SemaOverload.cpp revision 66724ea67d7d598b937d86fa66f03f09a1c758f3
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, TPL_TemplateMatch) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407/// If @p UserCast, the implicit conversion is being done for a user-specified
408/// cast.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue,
413                            bool InOverloadResolution,
414                            bool UserCast) {
415  ImplicitConversionSequence ICS;
416  OverloadCandidateSet Conversions;
417  OverloadingResult UserDefResult = OR_Success;
418  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
419    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
420  else if (getLangOptions().CPlusPlus &&
421           (UserDefResult = IsUserDefinedConversion(From, ToType,
422                                   ICS.UserDefined,
423                                   Conversions,
424                                   !SuppressUserConversions, AllowExplicit,
425				   ForceRValue, UserCast)) == OR_Success) {
426    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
427    // C++ [over.ics.user]p4:
428    //   A conversion of an expression of class type to the same class
429    //   type is given Exact Match rank, and a conversion of an
430    //   expression of class type to a base class of that type is
431    //   given Conversion rank, in spite of the fact that a copy
432    //   constructor (i.e., a user-defined conversion function) is
433    //   called for those cases.
434    if (CXXConstructorDecl *Constructor
435          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
436      QualType FromCanon
437        = Context.getCanonicalType(From->getType().getUnqualifiedType());
438      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
439      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
440        // Turn this into a "standard" conversion sequence, so that it
441        // gets ranked with standard conversion sequences.
442        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
443        ICS.Standard.setAsIdentityConversion();
444        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
445        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
446        ICS.Standard.CopyConstructor = Constructor;
447        if (ToCanon != FromCanon)
448          ICS.Standard.Second = ICK_Derived_To_Base;
449      }
450    }
451
452    // C++ [over.best.ics]p4:
453    //   However, when considering the argument of a user-defined
454    //   conversion function that is a candidate by 13.3.1.3 when
455    //   invoked for the copying of the temporary in the second step
456    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
457    //   13.3.1.6 in all cases, only standard conversion sequences and
458    //   ellipsis conversion sequences are allowed.
459    if (SuppressUserConversions &&
460        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
461      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
462  } else {
463    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
464    if (UserDefResult == OR_Ambiguous) {
465      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
466           Cand != Conversions.end(); ++Cand)
467        if (Cand->Viable)
468          ICS.ConversionFunctionSet.push_back(Cand->Function);
469    }
470  }
471
472  return ICS;
473}
474
475/// IsStandardConversion - Determines whether there is a standard
476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
477/// expression From to the type ToType. Standard conversion sequences
478/// only consider non-class types; for conversions that involve class
479/// types, use TryImplicitConversion. If a conversion exists, SCS will
480/// contain the standard conversion sequence required to perform this
481/// conversion and this routine will return true. Otherwise, this
482/// routine will return false and the value of SCS is unspecified.
483bool
484Sema::IsStandardConversion(Expr* From, QualType ToType,
485                           bool InOverloadResolution,
486                           StandardConversionSequence &SCS) {
487  QualType FromType = From->getType();
488
489  // Standard conversions (C++ [conv])
490  SCS.setAsIdentityConversion();
491  SCS.Deprecated = false;
492  SCS.IncompatibleObjC = false;
493  SCS.FromTypePtr = FromType.getAsOpaquePtr();
494  SCS.CopyConstructor = 0;
495
496  // There are no standard conversions for class types in C++, so
497  // abort early. When overloading in C, however, we do permit
498  if (FromType->isRecordType() || ToType->isRecordType()) {
499    if (getLangOptions().CPlusPlus)
500      return false;
501
502    // When we're overloading in C, we allow, as standard conversions,
503  }
504
505  // The first conversion can be an lvalue-to-rvalue conversion,
506  // array-to-pointer conversion, or function-to-pointer conversion
507  // (C++ 4p1).
508
509  // Lvalue-to-rvalue conversion (C++ 4.1):
510  //   An lvalue (3.10) of a non-function, non-array type T can be
511  //   converted to an rvalue.
512  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
513  if (argIsLvalue == Expr::LV_Valid &&
514      !FromType->isFunctionType() && !FromType->isArrayType() &&
515      Context.getCanonicalType(FromType) != Context.OverloadTy) {
516    SCS.First = ICK_Lvalue_To_Rvalue;
517
518    // If T is a non-class type, the type of the rvalue is the
519    // cv-unqualified version of T. Otherwise, the type of the rvalue
520    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
521    // just strip the qualifiers because they don't matter.
522
523    // FIXME: Doesn't see through to qualifiers behind a typedef!
524    FromType = FromType.getUnqualifiedType();
525  } else if (FromType->isArrayType()) {
526    // Array-to-pointer conversion (C++ 4.2)
527    SCS.First = ICK_Array_To_Pointer;
528
529    // An lvalue or rvalue of type "array of N T" or "array of unknown
530    // bound of T" can be converted to an rvalue of type "pointer to
531    // T" (C++ 4.2p1).
532    FromType = Context.getArrayDecayedType(FromType);
533
534    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
535      // This conversion is deprecated. (C++ D.4).
536      SCS.Deprecated = true;
537
538      // For the purpose of ranking in overload resolution
539      // (13.3.3.1.1), this conversion is considered an
540      // array-to-pointer conversion followed by a qualification
541      // conversion (4.4). (C++ 4.2p2)
542      SCS.Second = ICK_Identity;
543      SCS.Third = ICK_Qualification;
544      SCS.ToTypePtr = ToType.getAsOpaquePtr();
545      return true;
546    }
547  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
548    // Function-to-pointer conversion (C++ 4.3).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // An lvalue of function type T can be converted to an rvalue of
552    // type "pointer to T." The result is a pointer to the
553    // function. (C++ 4.3p1).
554    FromType = Context.getPointerType(FromType);
555  } else if (FunctionDecl *Fn
556             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
557    // Address of overloaded function (C++ [over.over]).
558    SCS.First = ICK_Function_To_Pointer;
559
560    // We were able to resolve the address of the overloaded function,
561    // so we can convert to the type of that function.
562    FromType = Fn->getType();
563    if (ToType->isLValueReferenceType())
564      FromType = Context.getLValueReferenceType(FromType);
565    else if (ToType->isRValueReferenceType())
566      FromType = Context.getRValueReferenceType(FromType);
567    else if (ToType->isMemberPointerType()) {
568      // Resolve address only succeeds if both sides are member pointers,
569      // but it doesn't have to be the same class. See DR 247.
570      // Note that this means that the type of &Derived::fn can be
571      // Ret (Base::*)(Args) if the fn overload actually found is from the
572      // base class, even if it was brought into the derived class via a
573      // using declaration. The standard isn't clear on this issue at all.
574      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
575      FromType = Context.getMemberPointerType(FromType,
576                    Context.getTypeDeclType(M->getParent()).getTypePtr());
577    } else
578      FromType = Context.getPointerType(FromType);
579  } else {
580    // We don't require any conversions for the first step.
581    SCS.First = ICK_Identity;
582  }
583
584  // The second conversion can be an integral promotion, floating
585  // point promotion, integral conversion, floating point conversion,
586  // floating-integral conversion, pointer conversion,
587  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
588  // For overloading in C, this can also be a "compatible-type"
589  // conversion.
590  bool IncompatibleObjC = false;
591  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
592    // The unqualified versions of the types are the same: there's no
593    // conversion to do.
594    SCS.Second = ICK_Identity;
595  } else if (IsIntegralPromotion(From, FromType, ToType)) {
596    // Integral promotion (C++ 4.5).
597    SCS.Second = ICK_Integral_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsFloatingPointPromotion(FromType, ToType)) {
600    // Floating point promotion (C++ 4.6).
601    SCS.Second = ICK_Floating_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (IsComplexPromotion(FromType, ToType)) {
604    // Complex promotion (Clang extension)
605    SCS.Second = ICK_Complex_Promotion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
608           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
609    // Integral conversions (C++ 4.7).
610    // FIXME: isIntegralType shouldn't be true for enums in C++.
611    SCS.Second = ICK_Integral_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
614    // Floating point conversions (C++ 4.8).
615    SCS.Second = ICK_Floating_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if (FromType->isComplexType() && ToType->isComplexType()) {
618    // Complex conversions (C99 6.3.1.6)
619    SCS.Second = ICK_Complex_Conversion;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isFloatingType() &&
622              ToType->isIntegralType() && (!ToType->isBooleanType() &&
623                                           !ToType->isEnumeralType())) ||
624             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625              ToType->isFloatingType())) {
626    // Floating-integral conversions (C++ 4.9).
627    // FIXME: isIntegralType shouldn't be true for enums in C++.
628    SCS.Second = ICK_Floating_Integral;
629    FromType = ToType.getUnqualifiedType();
630  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631             (ToType->isComplexType() && FromType->isArithmeticType())) {
632    // Complex-real conversions (C99 6.3.1.7)
633    SCS.Second = ICK_Complex_Real;
634    FromType = ToType.getUnqualifiedType();
635  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
636                                 FromType, IncompatibleObjC)) {
637    // Pointer conversions (C++ 4.10).
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  } else if (IsMemberPointerConversion(From, FromType, ToType,
641                                       InOverloadResolution, FromType)) {
642    // Pointer to member conversions (4.11).
643    SCS.Second = ICK_Pointer_Member;
644  } else if (ToType->isBooleanType() &&
645             (FromType->isArithmeticType() ||
646              FromType->isEnumeralType() ||
647              FromType->isPointerType() ||
648              FromType->isBlockPointerType() ||
649              FromType->isMemberPointerType() ||
650              FromType->isNullPtrType())) {
651    // Boolean conversions (C++ 4.12).
652    SCS.Second = ICK_Boolean_Conversion;
653    FromType = Context.BoolTy;
654  } else if (!getLangOptions().CPlusPlus &&
655             Context.typesAreCompatible(ToType, FromType)) {
656    // Compatible conversions (Clang extension for C function overloading)
657    SCS.Second = ICK_Compatible_Conversion;
658  } else {
659    // No second conversion required.
660    SCS.Second = ICK_Identity;
661  }
662
663  QualType CanonFrom;
664  QualType CanonTo;
665  // The third conversion can be a qualification conversion (C++ 4p1).
666  if (IsQualificationConversion(FromType, ToType)) {
667    SCS.Third = ICK_Qualification;
668    FromType = ToType;
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671  } else {
672    // No conversion required
673    SCS.Third = ICK_Identity;
674
675    // C++ [over.best.ics]p6:
676    //   [...] Any difference in top-level cv-qualification is
677    //   subsumed by the initialization itself and does not constitute
678    //   a conversion. [...]
679    CanonFrom = Context.getCanonicalType(FromType);
680    CanonTo = Context.getCanonicalType(ToType);
681    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
682        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
683      FromType = ToType;
684      CanonFrom = CanonTo;
685    }
686  }
687
688  // If we have not converted the argument type to the parameter type,
689  // this is a bad conversion sequence.
690  if (CanonFrom != CanonTo)
691    return false;
692
693  SCS.ToTypePtr = FromType.getAsOpaquePtr();
694  return true;
695}
696
697/// IsIntegralPromotion - Determines whether the conversion from the
698/// expression From (whose potentially-adjusted type is FromType) to
699/// ToType is an integral promotion (C++ 4.5). If so, returns true and
700/// sets PromotedType to the promoted type.
701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
702  const BuiltinType *To = ToType->getAs<BuiltinType>();
703  // All integers are built-in.
704  if (!To) {
705    return false;
706  }
707
708  // An rvalue of type char, signed char, unsigned char, short int, or
709  // unsigned short int can be converted to an rvalue of type int if
710  // int can represent all the values of the source type; otherwise,
711  // the source rvalue can be converted to an rvalue of type unsigned
712  // int (C++ 4.5p1).
713  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
714    if (// We can promote any signed, promotable integer type to an int
715        (FromType->isSignedIntegerType() ||
716         // We can promote any unsigned integer type whose size is
717         // less than int to an int.
718         (!FromType->isSignedIntegerType() &&
719          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
720      return To->getKind() == BuiltinType::Int;
721    }
722
723    return To->getKind() == BuiltinType::UInt;
724  }
725
726  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
727  // can be converted to an rvalue of the first of the following types
728  // that can represent all the values of its underlying type: int,
729  // unsigned int, long, or unsigned long (C++ 4.5p2).
730  if ((FromType->isEnumeralType() || FromType->isWideCharType())
731      && ToType->isIntegerType()) {
732    // Determine whether the type we're converting from is signed or
733    // unsigned.
734    bool FromIsSigned;
735    uint64_t FromSize = Context.getTypeSize(FromType);
736    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
737      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
738      FromIsSigned = UnderlyingType->isSignedIntegerType();
739    } else {
740      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
741      FromIsSigned = true;
742    }
743
744    // The types we'll try to promote to, in the appropriate
745    // order. Try each of these types.
746    QualType PromoteTypes[6] = {
747      Context.IntTy, Context.UnsignedIntTy,
748      Context.LongTy, Context.UnsignedLongTy ,
749      Context.LongLongTy, Context.UnsignedLongLongTy
750    };
751    for (int Idx = 0; Idx < 6; ++Idx) {
752      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
753      if (FromSize < ToSize ||
754          (FromSize == ToSize &&
755           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
756        // We found the type that we can promote to. If this is the
757        // type we wanted, we have a promotion. Otherwise, no
758        // promotion.
759        return Context.getCanonicalType(ToType).getUnqualifiedType()
760          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
761      }
762    }
763  }
764
765  // An rvalue for an integral bit-field (9.6) can be converted to an
766  // rvalue of type int if int can represent all the values of the
767  // bit-field; otherwise, it can be converted to unsigned int if
768  // unsigned int can represent all the values of the bit-field. If
769  // the bit-field is larger yet, no integral promotion applies to
770  // it. If the bit-field has an enumerated type, it is treated as any
771  // other value of that type for promotion purposes (C++ 4.5p3).
772  // FIXME: We should delay checking of bit-fields until we actually perform the
773  // conversion.
774  using llvm::APSInt;
775  if (From)
776    if (FieldDecl *MemberDecl = From->getBitField()) {
777      APSInt BitWidth;
778      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
779          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
780        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
781        ToSize = Context.getTypeSize(ToType);
782
783        // Are we promoting to an int from a bitfield that fits in an int?
784        if (BitWidth < ToSize ||
785            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
786          return To->getKind() == BuiltinType::Int;
787        }
788
789        // Are we promoting to an unsigned int from an unsigned bitfield
790        // that fits into an unsigned int?
791        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
792          return To->getKind() == BuiltinType::UInt;
793        }
794
795        return false;
796      }
797    }
798
799  // An rvalue of type bool can be converted to an rvalue of type int,
800  // with false becoming zero and true becoming one (C++ 4.5p4).
801  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
802    return true;
803  }
804
805  return false;
806}
807
808/// IsFloatingPointPromotion - Determines whether the conversion from
809/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
810/// returns true and sets PromotedType to the promoted type.
811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
812  /// An rvalue of type float can be converted to an rvalue of type
813  /// double. (C++ 4.6p1).
814  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
815    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
816      if (FromBuiltin->getKind() == BuiltinType::Float &&
817          ToBuiltin->getKind() == BuiltinType::Double)
818        return true;
819
820      // C99 6.3.1.5p1:
821      //   When a float is promoted to double or long double, or a
822      //   double is promoted to long double [...].
823      if (!getLangOptions().CPlusPlus &&
824          (FromBuiltin->getKind() == BuiltinType::Float ||
825           FromBuiltin->getKind() == BuiltinType::Double) &&
826          (ToBuiltin->getKind() == BuiltinType::LongDouble))
827        return true;
828    }
829
830  return false;
831}
832
833/// \brief Determine if a conversion is a complex promotion.
834///
835/// A complex promotion is defined as a complex -> complex conversion
836/// where the conversion between the underlying real types is a
837/// floating-point or integral promotion.
838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
839  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
840  if (!FromComplex)
841    return false;
842
843  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
844  if (!ToComplex)
845    return false;
846
847  return IsFloatingPointPromotion(FromComplex->getElementType(),
848                                  ToComplex->getElementType()) ||
849    IsIntegralPromotion(0, FromComplex->getElementType(),
850                        ToComplex->getElementType());
851}
852
853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
854/// the pointer type FromPtr to a pointer to type ToPointee, with the
855/// same type qualifiers as FromPtr has on its pointee type. ToType,
856/// if non-empty, will be a pointer to ToType that may or may not have
857/// the right set of qualifiers on its pointee.
858static QualType
859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
860                                   QualType ToPointee, QualType ToType,
861                                   ASTContext &Context) {
862  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
863  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
864  Qualifiers Quals = CanonFromPointee.getQualifiers();
865
866  // Exact qualifier match -> return the pointer type we're converting to.
867  if (CanonToPointee.getQualifiers() == Quals) {
868    // ToType is exactly what we need. Return it.
869    if (!ToType.isNull())
870      return ToType;
871
872    // Build a pointer to ToPointee. It has the right qualifiers
873    // already.
874    return Context.getPointerType(ToPointee);
875  }
876
877  // Just build a canonical type that has the right qualifiers.
878  return Context.getPointerType(
879         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
880}
881
882static bool isNullPointerConstantForConversion(Expr *Expr,
883                                               bool InOverloadResolution,
884                                               ASTContext &Context) {
885  // Handle value-dependent integral null pointer constants correctly.
886  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
887  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
888      Expr->getType()->isIntegralType())
889    return !InOverloadResolution;
890
891  return Expr->isNullPointerConstant(Context,
892                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
893                                        : Expr::NPC_ValueDependentIsNull);
894}
895
896/// IsPointerConversion - Determines whether the conversion of the
897/// expression From, which has the (possibly adjusted) type FromType,
898/// can be converted to the type ToType via a pointer conversion (C++
899/// 4.10). If so, returns true and places the converted type (that
900/// might differ from ToType in its cv-qualifiers at some level) into
901/// ConvertedType.
902///
903/// This routine also supports conversions to and from block pointers
904/// and conversions with Objective-C's 'id', 'id<protocols...>', and
905/// pointers to interfaces. FIXME: Once we've determined the
906/// appropriate overloading rules for Objective-C, we may want to
907/// split the Objective-C checks into a different routine; however,
908/// GCC seems to consider all of these conversions to be pointer
909/// conversions, so for now they live here. IncompatibleObjC will be
910/// set if the conversion is an allowed Objective-C conversion that
911/// should result in a warning.
912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
913                               bool InOverloadResolution,
914                               QualType& ConvertedType,
915                               bool &IncompatibleObjC) {
916  IncompatibleObjC = false;
917  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
918    return true;
919
920  // Conversion from a null pointer constant to any Objective-C pointer type.
921  if (ToType->isObjCObjectPointerType() &&
922      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
923    ConvertedType = ToType;
924    return true;
925  }
926
927  // Blocks: Block pointers can be converted to void*.
928  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
929      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
930    ConvertedType = ToType;
931    return true;
932  }
933  // Blocks: A null pointer constant can be converted to a block
934  // pointer type.
935  if (ToType->isBlockPointerType() &&
936      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // If the left-hand-side is nullptr_t, the right side can be a null
942  // pointer constant.
943  if (ToType->isNullPtrType() &&
944      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
950  if (!ToTypePtr)
951    return false;
952
953  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
954  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
955    ConvertedType = ToType;
956    return true;
957  }
958
959  // Beyond this point, both types need to be pointers.
960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
961  if (!FromTypePtr)
962    return false;
963
964  QualType FromPointeeType = FromTypePtr->getPointeeType();
965  QualType ToPointeeType = ToTypePtr->getPointeeType();
966
967  // An rvalue of type "pointer to cv T," where T is an object type,
968  // can be converted to an rvalue of type "pointer to cv void" (C++
969  // 4.10p2).
970  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // When we're overloading in C, we allow a special kind of pointer
978  // conversion for compatible-but-not-identical pointee types.
979  if (!getLangOptions().CPlusPlus &&
980      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
981    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
982                                                       ToPointeeType,
983                                                       ToType, Context);
984    return true;
985  }
986
987  // C++ [conv.ptr]p3:
988  //
989  //   An rvalue of type "pointer to cv D," where D is a class type,
990  //   can be converted to an rvalue of type "pointer to cv B," where
991  //   B is a base class (clause 10) of D. If B is an inaccessible
992  //   (clause 11) or ambiguous (10.2) base class of D, a program that
993  //   necessitates this conversion is ill-formed. The result of the
994  //   conversion is a pointer to the base class sub-object of the
995  //   derived class object. The null pointer value is converted to
996  //   the null pointer value of the destination type.
997  //
998  // Note that we do not check for ambiguity or inaccessibility
999  // here. That is handled by CheckPointerConversion.
1000  if (getLangOptions().CPlusPlus &&
1001      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1002      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1003      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1004    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1005                                                       ToPointeeType,
1006                                                       ToType, Context);
1007    return true;
1008  }
1009
1010  return false;
1011}
1012
1013/// isObjCPointerConversion - Determines whether this is an
1014/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1015/// with the same arguments and return values.
1016bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1017                                   QualType& ConvertedType,
1018                                   bool &IncompatibleObjC) {
1019  if (!getLangOptions().ObjC1)
1020    return false;
1021
1022  // First, we handle all conversions on ObjC object pointer types.
1023  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1024  const ObjCObjectPointerType *FromObjCPtr =
1025    FromType->getAs<ObjCObjectPointerType>();
1026
1027  if (ToObjCPtr && FromObjCPtr) {
1028    // Objective C++: We're able to convert between "id" or "Class" and a
1029    // pointer to any interface (in both directions).
1030    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1031      ConvertedType = ToType;
1032      return true;
1033    }
1034    // Conversions with Objective-C's id<...>.
1035    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1036         ToObjCPtr->isObjCQualifiedIdType()) &&
1037        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1038                                                  /*compare=*/false)) {
1039      ConvertedType = ToType;
1040      return true;
1041    }
1042    // Objective C++: We're able to convert from a pointer to an
1043    // interface to a pointer to a different interface.
1044    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1045      ConvertedType = ToType;
1046      return true;
1047    }
1048
1049    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1050      // Okay: this is some kind of implicit downcast of Objective-C
1051      // interfaces, which is permitted. However, we're going to
1052      // complain about it.
1053      IncompatibleObjC = true;
1054      ConvertedType = FromType;
1055      return true;
1056    }
1057  }
1058  // Beyond this point, both types need to be C pointers or block pointers.
1059  QualType ToPointeeType;
1060  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1061    ToPointeeType = ToCPtr->getPointeeType();
1062  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1063    ToPointeeType = ToBlockPtr->getPointeeType();
1064  else
1065    return false;
1066
1067  QualType FromPointeeType;
1068  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1069    FromPointeeType = FromCPtr->getPointeeType();
1070  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1071    FromPointeeType = FromBlockPtr->getPointeeType();
1072  else
1073    return false;
1074
1075  // If we have pointers to pointers, recursively check whether this
1076  // is an Objective-C conversion.
1077  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1078      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1079                              IncompatibleObjC)) {
1080    // We always complain about this conversion.
1081    IncompatibleObjC = true;
1082    ConvertedType = ToType;
1083    return true;
1084  }
1085  // If we have pointers to functions or blocks, check whether the only
1086  // differences in the argument and result types are in Objective-C
1087  // pointer conversions. If so, we permit the conversion (but
1088  // complain about it).
1089  const FunctionProtoType *FromFunctionType
1090    = FromPointeeType->getAs<FunctionProtoType>();
1091  const FunctionProtoType *ToFunctionType
1092    = ToPointeeType->getAs<FunctionProtoType>();
1093  if (FromFunctionType && ToFunctionType) {
1094    // If the function types are exactly the same, this isn't an
1095    // Objective-C pointer conversion.
1096    if (Context.getCanonicalType(FromPointeeType)
1097          == Context.getCanonicalType(ToPointeeType))
1098      return false;
1099
1100    // Perform the quick checks that will tell us whether these
1101    // function types are obviously different.
1102    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1103        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1104        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1105      return false;
1106
1107    bool HasObjCConversion = false;
1108    if (Context.getCanonicalType(FromFunctionType->getResultType())
1109          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1110      // Okay, the types match exactly. Nothing to do.
1111    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1112                                       ToFunctionType->getResultType(),
1113                                       ConvertedType, IncompatibleObjC)) {
1114      // Okay, we have an Objective-C pointer conversion.
1115      HasObjCConversion = true;
1116    } else {
1117      // Function types are too different. Abort.
1118      return false;
1119    }
1120
1121    // Check argument types.
1122    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1123         ArgIdx != NumArgs; ++ArgIdx) {
1124      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1125      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1126      if (Context.getCanonicalType(FromArgType)
1127            == Context.getCanonicalType(ToArgType)) {
1128        // Okay, the types match exactly. Nothing to do.
1129      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1130                                         ConvertedType, IncompatibleObjC)) {
1131        // Okay, we have an Objective-C pointer conversion.
1132        HasObjCConversion = true;
1133      } else {
1134        // Argument types are too different. Abort.
1135        return false;
1136      }
1137    }
1138
1139    if (HasObjCConversion) {
1140      // We had an Objective-C conversion. Allow this pointer
1141      // conversion, but complain about it.
1142      ConvertedType = ToType;
1143      IncompatibleObjC = true;
1144      return true;
1145    }
1146  }
1147
1148  return false;
1149}
1150
1151/// CheckPointerConversion - Check the pointer conversion from the
1152/// expression From to the type ToType. This routine checks for
1153/// ambiguous or inaccessible derived-to-base pointer
1154/// conversions for which IsPointerConversion has already returned
1155/// true. It returns true and produces a diagnostic if there was an
1156/// error, or returns false otherwise.
1157bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1158                                  CastExpr::CastKind &Kind) {
1159  QualType FromType = From->getType();
1160
1161  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1162    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1163      QualType FromPointeeType = FromPtrType->getPointeeType(),
1164               ToPointeeType   = ToPtrType->getPointeeType();
1165
1166      if (FromPointeeType->isRecordType() &&
1167          ToPointeeType->isRecordType()) {
1168        // We must have a derived-to-base conversion. Check an
1169        // ambiguous or inaccessible conversion.
1170        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1171                                         From->getExprLoc(),
1172                                         From->getSourceRange()))
1173          return true;
1174
1175        // The conversion was successful.
1176        Kind = CastExpr::CK_DerivedToBase;
1177      }
1178    }
1179  if (const ObjCObjectPointerType *FromPtrType =
1180        FromType->getAs<ObjCObjectPointerType>())
1181    if (const ObjCObjectPointerType *ToPtrType =
1182          ToType->getAs<ObjCObjectPointerType>()) {
1183      // Objective-C++ conversions are always okay.
1184      // FIXME: We should have a different class of conversions for the
1185      // Objective-C++ implicit conversions.
1186      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1187        return false;
1188
1189  }
1190  return false;
1191}
1192
1193/// IsMemberPointerConversion - Determines whether the conversion of the
1194/// expression From, which has the (possibly adjusted) type FromType, can be
1195/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1196/// If so, returns true and places the converted type (that might differ from
1197/// ToType in its cv-qualifiers at some level) into ConvertedType.
1198bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1199                                     QualType ToType,
1200                                     bool InOverloadResolution,
1201                                     QualType &ConvertedType) {
1202  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1203  if (!ToTypePtr)
1204    return false;
1205
1206  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1207  if (From->isNullPointerConstant(Context,
1208                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1209                                        : Expr::NPC_ValueDependentIsNull)) {
1210    ConvertedType = ToType;
1211    return true;
1212  }
1213
1214  // Otherwise, both types have to be member pointers.
1215  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1216  if (!FromTypePtr)
1217    return false;
1218
1219  // A pointer to member of B can be converted to a pointer to member of D,
1220  // where D is derived from B (C++ 4.11p2).
1221  QualType FromClass(FromTypePtr->getClass(), 0);
1222  QualType ToClass(ToTypePtr->getClass(), 0);
1223  // FIXME: What happens when these are dependent? Is this function even called?
1224
1225  if (IsDerivedFrom(ToClass, FromClass)) {
1226    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1227                                                 ToClass.getTypePtr());
1228    return true;
1229  }
1230
1231  return false;
1232}
1233
1234/// CheckMemberPointerConversion - Check the member pointer conversion from the
1235/// expression From to the type ToType. This routine checks for ambiguous or
1236/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1237/// for which IsMemberPointerConversion has already returned true. It returns
1238/// true and produces a diagnostic if there was an error, or returns false
1239/// otherwise.
1240bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1241                                        CastExpr::CastKind &Kind) {
1242  QualType FromType = From->getType();
1243  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1244  if (!FromPtrType) {
1245    // This must be a null pointer to member pointer conversion
1246    assert(From->isNullPointerConstant(Context,
1247                                       Expr::NPC_ValueDependentIsNull) &&
1248           "Expr must be null pointer constant!");
1249    Kind = CastExpr::CK_NullToMemberPointer;
1250    return false;
1251  }
1252
1253  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1254  assert(ToPtrType && "No member pointer cast has a target type "
1255                      "that is not a member pointer.");
1256
1257  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1258  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1259
1260  // FIXME: What about dependent types?
1261  assert(FromClass->isRecordType() && "Pointer into non-class.");
1262  assert(ToClass->isRecordType() && "Pointer into non-class.");
1263
1264  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1265                     /*DetectVirtual=*/true);
1266  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1267  assert(DerivationOkay &&
1268         "Should not have been called if derivation isn't OK.");
1269  (void)DerivationOkay;
1270
1271  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1272                                  getUnqualifiedType())) {
1273    // Derivation is ambiguous. Redo the check to find the exact paths.
1274    Paths.clear();
1275    Paths.setRecordingPaths(true);
1276    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1277    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1278    (void)StillOkay;
1279
1280    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1281    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1282      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1283    return true;
1284  }
1285
1286  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1287    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1288      << FromClass << ToClass << QualType(VBase, 0)
1289      << From->getSourceRange();
1290    return true;
1291  }
1292
1293  // Must be a base to derived member conversion.
1294  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1295  return false;
1296}
1297
1298/// IsQualificationConversion - Determines whether the conversion from
1299/// an rvalue of type FromType to ToType is a qualification conversion
1300/// (C++ 4.4).
1301bool
1302Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1303  FromType = Context.getCanonicalType(FromType);
1304  ToType = Context.getCanonicalType(ToType);
1305
1306  // If FromType and ToType are the same type, this is not a
1307  // qualification conversion.
1308  if (FromType == ToType)
1309    return false;
1310
1311  // (C++ 4.4p4):
1312  //   A conversion can add cv-qualifiers at levels other than the first
1313  //   in multi-level pointers, subject to the following rules: [...]
1314  bool PreviousToQualsIncludeConst = true;
1315  bool UnwrappedAnyPointer = false;
1316  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1317    // Within each iteration of the loop, we check the qualifiers to
1318    // determine if this still looks like a qualification
1319    // conversion. Then, if all is well, we unwrap one more level of
1320    // pointers or pointers-to-members and do it all again
1321    // until there are no more pointers or pointers-to-members left to
1322    // unwrap.
1323    UnwrappedAnyPointer = true;
1324
1325    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1326    //      2,j, and similarly for volatile.
1327    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1328      return false;
1329
1330    //   -- if the cv 1,j and cv 2,j are different, then const is in
1331    //      every cv for 0 < k < j.
1332    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1333        && !PreviousToQualsIncludeConst)
1334      return false;
1335
1336    // Keep track of whether all prior cv-qualifiers in the "to" type
1337    // include const.
1338    PreviousToQualsIncludeConst
1339      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1340  }
1341
1342  // We are left with FromType and ToType being the pointee types
1343  // after unwrapping the original FromType and ToType the same number
1344  // of types. If we unwrapped any pointers, and if FromType and
1345  // ToType have the same unqualified type (since we checked
1346  // qualifiers above), then this is a qualification conversion.
1347  return UnwrappedAnyPointer &&
1348    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1349}
1350
1351/// \brief Given a function template or function, extract the function template
1352/// declaration (if any) and the underlying function declaration.
1353template<typename T>
1354static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1355                                   FunctionTemplateDecl *&FunctionTemplate) {
1356  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1357  if (FunctionTemplate)
1358    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1359  else
1360    Function = cast<T>(Orig);
1361}
1362
1363/// Determines whether there is a user-defined conversion sequence
1364/// (C++ [over.ics.user]) that converts expression From to the type
1365/// ToType. If such a conversion exists, User will contain the
1366/// user-defined conversion sequence that performs such a conversion
1367/// and this routine will return true. Otherwise, this routine returns
1368/// false and User is unspecified.
1369///
1370/// \param AllowConversionFunctions true if the conversion should
1371/// consider conversion functions at all. If false, only constructors
1372/// will be considered.
1373///
1374/// \param AllowExplicit  true if the conversion should consider C++0x
1375/// "explicit" conversion functions as well as non-explicit conversion
1376/// functions (C++0x [class.conv.fct]p2).
1377///
1378/// \param ForceRValue  true if the expression should be treated as an rvalue
1379/// for overload resolution.
1380/// \param UserCast true if looking for user defined conversion for a static
1381/// cast.
1382Sema::OverloadingResult Sema::IsUserDefinedConversion(
1383                                   Expr *From, QualType ToType,
1384                                   UserDefinedConversionSequence& User,
1385                                   OverloadCandidateSet& CandidateSet,
1386                                   bool AllowConversionFunctions,
1387                                   bool AllowExplicit, bool ForceRValue,
1388                                   bool UserCast) {
1389  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1390    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1391      // We're not going to find any constructors.
1392    } else if (CXXRecordDecl *ToRecordDecl
1393                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1394      // C++ [over.match.ctor]p1:
1395      //   When objects of class type are direct-initialized (8.5), or
1396      //   copy-initialized from an expression of the same or a
1397      //   derived class type (8.5), overload resolution selects the
1398      //   constructor. [...] For copy-initialization, the candidate
1399      //   functions are all the converting constructors (12.3.1) of
1400      //   that class. The argument list is the expression-list within
1401      //   the parentheses of the initializer.
1402      bool SuppressUserConversions = !UserCast;
1403      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1404          IsDerivedFrom(From->getType(), ToType)) {
1405        SuppressUserConversions = false;
1406        AllowConversionFunctions = false;
1407      }
1408
1409      DeclarationName ConstructorName
1410        = Context.DeclarationNames.getCXXConstructorName(
1411                          Context.getCanonicalType(ToType).getUnqualifiedType());
1412      DeclContext::lookup_iterator Con, ConEnd;
1413      for (llvm::tie(Con, ConEnd)
1414             = ToRecordDecl->lookup(ConstructorName);
1415           Con != ConEnd; ++Con) {
1416        // Find the constructor (which may be a template).
1417        CXXConstructorDecl *Constructor = 0;
1418        FunctionTemplateDecl *ConstructorTmpl
1419          = dyn_cast<FunctionTemplateDecl>(*Con);
1420        if (ConstructorTmpl)
1421          Constructor
1422            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1423        else
1424          Constructor = cast<CXXConstructorDecl>(*Con);
1425
1426        if (!Constructor->isInvalidDecl() &&
1427            Constructor->isConvertingConstructor(AllowExplicit)) {
1428          if (ConstructorTmpl)
1429            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1430                                         1, CandidateSet,
1431                                         SuppressUserConversions, ForceRValue);
1432          else
1433            // Allow one user-defined conversion when user specifies a
1434            // From->ToType conversion via an static cast (c-style, etc).
1435            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1436                                 SuppressUserConversions, ForceRValue);
1437        }
1438      }
1439    }
1440  }
1441
1442  if (!AllowConversionFunctions) {
1443    // Don't allow any conversion functions to enter the overload set.
1444  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1445                                 PDiag(0)
1446                                   << From->getSourceRange())) {
1447    // No conversion functions from incomplete types.
1448  } else if (const RecordType *FromRecordType
1449               = From->getType()->getAs<RecordType>()) {
1450    if (CXXRecordDecl *FromRecordDecl
1451         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1452      // Add all of the conversion functions as candidates.
1453      OverloadedFunctionDecl *Conversions
1454        = FromRecordDecl->getVisibleConversionFunctions();
1455      for (OverloadedFunctionDecl::function_iterator Func
1456             = Conversions->function_begin();
1457           Func != Conversions->function_end(); ++Func) {
1458        CXXConversionDecl *Conv;
1459        FunctionTemplateDecl *ConvTemplate;
1460        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1461        if (ConvTemplate)
1462          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1463        else
1464          Conv = dyn_cast<CXXConversionDecl>(*Func);
1465
1466        if (AllowExplicit || !Conv->isExplicit()) {
1467          if (ConvTemplate)
1468            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1469                                           CandidateSet);
1470          else
1471            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1472        }
1473      }
1474    }
1475  }
1476
1477  OverloadCandidateSet::iterator Best;
1478  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1479    case OR_Success:
1480      // Record the standard conversion we used and the conversion function.
1481      if (CXXConstructorDecl *Constructor
1482            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1483        // C++ [over.ics.user]p1:
1484        //   If the user-defined conversion is specified by a
1485        //   constructor (12.3.1), the initial standard conversion
1486        //   sequence converts the source type to the type required by
1487        //   the argument of the constructor.
1488        //
1489        QualType ThisType = Constructor->getThisType(Context);
1490        if (Best->Conversions[0].ConversionKind ==
1491            ImplicitConversionSequence::EllipsisConversion)
1492          User.EllipsisConversion = true;
1493        else {
1494          User.Before = Best->Conversions[0].Standard;
1495          User.EllipsisConversion = false;
1496        }
1497        User.ConversionFunction = Constructor;
1498        User.After.setAsIdentityConversion();
1499        User.After.FromTypePtr
1500          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1501        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1502        return OR_Success;
1503      } else if (CXXConversionDecl *Conversion
1504                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1505        // C++ [over.ics.user]p1:
1506        //
1507        //   [...] If the user-defined conversion is specified by a
1508        //   conversion function (12.3.2), the initial standard
1509        //   conversion sequence converts the source type to the
1510        //   implicit object parameter of the conversion function.
1511        User.Before = Best->Conversions[0].Standard;
1512        User.ConversionFunction = Conversion;
1513        User.EllipsisConversion = false;
1514
1515        // C++ [over.ics.user]p2:
1516        //   The second standard conversion sequence converts the
1517        //   result of the user-defined conversion to the target type
1518        //   for the sequence. Since an implicit conversion sequence
1519        //   is an initialization, the special rules for
1520        //   initialization by user-defined conversion apply when
1521        //   selecting the best user-defined conversion for a
1522        //   user-defined conversion sequence (see 13.3.3 and
1523        //   13.3.3.1).
1524        User.After = Best->FinalConversion;
1525        return OR_Success;
1526      } else {
1527        assert(false && "Not a constructor or conversion function?");
1528        return OR_No_Viable_Function;
1529      }
1530
1531    case OR_No_Viable_Function:
1532      return OR_No_Viable_Function;
1533    case OR_Deleted:
1534      // No conversion here! We're done.
1535      return OR_Deleted;
1536
1537    case OR_Ambiguous:
1538      return OR_Ambiguous;
1539    }
1540
1541  return OR_No_Viable_Function;
1542}
1543
1544bool
1545Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1546  ImplicitConversionSequence ICS;
1547  OverloadCandidateSet CandidateSet;
1548  OverloadingResult OvResult =
1549    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1550                            CandidateSet, true, false, false);
1551  if (OvResult != OR_Ambiguous)
1552    return false;
1553  Diag(From->getSourceRange().getBegin(),
1554       diag::err_typecheck_ambiguous_condition)
1555  << From->getType() << ToType << From->getSourceRange();
1556    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1557  return true;
1558}
1559
1560/// CompareImplicitConversionSequences - Compare two implicit
1561/// conversion sequences to determine whether one is better than the
1562/// other or if they are indistinguishable (C++ 13.3.3.2).
1563ImplicitConversionSequence::CompareKind
1564Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1565                                         const ImplicitConversionSequence& ICS2)
1566{
1567  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1568  // conversion sequences (as defined in 13.3.3.1)
1569  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1570  //      conversion sequence than a user-defined conversion sequence or
1571  //      an ellipsis conversion sequence, and
1572  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1573  //      conversion sequence than an ellipsis conversion sequence
1574  //      (13.3.3.1.3).
1575  //
1576  if (ICS1.ConversionKind < ICS2.ConversionKind)
1577    return ImplicitConversionSequence::Better;
1578  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1579    return ImplicitConversionSequence::Worse;
1580
1581  // Two implicit conversion sequences of the same form are
1582  // indistinguishable conversion sequences unless one of the
1583  // following rules apply: (C++ 13.3.3.2p3):
1584  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1585    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1586  else if (ICS1.ConversionKind ==
1587             ImplicitConversionSequence::UserDefinedConversion) {
1588    // User-defined conversion sequence U1 is a better conversion
1589    // sequence than another user-defined conversion sequence U2 if
1590    // they contain the same user-defined conversion function or
1591    // constructor and if the second standard conversion sequence of
1592    // U1 is better than the second standard conversion sequence of
1593    // U2 (C++ 13.3.3.2p3).
1594    if (ICS1.UserDefined.ConversionFunction ==
1595          ICS2.UserDefined.ConversionFunction)
1596      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1597                                                ICS2.UserDefined.After);
1598  }
1599
1600  return ImplicitConversionSequence::Indistinguishable;
1601}
1602
1603/// CompareStandardConversionSequences - Compare two standard
1604/// conversion sequences to determine whether one is better than the
1605/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1606ImplicitConversionSequence::CompareKind
1607Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1608                                         const StandardConversionSequence& SCS2)
1609{
1610  // Standard conversion sequence S1 is a better conversion sequence
1611  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1612
1613  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1614  //     sequences in the canonical form defined by 13.3.3.1.1,
1615  //     excluding any Lvalue Transformation; the identity conversion
1616  //     sequence is considered to be a subsequence of any
1617  //     non-identity conversion sequence) or, if not that,
1618  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1619    // Neither is a proper subsequence of the other. Do nothing.
1620    ;
1621  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1622           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1623           (SCS1.Second == ICK_Identity &&
1624            SCS1.Third == ICK_Identity))
1625    // SCS1 is a proper subsequence of SCS2.
1626    return ImplicitConversionSequence::Better;
1627  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1628           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1629           (SCS2.Second == ICK_Identity &&
1630            SCS2.Third == ICK_Identity))
1631    // SCS2 is a proper subsequence of SCS1.
1632    return ImplicitConversionSequence::Worse;
1633
1634  //  -- the rank of S1 is better than the rank of S2 (by the rules
1635  //     defined below), or, if not that,
1636  ImplicitConversionRank Rank1 = SCS1.getRank();
1637  ImplicitConversionRank Rank2 = SCS2.getRank();
1638  if (Rank1 < Rank2)
1639    return ImplicitConversionSequence::Better;
1640  else if (Rank2 < Rank1)
1641    return ImplicitConversionSequence::Worse;
1642
1643  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1644  // are indistinguishable unless one of the following rules
1645  // applies:
1646
1647  //   A conversion that is not a conversion of a pointer, or
1648  //   pointer to member, to bool is better than another conversion
1649  //   that is such a conversion.
1650  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1651    return SCS2.isPointerConversionToBool()
1652             ? ImplicitConversionSequence::Better
1653             : ImplicitConversionSequence::Worse;
1654
1655  // C++ [over.ics.rank]p4b2:
1656  //
1657  //   If class B is derived directly or indirectly from class A,
1658  //   conversion of B* to A* is better than conversion of B* to
1659  //   void*, and conversion of A* to void* is better than conversion
1660  //   of B* to void*.
1661  bool SCS1ConvertsToVoid
1662    = SCS1.isPointerConversionToVoidPointer(Context);
1663  bool SCS2ConvertsToVoid
1664    = SCS2.isPointerConversionToVoidPointer(Context);
1665  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1666    // Exactly one of the conversion sequences is a conversion to
1667    // a void pointer; it's the worse conversion.
1668    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1669                              : ImplicitConversionSequence::Worse;
1670  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1671    // Neither conversion sequence converts to a void pointer; compare
1672    // their derived-to-base conversions.
1673    if (ImplicitConversionSequence::CompareKind DerivedCK
1674          = CompareDerivedToBaseConversions(SCS1, SCS2))
1675      return DerivedCK;
1676  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1677    // Both conversion sequences are conversions to void
1678    // pointers. Compare the source types to determine if there's an
1679    // inheritance relationship in their sources.
1680    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1681    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1682
1683    // Adjust the types we're converting from via the array-to-pointer
1684    // conversion, if we need to.
1685    if (SCS1.First == ICK_Array_To_Pointer)
1686      FromType1 = Context.getArrayDecayedType(FromType1);
1687    if (SCS2.First == ICK_Array_To_Pointer)
1688      FromType2 = Context.getArrayDecayedType(FromType2);
1689
1690    QualType FromPointee1
1691      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1692    QualType FromPointee2
1693      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1694
1695    if (IsDerivedFrom(FromPointee2, FromPointee1))
1696      return ImplicitConversionSequence::Better;
1697    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1698      return ImplicitConversionSequence::Worse;
1699
1700    // Objective-C++: If one interface is more specific than the
1701    // other, it is the better one.
1702    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1703    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1704    if (FromIface1 && FromIface1) {
1705      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1706        return ImplicitConversionSequence::Better;
1707      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1708        return ImplicitConversionSequence::Worse;
1709    }
1710  }
1711
1712  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1713  // bullet 3).
1714  if (ImplicitConversionSequence::CompareKind QualCK
1715        = CompareQualificationConversions(SCS1, SCS2))
1716    return QualCK;
1717
1718  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1719    // C++0x [over.ics.rank]p3b4:
1720    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1721    //      implicit object parameter of a non-static member function declared
1722    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1723    //      rvalue and S2 binds an lvalue reference.
1724    // FIXME: We don't know if we're dealing with the implicit object parameter,
1725    // or if the member function in this case has a ref qualifier.
1726    // (Of course, we don't have ref qualifiers yet.)
1727    if (SCS1.RRefBinding != SCS2.RRefBinding)
1728      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1729                              : ImplicitConversionSequence::Worse;
1730
1731    // C++ [over.ics.rank]p3b4:
1732    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1733    //      which the references refer are the same type except for
1734    //      top-level cv-qualifiers, and the type to which the reference
1735    //      initialized by S2 refers is more cv-qualified than the type
1736    //      to which the reference initialized by S1 refers.
1737    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1738    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1739    T1 = Context.getCanonicalType(T1);
1740    T2 = Context.getCanonicalType(T2);
1741    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1742      if (T2.isMoreQualifiedThan(T1))
1743        return ImplicitConversionSequence::Better;
1744      else if (T1.isMoreQualifiedThan(T2))
1745        return ImplicitConversionSequence::Worse;
1746    }
1747  }
1748
1749  return ImplicitConversionSequence::Indistinguishable;
1750}
1751
1752/// CompareQualificationConversions - Compares two standard conversion
1753/// sequences to determine whether they can be ranked based on their
1754/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1755ImplicitConversionSequence::CompareKind
1756Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1757                                      const StandardConversionSequence& SCS2) {
1758  // C++ 13.3.3.2p3:
1759  //  -- S1 and S2 differ only in their qualification conversion and
1760  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1761  //     cv-qualification signature of type T1 is a proper subset of
1762  //     the cv-qualification signature of type T2, and S1 is not the
1763  //     deprecated string literal array-to-pointer conversion (4.2).
1764  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1765      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1766    return ImplicitConversionSequence::Indistinguishable;
1767
1768  // FIXME: the example in the standard doesn't use a qualification
1769  // conversion (!)
1770  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1771  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1772  T1 = Context.getCanonicalType(T1);
1773  T2 = Context.getCanonicalType(T2);
1774
1775  // If the types are the same, we won't learn anything by unwrapped
1776  // them.
1777  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1778    return ImplicitConversionSequence::Indistinguishable;
1779
1780  ImplicitConversionSequence::CompareKind Result
1781    = ImplicitConversionSequence::Indistinguishable;
1782  while (UnwrapSimilarPointerTypes(T1, T2)) {
1783    // Within each iteration of the loop, we check the qualifiers to
1784    // determine if this still looks like a qualification
1785    // conversion. Then, if all is well, we unwrap one more level of
1786    // pointers or pointers-to-members and do it all again
1787    // until there are no more pointers or pointers-to-members left
1788    // to unwrap. This essentially mimics what
1789    // IsQualificationConversion does, but here we're checking for a
1790    // strict subset of qualifiers.
1791    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1792      // The qualifiers are the same, so this doesn't tell us anything
1793      // about how the sequences rank.
1794      ;
1795    else if (T2.isMoreQualifiedThan(T1)) {
1796      // T1 has fewer qualifiers, so it could be the better sequence.
1797      if (Result == ImplicitConversionSequence::Worse)
1798        // Neither has qualifiers that are a subset of the other's
1799        // qualifiers.
1800        return ImplicitConversionSequence::Indistinguishable;
1801
1802      Result = ImplicitConversionSequence::Better;
1803    } else if (T1.isMoreQualifiedThan(T2)) {
1804      // T2 has fewer qualifiers, so it could be the better sequence.
1805      if (Result == ImplicitConversionSequence::Better)
1806        // Neither has qualifiers that are a subset of the other's
1807        // qualifiers.
1808        return ImplicitConversionSequence::Indistinguishable;
1809
1810      Result = ImplicitConversionSequence::Worse;
1811    } else {
1812      // Qualifiers are disjoint.
1813      return ImplicitConversionSequence::Indistinguishable;
1814    }
1815
1816    // If the types after this point are equivalent, we're done.
1817    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1818      break;
1819  }
1820
1821  // Check that the winning standard conversion sequence isn't using
1822  // the deprecated string literal array to pointer conversion.
1823  switch (Result) {
1824  case ImplicitConversionSequence::Better:
1825    if (SCS1.Deprecated)
1826      Result = ImplicitConversionSequence::Indistinguishable;
1827    break;
1828
1829  case ImplicitConversionSequence::Indistinguishable:
1830    break;
1831
1832  case ImplicitConversionSequence::Worse:
1833    if (SCS2.Deprecated)
1834      Result = ImplicitConversionSequence::Indistinguishable;
1835    break;
1836  }
1837
1838  return Result;
1839}
1840
1841/// CompareDerivedToBaseConversions - Compares two standard conversion
1842/// sequences to determine whether they can be ranked based on their
1843/// various kinds of derived-to-base conversions (C++
1844/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1845/// conversions between Objective-C interface types.
1846ImplicitConversionSequence::CompareKind
1847Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1848                                      const StandardConversionSequence& SCS2) {
1849  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1850  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1851  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1852  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1853
1854  // Adjust the types we're converting from via the array-to-pointer
1855  // conversion, if we need to.
1856  if (SCS1.First == ICK_Array_To_Pointer)
1857    FromType1 = Context.getArrayDecayedType(FromType1);
1858  if (SCS2.First == ICK_Array_To_Pointer)
1859    FromType2 = Context.getArrayDecayedType(FromType2);
1860
1861  // Canonicalize all of the types.
1862  FromType1 = Context.getCanonicalType(FromType1);
1863  ToType1 = Context.getCanonicalType(ToType1);
1864  FromType2 = Context.getCanonicalType(FromType2);
1865  ToType2 = Context.getCanonicalType(ToType2);
1866
1867  // C++ [over.ics.rank]p4b3:
1868  //
1869  //   If class B is derived directly or indirectly from class A and
1870  //   class C is derived directly or indirectly from B,
1871  //
1872  // For Objective-C, we let A, B, and C also be Objective-C
1873  // interfaces.
1874
1875  // Compare based on pointer conversions.
1876  if (SCS1.Second == ICK_Pointer_Conversion &&
1877      SCS2.Second == ICK_Pointer_Conversion &&
1878      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1879      FromType1->isPointerType() && FromType2->isPointerType() &&
1880      ToType1->isPointerType() && ToType2->isPointerType()) {
1881    QualType FromPointee1
1882      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1883    QualType ToPointee1
1884      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1885    QualType FromPointee2
1886      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1887    QualType ToPointee2
1888      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1889
1890    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1891    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1892    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1893    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1894
1895    //   -- conversion of C* to B* is better than conversion of C* to A*,
1896    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1897      if (IsDerivedFrom(ToPointee1, ToPointee2))
1898        return ImplicitConversionSequence::Better;
1899      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1900        return ImplicitConversionSequence::Worse;
1901
1902      if (ToIface1 && ToIface2) {
1903        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1904          return ImplicitConversionSequence::Better;
1905        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1906          return ImplicitConversionSequence::Worse;
1907      }
1908    }
1909
1910    //   -- conversion of B* to A* is better than conversion of C* to A*,
1911    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1912      if (IsDerivedFrom(FromPointee2, FromPointee1))
1913        return ImplicitConversionSequence::Better;
1914      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1915        return ImplicitConversionSequence::Worse;
1916
1917      if (FromIface1 && FromIface2) {
1918        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1919          return ImplicitConversionSequence::Better;
1920        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1921          return ImplicitConversionSequence::Worse;
1922      }
1923    }
1924  }
1925
1926  // Compare based on reference bindings.
1927  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1928      SCS1.Second == ICK_Derived_To_Base) {
1929    //   -- binding of an expression of type C to a reference of type
1930    //      B& is better than binding an expression of type C to a
1931    //      reference of type A&,
1932    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1933        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1934      if (IsDerivedFrom(ToType1, ToType2))
1935        return ImplicitConversionSequence::Better;
1936      else if (IsDerivedFrom(ToType2, ToType1))
1937        return ImplicitConversionSequence::Worse;
1938    }
1939
1940    //   -- binding of an expression of type B to a reference of type
1941    //      A& is better than binding an expression of type C to a
1942    //      reference of type A&,
1943    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1944        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1945      if (IsDerivedFrom(FromType2, FromType1))
1946        return ImplicitConversionSequence::Better;
1947      else if (IsDerivedFrom(FromType1, FromType2))
1948        return ImplicitConversionSequence::Worse;
1949    }
1950  }
1951
1952  // Ranking of member-pointer types.
1953  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1954      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1955      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1956    const MemberPointerType * FromMemPointer1 =
1957                                        FromType1->getAs<MemberPointerType>();
1958    const MemberPointerType * ToMemPointer1 =
1959                                          ToType1->getAs<MemberPointerType>();
1960    const MemberPointerType * FromMemPointer2 =
1961                                          FromType2->getAs<MemberPointerType>();
1962    const MemberPointerType * ToMemPointer2 =
1963                                          ToType2->getAs<MemberPointerType>();
1964    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1965    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1966    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1967    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1968    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1969    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1970    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1971    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1972    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1973    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1974      if (IsDerivedFrom(ToPointee1, ToPointee2))
1975        return ImplicitConversionSequence::Worse;
1976      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1977        return ImplicitConversionSequence::Better;
1978    }
1979    // conversion of B::* to C::* is better than conversion of A::* to C::*
1980    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1981      if (IsDerivedFrom(FromPointee1, FromPointee2))
1982        return ImplicitConversionSequence::Better;
1983      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1984        return ImplicitConversionSequence::Worse;
1985    }
1986  }
1987
1988  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1989      SCS1.Second == ICK_Derived_To_Base) {
1990    //   -- conversion of C to B is better than conversion of C to A,
1991    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1992        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1993      if (IsDerivedFrom(ToType1, ToType2))
1994        return ImplicitConversionSequence::Better;
1995      else if (IsDerivedFrom(ToType2, ToType1))
1996        return ImplicitConversionSequence::Worse;
1997    }
1998
1999    //   -- conversion of B to A is better than conversion of C to A.
2000    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
2001        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
2002      if (IsDerivedFrom(FromType2, FromType1))
2003        return ImplicitConversionSequence::Better;
2004      else if (IsDerivedFrom(FromType1, FromType2))
2005        return ImplicitConversionSequence::Worse;
2006    }
2007  }
2008
2009  return ImplicitConversionSequence::Indistinguishable;
2010}
2011
2012/// TryCopyInitialization - Try to copy-initialize a value of type
2013/// ToType from the expression From. Return the implicit conversion
2014/// sequence required to pass this argument, which may be a bad
2015/// conversion sequence (meaning that the argument cannot be passed to
2016/// a parameter of this type). If @p SuppressUserConversions, then we
2017/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2018/// then we treat @p From as an rvalue, even if it is an lvalue.
2019ImplicitConversionSequence
2020Sema::TryCopyInitialization(Expr *From, QualType ToType,
2021                            bool SuppressUserConversions, bool ForceRValue,
2022                            bool InOverloadResolution) {
2023  if (ToType->isReferenceType()) {
2024    ImplicitConversionSequence ICS;
2025    CheckReferenceInit(From, ToType,
2026                       /*FIXME:*/From->getLocStart(),
2027                       SuppressUserConversions,
2028                       /*AllowExplicit=*/false,
2029                       ForceRValue,
2030                       &ICS);
2031    return ICS;
2032  } else {
2033    return TryImplicitConversion(From, ToType,
2034                                 SuppressUserConversions,
2035                                 /*AllowExplicit=*/false,
2036                                 ForceRValue,
2037                                 InOverloadResolution);
2038  }
2039}
2040
2041/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2042/// the expression @p From. Returns true (and emits a diagnostic) if there was
2043/// an error, returns false if the initialization succeeded. Elidable should
2044/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2045/// differently in C++0x for this case.
2046bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2047                                     const char* Flavor, bool Elidable) {
2048  if (!getLangOptions().CPlusPlus) {
2049    // In C, argument passing is the same as performing an assignment.
2050    QualType FromType = From->getType();
2051
2052    AssignConvertType ConvTy =
2053      CheckSingleAssignmentConstraints(ToType, From);
2054    if (ConvTy != Compatible &&
2055        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2056      ConvTy = Compatible;
2057
2058    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2059                                    FromType, From, Flavor);
2060  }
2061
2062  if (ToType->isReferenceType())
2063    return CheckReferenceInit(From, ToType,
2064                              /*FIXME:*/From->getLocStart(),
2065                              /*SuppressUserConversions=*/false,
2066                              /*AllowExplicit=*/false,
2067                              /*ForceRValue=*/false);
2068
2069  if (!PerformImplicitConversion(From, ToType, Flavor,
2070                                 /*AllowExplicit=*/false, Elidable))
2071    return false;
2072  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2073    return Diag(From->getSourceRange().getBegin(),
2074                diag::err_typecheck_convert_incompatible)
2075      << ToType << From->getType() << Flavor << From->getSourceRange();
2076  return true;
2077}
2078
2079/// TryObjectArgumentInitialization - Try to initialize the object
2080/// parameter of the given member function (@c Method) from the
2081/// expression @p From.
2082ImplicitConversionSequence
2083Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2084  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2085  QualType ImplicitParamType
2086    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2087
2088  // Set up the conversion sequence as a "bad" conversion, to allow us
2089  // to exit early.
2090  ImplicitConversionSequence ICS;
2091  ICS.Standard.setAsIdentityConversion();
2092  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2093
2094  // We need to have an object of class type.
2095  QualType FromType = From->getType();
2096  if (const PointerType *PT = FromType->getAs<PointerType>())
2097    FromType = PT->getPointeeType();
2098
2099  assert(FromType->isRecordType());
2100
2101  // The implicit object parmeter is has the type "reference to cv X",
2102  // where X is the class of which the function is a member
2103  // (C++ [over.match.funcs]p4). However, when finding an implicit
2104  // conversion sequence for the argument, we are not allowed to
2105  // create temporaries or perform user-defined conversions
2106  // (C++ [over.match.funcs]p5). We perform a simplified version of
2107  // reference binding here, that allows class rvalues to bind to
2108  // non-constant references.
2109
2110  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2111  // with the implicit object parameter (C++ [over.match.funcs]p5).
2112  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2113  if (ImplicitParamType.getCVRQualifiers() != FromTypeCanon.getCVRQualifiers() &&
2114      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2115    return ICS;
2116
2117  // Check that we have either the same type or a derived type. It
2118  // affects the conversion rank.
2119  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2120  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2121    ICS.Standard.Second = ICK_Identity;
2122  else if (IsDerivedFrom(FromType, ClassType))
2123    ICS.Standard.Second = ICK_Derived_To_Base;
2124  else
2125    return ICS;
2126
2127  // Success. Mark this as a reference binding.
2128  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2129  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2130  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2131  ICS.Standard.ReferenceBinding = true;
2132  ICS.Standard.DirectBinding = true;
2133  ICS.Standard.RRefBinding = false;
2134  return ICS;
2135}
2136
2137/// PerformObjectArgumentInitialization - Perform initialization of
2138/// the implicit object parameter for the given Method with the given
2139/// expression.
2140bool
2141Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2142  QualType FromRecordType, DestType;
2143  QualType ImplicitParamRecordType  =
2144    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2145
2146  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2147    FromRecordType = PT->getPointeeType();
2148    DestType = Method->getThisType(Context);
2149  } else {
2150    FromRecordType = From->getType();
2151    DestType = ImplicitParamRecordType;
2152  }
2153
2154  ImplicitConversionSequence ICS
2155    = TryObjectArgumentInitialization(From, Method);
2156  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2157    return Diag(From->getSourceRange().getBegin(),
2158                diag::err_implicit_object_parameter_init)
2159       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2160
2161  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2162      CheckDerivedToBaseConversion(FromRecordType,
2163                                   ImplicitParamRecordType,
2164                                   From->getSourceRange().getBegin(),
2165                                   From->getSourceRange()))
2166    return true;
2167
2168  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2169                    /*isLvalue=*/true);
2170  return false;
2171}
2172
2173/// TryContextuallyConvertToBool - Attempt to contextually convert the
2174/// expression From to bool (C++0x [conv]p3).
2175ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2176  return TryImplicitConversion(From, Context.BoolTy,
2177                               // FIXME: Are these flags correct?
2178                               /*SuppressUserConversions=*/false,
2179                               /*AllowExplicit=*/true,
2180                               /*ForceRValue=*/false,
2181                               /*InOverloadResolution=*/false);
2182}
2183
2184/// PerformContextuallyConvertToBool - Perform a contextual conversion
2185/// of the expression From to bool (C++0x [conv]p3).
2186bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2187  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2188  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2189    return false;
2190
2191  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2192    return  Diag(From->getSourceRange().getBegin(),
2193                 diag::err_typecheck_bool_condition)
2194                  << From->getType() << From->getSourceRange();
2195  return true;
2196}
2197
2198/// AddOverloadCandidate - Adds the given function to the set of
2199/// candidate functions, using the given function call arguments.  If
2200/// @p SuppressUserConversions, then don't allow user-defined
2201/// conversions via constructors or conversion operators.
2202/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2203/// hacky way to implement the overloading rules for elidable copy
2204/// initialization in C++0x (C++0x 12.8p15).
2205///
2206/// \para PartialOverloading true if we are performing "partial" overloading
2207/// based on an incomplete set of function arguments. This feature is used by
2208/// code completion.
2209void
2210Sema::AddOverloadCandidate(FunctionDecl *Function,
2211                           Expr **Args, unsigned NumArgs,
2212                           OverloadCandidateSet& CandidateSet,
2213                           bool SuppressUserConversions,
2214                           bool ForceRValue,
2215                           bool PartialOverloading) {
2216  const FunctionProtoType* Proto
2217    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2218  assert(Proto && "Functions without a prototype cannot be overloaded");
2219  assert(!isa<CXXConversionDecl>(Function) &&
2220         "Use AddConversionCandidate for conversion functions");
2221  assert(!Function->getDescribedFunctionTemplate() &&
2222         "Use AddTemplateOverloadCandidate for function templates");
2223
2224  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2225    if (!isa<CXXConstructorDecl>(Method)) {
2226      // If we get here, it's because we're calling a member function
2227      // that is named without a member access expression (e.g.,
2228      // "this->f") that was either written explicitly or created
2229      // implicitly. This can happen with a qualified call to a member
2230      // function, e.g., X::f(). We use a NULL object as the implied
2231      // object argument (C++ [over.call.func]p3).
2232      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2233                         SuppressUserConversions, ForceRValue);
2234      return;
2235    }
2236    // We treat a constructor like a non-member function, since its object
2237    // argument doesn't participate in overload resolution.
2238  }
2239
2240  if (!CandidateSet.isNewCandidate(Function))
2241    return;
2242
2243  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2244    // C++ [class.copy]p3:
2245    //   A member function template is never instantiated to perform the copy
2246    //   of a class object to an object of its class type.
2247    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2248    if (NumArgs == 1 &&
2249        Constructor->isCopyConstructorLikeSpecialization() &&
2250        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2251      return;
2252  }
2253
2254  // Add this candidate
2255  CandidateSet.push_back(OverloadCandidate());
2256  OverloadCandidate& Candidate = CandidateSet.back();
2257  Candidate.Function = Function;
2258  Candidate.Viable = true;
2259  Candidate.IsSurrogate = false;
2260  Candidate.IgnoreObjectArgument = false;
2261
2262  unsigned NumArgsInProto = Proto->getNumArgs();
2263
2264  // (C++ 13.3.2p2): A candidate function having fewer than m
2265  // parameters is viable only if it has an ellipsis in its parameter
2266  // list (8.3.5).
2267  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2268      !Proto->isVariadic()) {
2269    Candidate.Viable = false;
2270    return;
2271  }
2272
2273  // (C++ 13.3.2p2): A candidate function having more than m parameters
2274  // is viable only if the (m+1)st parameter has a default argument
2275  // (8.3.6). For the purposes of overload resolution, the
2276  // parameter list is truncated on the right, so that there are
2277  // exactly m parameters.
2278  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2279  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2280    // Not enough arguments.
2281    Candidate.Viable = false;
2282    return;
2283  }
2284
2285  // Determine the implicit conversion sequences for each of the
2286  // arguments.
2287  Candidate.Conversions.resize(NumArgs);
2288  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2289    if (ArgIdx < NumArgsInProto) {
2290      // (C++ 13.3.2p3): for F to be a viable function, there shall
2291      // exist for each argument an implicit conversion sequence
2292      // (13.3.3.1) that converts that argument to the corresponding
2293      // parameter of F.
2294      QualType ParamType = Proto->getArgType(ArgIdx);
2295      Candidate.Conversions[ArgIdx]
2296        = TryCopyInitialization(Args[ArgIdx], ParamType,
2297                                SuppressUserConversions, ForceRValue,
2298                                /*InOverloadResolution=*/true);
2299      if (Candidate.Conversions[ArgIdx].ConversionKind
2300            == ImplicitConversionSequence::BadConversion) {
2301      // 13.3.3.1-p10 If several different sequences of conversions exist that
2302      // each convert the argument to the parameter type, the implicit conversion
2303      // sequence associated with the parameter is defined to be the unique conversion
2304      // sequence designated the ambiguous conversion sequence. For the purpose of
2305      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2306      // conversion sequence is treated as a user-defined sequence that is
2307      // indistinguishable from any other user-defined conversion sequence
2308        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2309          Candidate.Conversions[ArgIdx].ConversionKind =
2310            ImplicitConversionSequence::UserDefinedConversion;
2311          // Set the conversion function to one of them. As due to ambiguity,
2312          // they carry the same weight and is needed for overload resolution
2313          // later.
2314          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2315            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2316        }
2317        else {
2318          Candidate.Viable = false;
2319          break;
2320        }
2321      }
2322    } else {
2323      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2324      // argument for which there is no corresponding parameter is
2325      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2326      Candidate.Conversions[ArgIdx].ConversionKind
2327        = ImplicitConversionSequence::EllipsisConversion;
2328    }
2329  }
2330}
2331
2332/// \brief Add all of the function declarations in the given function set to
2333/// the overload canddiate set.
2334void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2335                                 Expr **Args, unsigned NumArgs,
2336                                 OverloadCandidateSet& CandidateSet,
2337                                 bool SuppressUserConversions) {
2338  for (FunctionSet::const_iterator F = Functions.begin(),
2339                                FEnd = Functions.end();
2340       F != FEnd; ++F) {
2341    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2342      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2343        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2344                           Args[0], Args + 1, NumArgs - 1,
2345                           CandidateSet, SuppressUserConversions);
2346      else
2347        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2348                             SuppressUserConversions);
2349    } else {
2350      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2351      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2352          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2353        AddMethodTemplateCandidate(FunTmpl,
2354                                   /*FIXME: explicit args */false, 0, 0,
2355                                   Args[0], Args + 1, NumArgs - 1,
2356                                   CandidateSet,
2357                                   SuppressUserConversions);
2358      else
2359        AddTemplateOverloadCandidate(FunTmpl,
2360                                     /*FIXME: explicit args */false, 0, 0,
2361                                     Args, NumArgs, CandidateSet,
2362                                     SuppressUserConversions);
2363    }
2364  }
2365}
2366
2367/// AddMethodCandidate - Adds the given C++ member function to the set
2368/// of candidate functions, using the given function call arguments
2369/// and the object argument (@c Object). For example, in a call
2370/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2371/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2372/// allow user-defined conversions via constructors or conversion
2373/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2374/// a slightly hacky way to implement the overloading rules for elidable copy
2375/// initialization in C++0x (C++0x 12.8p15).
2376void
2377Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2378                         Expr **Args, unsigned NumArgs,
2379                         OverloadCandidateSet& CandidateSet,
2380                         bool SuppressUserConversions, bool ForceRValue) {
2381  const FunctionProtoType* Proto
2382    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2383  assert(Proto && "Methods without a prototype cannot be overloaded");
2384  assert(!isa<CXXConversionDecl>(Method) &&
2385         "Use AddConversionCandidate for conversion functions");
2386  assert(!isa<CXXConstructorDecl>(Method) &&
2387         "Use AddOverloadCandidate for constructors");
2388
2389  if (!CandidateSet.isNewCandidate(Method))
2390    return;
2391
2392  // Add this candidate
2393  CandidateSet.push_back(OverloadCandidate());
2394  OverloadCandidate& Candidate = CandidateSet.back();
2395  Candidate.Function = Method;
2396  Candidate.IsSurrogate = false;
2397  Candidate.IgnoreObjectArgument = false;
2398
2399  unsigned NumArgsInProto = Proto->getNumArgs();
2400
2401  // (C++ 13.3.2p2): A candidate function having fewer than m
2402  // parameters is viable only if it has an ellipsis in its parameter
2403  // list (8.3.5).
2404  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2405    Candidate.Viable = false;
2406    return;
2407  }
2408
2409  // (C++ 13.3.2p2): A candidate function having more than m parameters
2410  // is viable only if the (m+1)st parameter has a default argument
2411  // (8.3.6). For the purposes of overload resolution, the
2412  // parameter list is truncated on the right, so that there are
2413  // exactly m parameters.
2414  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2415  if (NumArgs < MinRequiredArgs) {
2416    // Not enough arguments.
2417    Candidate.Viable = false;
2418    return;
2419  }
2420
2421  Candidate.Viable = true;
2422  Candidate.Conversions.resize(NumArgs + 1);
2423
2424  if (Method->isStatic() || !Object)
2425    // The implicit object argument is ignored.
2426    Candidate.IgnoreObjectArgument = true;
2427  else {
2428    // Determine the implicit conversion sequence for the object
2429    // parameter.
2430    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2431    if (Candidate.Conversions[0].ConversionKind
2432          == ImplicitConversionSequence::BadConversion) {
2433      Candidate.Viable = false;
2434      return;
2435    }
2436  }
2437
2438  // Determine the implicit conversion sequences for each of the
2439  // arguments.
2440  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2441    if (ArgIdx < NumArgsInProto) {
2442      // (C++ 13.3.2p3): for F to be a viable function, there shall
2443      // exist for each argument an implicit conversion sequence
2444      // (13.3.3.1) that converts that argument to the corresponding
2445      // parameter of F.
2446      QualType ParamType = Proto->getArgType(ArgIdx);
2447      Candidate.Conversions[ArgIdx + 1]
2448        = TryCopyInitialization(Args[ArgIdx], ParamType,
2449                                SuppressUserConversions, ForceRValue,
2450                                /*InOverloadResolution=*/true);
2451      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2452            == ImplicitConversionSequence::BadConversion) {
2453        Candidate.Viable = false;
2454        break;
2455      }
2456    } else {
2457      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2458      // argument for which there is no corresponding parameter is
2459      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2460      Candidate.Conversions[ArgIdx + 1].ConversionKind
2461        = ImplicitConversionSequence::EllipsisConversion;
2462    }
2463  }
2464}
2465
2466/// \brief Add a C++ member function template as a candidate to the candidate
2467/// set, using template argument deduction to produce an appropriate member
2468/// function template specialization.
2469void
2470Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2471                                 bool HasExplicitTemplateArgs,
2472                             const TemplateArgumentLoc *ExplicitTemplateArgs,
2473                                 unsigned NumExplicitTemplateArgs,
2474                                 Expr *Object, Expr **Args, unsigned NumArgs,
2475                                 OverloadCandidateSet& CandidateSet,
2476                                 bool SuppressUserConversions,
2477                                 bool ForceRValue) {
2478  if (!CandidateSet.isNewCandidate(MethodTmpl))
2479    return;
2480
2481  // C++ [over.match.funcs]p7:
2482  //   In each case where a candidate is a function template, candidate
2483  //   function template specializations are generated using template argument
2484  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2485  //   candidate functions in the usual way.113) A given name can refer to one
2486  //   or more function templates and also to a set of overloaded non-template
2487  //   functions. In such a case, the candidate functions generated from each
2488  //   function template are combined with the set of non-template candidate
2489  //   functions.
2490  TemplateDeductionInfo Info(Context);
2491  FunctionDecl *Specialization = 0;
2492  if (TemplateDeductionResult Result
2493      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2494                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2495                                Args, NumArgs, Specialization, Info)) {
2496        // FIXME: Record what happened with template argument deduction, so
2497        // that we can give the user a beautiful diagnostic.
2498        (void)Result;
2499        return;
2500      }
2501
2502  // Add the function template specialization produced by template argument
2503  // deduction as a candidate.
2504  assert(Specialization && "Missing member function template specialization?");
2505  assert(isa<CXXMethodDecl>(Specialization) &&
2506         "Specialization is not a member function?");
2507  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2508                     CandidateSet, SuppressUserConversions, ForceRValue);
2509}
2510
2511/// \brief Add a C++ function template specialization as a candidate
2512/// in the candidate set, using template argument deduction to produce
2513/// an appropriate function template specialization.
2514void
2515Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2516                                   bool HasExplicitTemplateArgs,
2517                          const TemplateArgumentLoc *ExplicitTemplateArgs,
2518                                   unsigned NumExplicitTemplateArgs,
2519                                   Expr **Args, unsigned NumArgs,
2520                                   OverloadCandidateSet& CandidateSet,
2521                                   bool SuppressUserConversions,
2522                                   bool ForceRValue) {
2523  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2524    return;
2525
2526  // C++ [over.match.funcs]p7:
2527  //   In each case where a candidate is a function template, candidate
2528  //   function template specializations are generated using template argument
2529  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2530  //   candidate functions in the usual way.113) A given name can refer to one
2531  //   or more function templates and also to a set of overloaded non-template
2532  //   functions. In such a case, the candidate functions generated from each
2533  //   function template are combined with the set of non-template candidate
2534  //   functions.
2535  TemplateDeductionInfo Info(Context);
2536  FunctionDecl *Specialization = 0;
2537  if (TemplateDeductionResult Result
2538        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2539                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2540                                  Args, NumArgs, Specialization, Info)) {
2541    // FIXME: Record what happened with template argument deduction, so
2542    // that we can give the user a beautiful diagnostic.
2543    (void)Result;
2544    return;
2545  }
2546
2547  // Add the function template specialization produced by template argument
2548  // deduction as a candidate.
2549  assert(Specialization && "Missing function template specialization?");
2550  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2551                       SuppressUserConversions, ForceRValue);
2552}
2553
2554/// AddConversionCandidate - Add a C++ conversion function as a
2555/// candidate in the candidate set (C++ [over.match.conv],
2556/// C++ [over.match.copy]). From is the expression we're converting from,
2557/// and ToType is the type that we're eventually trying to convert to
2558/// (which may or may not be the same type as the type that the
2559/// conversion function produces).
2560void
2561Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2562                             Expr *From, QualType ToType,
2563                             OverloadCandidateSet& CandidateSet) {
2564  assert(!Conversion->getDescribedFunctionTemplate() &&
2565         "Conversion function templates use AddTemplateConversionCandidate");
2566
2567  if (!CandidateSet.isNewCandidate(Conversion))
2568    return;
2569
2570  // Add this candidate
2571  CandidateSet.push_back(OverloadCandidate());
2572  OverloadCandidate& Candidate = CandidateSet.back();
2573  Candidate.Function = Conversion;
2574  Candidate.IsSurrogate = false;
2575  Candidate.IgnoreObjectArgument = false;
2576  Candidate.FinalConversion.setAsIdentityConversion();
2577  Candidate.FinalConversion.FromTypePtr
2578    = Conversion->getConversionType().getAsOpaquePtr();
2579  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2580
2581  // Determine the implicit conversion sequence for the implicit
2582  // object parameter.
2583  Candidate.Viable = true;
2584  Candidate.Conversions.resize(1);
2585  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2586  // Conversion functions to a different type in the base class is visible in
2587  // the derived class.  So, a derived to base conversion should not participate
2588  // in overload resolution.
2589  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2590    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2591  if (Candidate.Conversions[0].ConversionKind
2592      == ImplicitConversionSequence::BadConversion) {
2593    Candidate.Viable = false;
2594    return;
2595  }
2596
2597  // We won't go through a user-define type conversion function to convert a
2598  // derived to base as such conversions are given Conversion Rank. They only
2599  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2600  QualType FromCanon
2601    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2602  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2603  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2604    Candidate.Viable = false;
2605    return;
2606  }
2607
2608
2609  // To determine what the conversion from the result of calling the
2610  // conversion function to the type we're eventually trying to
2611  // convert to (ToType), we need to synthesize a call to the
2612  // conversion function and attempt copy initialization from it. This
2613  // makes sure that we get the right semantics with respect to
2614  // lvalues/rvalues and the type. Fortunately, we can allocate this
2615  // call on the stack and we don't need its arguments to be
2616  // well-formed.
2617  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2618                            SourceLocation());
2619  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2620                                CastExpr::CK_FunctionToPointerDecay,
2621                                &ConversionRef, false);
2622
2623  // Note that it is safe to allocate CallExpr on the stack here because
2624  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2625  // allocator).
2626  CallExpr Call(Context, &ConversionFn, 0, 0,
2627                Conversion->getConversionType().getNonReferenceType(),
2628                SourceLocation());
2629  ImplicitConversionSequence ICS =
2630    TryCopyInitialization(&Call, ToType,
2631                          /*SuppressUserConversions=*/true,
2632                          /*ForceRValue=*/false,
2633                          /*InOverloadResolution=*/false);
2634
2635  switch (ICS.ConversionKind) {
2636  case ImplicitConversionSequence::StandardConversion:
2637    Candidate.FinalConversion = ICS.Standard;
2638    break;
2639
2640  case ImplicitConversionSequence::BadConversion:
2641    Candidate.Viable = false;
2642    break;
2643
2644  default:
2645    assert(false &&
2646           "Can only end up with a standard conversion sequence or failure");
2647  }
2648}
2649
2650/// \brief Adds a conversion function template specialization
2651/// candidate to the overload set, using template argument deduction
2652/// to deduce the template arguments of the conversion function
2653/// template from the type that we are converting to (C++
2654/// [temp.deduct.conv]).
2655void
2656Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2657                                     Expr *From, QualType ToType,
2658                                     OverloadCandidateSet &CandidateSet) {
2659  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2660         "Only conversion function templates permitted here");
2661
2662  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2663    return;
2664
2665  TemplateDeductionInfo Info(Context);
2666  CXXConversionDecl *Specialization = 0;
2667  if (TemplateDeductionResult Result
2668        = DeduceTemplateArguments(FunctionTemplate, ToType,
2669                                  Specialization, Info)) {
2670    // FIXME: Record what happened with template argument deduction, so
2671    // that we can give the user a beautiful diagnostic.
2672    (void)Result;
2673    return;
2674  }
2675
2676  // Add the conversion function template specialization produced by
2677  // template argument deduction as a candidate.
2678  assert(Specialization && "Missing function template specialization?");
2679  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2680}
2681
2682/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2683/// converts the given @c Object to a function pointer via the
2684/// conversion function @c Conversion, and then attempts to call it
2685/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2686/// the type of function that we'll eventually be calling.
2687void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2688                                 const FunctionProtoType *Proto,
2689                                 Expr *Object, Expr **Args, unsigned NumArgs,
2690                                 OverloadCandidateSet& CandidateSet) {
2691  if (!CandidateSet.isNewCandidate(Conversion))
2692    return;
2693
2694  CandidateSet.push_back(OverloadCandidate());
2695  OverloadCandidate& Candidate = CandidateSet.back();
2696  Candidate.Function = 0;
2697  Candidate.Surrogate = Conversion;
2698  Candidate.Viable = true;
2699  Candidate.IsSurrogate = true;
2700  Candidate.IgnoreObjectArgument = false;
2701  Candidate.Conversions.resize(NumArgs + 1);
2702
2703  // Determine the implicit conversion sequence for the implicit
2704  // object parameter.
2705  ImplicitConversionSequence ObjectInit
2706    = TryObjectArgumentInitialization(Object, Conversion);
2707  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2708    Candidate.Viable = false;
2709    return;
2710  }
2711
2712  // The first conversion is actually a user-defined conversion whose
2713  // first conversion is ObjectInit's standard conversion (which is
2714  // effectively a reference binding). Record it as such.
2715  Candidate.Conversions[0].ConversionKind
2716    = ImplicitConversionSequence::UserDefinedConversion;
2717  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2718  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2719  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2720  Candidate.Conversions[0].UserDefined.After
2721    = Candidate.Conversions[0].UserDefined.Before;
2722  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2723
2724  // Find the
2725  unsigned NumArgsInProto = Proto->getNumArgs();
2726
2727  // (C++ 13.3.2p2): A candidate function having fewer than m
2728  // parameters is viable only if it has an ellipsis in its parameter
2729  // list (8.3.5).
2730  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2731    Candidate.Viable = false;
2732    return;
2733  }
2734
2735  // Function types don't have any default arguments, so just check if
2736  // we have enough arguments.
2737  if (NumArgs < NumArgsInProto) {
2738    // Not enough arguments.
2739    Candidate.Viable = false;
2740    return;
2741  }
2742
2743  // Determine the implicit conversion sequences for each of the
2744  // arguments.
2745  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2746    if (ArgIdx < NumArgsInProto) {
2747      // (C++ 13.3.2p3): for F to be a viable function, there shall
2748      // exist for each argument an implicit conversion sequence
2749      // (13.3.3.1) that converts that argument to the corresponding
2750      // parameter of F.
2751      QualType ParamType = Proto->getArgType(ArgIdx);
2752      Candidate.Conversions[ArgIdx + 1]
2753        = TryCopyInitialization(Args[ArgIdx], ParamType,
2754                                /*SuppressUserConversions=*/false,
2755                                /*ForceRValue=*/false,
2756                                /*InOverloadResolution=*/false);
2757      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2758            == ImplicitConversionSequence::BadConversion) {
2759        Candidate.Viable = false;
2760        break;
2761      }
2762    } else {
2763      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2764      // argument for which there is no corresponding parameter is
2765      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2766      Candidate.Conversions[ArgIdx + 1].ConversionKind
2767        = ImplicitConversionSequence::EllipsisConversion;
2768    }
2769  }
2770}
2771
2772// FIXME: This will eventually be removed, once we've migrated all of the
2773// operator overloading logic over to the scheme used by binary operators, which
2774// works for template instantiation.
2775void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2776                                 SourceLocation OpLoc,
2777                                 Expr **Args, unsigned NumArgs,
2778                                 OverloadCandidateSet& CandidateSet,
2779                                 SourceRange OpRange) {
2780  FunctionSet Functions;
2781
2782  QualType T1 = Args[0]->getType();
2783  QualType T2;
2784  if (NumArgs > 1)
2785    T2 = Args[1]->getType();
2786
2787  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2788  if (S)
2789    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2790  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2791  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2792  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2793  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2794}
2795
2796/// \brief Add overload candidates for overloaded operators that are
2797/// member functions.
2798///
2799/// Add the overloaded operator candidates that are member functions
2800/// for the operator Op that was used in an operator expression such
2801/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2802/// CandidateSet will store the added overload candidates. (C++
2803/// [over.match.oper]).
2804void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2805                                       SourceLocation OpLoc,
2806                                       Expr **Args, unsigned NumArgs,
2807                                       OverloadCandidateSet& CandidateSet,
2808                                       SourceRange OpRange) {
2809  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2810
2811  // C++ [over.match.oper]p3:
2812  //   For a unary operator @ with an operand of a type whose
2813  //   cv-unqualified version is T1, and for a binary operator @ with
2814  //   a left operand of a type whose cv-unqualified version is T1 and
2815  //   a right operand of a type whose cv-unqualified version is T2,
2816  //   three sets of candidate functions, designated member
2817  //   candidates, non-member candidates and built-in candidates, are
2818  //   constructed as follows:
2819  QualType T1 = Args[0]->getType();
2820  QualType T2;
2821  if (NumArgs > 1)
2822    T2 = Args[1]->getType();
2823
2824  //     -- If T1 is a class type, the set of member candidates is the
2825  //        result of the qualified lookup of T1::operator@
2826  //        (13.3.1.1.1); otherwise, the set of member candidates is
2827  //        empty.
2828  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2829    // Complete the type if it can be completed. Otherwise, we're done.
2830    if (RequireCompleteType(OpLoc, T1, PDiag()))
2831      return;
2832
2833    LookupResult Operators;
2834    LookupQualifiedName(Operators, T1Rec->getDecl(), OpName,
2835                        LookupOrdinaryName, false);
2836    for (LookupResult::iterator Oper = Operators.begin(),
2837                             OperEnd = Operators.end();
2838         Oper != OperEnd;
2839         ++Oper) {
2840      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) {
2841        AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2842                           /*SuppressUserConversions=*/false);
2843        continue;
2844      }
2845
2846      assert(isa<FunctionTemplateDecl>(*Oper) &&
2847             isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper)
2848                                                        ->getTemplatedDecl()) &&
2849             "Expected a member function template");
2850      AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0,
2851                                 Args[0], Args+1, NumArgs - 1, CandidateSet,
2852                                 /*SuppressUserConversions=*/false);
2853    }
2854  }
2855}
2856
2857/// AddBuiltinCandidate - Add a candidate for a built-in
2858/// operator. ResultTy and ParamTys are the result and parameter types
2859/// of the built-in candidate, respectively. Args and NumArgs are the
2860/// arguments being passed to the candidate. IsAssignmentOperator
2861/// should be true when this built-in candidate is an assignment
2862/// operator. NumContextualBoolArguments is the number of arguments
2863/// (at the beginning of the argument list) that will be contextually
2864/// converted to bool.
2865void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2866                               Expr **Args, unsigned NumArgs,
2867                               OverloadCandidateSet& CandidateSet,
2868                               bool IsAssignmentOperator,
2869                               unsigned NumContextualBoolArguments) {
2870  // Add this candidate
2871  CandidateSet.push_back(OverloadCandidate());
2872  OverloadCandidate& Candidate = CandidateSet.back();
2873  Candidate.Function = 0;
2874  Candidate.IsSurrogate = false;
2875  Candidate.IgnoreObjectArgument = false;
2876  Candidate.BuiltinTypes.ResultTy = ResultTy;
2877  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2878    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2879
2880  // Determine the implicit conversion sequences for each of the
2881  // arguments.
2882  Candidate.Viable = true;
2883  Candidate.Conversions.resize(NumArgs);
2884  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2885    // C++ [over.match.oper]p4:
2886    //   For the built-in assignment operators, conversions of the
2887    //   left operand are restricted as follows:
2888    //     -- no temporaries are introduced to hold the left operand, and
2889    //     -- no user-defined conversions are applied to the left
2890    //        operand to achieve a type match with the left-most
2891    //        parameter of a built-in candidate.
2892    //
2893    // We block these conversions by turning off user-defined
2894    // conversions, since that is the only way that initialization of
2895    // a reference to a non-class type can occur from something that
2896    // is not of the same type.
2897    if (ArgIdx < NumContextualBoolArguments) {
2898      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2899             "Contextual conversion to bool requires bool type");
2900      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2901    } else {
2902      Candidate.Conversions[ArgIdx]
2903        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2904                                ArgIdx == 0 && IsAssignmentOperator,
2905                                /*ForceRValue=*/false,
2906                                /*InOverloadResolution=*/false);
2907    }
2908    if (Candidate.Conversions[ArgIdx].ConversionKind
2909        == ImplicitConversionSequence::BadConversion) {
2910      Candidate.Viable = false;
2911      break;
2912    }
2913  }
2914}
2915
2916/// BuiltinCandidateTypeSet - A set of types that will be used for the
2917/// candidate operator functions for built-in operators (C++
2918/// [over.built]). The types are separated into pointer types and
2919/// enumeration types.
2920class BuiltinCandidateTypeSet  {
2921  /// TypeSet - A set of types.
2922  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2923
2924  /// PointerTypes - The set of pointer types that will be used in the
2925  /// built-in candidates.
2926  TypeSet PointerTypes;
2927
2928  /// MemberPointerTypes - The set of member pointer types that will be
2929  /// used in the built-in candidates.
2930  TypeSet MemberPointerTypes;
2931
2932  /// EnumerationTypes - The set of enumeration types that will be
2933  /// used in the built-in candidates.
2934  TypeSet EnumerationTypes;
2935
2936  /// Sema - The semantic analysis instance where we are building the
2937  /// candidate type set.
2938  Sema &SemaRef;
2939
2940  /// Context - The AST context in which we will build the type sets.
2941  ASTContext &Context;
2942
2943  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2944                                               const Qualifiers &VisibleQuals);
2945  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2946
2947public:
2948  /// iterator - Iterates through the types that are part of the set.
2949  typedef TypeSet::iterator iterator;
2950
2951  BuiltinCandidateTypeSet(Sema &SemaRef)
2952    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2953
2954  void AddTypesConvertedFrom(QualType Ty,
2955                             SourceLocation Loc,
2956                             bool AllowUserConversions,
2957                             bool AllowExplicitConversions,
2958                             const Qualifiers &VisibleTypeConversionsQuals);
2959
2960  /// pointer_begin - First pointer type found;
2961  iterator pointer_begin() { return PointerTypes.begin(); }
2962
2963  /// pointer_end - Past the last pointer type found;
2964  iterator pointer_end() { return PointerTypes.end(); }
2965
2966  /// member_pointer_begin - First member pointer type found;
2967  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2968
2969  /// member_pointer_end - Past the last member pointer type found;
2970  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2971
2972  /// enumeration_begin - First enumeration type found;
2973  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2974
2975  /// enumeration_end - Past the last enumeration type found;
2976  iterator enumeration_end() { return EnumerationTypes.end(); }
2977};
2978
2979/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2980/// the set of pointer types along with any more-qualified variants of
2981/// that type. For example, if @p Ty is "int const *", this routine
2982/// will add "int const *", "int const volatile *", "int const
2983/// restrict *", and "int const volatile restrict *" to the set of
2984/// pointer types. Returns true if the add of @p Ty itself succeeded,
2985/// false otherwise.
2986///
2987/// FIXME: what to do about extended qualifiers?
2988bool
2989BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2990                                             const Qualifiers &VisibleQuals) {
2991
2992  // Insert this type.
2993  if (!PointerTypes.insert(Ty))
2994    return false;
2995
2996  const PointerType *PointerTy = Ty->getAs<PointerType>();
2997  assert(PointerTy && "type was not a pointer type!");
2998
2999  QualType PointeeTy = PointerTy->getPointeeType();
3000  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3001  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3002    BaseCVR = Array->getElementType().getCVRQualifiers();
3003  bool hasVolatile = VisibleQuals.hasVolatile();
3004  bool hasRestrict = VisibleQuals.hasRestrict();
3005
3006  // Iterate through all strict supersets of BaseCVR.
3007  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3008    if ((CVR | BaseCVR) != CVR) continue;
3009    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3010    // in the types.
3011    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3012    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3013    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3014    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3015  }
3016
3017  return true;
3018}
3019
3020/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3021/// to the set of pointer types along with any more-qualified variants of
3022/// that type. For example, if @p Ty is "int const *", this routine
3023/// will add "int const *", "int const volatile *", "int const
3024/// restrict *", and "int const volatile restrict *" to the set of
3025/// pointer types. Returns true if the add of @p Ty itself succeeded,
3026/// false otherwise.
3027///
3028/// FIXME: what to do about extended qualifiers?
3029bool
3030BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3031    QualType Ty) {
3032  // Insert this type.
3033  if (!MemberPointerTypes.insert(Ty))
3034    return false;
3035
3036  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3037  assert(PointerTy && "type was not a member pointer type!");
3038
3039  QualType PointeeTy = PointerTy->getPointeeType();
3040  const Type *ClassTy = PointerTy->getClass();
3041
3042  // Iterate through all strict supersets of the pointee type's CVR
3043  // qualifiers.
3044  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3045  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3046    if ((CVR | BaseCVR) != CVR) continue;
3047
3048    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3049    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3050  }
3051
3052  return true;
3053}
3054
3055/// AddTypesConvertedFrom - Add each of the types to which the type @p
3056/// Ty can be implicit converted to the given set of @p Types. We're
3057/// primarily interested in pointer types and enumeration types. We also
3058/// take member pointer types, for the conditional operator.
3059/// AllowUserConversions is true if we should look at the conversion
3060/// functions of a class type, and AllowExplicitConversions if we
3061/// should also include the explicit conversion functions of a class
3062/// type.
3063void
3064BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3065                                               SourceLocation Loc,
3066                                               bool AllowUserConversions,
3067                                               bool AllowExplicitConversions,
3068                                               const Qualifiers &VisibleQuals) {
3069  // Only deal with canonical types.
3070  Ty = Context.getCanonicalType(Ty);
3071
3072  // Look through reference types; they aren't part of the type of an
3073  // expression for the purposes of conversions.
3074  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3075    Ty = RefTy->getPointeeType();
3076
3077  // We don't care about qualifiers on the type.
3078  Ty = Ty.getUnqualifiedType();
3079
3080  // If we're dealing with an array type, decay to the pointer.
3081  if (Ty->isArrayType())
3082    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3083
3084  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3085    QualType PointeeTy = PointerTy->getPointeeType();
3086
3087    // Insert our type, and its more-qualified variants, into the set
3088    // of types.
3089    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3090      return;
3091  } else if (Ty->isMemberPointerType()) {
3092    // Member pointers are far easier, since the pointee can't be converted.
3093    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3094      return;
3095  } else if (Ty->isEnumeralType()) {
3096    EnumerationTypes.insert(Ty);
3097  } else if (AllowUserConversions) {
3098    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3099      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3100        // No conversion functions in incomplete types.
3101        return;
3102      }
3103
3104      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3105      OverloadedFunctionDecl *Conversions
3106        = ClassDecl->getVisibleConversionFunctions();
3107      for (OverloadedFunctionDecl::function_iterator Func
3108             = Conversions->function_begin();
3109           Func != Conversions->function_end(); ++Func) {
3110        CXXConversionDecl *Conv;
3111        FunctionTemplateDecl *ConvTemplate;
3112        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
3113
3114        // Skip conversion function templates; they don't tell us anything
3115        // about which builtin types we can convert to.
3116        if (ConvTemplate)
3117          continue;
3118
3119        if (AllowExplicitConversions || !Conv->isExplicit()) {
3120          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3121                                VisibleQuals);
3122        }
3123      }
3124    }
3125  }
3126}
3127
3128/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3129/// the volatile- and non-volatile-qualified assignment operators for the
3130/// given type to the candidate set.
3131static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3132                                                   QualType T,
3133                                                   Expr **Args,
3134                                                   unsigned NumArgs,
3135                                    OverloadCandidateSet &CandidateSet) {
3136  QualType ParamTypes[2];
3137
3138  // T& operator=(T&, T)
3139  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3140  ParamTypes[1] = T;
3141  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3142                        /*IsAssignmentOperator=*/true);
3143
3144  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3145    // volatile T& operator=(volatile T&, T)
3146    ParamTypes[0]
3147      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3148    ParamTypes[1] = T;
3149    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3150                          /*IsAssignmentOperator=*/true);
3151  }
3152}
3153
3154/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3155/// if any, found in visible type conversion functions found in ArgExpr's type.
3156static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3157    Qualifiers VRQuals;
3158    const RecordType *TyRec;
3159    if (const MemberPointerType *RHSMPType =
3160        ArgExpr->getType()->getAs<MemberPointerType>())
3161      TyRec = cast<RecordType>(RHSMPType->getClass());
3162    else
3163      TyRec = ArgExpr->getType()->getAs<RecordType>();
3164    if (!TyRec) {
3165      // Just to be safe, assume the worst case.
3166      VRQuals.addVolatile();
3167      VRQuals.addRestrict();
3168      return VRQuals;
3169    }
3170
3171    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3172    OverloadedFunctionDecl *Conversions =
3173      ClassDecl->getVisibleConversionFunctions();
3174
3175    for (OverloadedFunctionDecl::function_iterator Func
3176         = Conversions->function_begin();
3177         Func != Conversions->function_end(); ++Func) {
3178      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) {
3179        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3180        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3181          CanTy = ResTypeRef->getPointeeType();
3182        // Need to go down the pointer/mempointer chain and add qualifiers
3183        // as see them.
3184        bool done = false;
3185        while (!done) {
3186          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3187            CanTy = ResTypePtr->getPointeeType();
3188          else if (const MemberPointerType *ResTypeMPtr =
3189                CanTy->getAs<MemberPointerType>())
3190            CanTy = ResTypeMPtr->getPointeeType();
3191          else
3192            done = true;
3193          if (CanTy.isVolatileQualified())
3194            VRQuals.addVolatile();
3195          if (CanTy.isRestrictQualified())
3196            VRQuals.addRestrict();
3197          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3198            return VRQuals;
3199        }
3200      }
3201    }
3202    return VRQuals;
3203}
3204
3205/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3206/// operator overloads to the candidate set (C++ [over.built]), based
3207/// on the operator @p Op and the arguments given. For example, if the
3208/// operator is a binary '+', this routine might add "int
3209/// operator+(int, int)" to cover integer addition.
3210void
3211Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3212                                   SourceLocation OpLoc,
3213                                   Expr **Args, unsigned NumArgs,
3214                                   OverloadCandidateSet& CandidateSet) {
3215  // The set of "promoted arithmetic types", which are the arithmetic
3216  // types are that preserved by promotion (C++ [over.built]p2). Note
3217  // that the first few of these types are the promoted integral
3218  // types; these types need to be first.
3219  // FIXME: What about complex?
3220  const unsigned FirstIntegralType = 0;
3221  const unsigned LastIntegralType = 13;
3222  const unsigned FirstPromotedIntegralType = 7,
3223                 LastPromotedIntegralType = 13;
3224  const unsigned FirstPromotedArithmeticType = 7,
3225                 LastPromotedArithmeticType = 16;
3226  const unsigned NumArithmeticTypes = 16;
3227  QualType ArithmeticTypes[NumArithmeticTypes] = {
3228    Context.BoolTy, Context.CharTy, Context.WCharTy,
3229// FIXME:   Context.Char16Ty, Context.Char32Ty,
3230    Context.SignedCharTy, Context.ShortTy,
3231    Context.UnsignedCharTy, Context.UnsignedShortTy,
3232    Context.IntTy, Context.LongTy, Context.LongLongTy,
3233    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3234    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3235  };
3236  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3237         "Invalid first promoted integral type");
3238  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3239           == Context.UnsignedLongLongTy &&
3240         "Invalid last promoted integral type");
3241  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3242         "Invalid first promoted arithmetic type");
3243  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3244            == Context.LongDoubleTy &&
3245         "Invalid last promoted arithmetic type");
3246
3247  // Find all of the types that the arguments can convert to, but only
3248  // if the operator we're looking at has built-in operator candidates
3249  // that make use of these types.
3250  Qualifiers VisibleTypeConversionsQuals;
3251  VisibleTypeConversionsQuals.addConst();
3252  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3253    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3254
3255  BuiltinCandidateTypeSet CandidateTypes(*this);
3256  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3257      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3258      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3259      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3260      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3261      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3262    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3263      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3264                                           OpLoc,
3265                                           true,
3266                                           (Op == OO_Exclaim ||
3267                                            Op == OO_AmpAmp ||
3268                                            Op == OO_PipePipe),
3269                                           VisibleTypeConversionsQuals);
3270  }
3271
3272  bool isComparison = false;
3273  switch (Op) {
3274  case OO_None:
3275  case NUM_OVERLOADED_OPERATORS:
3276    assert(false && "Expected an overloaded operator");
3277    break;
3278
3279  case OO_Star: // '*' is either unary or binary
3280    if (NumArgs == 1)
3281      goto UnaryStar;
3282    else
3283      goto BinaryStar;
3284    break;
3285
3286  case OO_Plus: // '+' is either unary or binary
3287    if (NumArgs == 1)
3288      goto UnaryPlus;
3289    else
3290      goto BinaryPlus;
3291    break;
3292
3293  case OO_Minus: // '-' is either unary or binary
3294    if (NumArgs == 1)
3295      goto UnaryMinus;
3296    else
3297      goto BinaryMinus;
3298    break;
3299
3300  case OO_Amp: // '&' is either unary or binary
3301    if (NumArgs == 1)
3302      goto UnaryAmp;
3303    else
3304      goto BinaryAmp;
3305
3306  case OO_PlusPlus:
3307  case OO_MinusMinus:
3308    // C++ [over.built]p3:
3309    //
3310    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3311    //   is either volatile or empty, there exist candidate operator
3312    //   functions of the form
3313    //
3314    //       VQ T&      operator++(VQ T&);
3315    //       T          operator++(VQ T&, int);
3316    //
3317    // C++ [over.built]p4:
3318    //
3319    //   For every pair (T, VQ), where T is an arithmetic type other
3320    //   than bool, and VQ is either volatile or empty, there exist
3321    //   candidate operator functions of the form
3322    //
3323    //       VQ T&      operator--(VQ T&);
3324    //       T          operator--(VQ T&, int);
3325    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3326         Arith < NumArithmeticTypes; ++Arith) {
3327      QualType ArithTy = ArithmeticTypes[Arith];
3328      QualType ParamTypes[2]
3329        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3330
3331      // Non-volatile version.
3332      if (NumArgs == 1)
3333        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3334      else
3335        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3336      // heuristic to reduce number of builtin candidates in the set.
3337      // Add volatile version only if there are conversions to a volatile type.
3338      if (VisibleTypeConversionsQuals.hasVolatile()) {
3339        // Volatile version
3340        ParamTypes[0]
3341          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3342        if (NumArgs == 1)
3343          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3344        else
3345          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3346      }
3347    }
3348
3349    // C++ [over.built]p5:
3350    //
3351    //   For every pair (T, VQ), where T is a cv-qualified or
3352    //   cv-unqualified object type, and VQ is either volatile or
3353    //   empty, there exist candidate operator functions of the form
3354    //
3355    //       T*VQ&      operator++(T*VQ&);
3356    //       T*VQ&      operator--(T*VQ&);
3357    //       T*         operator++(T*VQ&, int);
3358    //       T*         operator--(T*VQ&, int);
3359    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3360         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3361      // Skip pointer types that aren't pointers to object types.
3362      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3363        continue;
3364
3365      QualType ParamTypes[2] = {
3366        Context.getLValueReferenceType(*Ptr), Context.IntTy
3367      };
3368
3369      // Without volatile
3370      if (NumArgs == 1)
3371        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3372      else
3373        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3374
3375      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3376          VisibleTypeConversionsQuals.hasVolatile()) {
3377        // With volatile
3378        ParamTypes[0]
3379          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3380        if (NumArgs == 1)
3381          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3382        else
3383          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3384      }
3385    }
3386    break;
3387
3388  UnaryStar:
3389    // C++ [over.built]p6:
3390    //   For every cv-qualified or cv-unqualified object type T, there
3391    //   exist candidate operator functions of the form
3392    //
3393    //       T&         operator*(T*);
3394    //
3395    // C++ [over.built]p7:
3396    //   For every function type T, there exist candidate operator
3397    //   functions of the form
3398    //       T&         operator*(T*);
3399    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3400         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3401      QualType ParamTy = *Ptr;
3402      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3403      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3404                          &ParamTy, Args, 1, CandidateSet);
3405    }
3406    break;
3407
3408  UnaryPlus:
3409    // C++ [over.built]p8:
3410    //   For every type T, there exist candidate operator functions of
3411    //   the form
3412    //
3413    //       T*         operator+(T*);
3414    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3415         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3416      QualType ParamTy = *Ptr;
3417      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3418    }
3419
3420    // Fall through
3421
3422  UnaryMinus:
3423    // C++ [over.built]p9:
3424    //  For every promoted arithmetic type T, there exist candidate
3425    //  operator functions of the form
3426    //
3427    //       T         operator+(T);
3428    //       T         operator-(T);
3429    for (unsigned Arith = FirstPromotedArithmeticType;
3430         Arith < LastPromotedArithmeticType; ++Arith) {
3431      QualType ArithTy = ArithmeticTypes[Arith];
3432      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3433    }
3434    break;
3435
3436  case OO_Tilde:
3437    // C++ [over.built]p10:
3438    //   For every promoted integral type T, there exist candidate
3439    //   operator functions of the form
3440    //
3441    //        T         operator~(T);
3442    for (unsigned Int = FirstPromotedIntegralType;
3443         Int < LastPromotedIntegralType; ++Int) {
3444      QualType IntTy = ArithmeticTypes[Int];
3445      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3446    }
3447    break;
3448
3449  case OO_New:
3450  case OO_Delete:
3451  case OO_Array_New:
3452  case OO_Array_Delete:
3453  case OO_Call:
3454    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3455    break;
3456
3457  case OO_Comma:
3458  UnaryAmp:
3459  case OO_Arrow:
3460    // C++ [over.match.oper]p3:
3461    //   -- For the operator ',', the unary operator '&', or the
3462    //      operator '->', the built-in candidates set is empty.
3463    break;
3464
3465  case OO_EqualEqual:
3466  case OO_ExclaimEqual:
3467    // C++ [over.match.oper]p16:
3468    //   For every pointer to member type T, there exist candidate operator
3469    //   functions of the form
3470    //
3471    //        bool operator==(T,T);
3472    //        bool operator!=(T,T);
3473    for (BuiltinCandidateTypeSet::iterator
3474           MemPtr = CandidateTypes.member_pointer_begin(),
3475           MemPtrEnd = CandidateTypes.member_pointer_end();
3476         MemPtr != MemPtrEnd;
3477         ++MemPtr) {
3478      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3479      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3480    }
3481
3482    // Fall through
3483
3484  case OO_Less:
3485  case OO_Greater:
3486  case OO_LessEqual:
3487  case OO_GreaterEqual:
3488    // C++ [over.built]p15:
3489    //
3490    //   For every pointer or enumeration type T, there exist
3491    //   candidate operator functions of the form
3492    //
3493    //        bool       operator<(T, T);
3494    //        bool       operator>(T, T);
3495    //        bool       operator<=(T, T);
3496    //        bool       operator>=(T, T);
3497    //        bool       operator==(T, T);
3498    //        bool       operator!=(T, T);
3499    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3500         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3501      QualType ParamTypes[2] = { *Ptr, *Ptr };
3502      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3503    }
3504    for (BuiltinCandidateTypeSet::iterator Enum
3505           = CandidateTypes.enumeration_begin();
3506         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3507      QualType ParamTypes[2] = { *Enum, *Enum };
3508      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3509    }
3510
3511    // Fall through.
3512    isComparison = true;
3513
3514  BinaryPlus:
3515  BinaryMinus:
3516    if (!isComparison) {
3517      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3518
3519      // C++ [over.built]p13:
3520      //
3521      //   For every cv-qualified or cv-unqualified object type T
3522      //   there exist candidate operator functions of the form
3523      //
3524      //      T*         operator+(T*, ptrdiff_t);
3525      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3526      //      T*         operator-(T*, ptrdiff_t);
3527      //      T*         operator+(ptrdiff_t, T*);
3528      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3529      //
3530      // C++ [over.built]p14:
3531      //
3532      //   For every T, where T is a pointer to object type, there
3533      //   exist candidate operator functions of the form
3534      //
3535      //      ptrdiff_t  operator-(T, T);
3536      for (BuiltinCandidateTypeSet::iterator Ptr
3537             = CandidateTypes.pointer_begin();
3538           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3539        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3540
3541        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3542        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3543
3544        if (Op == OO_Plus) {
3545          // T* operator+(ptrdiff_t, T*);
3546          ParamTypes[0] = ParamTypes[1];
3547          ParamTypes[1] = *Ptr;
3548          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3549        } else {
3550          // ptrdiff_t operator-(T, T);
3551          ParamTypes[1] = *Ptr;
3552          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3553                              Args, 2, CandidateSet);
3554        }
3555      }
3556    }
3557    // Fall through
3558
3559  case OO_Slash:
3560  BinaryStar:
3561  Conditional:
3562    // C++ [over.built]p12:
3563    //
3564    //   For every pair of promoted arithmetic types L and R, there
3565    //   exist candidate operator functions of the form
3566    //
3567    //        LR         operator*(L, R);
3568    //        LR         operator/(L, R);
3569    //        LR         operator+(L, R);
3570    //        LR         operator-(L, R);
3571    //        bool       operator<(L, R);
3572    //        bool       operator>(L, R);
3573    //        bool       operator<=(L, R);
3574    //        bool       operator>=(L, R);
3575    //        bool       operator==(L, R);
3576    //        bool       operator!=(L, R);
3577    //
3578    //   where LR is the result of the usual arithmetic conversions
3579    //   between types L and R.
3580    //
3581    // C++ [over.built]p24:
3582    //
3583    //   For every pair of promoted arithmetic types L and R, there exist
3584    //   candidate operator functions of the form
3585    //
3586    //        LR       operator?(bool, L, R);
3587    //
3588    //   where LR is the result of the usual arithmetic conversions
3589    //   between types L and R.
3590    // Our candidates ignore the first parameter.
3591    for (unsigned Left = FirstPromotedArithmeticType;
3592         Left < LastPromotedArithmeticType; ++Left) {
3593      for (unsigned Right = FirstPromotedArithmeticType;
3594           Right < LastPromotedArithmeticType; ++Right) {
3595        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3596        QualType Result
3597          = isComparison
3598          ? Context.BoolTy
3599          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3600        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3601      }
3602    }
3603    break;
3604
3605  case OO_Percent:
3606  BinaryAmp:
3607  case OO_Caret:
3608  case OO_Pipe:
3609  case OO_LessLess:
3610  case OO_GreaterGreater:
3611    // C++ [over.built]p17:
3612    //
3613    //   For every pair of promoted integral types L and R, there
3614    //   exist candidate operator functions of the form
3615    //
3616    //      LR         operator%(L, R);
3617    //      LR         operator&(L, R);
3618    //      LR         operator^(L, R);
3619    //      LR         operator|(L, R);
3620    //      L          operator<<(L, R);
3621    //      L          operator>>(L, R);
3622    //
3623    //   where LR is the result of the usual arithmetic conversions
3624    //   between types L and R.
3625    for (unsigned Left = FirstPromotedIntegralType;
3626         Left < LastPromotedIntegralType; ++Left) {
3627      for (unsigned Right = FirstPromotedIntegralType;
3628           Right < LastPromotedIntegralType; ++Right) {
3629        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3630        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3631            ? LandR[0]
3632            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3633        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3634      }
3635    }
3636    break;
3637
3638  case OO_Equal:
3639    // C++ [over.built]p20:
3640    //
3641    //   For every pair (T, VQ), where T is an enumeration or
3642    //   pointer to member type and VQ is either volatile or
3643    //   empty, there exist candidate operator functions of the form
3644    //
3645    //        VQ T&      operator=(VQ T&, T);
3646    for (BuiltinCandidateTypeSet::iterator
3647           Enum = CandidateTypes.enumeration_begin(),
3648           EnumEnd = CandidateTypes.enumeration_end();
3649         Enum != EnumEnd; ++Enum)
3650      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3651                                             CandidateSet);
3652    for (BuiltinCandidateTypeSet::iterator
3653           MemPtr = CandidateTypes.member_pointer_begin(),
3654         MemPtrEnd = CandidateTypes.member_pointer_end();
3655         MemPtr != MemPtrEnd; ++MemPtr)
3656      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3657                                             CandidateSet);
3658      // Fall through.
3659
3660  case OO_PlusEqual:
3661  case OO_MinusEqual:
3662    // C++ [over.built]p19:
3663    //
3664    //   For every pair (T, VQ), where T is any type and VQ is either
3665    //   volatile or empty, there exist candidate operator functions
3666    //   of the form
3667    //
3668    //        T*VQ&      operator=(T*VQ&, T*);
3669    //
3670    // C++ [over.built]p21:
3671    //
3672    //   For every pair (T, VQ), where T is a cv-qualified or
3673    //   cv-unqualified object type and VQ is either volatile or
3674    //   empty, there exist candidate operator functions of the form
3675    //
3676    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3677    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3678    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3679         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3680      QualType ParamTypes[2];
3681      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3682
3683      // non-volatile version
3684      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3685      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3686                          /*IsAssigmentOperator=*/Op == OO_Equal);
3687
3688      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3689          VisibleTypeConversionsQuals.hasVolatile()) {
3690        // volatile version
3691        ParamTypes[0]
3692          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3693        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3694                            /*IsAssigmentOperator=*/Op == OO_Equal);
3695      }
3696    }
3697    // Fall through.
3698
3699  case OO_StarEqual:
3700  case OO_SlashEqual:
3701    // C++ [over.built]p18:
3702    //
3703    //   For every triple (L, VQ, R), where L is an arithmetic type,
3704    //   VQ is either volatile or empty, and R is a promoted
3705    //   arithmetic type, there exist candidate operator functions of
3706    //   the form
3707    //
3708    //        VQ L&      operator=(VQ L&, R);
3709    //        VQ L&      operator*=(VQ L&, R);
3710    //        VQ L&      operator/=(VQ L&, R);
3711    //        VQ L&      operator+=(VQ L&, R);
3712    //        VQ L&      operator-=(VQ L&, R);
3713    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3714      for (unsigned Right = FirstPromotedArithmeticType;
3715           Right < LastPromotedArithmeticType; ++Right) {
3716        QualType ParamTypes[2];
3717        ParamTypes[1] = ArithmeticTypes[Right];
3718
3719        // Add this built-in operator as a candidate (VQ is empty).
3720        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3721        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3722                            /*IsAssigmentOperator=*/Op == OO_Equal);
3723
3724        // Add this built-in operator as a candidate (VQ is 'volatile').
3725        if (VisibleTypeConversionsQuals.hasVolatile()) {
3726          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3727          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3728          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3729                              /*IsAssigmentOperator=*/Op == OO_Equal);
3730        }
3731      }
3732    }
3733    break;
3734
3735  case OO_PercentEqual:
3736  case OO_LessLessEqual:
3737  case OO_GreaterGreaterEqual:
3738  case OO_AmpEqual:
3739  case OO_CaretEqual:
3740  case OO_PipeEqual:
3741    // C++ [over.built]p22:
3742    //
3743    //   For every triple (L, VQ, R), where L is an integral type, VQ
3744    //   is either volatile or empty, and R is a promoted integral
3745    //   type, there exist candidate operator functions of the form
3746    //
3747    //        VQ L&       operator%=(VQ L&, R);
3748    //        VQ L&       operator<<=(VQ L&, R);
3749    //        VQ L&       operator>>=(VQ L&, R);
3750    //        VQ L&       operator&=(VQ L&, R);
3751    //        VQ L&       operator^=(VQ L&, R);
3752    //        VQ L&       operator|=(VQ L&, R);
3753    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3754      for (unsigned Right = FirstPromotedIntegralType;
3755           Right < LastPromotedIntegralType; ++Right) {
3756        QualType ParamTypes[2];
3757        ParamTypes[1] = ArithmeticTypes[Right];
3758
3759        // Add this built-in operator as a candidate (VQ is empty).
3760        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3761        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3762        if (VisibleTypeConversionsQuals.hasVolatile()) {
3763          // Add this built-in operator as a candidate (VQ is 'volatile').
3764          ParamTypes[0] = ArithmeticTypes[Left];
3765          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3766          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3767          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3768        }
3769      }
3770    }
3771    break;
3772
3773  case OO_Exclaim: {
3774    // C++ [over.operator]p23:
3775    //
3776    //   There also exist candidate operator functions of the form
3777    //
3778    //        bool        operator!(bool);
3779    //        bool        operator&&(bool, bool);     [BELOW]
3780    //        bool        operator||(bool, bool);     [BELOW]
3781    QualType ParamTy = Context.BoolTy;
3782    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3783                        /*IsAssignmentOperator=*/false,
3784                        /*NumContextualBoolArguments=*/1);
3785    break;
3786  }
3787
3788  case OO_AmpAmp:
3789  case OO_PipePipe: {
3790    // C++ [over.operator]p23:
3791    //
3792    //   There also exist candidate operator functions of the form
3793    //
3794    //        bool        operator!(bool);            [ABOVE]
3795    //        bool        operator&&(bool, bool);
3796    //        bool        operator||(bool, bool);
3797    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3798    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3799                        /*IsAssignmentOperator=*/false,
3800                        /*NumContextualBoolArguments=*/2);
3801    break;
3802  }
3803
3804  case OO_Subscript:
3805    // C++ [over.built]p13:
3806    //
3807    //   For every cv-qualified or cv-unqualified object type T there
3808    //   exist candidate operator functions of the form
3809    //
3810    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3811    //        T&         operator[](T*, ptrdiff_t);
3812    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3813    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3814    //        T&         operator[](ptrdiff_t, T*);
3815    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3816         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3817      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3818      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3819      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3820
3821      // T& operator[](T*, ptrdiff_t)
3822      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3823
3824      // T& operator[](ptrdiff_t, T*);
3825      ParamTypes[0] = ParamTypes[1];
3826      ParamTypes[1] = *Ptr;
3827      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3828    }
3829    break;
3830
3831  case OO_ArrowStar:
3832    // C++ [over.built]p11:
3833    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3834    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3835    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3836    //    there exist candidate operator functions of the form
3837    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3838    //    where CV12 is the union of CV1 and CV2.
3839    {
3840      for (BuiltinCandidateTypeSet::iterator Ptr =
3841             CandidateTypes.pointer_begin();
3842           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3843        QualType C1Ty = (*Ptr);
3844        QualType C1;
3845        QualifierCollector Q1;
3846        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3847          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3848          if (!isa<RecordType>(C1))
3849            continue;
3850          // heuristic to reduce number of builtin candidates in the set.
3851          // Add volatile/restrict version only if there are conversions to a
3852          // volatile/restrict type.
3853          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3854            continue;
3855          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3856            continue;
3857        }
3858        for (BuiltinCandidateTypeSet::iterator
3859             MemPtr = CandidateTypes.member_pointer_begin(),
3860             MemPtrEnd = CandidateTypes.member_pointer_end();
3861             MemPtr != MemPtrEnd; ++MemPtr) {
3862          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3863          QualType C2 = QualType(mptr->getClass(), 0);
3864          C2 = C2.getUnqualifiedType();
3865          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3866            break;
3867          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3868          // build CV12 T&
3869          QualType T = mptr->getPointeeType();
3870          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3871              T.isVolatileQualified())
3872            continue;
3873          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3874              T.isRestrictQualified())
3875            continue;
3876          T = Q1.apply(T);
3877          QualType ResultTy = Context.getLValueReferenceType(T);
3878          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3879        }
3880      }
3881    }
3882    break;
3883
3884  case OO_Conditional:
3885    // Note that we don't consider the first argument, since it has been
3886    // contextually converted to bool long ago. The candidates below are
3887    // therefore added as binary.
3888    //
3889    // C++ [over.built]p24:
3890    //   For every type T, where T is a pointer or pointer-to-member type,
3891    //   there exist candidate operator functions of the form
3892    //
3893    //        T        operator?(bool, T, T);
3894    //
3895    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3896         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3897      QualType ParamTypes[2] = { *Ptr, *Ptr };
3898      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3899    }
3900    for (BuiltinCandidateTypeSet::iterator Ptr =
3901           CandidateTypes.member_pointer_begin(),
3902         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3903      QualType ParamTypes[2] = { *Ptr, *Ptr };
3904      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3905    }
3906    goto Conditional;
3907  }
3908}
3909
3910/// \brief Add function candidates found via argument-dependent lookup
3911/// to the set of overloading candidates.
3912///
3913/// This routine performs argument-dependent name lookup based on the
3914/// given function name (which may also be an operator name) and adds
3915/// all of the overload candidates found by ADL to the overload
3916/// candidate set (C++ [basic.lookup.argdep]).
3917void
3918Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3919                                           Expr **Args, unsigned NumArgs,
3920                                           bool HasExplicitTemplateArgs,
3921                            const TemplateArgumentLoc *ExplicitTemplateArgs,
3922                                           unsigned NumExplicitTemplateArgs,
3923                                           OverloadCandidateSet& CandidateSet,
3924                                           bool PartialOverloading) {
3925  FunctionSet Functions;
3926
3927  // FIXME: Should we be trafficking in canonical function decls throughout?
3928
3929  // Record all of the function candidates that we've already
3930  // added to the overload set, so that we don't add those same
3931  // candidates a second time.
3932  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3933                                   CandEnd = CandidateSet.end();
3934       Cand != CandEnd; ++Cand)
3935    if (Cand->Function) {
3936      Functions.insert(Cand->Function);
3937      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3938        Functions.insert(FunTmpl);
3939    }
3940
3941  // FIXME: Pass in the explicit template arguments?
3942  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
3943
3944  // Erase all of the candidates we already knew about.
3945  // FIXME: This is suboptimal. Is there a better way?
3946  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3947                                   CandEnd = CandidateSet.end();
3948       Cand != CandEnd; ++Cand)
3949    if (Cand->Function) {
3950      Functions.erase(Cand->Function);
3951      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3952        Functions.erase(FunTmpl);
3953    }
3954
3955  // For each of the ADL candidates we found, add it to the overload
3956  // set.
3957  for (FunctionSet::iterator Func = Functions.begin(),
3958                          FuncEnd = Functions.end();
3959       Func != FuncEnd; ++Func) {
3960    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3961      if (HasExplicitTemplateArgs)
3962        continue;
3963
3964      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3965                           false, false, PartialOverloading);
3966    } else
3967      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3968                                   HasExplicitTemplateArgs,
3969                                   ExplicitTemplateArgs,
3970                                   NumExplicitTemplateArgs,
3971                                   Args, NumArgs, CandidateSet);
3972  }
3973}
3974
3975/// isBetterOverloadCandidate - Determines whether the first overload
3976/// candidate is a better candidate than the second (C++ 13.3.3p1).
3977bool
3978Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3979                                const OverloadCandidate& Cand2) {
3980  // Define viable functions to be better candidates than non-viable
3981  // functions.
3982  if (!Cand2.Viable)
3983    return Cand1.Viable;
3984  else if (!Cand1.Viable)
3985    return false;
3986
3987  // C++ [over.match.best]p1:
3988  //
3989  //   -- if F is a static member function, ICS1(F) is defined such
3990  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3991  //      any function G, and, symmetrically, ICS1(G) is neither
3992  //      better nor worse than ICS1(F).
3993  unsigned StartArg = 0;
3994  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3995    StartArg = 1;
3996
3997  // C++ [over.match.best]p1:
3998  //   A viable function F1 is defined to be a better function than another
3999  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4000  //   conversion sequence than ICSi(F2), and then...
4001  unsigned NumArgs = Cand1.Conversions.size();
4002  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4003  bool HasBetterConversion = false;
4004  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4005    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4006                                               Cand2.Conversions[ArgIdx])) {
4007    case ImplicitConversionSequence::Better:
4008      // Cand1 has a better conversion sequence.
4009      HasBetterConversion = true;
4010      break;
4011
4012    case ImplicitConversionSequence::Worse:
4013      // Cand1 can't be better than Cand2.
4014      return false;
4015
4016    case ImplicitConversionSequence::Indistinguishable:
4017      // Do nothing.
4018      break;
4019    }
4020  }
4021
4022  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4023  //       ICSj(F2), or, if not that,
4024  if (HasBetterConversion)
4025    return true;
4026
4027  //     - F1 is a non-template function and F2 is a function template
4028  //       specialization, or, if not that,
4029  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4030      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4031    return true;
4032
4033  //   -- F1 and F2 are function template specializations, and the function
4034  //      template for F1 is more specialized than the template for F2
4035  //      according to the partial ordering rules described in 14.5.5.2, or,
4036  //      if not that,
4037  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4038      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4039    if (FunctionTemplateDecl *BetterTemplate
4040          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4041                                       Cand2.Function->getPrimaryTemplate(),
4042                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4043                                                             : TPOC_Call))
4044      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4045
4046  //   -- the context is an initialization by user-defined conversion
4047  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4048  //      from the return type of F1 to the destination type (i.e.,
4049  //      the type of the entity being initialized) is a better
4050  //      conversion sequence than the standard conversion sequence
4051  //      from the return type of F2 to the destination type.
4052  if (Cand1.Function && Cand2.Function &&
4053      isa<CXXConversionDecl>(Cand1.Function) &&
4054      isa<CXXConversionDecl>(Cand2.Function)) {
4055    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4056                                               Cand2.FinalConversion)) {
4057    case ImplicitConversionSequence::Better:
4058      // Cand1 has a better conversion sequence.
4059      return true;
4060
4061    case ImplicitConversionSequence::Worse:
4062      // Cand1 can't be better than Cand2.
4063      return false;
4064
4065    case ImplicitConversionSequence::Indistinguishable:
4066      // Do nothing
4067      break;
4068    }
4069  }
4070
4071  return false;
4072}
4073
4074/// \brief Computes the best viable function (C++ 13.3.3)
4075/// within an overload candidate set.
4076///
4077/// \param CandidateSet the set of candidate functions.
4078///
4079/// \param Loc the location of the function name (or operator symbol) for
4080/// which overload resolution occurs.
4081///
4082/// \param Best f overload resolution was successful or found a deleted
4083/// function, Best points to the candidate function found.
4084///
4085/// \returns The result of overload resolution.
4086Sema::OverloadingResult
4087Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4088                         SourceLocation Loc,
4089                         OverloadCandidateSet::iterator& Best) {
4090  // Find the best viable function.
4091  Best = CandidateSet.end();
4092  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4093       Cand != CandidateSet.end(); ++Cand) {
4094    if (Cand->Viable) {
4095      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4096        Best = Cand;
4097    }
4098  }
4099
4100  // If we didn't find any viable functions, abort.
4101  if (Best == CandidateSet.end())
4102    return OR_No_Viable_Function;
4103
4104  // Make sure that this function is better than every other viable
4105  // function. If not, we have an ambiguity.
4106  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4107       Cand != CandidateSet.end(); ++Cand) {
4108    if (Cand->Viable &&
4109        Cand != Best &&
4110        !isBetterOverloadCandidate(*Best, *Cand)) {
4111      Best = CandidateSet.end();
4112      return OR_Ambiguous;
4113    }
4114  }
4115
4116  // Best is the best viable function.
4117  if (Best->Function &&
4118      (Best->Function->isDeleted() ||
4119       Best->Function->getAttr<UnavailableAttr>()))
4120    return OR_Deleted;
4121
4122  // C++ [basic.def.odr]p2:
4123  //   An overloaded function is used if it is selected by overload resolution
4124  //   when referred to from a potentially-evaluated expression. [Note: this
4125  //   covers calls to named functions (5.2.2), operator overloading
4126  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4127  //   placement new (5.3.4), as well as non-default initialization (8.5).
4128  if (Best->Function)
4129    MarkDeclarationReferenced(Loc, Best->Function);
4130  return OR_Success;
4131}
4132
4133/// PrintOverloadCandidates - When overload resolution fails, prints
4134/// diagnostic messages containing the candidates in the candidate
4135/// set. If OnlyViable is true, only viable candidates will be printed.
4136void
4137Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4138                              bool OnlyViable,
4139                              const char *Opc,
4140                              SourceLocation OpLoc) {
4141  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4142                             LastCand = CandidateSet.end();
4143  bool Reported = false;
4144  for (; Cand != LastCand; ++Cand) {
4145    if (Cand->Viable || !OnlyViable) {
4146      if (Cand->Function) {
4147        if (Cand->Function->isDeleted() ||
4148            Cand->Function->getAttr<UnavailableAttr>()) {
4149          // Deleted or "unavailable" function.
4150          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4151            << Cand->Function->isDeleted();
4152        } else if (FunctionTemplateDecl *FunTmpl
4153                     = Cand->Function->getPrimaryTemplate()) {
4154          // Function template specialization
4155          // FIXME: Give a better reason!
4156          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4157            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4158                              *Cand->Function->getTemplateSpecializationArgs());
4159        } else {
4160          // Normal function
4161          bool errReported = false;
4162          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4163            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4164              const ImplicitConversionSequence &Conversion =
4165                                                        Cand->Conversions[i];
4166              if ((Conversion.ConversionKind !=
4167                   ImplicitConversionSequence::BadConversion) ||
4168                  Conversion.ConversionFunctionSet.size() == 0)
4169                continue;
4170              Diag(Cand->Function->getLocation(),
4171                   diag::err_ovl_candidate_not_viable) << (i+1);
4172              errReported = true;
4173              for (int j = Conversion.ConversionFunctionSet.size()-1;
4174                   j >= 0; j--) {
4175                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4176                Diag(Func->getLocation(), diag::err_ovl_candidate);
4177              }
4178            }
4179          }
4180          if (!errReported)
4181            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4182        }
4183      } else if (Cand->IsSurrogate) {
4184        // Desugar the type of the surrogate down to a function type,
4185        // retaining as many typedefs as possible while still showing
4186        // the function type (and, therefore, its parameter types).
4187        QualType FnType = Cand->Surrogate->getConversionType();
4188        bool isLValueReference = false;
4189        bool isRValueReference = false;
4190        bool isPointer = false;
4191        if (const LValueReferenceType *FnTypeRef =
4192              FnType->getAs<LValueReferenceType>()) {
4193          FnType = FnTypeRef->getPointeeType();
4194          isLValueReference = true;
4195        } else if (const RValueReferenceType *FnTypeRef =
4196                     FnType->getAs<RValueReferenceType>()) {
4197          FnType = FnTypeRef->getPointeeType();
4198          isRValueReference = true;
4199        }
4200        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4201          FnType = FnTypePtr->getPointeeType();
4202          isPointer = true;
4203        }
4204        // Desugar down to a function type.
4205        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4206        // Reconstruct the pointer/reference as appropriate.
4207        if (isPointer) FnType = Context.getPointerType(FnType);
4208        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4209        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4210
4211        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4212          << FnType;
4213      } else if (OnlyViable) {
4214        assert(Cand->Conversions.size() <= 2 &&
4215               "builtin-binary-operator-not-binary");
4216        std::string TypeStr("operator");
4217        TypeStr += Opc;
4218        TypeStr += "(";
4219        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4220        if (Cand->Conversions.size() == 1) {
4221          TypeStr += ")";
4222          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4223        }
4224        else {
4225          TypeStr += ", ";
4226          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4227          TypeStr += ")";
4228          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4229        }
4230      }
4231      else if (!Cand->Viable && !Reported) {
4232        // Non-viability might be due to ambiguous user-defined conversions,
4233        // needed for built-in operators. Report them as well, but only once
4234        // as we have typically many built-in candidates.
4235        unsigned NoOperands = Cand->Conversions.size();
4236        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4237          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4238          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4239              ICS.ConversionFunctionSet.empty())
4240            continue;
4241          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4242                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4243            QualType FromTy =
4244              QualType(
4245                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4246            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4247                  << FromTy << Func->getConversionType();
4248          }
4249          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4250            FunctionDecl *Func =
4251              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4252            Diag(Func->getLocation(),diag::err_ovl_candidate);
4253          }
4254        }
4255        Reported = true;
4256      }
4257    }
4258  }
4259}
4260
4261/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4262/// an overloaded function (C++ [over.over]), where @p From is an
4263/// expression with overloaded function type and @p ToType is the type
4264/// we're trying to resolve to. For example:
4265///
4266/// @code
4267/// int f(double);
4268/// int f(int);
4269///
4270/// int (*pfd)(double) = f; // selects f(double)
4271/// @endcode
4272///
4273/// This routine returns the resulting FunctionDecl if it could be
4274/// resolved, and NULL otherwise. When @p Complain is true, this
4275/// routine will emit diagnostics if there is an error.
4276FunctionDecl *
4277Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4278                                         bool Complain) {
4279  QualType FunctionType = ToType;
4280  bool IsMember = false;
4281  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4282    FunctionType = ToTypePtr->getPointeeType();
4283  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4284    FunctionType = ToTypeRef->getPointeeType();
4285  else if (const MemberPointerType *MemTypePtr =
4286                    ToType->getAs<MemberPointerType>()) {
4287    FunctionType = MemTypePtr->getPointeeType();
4288    IsMember = true;
4289  }
4290
4291  // We only look at pointers or references to functions.
4292  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4293  if (!FunctionType->isFunctionType())
4294    return 0;
4295
4296  // Find the actual overloaded function declaration.
4297  OverloadedFunctionDecl *Ovl = 0;
4298
4299  // C++ [over.over]p1:
4300  //   [...] [Note: any redundant set of parentheses surrounding the
4301  //   overloaded function name is ignored (5.1). ]
4302  Expr *OvlExpr = From->IgnoreParens();
4303
4304  // C++ [over.over]p1:
4305  //   [...] The overloaded function name can be preceded by the &
4306  //   operator.
4307  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4308    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4309      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4310  }
4311
4312  bool HasExplicitTemplateArgs = false;
4313  const TemplateArgumentLoc *ExplicitTemplateArgs = 0;
4314  unsigned NumExplicitTemplateArgs = 0;
4315
4316  // Try to dig out the overloaded function.
4317  FunctionTemplateDecl *FunctionTemplate = 0;
4318  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4319    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4320    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4321    HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList();
4322    ExplicitTemplateArgs = DR->getTemplateArgs();
4323    NumExplicitTemplateArgs = DR->getNumTemplateArgs();
4324  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4325    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4326    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4327    HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList();
4328    ExplicitTemplateArgs = ME->getTemplateArgs();
4329    NumExplicitTemplateArgs = ME->getNumTemplateArgs();
4330  } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) {
4331    TemplateName Name = TIRE->getTemplateName();
4332    Ovl = Name.getAsOverloadedFunctionDecl();
4333    FunctionTemplate =
4334      dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4335
4336    HasExplicitTemplateArgs = true;
4337    ExplicitTemplateArgs = TIRE->getTemplateArgs();
4338    NumExplicitTemplateArgs = TIRE->getNumTemplateArgs();
4339  }
4340
4341  // If there's no overloaded function declaration or function template,
4342  // we're done.
4343  if (!Ovl && !FunctionTemplate)
4344    return 0;
4345
4346  OverloadIterator Fun;
4347  if (Ovl)
4348    Fun = Ovl;
4349  else
4350    Fun = FunctionTemplate;
4351
4352  // Look through all of the overloaded functions, searching for one
4353  // whose type matches exactly.
4354  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4355  bool FoundNonTemplateFunction = false;
4356  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4357    // C++ [over.over]p3:
4358    //   Non-member functions and static member functions match
4359    //   targets of type "pointer-to-function" or "reference-to-function."
4360    //   Nonstatic member functions match targets of
4361    //   type "pointer-to-member-function."
4362    // Note that according to DR 247, the containing class does not matter.
4363
4364    if (FunctionTemplateDecl *FunctionTemplate
4365          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4366      if (CXXMethodDecl *Method
4367            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4368        // Skip non-static function templates when converting to pointer, and
4369        // static when converting to member pointer.
4370        if (Method->isStatic() == IsMember)
4371          continue;
4372      } else if (IsMember)
4373        continue;
4374
4375      // C++ [over.over]p2:
4376      //   If the name is a function template, template argument deduction is
4377      //   done (14.8.2.2), and if the argument deduction succeeds, the
4378      //   resulting template argument list is used to generate a single
4379      //   function template specialization, which is added to the set of
4380      //   overloaded functions considered.
4381      // FIXME: We don't really want to build the specialization here, do we?
4382      FunctionDecl *Specialization = 0;
4383      TemplateDeductionInfo Info(Context);
4384      if (TemplateDeductionResult Result
4385            = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
4386                                      ExplicitTemplateArgs,
4387                                      NumExplicitTemplateArgs,
4388                                      FunctionType, Specialization, Info)) {
4389        // FIXME: make a note of the failed deduction for diagnostics.
4390        (void)Result;
4391      } else {
4392        // FIXME: If the match isn't exact, shouldn't we just drop this as
4393        // a candidate? Find a testcase before changing the code.
4394        assert(FunctionType
4395                 == Context.getCanonicalType(Specialization->getType()));
4396        Matches.insert(
4397                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4398      }
4399    }
4400
4401    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4402      // Skip non-static functions when converting to pointer, and static
4403      // when converting to member pointer.
4404      if (Method->isStatic() == IsMember)
4405        continue;
4406
4407      // If we have explicit template arguments, skip non-templates.
4408      if (HasExplicitTemplateArgs)
4409        continue;
4410    } else if (IsMember)
4411      continue;
4412
4413    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4414      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4415        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4416        FoundNonTemplateFunction = true;
4417      }
4418    }
4419  }
4420
4421  // If there were 0 or 1 matches, we're done.
4422  if (Matches.empty())
4423    return 0;
4424  else if (Matches.size() == 1) {
4425    FunctionDecl *Result = *Matches.begin();
4426    MarkDeclarationReferenced(From->getLocStart(), Result);
4427    return Result;
4428  }
4429
4430  // C++ [over.over]p4:
4431  //   If more than one function is selected, [...]
4432  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4433  if (!FoundNonTemplateFunction) {
4434    //   [...] and any given function template specialization F1 is
4435    //   eliminated if the set contains a second function template
4436    //   specialization whose function template is more specialized
4437    //   than the function template of F1 according to the partial
4438    //   ordering rules of 14.5.5.2.
4439
4440    // The algorithm specified above is quadratic. We instead use a
4441    // two-pass algorithm (similar to the one used to identify the
4442    // best viable function in an overload set) that identifies the
4443    // best function template (if it exists).
4444    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4445                                                         Matches.end());
4446    FunctionDecl *Result =
4447        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4448                           TPOC_Other, From->getLocStart(),
4449                           PDiag(),
4450                           PDiag(diag::err_addr_ovl_ambiguous)
4451                               << TemplateMatches[0]->getDeclName(),
4452                           PDiag(diag::err_ovl_template_candidate));
4453    MarkDeclarationReferenced(From->getLocStart(), Result);
4454    return Result;
4455  }
4456
4457  //   [...] any function template specializations in the set are
4458  //   eliminated if the set also contains a non-template function, [...]
4459  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4460  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4461    if ((*M)->getPrimaryTemplate() == 0)
4462      RemainingMatches.push_back(*M);
4463
4464  // [...] After such eliminations, if any, there shall remain exactly one
4465  // selected function.
4466  if (RemainingMatches.size() == 1) {
4467    FunctionDecl *Result = RemainingMatches.front();
4468    MarkDeclarationReferenced(From->getLocStart(), Result);
4469    return Result;
4470  }
4471
4472  // FIXME: We should probably return the same thing that BestViableFunction
4473  // returns (even if we issue the diagnostics here).
4474  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4475    << RemainingMatches[0]->getDeclName();
4476  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4477    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4478  return 0;
4479}
4480
4481/// \brief Add a single candidate to the overload set.
4482static void AddOverloadedCallCandidate(Sema &S,
4483                                       AnyFunctionDecl Callee,
4484                                       bool &ArgumentDependentLookup,
4485                                       bool HasExplicitTemplateArgs,
4486                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4487                                       unsigned NumExplicitTemplateArgs,
4488                                       Expr **Args, unsigned NumArgs,
4489                                       OverloadCandidateSet &CandidateSet,
4490                                       bool PartialOverloading) {
4491  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4492    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4493    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4494                           PartialOverloading);
4495
4496    if (Func->getDeclContext()->isRecord() ||
4497        Func->getDeclContext()->isFunctionOrMethod())
4498      ArgumentDependentLookup = false;
4499    return;
4500  }
4501
4502  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4503  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4504                                 ExplicitTemplateArgs,
4505                                 NumExplicitTemplateArgs,
4506                                 Args, NumArgs, CandidateSet);
4507
4508  if (FuncTemplate->getDeclContext()->isRecord())
4509    ArgumentDependentLookup = false;
4510}
4511
4512/// \brief Add the overload candidates named by callee and/or found by argument
4513/// dependent lookup to the given overload set.
4514void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4515                                       DeclarationName &UnqualifiedName,
4516                                       bool &ArgumentDependentLookup,
4517                                       bool HasExplicitTemplateArgs,
4518                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4519                                       unsigned NumExplicitTemplateArgs,
4520                                       Expr **Args, unsigned NumArgs,
4521                                       OverloadCandidateSet &CandidateSet,
4522                                       bool PartialOverloading) {
4523  // Add the functions denoted by Callee to the set of candidate
4524  // functions. While we're doing so, track whether argument-dependent
4525  // lookup still applies, per:
4526  //
4527  // C++0x [basic.lookup.argdep]p3:
4528  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4529  //   and let Y be the lookup set produced by argument dependent
4530  //   lookup (defined as follows). If X contains
4531  //
4532  //     -- a declaration of a class member, or
4533  //
4534  //     -- a block-scope function declaration that is not a
4535  //        using-declaration (FIXME: check for using declaration), or
4536  //
4537  //     -- a declaration that is neither a function or a function
4538  //        template
4539  //
4540  //   then Y is empty.
4541  if (!Callee) {
4542    // Nothing to do.
4543  } else if (OverloadedFunctionDecl *Ovl
4544               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4545    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4546                                                FuncEnd = Ovl->function_end();
4547         Func != FuncEnd; ++Func)
4548      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4549                                 HasExplicitTemplateArgs,
4550                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4551                                 Args, NumArgs, CandidateSet,
4552                                 PartialOverloading);
4553  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4554    AddOverloadedCallCandidate(*this,
4555                               AnyFunctionDecl::getFromNamedDecl(Callee),
4556                               ArgumentDependentLookup,
4557                               HasExplicitTemplateArgs,
4558                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4559                               Args, NumArgs, CandidateSet,
4560                               PartialOverloading);
4561  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4562  // checking dynamically.
4563
4564  if (Callee)
4565    UnqualifiedName = Callee->getDeclName();
4566
4567  if (ArgumentDependentLookup)
4568    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4569                                         HasExplicitTemplateArgs,
4570                                         ExplicitTemplateArgs,
4571                                         NumExplicitTemplateArgs,
4572                                         CandidateSet,
4573                                         PartialOverloading);
4574}
4575
4576/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4577/// (which eventually refers to the declaration Func) and the call
4578/// arguments Args/NumArgs, attempt to resolve the function call down
4579/// to a specific function. If overload resolution succeeds, returns
4580/// the function declaration produced by overload
4581/// resolution. Otherwise, emits diagnostics, deletes all of the
4582/// arguments and Fn, and returns NULL.
4583FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4584                                            DeclarationName UnqualifiedName,
4585                                            bool HasExplicitTemplateArgs,
4586                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4587                                            unsigned NumExplicitTemplateArgs,
4588                                            SourceLocation LParenLoc,
4589                                            Expr **Args, unsigned NumArgs,
4590                                            SourceLocation *CommaLocs,
4591                                            SourceLocation RParenLoc,
4592                                            bool &ArgumentDependentLookup) {
4593  OverloadCandidateSet CandidateSet;
4594
4595  // Add the functions denoted by Callee to the set of candidate
4596  // functions.
4597  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4598                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4599                              NumExplicitTemplateArgs, Args, NumArgs,
4600                              CandidateSet);
4601  OverloadCandidateSet::iterator Best;
4602  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4603  case OR_Success:
4604    return Best->Function;
4605
4606  case OR_No_Viable_Function:
4607    Diag(Fn->getSourceRange().getBegin(),
4608         diag::err_ovl_no_viable_function_in_call)
4609      << UnqualifiedName << Fn->getSourceRange();
4610    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4611    break;
4612
4613  case OR_Ambiguous:
4614    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4615      << UnqualifiedName << Fn->getSourceRange();
4616    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4617    break;
4618
4619  case OR_Deleted:
4620    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4621      << Best->Function->isDeleted()
4622      << UnqualifiedName
4623      << Fn->getSourceRange();
4624    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4625    break;
4626  }
4627
4628  // Overload resolution failed. Destroy all of the subexpressions and
4629  // return NULL.
4630  Fn->Destroy(Context);
4631  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4632    Args[Arg]->Destroy(Context);
4633  return 0;
4634}
4635
4636/// \brief Create a unary operation that may resolve to an overloaded
4637/// operator.
4638///
4639/// \param OpLoc The location of the operator itself (e.g., '*').
4640///
4641/// \param OpcIn The UnaryOperator::Opcode that describes this
4642/// operator.
4643///
4644/// \param Functions The set of non-member functions that will be
4645/// considered by overload resolution. The caller needs to build this
4646/// set based on the context using, e.g.,
4647/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4648/// set should not contain any member functions; those will be added
4649/// by CreateOverloadedUnaryOp().
4650///
4651/// \param input The input argument.
4652Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4653                                                     unsigned OpcIn,
4654                                                     FunctionSet &Functions,
4655                                                     ExprArg input) {
4656  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4657  Expr *Input = (Expr *)input.get();
4658
4659  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4660  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4661  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4662
4663  Expr *Args[2] = { Input, 0 };
4664  unsigned NumArgs = 1;
4665
4666  // For post-increment and post-decrement, add the implicit '0' as
4667  // the second argument, so that we know this is a post-increment or
4668  // post-decrement.
4669  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4670    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4671    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4672                                           SourceLocation());
4673    NumArgs = 2;
4674  }
4675
4676  if (Input->isTypeDependent()) {
4677    OverloadedFunctionDecl *Overloads
4678      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4679    for (FunctionSet::iterator Func = Functions.begin(),
4680                            FuncEnd = Functions.end();
4681         Func != FuncEnd; ++Func)
4682      Overloads->addOverload(*Func);
4683
4684    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4685                                                OpLoc, false, false);
4686
4687    input.release();
4688    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4689                                                   &Args[0], NumArgs,
4690                                                   Context.DependentTy,
4691                                                   OpLoc));
4692  }
4693
4694  // Build an empty overload set.
4695  OverloadCandidateSet CandidateSet;
4696
4697  // Add the candidates from the given function set.
4698  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4699
4700  // Add operator candidates that are member functions.
4701  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4702
4703  // Add builtin operator candidates.
4704  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4705
4706  // Perform overload resolution.
4707  OverloadCandidateSet::iterator Best;
4708  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4709  case OR_Success: {
4710    // We found a built-in operator or an overloaded operator.
4711    FunctionDecl *FnDecl = Best->Function;
4712
4713    if (FnDecl) {
4714      // We matched an overloaded operator. Build a call to that
4715      // operator.
4716
4717      // Convert the arguments.
4718      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4719        if (PerformObjectArgumentInitialization(Input, Method))
4720          return ExprError();
4721      } else {
4722        // Convert the arguments.
4723        if (PerformCopyInitialization(Input,
4724                                      FnDecl->getParamDecl(0)->getType(),
4725                                      "passing"))
4726          return ExprError();
4727      }
4728
4729      // Determine the result type
4730      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4731
4732      // Build the actual expression node.
4733      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4734                                               SourceLocation());
4735      UsualUnaryConversions(FnExpr);
4736
4737      input.release();
4738
4739      ExprOwningPtr<CallExpr> TheCall(this,
4740        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4741                                          &Input, 1, ResultTy, OpLoc));
4742
4743      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4744                              FnDecl))
4745        return ExprError();
4746
4747      return MaybeBindToTemporary(TheCall.release());
4748    } else {
4749      // We matched a built-in operator. Convert the arguments, then
4750      // break out so that we will build the appropriate built-in
4751      // operator node.
4752        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4753                                      Best->Conversions[0], "passing"))
4754          return ExprError();
4755
4756        break;
4757      }
4758    }
4759
4760    case OR_No_Viable_Function:
4761      // No viable function; fall through to handling this as a
4762      // built-in operator, which will produce an error message for us.
4763      break;
4764
4765    case OR_Ambiguous:
4766      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4767          << UnaryOperator::getOpcodeStr(Opc)
4768          << Input->getSourceRange();
4769      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4770                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4771      return ExprError();
4772
4773    case OR_Deleted:
4774      Diag(OpLoc, diag::err_ovl_deleted_oper)
4775        << Best->Function->isDeleted()
4776        << UnaryOperator::getOpcodeStr(Opc)
4777        << Input->getSourceRange();
4778      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4779      return ExprError();
4780    }
4781
4782  // Either we found no viable overloaded operator or we matched a
4783  // built-in operator. In either case, fall through to trying to
4784  // build a built-in operation.
4785  input.release();
4786  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4787}
4788
4789/// \brief Create a binary operation that may resolve to an overloaded
4790/// operator.
4791///
4792/// \param OpLoc The location of the operator itself (e.g., '+').
4793///
4794/// \param OpcIn The BinaryOperator::Opcode that describes this
4795/// operator.
4796///
4797/// \param Functions The set of non-member functions that will be
4798/// considered by overload resolution. The caller needs to build this
4799/// set based on the context using, e.g.,
4800/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4801/// set should not contain any member functions; those will be added
4802/// by CreateOverloadedBinOp().
4803///
4804/// \param LHS Left-hand argument.
4805/// \param RHS Right-hand argument.
4806Sema::OwningExprResult
4807Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4808                            unsigned OpcIn,
4809                            FunctionSet &Functions,
4810                            Expr *LHS, Expr *RHS) {
4811  Expr *Args[2] = { LHS, RHS };
4812  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4813
4814  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4815  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4816  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4817
4818  // If either side is type-dependent, create an appropriate dependent
4819  // expression.
4820  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4821    if (Functions.empty()) {
4822      // If there are no functions to store, just build a dependent
4823      // BinaryOperator or CompoundAssignment.
4824      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
4825        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4826                                                  Context.DependentTy, OpLoc));
4827
4828      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
4829                                                        Context.DependentTy,
4830                                                        Context.DependentTy,
4831                                                        Context.DependentTy,
4832                                                        OpLoc));
4833    }
4834
4835    OverloadedFunctionDecl *Overloads
4836      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4837    for (FunctionSet::iterator Func = Functions.begin(),
4838                            FuncEnd = Functions.end();
4839         Func != FuncEnd; ++Func)
4840      Overloads->addOverload(*Func);
4841
4842    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4843                                                OpLoc, false, false);
4844
4845    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4846                                                   Args, 2,
4847                                                   Context.DependentTy,
4848                                                   OpLoc));
4849  }
4850
4851  // If this is the .* operator, which is not overloadable, just
4852  // create a built-in binary operator.
4853  if (Opc == BinaryOperator::PtrMemD)
4854    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4855
4856  // If this is one of the assignment operators, we only perform
4857  // overload resolution if the left-hand side is a class or
4858  // enumeration type (C++ [expr.ass]p3).
4859  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4860      !Args[0]->getType()->isOverloadableType())
4861    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4862
4863  // Build an empty overload set.
4864  OverloadCandidateSet CandidateSet;
4865
4866  // Add the candidates from the given function set.
4867  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4868
4869  // Add operator candidates that are member functions.
4870  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4871
4872  // Add builtin operator candidates.
4873  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4874
4875  // Perform overload resolution.
4876  OverloadCandidateSet::iterator Best;
4877  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4878    case OR_Success: {
4879      // We found a built-in operator or an overloaded operator.
4880      FunctionDecl *FnDecl = Best->Function;
4881
4882      if (FnDecl) {
4883        // We matched an overloaded operator. Build a call to that
4884        // operator.
4885
4886        // Convert the arguments.
4887        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4888          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4889              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4890                                        "passing"))
4891            return ExprError();
4892        } else {
4893          // Convert the arguments.
4894          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4895                                        "passing") ||
4896              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4897                                        "passing"))
4898            return ExprError();
4899        }
4900
4901        // Determine the result type
4902        QualType ResultTy
4903          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4904        ResultTy = ResultTy.getNonReferenceType();
4905
4906        // Build the actual expression node.
4907        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4908                                                 OpLoc);
4909        UsualUnaryConversions(FnExpr);
4910
4911        ExprOwningPtr<CXXOperatorCallExpr>
4912          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4913                                                          Args, 2, ResultTy,
4914                                                          OpLoc));
4915
4916        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4917                                FnDecl))
4918          return ExprError();
4919
4920        return MaybeBindToTemporary(TheCall.release());
4921      } else {
4922        // We matched a built-in operator. Convert the arguments, then
4923        // break out so that we will build the appropriate built-in
4924        // operator node.
4925        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4926                                      Best->Conversions[0], "passing") ||
4927            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4928                                      Best->Conversions[1], "passing"))
4929          return ExprError();
4930
4931        break;
4932      }
4933    }
4934
4935    case OR_No_Viable_Function: {
4936      // C++ [over.match.oper]p9:
4937      //   If the operator is the operator , [...] and there are no
4938      //   viable functions, then the operator is assumed to be the
4939      //   built-in operator and interpreted according to clause 5.
4940      if (Opc == BinaryOperator::Comma)
4941        break;
4942
4943      // For class as left operand for assignment or compound assigment operator
4944      // do not fall through to handling in built-in, but report that no overloaded
4945      // assignment operator found
4946      OwningExprResult Result = ExprError();
4947      if (Args[0]->getType()->isRecordType() &&
4948          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4949        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4950             << BinaryOperator::getOpcodeStr(Opc)
4951             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4952      } else {
4953        // No viable function; try to create a built-in operation, which will
4954        // produce an error. Then, show the non-viable candidates.
4955        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4956      }
4957      assert(Result.isInvalid() &&
4958             "C++ binary operator overloading is missing candidates!");
4959      if (Result.isInvalid())
4960        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4961                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4962      return move(Result);
4963    }
4964
4965    case OR_Ambiguous:
4966      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4967          << BinaryOperator::getOpcodeStr(Opc)
4968          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4969      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4970                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4971      return ExprError();
4972
4973    case OR_Deleted:
4974      Diag(OpLoc, diag::err_ovl_deleted_oper)
4975        << Best->Function->isDeleted()
4976        << BinaryOperator::getOpcodeStr(Opc)
4977        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4978      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4979      return ExprError();
4980    }
4981
4982  // We matched a built-in operator; build it.
4983  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4984}
4985
4986Action::OwningExprResult
4987Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
4988                                         SourceLocation RLoc,
4989                                         ExprArg Base, ExprArg Idx) {
4990  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
4991                    static_cast<Expr*>(Idx.get()) };
4992  DeclarationName OpName =
4993      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
4994
4995  // If either side is type-dependent, create an appropriate dependent
4996  // expression.
4997  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4998
4999    OverloadedFunctionDecl *Overloads
5000      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
5001
5002    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
5003                                                LLoc, false, false);
5004
5005    Base.release();
5006    Idx.release();
5007    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5008                                                   Args, 2,
5009                                                   Context.DependentTy,
5010                                                   RLoc));
5011  }
5012
5013  // Build an empty overload set.
5014  OverloadCandidateSet CandidateSet;
5015
5016  // Subscript can only be overloaded as a member function.
5017
5018  // Add operator candidates that are member functions.
5019  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5020
5021  // Add builtin operator candidates.
5022  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5023
5024  // Perform overload resolution.
5025  OverloadCandidateSet::iterator Best;
5026  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5027    case OR_Success: {
5028      // We found a built-in operator or an overloaded operator.
5029      FunctionDecl *FnDecl = Best->Function;
5030
5031      if (FnDecl) {
5032        // We matched an overloaded operator. Build a call to that
5033        // operator.
5034
5035        // Convert the arguments.
5036        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5037        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5038            PerformCopyInitialization(Args[1],
5039                                      FnDecl->getParamDecl(0)->getType(),
5040                                      "passing"))
5041          return ExprError();
5042
5043        // Determine the result type
5044        QualType ResultTy
5045          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5046        ResultTy = ResultTy.getNonReferenceType();
5047
5048        // Build the actual expression node.
5049        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5050                                                 LLoc);
5051        UsualUnaryConversions(FnExpr);
5052
5053        Base.release();
5054        Idx.release();
5055        ExprOwningPtr<CXXOperatorCallExpr>
5056          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5057                                                          FnExpr, Args, 2,
5058                                                          ResultTy, RLoc));
5059
5060        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5061                                FnDecl))
5062          return ExprError();
5063
5064        return MaybeBindToTemporary(TheCall.release());
5065      } else {
5066        // We matched a built-in operator. Convert the arguments, then
5067        // break out so that we will build the appropriate built-in
5068        // operator node.
5069        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5070                                      Best->Conversions[0], "passing") ||
5071            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5072                                      Best->Conversions[1], "passing"))
5073          return ExprError();
5074
5075        break;
5076      }
5077    }
5078
5079    case OR_No_Viable_Function: {
5080      // No viable function; try to create a built-in operation, which will
5081      // produce an error. Then, show the non-viable candidates.
5082      OwningExprResult Result =
5083          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5084      assert(Result.isInvalid() &&
5085             "C++ subscript operator overloading is missing candidates!");
5086      if (Result.isInvalid())
5087        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5088                                "[]", LLoc);
5089      return move(Result);
5090    }
5091
5092    case OR_Ambiguous:
5093      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5094          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5095      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5096                              "[]", LLoc);
5097      return ExprError();
5098
5099    case OR_Deleted:
5100      Diag(LLoc, diag::err_ovl_deleted_oper)
5101        << Best->Function->isDeleted() << "[]"
5102        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5103      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5104      return ExprError();
5105    }
5106
5107  // We matched a built-in operator; build it.
5108  Base.release();
5109  Idx.release();
5110  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5111                                         Owned(Args[1]), RLoc);
5112}
5113
5114/// BuildCallToMemberFunction - Build a call to a member
5115/// function. MemExpr is the expression that refers to the member
5116/// function (and includes the object parameter), Args/NumArgs are the
5117/// arguments to the function call (not including the object
5118/// parameter). The caller needs to validate that the member
5119/// expression refers to a member function or an overloaded member
5120/// function.
5121Sema::ExprResult
5122Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5123                                SourceLocation LParenLoc, Expr **Args,
5124                                unsigned NumArgs, SourceLocation *CommaLocs,
5125                                SourceLocation RParenLoc) {
5126  // Dig out the member expression. This holds both the object
5127  // argument and the member function we're referring to.
5128  MemberExpr *MemExpr = 0;
5129  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5130    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5131  else
5132    MemExpr = dyn_cast<MemberExpr>(MemExprE);
5133  assert(MemExpr && "Building member call without member expression");
5134
5135  // Extract the object argument.
5136  Expr *ObjectArg = MemExpr->getBase();
5137
5138  CXXMethodDecl *Method = 0;
5139  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5140      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
5141    // Add overload candidates
5142    OverloadCandidateSet CandidateSet;
5143    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
5144
5145    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
5146         Func != FuncEnd; ++Func) {
5147      if ((Method = dyn_cast<CXXMethodDecl>(*Func))) {
5148        // If explicit template arguments were provided, we can't call a
5149        // non-template member function.
5150        if (MemExpr->hasExplicitTemplateArgumentList())
5151          continue;
5152
5153        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
5154                           /*SuppressUserConversions=*/false);
5155      } else
5156        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
5157                                   MemExpr->hasExplicitTemplateArgumentList(),
5158                                   MemExpr->getTemplateArgs(),
5159                                   MemExpr->getNumTemplateArgs(),
5160                                   ObjectArg, Args, NumArgs,
5161                                   CandidateSet,
5162                                   /*SuppressUsedConversions=*/false);
5163    }
5164
5165    OverloadCandidateSet::iterator Best;
5166    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
5167    case OR_Success:
5168      Method = cast<CXXMethodDecl>(Best->Function);
5169      break;
5170
5171    case OR_No_Viable_Function:
5172      Diag(MemExpr->getSourceRange().getBegin(),
5173           diag::err_ovl_no_viable_member_function_in_call)
5174        << DeclName << MemExprE->getSourceRange();
5175      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5176      // FIXME: Leaking incoming expressions!
5177      return true;
5178
5179    case OR_Ambiguous:
5180      Diag(MemExpr->getSourceRange().getBegin(),
5181           diag::err_ovl_ambiguous_member_call)
5182        << DeclName << MemExprE->getSourceRange();
5183      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5184      // FIXME: Leaking incoming expressions!
5185      return true;
5186
5187    case OR_Deleted:
5188      Diag(MemExpr->getSourceRange().getBegin(),
5189           diag::err_ovl_deleted_member_call)
5190        << Best->Function->isDeleted()
5191        << DeclName << MemExprE->getSourceRange();
5192      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5193      // FIXME: Leaking incoming expressions!
5194      return true;
5195    }
5196
5197    FixOverloadedFunctionReference(MemExpr, Method);
5198  } else {
5199    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5200  }
5201
5202  assert(Method && "Member call to something that isn't a method?");
5203  ExprOwningPtr<CXXMemberCallExpr>
5204    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5205                                                  NumArgs,
5206                                  Method->getResultType().getNonReferenceType(),
5207                                  RParenLoc));
5208
5209  // Check for a valid return type.
5210  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5211                          TheCall.get(), Method))
5212    return true;
5213
5214  // Convert the object argument (for a non-static member function call).
5215  if (!Method->isStatic() &&
5216      PerformObjectArgumentInitialization(ObjectArg, Method))
5217    return true;
5218  MemExpr->setBase(ObjectArg);
5219
5220  // Convert the rest of the arguments
5221  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5222  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5223                              RParenLoc))
5224    return true;
5225
5226  if (CheckFunctionCall(Method, TheCall.get()))
5227    return true;
5228
5229  return MaybeBindToTemporary(TheCall.release()).release();
5230}
5231
5232/// BuildCallToObjectOfClassType - Build a call to an object of class
5233/// type (C++ [over.call.object]), which can end up invoking an
5234/// overloaded function call operator (@c operator()) or performing a
5235/// user-defined conversion on the object argument.
5236Sema::ExprResult
5237Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5238                                   SourceLocation LParenLoc,
5239                                   Expr **Args, unsigned NumArgs,
5240                                   SourceLocation *CommaLocs,
5241                                   SourceLocation RParenLoc) {
5242  assert(Object->getType()->isRecordType() && "Requires object type argument");
5243  const RecordType *Record = Object->getType()->getAs<RecordType>();
5244
5245  // C++ [over.call.object]p1:
5246  //  If the primary-expression E in the function call syntax
5247  //  evaluates to a class object of type "cv T", then the set of
5248  //  candidate functions includes at least the function call
5249  //  operators of T. The function call operators of T are obtained by
5250  //  ordinary lookup of the name operator() in the context of
5251  //  (E).operator().
5252  OverloadCandidateSet CandidateSet;
5253  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5254  DeclContext::lookup_const_iterator Oper, OperEnd;
5255  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
5256       Oper != OperEnd; ++Oper) {
5257    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Oper)) {
5258      AddMethodTemplateCandidate(FunTmpl, false, 0, 0, Object, Args, NumArgs,
5259                                 CandidateSet,
5260                                 /*SuppressUserConversions=*/false);
5261      continue;
5262    }
5263
5264    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
5265                       CandidateSet, /*SuppressUserConversions=*/false);
5266  }
5267
5268  if (RequireCompleteType(LParenLoc, Object->getType(),
5269                          PartialDiagnostic(diag::err_incomplete_object_call)
5270                            << Object->getSourceRange()))
5271    return true;
5272
5273  // C++ [over.call.object]p2:
5274  //   In addition, for each conversion function declared in T of the
5275  //   form
5276  //
5277  //        operator conversion-type-id () cv-qualifier;
5278  //
5279  //   where cv-qualifier is the same cv-qualification as, or a
5280  //   greater cv-qualification than, cv, and where conversion-type-id
5281  //   denotes the type "pointer to function of (P1,...,Pn) returning
5282  //   R", or the type "reference to pointer to function of
5283  //   (P1,...,Pn) returning R", or the type "reference to function
5284  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5285  //   is also considered as a candidate function. Similarly,
5286  //   surrogate call functions are added to the set of candidate
5287  //   functions for each conversion function declared in an
5288  //   accessible base class provided the function is not hidden
5289  //   within T by another intervening declaration.
5290  // FIXME: Look in base classes for more conversion operators!
5291  OverloadedFunctionDecl *Conversions
5292    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5293  for (OverloadedFunctionDecl::function_iterator
5294         Func = Conversions->function_begin(),
5295         FuncEnd = Conversions->function_end();
5296       Func != FuncEnd; ++Func) {
5297    CXXConversionDecl *Conv;
5298    FunctionTemplateDecl *ConvTemplate;
5299    GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
5300
5301    // Skip over templated conversion functions; they aren't
5302    // surrogates.
5303    if (ConvTemplate)
5304      continue;
5305
5306    // Strip the reference type (if any) and then the pointer type (if
5307    // any) to get down to what might be a function type.
5308    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5309    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5310      ConvType = ConvPtrType->getPointeeType();
5311
5312    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5313      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5314  }
5315
5316  // Perform overload resolution.
5317  OverloadCandidateSet::iterator Best;
5318  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5319  case OR_Success:
5320    // Overload resolution succeeded; we'll build the appropriate call
5321    // below.
5322    break;
5323
5324  case OR_No_Viable_Function:
5325    Diag(Object->getSourceRange().getBegin(),
5326         diag::err_ovl_no_viable_object_call)
5327      << Object->getType() << Object->getSourceRange();
5328    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5329    break;
5330
5331  case OR_Ambiguous:
5332    Diag(Object->getSourceRange().getBegin(),
5333         diag::err_ovl_ambiguous_object_call)
5334      << Object->getType() << Object->getSourceRange();
5335    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5336    break;
5337
5338  case OR_Deleted:
5339    Diag(Object->getSourceRange().getBegin(),
5340         diag::err_ovl_deleted_object_call)
5341      << Best->Function->isDeleted()
5342      << Object->getType() << Object->getSourceRange();
5343    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5344    break;
5345  }
5346
5347  if (Best == CandidateSet.end()) {
5348    // We had an error; delete all of the subexpressions and return
5349    // the error.
5350    Object->Destroy(Context);
5351    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5352      Args[ArgIdx]->Destroy(Context);
5353    return true;
5354  }
5355
5356  if (Best->Function == 0) {
5357    // Since there is no function declaration, this is one of the
5358    // surrogate candidates. Dig out the conversion function.
5359    CXXConversionDecl *Conv
5360      = cast<CXXConversionDecl>(
5361                         Best->Conversions[0].UserDefined.ConversionFunction);
5362
5363    // We selected one of the surrogate functions that converts the
5364    // object parameter to a function pointer. Perform the conversion
5365    // on the object argument, then let ActOnCallExpr finish the job.
5366
5367    // Create an implicit member expr to refer to the conversion operator.
5368    // and then call it.
5369    CXXMemberCallExpr *CE =
5370    BuildCXXMemberCallExpr(Object, Conv);
5371
5372    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5373                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5374                         CommaLocs, RParenLoc).release();
5375  }
5376
5377  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5378  // that calls this method, using Object for the implicit object
5379  // parameter and passing along the remaining arguments.
5380  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5381  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5382
5383  unsigned NumArgsInProto = Proto->getNumArgs();
5384  unsigned NumArgsToCheck = NumArgs;
5385
5386  // Build the full argument list for the method call (the
5387  // implicit object parameter is placed at the beginning of the
5388  // list).
5389  Expr **MethodArgs;
5390  if (NumArgs < NumArgsInProto) {
5391    NumArgsToCheck = NumArgsInProto;
5392    MethodArgs = new Expr*[NumArgsInProto + 1];
5393  } else {
5394    MethodArgs = new Expr*[NumArgs + 1];
5395  }
5396  MethodArgs[0] = Object;
5397  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5398    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5399
5400  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5401                                          SourceLocation());
5402  UsualUnaryConversions(NewFn);
5403
5404  // Once we've built TheCall, all of the expressions are properly
5405  // owned.
5406  QualType ResultTy = Method->getResultType().getNonReferenceType();
5407  ExprOwningPtr<CXXOperatorCallExpr>
5408    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5409                                                    MethodArgs, NumArgs + 1,
5410                                                    ResultTy, RParenLoc));
5411  delete [] MethodArgs;
5412
5413  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5414                          Method))
5415    return true;
5416
5417  // We may have default arguments. If so, we need to allocate more
5418  // slots in the call for them.
5419  if (NumArgs < NumArgsInProto)
5420    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5421  else if (NumArgs > NumArgsInProto)
5422    NumArgsToCheck = NumArgsInProto;
5423
5424  bool IsError = false;
5425
5426  // Initialize the implicit object parameter.
5427  IsError |= PerformObjectArgumentInitialization(Object, Method);
5428  TheCall->setArg(0, Object);
5429
5430
5431  // Check the argument types.
5432  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5433    Expr *Arg;
5434    if (i < NumArgs) {
5435      Arg = Args[i];
5436
5437      // Pass the argument.
5438      QualType ProtoArgType = Proto->getArgType(i);
5439      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5440    } else {
5441      OwningExprResult DefArg
5442        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
5443      if (DefArg.isInvalid()) {
5444        IsError = true;
5445        break;
5446      }
5447
5448      Arg = DefArg.takeAs<Expr>();
5449    }
5450
5451    TheCall->setArg(i + 1, Arg);
5452  }
5453
5454  // If this is a variadic call, handle args passed through "...".
5455  if (Proto->isVariadic()) {
5456    // Promote the arguments (C99 6.5.2.2p7).
5457    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5458      Expr *Arg = Args[i];
5459      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5460      TheCall->setArg(i + 1, Arg);
5461    }
5462  }
5463
5464  if (IsError) return true;
5465
5466  if (CheckFunctionCall(Method, TheCall.get()))
5467    return true;
5468
5469  return MaybeBindToTemporary(TheCall.release()).release();
5470}
5471
5472/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5473///  (if one exists), where @c Base is an expression of class type and
5474/// @c Member is the name of the member we're trying to find.
5475Sema::OwningExprResult
5476Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5477  Expr *Base = static_cast<Expr *>(BaseIn.get());
5478  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5479
5480  // C++ [over.ref]p1:
5481  //
5482  //   [...] An expression x->m is interpreted as (x.operator->())->m
5483  //   for a class object x of type T if T::operator->() exists and if
5484  //   the operator is selected as the best match function by the
5485  //   overload resolution mechanism (13.3).
5486  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5487  OverloadCandidateSet CandidateSet;
5488  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5489
5490  LookupResult R;
5491  LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName);
5492
5493  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5494       Oper != OperEnd; ++Oper)
5495    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5496                       /*SuppressUserConversions=*/false);
5497
5498  // Perform overload resolution.
5499  OverloadCandidateSet::iterator Best;
5500  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5501  case OR_Success:
5502    // Overload resolution succeeded; we'll build the call below.
5503    break;
5504
5505  case OR_No_Viable_Function:
5506    if (CandidateSet.empty())
5507      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5508        << Base->getType() << Base->getSourceRange();
5509    else
5510      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5511        << "operator->" << Base->getSourceRange();
5512    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5513    return ExprError();
5514
5515  case OR_Ambiguous:
5516    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5517      << "->" << Base->getSourceRange();
5518    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5519    return ExprError();
5520
5521  case OR_Deleted:
5522    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5523      << Best->Function->isDeleted()
5524      << "->" << Base->getSourceRange();
5525    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5526    return ExprError();
5527  }
5528
5529  // Convert the object parameter.
5530  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5531  if (PerformObjectArgumentInitialization(Base, Method))
5532    return ExprError();
5533
5534  // No concerns about early exits now.
5535  BaseIn.release();
5536
5537  // Build the operator call.
5538  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5539                                           SourceLocation());
5540  UsualUnaryConversions(FnExpr);
5541
5542  QualType ResultTy = Method->getResultType().getNonReferenceType();
5543  ExprOwningPtr<CXXOperatorCallExpr>
5544    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5545                                                    &Base, 1, ResultTy, OpLoc));
5546
5547  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5548                          Method))
5549          return ExprError();
5550  return move(TheCall);
5551}
5552
5553/// FixOverloadedFunctionReference - E is an expression that refers to
5554/// a C++ overloaded function (possibly with some parentheses and
5555/// perhaps a '&' around it). We have resolved the overloaded function
5556/// to the function declaration Fn, so patch up the expression E to
5557/// refer (possibly indirectly) to Fn. Returns the new expr.
5558Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5559  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5560    Expr *NewExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5561    PE->setSubExpr(NewExpr);
5562    PE->setType(NewExpr->getType());
5563  } else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5564    Expr *NewExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5565    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5566                               NewExpr->getType()) &&
5567           "Implicit cast type cannot be determined from overload");
5568    ICE->setSubExpr(NewExpr);
5569  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5570    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5571           "Can only take the address of an overloaded function");
5572    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5573      if (Method->isStatic()) {
5574        // Do nothing: static member functions aren't any different
5575        // from non-member functions.
5576      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr())) {
5577        if (DRE->getQualifier()) {
5578          // We have taken the address of a pointer to member
5579          // function. Perform the computation here so that we get the
5580          // appropriate pointer to member type.
5581          DRE->setDecl(Fn);
5582          DRE->setType(Fn->getType());
5583          QualType ClassType
5584            = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5585          E->setType(Context.getMemberPointerType(Fn->getType(),
5586                                                  ClassType.getTypePtr()));
5587          return E;
5588        }
5589      }
5590      // FIXME: TemplateIdRefExpr referring to a member function template
5591      // specialization!
5592    }
5593    Expr *NewExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5594    UnOp->setSubExpr(NewExpr);
5595    UnOp->setType(Context.getPointerType(NewExpr->getType()));
5596
5597    return UnOp;
5598  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5599    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5600            isa<FunctionTemplateDecl>(DR->getDecl()) ||
5601            isa<FunctionDecl>(DR->getDecl())) &&
5602           "Expected function or function template");
5603    DR->setDecl(Fn);
5604    E->setType(Fn->getType());
5605  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5606    MemExpr->setMemberDecl(Fn);
5607    E->setType(Fn->getType());
5608  } else if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) {
5609    E = DeclRefExpr::Create(Context,
5610                            TID->getQualifier(), TID->getQualifierRange(),
5611                            Fn, TID->getTemplateNameLoc(),
5612                            true,
5613                            TID->getLAngleLoc(),
5614                            TID->getTemplateArgs(),
5615                            TID->getNumTemplateArgs(),
5616                            TID->getRAngleLoc(),
5617                            Fn->getType(),
5618                            /*FIXME?*/false, /*FIXME?*/false);
5619
5620    // FIXME: Don't destroy TID here, since we need its template arguments
5621    // to survive.
5622    // TID->Destroy(Context);
5623  } else if (isa<UnresolvedFunctionNameExpr>(E)) {
5624    return DeclRefExpr::Create(Context,
5625                               /*Qualifier=*/0,
5626                               /*QualifierRange=*/SourceRange(),
5627                               Fn, E->getLocStart(),
5628                               Fn->getType(), false, false);
5629  } else {
5630    assert(false && "Invalid reference to overloaded function");
5631  }
5632
5633  return E;
5634}
5635
5636} // end namespace clang
5637