4851    PointerTypes.insert(Ty);
4852  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
4853    // Insert our type, and its more-qualified variants, into the set
4854    // of types.
4855    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4856      return;
4857  } else if (Ty->isMemberPointerType()) {
4858    // Member pointers are far easier, since the pointee can't be converted.
4859    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4860      return;
4861  } else if (Ty->isEnumeralType()) {
4862    HasArithmeticOrEnumeralTypes = true;
4863    EnumerationTypes.insert(Ty);
4864  } else if (Ty->isVectorType()) {
4865    // We treat vector types as arithmetic types in many contexts as an
4866    // extension.
4867    HasArithmeticOrEnumeralTypes = true;
4868    VectorTypes.insert(Ty);
4869  } else if (AllowUserConversions && TyRec) {
4870    // No conversion functions in incomplete types.
4871    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
4872      return;
4873
4874    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4875    const UnresolvedSetImpl *Conversions
4876      = ClassDecl->getVisibleConversionFunctions();
4877    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4878           E = Conversions->end(); I != E; ++I) {
4879      NamedDecl *D = I.getDecl();
4880      if (isa<UsingShadowDecl>(D))
4881        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4882
4883      // Skip conversion function templates; they don't tell us anything
4884      // about which builtin types we can convert to.
4885      if (isa<FunctionTemplateDecl>(D))
4886        continue;
4887
4888      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4889      if (AllowExplicitConversions || !Conv->isExplicit()) {
4890        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4891                              VisibleQuals);
4892      }
4893    }
4894  }
4895}
4896
4897/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4898/// the volatile- and non-volatile-qualified assignment operators for the
4899/// given type to the candidate set.
4900static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4901                                                   QualType T,
4902                                                   Expr **Args,
4903                                                   unsigned NumArgs,
4904                                    OverloadCandidateSet &CandidateSet) {
4905  QualType ParamTypes[2];
4906
4907  // T& operator=(T&, T)
4908  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4909  ParamTypes[1] = T;
4910  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4911                        /*IsAssignmentOperator=*/true);
4912
4913  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4914    // volatile T& operator=(volatile T&, T)
4915    ParamTypes[0]
4916      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4917    ParamTypes[1] = T;
4918    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4919                          /*IsAssignmentOperator=*/true);
4920  }
4921}
4922
4923/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4924/// if any, found in visible type conversion functions found in ArgExpr's type.
4925static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4926    Qualifiers VRQuals;
4927    const RecordType *TyRec;
4928    if (const MemberPointerType *RHSMPType =
4929        ArgExpr->getType()->getAs<MemberPointerType>())
4930      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4931    else
4932      TyRec = ArgExpr->getType()->getAs<RecordType>();
4933    if (!TyRec) {
4934      // Just to be safe, assume the worst case.
4935      VRQuals.addVolatile();
4936      VRQuals.addRestrict();
4937      return VRQuals;
4938    }
4939
4940    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4941    if (!ClassDecl->hasDefinition())
4942      return VRQuals;
4943
4944    const UnresolvedSetImpl *Conversions =
4945      ClassDecl->getVisibleConversionFunctions();
4946
4947    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4948           E = Conversions->end(); I != E; ++I) {
4949      NamedDecl *D = I.getDecl();
4950      if (isa<UsingShadowDecl>(D))
4951        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4952      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4953        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4954        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4955          CanTy = ResTypeRef->getPointeeType();
4956        // Need to go down the pointer/mempointer chain and add qualifiers
4957        // as see them.
4958        bool done = false;
4959        while (!done) {
4960          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4961            CanTy = ResTypePtr->getPointeeType();
4962          else if (const MemberPointerType *ResTypeMPtr =
4963                CanTy->getAs<MemberPointerType>())
4964            CanTy = ResTypeMPtr->getPointeeType();
4965          else
4966            done = true;
4967          if (CanTy.isVolatileQualified())
4968            VRQuals.addVolatile();
4969          if (CanTy.isRestrictQualified())
4970            VRQuals.addRestrict();
4971          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4972            return VRQuals;
4973        }
4974      }
4975    }
4976    return VRQuals;
4977}
4978
4979namespace {
4980
4981/// \brief Helper class to manage the addition of builtin operator overload
4982/// candidates. It provides shared state and utility methods used throughout
4983/// the process, as well as a helper method to add each group of builtin
4984/// operator overloads from the standard to a candidate set.
4985class BuiltinOperatorOverloadBuilder {
4986  // Common instance state available to all overload candidate addition methods.
4987  Sema &S;
4988  Expr **Args;
4989  unsigned NumArgs;
4990  Qualifiers VisibleTypeConversionsQuals;
4991  bool HasArithmeticOrEnumeralCandidateType;
4992  llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
4993  OverloadCandidateSet &CandidateSet;
4994
4995  // Define some constants used to index and iterate over the arithemetic types
4996  // provided via the getArithmeticType() method below.
4997  // The "promoted arithmetic types" are the arithmetic
4998  // types are that preserved by promotion (C++ [over.built]p2).
4999  static const unsigned FirstIntegralType = 3;
5000  static const unsigned LastIntegralType = 18;
5001  static const unsigned FirstPromotedIntegralType = 3,
5002                        LastPromotedIntegralType = 9;
5003  static const unsigned FirstPromotedArithmeticType = 0,
5004                        LastPromotedArithmeticType = 9;
5005  static const unsigned NumArithmeticTypes = 18;
5006
5007  /// \brief Get the canonical type for a given arithmetic type index.
5008  CanQualType getArithmeticType(unsigned index) {
5009    assert(index < NumArithmeticTypes);
5010    static CanQualType ASTContext::* const
5011      ArithmeticTypes[NumArithmeticTypes] = {
5012      // Start of promoted types.
5013      &ASTContext::FloatTy,
5014      &ASTContext::DoubleTy,
5015      &ASTContext::LongDoubleTy,
5016
5017      // Start of integral types.
5018      &ASTContext::IntTy,
5019      &ASTContext::LongTy,
5020      &ASTContext::LongLongTy,
5021      &ASTContext::UnsignedIntTy,
5022      &ASTContext::UnsignedLongTy,
5023      &ASTContext::UnsignedLongLongTy,
5024      // End of promoted types.
5025
5026      &ASTContext::BoolTy,
5027      &ASTContext::CharTy,
5028      &ASTContext::WCharTy,
5029      &ASTContext::Char16Ty,
5030      &ASTContext::Char32Ty,
5031      &ASTContext::SignedCharTy,
5032      &ASTContext::ShortTy,
5033      &ASTContext::UnsignedCharTy,
5034      &ASTContext::UnsignedShortTy,
5035      // End of integral types.
5036      // FIXME: What about complex?
5037    };
5038    return S.Context.*ArithmeticTypes[index];
5039  }
5040
5041  /// \brief Gets the canonical type resulting from the usual arithemetic
5042  /// converions for the given arithmetic types.
5043  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5044    // Accelerator table for performing the usual arithmetic conversions.
5045    // The rules are basically:
5046    //   - if either is floating-point, use the wider floating-point
5047    //   - if same signedness, use the higher rank
5048    //   - if same size, use unsigned of the higher rank
5049    //   - use the larger type
5050    // These rules, together with the axiom that higher ranks are
5051    // never smaller, are sufficient to precompute all of these results
5052    // *except* when dealing with signed types of higher rank.
5053    // (we could precompute SLL x UI for all known platforms, but it's
5054    // better not to make any assumptions).
5055    enum PromotedType {
5056                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
5057    };
5058    static PromotedType ConversionsTable[LastPromotedArithmeticType]
5059                                        [LastPromotedArithmeticType] = {
5060      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
5061      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
5062      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5063      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
5064      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
5065      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
5066      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
5067      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
5068      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
5069    };
5070
5071    assert(L < LastPromotedArithmeticType);
5072    assert(R < LastPromotedArithmeticType);
5073    int Idx = ConversionsTable[L][R];
5074
5075    // Fast path: the table gives us a concrete answer.
5076    if (Idx != Dep) return getArithmeticType(Idx);
5077
5078    // Slow path: we need to compare widths.
5079    // An invariant is that the signed type has higher rank.
5080    CanQualType LT = getArithmeticType(L),
5081                RT = getArithmeticType(R);
5082    unsigned LW = S.Context.getIntWidth(LT),
5083             RW = S.Context.getIntWidth(RT);
5084
5085    // If they're different widths, use the signed type.
5086    if (LW > RW) return LT;
5087    else if (LW < RW) return RT;
5088
5089    // Otherwise, use the unsigned type of the signed type's rank.
5090    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5091    assert(L == SLL || R == SLL);
5092    return S.Context.UnsignedLongLongTy;
5093  }
5094
5095  /// \brief Helper method to factor out the common pattern of adding overloads
5096  /// for '++' and '--' builtin operators.
5097  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5098                                           bool HasVolatile) {
5099    QualType ParamTypes[2] = {
5100      S.Context.getLValueReferenceType(CandidateTy),
5101      S.Context.IntTy
5102    };
5103
5104    // Non-volatile version.
5105    if (NumArgs == 1)
5106      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5107    else
5108      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5109
5110    // Use a heuristic to reduce number of builtin candidates in the set:
5111    // add volatile version only if there are conversions to a volatile type.
5112    if (HasVolatile) {
5113      ParamTypes[0] =
5114        S.Context.getLValueReferenceType(
5115          S.Context.getVolatileType(CandidateTy));
5116      if (NumArgs == 1)
5117        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5118      else
5119        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5120    }
5121  }
5122
5123public:
5124  BuiltinOperatorOverloadBuilder(
5125    Sema &S, Expr **Args, unsigned NumArgs,
5126    Qualifiers VisibleTypeConversionsQuals,
5127    bool HasArithmeticOrEnumeralCandidateType,
5128    llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5129    OverloadCandidateSet &CandidateSet)
5130    : S(S), Args(Args), NumArgs(NumArgs),
5131      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5132      HasArithmeticOrEnumeralCandidateType(
5133        HasArithmeticOrEnumeralCandidateType),
5134      CandidateTypes(CandidateTypes),
5135      CandidateSet(CandidateSet) {
5136    // Validate some of our static helper constants in debug builds.
5137    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5138           "Invalid first promoted integral type");
5139    assert(getArithmeticType(LastPromotedIntegralType - 1)
5140             == S.Context.UnsignedLongLongTy &&
5141           "Invalid last promoted integral type");
5142    assert(getArithmeticType(FirstPromotedArithmeticType)
5143             == S.Context.FloatTy &&
5144           "Invalid first promoted arithmetic type");
5145    assert(getArithmeticType(LastPromotedArithmeticType - 1)
5146             == S.Context.UnsignedLongLongTy &&
5147           "Invalid last promoted arithmetic type");
5148  }
5149
5150  // C++ [over.built]p3:
5151  //
5152  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
5153  //   is either volatile or empty, there exist candidate operator
5154  //   functions of the form
5155  //
5156  //       VQ T&      operator++(VQ T&);
5157  //       T          operator++(VQ T&, int);
5158  //
5159  // C++ [over.built]p4:
5160  //
5161  //   For every pair (T, VQ), where T is an arithmetic type other
5162  //   than bool, and VQ is either volatile or empty, there exist
5163  //   candidate operator functions of the form
5164  //
5165  //       VQ T&      operator--(VQ T&);
5166  //       T          operator--(VQ T&, int);
5167  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5168    if (!HasArithmeticOrEnumeralCandidateType)
5169      return;
5170
5171    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5172         Arith < NumArithmeticTypes; ++Arith) {
5173      addPlusPlusMinusMinusStyleOverloads(
5174        getArithmeticType(Arith),
5175        VisibleTypeConversionsQuals.hasVolatile());
5176    }
5177  }
5178
5179  // C++ [over.built]p5:
5180  //
5181  //   For every pair (T, VQ), where T is a cv-qualified or
5182  //   cv-unqualified object type, and VQ is either volatile or
5183  //   empty, there exist candidate operator functions of the form
5184  //
5185  //       T*VQ&      operator++(T*VQ&);
5186  //       T*VQ&      operator--(T*VQ&);
5187  //       T*         operator++(T*VQ&, int);
5188  //       T*         operator--(T*VQ&, int);
5189  void addPlusPlusMinusMinusPointerOverloads() {
5190    for (BuiltinCandidateTypeSet::iterator
5191              Ptr = CandidateTypes[0].pointer_begin(),
5192           PtrEnd = CandidateTypes[0].pointer_end();
5193         Ptr != PtrEnd; ++Ptr) {
5194      // Skip pointer types that aren't pointers to object types.
5195      if (!(*Ptr)->getPointeeType()->isObjectType())
5196        continue;
5197
5198      addPlusPlusMinusMinusStyleOverloads(*Ptr,
5199        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5200         VisibleTypeConversionsQuals.hasVolatile()));
5201    }
5202  }
5203
5204  // C++ [over.built]p6:
5205  //   For every cv-qualified or cv-unqualified object type T, there
5206  //   exist candidate operator functions of the form
5207  //
5208  //       T&         operator*(T*);
5209  //
5210  // C++ [over.built]p7:
5211  //   For every function type T that does not have cv-qualifiers or a
5212  //   ref-qualifier, there exist candidate operator functions of the form
5213  //       T&         operator*(T*);
5214  void addUnaryStarPointerOverloads() {
5215    for (BuiltinCandidateTypeSet::iterator
5216              Ptr = CandidateTypes[0].pointer_begin(),
5217           PtrEnd = CandidateTypes[0].pointer_end();
5218         Ptr != PtrEnd; ++Ptr) {
5219      QualType ParamTy = *Ptr;
5220      QualType PointeeTy = ParamTy->getPointeeType();
5221      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5222        continue;
5223
5224      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5225        if (Proto->getTypeQuals() || Proto->getRefQualifier())
5226          continue;
5227
5228      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5229                            &ParamTy, Args, 1, CandidateSet);
5230    }
5231  }
5232
5233  // C++ [over.built]p9:
5234  //  For every promoted arithmetic type T, there exist candidate
5235  //  operator functions of the form
5236  //
5237  //       T         operator+(T);
5238  //       T         operator-(T);
5239  void addUnaryPlusOrMinusArithmeticOverloads() {
5240    if (!HasArithmeticOrEnumeralCandidateType)
5241      return;
5242
5243    for (unsigned Arith = FirstPromotedArithmeticType;
5244         Arith < LastPromotedArithmeticType; ++Arith) {
5245      QualType ArithTy = getArithmeticType(Arith);
5246      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5247    }
5248
5249    // Extension: We also add these operators for vector types.
5250    for (BuiltinCandidateTypeSet::iterator
5251              Vec = CandidateTypes[0].vector_begin(),
5252           VecEnd = CandidateTypes[0].vector_end();
5253         Vec != VecEnd; ++Vec) {
5254      QualType VecTy = *Vec;
5255      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5256    }
5257  }
5258
5259  // C++ [over.built]p8:
5260  //   For every type T, there exist candidate operator functions of
5261  //   the form
5262  //
5263  //       T*         operator+(T*);
5264  void addUnaryPlusPointerOverloads() {
5265    for (BuiltinCandidateTypeSet::iterator
5266              Ptr = CandidateTypes[0].pointer_begin(),
5267           PtrEnd = CandidateTypes[0].pointer_end();
5268         Ptr != PtrEnd; ++Ptr) {
5269      QualType ParamTy = *Ptr;
5270      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5271    }
5272  }
5273
5274  // C++ [over.built]p10:
5275  //   For every promoted integral type T, there exist candidate
5276  //   operator functions of the form
5277  //
5278  //        T         operator~(T);
5279  void addUnaryTildePromotedIntegralOverloads() {
5280    if (!HasArithmeticOrEnumeralCandidateType)
5281      return;
5282
5283    for (unsigned Int = FirstPromotedIntegralType;
5284         Int < LastPromotedIntegralType; ++Int) {
5285      QualType IntTy = getArithmeticType(Int);
5286      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5287    }
5288
5289    // Extension: We also add this operator for vector types.
5290    for (BuiltinCandidateTypeSet::iterator
5291              Vec = CandidateTypes[0].vector_begin(),
5292           VecEnd = CandidateTypes[0].vector_end();
5293         Vec != VecEnd; ++Vec) {
5294      QualType VecTy = *Vec;
5295      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5296    }
5297  }
5298
5299  // C++ [over.match.oper]p16:
5300  //   For every pointer to member type T, there exist candidate operator
5301  //   functions of the form
5302  //
5303  //        bool operator==(T,T);
5304  //        bool operator!=(T,T);
5305  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5306    /// Set of (canonical) types that we've already handled.
5307    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5308
5309    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5310      for (BuiltinCandidateTypeSet::iterator
5311                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5312             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5313           MemPtr != MemPtrEnd;
5314           ++MemPtr) {
5315        // Don't add the same builtin candidate twice.
5316        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5317          continue;
5318
5319        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5320        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5321                              CandidateSet);
5322      }
5323    }
5324  }
5325
5326  // C++ [over.built]p15:
5327  //
5328  //   For every pointer or enumeration type T, there exist
5329  //   candidate operator functions of the form
5330  //
5331  //        bool       operator<(T, T);
5332  //        bool       operator>(T, T);
5333  //        bool       operator<=(T, T);
5334  //        bool       operator>=(T, T);
5335  //        bool       operator==(T, T);
5336  //        bool       operator!=(T, T);
5337  void addRelationalPointerOrEnumeralOverloads() {
5338    // C++ [over.built]p1:
5339    //   If there is a user-written candidate with the same name and parameter
5340    //   types as a built-in candidate operator function, the built-in operator
5341    //   function is hidden and is not included in the set of candidate
5342    //   functions.
5343    //
5344    // The text is actually in a note, but if we don't implement it then we end
5345    // up with ambiguities when the user provides an overloaded operator for
5346    // an enumeration type. Note that only enumeration types have this problem,
5347    // so we track which enumeration types we've seen operators for. Also, the
5348    // only other overloaded operator with enumeration argumenst, operator=,
5349    // cannot be overloaded for enumeration types, so this is the only place
5350    // where we must suppress candidates like this.
5351    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5352      UserDefinedBinaryOperators;
5353
5354    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5355      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5356          CandidateTypes[ArgIdx].enumeration_end()) {
5357        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5358                                         CEnd = CandidateSet.end();
5359             C != CEnd; ++C) {
5360          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5361            continue;
5362
5363          QualType FirstParamType =
5364            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5365          QualType SecondParamType =
5366            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5367
5368          // Skip if either parameter isn't of enumeral type.
5369          if (!FirstParamType->isEnumeralType() ||
5370              !SecondParamType->isEnumeralType())
5371            continue;
5372
5373          // Add this operator to the set of known user-defined operators.
5374          UserDefinedBinaryOperators.insert(
5375            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5376                           S.Context.getCanonicalType(SecondParamType)));
5377        }
5378      }
5379    }
5380
5381    /// Set of (canonical) types that we've already handled.
5382    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5383
5384    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5385      for (BuiltinCandidateTypeSet::iterator
5386                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5387             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5388           Ptr != PtrEnd; ++Ptr) {
5389        // Don't add the same builtin candidate twice.
5390        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5391          continue;
5392
5393        QualType ParamTypes[2] = { *Ptr, *Ptr };
5394        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5395                              CandidateSet);
5396      }
5397      for (BuiltinCandidateTypeSet::iterator
5398                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5399             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5400           Enum != EnumEnd; ++Enum) {
5401        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5402
5403        // Don't add the same builtin candidate twice, or if a user defined
5404        // candidate exists.
5405        if (!AddedTypes.insert(CanonType) ||
5406            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5407                                                            CanonType)))
5408          continue;
5409
5410        QualType ParamTypes[2] = { *Enum, *Enum };
5411        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5412                              CandidateSet);
5413      }
5414    }
5415  }
5416
5417  // C++ [over.built]p13:
5418  //
5419  //   For every cv-qualified or cv-unqualified object type T
5420  //   there exist candidate operator functions of the form
5421  //
5422  //      T*         operator+(T*, ptrdiff_t);
5423  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5424  //      T*         operator-(T*, ptrdiff_t);
5425  //      T*         operator+(ptrdiff_t, T*);
5426  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5427  //
5428  // C++ [over.built]p14:
5429  //
5430  //   For every T, where T is a pointer to object type, there
5431  //   exist candidate operator functions of the form
5432  //
5433  //      ptrdiff_t  operator-(T, T);
5434  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5435    /// Set of (canonical) types that we've already handled.
5436    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5437
5438    for (int Arg = 0; Arg < 2; ++Arg) {
5439      QualType AsymetricParamTypes[2] = {
5440        S.Context.getPointerDiffType(),
5441        S.Context.getPointerDiffType(),
5442      };
5443      for (BuiltinCandidateTypeSet::iterator
5444                Ptr = CandidateTypes[Arg].pointer_begin(),
5445             PtrEnd = CandidateTypes[Arg].pointer_end();
5446           Ptr != PtrEnd; ++Ptr) {
5447        QualType PointeeTy = (*Ptr)->getPointeeType();
5448        if (!PointeeTy->isObjectType())
5449          continue;
5450
5451        AsymetricParamTypes[Arg] = *Ptr;
5452        if (Arg == 0 || Op == OO_Plus) {
5453          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5454          // T* operator+(ptrdiff_t, T*);
5455          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5456                                CandidateSet);
5457        }
5458        if (Op == OO_Minus) {
5459          // ptrdiff_t operator-(T, T);
5460          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5461            continue;
5462
5463          QualType ParamTypes[2] = { *Ptr, *Ptr };
5464          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5465                                Args, 2, CandidateSet);
5466        }
5467      }
5468    }
5469  }
5470
5471  // C++ [over.built]p12:
5472  //
5473  //   For every pair of promoted arithmetic types L and R, there
5474  //   exist candidate operator functions of the form
5475  //
5476  //        LR         operator*(L, R);
5477  //        LR         operator/(L, R);
5478  //        LR         operator+(L, R);
5479  //        LR         operator-(L, R);
5480  //        bool       operator<(L, R);
5481  //        bool       operator>(L, R);
5482  //        bool       operator<=(L, R);
5483  //        bool       operator>=(L, R);
5484  //        bool       operator==(L, R);
5485  //        bool       operator!=(L, R);
5486  //
5487  //   where LR is the result of the usual arithmetic conversions
5488  //   between types L and R.
5489  //
5490  // C++ [over.built]p24:
5491  //
5492  //   For every pair of promoted arithmetic types L and R, there exist
5493  //   candidate operator functions of the form
5494  //
5495  //        LR       operator?(bool, L, R);
5496  //
5497  //   where LR is the result of the usual arithmetic conversions
5498  //   between types L and R.
5499  // Our candidates ignore the first parameter.
5500  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5501    if (!HasArithmeticOrEnumeralCandidateType)
5502      return;
5503
5504    for (unsigned Left = FirstPromotedArithmeticType;
5505         Left < LastPromotedArithmeticType; ++Left) {
5506      for (unsigned Right = FirstPromotedArithmeticType;
5507           Right < LastPromotedArithmeticType; ++Right) {
5508        QualType LandR[2] = { getArithmeticType(Left),
5509                              getArithmeticType(Right) };
5510        QualType Result =
5511          isComparison ? S.Context.BoolTy
5512                       : getUsualArithmeticConversions(Left, Right);
5513        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5514      }
5515    }
5516
5517    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5518    // conditional operator for vector types.
5519    for (BuiltinCandidateTypeSet::iterator
5520              Vec1 = CandidateTypes[0].vector_begin(),
5521           Vec1End = CandidateTypes[0].vector_end();
5522         Vec1 != Vec1End; ++Vec1) {
5523      for (BuiltinCandidateTypeSet::iterator
5524                Vec2 = CandidateTypes[1].vector_begin(),
5525             Vec2End = CandidateTypes[1].vector_end();
5526           Vec2 != Vec2End; ++Vec2) {
5527        QualType LandR[2] = { *Vec1, *Vec2 };
5528        QualType Result = S.Context.BoolTy;
5529        if (!isComparison) {
5530          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5531            Result = *Vec1;
5532          else
5533            Result = *Vec2;
5534        }
5535
5536        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5537      }
5538    }
5539  }
5540
5541  // C++ [over.built]p17:
5542  //
5543  //   For every pair of promoted integral types L and R, there
5544  //   exist candidate operator functions of the form
5545  //
5546  //      LR         operator%(L, R);
5547  //      LR         operator&(L, R);
5548  //      LR         operator^(L, R);
5549  //      LR         operator|(L, R);
5550  //      L          operator<<(L, R);
5551  //      L          operator>>(L, R);
5552  //
5553  //   where LR is the result of the usual arithmetic conversions
5554  //   between types L and R.
5555  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5556    if (!HasArithmeticOrEnumeralCandidateType)
5557      return;
5558
5559    for (unsigned Left = FirstPromotedIntegralType;
5560         Left < LastPromotedIntegralType; ++Left) {
5561      for (unsigned Right = FirstPromotedIntegralType;
5562           Right < LastPromotedIntegralType; ++Right) {
5563        QualType LandR[2] = { getArithmeticType(Left),
5564                              getArithmeticType(Right) };
5565        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5566            ? LandR[0]
5567            : getUsualArithmeticConversions(Left, Right);
5568        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5569      }
5570    }
5571  }
5572
5573  // C++ [over.built]p20:
5574  //
5575  //   For every pair (T, VQ), where T is an enumeration or
5576  //   pointer to member type and VQ is either volatile or
5577  //   empty, there exist candidate operator functions of the form
5578  //
5579  //        VQ T&      operator=(VQ T&, T);
5580  void addAssignmentMemberPointerOrEnumeralOverloads() {
5581    /// Set of (canonical) types that we've already handled.
5582    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5583
5584    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5585      for (BuiltinCandidateTypeSet::iterator
5586                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5587             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5588           Enum != EnumEnd; ++Enum) {
5589        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5590          continue;
5591
5592        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5593                                               CandidateSet);
5594      }
5595
5596      for (BuiltinCandidateTypeSet::iterator
5597                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5598             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5599           MemPtr != MemPtrEnd; ++MemPtr) {
5600        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5601          continue;
5602
5603        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5604                                               CandidateSet);
5605      }
5606    }
5607  }
5608
5609  // C++ [over.built]p19:
5610  //
5611  //   For every pair (T, VQ), where T is any type and VQ is either
5612  //   volatile or empty, there exist candidate operator functions
5613  //   of the form
5614  //
5615  //        T*VQ&      operator=(T*VQ&, T*);
5616  //
5617  // C++ [over.built]p21:
5618  //
5619  //   For every pair (T, VQ), where T is a cv-qualified or
5620  //   cv-unqualified object type and VQ is either volatile or
5621  //   empty, there exist candidate operator functions of the form
5622  //
5623  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5624  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5625  void addAssignmentPointerOverloads(bool isEqualOp) {
5626    /// Set of (canonical) types that we've already handled.
5627    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5628
5629    for (BuiltinCandidateTypeSet::iterator
5630              Ptr = CandidateTypes[0].pointer_begin(),
5631           PtrEnd = CandidateTypes[0].pointer_end();
5632         Ptr != PtrEnd; ++Ptr) {
5633      // If this is operator=, keep track of the builtin candidates we added.
5634      if (isEqualOp)
5635        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5636      else if (!(*Ptr)->getPointeeType()->isObjectType())
5637        continue;
5638
5639      // non-volatile version
5640      QualType ParamTypes[2] = {
5641        S.Context.getLValueReferenceType(*Ptr),
5642        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5643      };
5644      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5645                            /*IsAssigmentOperator=*/ isEqualOp);
5646
5647      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5648          VisibleTypeConversionsQuals.hasVolatile()) {
5649        // volatile version
5650        ParamTypes[0] =
5651          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5652        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5653                              /*IsAssigmentOperator=*/isEqualOp);
5654      }
5655    }
5656
5657    if (isEqualOp) {
5658      for (BuiltinCandidateTypeSet::iterator
5659                Ptr = CandidateTypes[1].pointer_begin(),
5660             PtrEnd = CandidateTypes[1].pointer_end();
5661           Ptr != PtrEnd; ++Ptr) {
5662        // Make sure we don't add the same candidate twice.
5663        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5664          continue;
5665
5666        QualType ParamTypes[2] = {
5667          S.Context.getLValueReferenceType(*Ptr),
5668          *Ptr,
5669        };
5670
5671        // non-volatile version
5672        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5673                              /*IsAssigmentOperator=*/true);
5674
5675        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5676            VisibleTypeConversionsQuals.hasVolatile()) {
5677          // volatile version
5678          ParamTypes[0] =
5679            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5680          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5681                                CandidateSet, /*IsAssigmentOperator=*/true);
5682        }
5683      }
5684    }
5685  }
5686
5687  // C++ [over.built]p18:
5688  //
5689  //   For every triple (L, VQ, R), where L is an arithmetic type,
5690  //   VQ is either volatile or empty, and R is a promoted
5691  //   arithmetic type, there exist candidate operator functions of
5692  //   the form
5693  //
5694  //        VQ L&      operator=(VQ L&, R);
5695  //        VQ L&      operator*=(VQ L&, R);
5696  //        VQ L&      operator/=(VQ L&, R);
5697  //        VQ L&      operator+=(VQ L&, R);
5698  //        VQ L&      operator-=(VQ L&, R);
5699  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5700    if (!HasArithmeticOrEnumeralCandidateType)
5701      return;
5702
5703    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5704      for (unsigned Right = FirstPromotedArithmeticType;
5705           Right < LastPromotedArithmeticType; ++Right) {
5706        QualType ParamTypes[2];
5707        ParamTypes[1] = getArithmeticType(Right);
5708
5709        // Add this built-in operator as a candidate (VQ is empty).
5710        ParamTypes[0] =
5711          S.Context.getLValueReferenceType(getArithmeticType(Left));
5712        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5713                              /*IsAssigmentOperator=*/isEqualOp);
5714
5715        // Add this built-in operator as a candidate (VQ is 'volatile').
5716        if (VisibleTypeConversionsQuals.hasVolatile()) {
5717          ParamTypes[0] =
5718            S.Context.getVolatileType(getArithmeticType(Left));
5719          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5720          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5721                                CandidateSet,
5722                                /*IsAssigmentOperator=*/isEqualOp);
5723        }
5724      }
5725    }
5726
5727    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5728    for (BuiltinCandidateTypeSet::iterator
5729              Vec1 = CandidateTypes[0].vector_begin(),
5730           Vec1End = CandidateTypes[0].vector_end();
5731         Vec1 != Vec1End; ++Vec1) {
5732      for (BuiltinCandidateTypeSet::iterator
5733                Vec2 = CandidateTypes[1].vector_begin(),
5734             Vec2End = CandidateTypes[1].vector_end();
5735           Vec2 != Vec2End; ++Vec2) {
5736        QualType ParamTypes[2];
5737        ParamTypes[1] = *Vec2;
5738        // Add this built-in operator as a candidate (VQ is empty).
5739        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5740        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5741                              /*IsAssigmentOperator=*/isEqualOp);
5742
5743        // Add this built-in operator as a candidate (VQ is 'volatile').
5744        if (VisibleTypeConversionsQuals.hasVolatile()) {
5745          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5746          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5747          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5748                                CandidateSet,
5749                                /*IsAssigmentOperator=*/isEqualOp);
5750        }
5751      }
5752    }
5753  }
5754
5755  // C++ [over.built]p22:
5756  //
5757  //   For every triple (L, VQ, R), where L is an integral type, VQ
5758  //   is either volatile or empty, and R is a promoted integral
5759  //   type, there exist candidate operator functions of the form
5760  //
5761  //        VQ L&       operator%=(VQ L&, R);
5762  //        VQ L&       operator<<=(VQ L&, R);
5763  //        VQ L&       operator>>=(VQ L&, R);
5764  //        VQ L&       operator&=(VQ L&, R);
5765  //        VQ L&       operator^=(VQ L&, R);
5766  //        VQ L&       operator|=(VQ L&, R);
5767  void addAssignmentIntegralOverloads() {
5768    if (!HasArithmeticOrEnumeralCandidateType)
5769      return;
5770
5771    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
5772      for (unsigned Right = FirstPromotedIntegralType;
5773           Right < LastPromotedIntegralType; ++Right) {
5774        QualType ParamTypes[2];
5775        ParamTypes[1] = getArithmeticType(Right);
5776
5777        // Add this built-in operator as a candidate (VQ is empty).
5778        ParamTypes[0] =
5779          S.Context.getLValueReferenceType(getArithmeticType(Left));
5780        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5781        if (VisibleTypeConversionsQuals.hasVolatile()) {
5782          // Add this built-in operator as a candidate (VQ is 'volatile').
5783          ParamTypes[0] = getArithmeticType(Left);
5784          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
5785          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5786          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5787                                CandidateSet);
5788        }
5789      }
5790    }
5791  }
5792
5793  // C++ [over.operator]p23:
5794  //
5795  //   There also exist candidate operator functions of the form
5796  //
5797  //        bool        operator!(bool);
5798  //        bool        operator&&(bool, bool);
5799  //        bool        operator||(bool, bool);
5800  void addExclaimOverload() {
5801    QualType ParamTy = S.Context.BoolTy;
5802    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
5803                          /*IsAssignmentOperator=*/false,
5804                          /*NumContextualBoolArguments=*/1);
5805  }
5806  void addAmpAmpOrPipePipeOverload() {
5807    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
5808    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
5809                          /*IsAssignmentOperator=*/false,
5810                          /*NumContextualBoolArguments=*/2);
5811  }
5812
5813  // C++ [over.built]p13:
5814  //
5815  //   For every cv-qualified or cv-unqualified object type T there
5816  //   exist candidate operator functions of the form
5817  //
5818  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
5819  //        T&         operator[](T*, ptrdiff_t);
5820  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
5821  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
5822  //        T&         operator[](ptrdiff_t, T*);
5823  void addSubscriptOverloads() {
5824    for (BuiltinCandidateTypeSet::iterator
5825              Ptr = CandidateTypes[0].pointer_begin(),
5826           PtrEnd = CandidateTypes[0].pointer_end();
5827         Ptr != PtrEnd; ++Ptr) {
5828      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
5829      QualType PointeeType = (*Ptr)->getPointeeType();
5830      if (!PointeeType->isObjectType())
5831        continue;
5832
5833      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5834
5835      // T& operator[](T*, ptrdiff_t)
5836      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5837    }
5838
5839    for (BuiltinCandidateTypeSet::iterator
5840              Ptr = CandidateTypes[1].pointer_begin(),
5841           PtrEnd = CandidateTypes[1].pointer_end();
5842         Ptr != PtrEnd; ++Ptr) {
5843      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
5844      QualType PointeeType = (*Ptr)->getPointeeType();
5845      if (!PointeeType->isObjectType())
5846        continue;
5847
5848      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5849
5850      // T& operator[](ptrdiff_t, T*)
5851      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5852    }
5853  }
5854
5855  // C++ [over.built]p11:
5856  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5857  //    C1 is the same type as C2 or is a derived class of C2, T is an object
5858  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5859  //    there exist candidate operator functions of the form
5860  //
5861  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5862  //
5863  //    where CV12 is the union of CV1 and CV2.
5864  void addArrowStarOverloads() {
5865    for (BuiltinCandidateTypeSet::iterator
5866             Ptr = CandidateTypes[0].pointer_begin(),
5867           PtrEnd = CandidateTypes[0].pointer_end();
5868         Ptr != PtrEnd; ++Ptr) {
5869      QualType C1Ty = (*Ptr);
5870      QualType C1;
5871      QualifierCollector Q1;
5872      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
5873      if (!isa<RecordType>(C1))
5874        continue;
5875      // heuristic to reduce number of builtin candidates in the set.
5876      // Add volatile/restrict version only if there are conversions to a
5877      // volatile/restrict type.
5878      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5879        continue;
5880      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5881        continue;
5882      for (BuiltinCandidateTypeSet::iterator
5883                MemPtr = CandidateTypes[1].member_pointer_begin(),
5884             MemPtrEnd = CandidateTypes[1].member_pointer_end();
5885           MemPtr != MemPtrEnd; ++MemPtr) {
5886        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5887        QualType C2 = QualType(mptr->getClass(), 0);
5888        C2 = C2.getUnqualifiedType();
5889        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
5890          break;
5891        QualType ParamTypes[2] = { *Ptr, *MemPtr };
5892        // build CV12 T&
5893        QualType T = mptr->getPointeeType();
5894        if (!VisibleTypeConversionsQuals.hasVolatile() &&
5895            T.isVolatileQualified())
5896          continue;
5897        if (!VisibleTypeConversionsQuals.hasRestrict() &&
5898            T.isRestrictQualified())
5899          continue;
5900        T = Q1.apply(S.Context, T);
5901        QualType ResultTy = S.Context.getLValueReferenceType(T);
5902        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5903      }
5904    }
5905  }
5906
5907  // Note that we don't consider the first argument, since it has been
5908  // contextually converted to bool long ago. The candidates below are
5909  // therefore added as binary.
5910  //
5911  // C++ [over.built]p25:
5912  //   For every type T, where T is a pointer, pointer-to-member, or scoped
5913  //   enumeration type, there exist candidate operator functions of the form
5914  //
5915  //        T        operator?(bool, T, T);
5916  //
5917  void addConditionalOperatorOverloads() {
5918    /// Set of (canonical) types that we've already handled.
5919    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5920
5921    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5922      for (BuiltinCandidateTypeSet::iterator
5923                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5924             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5925           Ptr != PtrEnd; ++Ptr) {
5926        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5927          continue;
5928
5929        QualType ParamTypes[2] = { *Ptr, *Ptr };
5930        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5931      }
5932
5933      for (BuiltinCandidateTypeSet::iterator
5934                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5935             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5936           MemPtr != MemPtrEnd; ++MemPtr) {
5937        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5938          continue;
5939
5940        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5941        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
5942      }
5943
5944      if (S.getLangOptions().CPlusPlus0x) {
5945        for (BuiltinCandidateTypeSet::iterator
5946                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5947               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5948             Enum != EnumEnd; ++Enum) {
5949          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
5950            continue;
5951
5952          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5953            continue;
5954
5955          QualType ParamTypes[2] = { *Enum, *Enum };
5956          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
5957        }
5958      }
5959    }
5960  }
5961};
5962
5963} // end anonymous namespace
5964
5965/// AddBuiltinOperatorCandidates - Add the appropriate built-in
5966/// operator overloads to the candidate set (C++ [over.built]), based
5967/// on the operator @p Op and the arguments given. For example, if the
5968/// operator is a binary '+', this routine might add "int
5969/// operator+(int, int)" to cover integer addition.
5970void
5971Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
5972                                   SourceLocation OpLoc,
5973                                   Expr **Args, unsigned NumArgs,
5974                                   OverloadCandidateSet& CandidateSet) {
5975  // Find all of the types that the arguments can convert to, but only
5976  // if the operator we're looking at has built-in operator candidates
5977  // that make use of these types. Also record whether we encounter non-record
5978  // candidate types or either arithmetic or enumeral candidate types.
5979  Qualifiers VisibleTypeConversionsQuals;
5980  VisibleTypeConversionsQuals.addConst();
5981  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5982    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
5983
5984  bool HasNonRecordCandidateType = false;
5985  bool HasArithmeticOrEnumeralCandidateType = false;
5986  llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
5987  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5988    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
5989    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
5990                                                 OpLoc,
5991                                                 true,
5992                                                 (Op == OO_Exclaim ||
5993                                                  Op == OO_AmpAmp ||
5994                                                  Op == OO_PipePipe),
5995                                                 VisibleTypeConversionsQuals);
5996    HasNonRecordCandidateType = HasNonRecordCandidateType ||
5997        CandidateTypes[ArgIdx].hasNonRecordTypes();
5998    HasArithmeticOrEnumeralCandidateType =
5999        HasArithmeticOrEnumeralCandidateType ||
6000        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6001  }
6002
6003  // Exit early when no non-record types have been added to the candidate set
6004  // for any of the arguments to the operator.
6005  if (!HasNonRecordCandidateType)
6006    return;
6007
6008  // Setup an object to manage the common state for building overloads.
6009  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6010                                           VisibleTypeConversionsQuals,
6011                                           HasArithmeticOrEnumeralCandidateType,
6012                                           CandidateTypes, CandidateSet);
6013
6014  // Dispatch over the operation to add in only those overloads which apply.
6015  switch (Op) {
6016  case OO_None:
6017  case NUM_OVERLOADED_OPERATORS:
6018    assert(false && "Expected an overloaded operator");
6019    break;
6020
6021  case OO_New:
6022  case OO_Delete:
6023  case OO_Array_New:
6024  case OO_Array_Delete:
6025  case OO_Call:
6026    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
6027    break;
6028
6029  case OO_Comma:
6030  case OO_Arrow:
6031    // C++ [over.match.oper]p3:
6032    //   -- For the operator ',', the unary operator '&', or the
6033    //      operator '->', the built-in candidates set is empty.
6034    break;
6035
6036  case OO_Plus: // '+' is either unary or binary
6037    if (NumArgs == 1)
6038      OpBuilder.addUnaryPlusPointerOverloads();
6039    // Fall through.
6040
6041  case OO_Minus: // '-' is either unary or binary
6042    if (NumArgs == 1) {
6043      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6044    } else {
6045      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6046      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6047    }
6048    break;
6049
6050  case OO_Star: // '*' is either unary or binary
6051    if (NumArgs == 1)
6052      OpBuilder.addUnaryStarPointerOverloads();
6053    else
6054      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6055    break;
6056
6057  case OO_Slash:
6058    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6059    break;
6060
6061  case OO_PlusPlus:
6062  case OO_MinusMinus:
6063    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6064    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6065    break;
6066
6067  case OO_EqualEqual:
6068  case OO_ExclaimEqual:
6069    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6070    // Fall through.
6071
6072  case OO_Less:
6073  case OO_Greater:
6074  case OO_LessEqual:
6075  case OO_GreaterEqual:
6076    OpBuilder.addRelationalPointerOrEnumeralOverloads();
6077    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6078    break;
6079
6080  case OO_Percent:
6081  case OO_Caret:
6082  case OO_Pipe:
6083  case OO_LessLess:
6084  case OO_GreaterGreater:
6085    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6086    break;
6087
6088  case OO_Amp: // '&' is either unary or binary
6089    if (NumArgs == 1)
6090      // C++ [over.match.oper]p3:
6091      //   -- For the operator ',', the unary operator '&', or the
6092      //      operator '->', the built-in candidates set is empty.
6093      break;
6094
6095    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6096    break;
6097
6098  case OO_Tilde:
6099    OpBuilder.addUnaryTildePromotedIntegralOverloads();
6100    break;
6101
6102  case OO_Equal:
6103    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6104    // Fall through.
6105
6106  case OO_PlusEqual:
6107  case OO_MinusEqual:
6108    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6109    // Fall through.
6110
6111  case OO_StarEqual:
6112  case OO_SlashEqual:
6113    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6114    break;
6115
6116  case OO_PercentEqual:
6117  case OO_LessLessEqual:
6118  case OO_GreaterGreaterEqual:
6119  case OO_AmpEqual:
6120  case OO_CaretEqual:
6121  case OO_PipeEqual:
6122    OpBuilder.addAssignmentIntegralOverloads();
6123    break;
6124
6125  case OO_Exclaim:
6126    OpBuilder.addExclaimOverload();
6127    break;
6128
6129  case OO_AmpAmp:
6130  case OO_PipePipe:
6131    OpBuilder.addAmpAmpOrPipePipeOverload();
6132    break;
6133
6134  case OO_Subscript:
6135    OpBuilder.addSubscriptOverloads();
6136    break;
6137
6138  case OO_ArrowStar:
6139    OpBuilder.addArrowStarOverloads();
6140    break;
6141
6142  case OO_Conditional:
6143    OpBuilder.addConditionalOperatorOverloads();
6144    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6145    break;
6146  }
6147}
6148
6149/// \brief Add function candidates found via argument-dependent lookup
6150/// to the set of overloading candidates.
6151///
6152/// This routine performs argument-dependent name lookup based on the
6153/// given function name (which may also be an operator name) and adds
6154/// all of the overload candidates found by ADL to the overload
6155/// candidate set (C++ [basic.lookup.argdep]).
6156void
6157Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6158                                           bool Operator,
6159                                           Expr **Args, unsigned NumArgs,
6160                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
6161                                           OverloadCandidateSet& CandidateSet,
6162                                           bool PartialOverloading,
6163                                           bool StdNamespaceIsAssociated) {
6164  ADLResult Fns;
6165
6166  // FIXME: This approach for uniquing ADL results (and removing
6167  // redundant candidates from the set) relies on pointer-equality,
6168  // which means we need to key off the canonical decl.  However,
6169  // always going back to the canonical decl might not get us the
6170  // right set of default arguments.  What default arguments are
6171  // we supposed to consider on ADL candidates, anyway?
6172
6173  // FIXME: Pass in the explicit template arguments?
6174  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6175                          StdNamespaceIsAssociated);
6176
6177  // Erase all of the candidates we already knew about.
6178  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6179                                   CandEnd = CandidateSet.end();
6180       Cand != CandEnd; ++Cand)
6181    if (Cand->Function) {
6182      Fns.erase(Cand->Function);
6183      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6184        Fns.erase(FunTmpl);
6185    }
6186
6187  // For each of the ADL candidates we found, add it to the overload
6188  // set.
6189  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6190    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6191    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6192      if (ExplicitTemplateArgs)
6193        continue;
6194
6195      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6196                           false, PartialOverloading);
6197    } else
6198      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6199                                   FoundDecl, ExplicitTemplateArgs,
6200                                   Args, NumArgs, CandidateSet);
6201  }
6202}
6203
6204/// isBetterOverloadCandidate - Determines whether the first overload
6205/// candidate is a better candidate than the second (C++ 13.3.3p1).
6206bool
6207isBetterOverloadCandidate(Sema &S,
6208                          const OverloadCandidate &Cand1,
6209                          const OverloadCandidate &Cand2,
6210                          SourceLocation Loc,
6211                          bool UserDefinedConversion) {
6212  // Define viable functions to be better candidates than non-viable
6213  // functions.
6214  if (!Cand2.Viable)
6215    return Cand1.Viable;
6216  else if (!Cand1.Viable)
6217    return false;
6218
6219  // C++ [over.match.best]p1:
6220  //
6221  //   -- if F is a static member function, ICS1(F) is defined such
6222  //      that ICS1(F) is neither better nor worse than ICS1(G) for
6223  //      any function G, and, symmetrically, ICS1(G) is neither
6224  //      better nor worse than ICS1(F).
6225  unsigned StartArg = 0;
6226  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6227    StartArg = 1;
6228
6229  // C++ [over.match.best]p1:
6230  //   A viable function F1 is defined to be a better function than another
6231  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
6232  //   conversion sequence than ICSi(F2), and then...
6233  unsigned NumArgs = Cand1.Conversions.size();
6234  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6235  bool HasBetterConversion = false;
6236  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6237    switch (CompareImplicitConversionSequences(S,
6238                                               Cand1.Conversions[ArgIdx],
6239                                               Cand2.Conversions[ArgIdx])) {
6240    case ImplicitConversionSequence::Better:
6241      // Cand1 has a better conversion sequence.
6242      HasBetterConversion = true;
6243      break;
6244
6245    case ImplicitConversionSequence::Worse:
6246      // Cand1 can't be better than Cand2.
6247      return false;
6248
6249    case ImplicitConversionSequence::Indistinguishable:
6250      // Do nothing.
6251      break;
6252    }
6253  }
6254
6255  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6256  //       ICSj(F2), or, if not that,
6257  if (HasBetterConversion)
6258    return true;
6259
6260  //     - F1 is a non-template function and F2 is a function template
6261  //       specialization, or, if not that,
6262  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6263      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6264    return true;
6265
6266  //   -- F1 and F2 are function template specializations, and the function
6267  //      template for F1 is more specialized than the template for F2
6268  //      according to the partial ordering rules described in 14.5.5.2, or,
6269  //      if not that,
6270  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6271      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6272    if (FunctionTemplateDecl *BetterTemplate
6273          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6274                                         Cand2.Function->getPrimaryTemplate(),
6275                                         Loc,
6276                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6277                                                             : TPOC_Call,
6278                                         Cand1.ExplicitCallArguments))
6279      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6280  }
6281
6282  //   -- the context is an initialization by user-defined conversion
6283  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6284  //      from the return type of F1 to the destination type (i.e.,
6285  //      the type of the entity being initialized) is a better
6286  //      conversion sequence than the standard conversion sequence
6287  //      from the return type of F2 to the destination type.
6288  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6289      isa<CXXConversionDecl>(Cand1.Function) &&
6290      isa<CXXConversionDecl>(Cand2.Function)) {
6291    switch (CompareStandardConversionSequences(S,
6292                                               Cand1.FinalConversion,
6293                                               Cand2.FinalConversion)) {
6294    case ImplicitConversionSequence::Better:
6295      // Cand1 has a better conversion sequence.
6296      return true;
6297
6298    case ImplicitConversionSequence::Worse:
6299      // Cand1 can't be better than Cand2.
6300      return false;
6301
6302    case ImplicitConversionSequence::Indistinguishable:
6303      // Do nothing
6304      break;
6305    }
6306  }
6307
6308  return false;
6309}
6310
6311/// \brief Computes the best viable function (C++ 13.3.3)
6312/// within an overload candidate set.
6313///
6314/// \param CandidateSet the set of candidate functions.
6315///
6316/// \param Loc the location of the function name (or operator symbol) for
6317/// which overload resolution occurs.
6318///
6319/// \param Best f overload resolution was successful or found a deleted
6320/// function, Best points to the candidate function found.
6321///
6322/// \returns The result of overload resolution.
6323OverloadingResult
6324OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6325                                         iterator &Best,
6326                                         bool UserDefinedConversion) {
6327  // Find the best viable function.
6328  Best = end();
6329  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6330    if (Cand->Viable)
6331      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6332                                                     UserDefinedConversion))
6333        Best = Cand;
6334  }
6335
6336  // If we didn't find any viable functions, abort.
6337  if (Best == end())
6338    return OR_No_Viable_Function;
6339
6340  // Make sure that this function is better than every other viable
6341  // function. If not, we have an ambiguity.
6342  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6343    if (Cand->Viable &&
6344        Cand != Best &&
6345        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6346                                   UserDefinedConversion)) {
6347      Best = end();
6348      return OR_Ambiguous;
6349    }
6350  }
6351
6352  // Best is the best viable function.
6353  if (Best->Function &&
6354      (Best->Function->isDeleted() || Best->Function->isUnavailable()))
6355    return OR_Deleted;
6356
6357  return OR_Success;
6358}
6359
6360namespace {
6361
6362enum OverloadCandidateKind {
6363  oc_function,
6364  oc_method,
6365  oc_constructor,
6366  oc_function_template,
6367  oc_method_template,
6368  oc_constructor_template,
6369  oc_implicit_default_constructor,
6370  oc_implicit_copy_constructor,
6371  oc_implicit_copy_assignment,
6372  oc_implicit_inherited_constructor
6373};
6374
6375OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6376                                                FunctionDecl *Fn,
6377                                                std::string &Description) {
6378  bool isTemplate = false;
6379
6380  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6381    isTemplate = true;
6382    Description = S.getTemplateArgumentBindingsText(
6383      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6384  }
6385
6386  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6387    if (!Ctor->isImplicit())
6388      return isTemplate ? oc_constructor_template : oc_constructor;
6389
6390    if (Ctor->getInheritedConstructor())
6391      return oc_implicit_inherited_constructor;
6392
6393    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
6394                                     : oc_implicit_default_constructor;
6395  }
6396
6397  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6398    // This actually gets spelled 'candidate function' for now, but
6399    // it doesn't hurt to split it out.
6400    if (!Meth->isImplicit())
6401      return isTemplate ? oc_method_template : oc_method;
6402
6403    assert(Meth->isCopyAssignmentOperator()
6404           && "implicit method is not copy assignment operator?");
6405    return oc_implicit_copy_assignment;
6406  }
6407
6408  return isTemplate ? oc_function_template : oc_function;
6409}
6410
6411void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
6412  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
6413  if (!Ctor) return;
6414
6415  Ctor = Ctor->getInheritedConstructor();
6416  if (!Ctor) return;
6417
6418  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
6419}
6420
6421} // end anonymous namespace
6422
6423// Notes the location of an overload candidate.
6424void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6425  std::string FnDesc;
6426  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6427  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6428    << (unsigned) K << FnDesc;
6429  MaybeEmitInheritedConstructorNote(*this, Fn);
6430}
6431
6432//Notes the location of all overload candidates designated through
6433// OverloadedExpr
6434void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
6435  assert(OverloadedExpr->getType() == Context.OverloadTy);
6436
6437  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
6438  OverloadExpr *OvlExpr = Ovl.Expression;
6439
6440  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6441                            IEnd = OvlExpr->decls_end();
6442       I != IEnd; ++I) {
6443    if (FunctionTemplateDecl *FunTmpl =
6444                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6445      NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
6446    } else if (FunctionDecl *Fun
6447                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
6448      NoteOverloadCandidate(Fun);
6449    }
6450  }
6451}
6452
6453/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6454/// "lead" diagnostic; it will be given two arguments, the source and
6455/// target types of the conversion.
6456void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6457                                 Sema &S,
6458                                 SourceLocation CaretLoc,
6459                                 const PartialDiagnostic &PDiag) const {
6460  S.Diag(CaretLoc, PDiag)
6461    << Ambiguous.getFromType() << Ambiguous.getToType();
6462  for (AmbiguousConversionSequence::const_iterator
6463         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6464    S.NoteOverloadCandidate(*I);
6465  }
6466}
6467
6468namespace {
6469
6470void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6471  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6472  assert(Conv.isBad());
6473  assert(Cand->Function && "for now, candidate must be a function");
6474  FunctionDecl *Fn = Cand->Function;
6475
6476  // There's a conversion slot for the object argument if this is a
6477  // non-constructor method.  Note that 'I' corresponds the
6478  // conversion-slot index.
6479  bool isObjectArgument = false;
6480  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6481    if (I == 0)
6482      isObjectArgument = true;
6483    else
6484      I--;
6485  }
6486
6487  std::string FnDesc;
6488  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6489
6490  Expr *FromExpr = Conv.Bad.FromExpr;
6491  QualType FromTy = Conv.Bad.getFromType();
6492  QualType ToTy = Conv.Bad.getToType();
6493
6494  if (FromTy == S.Context.OverloadTy) {
6495    assert(FromExpr && "overload set argument came from implicit argument?");
6496    Expr *E = FromExpr->IgnoreParens();
6497    if (isa<UnaryOperator>(E))
6498      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6499    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6500
6501    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6502      << (unsigned) FnKind << FnDesc
6503      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6504      << ToTy << Name << I+1;
6505    MaybeEmitInheritedConstructorNote(S, Fn);
6506    return;
6507  }
6508
6509  // Do some hand-waving analysis to see if the non-viability is due
6510  // to a qualifier mismatch.
6511  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6512  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6513  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6514    CToTy = RT->getPointeeType();
6515  else {
6516    // TODO: detect and diagnose the full richness of const mismatches.
6517    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6518      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6519        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6520  }
6521
6522  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6523      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6524    // It is dumb that we have to do this here.
6525    while (isa<ArrayType>(CFromTy))
6526      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6527    while (isa<ArrayType>(CToTy))
6528      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6529
6530    Qualifiers FromQs = CFromTy.getQualifiers();
6531    Qualifiers ToQs = CToTy.getQualifiers();
6532
6533    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6534      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6535        << (unsigned) FnKind << FnDesc
6536        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6537        << FromTy
6538        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6539        << (unsigned) isObjectArgument << I+1;
6540      MaybeEmitInheritedConstructorNote(S, Fn);
6541      return;
6542    }
6543
6544    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6545    assert(CVR && "unexpected qualifiers mismatch");
6546
6547    if (isObjectArgument) {
6548      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6549        << (unsigned) FnKind << FnDesc
6550        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6551        << FromTy << (CVR - 1);
6552    } else {
6553      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6554        << (unsigned) FnKind << FnDesc
6555        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6556        << FromTy << (CVR - 1) << I+1;
6557    }
6558    MaybeEmitInheritedConstructorNote(S, Fn);
6559    return;
6560  }
6561
6562  // Diagnose references or pointers to incomplete types differently,
6563  // since it's far from impossible that the incompleteness triggered
6564  // the failure.
6565  QualType TempFromTy = FromTy.getNonReferenceType();
6566  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6567    TempFromTy = PTy->getPointeeType();
6568  if (TempFromTy->isIncompleteType()) {
6569    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6570      << (unsigned) FnKind << FnDesc
6571      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6572      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6573    MaybeEmitInheritedConstructorNote(S, Fn);
6574    return;
6575  }
6576
6577  // Diagnose base -> derived pointer conversions.
6578  unsigned BaseToDerivedConversion = 0;
6579  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6580    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6581      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6582                                               FromPtrTy->getPointeeType()) &&
6583          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6584          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6585          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6586                          FromPtrTy->getPointeeType()))
6587        BaseToDerivedConversion = 1;
6588    }
6589  } else if (const ObjCObjectPointerType *FromPtrTy
6590                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6591    if (const ObjCObjectPointerType *ToPtrTy
6592                                        = ToTy->getAs<ObjCObjectPointerType>())
6593      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6594        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6595          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6596                                                FromPtrTy->getPointeeType()) &&
6597              FromIface->isSuperClassOf(ToIface))
6598            BaseToDerivedConversion = 2;
6599  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6600      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6601          !FromTy->isIncompleteType() &&
6602          !ToRefTy->getPointeeType()->isIncompleteType() &&
6603          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6604        BaseToDerivedConversion = 3;
6605    }
6606
6607  if (BaseToDerivedConversion) {
6608    S.Diag(Fn->getLocation(),
6609           diag::note_ovl_candidate_bad_base_to_derived_conv)
6610      << (unsigned) FnKind << FnDesc
6611      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6612      << (BaseToDerivedConversion - 1)
6613      << FromTy << ToTy << I+1;
6614    MaybeEmitInheritedConstructorNote(S, Fn);
6615    return;
6616  }
6617
6618  // TODO: specialize more based on the kind of mismatch
6619  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
6620    << (unsigned) FnKind << FnDesc
6621    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6622    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6623  MaybeEmitInheritedConstructorNote(S, Fn);
6624}
6625
6626void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
6627                           unsigned NumFormalArgs) {
6628  // TODO: treat calls to a missing default constructor as a special case
6629
6630  FunctionDecl *Fn = Cand->Function;
6631  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
6632
6633  unsigned MinParams = Fn->getMinRequiredArguments();
6634
6635  // at least / at most / exactly
6636  unsigned mode, modeCount;
6637  if (NumFormalArgs < MinParams) {
6638    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
6639           (Cand->FailureKind == ovl_fail_bad_deduction &&
6640            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
6641    if (MinParams != FnTy->getNumArgs() ||
6642        FnTy->isVariadic() || FnTy->isTemplateVariadic())
6643      mode = 0; // "at least"
6644    else
6645      mode = 2; // "exactly"
6646    modeCount = MinParams;
6647  } else {
6648    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
6649           (Cand->FailureKind == ovl_fail_bad_deduction &&
6650            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
6651    if (MinParams != FnTy->getNumArgs())
6652      mode = 1; // "at most"
6653    else
6654      mode = 2; // "exactly"
6655    modeCount = FnTy->getNumArgs();
6656  }
6657
6658  std::string Description;
6659  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
6660
6661  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
6662    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
6663    << modeCount << NumFormalArgs;
6664  MaybeEmitInheritedConstructorNote(S, Fn);
6665}
6666
6667/// Diagnose a failed template-argument deduction.
6668void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
6669                          Expr **Args, unsigned NumArgs) {
6670  FunctionDecl *Fn = Cand->Function; // pattern
6671
6672  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
6673  NamedDecl *ParamD;
6674  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
6675  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
6676  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
6677  switch (Cand->DeductionFailure.Result) {
6678  case Sema::TDK_Success:
6679    llvm_unreachable("TDK_success while diagnosing bad deduction");
6680
6681  case Sema::TDK_Incomplete: {
6682    assert(ParamD && "no parameter found for incomplete deduction result");
6683    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
6684      << ParamD->getDeclName();
6685    MaybeEmitInheritedConstructorNote(S, Fn);
6686    return;
6687  }
6688
6689  case Sema::TDK_Underqualified: {
6690    assert(ParamD && "no parameter found for bad qualifiers deduction result");
6691    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
6692
6693    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
6694
6695    // Param will have been canonicalized, but it should just be a
6696    // qualified version of ParamD, so move the qualifiers to that.
6697    QualifierCollector Qs;
6698    Qs.strip(Param);
6699    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
6700    assert(S.Context.hasSameType(Param, NonCanonParam));
6701
6702    // Arg has also been canonicalized, but there's nothing we can do
6703    // about that.  It also doesn't matter as much, because it won't
6704    // have any template parameters in it (because deduction isn't
6705    // done on dependent types).
6706    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
6707
6708    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
6709      << ParamD->getDeclName() << Arg << NonCanonParam;
6710    MaybeEmitInheritedConstructorNote(S, Fn);
6711    return;
6712  }
6713
6714  case Sema::TDK_Inconsistent: {
6715    assert(ParamD && "no parameter found for inconsistent deduction result");
6716    int which = 0;
6717    if (isa<TemplateTypeParmDecl>(ParamD))
6718      which = 0;
6719    else if (isa<NonTypeTemplateParmDecl>(ParamD))
6720      which = 1;
6721    else {
6722      which = 2;
6723    }
6724
6725    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
6726      << which << ParamD->getDeclName()
6727      << *Cand->DeductionFailure.getFirstArg()
6728      << *Cand->DeductionFailure.getSecondArg();
6729    MaybeEmitInheritedConstructorNote(S, Fn);
6730    return;
6731  }
6732
6733  case Sema::TDK_InvalidExplicitArguments:
6734    assert(ParamD && "no parameter found for invalid explicit arguments");
6735    if (ParamD->getDeclName())
6736      S.Diag(Fn->getLocation(),
6737             diag::note_ovl_candidate_explicit_arg_mismatch_named)
6738        << ParamD->getDeclName();
6739    else {
6740      int index = 0;
6741      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
6742        index = TTP->getIndex();
6743      else if (NonTypeTemplateParmDecl *NTTP
6744                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
6745        index = NTTP->getIndex();
6746      else
6747        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
6748      S.Diag(Fn->getLocation(),
6749             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
6750        << (index + 1);
6751    }
6752    MaybeEmitInheritedConstructorNote(S, Fn);
6753    return;
6754
6755  case Sema::TDK_TooManyArguments:
6756  case Sema::TDK_TooFewArguments:
6757    DiagnoseArityMismatch(S, Cand, NumArgs);
6758    return;
6759
6760  case Sema::TDK_InstantiationDepth:
6761    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
6762    MaybeEmitInheritedConstructorNote(S, Fn);
6763    return;
6764
6765  case Sema::TDK_SubstitutionFailure: {
6766    std::string ArgString;
6767    if (TemplateArgumentList *Args
6768                            = Cand->DeductionFailure.getTemplateArgumentList())
6769      ArgString = S.getTemplateArgumentBindingsText(
6770                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
6771                                                    *Args);
6772    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
6773      << ArgString;
6774    MaybeEmitInheritedConstructorNote(S, Fn);
6775    return;
6776  }
6777
6778  // TODO: diagnose these individually, then kill off
6779  // note_ovl_candidate_bad_deduction, which is uselessly vague.
6780  case Sema::TDK_NonDeducedMismatch:
6781  case Sema::TDK_FailedOverloadResolution:
6782    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
6783    MaybeEmitInheritedConstructorNote(S, Fn);
6784    return;
6785  }
6786}
6787
6788/// Generates a 'note' diagnostic for an overload candidate.  We've
6789/// already generated a primary error at the call site.
6790///
6791/// It really does need to be a single diagnostic with its caret
6792/// pointed at the candidate declaration.  Yes, this creates some
6793/// major challenges of technical writing.  Yes, this makes pointing
6794/// out problems with specific arguments quite awkward.  It's still
6795/// better than generating twenty screens of text for every failed
6796/// overload.
6797///
6798/// It would be great to be able to express per-candidate problems
6799/// more richly for those diagnostic clients that cared, but we'd
6800/// still have to be just as careful with the default diagnostics.
6801void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
6802                           Expr **Args, unsigned NumArgs) {
6803  FunctionDecl *Fn = Cand->Function;
6804
6805  // Note deleted candidates, but only if they're viable.
6806  if (Cand->Viable && (Fn->isDeleted() || Fn->isUnavailable())) {
6807    std::string FnDesc;
6808    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6809
6810    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
6811      << FnKind << FnDesc << Fn->isDeleted();
6812    MaybeEmitInheritedConstructorNote(S, Fn);
6813    return;
6814  }
6815
6816  // We don't really have anything else to say about viable candidates.
6817  if (Cand->Viable) {
6818    S.NoteOverloadCandidate(Fn);
6819    return;
6820  }
6821
6822  switch (Cand->FailureKind) {
6823  case ovl_fail_too_many_arguments:
6824  case ovl_fail_too_few_arguments:
6825    return DiagnoseArityMismatch(S, Cand, NumArgs);
6826
6827  case ovl_fail_bad_deduction:
6828    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
6829
6830  case ovl_fail_trivial_conversion:
6831  case ovl_fail_bad_final_conversion:
6832  case ovl_fail_final_conversion_not_exact:
6833    return S.NoteOverloadCandidate(Fn);
6834
6835  case ovl_fail_bad_conversion: {
6836    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
6837    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
6838      if (Cand->Conversions[I].isBad())
6839        return DiagnoseBadConversion(S, Cand, I);
6840
6841    // FIXME: this currently happens when we're called from SemaInit
6842    // when user-conversion overload fails.  Figure out how to handle
6843    // those conditions and diagnose them well.
6844    return S.NoteOverloadCandidate(Fn);
6845  }
6846  }
6847}
6848
6849void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
6850  // Desugar the type of the surrogate down to a function type,
6851  // retaining as many typedefs as possible while still showing
6852  // the function type (and, therefore, its parameter types).
6853  QualType FnType = Cand->Surrogate->getConversionType();
6854  bool isLValueReference = false;
6855  bool isRValueReference = false;
6856  bool isPointer = false;
6857  if (const LValueReferenceType *FnTypeRef =
6858        FnType->getAs<LValueReferenceType>()) {
6859    FnType = FnTypeRef->getPointeeType();
6860    isLValueReference = true;
6861  } else if (const RValueReferenceType *FnTypeRef =
6862               FnType->getAs<RValueReferenceType>()) {
6863    FnType = FnTypeRef->getPointeeType();
6864    isRValueReference = true;
6865  }
6866  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
6867    FnType = FnTypePtr->getPointeeType();
6868    isPointer = true;
6869  }
6870  // Desugar down to a function type.
6871  FnType = QualType(FnType->getAs<FunctionType>(), 0);
6872  // Reconstruct the pointer/reference as appropriate.
6873  if (isPointer) FnType = S.Context.getPointerType(FnType);
6874  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
6875  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
6876
6877  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
6878    << FnType;
6879  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
6880}
6881
6882void NoteBuiltinOperatorCandidate(Sema &S,
6883                                  const char *Opc,
6884                                  SourceLocation OpLoc,
6885                                  OverloadCandidate *Cand) {
6886  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
6887  std::string TypeStr("operator");
6888  TypeStr += Opc;
6889  TypeStr += "(";
6890  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
6891  if (Cand->Conversions.size() == 1) {
6892    TypeStr += ")";
6893    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
6894  } else {
6895    TypeStr += ", ";
6896    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
6897    TypeStr += ")";
6898    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
6899  }
6900}
6901
6902void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
6903                                  OverloadCandidate *Cand) {
6904  unsigned NoOperands = Cand->Conversions.size();
6905  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
6906    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
6907    if (ICS.isBad()) break; // all meaningless after first invalid
6908    if (!ICS.isAmbiguous()) continue;
6909
6910    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
6911                              S.PDiag(diag::note_ambiguous_type_conversion));
6912  }
6913}
6914
6915SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
6916  if (Cand->Function)
6917    return Cand->Function->getLocation();
6918  if (Cand->IsSurrogate)
6919    return Cand->Surrogate->getLocation();
6920  return SourceLocation();
6921}
6922
6923struct CompareOverloadCandidatesForDisplay {
6924  Sema &S;
6925  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
6926
6927  bool operator()(const OverloadCandidate *L,
6928                  const OverloadCandidate *R) {
6929    // Fast-path this check.
6930    if (L == R) return false;
6931
6932    // Order first by viability.
6933    if (L->Viable) {
6934      if (!R->Viable) return true;
6935
6936      // TODO: introduce a tri-valued comparison for overload
6937      // candidates.  Would be more worthwhile if we had a sort
6938      // that could exploit it.
6939      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
6940      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
6941    } else if (R->Viable)
6942      return false;
6943
6944    assert(L->Viable == R->Viable);
6945
6946    // Criteria by which we can sort non-viable candidates:
6947    if (!L->Viable) {
6948      // 1. Arity mismatches come after other candidates.
6949      if (L->FailureKind == ovl_fail_too_many_arguments ||
6950          L->FailureKind == ovl_fail_too_few_arguments)
6951        return false;
6952      if (R->FailureKind == ovl_fail_too_many_arguments ||
6953          R->FailureKind == ovl_fail_too_few_arguments)
6954        return true;
6955
6956      // 2. Bad conversions come first and are ordered by the number
6957      // of bad conversions and quality of good conversions.
6958      if (L->FailureKind == ovl_fail_bad_conversion) {
6959        if (R->FailureKind != ovl_fail_bad_conversion)
6960          return true;
6961
6962        // If there's any ordering between the defined conversions...
6963        // FIXME: this might not be transitive.
6964        assert(L->Conversions.size() == R->Conversions.size());
6965
6966        int leftBetter = 0;
6967        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
6968        for (unsigned E = L->Conversions.size(); I != E; ++I) {
6969          switch (CompareImplicitConversionSequences(S,
6970                                                     L->Conversions[I],
6971                                                     R->Conversions[I])) {
6972          case ImplicitConversionSequence::Better:
6973            leftBetter++;
6974            break;
6975
6976          case ImplicitConversionSequence::Worse:
6977            leftBetter--;
6978            break;
6979
6980          case ImplicitConversionSequence::Indistinguishable:
6981            break;
6982          }
6983        }
6984        if (leftBetter > 0) return true;
6985        if (leftBetter < 0) return false;
6986
6987      } else if (R->FailureKind == ovl_fail_bad_conversion)
6988        return false;
6989
6990      // TODO: others?
6991    }
6992
6993    // Sort everything else by location.
6994    SourceLocation LLoc = GetLocationForCandidate(L);
6995    SourceLocation RLoc = GetLocationForCandidate(R);
6996
6997    // Put candidates without locations (e.g. builtins) at the end.
6998    if (LLoc.isInvalid()) return false;
6999    if (RLoc.isInvalid()) return true;
7000
7001    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7002  }
7003};
7004
7005/// CompleteNonViableCandidate - Normally, overload resolution only
7006/// computes up to the first
7007void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7008                                Expr **Args, unsigned NumArgs) {
7009  assert(!Cand->Viable);
7010
7011  // Don't do anything on failures other than bad conversion.
7012  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7013
7014  // Skip forward to the first bad conversion.
7015  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7016  unsigned ConvCount = Cand->Conversions.size();
7017  while (true) {
7018    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7019    ConvIdx++;
7020    if (Cand->Conversions[ConvIdx - 1].isBad())
7021      break;
7022  }
7023
7024  if (ConvIdx == ConvCount)
7025    return;
7026
7027  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7028         "remaining conversion is initialized?");
7029
7030  // FIXME: this should probably be preserved from the overload
7031  // operation somehow.
7032  bool SuppressUserConversions = false;
7033
7034  const FunctionProtoType* Proto;
7035  unsigned ArgIdx = ConvIdx;
7036
7037  if (Cand->IsSurrogate) {
7038    QualType ConvType
7039      = Cand->Surrogate->getConversionType().getNonReferenceType();
7040    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7041      ConvType = ConvPtrType->getPointeeType();
7042    Proto = ConvType->getAs<FunctionProtoType>();
7043    ArgIdx--;
7044  } else if (Cand->Function) {
7045    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7046    if (isa<CXXMethodDecl>(Cand->Function) &&
7047        !isa<CXXConstructorDecl>(Cand->Function))
7048      ArgIdx--;
7049  } else {
7050    // Builtin binary operator with a bad first conversion.
7051    assert(ConvCount <= 3);
7052    for (; ConvIdx != ConvCount; ++ConvIdx)
7053      Cand->Conversions[ConvIdx]
7054        = TryCopyInitialization(S, Args[ConvIdx],
7055                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
7056                                SuppressUserConversions,
7057                                /*InOverloadResolution*/ true);
7058    return;
7059  }
7060
7061  // Fill in the rest of the conversions.
7062  unsigned NumArgsInProto = Proto->getNumArgs();
7063  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7064    if (ArgIdx < NumArgsInProto)
7065      Cand->Conversions[ConvIdx]
7066        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7067                                SuppressUserConversions,
7068                                /*InOverloadResolution=*/true);
7069    else
7070      Cand->Conversions[ConvIdx].setEllipsis();
7071  }
7072}
7073
7074} // end anonymous namespace
7075
7076/// PrintOverloadCandidates - When overload resolution fails, prints
7077/// diagnostic messages containing the candidates in the candidate
7078/// set.
7079void OverloadCandidateSet::NoteCandidates(Sema &S,
7080                                          OverloadCandidateDisplayKind OCD,
7081                                          Expr **Args, unsigned NumArgs,
7082                                          const char *Opc,
7083                                          SourceLocation OpLoc) {
7084  // Sort the candidates by viability and position.  Sorting directly would
7085  // be prohibitive, so we make a set of pointers and sort those.
7086  llvm::SmallVector<OverloadCandidate*, 32> Cands;
7087  if (OCD == OCD_AllCandidates) Cands.reserve(size());
7088  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7089    if (Cand->Viable)
7090      Cands.push_back(Cand);
7091    else if (OCD == OCD_AllCandidates) {
7092      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7093      if (Cand->Function || Cand->IsSurrogate)
7094        Cands.push_back(Cand);
7095      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
7096      // want to list every possible builtin candidate.
7097    }
7098  }
7099
7100  std::sort(Cands.begin(), Cands.end(),
7101            CompareOverloadCandidatesForDisplay(S));
7102
7103  bool ReportedAmbiguousConversions = false;
7104
7105  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7106  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
7107  unsigned CandsShown = 0;
7108  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7109    OverloadCandidate *Cand = *I;
7110
7111    // Set an arbitrary limit on the number of candidate functions we'll spam
7112    // the user with.  FIXME: This limit should depend on details of the
7113    // candidate list.
7114    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
7115      break;
7116    }
7117    ++CandsShown;
7118
7119    if (Cand->Function)
7120      NoteFunctionCandidate(S, Cand, Args, NumArgs);
7121    else if (Cand->IsSurrogate)
7122      NoteSurrogateCandidate(S, Cand);
7123    else {
7124      assert(Cand->Viable &&
7125             "Non-viable built-in candidates are not added to Cands.");
7126      // Generally we only see ambiguities including viable builtin
7127      // operators if overload resolution got screwed up by an
7128      // ambiguous user-defined conversion.
7129      //
7130      // FIXME: It's quite possible for different conversions to see
7131      // different ambiguities, though.
7132      if (!ReportedAmbiguousConversions) {
7133        NoteAmbiguousUserConversions(S, OpLoc, Cand);
7134        ReportedAmbiguousConversions = true;
7135      }
7136
7137      // If this is a viable builtin, print it.
7138      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7139    }
7140  }
7141
7142  if (I != E)
7143    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7144}
7145
7146// [PossiblyAFunctionType]  -->   [Return]
7147// NonFunctionType --> NonFunctionType
7148// R (A) --> R(A)
7149// R (*)(A) --> R (A)
7150// R (&)(A) --> R (A)
7151// R (S::*)(A) --> R (A)
7152QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7153  QualType Ret = PossiblyAFunctionType;
7154  if (const PointerType *ToTypePtr =
7155    PossiblyAFunctionType->getAs<PointerType>())
7156    Ret = ToTypePtr->getPointeeType();
7157  else if (const ReferenceType *ToTypeRef =
7158    PossiblyAFunctionType->getAs<ReferenceType>())
7159    Ret = ToTypeRef->getPointeeType();
7160  else if (const MemberPointerType *MemTypePtr =
7161    PossiblyAFunctionType->getAs<MemberPointerType>())
7162    Ret = MemTypePtr->getPointeeType();
7163  Ret =
7164    Context.getCanonicalType(Ret).getUnqualifiedType();
7165  return Ret;
7166}
7167
7168// A helper class to help with address of function resolution
7169// - allows us to avoid passing around all those ugly parameters
7170class AddressOfFunctionResolver
7171{
7172  Sema& S;
7173  Expr* SourceExpr;
7174  const QualType& TargetType;
7175  QualType TargetFunctionType; // Extracted function type from target type
7176
7177  bool Complain;
7178  //DeclAccessPair& ResultFunctionAccessPair;
7179  ASTContext& Context;
7180
7181  bool TargetTypeIsNonStaticMemberFunction;
7182  bool FoundNonTemplateFunction;
7183
7184  OverloadExpr::FindResult OvlExprInfo;
7185  OverloadExpr *OvlExpr;
7186  TemplateArgumentListInfo OvlExplicitTemplateArgs;
7187  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7188
7189public:
7190  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7191                            const QualType& TargetType, bool Complain)
7192    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7193      Complain(Complain), Context(S.getASTContext()),
7194      TargetTypeIsNonStaticMemberFunction(
7195                                    !!TargetType->getAs<MemberPointerType>()),
7196      FoundNonTemplateFunction(false),
7197      OvlExprInfo(OverloadExpr::find(SourceExpr)),
7198      OvlExpr(OvlExprInfo.Expression)
7199  {
7200    ExtractUnqualifiedFunctionTypeFromTargetType();
7201
7202    if (!TargetFunctionType->isFunctionType()) {
7203      if (OvlExpr->hasExplicitTemplateArgs()) {
7204        DeclAccessPair dap;
7205        if( FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7206                                            OvlExpr, false, &dap) ) {
7207
7208          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7209            if (!Method->isStatic()) {
7210              // If the target type is a non-function type and the function
7211              // found is a non-static member function, pretend as if that was
7212              // the target, it's the only possible type to end up with.
7213              TargetTypeIsNonStaticMemberFunction = true;
7214
7215              // And skip adding the function if its not in the proper form.
7216              // We'll diagnose this due to an empty set of functions.
7217              if (!OvlExprInfo.HasFormOfMemberPointer)
7218                return;
7219            }
7220          }
7221
7222          Matches.push_back(std::make_pair(dap,Fn));
7223        }
7224      }
7225      return;
7226    }
7227
7228    if (OvlExpr->hasExplicitTemplateArgs())
7229      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7230
7231    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7232      // C++ [over.over]p4:
7233      //   If more than one function is selected, [...]
7234      if (Matches.size() > 1) {
7235        if (FoundNonTemplateFunction)
7236          EliminateAllTemplateMatches();
7237        else
7238          EliminateAllExceptMostSpecializedTemplate();
7239      }
7240    }
7241  }
7242
7243private:
7244  bool isTargetTypeAFunction() const {
7245    return TargetFunctionType->isFunctionType();
7246  }
7247
7248  // [ToType]     [Return]
7249
7250  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7251  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7252  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
7253  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7254    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7255  }
7256
7257  // return true if any matching specializations were found
7258  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
7259                                   const DeclAccessPair& CurAccessFunPair) {
7260    if (CXXMethodDecl *Method
7261              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
7262      // Skip non-static function templates when converting to pointer, and
7263      // static when converting to member pointer.
7264      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7265        return false;
7266    }
7267    else if (TargetTypeIsNonStaticMemberFunction)
7268      return false;
7269
7270    // C++ [over.over]p2:
7271    //   If the name is a function template, template argument deduction is
7272    //   done (14.8.2.2), and if the argument deduction succeeds, the
7273    //   resulting template argument list is used to generate a single
7274    //   function template specialization, which is added to the set of
7275    //   overloaded functions considered.
7276    FunctionDecl *Specialization = 0;
7277    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7278    if (Sema::TemplateDeductionResult Result
7279          = S.DeduceTemplateArguments(FunctionTemplate,
7280                                      &OvlExplicitTemplateArgs,
7281                                      TargetFunctionType, Specialization,
7282                                      Info)) {
7283      // FIXME: make a note of the failed deduction for diagnostics.
7284      (void)Result;
7285      return false;
7286    }
7287
7288    // Template argument deduction ensures that we have an exact match.
7289    // This function template specicalization works.
7290    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
7291    assert(TargetFunctionType
7292                      == Context.getCanonicalType(Specialization->getType()));
7293    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
7294    return true;
7295  }
7296
7297  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
7298                                      const DeclAccessPair& CurAccessFunPair) {
7299    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7300      // Skip non-static functions when converting to pointer, and static
7301      // when converting to member pointer.
7302      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7303        return false;
7304    }
7305    else if (TargetTypeIsNonStaticMemberFunction)
7306      return false;
7307
7308    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
7309      QualType ResultTy;
7310      if (Context.hasSameUnqualifiedType(TargetFunctionType,
7311                                         FunDecl->getType()) ||
7312          IsNoReturnConversion(Context, FunDecl->getType(), TargetFunctionType,
7313                               ResultTy)) {
7314        Matches.push_back(std::make_pair(CurAccessFunPair,
7315          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7316        FoundNonTemplateFunction = true;
7317        return true;
7318      }
7319    }
7320
7321    return false;
7322  }
7323
7324  bool FindAllFunctionsThatMatchTargetTypeExactly() {
7325    bool Ret = false;
7326
7327    // If the overload expression doesn't have the form of a pointer to
7328    // member, don't try to convert it to a pointer-to-member type.
7329    if (IsInvalidFormOfPointerToMemberFunction())
7330      return false;
7331
7332    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7333                               E = OvlExpr->decls_end();
7334         I != E; ++I) {
7335      // Look through any using declarations to find the underlying function.
7336      NamedDecl *Fn = (*I)->getUnderlyingDecl();
7337
7338      // C++ [over.over]p3:
7339      //   Non-member functions and static member functions match
7340      //   targets of type "pointer-to-function" or "reference-to-function."
7341      //   Nonstatic member functions match targets of
7342      //   type "pointer-to-member-function."
7343      // Note that according to DR 247, the containing class does not matter.
7344      if (FunctionTemplateDecl *FunctionTemplate
7345                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
7346        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
7347          Ret = true;
7348      }
7349      // If we have explicit template arguments supplied, skip non-templates.
7350      else if (!OvlExpr->hasExplicitTemplateArgs() &&
7351               AddMatchingNonTemplateFunction(Fn, I.getPair()))
7352        Ret = true;
7353    }
7354    assert(Ret || Matches.empty());
7355    return Ret;
7356  }
7357
7358  void EliminateAllExceptMostSpecializedTemplate() {
7359    //   [...] and any given function template specialization F1 is
7360    //   eliminated if the set contains a second function template
7361    //   specialization whose function template is more specialized
7362    //   than the function template of F1 according to the partial
7363    //   ordering rules of 14.5.5.2.
7364
7365    // The algorithm specified above is quadratic. We instead use a
7366    // two-pass algorithm (similar to the one used to identify the
7367    // best viable function in an overload set) that identifies the
7368    // best function template (if it exists).
7369
7370    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7371    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7372      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7373
7374    UnresolvedSetIterator Result =
7375      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7376                           TPOC_Other, 0, SourceExpr->getLocStart(),
7377                           S.PDiag(),
7378                           S.PDiag(diag::err_addr_ovl_ambiguous)
7379                             << Matches[0].second->getDeclName(),
7380                           S.PDiag(diag::note_ovl_candidate)
7381                             << (unsigned) oc_function_template,
7382                           Complain);
7383
7384    if (Result != MatchesCopy.end()) {
7385      // Make it the first and only element
7386      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
7387      Matches[0].second = cast<FunctionDecl>(*Result);
7388      Matches.resize(1);
7389    }
7390  }
7391
7392  void EliminateAllTemplateMatches() {
7393    //   [...] any function template specializations in the set are
7394    //   eliminated if the set also contains a non-template function, [...]
7395    for (unsigned I = 0, N = Matches.size(); I != N; ) {
7396      if (Matches[I].second->getPrimaryTemplate() == 0)
7397        ++I;
7398      else {
7399        Matches[I] = Matches[--N];
7400        Matches.set_size(N);
7401      }
7402    }
7403  }
7404
7405public:
7406  void ComplainNoMatchesFound() const {
7407    assert(Matches.empty());
7408    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
7409        << OvlExpr->getName() << TargetFunctionType
7410        << OvlExpr->getSourceRange();
7411    S.NoteAllOverloadCandidates(OvlExpr);
7412  }
7413
7414  bool IsInvalidFormOfPointerToMemberFunction() const {
7415    return TargetTypeIsNonStaticMemberFunction &&
7416      !OvlExprInfo.HasFormOfMemberPointer;
7417  }
7418
7419  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
7420      // TODO: Should we condition this on whether any functions might
7421      // have matched, or is it more appropriate to do that in callers?
7422      // TODO: a fixit wouldn't hurt.
7423      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
7424        << TargetType << OvlExpr->getSourceRange();
7425  }
7426
7427  void ComplainOfInvalidConversion() const {
7428    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
7429      << OvlExpr->getName() << TargetType;
7430  }
7431
7432  void ComplainMultipleMatchesFound() const {
7433    assert(Matches.size() > 1);
7434    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
7435      << OvlExpr->getName()
7436      << OvlExpr->getSourceRange();
7437    S.NoteAllOverloadCandidates(OvlExpr);
7438  }
7439
7440  int getNumMatches() const { return Matches.size(); }
7441
7442  FunctionDecl* getMatchingFunctionDecl() const {
7443    if (Matches.size() != 1) return 0;
7444    return Matches[0].second;
7445  }
7446
7447  const DeclAccessPair* getMatchingFunctionAccessPair() const {
7448    if (Matches.size() != 1) return 0;
7449    return &Matches[0].first;
7450  }
7451};
7452
7453/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
7454/// an overloaded function (C++ [over.over]), where @p From is an
7455/// expression with overloaded function type and @p ToType is the type
7456/// we're trying to resolve to. For example:
7457///
7458/// @code
7459/// int f(double);
7460/// int f(int);
7461///
7462/// int (*pfd)(double) = f; // selects f(double)
7463/// @endcode
7464///
7465/// This routine returns the resulting FunctionDecl if it could be
7466/// resolved, and NULL otherwise. When @p Complain is true, this
7467/// routine will emit diagnostics if there is an error.
7468FunctionDecl *
7469Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
7470                                    bool Complain,
7471                                    DeclAccessPair &FoundResult) {
7472
7473  assert(AddressOfExpr->getType() == Context.OverloadTy);
7474
7475  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
7476  int NumMatches = Resolver.getNumMatches();
7477  FunctionDecl* Fn = 0;
7478  if ( NumMatches == 0 && Complain) {
7479    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
7480      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
7481    else
7482      Resolver.ComplainNoMatchesFound();
7483  }
7484  else if (NumMatches > 1 && Complain)
7485    Resolver.ComplainMultipleMatchesFound();
7486  else if (NumMatches == 1) {
7487    Fn = Resolver.getMatchingFunctionDecl();
7488    assert(Fn);
7489    FoundResult = *Resolver.getMatchingFunctionAccessPair();
7490    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
7491    if (Complain)
7492      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
7493  }
7494
7495  return Fn;
7496}
7497
7498/// \brief Given an expression that refers to an overloaded function, try to
7499/// resolve that overloaded function expression down to a single function.
7500///
7501/// This routine can only resolve template-ids that refer to a single function
7502/// template, where that template-id refers to a single template whose template
7503/// arguments are either provided by the template-id or have defaults,
7504/// as described in C++0x [temp.arg.explicit]p3.
7505FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From,
7506                                                                bool Complain,
7507                                                  DeclAccessPair* FoundResult) {
7508  // C++ [over.over]p1:
7509  //   [...] [Note: any redundant set of parentheses surrounding the
7510  //   overloaded function name is ignored (5.1). ]
7511  // C++ [over.over]p1:
7512  //   [...] The overloaded function name can be preceded by the &
7513  //   operator.
7514  if (From->getType() != Context.OverloadTy)
7515    return 0;
7516
7517  OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression;
7518
7519  // If we didn't actually find any template-ids, we're done.
7520  if (!OvlExpr->hasExplicitTemplateArgs())
7521    return 0;
7522
7523  TemplateArgumentListInfo ExplicitTemplateArgs;
7524  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7525
7526  // Look through all of the overloaded functions, searching for one
7527  // whose type matches exactly.
7528  FunctionDecl *Matched = 0;
7529  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7530         E = OvlExpr->decls_end(); I != E; ++I) {
7531    // C++0x [temp.arg.explicit]p3:
7532    //   [...] In contexts where deduction is done and fails, or in contexts
7533    //   where deduction is not done, if a template argument list is
7534    //   specified and it, along with any default template arguments,
7535    //   identifies a single function template specialization, then the
7536    //   template-id is an lvalue for the function template specialization.
7537    FunctionTemplateDecl *FunctionTemplate
7538      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7539
7540    // C++ [over.over]p2:
7541    //   If the name is a function template, template argument deduction is
7542    //   done (14.8.2.2), and if the argument deduction succeeds, the
7543    //   resulting template argument list is used to generate a single
7544    //   function template specialization, which is added to the set of
7545    //   overloaded functions considered.
7546    FunctionDecl *Specialization = 0;
7547    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7548    if (TemplateDeductionResult Result
7549          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7550                                    Specialization, Info)) {
7551      // FIXME: make a note of the failed deduction for diagnostics.
7552      (void)Result;
7553      continue;
7554    }
7555
7556    // Multiple matches; we can't resolve to a single declaration.
7557    if (Matched) {
7558      if (FoundResult)
7559          *FoundResult = DeclAccessPair();
7560
7561      if (Complain) {
7562        Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
7563          << OvlExpr->getName();
7564        NoteAllOverloadCandidates(OvlExpr);
7565      }
7566      return 0;
7567    }
7568
7569    if ((Matched = Specialization) && FoundResult)
7570      *FoundResult = I.getPair();
7571  }
7572
7573  return Matched;
7574}
7575
7576
7577
7578
7579// Resolve and fix an overloaded expression that
7580// can be resolved because it identifies a single function
7581// template specialization
7582// Last three arguments should only be supplied if Complain = true
7583ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
7584             Expr *SrcExpr, bool DoFunctionPointerConverion, bool Complain,
7585                                  const SourceRange& OpRangeForComplaining,
7586                                           QualType DestTypeForComplaining,
7587                                            unsigned DiagIDForComplaining ) {
7588
7589    assert(SrcExpr->getType() == Context.OverloadTy);
7590
7591    DeclAccessPair Found;
7592    ExprResult SingleFunctionExpression;
7593    if (FunctionDecl* Fn = ResolveSingleFunctionTemplateSpecialization(
7594      SrcExpr, false, // false -> Complain
7595      &Found)) {
7596        if (!DiagnoseUseOfDecl(Fn, SrcExpr->getSourceRange().getBegin())) {
7597          // mark the expression as resolved to Fn
7598          SingleFunctionExpression = Owned(FixOverloadedFunctionReference(SrcExpr,
7599            Found, Fn));
7600          if (DoFunctionPointerConverion)
7601            SingleFunctionExpression =
7602              DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
7603        }
7604    }
7605    if (!SingleFunctionExpression.isUsable()) {
7606      if (Complain) {
7607        OverloadExpr* oe = OverloadExpr::find(SrcExpr).Expression;
7608        Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
7609          << oe->getName() << DestTypeForComplaining << OpRangeForComplaining
7610          << oe->getQualifierLoc().getSourceRange();
7611        NoteAllOverloadCandidates(SrcExpr);
7612      }
7613      return ExprError();
7614    }
7615
7616    return SingleFunctionExpression;
7617}
7618
7619/// \brief Add a single candidate to the overload set.
7620static void AddOverloadedCallCandidate(Sema &S,
7621                                       DeclAccessPair FoundDecl,
7622                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7623                                       Expr **Args, unsigned NumArgs,
7624                                       OverloadCandidateSet &CandidateSet,
7625                                       bool PartialOverloading) {
7626  NamedDecl *Callee = FoundDecl.getDecl();
7627  if (isa<UsingShadowDecl>(Callee))
7628    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
7629
7630  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
7631    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
7632    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
7633                           false, PartialOverloading);
7634    return;
7635  }
7636
7637  if (FunctionTemplateDecl *FuncTemplate
7638      = dyn_cast<FunctionTemplateDecl>(Callee)) {
7639    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
7640                                   ExplicitTemplateArgs,
7641                                   Args, NumArgs, CandidateSet);
7642    return;
7643  }
7644
7645  assert(false && "unhandled case in overloaded call candidate");
7646
7647  // do nothing?
7648}
7649
7650/// \brief Add the overload candidates named by callee and/or found by argument
7651/// dependent lookup to the given overload set.
7652void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
7653                                       Expr **Args, unsigned NumArgs,
7654                                       OverloadCandidateSet &CandidateSet,
7655                                       bool PartialOverloading) {
7656
7657#ifndef NDEBUG
7658  // Verify that ArgumentDependentLookup is consistent with the rules
7659  // in C++0x [basic.lookup.argdep]p3:
7660  //
7661  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
7662  //   and let Y be the lookup set produced by argument dependent
7663  //   lookup (defined as follows). If X contains
7664  //
7665  //     -- a declaration of a class member, or
7666  //
7667  //     -- a block-scope function declaration that is not a
7668  //        using-declaration, or
7669  //
7670  //     -- a declaration that is neither a function or a function
7671  //        template
7672  //
7673  //   then Y is empty.
7674
7675  if (ULE->requiresADL()) {
7676    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7677           E = ULE->decls_end(); I != E; ++I) {
7678      assert(!(*I)->getDeclContext()->isRecord());
7679      assert(isa<UsingShadowDecl>(*I) ||
7680             !(*I)->getDeclContext()->isFunctionOrMethod());
7681      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
7682    }
7683  }
7684#endif
7685
7686  // It would be nice to avoid this copy.
7687  TemplateArgumentListInfo TABuffer;
7688  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7689  if (ULE->hasExplicitTemplateArgs()) {
7690    ULE->copyTemplateArgumentsInto(TABuffer);
7691    ExplicitTemplateArgs = &TABuffer;
7692  }
7693
7694  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7695         E = ULE->decls_end(); I != E; ++I)
7696    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
7697                               Args, NumArgs, CandidateSet,
7698                               PartialOverloading);
7699
7700  if (ULE->requiresADL())
7701    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
7702                                         Args, NumArgs,
7703                                         ExplicitTemplateArgs,
7704                                         CandidateSet,
7705                                         PartialOverloading,
7706                                         ULE->isStdAssociatedNamespace());
7707}
7708
7709/// Attempts to recover from a call where no functions were found.
7710///
7711/// Returns true if new candidates were found.
7712static ExprResult
7713BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
7714                      UnresolvedLookupExpr *ULE,
7715                      SourceLocation LParenLoc,
7716                      Expr **Args, unsigned NumArgs,
7717                      SourceLocation RParenLoc) {
7718
7719  CXXScopeSpec SS;
7720  SS.Adopt(ULE->getQualifierLoc());
7721
7722  TemplateArgumentListInfo TABuffer;
7723  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7724  if (ULE->hasExplicitTemplateArgs()) {
7725    ULE->copyTemplateArgumentsInto(TABuffer);
7726    ExplicitTemplateArgs = &TABuffer;
7727  }
7728
7729  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
7730                 Sema::LookupOrdinaryName);
7731  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
7732    return ExprError();
7733
7734  assert(!R.empty() && "lookup results empty despite recovery");
7735
7736  // Build an implicit member call if appropriate.  Just drop the
7737  // casts and such from the call, we don't really care.
7738  ExprResult NewFn = ExprError();
7739  if ((*R.begin())->isCXXClassMember())
7740    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
7741                                                    ExplicitTemplateArgs);
7742  else if (ExplicitTemplateArgs)
7743    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
7744  else
7745    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
7746
7747  if (NewFn.isInvalid())
7748    return ExprError();
7749
7750  // This shouldn't cause an infinite loop because we're giving it
7751  // an expression with non-empty lookup results, which should never
7752  // end up here.
7753  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
7754                               MultiExprArg(Args, NumArgs), RParenLoc);
7755}
7756
7757/// ResolveOverloadedCallFn - Given the call expression that calls Fn
7758/// (which eventually refers to the declaration Func) and the call
7759/// arguments Args/NumArgs, attempt to resolve the function call down
7760/// to a specific function. If overload resolution succeeds, returns
7761/// the function declaration produced by overload
7762/// resolution. Otherwise, emits diagnostics, deletes all of the
7763/// arguments and Fn, and returns NULL.
7764ExprResult
7765Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
7766                              SourceLocation LParenLoc,
7767                              Expr **Args, unsigned NumArgs,
7768                              SourceLocation RParenLoc,
7769                              Expr *ExecConfig) {
7770#ifndef NDEBUG
7771  if (ULE->requiresADL()) {
7772    // To do ADL, we must have found an unqualified name.
7773    assert(!ULE->getQualifier() && "qualified name with ADL");
7774
7775    // We don't perform ADL for implicit declarations of builtins.
7776    // Verify that this was correctly set up.
7777    FunctionDecl *F;
7778    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
7779        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
7780        F->getBuiltinID() && F->isImplicit())
7781      assert(0 && "performing ADL for builtin");
7782
7783    // We don't perform ADL in C.
7784    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
7785  } else
7786    assert(!ULE->isStdAssociatedNamespace() &&
7787           "std is associated namespace but not doing ADL");
7788#endif
7789
7790  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
7791
7792  // Add the functions denoted by the callee to the set of candidate
7793  // functions, including those from argument-dependent lookup.
7794  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
7795
7796  // If we found nothing, try to recover.
7797  // AddRecoveryCallCandidates diagnoses the error itself, so we just
7798  // bailout out if it fails.
7799  if (CandidateSet.empty())
7800    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
7801                                 RParenLoc);
7802
7803  OverloadCandidateSet::iterator Best;
7804  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
7805  case OR_Success: {
7806    FunctionDecl *FDecl = Best->Function;
7807    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
7808    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
7809    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
7810                      ULE->getNameLoc());
7811    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
7812    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
7813                                 ExecConfig);
7814  }
7815
7816  case OR_No_Viable_Function:
7817    Diag(Fn->getSourceRange().getBegin(),
7818         diag::err_ovl_no_viable_function_in_call)
7819      << ULE->getName() << Fn->getSourceRange();
7820    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7821    break;
7822
7823  case OR_Ambiguous:
7824    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
7825      << ULE->getName() << Fn->getSourceRange();
7826    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
7827    break;
7828
7829  case OR_Deleted:
7830    {
7831      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
7832        << Best->Function->isDeleted()
7833        << ULE->getName()
7834        << getDeletedOrUnavailableSuffix(Best->Function)
7835        << Fn->getSourceRange();
7836      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7837    }
7838    break;
7839  }
7840
7841  // Overload resolution failed.
7842  return ExprError();
7843}
7844
7845static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
7846  return Functions.size() > 1 ||
7847    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
7848}
7849
7850/// \brief Create a unary operation that may resolve to an overloaded
7851/// operator.
7852///
7853/// \param OpLoc The location of the operator itself (e.g., '*').
7854///
7855/// \param OpcIn The UnaryOperator::Opcode that describes this
7856/// operator.
7857///
7858/// \param Functions The set of non-member functions that will be
7859/// considered by overload resolution. The caller needs to build this
7860/// set based on the context using, e.g.,
7861/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7862/// set should not contain any member functions; those will be added
7863/// by CreateOverloadedUnaryOp().
7864///
7865/// \param input The input argument.
7866ExprResult
7867Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
7868                              const UnresolvedSetImpl &Fns,
7869                              Expr *Input) {
7870  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
7871
7872  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
7873  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
7874  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7875  // TODO: provide better source location info.
7876  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7877
7878  if (Input->getObjectKind() == OK_ObjCProperty) {
7879    ExprResult Result = ConvertPropertyForRValue(Input);
7880    if (Result.isInvalid())
7881      return ExprError();
7882    Input = Result.take();
7883  }
7884
7885  Expr *Args[2] = { Input, 0 };
7886  unsigned NumArgs = 1;
7887
7888  // For post-increment and post-decrement, add the implicit '0' as
7889  // the second argument, so that we know this is a post-increment or
7890  // post-decrement.
7891  if (Opc == UO_PostInc || Opc == UO_PostDec) {
7892    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
7893    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
7894                                     SourceLocation());
7895    NumArgs = 2;
7896  }
7897
7898  if (Input->isTypeDependent()) {
7899    if (Fns.empty())
7900      return Owned(new (Context) UnaryOperator(Input,
7901                                               Opc,
7902                                               Context.DependentTy,
7903                                               VK_RValue, OK_Ordinary,
7904                                               OpLoc));
7905
7906    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7907    UnresolvedLookupExpr *Fn
7908      = UnresolvedLookupExpr::Create(Context, NamingClass,
7909                                     NestedNameSpecifierLoc(), OpNameInfo,
7910                                     /*ADL*/ true, IsOverloaded(Fns),
7911                                     Fns.begin(), Fns.end());
7912    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7913                                                  &Args[0], NumArgs,
7914                                                   Context.DependentTy,
7915                                                   VK_RValue,
7916                                                   OpLoc));
7917  }
7918
7919  // Build an empty overload set.
7920  OverloadCandidateSet CandidateSet(OpLoc);
7921
7922  // Add the candidates from the given function set.
7923  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
7924
7925  // Add operator candidates that are member functions.
7926  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7927
7928  // Add candidates from ADL.
7929  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7930                                       Args, NumArgs,
7931                                       /*ExplicitTemplateArgs*/ 0,
7932                                       CandidateSet);
7933
7934  // Add builtin operator candidates.
7935  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7936
7937  // Perform overload resolution.
7938  OverloadCandidateSet::iterator Best;
7939  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7940  case OR_Success: {
7941    // We found a built-in operator or an overloaded operator.
7942    FunctionDecl *FnDecl = Best->Function;
7943
7944    if (FnDecl) {
7945      // We matched an overloaded operator. Build a call to that
7946      // operator.
7947
7948      MarkDeclarationReferenced(OpLoc, FnDecl);
7949
7950      // Convert the arguments.
7951      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7952        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
7953
7954        ExprResult InputRes =
7955          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
7956                                              Best->FoundDecl, Method);
7957        if (InputRes.isInvalid())
7958          return ExprError();
7959        Input = InputRes.take();
7960      } else {
7961        // Convert the arguments.
7962        ExprResult InputInit
7963          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7964                                                      Context,
7965                                                      FnDecl->getParamDecl(0)),
7966                                      SourceLocation(),
7967                                      Input);
7968        if (InputInit.isInvalid())
7969          return ExprError();
7970        Input = InputInit.take();
7971      }
7972
7973      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7974
7975      // Determine the result type.
7976      QualType ResultTy = FnDecl->getResultType();
7977      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7978      ResultTy = ResultTy.getNonLValueExprType(Context);
7979
7980      // Build the actual expression node.
7981      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl);
7982      if (FnExpr.isInvalid())
7983        return ExprError();
7984
7985      Args[0] = Input;
7986      CallExpr *TheCall =
7987        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
7988                                          Args, NumArgs, ResultTy, VK, OpLoc);
7989
7990      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7991                              FnDecl))
7992        return ExprError();
7993
7994      return MaybeBindToTemporary(TheCall);
7995    } else {
7996      // We matched a built-in operator. Convert the arguments, then
7997      // break out so that we will build the appropriate built-in
7998      // operator node.
7999      ExprResult InputRes =
8000        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8001                                  Best->Conversions[0], AA_Passing);
8002      if (InputRes.isInvalid())
8003        return ExprError();
8004      Input = InputRes.take();
8005      break;
8006    }
8007  }
8008
8009  case OR_No_Viable_Function:
8010    // No viable function; fall through to handling this as a
8011    // built-in operator, which will produce an error message for us.
8012    break;
8013
8014  case OR_Ambiguous:
8015    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8016        << UnaryOperator::getOpcodeStr(Opc)
8017        << Input->getType()
8018        << Input->getSourceRange();
8019    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
8020                                Args, NumArgs,
8021                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8022    return ExprError();
8023
8024  case OR_Deleted:
8025    Diag(OpLoc, diag::err_ovl_deleted_oper)
8026      << Best->Function->isDeleted()
8027      << UnaryOperator::getOpcodeStr(Opc)
8028      << getDeletedOrUnavailableSuffix(Best->Function)
8029      << Input->getSourceRange();
8030    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8031    return ExprError();
8032  }
8033
8034  // Either we found no viable overloaded operator or we matched a
8035  // built-in operator. In either case, fall through to trying to
8036  // build a built-in operation.
8037  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8038}
8039
8040/// \brief Create a binary operation that may resolve to an overloaded
8041/// operator.
8042///
8043/// \param OpLoc The location of the operator itself (e.g., '+').
8044///
8045/// \param OpcIn The BinaryOperator::Opcode that describes this
8046/// operator.
8047///
8048/// \param Functions The set of non-member functions that will be
8049/// considered by overload resolution. The caller needs to build this
8050/// set based on the context using, e.g.,
8051/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8052/// set should not contain any member functions; those will be added
8053/// by CreateOverloadedBinOp().
8054///
8055/// \param LHS Left-hand argument.
8056/// \param RHS Right-hand argument.
8057ExprResult
8058Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8059                            unsigned OpcIn,
8060                            const UnresolvedSetImpl &Fns,
8061                            Expr *LHS, Expr *RHS) {
8062  Expr *Args[2] = { LHS, RHS };
8063  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
8064
8065  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
8066  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
8067  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8068
8069  // If either side is type-dependent, create an appropriate dependent
8070  // expression.
8071  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8072    if (Fns.empty()) {
8073      // If there are no functions to store, just build a dependent
8074      // BinaryOperator or CompoundAssignment.
8075      if (Opc <= BO_Assign || Opc > BO_OrAssign)
8076        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
8077                                                  Context.DependentTy,
8078                                                  VK_RValue, OK_Ordinary,
8079                                                  OpLoc));
8080
8081      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
8082                                                        Context.DependentTy,
8083                                                        VK_LValue,
8084                                                        OK_Ordinary,
8085                                                        Context.DependentTy,
8086                                                        Context.DependentTy,
8087                                                        OpLoc));
8088    }
8089
8090    // FIXME: save results of ADL from here?
8091    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8092    // TODO: provide better source location info in DNLoc component.
8093    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8094    UnresolvedLookupExpr *Fn
8095      = UnresolvedLookupExpr::Create(Context, NamingClass,
8096                                     NestedNameSpecifierLoc(), OpNameInfo,
8097                                     /*ADL*/ true, IsOverloaded(Fns),
8098                                     Fns.begin(), Fns.end());
8099    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8100                                                   Args, 2,
8101                                                   Context.DependentTy,
8102                                                   VK_RValue,
8103                                                   OpLoc));
8104  }
8105
8106  // Always do property rvalue conversions on the RHS.
8107  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8108    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8109    if (Result.isInvalid())
8110      return ExprError();
8111    Args[1] = Result.take();
8112  }
8113
8114  // The LHS is more complicated.
8115  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8116
8117    // There's a tension for assignment operators between primitive
8118    // property assignment and the overloaded operators.
8119    if (BinaryOperator::isAssignmentOp(Opc)) {
8120      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
8121
8122      // Is the property "logically" settable?
8123      bool Settable = (PRE->isExplicitProperty() ||
8124                       PRE->getImplicitPropertySetter());
8125
8126      // To avoid gratuitously inventing semantics, use the primitive
8127      // unless it isn't.  Thoughts in case we ever really care:
8128      // - If the property isn't logically settable, we have to
8129      //   load and hope.
8130      // - If the property is settable and this is simple assignment,
8131      //   we really should use the primitive.
8132      // - If the property is settable, then we could try overloading
8133      //   on a generic lvalue of the appropriate type;  if it works
8134      //   out to a builtin candidate, we would do that same operation
8135      //   on the property, and otherwise just error.
8136      if (Settable)
8137        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8138    }
8139
8140    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8141    if (Result.isInvalid())
8142      return ExprError();
8143    Args[0] = Result.take();
8144  }
8145
8146  // If this is the assignment operator, we only perform overload resolution
8147  // if the left-hand side is a class or enumeration type. This is actually
8148  // a hack. The standard requires that we do overload resolution between the
8149  // various built-in candidates, but as DR507 points out, this can lead to
8150  // problems. So we do it this way, which pretty much follows what GCC does.
8151  // Note that we go the traditional code path for compound assignment forms.
8152  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
8153    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8154
8155  // If this is the .* operator, which is not overloadable, just
8156  // create a built-in binary operator.
8157  if (Opc == BO_PtrMemD)
8158    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8159
8160  // Build an empty overload set.
8161  OverloadCandidateSet CandidateSet(OpLoc);
8162
8163  // Add the candidates from the given function set.
8164  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
8165
8166  // Add operator candidates that are member functions.
8167  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8168
8169  // Add candidates from ADL.
8170  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8171                                       Args, 2,
8172                                       /*ExplicitTemplateArgs*/ 0,
8173                                       CandidateSet);
8174
8175  // Add builtin operator candidates.
8176  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8177
8178  // Perform overload resolution.
8179  OverloadCandidateSet::iterator Best;
8180  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8181    case OR_Success: {
8182      // We found a built-in operator or an overloaded operator.
8183      FunctionDecl *FnDecl = Best->Function;
8184
8185      if (FnDecl) {
8186        // We matched an overloaded operator. Build a call to that
8187        // operator.
8188
8189        MarkDeclarationReferenced(OpLoc, FnDecl);
8190
8191        // Convert the arguments.
8192        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8193          // Best->Access is only meaningful for class members.
8194          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
8195
8196          ExprResult Arg1 =
8197            PerformCopyInitialization(
8198              InitializedEntity::InitializeParameter(Context,
8199                                                     FnDecl->getParamDecl(0)),
8200              SourceLocation(), Owned(Args[1]));
8201          if (Arg1.isInvalid())
8202            return ExprError();
8203
8204          ExprResult Arg0 =
8205            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8206                                                Best->FoundDecl, Method);
8207          if (Arg0.isInvalid())
8208            return ExprError();
8209          Args[0] = Arg0.takeAs<Expr>();
8210          Args[1] = RHS = Arg1.takeAs<Expr>();
8211        } else {
8212          // Convert the arguments.
8213          ExprResult Arg0 = PerformCopyInitialization(
8214            InitializedEntity::InitializeParameter(Context,
8215                                                   FnDecl->getParamDecl(0)),
8216            SourceLocation(), Owned(Args[0]));
8217          if (Arg0.isInvalid())
8218            return ExprError();
8219
8220          ExprResult Arg1 =
8221            PerformCopyInitialization(
8222              InitializedEntity::InitializeParameter(Context,
8223                                                     FnDecl->getParamDecl(1)),
8224              SourceLocation(), Owned(Args[1]));
8225          if (Arg1.isInvalid())
8226            return ExprError();
8227          Args[0] = LHS = Arg0.takeAs<Expr>();
8228          Args[1] = RHS = Arg1.takeAs<Expr>();
8229        }
8230
8231        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8232
8233        // Determine the result type.
8234        QualType ResultTy = FnDecl->getResultType();
8235        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8236        ResultTy = ResultTy.getNonLValueExprType(Context);
8237
8238        // Build the actual expression node.
8239        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
8240        if (FnExpr.isInvalid())
8241          return ExprError();
8242
8243        CXXOperatorCallExpr *TheCall =
8244          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8245                                            Args, 2, ResultTy, VK, OpLoc);
8246
8247        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8248                                FnDecl))
8249          return ExprError();
8250
8251        return MaybeBindToTemporary(TheCall);
8252      } else {
8253        // We matched a built-in operator. Convert the arguments, then
8254        // break out so that we will build the appropriate built-in
8255        // operator node.
8256        ExprResult ArgsRes0 =
8257          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8258                                    Best->Conversions[0], AA_Passing);
8259        if (ArgsRes0.isInvalid())
8260          return ExprError();
8261        Args[0] = ArgsRes0.take();
8262
8263        ExprResult ArgsRes1 =
8264          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8265                                    Best->Conversions[1], AA_Passing);
8266        if (ArgsRes1.isInvalid())
8267          return ExprError();
8268        Args[1] = ArgsRes1.take();
8269        break;
8270      }
8271    }
8272
8273    case OR_No_Viable_Function: {
8274      // C++ [over.match.oper]p9:
8275      //   If the operator is the operator , [...] and there are no
8276      //   viable functions, then the operator is assumed to be the
8277      //   built-in operator and interpreted according to clause 5.
8278      if (Opc == BO_Comma)
8279        break;
8280
8281      // For class as left operand for assignment or compound assigment
8282      // operator do not fall through to handling in built-in, but report that
8283      // no overloaded assignment operator found
8284      ExprResult Result = ExprError();
8285      if (Args[0]->getType()->isRecordType() &&
8286          Opc >= BO_Assign && Opc <= BO_OrAssign) {
8287        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
8288             << BinaryOperator::getOpcodeStr(Opc)
8289             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8290      } else {
8291        // No viable function; try to create a built-in operation, which will
8292        // produce an error. Then, show the non-viable candidates.
8293        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8294      }
8295      assert(Result.isInvalid() &&
8296             "C++ binary operator overloading is missing candidates!");
8297      if (Result.isInvalid())
8298        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8299                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
8300      return move(Result);
8301    }
8302
8303    case OR_Ambiguous:
8304      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
8305          << BinaryOperator::getOpcodeStr(Opc)
8306          << Args[0]->getType() << Args[1]->getType()
8307          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8308      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8309                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
8310      return ExprError();
8311
8312    case OR_Deleted:
8313      Diag(OpLoc, diag::err_ovl_deleted_oper)
8314        << Best->Function->isDeleted()
8315        << BinaryOperator::getOpcodeStr(Opc)
8316        << getDeletedOrUnavailableSuffix(Best->Function)
8317        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8318      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
8319      return ExprError();
8320  }
8321
8322  // We matched a built-in operator; build it.
8323  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8324}
8325
8326ExprResult
8327Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
8328                                         SourceLocation RLoc,
8329                                         Expr *Base, Expr *Idx) {
8330  Expr *Args[2] = { Base, Idx };
8331  DeclarationName OpName =
8332      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
8333
8334  // If either side is type-dependent, create an appropriate dependent
8335  // expression.
8336  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8337
8338    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8339    // CHECKME: no 'operator' keyword?
8340    DeclarationNameInfo OpNameInfo(OpName, LLoc);
8341    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
8342    UnresolvedLookupExpr *Fn
8343      = UnresolvedLookupExpr::Create(Context, NamingClass,
8344                                     NestedNameSpecifierLoc(), OpNameInfo,
8345                                     /*ADL*/ true, /*Overloaded*/ false,
8346                                     UnresolvedSetIterator(),
8347                                     UnresolvedSetIterator());
8348    // Can't add any actual overloads yet
8349
8350    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
8351                                                   Args, 2,
8352                                                   Context.DependentTy,
8353                                                   VK_RValue,
8354                                                   RLoc));
8355  }
8356
8357  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8358    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8359    if (Result.isInvalid())
8360      return ExprError();
8361    Args[0] = Result.take();
8362  }
8363  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8364    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8365    if (Result.isInvalid())
8366      return ExprError();
8367    Args[1] = Result.take();
8368  }
8369
8370  // Build an empty overload set.
8371  OverloadCandidateSet CandidateSet(LLoc);
8372
8373  // Subscript can only be overloaded as a member function.
8374
8375  // Add operator candidates that are member functions.
8376  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8377
8378  // Add builtin operator candidates.
8379  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8380
8381  // Perform overload resolution.
8382  OverloadCandidateSet::iterator Best;
8383  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
8384    case OR_Success: {
8385      // We found a built-in operator or an overloaded operator.
8386      FunctionDecl *FnDecl = Best->Function;
8387
8388      if (FnDecl) {
8389        // We matched an overloaded operator. Build a call to that
8390        // operator.
8391
8392        MarkDeclarationReferenced(LLoc, FnDecl);
8393
8394        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
8395        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
8396
8397        // Convert the arguments.
8398        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
8399        ExprResult Arg0 =
8400          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8401                                              Best->FoundDecl, Method);
8402        if (Arg0.isInvalid())
8403          return ExprError();
8404        Args[0] = Arg0.take();
8405
8406        // Convert the arguments.
8407        ExprResult InputInit
8408          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8409                                                      Context,
8410                                                      FnDecl->getParamDecl(0)),
8411                                      SourceLocation(),
8412                                      Owned(Args[1]));
8413        if (InputInit.isInvalid())
8414          return ExprError();
8415
8416        Args[1] = InputInit.takeAs<Expr>();
8417
8418        // Determine the result type
8419        QualType ResultTy = FnDecl->getResultType();
8420        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8421        ResultTy = ResultTy.getNonLValueExprType(Context);
8422
8423        // Build the actual expression node.
8424        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc);
8425        if (FnExpr.isInvalid())
8426          return ExprError();
8427
8428        CXXOperatorCallExpr *TheCall =
8429          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
8430                                            FnExpr.take(), Args, 2,
8431                                            ResultTy, VK, RLoc);
8432
8433        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
8434                                FnDecl))
8435          return ExprError();
8436
8437        return MaybeBindToTemporary(TheCall);
8438      } else {
8439        // We matched a built-in operator. Convert the arguments, then
8440        // break out so that we will build the appropriate built-in
8441        // operator node.
8442        ExprResult ArgsRes0 =
8443          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8444                                    Best->Conversions[0], AA_Passing);
8445        if (ArgsRes0.isInvalid())
8446          return ExprError();
8447        Args[0] = ArgsRes0.take();
8448
8449        ExprResult ArgsRes1 =
8450          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8451                                    Best->Conversions[1], AA_Passing);
8452        if (ArgsRes1.isInvalid())
8453          return ExprError();
8454        Args[1] = ArgsRes1.take();
8455
8456        break;
8457      }
8458    }
8459
8460    case OR_No_Viable_Function: {
8461      if (CandidateSet.empty())
8462        Diag(LLoc, diag::err_ovl_no_oper)
8463          << Args[0]->getType() << /*subscript*/ 0
8464          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8465      else
8466        Diag(LLoc, diag::err_ovl_no_viable_subscript)
8467          << Args[0]->getType()
8468          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8469      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8470                                  "[]", LLoc);
8471      return ExprError();
8472    }
8473
8474    case OR_Ambiguous:
8475      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
8476          << "[]"
8477          << Args[0]->getType() << Args[1]->getType()
8478          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8479      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8480                                  "[]", LLoc);
8481      return ExprError();
8482
8483    case OR_Deleted:
8484      Diag(LLoc, diag::err_ovl_deleted_oper)
8485        << Best->Function->isDeleted() << "[]"
8486        << getDeletedOrUnavailableSuffix(Best->Function)
8487        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8488      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8489                                  "[]", LLoc);
8490      return ExprError();
8491    }
8492
8493  // We matched a built-in operator; build it.
8494  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
8495}
8496
8497/// BuildCallToMemberFunction - Build a call to a member
8498/// function. MemExpr is the expression that refers to the member
8499/// function (and includes the object parameter), Args/NumArgs are the
8500/// arguments to the function call (not including the object
8501/// parameter). The caller needs to validate that the member
8502/// expression refers to a member function or an overloaded member
8503/// function.
8504ExprResult
8505Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
8506                                SourceLocation LParenLoc, Expr **Args,
8507                                unsigned NumArgs, SourceLocation RParenLoc) {
8508  // Dig out the member expression. This holds both the object
8509  // argument and the member function we're referring to.
8510  Expr *NakedMemExpr = MemExprE->IgnoreParens();
8511
8512  MemberExpr *MemExpr;
8513  CXXMethodDecl *Method = 0;
8514  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
8515  NestedNameSpecifier *Qualifier = 0;
8516  if (isa<MemberExpr>(NakedMemExpr)) {
8517    MemExpr = cast<MemberExpr>(NakedMemExpr);
8518    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
8519    FoundDecl = MemExpr->getFoundDecl();
8520    Qualifier = MemExpr->getQualifier();
8521  } else {
8522    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
8523    Qualifier = UnresExpr->getQualifier();
8524
8525    QualType ObjectType = UnresExpr->getBaseType();
8526    Expr::Classification ObjectClassification
8527      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
8528                            : UnresExpr->getBase()->Classify(Context);
8529
8530    // Add overload candidates
8531    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
8532
8533    // FIXME: avoid copy.
8534    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8535    if (UnresExpr->hasExplicitTemplateArgs()) {
8536      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
8537      TemplateArgs = &TemplateArgsBuffer;
8538    }
8539
8540    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
8541           E = UnresExpr->decls_end(); I != E; ++I) {
8542
8543      NamedDecl *Func = *I;
8544      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
8545      if (isa<UsingShadowDecl>(Func))
8546        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
8547
8548
8549      // Microsoft supports direct constructor calls.
8550      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
8551        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
8552                             CandidateSet);
8553      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
8554        // If explicit template arguments were provided, we can't call a
8555        // non-template member function.
8556        if (TemplateArgs)
8557          continue;
8558
8559        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
8560                           ObjectClassification,
8561                           Args, NumArgs, CandidateSet,
8562                           /*SuppressUserConversions=*/false);
8563      } else {
8564        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
8565                                   I.getPair(), ActingDC, TemplateArgs,
8566                                   ObjectType,  ObjectClassification,
8567                                   Args, NumArgs, CandidateSet,
8568                                   /*SuppressUsedConversions=*/false);
8569      }
8570    }
8571
8572    DeclarationName DeclName = UnresExpr->getMemberName();
8573
8574    OverloadCandidateSet::iterator Best;
8575    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
8576                                            Best)) {
8577    case OR_Success:
8578      Method = cast<CXXMethodDecl>(Best->Function);
8579      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
8580      FoundDecl = Best->FoundDecl;
8581      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
8582      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
8583      break;
8584
8585    case OR_No_Viable_Function:
8586      Diag(UnresExpr->getMemberLoc(),
8587           diag::err_ovl_no_viable_member_function_in_call)
8588        << DeclName << MemExprE->getSourceRange();
8589      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8590      // FIXME: Leaking incoming expressions!
8591      return ExprError();
8592
8593    case OR_Ambiguous:
8594      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
8595        << DeclName << MemExprE->getSourceRange();
8596      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8597      // FIXME: Leaking incoming expressions!
8598      return ExprError();
8599
8600    case OR_Deleted:
8601      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
8602        << Best->Function->isDeleted()
8603        << DeclName
8604        << getDeletedOrUnavailableSuffix(Best->Function)
8605        << MemExprE->getSourceRange();
8606      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8607      // FIXME: Leaking incoming expressions!
8608      return ExprError();
8609    }
8610
8611    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
8612
8613    // If overload resolution picked a static member, build a
8614    // non-member call based on that function.
8615    if (Method->isStatic()) {
8616      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
8617                                   Args, NumArgs, RParenLoc);
8618    }
8619
8620    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
8621  }
8622
8623  QualType ResultType = Method->getResultType();
8624  ExprValueKind VK = Expr::getValueKindForType(ResultType);
8625  ResultType = ResultType.getNonLValueExprType(Context);
8626
8627  assert(Method && "Member call to something that isn't a method?");
8628  CXXMemberCallExpr *TheCall =
8629    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
8630                                    ResultType, VK, RParenLoc);
8631
8632  // Check for a valid return type.
8633  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
8634                          TheCall, Method))
8635    return ExprError();
8636
8637  // Convert the object argument (for a non-static member function call).
8638  // We only need to do this if there was actually an overload; otherwise
8639  // it was done at lookup.
8640  if (!Method->isStatic()) {
8641    ExprResult ObjectArg =
8642      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
8643                                          FoundDecl, Method);
8644    if (ObjectArg.isInvalid())
8645      return ExprError();
8646    MemExpr->setBase(ObjectArg.take());
8647  }
8648
8649  // Convert the rest of the arguments
8650  const FunctionProtoType *Proto =
8651    Method->getType()->getAs<FunctionProtoType>();
8652  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
8653                              RParenLoc))
8654    return ExprError();
8655
8656  if (CheckFunctionCall(Method, TheCall))
8657    return ExprError();
8658
8659  return MaybeBindToTemporary(TheCall);
8660}
8661
8662/// BuildCallToObjectOfClassType - Build a call to an object of class
8663/// type (C++ [over.call.object]), which can end up invoking an
8664/// overloaded function call operator (@c operator()) or performing a
8665/// user-defined conversion on the object argument.
8666ExprResult
8667Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
8668                                   SourceLocation LParenLoc,
8669                                   Expr **Args, unsigned NumArgs,
8670                                   SourceLocation RParenLoc) {
8671  ExprResult Object = Owned(Obj);
8672  if (Object.get()->getObjectKind() == OK_ObjCProperty) {
8673    Object = ConvertPropertyForRValue(Object.take());
8674    if (Object.isInvalid())
8675      return ExprError();
8676  }
8677
8678  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
8679  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
8680
8681  // C++ [over.call.object]p1:
8682  //  If the primary-expression E in the function call syntax
8683  //  evaluates to a class object of type "cv T", then the set of
8684  //  candidate functions includes at least the function call
8685  //  operators of T. The function call operators of T are obtained by
8686  //  ordinary lookup of the name operator() in the context of
8687  //  (E).operator().
8688  OverloadCandidateSet CandidateSet(LParenLoc);
8689  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
8690
8691  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
8692                          PDiag(diag::err_incomplete_object_call)
8693                          << Object.get()->getSourceRange()))
8694    return true;
8695
8696  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
8697  LookupQualifiedName(R, Record->getDecl());
8698  R.suppressDiagnostics();
8699
8700  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8701       Oper != OperEnd; ++Oper) {
8702    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
8703                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
8704                       /*SuppressUserConversions=*/ false);
8705  }
8706
8707  // C++ [over.call.object]p2:
8708  //   In addition, for each conversion function declared in T of the
8709  //   form
8710  //
8711  //        operator conversion-type-id () cv-qualifier;
8712  //
8713  //   where cv-qualifier is the same cv-qualification as, or a
8714  //   greater cv-qualification than, cv, and where conversion-type-id
8715  //   denotes the type "pointer to function of (P1,...,Pn) returning
8716  //   R", or the type "reference to pointer to function of
8717  //   (P1,...,Pn) returning R", or the type "reference to function
8718  //   of (P1,...,Pn) returning R", a surrogate call function [...]
8719  //   is also considered as a candidate function. Similarly,
8720  //   surrogate call functions are added to the set of candidate
8721  //   functions for each conversion function declared in an
8722  //   accessible base class provided the function is not hidden
8723  //   within T by another intervening declaration.
8724  const UnresolvedSetImpl *Conversions
8725    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
8726  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
8727         E = Conversions->end(); I != E; ++I) {
8728    NamedDecl *D = *I;
8729    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
8730    if (isa<UsingShadowDecl>(D))
8731      D = cast<UsingShadowDecl>(D)->getTargetDecl();
8732
8733    // Skip over templated conversion functions; they aren't
8734    // surrogates.
8735    if (isa<FunctionTemplateDecl>(D))
8736      continue;
8737
8738    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8739
8740    // Strip the reference type (if any) and then the pointer type (if
8741    // any) to get down to what might be a function type.
8742    QualType ConvType = Conv->getConversionType().getNonReferenceType();
8743    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8744      ConvType = ConvPtrType->getPointeeType();
8745
8746    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
8747      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
8748                            Object.get(), Args, NumArgs, CandidateSet);
8749  }
8750
8751  // Perform overload resolution.
8752  OverloadCandidateSet::iterator Best;
8753  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
8754                             Best)) {
8755  case OR_Success:
8756    // Overload resolution succeeded; we'll build the appropriate call
8757    // below.
8758    break;
8759
8760  case OR_No_Viable_Function:
8761    if (CandidateSet.empty())
8762      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
8763        << Object.get()->getType() << /*call*/ 1
8764        << Object.get()->getSourceRange();
8765    else
8766      Diag(Object.get()->getSourceRange().getBegin(),
8767           diag::err_ovl_no_viable_object_call)
8768        << Object.get()->getType() << Object.get()->getSourceRange();
8769    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8770    break;
8771
8772  case OR_Ambiguous:
8773    Diag(Object.get()->getSourceRange().getBegin(),
8774         diag::err_ovl_ambiguous_object_call)
8775      << Object.get()->getType() << Object.get()->getSourceRange();
8776    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8777    break;
8778
8779  case OR_Deleted:
8780    Diag(Object.get()->getSourceRange().getBegin(),
8781         diag::err_ovl_deleted_object_call)
8782      << Best->Function->isDeleted()
8783      << Object.get()->getType()
8784      << getDeletedOrUnavailableSuffix(Best->Function)
8785      << Object.get()->getSourceRange();
8786    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8787    break;
8788  }
8789
8790  if (Best == CandidateSet.end())
8791    return true;
8792
8793  if (Best->Function == 0) {
8794    // Since there is no function declaration, this is one of the
8795    // surrogate candidates. Dig out the conversion function.
8796    CXXConversionDecl *Conv
8797      = cast<CXXConversionDecl>(
8798                         Best->Conversions[0].UserDefined.ConversionFunction);
8799
8800    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
8801    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8802
8803    // We selected one of the surrogate functions that converts the
8804    // object parameter to a function pointer. Perform the conversion
8805    // on the object argument, then let ActOnCallExpr finish the job.
8806
8807    // Create an implicit member expr to refer to the conversion operator.
8808    // and then call it.
8809    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv);
8810    if (Call.isInvalid())
8811      return ExprError();
8812
8813    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
8814                         RParenLoc);
8815  }
8816
8817  MarkDeclarationReferenced(LParenLoc, Best->Function);
8818  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
8819  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8820
8821  // We found an overloaded operator(). Build a CXXOperatorCallExpr
8822  // that calls this method, using Object for the implicit object
8823  // parameter and passing along the remaining arguments.
8824  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8825  const FunctionProtoType *Proto =
8826    Method->getType()->getAs<FunctionProtoType>();
8827
8828  unsigned NumArgsInProto = Proto->getNumArgs();
8829  unsigned NumArgsToCheck = NumArgs;
8830
8831  // Build the full argument list for the method call (the
8832  // implicit object parameter is placed at the beginning of the
8833  // list).
8834  Expr **MethodArgs;
8835  if (NumArgs < NumArgsInProto) {
8836    NumArgsToCheck = NumArgsInProto;
8837    MethodArgs = new Expr*[NumArgsInProto + 1];
8838  } else {
8839    MethodArgs = new Expr*[NumArgs + 1];
8840  }
8841  MethodArgs[0] = Object.get();
8842  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
8843    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
8844
8845  ExprResult NewFn = CreateFunctionRefExpr(*this, Method);
8846  if (NewFn.isInvalid())
8847    return true;
8848
8849  // Once we've built TheCall, all of the expressions are properly
8850  // owned.
8851  QualType ResultTy = Method->getResultType();
8852  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8853  ResultTy = ResultTy.getNonLValueExprType(Context);
8854
8855  CXXOperatorCallExpr *TheCall =
8856    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
8857                                      MethodArgs, NumArgs + 1,
8858                                      ResultTy, VK, RParenLoc);
8859  delete [] MethodArgs;
8860
8861  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
8862                          Method))
8863    return true;
8864
8865  // We may have default arguments. If so, we need to allocate more
8866  // slots in the call for them.
8867  if (NumArgs < NumArgsInProto)
8868    TheCall->setNumArgs(Context, NumArgsInProto + 1);
8869  else if (NumArgs > NumArgsInProto)
8870    NumArgsToCheck = NumArgsInProto;
8871
8872  bool IsError = false;
8873
8874  // Initialize the implicit object parameter.
8875  ExprResult ObjRes =
8876    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
8877                                        Best->FoundDecl, Method);
8878  if (ObjRes.isInvalid())
8879    IsError = true;
8880  else
8881    Object = move(ObjRes);
8882  TheCall->setArg(0, Object.take());
8883
8884  // Check the argument types.
8885  for (unsigned i = 0; i != NumArgsToCheck; i++) {
8886    Expr *Arg;
8887    if (i < NumArgs) {
8888      Arg = Args[i];
8889
8890      // Pass the argument.
8891
8892      ExprResult InputInit
8893        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8894                                                    Context,
8895                                                    Method->getParamDecl(i)),
8896                                    SourceLocation(), Arg);
8897
8898      IsError |= InputInit.isInvalid();
8899      Arg = InputInit.takeAs<Expr>();
8900    } else {
8901      ExprResult DefArg
8902        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
8903      if (DefArg.isInvalid()) {
8904        IsError = true;
8905        break;
8906      }
8907
8908      Arg = DefArg.takeAs<Expr>();
8909    }
8910
8911    TheCall->setArg(i + 1, Arg);
8912  }
8913
8914  // If this is a variadic call, handle args passed through "...".
8915  if (Proto->isVariadic()) {
8916    // Promote the arguments (C99 6.5.2.2p7).
8917    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
8918      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
8919      IsError |= Arg.isInvalid();
8920      TheCall->setArg(i + 1, Arg.take());
8921    }
8922  }
8923
8924  if (IsError) return true;
8925
8926  if (CheckFunctionCall(Method, TheCall))
8927    return true;
8928
8929  return MaybeBindToTemporary(TheCall);
8930}
8931
8932/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
8933///  (if one exists), where @c Base is an expression of class type and
8934/// @c Member is the name of the member we're trying to find.
8935ExprResult
8936Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
8937  assert(Base->getType()->isRecordType() &&
8938         "left-hand side must have class type");
8939
8940  if (Base->getObjectKind() == OK_ObjCProperty) {
8941    ExprResult Result = ConvertPropertyForRValue(Base);
8942    if (Result.isInvalid())
8943      return ExprError();
8944    Base = Result.take();
8945  }
8946
8947  SourceLocation Loc = Base->getExprLoc();
8948
8949  // C++ [over.ref]p1:
8950  //
8951  //   [...] An expression x->m is interpreted as (x.operator->())->m
8952  //   for a class object x of type T if T::operator->() exists and if
8953  //   the operator is selected as the best match function by the
8954  //   overload resolution mechanism (13.3).
8955  DeclarationName OpName =
8956    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
8957  OverloadCandidateSet CandidateSet(Loc);
8958  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
8959
8960  if (RequireCompleteType(Loc, Base->getType(),
8961                          PDiag(diag::err_typecheck_incomplete_tag)
8962                            << Base->getSourceRange()))
8963    return ExprError();
8964
8965  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
8966  LookupQualifiedName(R, BaseRecord->getDecl());
8967  R.suppressDiagnostics();
8968
8969  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8970       Oper != OperEnd; ++Oper) {
8971    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
8972                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
8973  }
8974
8975  // Perform overload resolution.
8976  OverloadCandidateSet::iterator Best;
8977  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8978  case OR_Success:
8979    // Overload resolution succeeded; we'll build the call below.
8980    break;
8981
8982  case OR_No_Viable_Function:
8983    if (CandidateSet.empty())
8984      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
8985        << Base->getType() << Base->getSourceRange();
8986    else
8987      Diag(OpLoc, diag::err_ovl_no_viable_oper)
8988        << "operator->" << Base->getSourceRange();
8989    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8990    return ExprError();
8991
8992  case OR_Ambiguous:
8993    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8994      << "->" << Base->getType() << Base->getSourceRange();
8995    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
8996    return ExprError();
8997
8998  case OR_Deleted:
8999    Diag(OpLoc,  diag::err_ovl_deleted_oper)
9000      << Best->Function->isDeleted()
9001      << "->"
9002      << getDeletedOrUnavailableSuffix(Best->Function)
9003      << Base->getSourceRange();
9004    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9005    return ExprError();
9006  }
9007
9008  MarkDeclarationReferenced(OpLoc, Best->Function);
9009  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
9010  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9011
9012  // Convert the object parameter.
9013  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9014  ExprResult BaseResult =
9015    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
9016                                        Best->FoundDecl, Method);
9017  if (BaseResult.isInvalid())
9018    return ExprError();
9019  Base = BaseResult.take();
9020
9021  // Build the operator call.
9022  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method);
9023  if (FnExpr.isInvalid())
9024    return ExprError();
9025
9026  QualType ResultTy = Method->getResultType();
9027  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9028  ResultTy = ResultTy.getNonLValueExprType(Context);
9029  CXXOperatorCallExpr *TheCall =
9030    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
9031                                      &Base, 1, ResultTy, VK, OpLoc);
9032
9033  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
9034                          Method))
9035          return ExprError();
9036
9037  return MaybeBindToTemporary(TheCall);
9038}
9039
9040/// FixOverloadedFunctionReference - E is an expression that refers to
9041/// a C++ overloaded function (possibly with some parentheses and
9042/// perhaps a '&' around it). We have resolved the overloaded function
9043/// to the function declaration Fn, so patch up the expression E to
9044/// refer (possibly indirectly) to Fn. Returns the new expr.
9045Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
9046                                           FunctionDecl *Fn) {
9047  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
9048    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
9049                                                   Found, Fn);
9050    if (SubExpr == PE->getSubExpr())
9051      return PE;
9052
9053    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
9054  }
9055
9056  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9057    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
9058                                                   Found, Fn);
9059    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
9060                               SubExpr->getType()) &&
9061           "Implicit cast type cannot be determined from overload");
9062    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
9063    if (SubExpr == ICE->getSubExpr())
9064      return ICE;
9065
9066    return ImplicitCastExpr::Create(Context, ICE->getType(),
9067                                    ICE->getCastKind(),
9068                                    SubExpr, 0,
9069                                    ICE->getValueKind());
9070  }
9071
9072  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
9073    assert(UnOp->getOpcode() == UO_AddrOf &&
9074           "Can only take the address of an overloaded function");
9075    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9076      if (Method->isStatic()) {
9077        // Do nothing: static member functions aren't any different
9078        // from non-member functions.
9079      } else {
9080        // Fix the sub expression, which really has to be an
9081        // UnresolvedLookupExpr holding an overloaded member function
9082        // or template.
9083        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9084                                                       Found, Fn);
9085        if (SubExpr == UnOp->getSubExpr())
9086          return UnOp;
9087
9088        assert(isa<DeclRefExpr>(SubExpr)
9089               && "fixed to something other than a decl ref");
9090        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
9091               && "fixed to a member ref with no nested name qualifier");
9092
9093        // We have taken the address of a pointer to member
9094        // function. Perform the computation here so that we get the
9095        // appropriate pointer to member type.
9096        QualType ClassType
9097          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
9098        QualType MemPtrType
9099          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
9100
9101        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
9102                                           VK_RValue, OK_Ordinary,
9103                                           UnOp->getOperatorLoc());
9104      }
9105    }
9106    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9107                                                   Found, Fn);
9108    if (SubExpr == UnOp->getSubExpr())
9109      return UnOp;
9110
9111    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
9112                                     Context.getPointerType(SubExpr->getType()),
9113                                       VK_RValue, OK_Ordinary,
9114                                       UnOp->getOperatorLoc());
9115  }
9116
9117  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9118    // FIXME: avoid copy.
9119    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9120    if (ULE->hasExplicitTemplateArgs()) {
9121      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
9122      TemplateArgs = &TemplateArgsBuffer;
9123    }
9124
9125    return DeclRefExpr::Create(Context,
9126                               ULE->getQualifierLoc(),
9127                               Fn,
9128                               ULE->getNameLoc(),
9129                               Fn->getType(),
9130                               VK_LValue,
9131                               TemplateArgs);
9132  }
9133
9134  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
9135    // FIXME: avoid copy.
9136    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9137    if (MemExpr->hasExplicitTemplateArgs()) {
9138      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9139      TemplateArgs = &TemplateArgsBuffer;
9140    }
9141
9142    Expr *Base;
9143
9144    // If we're filling in a static method where we used to have an
9145    // implicit member access, rewrite to a simple decl ref.
9146    if (MemExpr->isImplicitAccess()) {
9147      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9148        return DeclRefExpr::Create(Context,
9149                                   MemExpr->getQualifierLoc(),
9150                                   Fn,
9151                                   MemExpr->getMemberLoc(),
9152                                   Fn->getType(),
9153                                   VK_LValue,
9154                                   TemplateArgs);
9155      } else {
9156        SourceLocation Loc = MemExpr->getMemberLoc();
9157        if (MemExpr->getQualifier())
9158          Loc = MemExpr->getQualifierLoc().getBeginLoc();
9159        Base = new (Context) CXXThisExpr(Loc,
9160                                         MemExpr->getBaseType(),
9161                                         /*isImplicit=*/true);
9162      }
9163    } else
9164      Base = MemExpr->getBase();
9165
9166    return MemberExpr::Create(Context, Base,
9167                              MemExpr->isArrow(),
9168                              MemExpr->getQualifierLoc(),
9169                              Fn,
9170                              Found,
9171                              MemExpr->getMemberNameInfo(),
9172                              TemplateArgs,
9173                              Fn->getType(),
9174                              cast<CXXMethodDecl>(Fn)->isStatic()
9175                                ? VK_LValue : VK_RValue,
9176                              OK_Ordinary);
9177  }
9178
9179  llvm_unreachable("Invalid reference to overloaded function");
9180  return E;
9181}
9182
9183ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
9184                                                DeclAccessPair Found,
9185                                                FunctionDecl *Fn) {
9186  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
9187}
9188
9189} // end namespace clang
9190