SemaOverload.cpp revision 66aba360b69b620be996e81eb370dd6e00c50361
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (From->getType() == Context.OverloadTy) {
617    if (FunctionDecl *Fn
618          = ResolveAddressOfOverloadedFunction(From, ToType, false,
619                                               AccessPair)) {
620      // Address of overloaded function (C++ [over.over]).
621      SCS.First = ICK_Function_To_Pointer;
622
623      // We were able to resolve the address of the overloaded function,
624      // so we can convert to the type of that function.
625      FromType = Fn->getType();
626      if (ToType->isLValueReferenceType())
627        FromType = Context.getLValueReferenceType(FromType);
628      else if (ToType->isRValueReferenceType())
629        FromType = Context.getRValueReferenceType(FromType);
630      else if (ToType->isMemberPointerType()) {
631        // Resolve address only succeeds if both sides are member pointers,
632        // but it doesn't have to be the same class. See DR 247.
633        // Note that this means that the type of &Derived::fn can be
634        // Ret (Base::*)(Args) if the fn overload actually found is from the
635        // base class, even if it was brought into the derived class via a
636        // using declaration. The standard isn't clear on this issue at all.
637        CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
638        FromType = Context.getMemberPointerType(FromType,
639                      Context.getTypeDeclType(M->getParent()).getTypePtr());
640      } else {
641        FromType = Context.getPointerType(FromType);
642      }
643    } else {
644      return false;
645    }
646  } else {
647    // We don't require any conversions for the first step.
648    SCS.First = ICK_Identity;
649  }
650  SCS.setToType(0, FromType);
651
652  // The second conversion can be an integral promotion, floating
653  // point promotion, integral conversion, floating point conversion,
654  // floating-integral conversion, pointer conversion,
655  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
656  // For overloading in C, this can also be a "compatible-type"
657  // conversion.
658  bool IncompatibleObjC = false;
659  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
660    // The unqualified versions of the types are the same: there's no
661    // conversion to do.
662    SCS.Second = ICK_Identity;
663  } else if (IsIntegralPromotion(From, FromType, ToType)) {
664    // Integral promotion (C++ 4.5).
665    SCS.Second = ICK_Integral_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if (IsFloatingPointPromotion(FromType, ToType)) {
668    // Floating point promotion (C++ 4.6).
669    SCS.Second = ICK_Floating_Promotion;
670    FromType = ToType.getUnqualifiedType();
671  } else if (IsComplexPromotion(FromType, ToType)) {
672    // Complex promotion (Clang extension)
673    SCS.Second = ICK_Complex_Promotion;
674    FromType = ToType.getUnqualifiedType();
675  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
676           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
677    // Integral conversions (C++ 4.7).
678    SCS.Second = ICK_Integral_Conversion;
679    FromType = ToType.getUnqualifiedType();
680  } else if (FromType->isComplexType() && ToType->isComplexType()) {
681    // Complex conversions (C99 6.3.1.6)
682    SCS.Second = ICK_Complex_Conversion;
683    FromType = ToType.getUnqualifiedType();
684  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
685             (ToType->isComplexType() && FromType->isArithmeticType())) {
686    // Complex-real conversions (C99 6.3.1.7)
687    SCS.Second = ICK_Complex_Real;
688    FromType = ToType.getUnqualifiedType();
689  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
690    // Floating point conversions (C++ 4.8).
691    SCS.Second = ICK_Floating_Conversion;
692    FromType = ToType.getUnqualifiedType();
693  } else if ((FromType->isFloatingType() &&
694              ToType->isIntegralType() && (!ToType->isBooleanType() &&
695                                           !ToType->isEnumeralType())) ||
696             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
697              ToType->isFloatingType())) {
698    // Floating-integral conversions (C++ 4.9).
699    SCS.Second = ICK_Floating_Integral;
700    FromType = ToType.getUnqualifiedType();
701  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
702                                 FromType, IncompatibleObjC)) {
703    // Pointer conversions (C++ 4.10).
704    SCS.Second = ICK_Pointer_Conversion;
705    SCS.IncompatibleObjC = IncompatibleObjC;
706  } else if (IsMemberPointerConversion(From, FromType, ToType,
707                                       InOverloadResolution, FromType)) {
708    // Pointer to member conversions (4.11).
709    SCS.Second = ICK_Pointer_Member;
710  } else if (ToType->isBooleanType() &&
711             (FromType->isArithmeticType() ||
712              FromType->isEnumeralType() ||
713              FromType->isAnyPointerType() ||
714              FromType->isBlockPointerType() ||
715              FromType->isMemberPointerType() ||
716              FromType->isNullPtrType())) {
717    // Boolean conversions (C++ 4.12).
718    SCS.Second = ICK_Boolean_Conversion;
719    FromType = Context.BoolTy;
720  } else if (!getLangOptions().CPlusPlus &&
721             Context.typesAreCompatible(ToType, FromType)) {
722    // Compatible conversions (Clang extension for C function overloading)
723    SCS.Second = ICK_Compatible_Conversion;
724  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
725    // Treat a conversion that strips "noreturn" as an identity conversion.
726    SCS.Second = ICK_NoReturn_Adjustment;
727  } else {
728    // No second conversion required.
729    SCS.Second = ICK_Identity;
730  }
731  SCS.setToType(1, FromType);
732
733  QualType CanonFrom;
734  QualType CanonTo;
735  // The third conversion can be a qualification conversion (C++ 4p1).
736  if (IsQualificationConversion(FromType, ToType)) {
737    SCS.Third = ICK_Qualification;
738    FromType = ToType;
739    CanonFrom = Context.getCanonicalType(FromType);
740    CanonTo = Context.getCanonicalType(ToType);
741  } else {
742    // No conversion required
743    SCS.Third = ICK_Identity;
744
745    // C++ [over.best.ics]p6:
746    //   [...] Any difference in top-level cv-qualification is
747    //   subsumed by the initialization itself and does not constitute
748    //   a conversion. [...]
749    CanonFrom = Context.getCanonicalType(FromType);
750    CanonTo = Context.getCanonicalType(ToType);
751    if (CanonFrom.getLocalUnqualifiedType()
752                                       == CanonTo.getLocalUnqualifiedType() &&
753        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
754      FromType = ToType;
755      CanonFrom = CanonTo;
756    }
757  }
758  SCS.setToType(2, FromType);
759
760  // If we have not converted the argument type to the parameter type,
761  // this is a bad conversion sequence.
762  if (CanonFrom != CanonTo)
763    return false;
764
765  return true;
766}
767
768/// IsIntegralPromotion - Determines whether the conversion from the
769/// expression From (whose potentially-adjusted type is FromType) to
770/// ToType is an integral promotion (C++ 4.5). If so, returns true and
771/// sets PromotedType to the promoted type.
772bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
773  const BuiltinType *To = ToType->getAs<BuiltinType>();
774  // All integers are built-in.
775  if (!To) {
776    return false;
777  }
778
779  // An rvalue of type char, signed char, unsigned char, short int, or
780  // unsigned short int can be converted to an rvalue of type int if
781  // int can represent all the values of the source type; otherwise,
782  // the source rvalue can be converted to an rvalue of type unsigned
783  // int (C++ 4.5p1).
784  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
785      !FromType->isEnumeralType()) {
786    if (// We can promote any signed, promotable integer type to an int
787        (FromType->isSignedIntegerType() ||
788         // We can promote any unsigned integer type whose size is
789         // less than int to an int.
790         (!FromType->isSignedIntegerType() &&
791          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
792      return To->getKind() == BuiltinType::Int;
793    }
794
795    return To->getKind() == BuiltinType::UInt;
796  }
797
798  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
799  // can be converted to an rvalue of the first of the following types
800  // that can represent all the values of its underlying type: int,
801  // unsigned int, long, or unsigned long (C++ 4.5p2).
802
803  // We pre-calculate the promotion type for enum types.
804  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
805    if (ToType->isIntegerType())
806      return Context.hasSameUnqualifiedType(ToType,
807                                FromEnumType->getDecl()->getPromotionType());
808
809  if (FromType->isWideCharType() && ToType->isIntegerType()) {
810    // Determine whether the type we're converting from is signed or
811    // unsigned.
812    bool FromIsSigned;
813    uint64_t FromSize = Context.getTypeSize(FromType);
814
815    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
816    FromIsSigned = true;
817
818    // The types we'll try to promote to, in the appropriate
819    // order. Try each of these types.
820    QualType PromoteTypes[6] = {
821      Context.IntTy, Context.UnsignedIntTy,
822      Context.LongTy, Context.UnsignedLongTy ,
823      Context.LongLongTy, Context.UnsignedLongLongTy
824    };
825    for (int Idx = 0; Idx < 6; ++Idx) {
826      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
827      if (FromSize < ToSize ||
828          (FromSize == ToSize &&
829           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
830        // We found the type that we can promote to. If this is the
831        // type we wanted, we have a promotion. Otherwise, no
832        // promotion.
833        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
834      }
835    }
836  }
837
838  // An rvalue for an integral bit-field (9.6) can be converted to an
839  // rvalue of type int if int can represent all the values of the
840  // bit-field; otherwise, it can be converted to unsigned int if
841  // unsigned int can represent all the values of the bit-field. If
842  // the bit-field is larger yet, no integral promotion applies to
843  // it. If the bit-field has an enumerated type, it is treated as any
844  // other value of that type for promotion purposes (C++ 4.5p3).
845  // FIXME: We should delay checking of bit-fields until we actually perform the
846  // conversion.
847  using llvm::APSInt;
848  if (From)
849    if (FieldDecl *MemberDecl = From->getBitField()) {
850      APSInt BitWidth;
851      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
852          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
853        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
854        ToSize = Context.getTypeSize(ToType);
855
856        // Are we promoting to an int from a bitfield that fits in an int?
857        if (BitWidth < ToSize ||
858            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
859          return To->getKind() == BuiltinType::Int;
860        }
861
862        // Are we promoting to an unsigned int from an unsigned bitfield
863        // that fits into an unsigned int?
864        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
865          return To->getKind() == BuiltinType::UInt;
866        }
867
868        return false;
869      }
870    }
871
872  // An rvalue of type bool can be converted to an rvalue of type int,
873  // with false becoming zero and true becoming one (C++ 4.5p4).
874  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
875    return true;
876  }
877
878  return false;
879}
880
881/// IsFloatingPointPromotion - Determines whether the conversion from
882/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
883/// returns true and sets PromotedType to the promoted type.
884bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
885  /// An rvalue of type float can be converted to an rvalue of type
886  /// double. (C++ 4.6p1).
887  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
888    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
889      if (FromBuiltin->getKind() == BuiltinType::Float &&
890          ToBuiltin->getKind() == BuiltinType::Double)
891        return true;
892
893      // C99 6.3.1.5p1:
894      //   When a float is promoted to double or long double, or a
895      //   double is promoted to long double [...].
896      if (!getLangOptions().CPlusPlus &&
897          (FromBuiltin->getKind() == BuiltinType::Float ||
898           FromBuiltin->getKind() == BuiltinType::Double) &&
899          (ToBuiltin->getKind() == BuiltinType::LongDouble))
900        return true;
901    }
902
903  return false;
904}
905
906/// \brief Determine if a conversion is a complex promotion.
907///
908/// A complex promotion is defined as a complex -> complex conversion
909/// where the conversion between the underlying real types is a
910/// floating-point or integral promotion.
911bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
912  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
913  if (!FromComplex)
914    return false;
915
916  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
917  if (!ToComplex)
918    return false;
919
920  return IsFloatingPointPromotion(FromComplex->getElementType(),
921                                  ToComplex->getElementType()) ||
922    IsIntegralPromotion(0, FromComplex->getElementType(),
923                        ToComplex->getElementType());
924}
925
926/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
927/// the pointer type FromPtr to a pointer to type ToPointee, with the
928/// same type qualifiers as FromPtr has on its pointee type. ToType,
929/// if non-empty, will be a pointer to ToType that may or may not have
930/// the right set of qualifiers on its pointee.
931static QualType
932BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
933                                   QualType ToPointee, QualType ToType,
934                                   ASTContext &Context) {
935  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
936  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
937  Qualifiers Quals = CanonFromPointee.getQualifiers();
938
939  // Exact qualifier match -> return the pointer type we're converting to.
940  if (CanonToPointee.getLocalQualifiers() == Quals) {
941    // ToType is exactly what we need. Return it.
942    if (!ToType.isNull())
943      return ToType;
944
945    // Build a pointer to ToPointee. It has the right qualifiers
946    // already.
947    return Context.getPointerType(ToPointee);
948  }
949
950  // Just build a canonical type that has the right qualifiers.
951  return Context.getPointerType(
952         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
953                                  Quals));
954}
955
956/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
957/// the FromType, which is an objective-c pointer, to ToType, which may or may
958/// not have the right set of qualifiers.
959static QualType
960BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
961                                             QualType ToType,
962                                             ASTContext &Context) {
963  QualType CanonFromType = Context.getCanonicalType(FromType);
964  QualType CanonToType = Context.getCanonicalType(ToType);
965  Qualifiers Quals = CanonFromType.getQualifiers();
966
967  // Exact qualifier match -> return the pointer type we're converting to.
968  if (CanonToType.getLocalQualifiers() == Quals)
969    return ToType;
970
971  // Just build a canonical type that has the right qualifiers.
972  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
973}
974
975static bool isNullPointerConstantForConversion(Expr *Expr,
976                                               bool InOverloadResolution,
977                                               ASTContext &Context) {
978  // Handle value-dependent integral null pointer constants correctly.
979  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
980  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
981      Expr->getType()->isIntegralType())
982    return !InOverloadResolution;
983
984  return Expr->isNullPointerConstant(Context,
985                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
986                                        : Expr::NPC_ValueDependentIsNull);
987}
988
989/// IsPointerConversion - Determines whether the conversion of the
990/// expression From, which has the (possibly adjusted) type FromType,
991/// can be converted to the type ToType via a pointer conversion (C++
992/// 4.10). If so, returns true and places the converted type (that
993/// might differ from ToType in its cv-qualifiers at some level) into
994/// ConvertedType.
995///
996/// This routine also supports conversions to and from block pointers
997/// and conversions with Objective-C's 'id', 'id<protocols...>', and
998/// pointers to interfaces. FIXME: Once we've determined the
999/// appropriate overloading rules for Objective-C, we may want to
1000/// split the Objective-C checks into a different routine; however,
1001/// GCC seems to consider all of these conversions to be pointer
1002/// conversions, so for now they live here. IncompatibleObjC will be
1003/// set if the conversion is an allowed Objective-C conversion that
1004/// should result in a warning.
1005bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1006                               bool InOverloadResolution,
1007                               QualType& ConvertedType,
1008                               bool &IncompatibleObjC) {
1009  IncompatibleObjC = false;
1010  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1011    return true;
1012
1013  // Conversion from a null pointer constant to any Objective-C pointer type.
1014  if (ToType->isObjCObjectPointerType() &&
1015      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1016    ConvertedType = ToType;
1017    return true;
1018  }
1019
1020  // Blocks: Block pointers can be converted to void*.
1021  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1022      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1023    ConvertedType = ToType;
1024    return true;
1025  }
1026  // Blocks: A null pointer constant can be converted to a block
1027  // pointer type.
1028  if (ToType->isBlockPointerType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  // If the left-hand-side is nullptr_t, the right side can be a null
1035  // pointer constant.
1036  if (ToType->isNullPtrType() &&
1037      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1038    ConvertedType = ToType;
1039    return true;
1040  }
1041
1042  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1043  if (!ToTypePtr)
1044    return false;
1045
1046  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1047  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1048    ConvertedType = ToType;
1049    return true;
1050  }
1051
1052  // Beyond this point, both types need to be pointers
1053  // , including objective-c pointers.
1054  QualType ToPointeeType = ToTypePtr->getPointeeType();
1055  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1056    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1057                                                       ToType, Context);
1058    return true;
1059
1060  }
1061  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1062  if (!FromTypePtr)
1063    return false;
1064
1065  QualType FromPointeeType = FromTypePtr->getPointeeType();
1066
1067  // An rvalue of type "pointer to cv T," where T is an object type,
1068  // can be converted to an rvalue of type "pointer to cv void" (C++
1069  // 4.10p2).
1070  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1071    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1072                                                       ToPointeeType,
1073                                                       ToType, Context);
1074    return true;
1075  }
1076
1077  // When we're overloading in C, we allow a special kind of pointer
1078  // conversion for compatible-but-not-identical pointee types.
1079  if (!getLangOptions().CPlusPlus &&
1080      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1081    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1082                                                       ToPointeeType,
1083                                                       ToType, Context);
1084    return true;
1085  }
1086
1087  // C++ [conv.ptr]p3:
1088  //
1089  //   An rvalue of type "pointer to cv D," where D is a class type,
1090  //   can be converted to an rvalue of type "pointer to cv B," where
1091  //   B is a base class (clause 10) of D. If B is an inaccessible
1092  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1093  //   necessitates this conversion is ill-formed. The result of the
1094  //   conversion is a pointer to the base class sub-object of the
1095  //   derived class object. The null pointer value is converted to
1096  //   the null pointer value of the destination type.
1097  //
1098  // Note that we do not check for ambiguity or inaccessibility
1099  // here. That is handled by CheckPointerConversion.
1100  if (getLangOptions().CPlusPlus &&
1101      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1102      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1103      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1104      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1105    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1106                                                       ToPointeeType,
1107                                                       ToType, Context);
1108    return true;
1109  }
1110
1111  return false;
1112}
1113
1114/// isObjCPointerConversion - Determines whether this is an
1115/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1116/// with the same arguments and return values.
1117bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1118                                   QualType& ConvertedType,
1119                                   bool &IncompatibleObjC) {
1120  if (!getLangOptions().ObjC1)
1121    return false;
1122
1123  // First, we handle all conversions on ObjC object pointer types.
1124  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1125  const ObjCObjectPointerType *FromObjCPtr =
1126    FromType->getAs<ObjCObjectPointerType>();
1127
1128  if (ToObjCPtr && FromObjCPtr) {
1129    // Objective C++: We're able to convert between "id" or "Class" and a
1130    // pointer to any interface (in both directions).
1131    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Conversions with Objective-C's id<...>.
1136    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1137         ToObjCPtr->isObjCQualifiedIdType()) &&
1138        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1139                                                  /*compare=*/false)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143    // Objective C++: We're able to convert from a pointer to an
1144    // interface to a pointer to a different interface.
1145    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1146      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1147      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1148      if (getLangOptions().CPlusPlus && LHS && RHS &&
1149          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1150                                                FromObjCPtr->getPointeeType()))
1151        return false;
1152      ConvertedType = ToType;
1153      return true;
1154    }
1155
1156    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1157      // Okay: this is some kind of implicit downcast of Objective-C
1158      // interfaces, which is permitted. However, we're going to
1159      // complain about it.
1160      IncompatibleObjC = true;
1161      ConvertedType = FromType;
1162      return true;
1163    }
1164  }
1165  // Beyond this point, both types need to be C pointers or block pointers.
1166  QualType ToPointeeType;
1167  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1168    ToPointeeType = ToCPtr->getPointeeType();
1169  else if (const BlockPointerType *ToBlockPtr =
1170            ToType->getAs<BlockPointerType>()) {
1171    // Objective C++: We're able to convert from a pointer to any object
1172    // to a block pointer type.
1173    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1174      ConvertedType = ToType;
1175      return true;
1176    }
1177    ToPointeeType = ToBlockPtr->getPointeeType();
1178  }
1179  else if (FromType->getAs<BlockPointerType>() &&
1180           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1181    // Objective C++: We're able to convert from a block pointer type to a
1182    // pointer to any object.
1183    ConvertedType = ToType;
1184    return true;
1185  }
1186  else
1187    return false;
1188
1189  QualType FromPointeeType;
1190  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1191    FromPointeeType = FromCPtr->getPointeeType();
1192  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1193    FromPointeeType = FromBlockPtr->getPointeeType();
1194  else
1195    return false;
1196
1197  // If we have pointers to pointers, recursively check whether this
1198  // is an Objective-C conversion.
1199  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1200      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1201                              IncompatibleObjC)) {
1202    // We always complain about this conversion.
1203    IncompatibleObjC = true;
1204    ConvertedType = ToType;
1205    return true;
1206  }
1207  // Allow conversion of pointee being objective-c pointer to another one;
1208  // as in I* to id.
1209  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1210      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1211      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1212                              IncompatibleObjC)) {
1213    ConvertedType = ToType;
1214    return true;
1215  }
1216
1217  // If we have pointers to functions or blocks, check whether the only
1218  // differences in the argument and result types are in Objective-C
1219  // pointer conversions. If so, we permit the conversion (but
1220  // complain about it).
1221  const FunctionProtoType *FromFunctionType
1222    = FromPointeeType->getAs<FunctionProtoType>();
1223  const FunctionProtoType *ToFunctionType
1224    = ToPointeeType->getAs<FunctionProtoType>();
1225  if (FromFunctionType && ToFunctionType) {
1226    // If the function types are exactly the same, this isn't an
1227    // Objective-C pointer conversion.
1228    if (Context.getCanonicalType(FromPointeeType)
1229          == Context.getCanonicalType(ToPointeeType))
1230      return false;
1231
1232    // Perform the quick checks that will tell us whether these
1233    // function types are obviously different.
1234    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1235        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1236        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1237      return false;
1238
1239    bool HasObjCConversion = false;
1240    if (Context.getCanonicalType(FromFunctionType->getResultType())
1241          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1242      // Okay, the types match exactly. Nothing to do.
1243    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1244                                       ToFunctionType->getResultType(),
1245                                       ConvertedType, IncompatibleObjC)) {
1246      // Okay, we have an Objective-C pointer conversion.
1247      HasObjCConversion = true;
1248    } else {
1249      // Function types are too different. Abort.
1250      return false;
1251    }
1252
1253    // Check argument types.
1254    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1255         ArgIdx != NumArgs; ++ArgIdx) {
1256      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1257      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1258      if (Context.getCanonicalType(FromArgType)
1259            == Context.getCanonicalType(ToArgType)) {
1260        // Okay, the types match exactly. Nothing to do.
1261      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1262                                         ConvertedType, IncompatibleObjC)) {
1263        // Okay, we have an Objective-C pointer conversion.
1264        HasObjCConversion = true;
1265      } else {
1266        // Argument types are too different. Abort.
1267        return false;
1268      }
1269    }
1270
1271    if (HasObjCConversion) {
1272      // We had an Objective-C conversion. Allow this pointer
1273      // conversion, but complain about it.
1274      ConvertedType = ToType;
1275      IncompatibleObjC = true;
1276      return true;
1277    }
1278  }
1279
1280  return false;
1281}
1282
1283/// CheckPointerConversion - Check the pointer conversion from the
1284/// expression From to the type ToType. This routine checks for
1285/// ambiguous or inaccessible derived-to-base pointer
1286/// conversions for which IsPointerConversion has already returned
1287/// true. It returns true and produces a diagnostic if there was an
1288/// error, or returns false otherwise.
1289bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1290                                  CastExpr::CastKind &Kind,
1291                                  bool IgnoreBaseAccess) {
1292  QualType FromType = From->getType();
1293
1294  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1295    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1296      QualType FromPointeeType = FromPtrType->getPointeeType(),
1297               ToPointeeType   = ToPtrType->getPointeeType();
1298
1299      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1300          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1301        // We must have a derived-to-base conversion. Check an
1302        // ambiguous or inaccessible conversion.
1303        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1304                                         From->getExprLoc(),
1305                                         From->getSourceRange(),
1306                                         IgnoreBaseAccess))
1307          return true;
1308
1309        // The conversion was successful.
1310        Kind = CastExpr::CK_DerivedToBase;
1311      }
1312    }
1313  if (const ObjCObjectPointerType *FromPtrType =
1314        FromType->getAs<ObjCObjectPointerType>())
1315    if (const ObjCObjectPointerType *ToPtrType =
1316          ToType->getAs<ObjCObjectPointerType>()) {
1317      // Objective-C++ conversions are always okay.
1318      // FIXME: We should have a different class of conversions for the
1319      // Objective-C++ implicit conversions.
1320      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1321        return false;
1322
1323  }
1324  return false;
1325}
1326
1327/// IsMemberPointerConversion - Determines whether the conversion of the
1328/// expression From, which has the (possibly adjusted) type FromType, can be
1329/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1330/// If so, returns true and places the converted type (that might differ from
1331/// ToType in its cv-qualifiers at some level) into ConvertedType.
1332bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1333                                     QualType ToType,
1334                                     bool InOverloadResolution,
1335                                     QualType &ConvertedType) {
1336  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1337  if (!ToTypePtr)
1338    return false;
1339
1340  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1341  if (From->isNullPointerConstant(Context,
1342                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1343                                        : Expr::NPC_ValueDependentIsNull)) {
1344    ConvertedType = ToType;
1345    return true;
1346  }
1347
1348  // Otherwise, both types have to be member pointers.
1349  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1350  if (!FromTypePtr)
1351    return false;
1352
1353  // A pointer to member of B can be converted to a pointer to member of D,
1354  // where D is derived from B (C++ 4.11p2).
1355  QualType FromClass(FromTypePtr->getClass(), 0);
1356  QualType ToClass(ToTypePtr->getClass(), 0);
1357  // FIXME: What happens when these are dependent? Is this function even called?
1358
1359  if (IsDerivedFrom(ToClass, FromClass)) {
1360    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1361                                                 ToClass.getTypePtr());
1362    return true;
1363  }
1364
1365  return false;
1366}
1367
1368/// CheckMemberPointerConversion - Check the member pointer conversion from the
1369/// expression From to the type ToType. This routine checks for ambiguous or
1370/// virtual or inaccessible base-to-derived member pointer conversions
1371/// for which IsMemberPointerConversion has already returned true. It returns
1372/// true and produces a diagnostic if there was an error, or returns false
1373/// otherwise.
1374bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1375                                        CastExpr::CastKind &Kind,
1376                                        bool IgnoreBaseAccess) {
1377  QualType FromType = From->getType();
1378  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1379  if (!FromPtrType) {
1380    // This must be a null pointer to member pointer conversion
1381    assert(From->isNullPointerConstant(Context,
1382                                       Expr::NPC_ValueDependentIsNull) &&
1383           "Expr must be null pointer constant!");
1384    Kind = CastExpr::CK_NullToMemberPointer;
1385    return false;
1386  }
1387
1388  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1389  assert(ToPtrType && "No member pointer cast has a target type "
1390                      "that is not a member pointer.");
1391
1392  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1393  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1394
1395  // FIXME: What about dependent types?
1396  assert(FromClass->isRecordType() && "Pointer into non-class.");
1397  assert(ToClass->isRecordType() && "Pointer into non-class.");
1398
1399  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1400                     /*DetectVirtual=*/true);
1401  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1402  assert(DerivationOkay &&
1403         "Should not have been called if derivation isn't OK.");
1404  (void)DerivationOkay;
1405
1406  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1407                                  getUnqualifiedType())) {
1408    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1409    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1410      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1411    return true;
1412  }
1413
1414  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1415    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1416      << FromClass << ToClass << QualType(VBase, 0)
1417      << From->getSourceRange();
1418    return true;
1419  }
1420
1421  if (!IgnoreBaseAccess)
1422    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1423                         Paths.front(),
1424                         diag::err_downcast_from_inaccessible_base);
1425
1426  // Must be a base to derived member conversion.
1427  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1428  return false;
1429}
1430
1431/// IsQualificationConversion - Determines whether the conversion from
1432/// an rvalue of type FromType to ToType is a qualification conversion
1433/// (C++ 4.4).
1434bool
1435Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1436  FromType = Context.getCanonicalType(FromType);
1437  ToType = Context.getCanonicalType(ToType);
1438
1439  // If FromType and ToType are the same type, this is not a
1440  // qualification conversion.
1441  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1442    return false;
1443
1444  // (C++ 4.4p4):
1445  //   A conversion can add cv-qualifiers at levels other than the first
1446  //   in multi-level pointers, subject to the following rules: [...]
1447  bool PreviousToQualsIncludeConst = true;
1448  bool UnwrappedAnyPointer = false;
1449  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1450    // Within each iteration of the loop, we check the qualifiers to
1451    // determine if this still looks like a qualification
1452    // conversion. Then, if all is well, we unwrap one more level of
1453    // pointers or pointers-to-members and do it all again
1454    // until there are no more pointers or pointers-to-members left to
1455    // unwrap.
1456    UnwrappedAnyPointer = true;
1457
1458    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1459    //      2,j, and similarly for volatile.
1460    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1461      return false;
1462
1463    //   -- if the cv 1,j and cv 2,j are different, then const is in
1464    //      every cv for 0 < k < j.
1465    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1466        && !PreviousToQualsIncludeConst)
1467      return false;
1468
1469    // Keep track of whether all prior cv-qualifiers in the "to" type
1470    // include const.
1471    PreviousToQualsIncludeConst
1472      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1473  }
1474
1475  // We are left with FromType and ToType being the pointee types
1476  // after unwrapping the original FromType and ToType the same number
1477  // of types. If we unwrapped any pointers, and if FromType and
1478  // ToType have the same unqualified type (since we checked
1479  // qualifiers above), then this is a qualification conversion.
1480  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1481}
1482
1483/// Determines whether there is a user-defined conversion sequence
1484/// (C++ [over.ics.user]) that converts expression From to the type
1485/// ToType. If such a conversion exists, User will contain the
1486/// user-defined conversion sequence that performs such a conversion
1487/// and this routine will return true. Otherwise, this routine returns
1488/// false and User is unspecified.
1489///
1490/// \param AllowConversionFunctions true if the conversion should
1491/// consider conversion functions at all. If false, only constructors
1492/// will be considered.
1493///
1494/// \param AllowExplicit  true if the conversion should consider C++0x
1495/// "explicit" conversion functions as well as non-explicit conversion
1496/// functions (C++0x [class.conv.fct]p2).
1497///
1498/// \param UserCast true if looking for user defined conversion for a static
1499/// cast.
1500OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1501                                          UserDefinedConversionSequence& User,
1502                                            OverloadCandidateSet& CandidateSet,
1503                                                bool AllowConversionFunctions,
1504                                                bool AllowExplicit,
1505                                                bool UserCast) {
1506  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1507    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1508      // We're not going to find any constructors.
1509    } else if (CXXRecordDecl *ToRecordDecl
1510                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1511      // C++ [over.match.ctor]p1:
1512      //   When objects of class type are direct-initialized (8.5), or
1513      //   copy-initialized from an expression of the same or a
1514      //   derived class type (8.5), overload resolution selects the
1515      //   constructor. [...] For copy-initialization, the candidate
1516      //   functions are all the converting constructors (12.3.1) of
1517      //   that class. The argument list is the expression-list within
1518      //   the parentheses of the initializer.
1519      bool SuppressUserConversions = !UserCast;
1520      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1521          IsDerivedFrom(From->getType(), ToType)) {
1522        SuppressUserConversions = false;
1523        AllowConversionFunctions = false;
1524      }
1525
1526      DeclarationName ConstructorName
1527        = Context.DeclarationNames.getCXXConstructorName(
1528                          Context.getCanonicalType(ToType).getUnqualifiedType());
1529      DeclContext::lookup_iterator Con, ConEnd;
1530      for (llvm::tie(Con, ConEnd)
1531             = ToRecordDecl->lookup(ConstructorName);
1532           Con != ConEnd; ++Con) {
1533        NamedDecl *D = *Con;
1534        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1535
1536        // Find the constructor (which may be a template).
1537        CXXConstructorDecl *Constructor = 0;
1538        FunctionTemplateDecl *ConstructorTmpl
1539          = dyn_cast<FunctionTemplateDecl>(D);
1540        if (ConstructorTmpl)
1541          Constructor
1542            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1543        else
1544          Constructor = cast<CXXConstructorDecl>(D);
1545
1546        if (!Constructor->isInvalidDecl() &&
1547            Constructor->isConvertingConstructor(AllowExplicit)) {
1548          if (ConstructorTmpl)
1549            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1550                                         /*ExplicitArgs*/ 0,
1551                                         &From, 1, CandidateSet,
1552                                         SuppressUserConversions, false);
1553          else
1554            // Allow one user-defined conversion when user specifies a
1555            // From->ToType conversion via an static cast (c-style, etc).
1556            AddOverloadCandidate(Constructor, FoundDecl,
1557                                 &From, 1, CandidateSet,
1558                                 SuppressUserConversions, false);
1559        }
1560      }
1561    }
1562  }
1563
1564  if (!AllowConversionFunctions) {
1565    // Don't allow any conversion functions to enter the overload set.
1566  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1567                                 PDiag(0)
1568                                   << From->getSourceRange())) {
1569    // No conversion functions from incomplete types.
1570  } else if (const RecordType *FromRecordType
1571               = From->getType()->getAs<RecordType>()) {
1572    if (CXXRecordDecl *FromRecordDecl
1573         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1574      // Add all of the conversion functions as candidates.
1575      const UnresolvedSetImpl *Conversions
1576        = FromRecordDecl->getVisibleConversionFunctions();
1577      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1578             E = Conversions->end(); I != E; ++I) {
1579        DeclAccessPair FoundDecl = I.getPair();
1580        NamedDecl *D = FoundDecl.getDecl();
1581        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1582        if (isa<UsingShadowDecl>(D))
1583          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1584
1585        CXXConversionDecl *Conv;
1586        FunctionTemplateDecl *ConvTemplate;
1587        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1588          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1589        else
1590          Conv = cast<CXXConversionDecl>(D);
1591
1592        if (AllowExplicit || !Conv->isExplicit()) {
1593          if (ConvTemplate)
1594            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1595                                           ActingContext, From, ToType,
1596                                           CandidateSet);
1597          else
1598            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1599                                   From, ToType, CandidateSet);
1600        }
1601      }
1602    }
1603  }
1604
1605  OverloadCandidateSet::iterator Best;
1606  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1607    case OR_Success:
1608      // Record the standard conversion we used and the conversion function.
1609      if (CXXConstructorDecl *Constructor
1610            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1611        // C++ [over.ics.user]p1:
1612        //   If the user-defined conversion is specified by a
1613        //   constructor (12.3.1), the initial standard conversion
1614        //   sequence converts the source type to the type required by
1615        //   the argument of the constructor.
1616        //
1617        QualType ThisType = Constructor->getThisType(Context);
1618        if (Best->Conversions[0].isEllipsis())
1619          User.EllipsisConversion = true;
1620        else {
1621          User.Before = Best->Conversions[0].Standard;
1622          User.EllipsisConversion = false;
1623        }
1624        User.ConversionFunction = Constructor;
1625        User.After.setAsIdentityConversion();
1626        User.After.setFromType(
1627          ThisType->getAs<PointerType>()->getPointeeType());
1628        User.After.setAllToTypes(ToType);
1629        return OR_Success;
1630      } else if (CXXConversionDecl *Conversion
1631                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1632        // C++ [over.ics.user]p1:
1633        //
1634        //   [...] If the user-defined conversion is specified by a
1635        //   conversion function (12.3.2), the initial standard
1636        //   conversion sequence converts the source type to the
1637        //   implicit object parameter of the conversion function.
1638        User.Before = Best->Conversions[0].Standard;
1639        User.ConversionFunction = Conversion;
1640        User.EllipsisConversion = false;
1641
1642        // C++ [over.ics.user]p2:
1643        //   The second standard conversion sequence converts the
1644        //   result of the user-defined conversion to the target type
1645        //   for the sequence. Since an implicit conversion sequence
1646        //   is an initialization, the special rules for
1647        //   initialization by user-defined conversion apply when
1648        //   selecting the best user-defined conversion for a
1649        //   user-defined conversion sequence (see 13.3.3 and
1650        //   13.3.3.1).
1651        User.After = Best->FinalConversion;
1652        return OR_Success;
1653      } else {
1654        assert(false && "Not a constructor or conversion function?");
1655        return OR_No_Viable_Function;
1656      }
1657
1658    case OR_No_Viable_Function:
1659      return OR_No_Viable_Function;
1660    case OR_Deleted:
1661      // No conversion here! We're done.
1662      return OR_Deleted;
1663
1664    case OR_Ambiguous:
1665      return OR_Ambiguous;
1666    }
1667
1668  return OR_No_Viable_Function;
1669}
1670
1671bool
1672Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1673  ImplicitConversionSequence ICS;
1674  OverloadCandidateSet CandidateSet(From->getExprLoc());
1675  OverloadingResult OvResult =
1676    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1677                            CandidateSet, true, false, false);
1678  if (OvResult == OR_Ambiguous)
1679    Diag(From->getSourceRange().getBegin(),
1680         diag::err_typecheck_ambiguous_condition)
1681          << From->getType() << ToType << From->getSourceRange();
1682  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1683    Diag(From->getSourceRange().getBegin(),
1684         diag::err_typecheck_nonviable_condition)
1685    << From->getType() << ToType << From->getSourceRange();
1686  else
1687    return false;
1688  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1689  return true;
1690}
1691
1692/// CompareImplicitConversionSequences - Compare two implicit
1693/// conversion sequences to determine whether one is better than the
1694/// other or if they are indistinguishable (C++ 13.3.3.2).
1695ImplicitConversionSequence::CompareKind
1696Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1697                                         const ImplicitConversionSequence& ICS2)
1698{
1699  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1700  // conversion sequences (as defined in 13.3.3.1)
1701  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1702  //      conversion sequence than a user-defined conversion sequence or
1703  //      an ellipsis conversion sequence, and
1704  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1705  //      conversion sequence than an ellipsis conversion sequence
1706  //      (13.3.3.1.3).
1707  //
1708  // C++0x [over.best.ics]p10:
1709  //   For the purpose of ranking implicit conversion sequences as
1710  //   described in 13.3.3.2, the ambiguous conversion sequence is
1711  //   treated as a user-defined sequence that is indistinguishable
1712  //   from any other user-defined conversion sequence.
1713  if (ICS1.getKind() < ICS2.getKind()) {
1714    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1715      return ImplicitConversionSequence::Better;
1716  } else if (ICS2.getKind() < ICS1.getKind()) {
1717    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1718      return ImplicitConversionSequence::Worse;
1719  }
1720
1721  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1722    return ImplicitConversionSequence::Indistinguishable;
1723
1724  // Two implicit conversion sequences of the same form are
1725  // indistinguishable conversion sequences unless one of the
1726  // following rules apply: (C++ 13.3.3.2p3):
1727  if (ICS1.isStandard())
1728    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1729  else if (ICS1.isUserDefined()) {
1730    // User-defined conversion sequence U1 is a better conversion
1731    // sequence than another user-defined conversion sequence U2 if
1732    // they contain the same user-defined conversion function or
1733    // constructor and if the second standard conversion sequence of
1734    // U1 is better than the second standard conversion sequence of
1735    // U2 (C++ 13.3.3.2p3).
1736    if (ICS1.UserDefined.ConversionFunction ==
1737          ICS2.UserDefined.ConversionFunction)
1738      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1739                                                ICS2.UserDefined.After);
1740  }
1741
1742  return ImplicitConversionSequence::Indistinguishable;
1743}
1744
1745// Per 13.3.3.2p3, compare the given standard conversion sequences to
1746// determine if one is a proper subset of the other.
1747static ImplicitConversionSequence::CompareKind
1748compareStandardConversionSubsets(ASTContext &Context,
1749                                 const StandardConversionSequence& SCS1,
1750                                 const StandardConversionSequence& SCS2) {
1751  ImplicitConversionSequence::CompareKind Result
1752    = ImplicitConversionSequence::Indistinguishable;
1753
1754  if (SCS1.Second != SCS2.Second) {
1755    if (SCS1.Second == ICK_Identity)
1756      Result = ImplicitConversionSequence::Better;
1757    else if (SCS2.Second == ICK_Identity)
1758      Result = ImplicitConversionSequence::Worse;
1759    else
1760      return ImplicitConversionSequence::Indistinguishable;
1761  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1762    return ImplicitConversionSequence::Indistinguishable;
1763
1764  if (SCS1.Third == SCS2.Third) {
1765    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1766                             : ImplicitConversionSequence::Indistinguishable;
1767  }
1768
1769  if (SCS1.Third == ICK_Identity)
1770    return Result == ImplicitConversionSequence::Worse
1771             ? ImplicitConversionSequence::Indistinguishable
1772             : ImplicitConversionSequence::Better;
1773
1774  if (SCS2.Third == ICK_Identity)
1775    return Result == ImplicitConversionSequence::Better
1776             ? ImplicitConversionSequence::Indistinguishable
1777             : ImplicitConversionSequence::Worse;
1778
1779  return ImplicitConversionSequence::Indistinguishable;
1780}
1781
1782/// CompareStandardConversionSequences - Compare two standard
1783/// conversion sequences to determine whether one is better than the
1784/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1785ImplicitConversionSequence::CompareKind
1786Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1787                                         const StandardConversionSequence& SCS2)
1788{
1789  // Standard conversion sequence S1 is a better conversion sequence
1790  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1791
1792  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1793  //     sequences in the canonical form defined by 13.3.3.1.1,
1794  //     excluding any Lvalue Transformation; the identity conversion
1795  //     sequence is considered to be a subsequence of any
1796  //     non-identity conversion sequence) or, if not that,
1797  if (ImplicitConversionSequence::CompareKind CK
1798        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1799    return CK;
1800
1801  //  -- the rank of S1 is better than the rank of S2 (by the rules
1802  //     defined below), or, if not that,
1803  ImplicitConversionRank Rank1 = SCS1.getRank();
1804  ImplicitConversionRank Rank2 = SCS2.getRank();
1805  if (Rank1 < Rank2)
1806    return ImplicitConversionSequence::Better;
1807  else if (Rank2 < Rank1)
1808    return ImplicitConversionSequence::Worse;
1809
1810  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1811  // are indistinguishable unless one of the following rules
1812  // applies:
1813
1814  //   A conversion that is not a conversion of a pointer, or
1815  //   pointer to member, to bool is better than another conversion
1816  //   that is such a conversion.
1817  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1818    return SCS2.isPointerConversionToBool()
1819             ? ImplicitConversionSequence::Better
1820             : ImplicitConversionSequence::Worse;
1821
1822  // C++ [over.ics.rank]p4b2:
1823  //
1824  //   If class B is derived directly or indirectly from class A,
1825  //   conversion of B* to A* is better than conversion of B* to
1826  //   void*, and conversion of A* to void* is better than conversion
1827  //   of B* to void*.
1828  bool SCS1ConvertsToVoid
1829    = SCS1.isPointerConversionToVoidPointer(Context);
1830  bool SCS2ConvertsToVoid
1831    = SCS2.isPointerConversionToVoidPointer(Context);
1832  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1833    // Exactly one of the conversion sequences is a conversion to
1834    // a void pointer; it's the worse conversion.
1835    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1836                              : ImplicitConversionSequence::Worse;
1837  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1838    // Neither conversion sequence converts to a void pointer; compare
1839    // their derived-to-base conversions.
1840    if (ImplicitConversionSequence::CompareKind DerivedCK
1841          = CompareDerivedToBaseConversions(SCS1, SCS2))
1842      return DerivedCK;
1843  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1844    // Both conversion sequences are conversions to void
1845    // pointers. Compare the source types to determine if there's an
1846    // inheritance relationship in their sources.
1847    QualType FromType1 = SCS1.getFromType();
1848    QualType FromType2 = SCS2.getFromType();
1849
1850    // Adjust the types we're converting from via the array-to-pointer
1851    // conversion, if we need to.
1852    if (SCS1.First == ICK_Array_To_Pointer)
1853      FromType1 = Context.getArrayDecayedType(FromType1);
1854    if (SCS2.First == ICK_Array_To_Pointer)
1855      FromType2 = Context.getArrayDecayedType(FromType2);
1856
1857    QualType FromPointee1
1858      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1859    QualType FromPointee2
1860      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1861
1862    if (IsDerivedFrom(FromPointee2, FromPointee1))
1863      return ImplicitConversionSequence::Better;
1864    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1865      return ImplicitConversionSequence::Worse;
1866
1867    // Objective-C++: If one interface is more specific than the
1868    // other, it is the better one.
1869    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1870    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1871    if (FromIface1 && FromIface1) {
1872      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1873        return ImplicitConversionSequence::Better;
1874      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1875        return ImplicitConversionSequence::Worse;
1876    }
1877  }
1878
1879  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1880  // bullet 3).
1881  if (ImplicitConversionSequence::CompareKind QualCK
1882        = CompareQualificationConversions(SCS1, SCS2))
1883    return QualCK;
1884
1885  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1886    // C++0x [over.ics.rank]p3b4:
1887    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1888    //      implicit object parameter of a non-static member function declared
1889    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1890    //      rvalue and S2 binds an lvalue reference.
1891    // FIXME: We don't know if we're dealing with the implicit object parameter,
1892    // or if the member function in this case has a ref qualifier.
1893    // (Of course, we don't have ref qualifiers yet.)
1894    if (SCS1.RRefBinding != SCS2.RRefBinding)
1895      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1896                              : ImplicitConversionSequence::Worse;
1897
1898    // C++ [over.ics.rank]p3b4:
1899    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1900    //      which the references refer are the same type except for
1901    //      top-level cv-qualifiers, and the type to which the reference
1902    //      initialized by S2 refers is more cv-qualified than the type
1903    //      to which the reference initialized by S1 refers.
1904    QualType T1 = SCS1.getToType(2);
1905    QualType T2 = SCS2.getToType(2);
1906    T1 = Context.getCanonicalType(T1);
1907    T2 = Context.getCanonicalType(T2);
1908    Qualifiers T1Quals, T2Quals;
1909    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1910    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1911    if (UnqualT1 == UnqualT2) {
1912      // If the type is an array type, promote the element qualifiers to the type
1913      // for comparison.
1914      if (isa<ArrayType>(T1) && T1Quals)
1915        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1916      if (isa<ArrayType>(T2) && T2Quals)
1917        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1918      if (T2.isMoreQualifiedThan(T1))
1919        return ImplicitConversionSequence::Better;
1920      else if (T1.isMoreQualifiedThan(T2))
1921        return ImplicitConversionSequence::Worse;
1922    }
1923  }
1924
1925  return ImplicitConversionSequence::Indistinguishable;
1926}
1927
1928/// CompareQualificationConversions - Compares two standard conversion
1929/// sequences to determine whether they can be ranked based on their
1930/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1931ImplicitConversionSequence::CompareKind
1932Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1933                                      const StandardConversionSequence& SCS2) {
1934  // C++ 13.3.3.2p3:
1935  //  -- S1 and S2 differ only in their qualification conversion and
1936  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1937  //     cv-qualification signature of type T1 is a proper subset of
1938  //     the cv-qualification signature of type T2, and S1 is not the
1939  //     deprecated string literal array-to-pointer conversion (4.2).
1940  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1941      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1942    return ImplicitConversionSequence::Indistinguishable;
1943
1944  // FIXME: the example in the standard doesn't use a qualification
1945  // conversion (!)
1946  QualType T1 = SCS1.getToType(2);
1947  QualType T2 = SCS2.getToType(2);
1948  T1 = Context.getCanonicalType(T1);
1949  T2 = Context.getCanonicalType(T2);
1950  Qualifiers T1Quals, T2Quals;
1951  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1952  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1953
1954  // If the types are the same, we won't learn anything by unwrapped
1955  // them.
1956  if (UnqualT1 == UnqualT2)
1957    return ImplicitConversionSequence::Indistinguishable;
1958
1959  // If the type is an array type, promote the element qualifiers to the type
1960  // for comparison.
1961  if (isa<ArrayType>(T1) && T1Quals)
1962    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1963  if (isa<ArrayType>(T2) && T2Quals)
1964    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1965
1966  ImplicitConversionSequence::CompareKind Result
1967    = ImplicitConversionSequence::Indistinguishable;
1968  while (UnwrapSimilarPointerTypes(T1, T2)) {
1969    // Within each iteration of the loop, we check the qualifiers to
1970    // determine if this still looks like a qualification
1971    // conversion. Then, if all is well, we unwrap one more level of
1972    // pointers or pointers-to-members and do it all again
1973    // until there are no more pointers or pointers-to-members left
1974    // to unwrap. This essentially mimics what
1975    // IsQualificationConversion does, but here we're checking for a
1976    // strict subset of qualifiers.
1977    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1978      // The qualifiers are the same, so this doesn't tell us anything
1979      // about how the sequences rank.
1980      ;
1981    else if (T2.isMoreQualifiedThan(T1)) {
1982      // T1 has fewer qualifiers, so it could be the better sequence.
1983      if (Result == ImplicitConversionSequence::Worse)
1984        // Neither has qualifiers that are a subset of the other's
1985        // qualifiers.
1986        return ImplicitConversionSequence::Indistinguishable;
1987
1988      Result = ImplicitConversionSequence::Better;
1989    } else if (T1.isMoreQualifiedThan(T2)) {
1990      // T2 has fewer qualifiers, so it could be the better sequence.
1991      if (Result == ImplicitConversionSequence::Better)
1992        // Neither has qualifiers that are a subset of the other's
1993        // qualifiers.
1994        return ImplicitConversionSequence::Indistinguishable;
1995
1996      Result = ImplicitConversionSequence::Worse;
1997    } else {
1998      // Qualifiers are disjoint.
1999      return ImplicitConversionSequence::Indistinguishable;
2000    }
2001
2002    // If the types after this point are equivalent, we're done.
2003    if (Context.hasSameUnqualifiedType(T1, T2))
2004      break;
2005  }
2006
2007  // Check that the winning standard conversion sequence isn't using
2008  // the deprecated string literal array to pointer conversion.
2009  switch (Result) {
2010  case ImplicitConversionSequence::Better:
2011    if (SCS1.DeprecatedStringLiteralToCharPtr)
2012      Result = ImplicitConversionSequence::Indistinguishable;
2013    break;
2014
2015  case ImplicitConversionSequence::Indistinguishable:
2016    break;
2017
2018  case ImplicitConversionSequence::Worse:
2019    if (SCS2.DeprecatedStringLiteralToCharPtr)
2020      Result = ImplicitConversionSequence::Indistinguishable;
2021    break;
2022  }
2023
2024  return Result;
2025}
2026
2027/// CompareDerivedToBaseConversions - Compares two standard conversion
2028/// sequences to determine whether they can be ranked based on their
2029/// various kinds of derived-to-base conversions (C++
2030/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2031/// conversions between Objective-C interface types.
2032ImplicitConversionSequence::CompareKind
2033Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2034                                      const StandardConversionSequence& SCS2) {
2035  QualType FromType1 = SCS1.getFromType();
2036  QualType ToType1 = SCS1.getToType(1);
2037  QualType FromType2 = SCS2.getFromType();
2038  QualType ToType2 = SCS2.getToType(1);
2039
2040  // Adjust the types we're converting from via the array-to-pointer
2041  // conversion, if we need to.
2042  if (SCS1.First == ICK_Array_To_Pointer)
2043    FromType1 = Context.getArrayDecayedType(FromType1);
2044  if (SCS2.First == ICK_Array_To_Pointer)
2045    FromType2 = Context.getArrayDecayedType(FromType2);
2046
2047  // Canonicalize all of the types.
2048  FromType1 = Context.getCanonicalType(FromType1);
2049  ToType1 = Context.getCanonicalType(ToType1);
2050  FromType2 = Context.getCanonicalType(FromType2);
2051  ToType2 = Context.getCanonicalType(ToType2);
2052
2053  // C++ [over.ics.rank]p4b3:
2054  //
2055  //   If class B is derived directly or indirectly from class A and
2056  //   class C is derived directly or indirectly from B,
2057  //
2058  // For Objective-C, we let A, B, and C also be Objective-C
2059  // interfaces.
2060
2061  // Compare based on pointer conversions.
2062  if (SCS1.Second == ICK_Pointer_Conversion &&
2063      SCS2.Second == ICK_Pointer_Conversion &&
2064      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2065      FromType1->isPointerType() && FromType2->isPointerType() &&
2066      ToType1->isPointerType() && ToType2->isPointerType()) {
2067    QualType FromPointee1
2068      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2069    QualType ToPointee1
2070      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2071    QualType FromPointee2
2072      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2073    QualType ToPointee2
2074      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2075
2076    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2077    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2078    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2079    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2080
2081    //   -- conversion of C* to B* is better than conversion of C* to A*,
2082    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2083      if (IsDerivedFrom(ToPointee1, ToPointee2))
2084        return ImplicitConversionSequence::Better;
2085      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2086        return ImplicitConversionSequence::Worse;
2087
2088      if (ToIface1 && ToIface2) {
2089        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2090          return ImplicitConversionSequence::Better;
2091        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2092          return ImplicitConversionSequence::Worse;
2093      }
2094    }
2095
2096    //   -- conversion of B* to A* is better than conversion of C* to A*,
2097    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2098      if (IsDerivedFrom(FromPointee2, FromPointee1))
2099        return ImplicitConversionSequence::Better;
2100      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2101        return ImplicitConversionSequence::Worse;
2102
2103      if (FromIface1 && FromIface2) {
2104        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2105          return ImplicitConversionSequence::Better;
2106        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2107          return ImplicitConversionSequence::Worse;
2108      }
2109    }
2110  }
2111
2112  // Ranking of member-pointer types.
2113  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2114      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2115      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2116    const MemberPointerType * FromMemPointer1 =
2117                                        FromType1->getAs<MemberPointerType>();
2118    const MemberPointerType * ToMemPointer1 =
2119                                          ToType1->getAs<MemberPointerType>();
2120    const MemberPointerType * FromMemPointer2 =
2121                                          FromType2->getAs<MemberPointerType>();
2122    const MemberPointerType * ToMemPointer2 =
2123                                          ToType2->getAs<MemberPointerType>();
2124    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2125    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2126    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2127    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2128    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2129    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2130    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2131    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2132    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2133    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2134      if (IsDerivedFrom(ToPointee1, ToPointee2))
2135        return ImplicitConversionSequence::Worse;
2136      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2137        return ImplicitConversionSequence::Better;
2138    }
2139    // conversion of B::* to C::* is better than conversion of A::* to C::*
2140    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2141      if (IsDerivedFrom(FromPointee1, FromPointee2))
2142        return ImplicitConversionSequence::Better;
2143      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2144        return ImplicitConversionSequence::Worse;
2145    }
2146  }
2147
2148  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2149      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2150      SCS1.Second == ICK_Derived_To_Base) {
2151    //   -- conversion of C to B is better than conversion of C to A,
2152    //   -- binding of an expression of type C to a reference of type
2153    //      B& is better than binding an expression of type C to a
2154    //      reference of type A&,
2155    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2156        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2157      if (IsDerivedFrom(ToType1, ToType2))
2158        return ImplicitConversionSequence::Better;
2159      else if (IsDerivedFrom(ToType2, ToType1))
2160        return ImplicitConversionSequence::Worse;
2161    }
2162
2163    //   -- conversion of B to A is better than conversion of C to A.
2164    //   -- binding of an expression of type B to a reference of type
2165    //      A& is better than binding an expression of type C to a
2166    //      reference of type A&,
2167    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2168        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2169      if (IsDerivedFrom(FromType2, FromType1))
2170        return ImplicitConversionSequence::Better;
2171      else if (IsDerivedFrom(FromType1, FromType2))
2172        return ImplicitConversionSequence::Worse;
2173    }
2174  }
2175
2176  return ImplicitConversionSequence::Indistinguishable;
2177}
2178
2179/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2180/// determine whether they are reference-related,
2181/// reference-compatible, reference-compatible with added
2182/// qualification, or incompatible, for use in C++ initialization by
2183/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2184/// type, and the first type (T1) is the pointee type of the reference
2185/// type being initialized.
2186Sema::ReferenceCompareResult
2187Sema::CompareReferenceRelationship(SourceLocation Loc,
2188                                   QualType OrigT1, QualType OrigT2,
2189                                   bool& DerivedToBase) {
2190  assert(!OrigT1->isReferenceType() &&
2191    "T1 must be the pointee type of the reference type");
2192  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2193
2194  QualType T1 = Context.getCanonicalType(OrigT1);
2195  QualType T2 = Context.getCanonicalType(OrigT2);
2196  Qualifiers T1Quals, T2Quals;
2197  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2198  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2199
2200  // C++ [dcl.init.ref]p4:
2201  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2202  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2203  //   T1 is a base class of T2.
2204  if (UnqualT1 == UnqualT2)
2205    DerivedToBase = false;
2206  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2207           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2208           IsDerivedFrom(UnqualT2, UnqualT1))
2209    DerivedToBase = true;
2210  else
2211    return Ref_Incompatible;
2212
2213  // At this point, we know that T1 and T2 are reference-related (at
2214  // least).
2215
2216  // If the type is an array type, promote the element qualifiers to the type
2217  // for comparison.
2218  if (isa<ArrayType>(T1) && T1Quals)
2219    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2220  if (isa<ArrayType>(T2) && T2Quals)
2221    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2222
2223  // C++ [dcl.init.ref]p4:
2224  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2225  //   reference-related to T2 and cv1 is the same cv-qualification
2226  //   as, or greater cv-qualification than, cv2. For purposes of
2227  //   overload resolution, cases for which cv1 is greater
2228  //   cv-qualification than cv2 are identified as
2229  //   reference-compatible with added qualification (see 13.3.3.2).
2230  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2231    return Ref_Compatible;
2232  else if (T1.isMoreQualifiedThan(T2))
2233    return Ref_Compatible_With_Added_Qualification;
2234  else
2235    return Ref_Related;
2236}
2237
2238/// \brief Compute an implicit conversion sequence for reference
2239/// initialization.
2240static ImplicitConversionSequence
2241TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2242                 SourceLocation DeclLoc,
2243                 bool SuppressUserConversions,
2244                 bool AllowExplicit, bool ForceRValue) {
2245  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2246
2247  // Most paths end in a failed conversion.
2248  ImplicitConversionSequence ICS;
2249  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2250
2251  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2252  QualType T2 = Init->getType();
2253
2254  // If the initializer is the address of an overloaded function, try
2255  // to resolve the overloaded function. If all goes well, T2 is the
2256  // type of the resulting function.
2257  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2258    DeclAccessPair Found;
2259    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2260                                                                false, Found))
2261      T2 = Fn->getType();
2262  }
2263
2264  // Compute some basic properties of the types and the initializer.
2265  bool isRValRef = DeclType->isRValueReferenceType();
2266  bool DerivedToBase = false;
2267  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2268                                                  Init->isLvalue(S.Context);
2269  Sema::ReferenceCompareResult RefRelationship
2270    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2271
2272  // C++ [dcl.init.ref]p5:
2273  //   A reference to type "cv1 T1" is initialized by an expression
2274  //   of type "cv2 T2" as follows:
2275
2276  //     -- If the initializer expression
2277
2278  // C++ [over.ics.ref]p3:
2279  //   Except for an implicit object parameter, for which see 13.3.1,
2280  //   a standard conversion sequence cannot be formed if it requires
2281  //   binding an lvalue reference to non-const to an rvalue or
2282  //   binding an rvalue reference to an lvalue.
2283  if (isRValRef && InitLvalue == Expr::LV_Valid)
2284    return ICS;
2285
2286  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2287  //          reference-compatible with "cv2 T2," or
2288  //
2289  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2290  if (InitLvalue == Expr::LV_Valid &&
2291      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2292    // C++ [over.ics.ref]p1:
2293    //   When a parameter of reference type binds directly (8.5.3)
2294    //   to an argument expression, the implicit conversion sequence
2295    //   is the identity conversion, unless the argument expression
2296    //   has a type that is a derived class of the parameter type,
2297    //   in which case the implicit conversion sequence is a
2298    //   derived-to-base Conversion (13.3.3.1).
2299    ICS.setStandard();
2300    ICS.Standard.First = ICK_Identity;
2301    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2302    ICS.Standard.Third = ICK_Identity;
2303    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2304    ICS.Standard.setToType(0, T2);
2305    ICS.Standard.setToType(1, T1);
2306    ICS.Standard.setToType(2, T1);
2307    ICS.Standard.ReferenceBinding = true;
2308    ICS.Standard.DirectBinding = true;
2309    ICS.Standard.RRefBinding = false;
2310    ICS.Standard.CopyConstructor = 0;
2311
2312    // Nothing more to do: the inaccessibility/ambiguity check for
2313    // derived-to-base conversions is suppressed when we're
2314    // computing the implicit conversion sequence (C++
2315    // [over.best.ics]p2).
2316    return ICS;
2317  }
2318
2319  //       -- has a class type (i.e., T2 is a class type), where T1 is
2320  //          not reference-related to T2, and can be implicitly
2321  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2322  //          is reference-compatible with "cv3 T3" 92) (this
2323  //          conversion is selected by enumerating the applicable
2324  //          conversion functions (13.3.1.6) and choosing the best
2325  //          one through overload resolution (13.3)),
2326  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2327      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2328      RefRelationship == Sema::Ref_Incompatible) {
2329    CXXRecordDecl *T2RecordDecl
2330      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2331
2332    OverloadCandidateSet CandidateSet(DeclLoc);
2333    const UnresolvedSetImpl *Conversions
2334      = T2RecordDecl->getVisibleConversionFunctions();
2335    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2336           E = Conversions->end(); I != E; ++I) {
2337      NamedDecl *D = *I;
2338      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2339      if (isa<UsingShadowDecl>(D))
2340        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2341
2342      FunctionTemplateDecl *ConvTemplate
2343        = dyn_cast<FunctionTemplateDecl>(D);
2344      CXXConversionDecl *Conv;
2345      if (ConvTemplate)
2346        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2347      else
2348        Conv = cast<CXXConversionDecl>(D);
2349
2350      // If the conversion function doesn't return a reference type,
2351      // it can't be considered for this conversion.
2352      if (Conv->getConversionType()->isLValueReferenceType() &&
2353          (AllowExplicit || !Conv->isExplicit())) {
2354        if (ConvTemplate)
2355          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2356                                         Init, DeclType, CandidateSet);
2357        else
2358          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2359                                 DeclType, CandidateSet);
2360      }
2361    }
2362
2363    OverloadCandidateSet::iterator Best;
2364    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2365    case OR_Success:
2366      // C++ [over.ics.ref]p1:
2367      //
2368      //   [...] If the parameter binds directly to the result of
2369      //   applying a conversion function to the argument
2370      //   expression, the implicit conversion sequence is a
2371      //   user-defined conversion sequence (13.3.3.1.2), with the
2372      //   second standard conversion sequence either an identity
2373      //   conversion or, if the conversion function returns an
2374      //   entity of a type that is a derived class of the parameter
2375      //   type, a derived-to-base Conversion.
2376      if (!Best->FinalConversion.DirectBinding)
2377        break;
2378
2379      ICS.setUserDefined();
2380      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2381      ICS.UserDefined.After = Best->FinalConversion;
2382      ICS.UserDefined.ConversionFunction = Best->Function;
2383      ICS.UserDefined.EllipsisConversion = false;
2384      assert(ICS.UserDefined.After.ReferenceBinding &&
2385             ICS.UserDefined.After.DirectBinding &&
2386             "Expected a direct reference binding!");
2387      return ICS;
2388
2389    case OR_Ambiguous:
2390      ICS.setAmbiguous();
2391      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2392           Cand != CandidateSet.end(); ++Cand)
2393        if (Cand->Viable)
2394          ICS.Ambiguous.addConversion(Cand->Function);
2395      return ICS;
2396
2397    case OR_No_Viable_Function:
2398    case OR_Deleted:
2399      // There was no suitable conversion, or we found a deleted
2400      // conversion; continue with other checks.
2401      break;
2402    }
2403  }
2404
2405  //     -- Otherwise, the reference shall be to a non-volatile const
2406  //        type (i.e., cv1 shall be const), or the reference shall be an
2407  //        rvalue reference and the initializer expression shall be an rvalue.
2408  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const)
2409    return ICS;
2410
2411  //       -- If the initializer expression is an rvalue, with T2 a
2412  //          class type, and "cv1 T1" is reference-compatible with
2413  //          "cv2 T2," the reference is bound in one of the
2414  //          following ways (the choice is implementation-defined):
2415  //
2416  //          -- The reference is bound to the object represented by
2417  //             the rvalue (see 3.10) or to a sub-object within that
2418  //             object.
2419  //
2420  //          -- A temporary of type "cv1 T2" [sic] is created, and
2421  //             a constructor is called to copy the entire rvalue
2422  //             object into the temporary. The reference is bound to
2423  //             the temporary or to a sub-object within the
2424  //             temporary.
2425  //
2426  //          The constructor that would be used to make the copy
2427  //          shall be callable whether or not the copy is actually
2428  //          done.
2429  //
2430  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2431  // freedom, so we will always take the first option and never build
2432  // a temporary in this case.
2433  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2434      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2435    ICS.setStandard();
2436    ICS.Standard.First = ICK_Identity;
2437    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2438    ICS.Standard.Third = ICK_Identity;
2439    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2440    ICS.Standard.setToType(0, T2);
2441    ICS.Standard.setToType(1, T1);
2442    ICS.Standard.setToType(2, T1);
2443    ICS.Standard.ReferenceBinding = true;
2444    ICS.Standard.DirectBinding = false;
2445    ICS.Standard.RRefBinding = isRValRef;
2446    ICS.Standard.CopyConstructor = 0;
2447    return ICS;
2448  }
2449
2450  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2451  //          initialized from the initializer expression using the
2452  //          rules for a non-reference copy initialization (8.5). The
2453  //          reference is then bound to the temporary. If T1 is
2454  //          reference-related to T2, cv1 must be the same
2455  //          cv-qualification as, or greater cv-qualification than,
2456  //          cv2; otherwise, the program is ill-formed.
2457  if (RefRelationship == Sema::Ref_Related) {
2458    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2459    // we would be reference-compatible or reference-compatible with
2460    // added qualification. But that wasn't the case, so the reference
2461    // initialization fails.
2462    return ICS;
2463  }
2464
2465  // If at least one of the types is a class type, the types are not
2466  // related, and we aren't allowed any user conversions, the
2467  // reference binding fails. This case is important for breaking
2468  // recursion, since TryImplicitConversion below will attempt to
2469  // create a temporary through the use of a copy constructor.
2470  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2471      (T1->isRecordType() || T2->isRecordType()))
2472    return ICS;
2473
2474  // C++ [over.ics.ref]p2:
2475  //
2476  //   When a parameter of reference type is not bound directly to
2477  //   an argument expression, the conversion sequence is the one
2478  //   required to convert the argument expression to the
2479  //   underlying type of the reference according to
2480  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2481  //   to copy-initializing a temporary of the underlying type with
2482  //   the argument expression. Any difference in top-level
2483  //   cv-qualification is subsumed by the initialization itself
2484  //   and does not constitute a conversion.
2485  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2486                                /*AllowExplicit=*/false,
2487                                /*ForceRValue=*/false,
2488                                /*InOverloadResolution=*/false);
2489
2490  // Of course, that's still a reference binding.
2491  if (ICS.isStandard()) {
2492    ICS.Standard.ReferenceBinding = true;
2493    ICS.Standard.RRefBinding = isRValRef;
2494  } else if (ICS.isUserDefined()) {
2495    ICS.UserDefined.After.ReferenceBinding = true;
2496    ICS.UserDefined.After.RRefBinding = isRValRef;
2497  }
2498  return ICS;
2499}
2500
2501/// TryCopyInitialization - Try to copy-initialize a value of type
2502/// ToType from the expression From. Return the implicit conversion
2503/// sequence required to pass this argument, which may be a bad
2504/// conversion sequence (meaning that the argument cannot be passed to
2505/// a parameter of this type). If @p SuppressUserConversions, then we
2506/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2507/// then we treat @p From as an rvalue, even if it is an lvalue.
2508ImplicitConversionSequence
2509Sema::TryCopyInitialization(Expr *From, QualType ToType,
2510                            bool SuppressUserConversions, bool ForceRValue,
2511                            bool InOverloadResolution) {
2512  if (ToType->isReferenceType())
2513    return TryReferenceInit(*this, From, ToType,
2514                            /*FIXME:*/From->getLocStart(),
2515                            SuppressUserConversions,
2516                            /*AllowExplicit=*/false,
2517                            ForceRValue);
2518
2519  return TryImplicitConversion(From, ToType,
2520                               SuppressUserConversions,
2521                               /*AllowExplicit=*/false,
2522                               ForceRValue,
2523                               InOverloadResolution);
2524}
2525
2526/// TryObjectArgumentInitialization - Try to initialize the object
2527/// parameter of the given member function (@c Method) from the
2528/// expression @p From.
2529ImplicitConversionSequence
2530Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2531                                      CXXMethodDecl *Method,
2532                                      CXXRecordDecl *ActingContext) {
2533  QualType ClassType = Context.getTypeDeclType(ActingContext);
2534  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2535  //                 const volatile object.
2536  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2537    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2538  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2539
2540  // Set up the conversion sequence as a "bad" conversion, to allow us
2541  // to exit early.
2542  ImplicitConversionSequence ICS;
2543
2544  // We need to have an object of class type.
2545  QualType FromType = OrigFromType;
2546  if (const PointerType *PT = FromType->getAs<PointerType>())
2547    FromType = PT->getPointeeType();
2548
2549  assert(FromType->isRecordType());
2550
2551  // The implicit object parameter is has the type "reference to cv X",
2552  // where X is the class of which the function is a member
2553  // (C++ [over.match.funcs]p4). However, when finding an implicit
2554  // conversion sequence for the argument, we are not allowed to
2555  // create temporaries or perform user-defined conversions
2556  // (C++ [over.match.funcs]p5). We perform a simplified version of
2557  // reference binding here, that allows class rvalues to bind to
2558  // non-constant references.
2559
2560  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2561  // with the implicit object parameter (C++ [over.match.funcs]p5).
2562  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2563  if (ImplicitParamType.getCVRQualifiers()
2564                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2565      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2566    ICS.setBad(BadConversionSequence::bad_qualifiers,
2567               OrigFromType, ImplicitParamType);
2568    return ICS;
2569  }
2570
2571  // Check that we have either the same type or a derived type. It
2572  // affects the conversion rank.
2573  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2574  ImplicitConversionKind SecondKind;
2575  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2576    SecondKind = ICK_Identity;
2577  } else if (IsDerivedFrom(FromType, ClassType))
2578    SecondKind = ICK_Derived_To_Base;
2579  else {
2580    ICS.setBad(BadConversionSequence::unrelated_class,
2581               FromType, ImplicitParamType);
2582    return ICS;
2583  }
2584
2585  // Success. Mark this as a reference binding.
2586  ICS.setStandard();
2587  ICS.Standard.setAsIdentityConversion();
2588  ICS.Standard.Second = SecondKind;
2589  ICS.Standard.setFromType(FromType);
2590  ICS.Standard.setAllToTypes(ImplicitParamType);
2591  ICS.Standard.ReferenceBinding = true;
2592  ICS.Standard.DirectBinding = true;
2593  ICS.Standard.RRefBinding = false;
2594  return ICS;
2595}
2596
2597/// PerformObjectArgumentInitialization - Perform initialization of
2598/// the implicit object parameter for the given Method with the given
2599/// expression.
2600bool
2601Sema::PerformObjectArgumentInitialization(Expr *&From,
2602                                          NestedNameSpecifier *Qualifier,
2603                                          NamedDecl *FoundDecl,
2604                                          CXXMethodDecl *Method) {
2605  QualType FromRecordType, DestType;
2606  QualType ImplicitParamRecordType  =
2607    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2608
2609  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2610    FromRecordType = PT->getPointeeType();
2611    DestType = Method->getThisType(Context);
2612  } else {
2613    FromRecordType = From->getType();
2614    DestType = ImplicitParamRecordType;
2615  }
2616
2617  // Note that we always use the true parent context when performing
2618  // the actual argument initialization.
2619  ImplicitConversionSequence ICS
2620    = TryObjectArgumentInitialization(From->getType(), Method,
2621                                      Method->getParent());
2622  if (ICS.isBad())
2623    return Diag(From->getSourceRange().getBegin(),
2624                diag::err_implicit_object_parameter_init)
2625       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2626
2627  if (ICS.Standard.Second == ICK_Derived_To_Base)
2628    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2629
2630  if (!Context.hasSameType(From->getType(), DestType))
2631    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2632                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2633  return false;
2634}
2635
2636/// TryContextuallyConvertToBool - Attempt to contextually convert the
2637/// expression From to bool (C++0x [conv]p3).
2638ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2639  return TryImplicitConversion(From, Context.BoolTy,
2640                               // FIXME: Are these flags correct?
2641                               /*SuppressUserConversions=*/false,
2642                               /*AllowExplicit=*/true,
2643                               /*ForceRValue=*/false,
2644                               /*InOverloadResolution=*/false);
2645}
2646
2647/// PerformContextuallyConvertToBool - Perform a contextual conversion
2648/// of the expression From to bool (C++0x [conv]p3).
2649bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2650  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2651  if (!ICS.isBad())
2652    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2653
2654  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2655    return  Diag(From->getSourceRange().getBegin(),
2656                 diag::err_typecheck_bool_condition)
2657                  << From->getType() << From->getSourceRange();
2658  return true;
2659}
2660
2661/// AddOverloadCandidate - Adds the given function to the set of
2662/// candidate functions, using the given function call arguments.  If
2663/// @p SuppressUserConversions, then don't allow user-defined
2664/// conversions via constructors or conversion operators.
2665/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2666/// hacky way to implement the overloading rules for elidable copy
2667/// initialization in C++0x (C++0x 12.8p15).
2668///
2669/// \para PartialOverloading true if we are performing "partial" overloading
2670/// based on an incomplete set of function arguments. This feature is used by
2671/// code completion.
2672void
2673Sema::AddOverloadCandidate(FunctionDecl *Function,
2674                           DeclAccessPair FoundDecl,
2675                           Expr **Args, unsigned NumArgs,
2676                           OverloadCandidateSet& CandidateSet,
2677                           bool SuppressUserConversions,
2678                           bool ForceRValue,
2679                           bool PartialOverloading) {
2680  const FunctionProtoType* Proto
2681    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2682  assert(Proto && "Functions without a prototype cannot be overloaded");
2683  assert(!Function->getDescribedFunctionTemplate() &&
2684         "Use AddTemplateOverloadCandidate for function templates");
2685
2686  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2687    if (!isa<CXXConstructorDecl>(Method)) {
2688      // If we get here, it's because we're calling a member function
2689      // that is named without a member access expression (e.g.,
2690      // "this->f") that was either written explicitly or created
2691      // implicitly. This can happen with a qualified call to a member
2692      // function, e.g., X::f(). We use an empty type for the implied
2693      // object argument (C++ [over.call.func]p3), and the acting context
2694      // is irrelevant.
2695      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2696                         QualType(), Args, NumArgs, CandidateSet,
2697                         SuppressUserConversions, ForceRValue);
2698      return;
2699    }
2700    // We treat a constructor like a non-member function, since its object
2701    // argument doesn't participate in overload resolution.
2702  }
2703
2704  if (!CandidateSet.isNewCandidate(Function))
2705    return;
2706
2707  // Overload resolution is always an unevaluated context.
2708  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2709
2710  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2711    // C++ [class.copy]p3:
2712    //   A member function template is never instantiated to perform the copy
2713    //   of a class object to an object of its class type.
2714    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2715    if (NumArgs == 1 &&
2716        Constructor->isCopyConstructorLikeSpecialization() &&
2717        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2718         IsDerivedFrom(Args[0]->getType(), ClassType)))
2719      return;
2720  }
2721
2722  // Add this candidate
2723  CandidateSet.push_back(OverloadCandidate());
2724  OverloadCandidate& Candidate = CandidateSet.back();
2725  Candidate.FoundDecl = FoundDecl;
2726  Candidate.Function = Function;
2727  Candidate.Viable = true;
2728  Candidate.IsSurrogate = false;
2729  Candidate.IgnoreObjectArgument = false;
2730
2731  unsigned NumArgsInProto = Proto->getNumArgs();
2732
2733  // (C++ 13.3.2p2): A candidate function having fewer than m
2734  // parameters is viable only if it has an ellipsis in its parameter
2735  // list (8.3.5).
2736  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2737      !Proto->isVariadic()) {
2738    Candidate.Viable = false;
2739    Candidate.FailureKind = ovl_fail_too_many_arguments;
2740    return;
2741  }
2742
2743  // (C++ 13.3.2p2): A candidate function having more than m parameters
2744  // is viable only if the (m+1)st parameter has a default argument
2745  // (8.3.6). For the purposes of overload resolution, the
2746  // parameter list is truncated on the right, so that there are
2747  // exactly m parameters.
2748  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2749  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2750    // Not enough arguments.
2751    Candidate.Viable = false;
2752    Candidate.FailureKind = ovl_fail_too_few_arguments;
2753    return;
2754  }
2755
2756  // Determine the implicit conversion sequences for each of the
2757  // arguments.
2758  Candidate.Conversions.resize(NumArgs);
2759  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2760    if (ArgIdx < NumArgsInProto) {
2761      // (C++ 13.3.2p3): for F to be a viable function, there shall
2762      // exist for each argument an implicit conversion sequence
2763      // (13.3.3.1) that converts that argument to the corresponding
2764      // parameter of F.
2765      QualType ParamType = Proto->getArgType(ArgIdx);
2766      Candidate.Conversions[ArgIdx]
2767        = TryCopyInitialization(Args[ArgIdx], ParamType,
2768                                SuppressUserConversions, ForceRValue,
2769                                /*InOverloadResolution=*/true);
2770      if (Candidate.Conversions[ArgIdx].isBad()) {
2771        Candidate.Viable = false;
2772        Candidate.FailureKind = ovl_fail_bad_conversion;
2773        break;
2774      }
2775    } else {
2776      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2777      // argument for which there is no corresponding parameter is
2778      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2779      Candidate.Conversions[ArgIdx].setEllipsis();
2780    }
2781  }
2782}
2783
2784/// \brief Add all of the function declarations in the given function set to
2785/// the overload canddiate set.
2786void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2787                                 Expr **Args, unsigned NumArgs,
2788                                 OverloadCandidateSet& CandidateSet,
2789                                 bool SuppressUserConversions) {
2790  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2791    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2792    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2793      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2794        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2795                           cast<CXXMethodDecl>(FD)->getParent(),
2796                           Args[0]->getType(), Args + 1, NumArgs - 1,
2797                           CandidateSet, SuppressUserConversions);
2798      else
2799        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2800                             SuppressUserConversions);
2801    } else {
2802      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2803      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2804          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2805        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2806                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2807                                   /*FIXME: explicit args */ 0,
2808                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2809                                   CandidateSet,
2810                                   SuppressUserConversions);
2811      else
2812        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2813                                     /*FIXME: explicit args */ 0,
2814                                     Args, NumArgs, CandidateSet,
2815                                     SuppressUserConversions);
2816    }
2817  }
2818}
2819
2820/// AddMethodCandidate - Adds a named decl (which is some kind of
2821/// method) as a method candidate to the given overload set.
2822void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2823                              QualType ObjectType,
2824                              Expr **Args, unsigned NumArgs,
2825                              OverloadCandidateSet& CandidateSet,
2826                              bool SuppressUserConversions, bool ForceRValue) {
2827  NamedDecl *Decl = FoundDecl.getDecl();
2828  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2829
2830  if (isa<UsingShadowDecl>(Decl))
2831    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2832
2833  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2834    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2835           "Expected a member function template");
2836    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2837                               /*ExplicitArgs*/ 0,
2838                               ObjectType, Args, NumArgs,
2839                               CandidateSet,
2840                               SuppressUserConversions,
2841                               ForceRValue);
2842  } else {
2843    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2844                       ObjectType, Args, NumArgs,
2845                       CandidateSet, SuppressUserConversions, ForceRValue);
2846  }
2847}
2848
2849/// AddMethodCandidate - Adds the given C++ member function to the set
2850/// of candidate functions, using the given function call arguments
2851/// and the object argument (@c Object). For example, in a call
2852/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2853/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2854/// allow user-defined conversions via constructors or conversion
2855/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2856/// a slightly hacky way to implement the overloading rules for elidable copy
2857/// initialization in C++0x (C++0x 12.8p15).
2858void
2859Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2860                         CXXRecordDecl *ActingContext, QualType ObjectType,
2861                         Expr **Args, unsigned NumArgs,
2862                         OverloadCandidateSet& CandidateSet,
2863                         bool SuppressUserConversions, bool ForceRValue) {
2864  const FunctionProtoType* Proto
2865    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2866  assert(Proto && "Methods without a prototype cannot be overloaded");
2867  assert(!isa<CXXConstructorDecl>(Method) &&
2868         "Use AddOverloadCandidate for constructors");
2869
2870  if (!CandidateSet.isNewCandidate(Method))
2871    return;
2872
2873  // Overload resolution is always an unevaluated context.
2874  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2875
2876  // Add this candidate
2877  CandidateSet.push_back(OverloadCandidate());
2878  OverloadCandidate& Candidate = CandidateSet.back();
2879  Candidate.FoundDecl = FoundDecl;
2880  Candidate.Function = Method;
2881  Candidate.IsSurrogate = false;
2882  Candidate.IgnoreObjectArgument = false;
2883
2884  unsigned NumArgsInProto = Proto->getNumArgs();
2885
2886  // (C++ 13.3.2p2): A candidate function having fewer than m
2887  // parameters is viable only if it has an ellipsis in its parameter
2888  // list (8.3.5).
2889  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2890    Candidate.Viable = false;
2891    Candidate.FailureKind = ovl_fail_too_many_arguments;
2892    return;
2893  }
2894
2895  // (C++ 13.3.2p2): A candidate function having more than m parameters
2896  // is viable only if the (m+1)st parameter has a default argument
2897  // (8.3.6). For the purposes of overload resolution, the
2898  // parameter list is truncated on the right, so that there are
2899  // exactly m parameters.
2900  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2901  if (NumArgs < MinRequiredArgs) {
2902    // Not enough arguments.
2903    Candidate.Viable = false;
2904    Candidate.FailureKind = ovl_fail_too_few_arguments;
2905    return;
2906  }
2907
2908  Candidate.Viable = true;
2909  Candidate.Conversions.resize(NumArgs + 1);
2910
2911  if (Method->isStatic() || ObjectType.isNull())
2912    // The implicit object argument is ignored.
2913    Candidate.IgnoreObjectArgument = true;
2914  else {
2915    // Determine the implicit conversion sequence for the object
2916    // parameter.
2917    Candidate.Conversions[0]
2918      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2919    if (Candidate.Conversions[0].isBad()) {
2920      Candidate.Viable = false;
2921      Candidate.FailureKind = ovl_fail_bad_conversion;
2922      return;
2923    }
2924  }
2925
2926  // Determine the implicit conversion sequences for each of the
2927  // arguments.
2928  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2929    if (ArgIdx < NumArgsInProto) {
2930      // (C++ 13.3.2p3): for F to be a viable function, there shall
2931      // exist for each argument an implicit conversion sequence
2932      // (13.3.3.1) that converts that argument to the corresponding
2933      // parameter of F.
2934      QualType ParamType = Proto->getArgType(ArgIdx);
2935      Candidate.Conversions[ArgIdx + 1]
2936        = TryCopyInitialization(Args[ArgIdx], ParamType,
2937                                SuppressUserConversions, ForceRValue,
2938                                /*InOverloadResolution=*/true);
2939      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2940        Candidate.Viable = false;
2941        Candidate.FailureKind = ovl_fail_bad_conversion;
2942        break;
2943      }
2944    } else {
2945      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2946      // argument for which there is no corresponding parameter is
2947      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2948      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2949    }
2950  }
2951}
2952
2953/// \brief Add a C++ member function template as a candidate to the candidate
2954/// set, using template argument deduction to produce an appropriate member
2955/// function template specialization.
2956void
2957Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2958                                 DeclAccessPair FoundDecl,
2959                                 CXXRecordDecl *ActingContext,
2960                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2961                                 QualType ObjectType,
2962                                 Expr **Args, unsigned NumArgs,
2963                                 OverloadCandidateSet& CandidateSet,
2964                                 bool SuppressUserConversions,
2965                                 bool ForceRValue) {
2966  if (!CandidateSet.isNewCandidate(MethodTmpl))
2967    return;
2968
2969  // C++ [over.match.funcs]p7:
2970  //   In each case where a candidate is a function template, candidate
2971  //   function template specializations are generated using template argument
2972  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2973  //   candidate functions in the usual way.113) A given name can refer to one
2974  //   or more function templates and also to a set of overloaded non-template
2975  //   functions. In such a case, the candidate functions generated from each
2976  //   function template are combined with the set of non-template candidate
2977  //   functions.
2978  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2979  FunctionDecl *Specialization = 0;
2980  if (TemplateDeductionResult Result
2981      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2982                                Args, NumArgs, Specialization, Info)) {
2983        // FIXME: Record what happened with template argument deduction, so
2984        // that we can give the user a beautiful diagnostic.
2985        (void)Result;
2986        return;
2987      }
2988
2989  // Add the function template specialization produced by template argument
2990  // deduction as a candidate.
2991  assert(Specialization && "Missing member function template specialization?");
2992  assert(isa<CXXMethodDecl>(Specialization) &&
2993         "Specialization is not a member function?");
2994  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2995                     ActingContext, ObjectType, Args, NumArgs,
2996                     CandidateSet, SuppressUserConversions, ForceRValue);
2997}
2998
2999/// \brief Add a C++ function template specialization as a candidate
3000/// in the candidate set, using template argument deduction to produce
3001/// an appropriate function template specialization.
3002void
3003Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3004                                   DeclAccessPair FoundDecl,
3005                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3006                                   Expr **Args, unsigned NumArgs,
3007                                   OverloadCandidateSet& CandidateSet,
3008                                   bool SuppressUserConversions,
3009                                   bool ForceRValue) {
3010  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3011    return;
3012
3013  // C++ [over.match.funcs]p7:
3014  //   In each case where a candidate is a function template, candidate
3015  //   function template specializations are generated using template argument
3016  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3017  //   candidate functions in the usual way.113) A given name can refer to one
3018  //   or more function templates and also to a set of overloaded non-template
3019  //   functions. In such a case, the candidate functions generated from each
3020  //   function template are combined with the set of non-template candidate
3021  //   functions.
3022  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3023  FunctionDecl *Specialization = 0;
3024  if (TemplateDeductionResult Result
3025        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3026                                  Args, NumArgs, Specialization, Info)) {
3027    CandidateSet.push_back(OverloadCandidate());
3028    OverloadCandidate &Candidate = CandidateSet.back();
3029    Candidate.FoundDecl = FoundDecl;
3030    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3031    Candidate.Viable = false;
3032    Candidate.FailureKind = ovl_fail_bad_deduction;
3033    Candidate.IsSurrogate = false;
3034    Candidate.IgnoreObjectArgument = false;
3035
3036    // TODO: record more information about failed template arguments
3037    Candidate.DeductionFailure.Result = Result;
3038    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3039    return;
3040  }
3041
3042  // Add the function template specialization produced by template argument
3043  // deduction as a candidate.
3044  assert(Specialization && "Missing function template specialization?");
3045  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3046                       SuppressUserConversions, ForceRValue);
3047}
3048
3049/// AddConversionCandidate - Add a C++ conversion function as a
3050/// candidate in the candidate set (C++ [over.match.conv],
3051/// C++ [over.match.copy]). From is the expression we're converting from,
3052/// and ToType is the type that we're eventually trying to convert to
3053/// (which may or may not be the same type as the type that the
3054/// conversion function produces).
3055void
3056Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3057                             DeclAccessPair FoundDecl,
3058                             CXXRecordDecl *ActingContext,
3059                             Expr *From, QualType ToType,
3060                             OverloadCandidateSet& CandidateSet) {
3061  assert(!Conversion->getDescribedFunctionTemplate() &&
3062         "Conversion function templates use AddTemplateConversionCandidate");
3063
3064  if (!CandidateSet.isNewCandidate(Conversion))
3065    return;
3066
3067  // Overload resolution is always an unevaluated context.
3068  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3069
3070  // Add this candidate
3071  CandidateSet.push_back(OverloadCandidate());
3072  OverloadCandidate& Candidate = CandidateSet.back();
3073  Candidate.FoundDecl = FoundDecl;
3074  Candidate.Function = Conversion;
3075  Candidate.IsSurrogate = false;
3076  Candidate.IgnoreObjectArgument = false;
3077  Candidate.FinalConversion.setAsIdentityConversion();
3078  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
3079  Candidate.FinalConversion.setAllToTypes(ToType);
3080
3081  // Determine the implicit conversion sequence for the implicit
3082  // object parameter.
3083  Candidate.Viable = true;
3084  Candidate.Conversions.resize(1);
3085  Candidate.Conversions[0]
3086    = TryObjectArgumentInitialization(From->getType(), Conversion,
3087                                      ActingContext);
3088  // Conversion functions to a different type in the base class is visible in
3089  // the derived class.  So, a derived to base conversion should not participate
3090  // in overload resolution.
3091  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3092    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3093  if (Candidate.Conversions[0].isBad()) {
3094    Candidate.Viable = false;
3095    Candidate.FailureKind = ovl_fail_bad_conversion;
3096    return;
3097  }
3098
3099  // We won't go through a user-define type conversion function to convert a
3100  // derived to base as such conversions are given Conversion Rank. They only
3101  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3102  QualType FromCanon
3103    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3104  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3105  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3106    Candidate.Viable = false;
3107    Candidate.FailureKind = ovl_fail_trivial_conversion;
3108    return;
3109  }
3110
3111
3112  // To determine what the conversion from the result of calling the
3113  // conversion function to the type we're eventually trying to
3114  // convert to (ToType), we need to synthesize a call to the
3115  // conversion function and attempt copy initialization from it. This
3116  // makes sure that we get the right semantics with respect to
3117  // lvalues/rvalues and the type. Fortunately, we can allocate this
3118  // call on the stack and we don't need its arguments to be
3119  // well-formed.
3120  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3121                            From->getLocStart());
3122  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3123                                CastExpr::CK_FunctionToPointerDecay,
3124                                &ConversionRef, false);
3125
3126  // Note that it is safe to allocate CallExpr on the stack here because
3127  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3128  // allocator).
3129  CallExpr Call(Context, &ConversionFn, 0, 0,
3130                Conversion->getConversionType().getNonReferenceType(),
3131                From->getLocStart());
3132  ImplicitConversionSequence ICS =
3133    TryCopyInitialization(&Call, ToType,
3134                          /*SuppressUserConversions=*/true,
3135                          /*ForceRValue=*/false,
3136                          /*InOverloadResolution=*/false);
3137
3138  switch (ICS.getKind()) {
3139  case ImplicitConversionSequence::StandardConversion:
3140    Candidate.FinalConversion = ICS.Standard;
3141
3142    // C++ [over.ics.user]p3:
3143    //   If the user-defined conversion is specified by a specialization of a
3144    //   conversion function template, the second standard conversion sequence
3145    //   shall have exact match rank.
3146    if (Conversion->getPrimaryTemplate() &&
3147        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3148      Candidate.Viable = false;
3149      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3150    }
3151
3152    break;
3153
3154  case ImplicitConversionSequence::BadConversion:
3155    Candidate.Viable = false;
3156    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3157    break;
3158
3159  default:
3160    assert(false &&
3161           "Can only end up with a standard conversion sequence or failure");
3162  }
3163}
3164
3165/// \brief Adds a conversion function template specialization
3166/// candidate to the overload set, using template argument deduction
3167/// to deduce the template arguments of the conversion function
3168/// template from the type that we are converting to (C++
3169/// [temp.deduct.conv]).
3170void
3171Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3172                                     DeclAccessPair FoundDecl,
3173                                     CXXRecordDecl *ActingDC,
3174                                     Expr *From, QualType ToType,
3175                                     OverloadCandidateSet &CandidateSet) {
3176  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3177         "Only conversion function templates permitted here");
3178
3179  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3180    return;
3181
3182  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3183  CXXConversionDecl *Specialization = 0;
3184  if (TemplateDeductionResult Result
3185        = DeduceTemplateArguments(FunctionTemplate, ToType,
3186                                  Specialization, Info)) {
3187    // FIXME: Record what happened with template argument deduction, so
3188    // that we can give the user a beautiful diagnostic.
3189    (void)Result;
3190    return;
3191  }
3192
3193  // Add the conversion function template specialization produced by
3194  // template argument deduction as a candidate.
3195  assert(Specialization && "Missing function template specialization?");
3196  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3197                         CandidateSet);
3198}
3199
3200/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3201/// converts the given @c Object to a function pointer via the
3202/// conversion function @c Conversion, and then attempts to call it
3203/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3204/// the type of function that we'll eventually be calling.
3205void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3206                                 DeclAccessPair FoundDecl,
3207                                 CXXRecordDecl *ActingContext,
3208                                 const FunctionProtoType *Proto,
3209                                 QualType ObjectType,
3210                                 Expr **Args, unsigned NumArgs,
3211                                 OverloadCandidateSet& CandidateSet) {
3212  if (!CandidateSet.isNewCandidate(Conversion))
3213    return;
3214
3215  // Overload resolution is always an unevaluated context.
3216  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3217
3218  CandidateSet.push_back(OverloadCandidate());
3219  OverloadCandidate& Candidate = CandidateSet.back();
3220  Candidate.FoundDecl = FoundDecl;
3221  Candidate.Function = 0;
3222  Candidate.Surrogate = Conversion;
3223  Candidate.Viable = true;
3224  Candidate.IsSurrogate = true;
3225  Candidate.IgnoreObjectArgument = false;
3226  Candidate.Conversions.resize(NumArgs + 1);
3227
3228  // Determine the implicit conversion sequence for the implicit
3229  // object parameter.
3230  ImplicitConversionSequence ObjectInit
3231    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3232  if (ObjectInit.isBad()) {
3233    Candidate.Viable = false;
3234    Candidate.FailureKind = ovl_fail_bad_conversion;
3235    Candidate.Conversions[0] = ObjectInit;
3236    return;
3237  }
3238
3239  // The first conversion is actually a user-defined conversion whose
3240  // first conversion is ObjectInit's standard conversion (which is
3241  // effectively a reference binding). Record it as such.
3242  Candidate.Conversions[0].setUserDefined();
3243  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3244  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3245  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3246  Candidate.Conversions[0].UserDefined.After
3247    = Candidate.Conversions[0].UserDefined.Before;
3248  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3249
3250  // Find the
3251  unsigned NumArgsInProto = Proto->getNumArgs();
3252
3253  // (C++ 13.3.2p2): A candidate function having fewer than m
3254  // parameters is viable only if it has an ellipsis in its parameter
3255  // list (8.3.5).
3256  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3257    Candidate.Viable = false;
3258    Candidate.FailureKind = ovl_fail_too_many_arguments;
3259    return;
3260  }
3261
3262  // Function types don't have any default arguments, so just check if
3263  // we have enough arguments.
3264  if (NumArgs < NumArgsInProto) {
3265    // Not enough arguments.
3266    Candidate.Viable = false;
3267    Candidate.FailureKind = ovl_fail_too_few_arguments;
3268    return;
3269  }
3270
3271  // Determine the implicit conversion sequences for each of the
3272  // arguments.
3273  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3274    if (ArgIdx < NumArgsInProto) {
3275      // (C++ 13.3.2p3): for F to be a viable function, there shall
3276      // exist for each argument an implicit conversion sequence
3277      // (13.3.3.1) that converts that argument to the corresponding
3278      // parameter of F.
3279      QualType ParamType = Proto->getArgType(ArgIdx);
3280      Candidate.Conversions[ArgIdx + 1]
3281        = TryCopyInitialization(Args[ArgIdx], ParamType,
3282                                /*SuppressUserConversions=*/false,
3283                                /*ForceRValue=*/false,
3284                                /*InOverloadResolution=*/false);
3285      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3286        Candidate.Viable = false;
3287        Candidate.FailureKind = ovl_fail_bad_conversion;
3288        break;
3289      }
3290    } else {
3291      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3292      // argument for which there is no corresponding parameter is
3293      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3294      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3295    }
3296  }
3297}
3298
3299// FIXME: This will eventually be removed, once we've migrated all of the
3300// operator overloading logic over to the scheme used by binary operators, which
3301// works for template instantiation.
3302void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3303                                 SourceLocation OpLoc,
3304                                 Expr **Args, unsigned NumArgs,
3305                                 OverloadCandidateSet& CandidateSet,
3306                                 SourceRange OpRange) {
3307  UnresolvedSet<16> Fns;
3308
3309  QualType T1 = Args[0]->getType();
3310  QualType T2;
3311  if (NumArgs > 1)
3312    T2 = Args[1]->getType();
3313
3314  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3315  if (S)
3316    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3317  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3318  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3319                                       CandidateSet);
3320  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3321  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3322}
3323
3324/// \brief Add overload candidates for overloaded operators that are
3325/// member functions.
3326///
3327/// Add the overloaded operator candidates that are member functions
3328/// for the operator Op that was used in an operator expression such
3329/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3330/// CandidateSet will store the added overload candidates. (C++
3331/// [over.match.oper]).
3332void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3333                                       SourceLocation OpLoc,
3334                                       Expr **Args, unsigned NumArgs,
3335                                       OverloadCandidateSet& CandidateSet,
3336                                       SourceRange OpRange) {
3337  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3338
3339  // C++ [over.match.oper]p3:
3340  //   For a unary operator @ with an operand of a type whose
3341  //   cv-unqualified version is T1, and for a binary operator @ with
3342  //   a left operand of a type whose cv-unqualified version is T1 and
3343  //   a right operand of a type whose cv-unqualified version is T2,
3344  //   three sets of candidate functions, designated member
3345  //   candidates, non-member candidates and built-in candidates, are
3346  //   constructed as follows:
3347  QualType T1 = Args[0]->getType();
3348  QualType T2;
3349  if (NumArgs > 1)
3350    T2 = Args[1]->getType();
3351
3352  //     -- If T1 is a class type, the set of member candidates is the
3353  //        result of the qualified lookup of T1::operator@
3354  //        (13.3.1.1.1); otherwise, the set of member candidates is
3355  //        empty.
3356  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3357    // Complete the type if it can be completed. Otherwise, we're done.
3358    if (RequireCompleteType(OpLoc, T1, PDiag()))
3359      return;
3360
3361    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3362    LookupQualifiedName(Operators, T1Rec->getDecl());
3363    Operators.suppressDiagnostics();
3364
3365    for (LookupResult::iterator Oper = Operators.begin(),
3366                             OperEnd = Operators.end();
3367         Oper != OperEnd;
3368         ++Oper)
3369      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3370                         Args + 1, NumArgs - 1, CandidateSet,
3371                         /* SuppressUserConversions = */ false);
3372  }
3373}
3374
3375/// AddBuiltinCandidate - Add a candidate for a built-in
3376/// operator. ResultTy and ParamTys are the result and parameter types
3377/// of the built-in candidate, respectively. Args and NumArgs are the
3378/// arguments being passed to the candidate. IsAssignmentOperator
3379/// should be true when this built-in candidate is an assignment
3380/// operator. NumContextualBoolArguments is the number of arguments
3381/// (at the beginning of the argument list) that will be contextually
3382/// converted to bool.
3383void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3384                               Expr **Args, unsigned NumArgs,
3385                               OverloadCandidateSet& CandidateSet,
3386                               bool IsAssignmentOperator,
3387                               unsigned NumContextualBoolArguments) {
3388  // Overload resolution is always an unevaluated context.
3389  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3390
3391  // Add this candidate
3392  CandidateSet.push_back(OverloadCandidate());
3393  OverloadCandidate& Candidate = CandidateSet.back();
3394  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3395  Candidate.Function = 0;
3396  Candidate.IsSurrogate = false;
3397  Candidate.IgnoreObjectArgument = false;
3398  Candidate.BuiltinTypes.ResultTy = ResultTy;
3399  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3400    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3401
3402  // Determine the implicit conversion sequences for each of the
3403  // arguments.
3404  Candidate.Viable = true;
3405  Candidate.Conversions.resize(NumArgs);
3406  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3407    // C++ [over.match.oper]p4:
3408    //   For the built-in assignment operators, conversions of the
3409    //   left operand are restricted as follows:
3410    //     -- no temporaries are introduced to hold the left operand, and
3411    //     -- no user-defined conversions are applied to the left
3412    //        operand to achieve a type match with the left-most
3413    //        parameter of a built-in candidate.
3414    //
3415    // We block these conversions by turning off user-defined
3416    // conversions, since that is the only way that initialization of
3417    // a reference to a non-class type can occur from something that
3418    // is not of the same type.
3419    if (ArgIdx < NumContextualBoolArguments) {
3420      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3421             "Contextual conversion to bool requires bool type");
3422      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3423    } else {
3424      Candidate.Conversions[ArgIdx]
3425        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3426                                ArgIdx == 0 && IsAssignmentOperator,
3427                                /*ForceRValue=*/false,
3428                                /*InOverloadResolution=*/false);
3429    }
3430    if (Candidate.Conversions[ArgIdx].isBad()) {
3431      Candidate.Viable = false;
3432      Candidate.FailureKind = ovl_fail_bad_conversion;
3433      break;
3434    }
3435  }
3436}
3437
3438/// BuiltinCandidateTypeSet - A set of types that will be used for the
3439/// candidate operator functions for built-in operators (C++
3440/// [over.built]). The types are separated into pointer types and
3441/// enumeration types.
3442class BuiltinCandidateTypeSet  {
3443  /// TypeSet - A set of types.
3444  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3445
3446  /// PointerTypes - The set of pointer types that will be used in the
3447  /// built-in candidates.
3448  TypeSet PointerTypes;
3449
3450  /// MemberPointerTypes - The set of member pointer types that will be
3451  /// used in the built-in candidates.
3452  TypeSet MemberPointerTypes;
3453
3454  /// EnumerationTypes - The set of enumeration types that will be
3455  /// used in the built-in candidates.
3456  TypeSet EnumerationTypes;
3457
3458  /// Sema - The semantic analysis instance where we are building the
3459  /// candidate type set.
3460  Sema &SemaRef;
3461
3462  /// Context - The AST context in which we will build the type sets.
3463  ASTContext &Context;
3464
3465  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3466                                               const Qualifiers &VisibleQuals);
3467  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3468
3469public:
3470  /// iterator - Iterates through the types that are part of the set.
3471  typedef TypeSet::iterator iterator;
3472
3473  BuiltinCandidateTypeSet(Sema &SemaRef)
3474    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3475
3476  void AddTypesConvertedFrom(QualType Ty,
3477                             SourceLocation Loc,
3478                             bool AllowUserConversions,
3479                             bool AllowExplicitConversions,
3480                             const Qualifiers &VisibleTypeConversionsQuals);
3481
3482  /// pointer_begin - First pointer type found;
3483  iterator pointer_begin() { return PointerTypes.begin(); }
3484
3485  /// pointer_end - Past the last pointer type found;
3486  iterator pointer_end() { return PointerTypes.end(); }
3487
3488  /// member_pointer_begin - First member pointer type found;
3489  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3490
3491  /// member_pointer_end - Past the last member pointer type found;
3492  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3493
3494  /// enumeration_begin - First enumeration type found;
3495  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3496
3497  /// enumeration_end - Past the last enumeration type found;
3498  iterator enumeration_end() { return EnumerationTypes.end(); }
3499};
3500
3501/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3502/// the set of pointer types along with any more-qualified variants of
3503/// that type. For example, if @p Ty is "int const *", this routine
3504/// will add "int const *", "int const volatile *", "int const
3505/// restrict *", and "int const volatile restrict *" to the set of
3506/// pointer types. Returns true if the add of @p Ty itself succeeded,
3507/// false otherwise.
3508///
3509/// FIXME: what to do about extended qualifiers?
3510bool
3511BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3512                                             const Qualifiers &VisibleQuals) {
3513
3514  // Insert this type.
3515  if (!PointerTypes.insert(Ty))
3516    return false;
3517
3518  const PointerType *PointerTy = Ty->getAs<PointerType>();
3519  assert(PointerTy && "type was not a pointer type!");
3520
3521  QualType PointeeTy = PointerTy->getPointeeType();
3522  // Don't add qualified variants of arrays. For one, they're not allowed
3523  // (the qualifier would sink to the element type), and for another, the
3524  // only overload situation where it matters is subscript or pointer +- int,
3525  // and those shouldn't have qualifier variants anyway.
3526  if (PointeeTy->isArrayType())
3527    return true;
3528  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3529  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3530    BaseCVR = Array->getElementType().getCVRQualifiers();
3531  bool hasVolatile = VisibleQuals.hasVolatile();
3532  bool hasRestrict = VisibleQuals.hasRestrict();
3533
3534  // Iterate through all strict supersets of BaseCVR.
3535  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3536    if ((CVR | BaseCVR) != CVR) continue;
3537    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3538    // in the types.
3539    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3540    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3541    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3542    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3543  }
3544
3545  return true;
3546}
3547
3548/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3549/// to the set of pointer types along with any more-qualified variants of
3550/// that type. For example, if @p Ty is "int const *", this routine
3551/// will add "int const *", "int const volatile *", "int const
3552/// restrict *", and "int const volatile restrict *" to the set of
3553/// pointer types. Returns true if the add of @p Ty itself succeeded,
3554/// false otherwise.
3555///
3556/// FIXME: what to do about extended qualifiers?
3557bool
3558BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3559    QualType Ty) {
3560  // Insert this type.
3561  if (!MemberPointerTypes.insert(Ty))
3562    return false;
3563
3564  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3565  assert(PointerTy && "type was not a member pointer type!");
3566
3567  QualType PointeeTy = PointerTy->getPointeeType();
3568  // Don't add qualified variants of arrays. For one, they're not allowed
3569  // (the qualifier would sink to the element type), and for another, the
3570  // only overload situation where it matters is subscript or pointer +- int,
3571  // and those shouldn't have qualifier variants anyway.
3572  if (PointeeTy->isArrayType())
3573    return true;
3574  const Type *ClassTy = PointerTy->getClass();
3575
3576  // Iterate through all strict supersets of the pointee type's CVR
3577  // qualifiers.
3578  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3579  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3580    if ((CVR | BaseCVR) != CVR) continue;
3581
3582    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3583    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3584  }
3585
3586  return true;
3587}
3588
3589/// AddTypesConvertedFrom - Add each of the types to which the type @p
3590/// Ty can be implicit converted to the given set of @p Types. We're
3591/// primarily interested in pointer types and enumeration types. We also
3592/// take member pointer types, for the conditional operator.
3593/// AllowUserConversions is true if we should look at the conversion
3594/// functions of a class type, and AllowExplicitConversions if we
3595/// should also include the explicit conversion functions of a class
3596/// type.
3597void
3598BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3599                                               SourceLocation Loc,
3600                                               bool AllowUserConversions,
3601                                               bool AllowExplicitConversions,
3602                                               const Qualifiers &VisibleQuals) {
3603  // Only deal with canonical types.
3604  Ty = Context.getCanonicalType(Ty);
3605
3606  // Look through reference types; they aren't part of the type of an
3607  // expression for the purposes of conversions.
3608  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3609    Ty = RefTy->getPointeeType();
3610
3611  // We don't care about qualifiers on the type.
3612  Ty = Ty.getLocalUnqualifiedType();
3613
3614  // If we're dealing with an array type, decay to the pointer.
3615  if (Ty->isArrayType())
3616    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3617
3618  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3619    QualType PointeeTy = PointerTy->getPointeeType();
3620
3621    // Insert our type, and its more-qualified variants, into the set
3622    // of types.
3623    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3624      return;
3625  } else if (Ty->isMemberPointerType()) {
3626    // Member pointers are far easier, since the pointee can't be converted.
3627    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3628      return;
3629  } else if (Ty->isEnumeralType()) {
3630    EnumerationTypes.insert(Ty);
3631  } else if (AllowUserConversions) {
3632    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3633      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3634        // No conversion functions in incomplete types.
3635        return;
3636      }
3637
3638      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3639      const UnresolvedSetImpl *Conversions
3640        = ClassDecl->getVisibleConversionFunctions();
3641      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3642             E = Conversions->end(); I != E; ++I) {
3643        NamedDecl *D = I.getDecl();
3644        if (isa<UsingShadowDecl>(D))
3645          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3646
3647        // Skip conversion function templates; they don't tell us anything
3648        // about which builtin types we can convert to.
3649        if (isa<FunctionTemplateDecl>(D))
3650          continue;
3651
3652        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3653        if (AllowExplicitConversions || !Conv->isExplicit()) {
3654          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3655                                VisibleQuals);
3656        }
3657      }
3658    }
3659  }
3660}
3661
3662/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3663/// the volatile- and non-volatile-qualified assignment operators for the
3664/// given type to the candidate set.
3665static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3666                                                   QualType T,
3667                                                   Expr **Args,
3668                                                   unsigned NumArgs,
3669                                    OverloadCandidateSet &CandidateSet) {
3670  QualType ParamTypes[2];
3671
3672  // T& operator=(T&, T)
3673  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3674  ParamTypes[1] = T;
3675  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3676                        /*IsAssignmentOperator=*/true);
3677
3678  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3679    // volatile T& operator=(volatile T&, T)
3680    ParamTypes[0]
3681      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3682    ParamTypes[1] = T;
3683    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3684                          /*IsAssignmentOperator=*/true);
3685  }
3686}
3687
3688/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3689/// if any, found in visible type conversion functions found in ArgExpr's type.
3690static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3691    Qualifiers VRQuals;
3692    const RecordType *TyRec;
3693    if (const MemberPointerType *RHSMPType =
3694        ArgExpr->getType()->getAs<MemberPointerType>())
3695      TyRec = cast<RecordType>(RHSMPType->getClass());
3696    else
3697      TyRec = ArgExpr->getType()->getAs<RecordType>();
3698    if (!TyRec) {
3699      // Just to be safe, assume the worst case.
3700      VRQuals.addVolatile();
3701      VRQuals.addRestrict();
3702      return VRQuals;
3703    }
3704
3705    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3706    if (!ClassDecl->hasDefinition())
3707      return VRQuals;
3708
3709    const UnresolvedSetImpl *Conversions =
3710      ClassDecl->getVisibleConversionFunctions();
3711
3712    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3713           E = Conversions->end(); I != E; ++I) {
3714      NamedDecl *D = I.getDecl();
3715      if (isa<UsingShadowDecl>(D))
3716        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3717      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3718        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3719        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3720          CanTy = ResTypeRef->getPointeeType();
3721        // Need to go down the pointer/mempointer chain and add qualifiers
3722        // as see them.
3723        bool done = false;
3724        while (!done) {
3725          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3726            CanTy = ResTypePtr->getPointeeType();
3727          else if (const MemberPointerType *ResTypeMPtr =
3728                CanTy->getAs<MemberPointerType>())
3729            CanTy = ResTypeMPtr->getPointeeType();
3730          else
3731            done = true;
3732          if (CanTy.isVolatileQualified())
3733            VRQuals.addVolatile();
3734          if (CanTy.isRestrictQualified())
3735            VRQuals.addRestrict();
3736          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3737            return VRQuals;
3738        }
3739      }
3740    }
3741    return VRQuals;
3742}
3743
3744/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3745/// operator overloads to the candidate set (C++ [over.built]), based
3746/// on the operator @p Op and the arguments given. For example, if the
3747/// operator is a binary '+', this routine might add "int
3748/// operator+(int, int)" to cover integer addition.
3749void
3750Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3751                                   SourceLocation OpLoc,
3752                                   Expr **Args, unsigned NumArgs,
3753                                   OverloadCandidateSet& CandidateSet) {
3754  // The set of "promoted arithmetic types", which are the arithmetic
3755  // types are that preserved by promotion (C++ [over.built]p2). Note
3756  // that the first few of these types are the promoted integral
3757  // types; these types need to be first.
3758  // FIXME: What about complex?
3759  const unsigned FirstIntegralType = 0;
3760  const unsigned LastIntegralType = 13;
3761  const unsigned FirstPromotedIntegralType = 7,
3762                 LastPromotedIntegralType = 13;
3763  const unsigned FirstPromotedArithmeticType = 7,
3764                 LastPromotedArithmeticType = 16;
3765  const unsigned NumArithmeticTypes = 16;
3766  QualType ArithmeticTypes[NumArithmeticTypes] = {
3767    Context.BoolTy, Context.CharTy, Context.WCharTy,
3768// FIXME:   Context.Char16Ty, Context.Char32Ty,
3769    Context.SignedCharTy, Context.ShortTy,
3770    Context.UnsignedCharTy, Context.UnsignedShortTy,
3771    Context.IntTy, Context.LongTy, Context.LongLongTy,
3772    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3773    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3774  };
3775  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3776         "Invalid first promoted integral type");
3777  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3778           == Context.UnsignedLongLongTy &&
3779         "Invalid last promoted integral type");
3780  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3781         "Invalid first promoted arithmetic type");
3782  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3783            == Context.LongDoubleTy &&
3784         "Invalid last promoted arithmetic type");
3785
3786  // Find all of the types that the arguments can convert to, but only
3787  // if the operator we're looking at has built-in operator candidates
3788  // that make use of these types.
3789  Qualifiers VisibleTypeConversionsQuals;
3790  VisibleTypeConversionsQuals.addConst();
3791  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3792    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3793
3794  BuiltinCandidateTypeSet CandidateTypes(*this);
3795  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3796      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3797      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3798      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3799      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3800      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3801    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3802      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3803                                           OpLoc,
3804                                           true,
3805                                           (Op == OO_Exclaim ||
3806                                            Op == OO_AmpAmp ||
3807                                            Op == OO_PipePipe),
3808                                           VisibleTypeConversionsQuals);
3809  }
3810
3811  bool isComparison = false;
3812  switch (Op) {
3813  case OO_None:
3814  case NUM_OVERLOADED_OPERATORS:
3815    assert(false && "Expected an overloaded operator");
3816    break;
3817
3818  case OO_Star: // '*' is either unary or binary
3819    if (NumArgs == 1)
3820      goto UnaryStar;
3821    else
3822      goto BinaryStar;
3823    break;
3824
3825  case OO_Plus: // '+' is either unary or binary
3826    if (NumArgs == 1)
3827      goto UnaryPlus;
3828    else
3829      goto BinaryPlus;
3830    break;
3831
3832  case OO_Minus: // '-' is either unary or binary
3833    if (NumArgs == 1)
3834      goto UnaryMinus;
3835    else
3836      goto BinaryMinus;
3837    break;
3838
3839  case OO_Amp: // '&' is either unary or binary
3840    if (NumArgs == 1)
3841      goto UnaryAmp;
3842    else
3843      goto BinaryAmp;
3844
3845  case OO_PlusPlus:
3846  case OO_MinusMinus:
3847    // C++ [over.built]p3:
3848    //
3849    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3850    //   is either volatile or empty, there exist candidate operator
3851    //   functions of the form
3852    //
3853    //       VQ T&      operator++(VQ T&);
3854    //       T          operator++(VQ T&, int);
3855    //
3856    // C++ [over.built]p4:
3857    //
3858    //   For every pair (T, VQ), where T is an arithmetic type other
3859    //   than bool, and VQ is either volatile or empty, there exist
3860    //   candidate operator functions of the form
3861    //
3862    //       VQ T&      operator--(VQ T&);
3863    //       T          operator--(VQ T&, int);
3864    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3865         Arith < NumArithmeticTypes; ++Arith) {
3866      QualType ArithTy = ArithmeticTypes[Arith];
3867      QualType ParamTypes[2]
3868        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3869
3870      // Non-volatile version.
3871      if (NumArgs == 1)
3872        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3873      else
3874        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3875      // heuristic to reduce number of builtin candidates in the set.
3876      // Add volatile version only if there are conversions to a volatile type.
3877      if (VisibleTypeConversionsQuals.hasVolatile()) {
3878        // Volatile version
3879        ParamTypes[0]
3880          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3881        if (NumArgs == 1)
3882          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3883        else
3884          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3885      }
3886    }
3887
3888    // C++ [over.built]p5:
3889    //
3890    //   For every pair (T, VQ), where T is a cv-qualified or
3891    //   cv-unqualified object type, and VQ is either volatile or
3892    //   empty, there exist candidate operator functions of the form
3893    //
3894    //       T*VQ&      operator++(T*VQ&);
3895    //       T*VQ&      operator--(T*VQ&);
3896    //       T*         operator++(T*VQ&, int);
3897    //       T*         operator--(T*VQ&, int);
3898    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3899         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3900      // Skip pointer types that aren't pointers to object types.
3901      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3902        continue;
3903
3904      QualType ParamTypes[2] = {
3905        Context.getLValueReferenceType(*Ptr), Context.IntTy
3906      };
3907
3908      // Without volatile
3909      if (NumArgs == 1)
3910        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3911      else
3912        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3913
3914      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3915          VisibleTypeConversionsQuals.hasVolatile()) {
3916        // With volatile
3917        ParamTypes[0]
3918          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3919        if (NumArgs == 1)
3920          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3921        else
3922          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3923      }
3924    }
3925    break;
3926
3927  UnaryStar:
3928    // C++ [over.built]p6:
3929    //   For every cv-qualified or cv-unqualified object type T, there
3930    //   exist candidate operator functions of the form
3931    //
3932    //       T&         operator*(T*);
3933    //
3934    // C++ [over.built]p7:
3935    //   For every function type T, there exist candidate operator
3936    //   functions of the form
3937    //       T&         operator*(T*);
3938    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3939         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3940      QualType ParamTy = *Ptr;
3941      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3942      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3943                          &ParamTy, Args, 1, CandidateSet);
3944    }
3945    break;
3946
3947  UnaryPlus:
3948    // C++ [over.built]p8:
3949    //   For every type T, there exist candidate operator functions of
3950    //   the form
3951    //
3952    //       T*         operator+(T*);
3953    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3954         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3955      QualType ParamTy = *Ptr;
3956      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3957    }
3958
3959    // Fall through
3960
3961  UnaryMinus:
3962    // C++ [over.built]p9:
3963    //  For every promoted arithmetic type T, there exist candidate
3964    //  operator functions of the form
3965    //
3966    //       T         operator+(T);
3967    //       T         operator-(T);
3968    for (unsigned Arith = FirstPromotedArithmeticType;
3969         Arith < LastPromotedArithmeticType; ++Arith) {
3970      QualType ArithTy = ArithmeticTypes[Arith];
3971      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3972    }
3973    break;
3974
3975  case OO_Tilde:
3976    // C++ [over.built]p10:
3977    //   For every promoted integral type T, there exist candidate
3978    //   operator functions of the form
3979    //
3980    //        T         operator~(T);
3981    for (unsigned Int = FirstPromotedIntegralType;
3982         Int < LastPromotedIntegralType; ++Int) {
3983      QualType IntTy = ArithmeticTypes[Int];
3984      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3985    }
3986    break;
3987
3988  case OO_New:
3989  case OO_Delete:
3990  case OO_Array_New:
3991  case OO_Array_Delete:
3992  case OO_Call:
3993    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3994    break;
3995
3996  case OO_Comma:
3997  UnaryAmp:
3998  case OO_Arrow:
3999    // C++ [over.match.oper]p3:
4000    //   -- For the operator ',', the unary operator '&', or the
4001    //      operator '->', the built-in candidates set is empty.
4002    break;
4003
4004  case OO_EqualEqual:
4005  case OO_ExclaimEqual:
4006    // C++ [over.match.oper]p16:
4007    //   For every pointer to member type T, there exist candidate operator
4008    //   functions of the form
4009    //
4010    //        bool operator==(T,T);
4011    //        bool operator!=(T,T);
4012    for (BuiltinCandidateTypeSet::iterator
4013           MemPtr = CandidateTypes.member_pointer_begin(),
4014           MemPtrEnd = CandidateTypes.member_pointer_end();
4015         MemPtr != MemPtrEnd;
4016         ++MemPtr) {
4017      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4018      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4019    }
4020
4021    // Fall through
4022
4023  case OO_Less:
4024  case OO_Greater:
4025  case OO_LessEqual:
4026  case OO_GreaterEqual:
4027    // C++ [over.built]p15:
4028    //
4029    //   For every pointer or enumeration type T, there exist
4030    //   candidate operator functions of the form
4031    //
4032    //        bool       operator<(T, T);
4033    //        bool       operator>(T, T);
4034    //        bool       operator<=(T, T);
4035    //        bool       operator>=(T, T);
4036    //        bool       operator==(T, T);
4037    //        bool       operator!=(T, T);
4038    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4039         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4040      QualType ParamTypes[2] = { *Ptr, *Ptr };
4041      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4042    }
4043    for (BuiltinCandidateTypeSet::iterator Enum
4044           = CandidateTypes.enumeration_begin();
4045         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4046      QualType ParamTypes[2] = { *Enum, *Enum };
4047      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4048    }
4049
4050    // Fall through.
4051    isComparison = true;
4052
4053  BinaryPlus:
4054  BinaryMinus:
4055    if (!isComparison) {
4056      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4057
4058      // C++ [over.built]p13:
4059      //
4060      //   For every cv-qualified or cv-unqualified object type T
4061      //   there exist candidate operator functions of the form
4062      //
4063      //      T*         operator+(T*, ptrdiff_t);
4064      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4065      //      T*         operator-(T*, ptrdiff_t);
4066      //      T*         operator+(ptrdiff_t, T*);
4067      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4068      //
4069      // C++ [over.built]p14:
4070      //
4071      //   For every T, where T is a pointer to object type, there
4072      //   exist candidate operator functions of the form
4073      //
4074      //      ptrdiff_t  operator-(T, T);
4075      for (BuiltinCandidateTypeSet::iterator Ptr
4076             = CandidateTypes.pointer_begin();
4077           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4078        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4079
4080        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4081        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4082
4083        if (Op == OO_Plus) {
4084          // T* operator+(ptrdiff_t, T*);
4085          ParamTypes[0] = ParamTypes[1];
4086          ParamTypes[1] = *Ptr;
4087          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4088        } else {
4089          // ptrdiff_t operator-(T, T);
4090          ParamTypes[1] = *Ptr;
4091          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4092                              Args, 2, CandidateSet);
4093        }
4094      }
4095    }
4096    // Fall through
4097
4098  case OO_Slash:
4099  BinaryStar:
4100  Conditional:
4101    // C++ [over.built]p12:
4102    //
4103    //   For every pair of promoted arithmetic types L and R, there
4104    //   exist candidate operator functions of the form
4105    //
4106    //        LR         operator*(L, R);
4107    //        LR         operator/(L, R);
4108    //        LR         operator+(L, R);
4109    //        LR         operator-(L, R);
4110    //        bool       operator<(L, R);
4111    //        bool       operator>(L, R);
4112    //        bool       operator<=(L, R);
4113    //        bool       operator>=(L, R);
4114    //        bool       operator==(L, R);
4115    //        bool       operator!=(L, R);
4116    //
4117    //   where LR is the result of the usual arithmetic conversions
4118    //   between types L and R.
4119    //
4120    // C++ [over.built]p24:
4121    //
4122    //   For every pair of promoted arithmetic types L and R, there exist
4123    //   candidate operator functions of the form
4124    //
4125    //        LR       operator?(bool, L, R);
4126    //
4127    //   where LR is the result of the usual arithmetic conversions
4128    //   between types L and R.
4129    // Our candidates ignore the first parameter.
4130    for (unsigned Left = FirstPromotedArithmeticType;
4131         Left < LastPromotedArithmeticType; ++Left) {
4132      for (unsigned Right = FirstPromotedArithmeticType;
4133           Right < LastPromotedArithmeticType; ++Right) {
4134        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4135        QualType Result
4136          = isComparison
4137          ? Context.BoolTy
4138          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4139        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4140      }
4141    }
4142    break;
4143
4144  case OO_Percent:
4145  BinaryAmp:
4146  case OO_Caret:
4147  case OO_Pipe:
4148  case OO_LessLess:
4149  case OO_GreaterGreater:
4150    // C++ [over.built]p17:
4151    //
4152    //   For every pair of promoted integral types L and R, there
4153    //   exist candidate operator functions of the form
4154    //
4155    //      LR         operator%(L, R);
4156    //      LR         operator&(L, R);
4157    //      LR         operator^(L, R);
4158    //      LR         operator|(L, R);
4159    //      L          operator<<(L, R);
4160    //      L          operator>>(L, R);
4161    //
4162    //   where LR is the result of the usual arithmetic conversions
4163    //   between types L and R.
4164    for (unsigned Left = FirstPromotedIntegralType;
4165         Left < LastPromotedIntegralType; ++Left) {
4166      for (unsigned Right = FirstPromotedIntegralType;
4167           Right < LastPromotedIntegralType; ++Right) {
4168        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4169        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4170            ? LandR[0]
4171            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4172        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4173      }
4174    }
4175    break;
4176
4177  case OO_Equal:
4178    // C++ [over.built]p20:
4179    //
4180    //   For every pair (T, VQ), where T is an enumeration or
4181    //   pointer to member type and VQ is either volatile or
4182    //   empty, there exist candidate operator functions of the form
4183    //
4184    //        VQ T&      operator=(VQ T&, T);
4185    for (BuiltinCandidateTypeSet::iterator
4186           Enum = CandidateTypes.enumeration_begin(),
4187           EnumEnd = CandidateTypes.enumeration_end();
4188         Enum != EnumEnd; ++Enum)
4189      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4190                                             CandidateSet);
4191    for (BuiltinCandidateTypeSet::iterator
4192           MemPtr = CandidateTypes.member_pointer_begin(),
4193         MemPtrEnd = CandidateTypes.member_pointer_end();
4194         MemPtr != MemPtrEnd; ++MemPtr)
4195      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4196                                             CandidateSet);
4197      // Fall through.
4198
4199  case OO_PlusEqual:
4200  case OO_MinusEqual:
4201    // C++ [over.built]p19:
4202    //
4203    //   For every pair (T, VQ), where T is any type and VQ is either
4204    //   volatile or empty, there exist candidate operator functions
4205    //   of the form
4206    //
4207    //        T*VQ&      operator=(T*VQ&, T*);
4208    //
4209    // C++ [over.built]p21:
4210    //
4211    //   For every pair (T, VQ), where T is a cv-qualified or
4212    //   cv-unqualified object type and VQ is either volatile or
4213    //   empty, there exist candidate operator functions of the form
4214    //
4215    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4216    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4217    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4218         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4219      QualType ParamTypes[2];
4220      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4221
4222      // non-volatile version
4223      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4224      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4225                          /*IsAssigmentOperator=*/Op == OO_Equal);
4226
4227      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4228          VisibleTypeConversionsQuals.hasVolatile()) {
4229        // volatile version
4230        ParamTypes[0]
4231          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4232        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4233                            /*IsAssigmentOperator=*/Op == OO_Equal);
4234      }
4235    }
4236    // Fall through.
4237
4238  case OO_StarEqual:
4239  case OO_SlashEqual:
4240    // C++ [over.built]p18:
4241    //
4242    //   For every triple (L, VQ, R), where L is an arithmetic type,
4243    //   VQ is either volatile or empty, and R is a promoted
4244    //   arithmetic type, there exist candidate operator functions of
4245    //   the form
4246    //
4247    //        VQ L&      operator=(VQ L&, R);
4248    //        VQ L&      operator*=(VQ L&, R);
4249    //        VQ L&      operator/=(VQ L&, R);
4250    //        VQ L&      operator+=(VQ L&, R);
4251    //        VQ L&      operator-=(VQ L&, R);
4252    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4253      for (unsigned Right = FirstPromotedArithmeticType;
4254           Right < LastPromotedArithmeticType; ++Right) {
4255        QualType ParamTypes[2];
4256        ParamTypes[1] = ArithmeticTypes[Right];
4257
4258        // Add this built-in operator as a candidate (VQ is empty).
4259        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4260        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4261                            /*IsAssigmentOperator=*/Op == OO_Equal);
4262
4263        // Add this built-in operator as a candidate (VQ is 'volatile').
4264        if (VisibleTypeConversionsQuals.hasVolatile()) {
4265          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4266          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4267          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4268                              /*IsAssigmentOperator=*/Op == OO_Equal);
4269        }
4270      }
4271    }
4272    break;
4273
4274  case OO_PercentEqual:
4275  case OO_LessLessEqual:
4276  case OO_GreaterGreaterEqual:
4277  case OO_AmpEqual:
4278  case OO_CaretEqual:
4279  case OO_PipeEqual:
4280    // C++ [over.built]p22:
4281    //
4282    //   For every triple (L, VQ, R), where L is an integral type, VQ
4283    //   is either volatile or empty, and R is a promoted integral
4284    //   type, there exist candidate operator functions of the form
4285    //
4286    //        VQ L&       operator%=(VQ L&, R);
4287    //        VQ L&       operator<<=(VQ L&, R);
4288    //        VQ L&       operator>>=(VQ L&, R);
4289    //        VQ L&       operator&=(VQ L&, R);
4290    //        VQ L&       operator^=(VQ L&, R);
4291    //        VQ L&       operator|=(VQ L&, R);
4292    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4293      for (unsigned Right = FirstPromotedIntegralType;
4294           Right < LastPromotedIntegralType; ++Right) {
4295        QualType ParamTypes[2];
4296        ParamTypes[1] = ArithmeticTypes[Right];
4297
4298        // Add this built-in operator as a candidate (VQ is empty).
4299        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4300        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4301        if (VisibleTypeConversionsQuals.hasVolatile()) {
4302          // Add this built-in operator as a candidate (VQ is 'volatile').
4303          ParamTypes[0] = ArithmeticTypes[Left];
4304          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4305          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4306          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4307        }
4308      }
4309    }
4310    break;
4311
4312  case OO_Exclaim: {
4313    // C++ [over.operator]p23:
4314    //
4315    //   There also exist candidate operator functions of the form
4316    //
4317    //        bool        operator!(bool);
4318    //        bool        operator&&(bool, bool);     [BELOW]
4319    //        bool        operator||(bool, bool);     [BELOW]
4320    QualType ParamTy = Context.BoolTy;
4321    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4322                        /*IsAssignmentOperator=*/false,
4323                        /*NumContextualBoolArguments=*/1);
4324    break;
4325  }
4326
4327  case OO_AmpAmp:
4328  case OO_PipePipe: {
4329    // C++ [over.operator]p23:
4330    //
4331    //   There also exist candidate operator functions of the form
4332    //
4333    //        bool        operator!(bool);            [ABOVE]
4334    //        bool        operator&&(bool, bool);
4335    //        bool        operator||(bool, bool);
4336    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4337    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4338                        /*IsAssignmentOperator=*/false,
4339                        /*NumContextualBoolArguments=*/2);
4340    break;
4341  }
4342
4343  case OO_Subscript:
4344    // C++ [over.built]p13:
4345    //
4346    //   For every cv-qualified or cv-unqualified object type T there
4347    //   exist candidate operator functions of the form
4348    //
4349    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4350    //        T&         operator[](T*, ptrdiff_t);
4351    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4352    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4353    //        T&         operator[](ptrdiff_t, T*);
4354    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4355         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4356      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4357      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4358      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4359
4360      // T& operator[](T*, ptrdiff_t)
4361      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4362
4363      // T& operator[](ptrdiff_t, T*);
4364      ParamTypes[0] = ParamTypes[1];
4365      ParamTypes[1] = *Ptr;
4366      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4367    }
4368    break;
4369
4370  case OO_ArrowStar:
4371    // C++ [over.built]p11:
4372    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4373    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4374    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4375    //    there exist candidate operator functions of the form
4376    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4377    //    where CV12 is the union of CV1 and CV2.
4378    {
4379      for (BuiltinCandidateTypeSet::iterator Ptr =
4380             CandidateTypes.pointer_begin();
4381           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4382        QualType C1Ty = (*Ptr);
4383        QualType C1;
4384        QualifierCollector Q1;
4385        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4386          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4387          if (!isa<RecordType>(C1))
4388            continue;
4389          // heuristic to reduce number of builtin candidates in the set.
4390          // Add volatile/restrict version only if there are conversions to a
4391          // volatile/restrict type.
4392          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4393            continue;
4394          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4395            continue;
4396        }
4397        for (BuiltinCandidateTypeSet::iterator
4398             MemPtr = CandidateTypes.member_pointer_begin(),
4399             MemPtrEnd = CandidateTypes.member_pointer_end();
4400             MemPtr != MemPtrEnd; ++MemPtr) {
4401          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4402          QualType C2 = QualType(mptr->getClass(), 0);
4403          C2 = C2.getUnqualifiedType();
4404          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4405            break;
4406          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4407          // build CV12 T&
4408          QualType T = mptr->getPointeeType();
4409          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4410              T.isVolatileQualified())
4411            continue;
4412          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4413              T.isRestrictQualified())
4414            continue;
4415          T = Q1.apply(T);
4416          QualType ResultTy = Context.getLValueReferenceType(T);
4417          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4418        }
4419      }
4420    }
4421    break;
4422
4423  case OO_Conditional:
4424    // Note that we don't consider the first argument, since it has been
4425    // contextually converted to bool long ago. The candidates below are
4426    // therefore added as binary.
4427    //
4428    // C++ [over.built]p24:
4429    //   For every type T, where T is a pointer or pointer-to-member type,
4430    //   there exist candidate operator functions of the form
4431    //
4432    //        T        operator?(bool, T, T);
4433    //
4434    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4435         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4436      QualType ParamTypes[2] = { *Ptr, *Ptr };
4437      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4438    }
4439    for (BuiltinCandidateTypeSet::iterator Ptr =
4440           CandidateTypes.member_pointer_begin(),
4441         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4442      QualType ParamTypes[2] = { *Ptr, *Ptr };
4443      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4444    }
4445    goto Conditional;
4446  }
4447}
4448
4449/// \brief Add function candidates found via argument-dependent lookup
4450/// to the set of overloading candidates.
4451///
4452/// This routine performs argument-dependent name lookup based on the
4453/// given function name (which may also be an operator name) and adds
4454/// all of the overload candidates found by ADL to the overload
4455/// candidate set (C++ [basic.lookup.argdep]).
4456void
4457Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4458                                           bool Operator,
4459                                           Expr **Args, unsigned NumArgs,
4460                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4461                                           OverloadCandidateSet& CandidateSet,
4462                                           bool PartialOverloading) {
4463  ADLResult Fns;
4464
4465  // FIXME: This approach for uniquing ADL results (and removing
4466  // redundant candidates from the set) relies on pointer-equality,
4467  // which means we need to key off the canonical decl.  However,
4468  // always going back to the canonical decl might not get us the
4469  // right set of default arguments.  What default arguments are
4470  // we supposed to consider on ADL candidates, anyway?
4471
4472  // FIXME: Pass in the explicit template arguments?
4473  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4474
4475  // Erase all of the candidates we already knew about.
4476  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4477                                   CandEnd = CandidateSet.end();
4478       Cand != CandEnd; ++Cand)
4479    if (Cand->Function) {
4480      Fns.erase(Cand->Function);
4481      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4482        Fns.erase(FunTmpl);
4483    }
4484
4485  // For each of the ADL candidates we found, add it to the overload
4486  // set.
4487  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4488    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4489    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4490      if (ExplicitTemplateArgs)
4491        continue;
4492
4493      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4494                           false, false, PartialOverloading);
4495    } else
4496      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4497                                   FoundDecl, ExplicitTemplateArgs,
4498                                   Args, NumArgs, CandidateSet);
4499  }
4500}
4501
4502/// isBetterOverloadCandidate - Determines whether the first overload
4503/// candidate is a better candidate than the second (C++ 13.3.3p1).
4504bool
4505Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4506                                const OverloadCandidate& Cand2,
4507                                SourceLocation Loc) {
4508  // Define viable functions to be better candidates than non-viable
4509  // functions.
4510  if (!Cand2.Viable)
4511    return Cand1.Viable;
4512  else if (!Cand1.Viable)
4513    return false;
4514
4515  // C++ [over.match.best]p1:
4516  //
4517  //   -- if F is a static member function, ICS1(F) is defined such
4518  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4519  //      any function G, and, symmetrically, ICS1(G) is neither
4520  //      better nor worse than ICS1(F).
4521  unsigned StartArg = 0;
4522  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4523    StartArg = 1;
4524
4525  // C++ [over.match.best]p1:
4526  //   A viable function F1 is defined to be a better function than another
4527  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4528  //   conversion sequence than ICSi(F2), and then...
4529  unsigned NumArgs = Cand1.Conversions.size();
4530  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4531  bool HasBetterConversion = false;
4532  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4533    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4534                                               Cand2.Conversions[ArgIdx])) {
4535    case ImplicitConversionSequence::Better:
4536      // Cand1 has a better conversion sequence.
4537      HasBetterConversion = true;
4538      break;
4539
4540    case ImplicitConversionSequence::Worse:
4541      // Cand1 can't be better than Cand2.
4542      return false;
4543
4544    case ImplicitConversionSequence::Indistinguishable:
4545      // Do nothing.
4546      break;
4547    }
4548  }
4549
4550  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4551  //       ICSj(F2), or, if not that,
4552  if (HasBetterConversion)
4553    return true;
4554
4555  //     - F1 is a non-template function and F2 is a function template
4556  //       specialization, or, if not that,
4557  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4558      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4559    return true;
4560
4561  //   -- F1 and F2 are function template specializations, and the function
4562  //      template for F1 is more specialized than the template for F2
4563  //      according to the partial ordering rules described in 14.5.5.2, or,
4564  //      if not that,
4565  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4566      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4567    if (FunctionTemplateDecl *BetterTemplate
4568          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4569                                       Cand2.Function->getPrimaryTemplate(),
4570                                       Loc,
4571                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4572                                                             : TPOC_Call))
4573      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4574
4575  //   -- the context is an initialization by user-defined conversion
4576  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4577  //      from the return type of F1 to the destination type (i.e.,
4578  //      the type of the entity being initialized) is a better
4579  //      conversion sequence than the standard conversion sequence
4580  //      from the return type of F2 to the destination type.
4581  if (Cand1.Function && Cand2.Function &&
4582      isa<CXXConversionDecl>(Cand1.Function) &&
4583      isa<CXXConversionDecl>(Cand2.Function)) {
4584    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4585                                               Cand2.FinalConversion)) {
4586    case ImplicitConversionSequence::Better:
4587      // Cand1 has a better conversion sequence.
4588      return true;
4589
4590    case ImplicitConversionSequence::Worse:
4591      // Cand1 can't be better than Cand2.
4592      return false;
4593
4594    case ImplicitConversionSequence::Indistinguishable:
4595      // Do nothing
4596      break;
4597    }
4598  }
4599
4600  return false;
4601}
4602
4603/// \brief Computes the best viable function (C++ 13.3.3)
4604/// within an overload candidate set.
4605///
4606/// \param CandidateSet the set of candidate functions.
4607///
4608/// \param Loc the location of the function name (or operator symbol) for
4609/// which overload resolution occurs.
4610///
4611/// \param Best f overload resolution was successful or found a deleted
4612/// function, Best points to the candidate function found.
4613///
4614/// \returns The result of overload resolution.
4615OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4616                                           SourceLocation Loc,
4617                                        OverloadCandidateSet::iterator& Best) {
4618  // Find the best viable function.
4619  Best = CandidateSet.end();
4620  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4621       Cand != CandidateSet.end(); ++Cand) {
4622    if (Cand->Viable) {
4623      if (Best == CandidateSet.end() ||
4624          isBetterOverloadCandidate(*Cand, *Best, Loc))
4625        Best = Cand;
4626    }
4627  }
4628
4629  // If we didn't find any viable functions, abort.
4630  if (Best == CandidateSet.end())
4631    return OR_No_Viable_Function;
4632
4633  // Make sure that this function is better than every other viable
4634  // function. If not, we have an ambiguity.
4635  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4636       Cand != CandidateSet.end(); ++Cand) {
4637    if (Cand->Viable &&
4638        Cand != Best &&
4639        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4640      Best = CandidateSet.end();
4641      return OR_Ambiguous;
4642    }
4643  }
4644
4645  // Best is the best viable function.
4646  if (Best->Function &&
4647      (Best->Function->isDeleted() ||
4648       Best->Function->getAttr<UnavailableAttr>()))
4649    return OR_Deleted;
4650
4651  // C++ [basic.def.odr]p2:
4652  //   An overloaded function is used if it is selected by overload resolution
4653  //   when referred to from a potentially-evaluated expression. [Note: this
4654  //   covers calls to named functions (5.2.2), operator overloading
4655  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4656  //   placement new (5.3.4), as well as non-default initialization (8.5).
4657  if (Best->Function)
4658    MarkDeclarationReferenced(Loc, Best->Function);
4659  return OR_Success;
4660}
4661
4662namespace {
4663
4664enum OverloadCandidateKind {
4665  oc_function,
4666  oc_method,
4667  oc_constructor,
4668  oc_function_template,
4669  oc_method_template,
4670  oc_constructor_template,
4671  oc_implicit_default_constructor,
4672  oc_implicit_copy_constructor,
4673  oc_implicit_copy_assignment
4674};
4675
4676OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4677                                                FunctionDecl *Fn,
4678                                                std::string &Description) {
4679  bool isTemplate = false;
4680
4681  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4682    isTemplate = true;
4683    Description = S.getTemplateArgumentBindingsText(
4684      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4685  }
4686
4687  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4688    if (!Ctor->isImplicit())
4689      return isTemplate ? oc_constructor_template : oc_constructor;
4690
4691    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4692                                     : oc_implicit_default_constructor;
4693  }
4694
4695  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4696    // This actually gets spelled 'candidate function' for now, but
4697    // it doesn't hurt to split it out.
4698    if (!Meth->isImplicit())
4699      return isTemplate ? oc_method_template : oc_method;
4700
4701    assert(Meth->isCopyAssignment()
4702           && "implicit method is not copy assignment operator?");
4703    return oc_implicit_copy_assignment;
4704  }
4705
4706  return isTemplate ? oc_function_template : oc_function;
4707}
4708
4709} // end anonymous namespace
4710
4711// Notes the location of an overload candidate.
4712void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4713  std::string FnDesc;
4714  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4715  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4716    << (unsigned) K << FnDesc;
4717}
4718
4719/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4720/// "lead" diagnostic; it will be given two arguments, the source and
4721/// target types of the conversion.
4722void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4723                                       SourceLocation CaretLoc,
4724                                       const PartialDiagnostic &PDiag) {
4725  Diag(CaretLoc, PDiag)
4726    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4727  for (AmbiguousConversionSequence::const_iterator
4728         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4729    NoteOverloadCandidate(*I);
4730  }
4731}
4732
4733namespace {
4734
4735void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4736  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4737  assert(Conv.isBad());
4738  assert(Cand->Function && "for now, candidate must be a function");
4739  FunctionDecl *Fn = Cand->Function;
4740
4741  // There's a conversion slot for the object argument if this is a
4742  // non-constructor method.  Note that 'I' corresponds the
4743  // conversion-slot index.
4744  bool isObjectArgument = false;
4745  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4746    if (I == 0)
4747      isObjectArgument = true;
4748    else
4749      I--;
4750  }
4751
4752  std::string FnDesc;
4753  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4754
4755  Expr *FromExpr = Conv.Bad.FromExpr;
4756  QualType FromTy = Conv.Bad.getFromType();
4757  QualType ToTy = Conv.Bad.getToType();
4758
4759  if (FromTy == S.Context.OverloadTy) {
4760    assert(FromExpr && "overload set argument came from implicit argument?");
4761    Expr *E = FromExpr->IgnoreParens();
4762    if (isa<UnaryOperator>(E))
4763      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4764    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4765
4766    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4767      << (unsigned) FnKind << FnDesc
4768      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4769      << ToTy << Name << I+1;
4770    return;
4771  }
4772
4773  // Do some hand-waving analysis to see if the non-viability is due
4774  // to a qualifier mismatch.
4775  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4776  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4777  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4778    CToTy = RT->getPointeeType();
4779  else {
4780    // TODO: detect and diagnose the full richness of const mismatches.
4781    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4782      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4783        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4784  }
4785
4786  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4787      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4788    // It is dumb that we have to do this here.
4789    while (isa<ArrayType>(CFromTy))
4790      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4791    while (isa<ArrayType>(CToTy))
4792      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4793
4794    Qualifiers FromQs = CFromTy.getQualifiers();
4795    Qualifiers ToQs = CToTy.getQualifiers();
4796
4797    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4798      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4799        << (unsigned) FnKind << FnDesc
4800        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4801        << FromTy
4802        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4803        << (unsigned) isObjectArgument << I+1;
4804      return;
4805    }
4806
4807    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4808    assert(CVR && "unexpected qualifiers mismatch");
4809
4810    if (isObjectArgument) {
4811      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4812        << (unsigned) FnKind << FnDesc
4813        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4814        << FromTy << (CVR - 1);
4815    } else {
4816      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4817        << (unsigned) FnKind << FnDesc
4818        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4819        << FromTy << (CVR - 1) << I+1;
4820    }
4821    return;
4822  }
4823
4824  // Diagnose references or pointers to incomplete types differently,
4825  // since it's far from impossible that the incompleteness triggered
4826  // the failure.
4827  QualType TempFromTy = FromTy.getNonReferenceType();
4828  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4829    TempFromTy = PTy->getPointeeType();
4830  if (TempFromTy->isIncompleteType()) {
4831    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4832      << (unsigned) FnKind << FnDesc
4833      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4834      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4835    return;
4836  }
4837
4838  // TODO: specialize more based on the kind of mismatch
4839  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4840    << (unsigned) FnKind << FnDesc
4841    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4842    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4843}
4844
4845void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4846                           unsigned NumFormalArgs) {
4847  // TODO: treat calls to a missing default constructor as a special case
4848
4849  FunctionDecl *Fn = Cand->Function;
4850  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4851
4852  unsigned MinParams = Fn->getMinRequiredArguments();
4853
4854  // at least / at most / exactly
4855  unsigned mode, modeCount;
4856  if (NumFormalArgs < MinParams) {
4857    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4858    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4859      mode = 0; // "at least"
4860    else
4861      mode = 2; // "exactly"
4862    modeCount = MinParams;
4863  } else {
4864    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4865    if (MinParams != FnTy->getNumArgs())
4866      mode = 1; // "at most"
4867    else
4868      mode = 2; // "exactly"
4869    modeCount = FnTy->getNumArgs();
4870  }
4871
4872  std::string Description;
4873  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4874
4875  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4876    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4877}
4878
4879/// Diagnose a failed template-argument deduction.
4880void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4881                          Expr **Args, unsigned NumArgs) {
4882  FunctionDecl *Fn = Cand->Function; // pattern
4883
4884  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4885                                   Cand->DeductionFailure.TemplateParameter);
4886
4887  switch (Cand->DeductionFailure.Result) {
4888  case Sema::TDK_Success:
4889    llvm_unreachable("TDK_success while diagnosing bad deduction");
4890
4891  case Sema::TDK_Incomplete: {
4892    NamedDecl *ParamD;
4893    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4894    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4895    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4896    assert(ParamD && "no parameter found for incomplete deduction result");
4897    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4898      << ParamD->getDeclName();
4899    return;
4900  }
4901
4902  // TODO: diagnose these individually, then kill off
4903  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4904  case Sema::TDK_InstantiationDepth:
4905  case Sema::TDK_Inconsistent:
4906  case Sema::TDK_InconsistentQuals:
4907  case Sema::TDK_SubstitutionFailure:
4908  case Sema::TDK_NonDeducedMismatch:
4909  case Sema::TDK_TooManyArguments:
4910  case Sema::TDK_TooFewArguments:
4911  case Sema::TDK_InvalidExplicitArguments:
4912  case Sema::TDK_FailedOverloadResolution:
4913    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4914    return;
4915  }
4916}
4917
4918/// Generates a 'note' diagnostic for an overload candidate.  We've
4919/// already generated a primary error at the call site.
4920///
4921/// It really does need to be a single diagnostic with its caret
4922/// pointed at the candidate declaration.  Yes, this creates some
4923/// major challenges of technical writing.  Yes, this makes pointing
4924/// out problems with specific arguments quite awkward.  It's still
4925/// better than generating twenty screens of text for every failed
4926/// overload.
4927///
4928/// It would be great to be able to express per-candidate problems
4929/// more richly for those diagnostic clients that cared, but we'd
4930/// still have to be just as careful with the default diagnostics.
4931void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4932                           Expr **Args, unsigned NumArgs) {
4933  FunctionDecl *Fn = Cand->Function;
4934
4935  // Note deleted candidates, but only if they're viable.
4936  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4937    std::string FnDesc;
4938    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4939
4940    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4941      << FnKind << FnDesc << Fn->isDeleted();
4942    return;
4943  }
4944
4945  // We don't really have anything else to say about viable candidates.
4946  if (Cand->Viable) {
4947    S.NoteOverloadCandidate(Fn);
4948    return;
4949  }
4950
4951  switch (Cand->FailureKind) {
4952  case ovl_fail_too_many_arguments:
4953  case ovl_fail_too_few_arguments:
4954    return DiagnoseArityMismatch(S, Cand, NumArgs);
4955
4956  case ovl_fail_bad_deduction:
4957    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4958
4959  case ovl_fail_trivial_conversion:
4960  case ovl_fail_bad_final_conversion:
4961  case ovl_fail_final_conversion_not_exact:
4962    return S.NoteOverloadCandidate(Fn);
4963
4964  case ovl_fail_bad_conversion: {
4965    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4966    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4967      if (Cand->Conversions[I].isBad())
4968        return DiagnoseBadConversion(S, Cand, I);
4969
4970    // FIXME: this currently happens when we're called from SemaInit
4971    // when user-conversion overload fails.  Figure out how to handle
4972    // those conditions and diagnose them well.
4973    return S.NoteOverloadCandidate(Fn);
4974  }
4975  }
4976}
4977
4978void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4979  // Desugar the type of the surrogate down to a function type,
4980  // retaining as many typedefs as possible while still showing
4981  // the function type (and, therefore, its parameter types).
4982  QualType FnType = Cand->Surrogate->getConversionType();
4983  bool isLValueReference = false;
4984  bool isRValueReference = false;
4985  bool isPointer = false;
4986  if (const LValueReferenceType *FnTypeRef =
4987        FnType->getAs<LValueReferenceType>()) {
4988    FnType = FnTypeRef->getPointeeType();
4989    isLValueReference = true;
4990  } else if (const RValueReferenceType *FnTypeRef =
4991               FnType->getAs<RValueReferenceType>()) {
4992    FnType = FnTypeRef->getPointeeType();
4993    isRValueReference = true;
4994  }
4995  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4996    FnType = FnTypePtr->getPointeeType();
4997    isPointer = true;
4998  }
4999  // Desugar down to a function type.
5000  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5001  // Reconstruct the pointer/reference as appropriate.
5002  if (isPointer) FnType = S.Context.getPointerType(FnType);
5003  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5004  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5005
5006  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5007    << FnType;
5008}
5009
5010void NoteBuiltinOperatorCandidate(Sema &S,
5011                                  const char *Opc,
5012                                  SourceLocation OpLoc,
5013                                  OverloadCandidate *Cand) {
5014  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5015  std::string TypeStr("operator");
5016  TypeStr += Opc;
5017  TypeStr += "(";
5018  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5019  if (Cand->Conversions.size() == 1) {
5020    TypeStr += ")";
5021    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5022  } else {
5023    TypeStr += ", ";
5024    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5025    TypeStr += ")";
5026    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5027  }
5028}
5029
5030void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5031                                  OverloadCandidate *Cand) {
5032  unsigned NoOperands = Cand->Conversions.size();
5033  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5034    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5035    if (ICS.isBad()) break; // all meaningless after first invalid
5036    if (!ICS.isAmbiguous()) continue;
5037
5038    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5039                              S.PDiag(diag::note_ambiguous_type_conversion));
5040  }
5041}
5042
5043SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5044  if (Cand->Function)
5045    return Cand->Function->getLocation();
5046  if (Cand->IsSurrogate)
5047    return Cand->Surrogate->getLocation();
5048  return SourceLocation();
5049}
5050
5051struct CompareOverloadCandidatesForDisplay {
5052  Sema &S;
5053  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5054
5055  bool operator()(const OverloadCandidate *L,
5056                  const OverloadCandidate *R) {
5057    // Fast-path this check.
5058    if (L == R) return false;
5059
5060    // Order first by viability.
5061    if (L->Viable) {
5062      if (!R->Viable) return true;
5063
5064      // TODO: introduce a tri-valued comparison for overload
5065      // candidates.  Would be more worthwhile if we had a sort
5066      // that could exploit it.
5067      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5068      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5069    } else if (R->Viable)
5070      return false;
5071
5072    assert(L->Viable == R->Viable);
5073
5074    // Criteria by which we can sort non-viable candidates:
5075    if (!L->Viable) {
5076      // 1. Arity mismatches come after other candidates.
5077      if (L->FailureKind == ovl_fail_too_many_arguments ||
5078          L->FailureKind == ovl_fail_too_few_arguments)
5079        return false;
5080      if (R->FailureKind == ovl_fail_too_many_arguments ||
5081          R->FailureKind == ovl_fail_too_few_arguments)
5082        return true;
5083
5084      // 2. Bad conversions come first and are ordered by the number
5085      // of bad conversions and quality of good conversions.
5086      if (L->FailureKind == ovl_fail_bad_conversion) {
5087        if (R->FailureKind != ovl_fail_bad_conversion)
5088          return true;
5089
5090        // If there's any ordering between the defined conversions...
5091        // FIXME: this might not be transitive.
5092        assert(L->Conversions.size() == R->Conversions.size());
5093
5094        int leftBetter = 0;
5095        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5096        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5097          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5098                                                       R->Conversions[I])) {
5099          case ImplicitConversionSequence::Better:
5100            leftBetter++;
5101            break;
5102
5103          case ImplicitConversionSequence::Worse:
5104            leftBetter--;
5105            break;
5106
5107          case ImplicitConversionSequence::Indistinguishable:
5108            break;
5109          }
5110        }
5111        if (leftBetter > 0) return true;
5112        if (leftBetter < 0) return false;
5113
5114      } else if (R->FailureKind == ovl_fail_bad_conversion)
5115        return false;
5116
5117      // TODO: others?
5118    }
5119
5120    // Sort everything else by location.
5121    SourceLocation LLoc = GetLocationForCandidate(L);
5122    SourceLocation RLoc = GetLocationForCandidate(R);
5123
5124    // Put candidates without locations (e.g. builtins) at the end.
5125    if (LLoc.isInvalid()) return false;
5126    if (RLoc.isInvalid()) return true;
5127
5128    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5129  }
5130};
5131
5132/// CompleteNonViableCandidate - Normally, overload resolution only
5133/// computes up to the first
5134void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5135                                Expr **Args, unsigned NumArgs) {
5136  assert(!Cand->Viable);
5137
5138  // Don't do anything on failures other than bad conversion.
5139  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5140
5141  // Skip forward to the first bad conversion.
5142  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5143  unsigned ConvCount = Cand->Conversions.size();
5144  while (true) {
5145    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5146    ConvIdx++;
5147    if (Cand->Conversions[ConvIdx - 1].isBad())
5148      break;
5149  }
5150
5151  if (ConvIdx == ConvCount)
5152    return;
5153
5154  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5155         "remaining conversion is initialized?");
5156
5157  // FIXME: these should probably be preserved from the overload
5158  // operation somehow.
5159  bool SuppressUserConversions = false;
5160  bool ForceRValue = false;
5161
5162  const FunctionProtoType* Proto;
5163  unsigned ArgIdx = ConvIdx;
5164
5165  if (Cand->IsSurrogate) {
5166    QualType ConvType
5167      = Cand->Surrogate->getConversionType().getNonReferenceType();
5168    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5169      ConvType = ConvPtrType->getPointeeType();
5170    Proto = ConvType->getAs<FunctionProtoType>();
5171    ArgIdx--;
5172  } else if (Cand->Function) {
5173    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5174    if (isa<CXXMethodDecl>(Cand->Function) &&
5175        !isa<CXXConstructorDecl>(Cand->Function))
5176      ArgIdx--;
5177  } else {
5178    // Builtin binary operator with a bad first conversion.
5179    assert(ConvCount <= 3);
5180    for (; ConvIdx != ConvCount; ++ConvIdx)
5181      Cand->Conversions[ConvIdx]
5182        = S.TryCopyInitialization(Args[ConvIdx],
5183                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
5184                                  SuppressUserConversions, ForceRValue,
5185                                  /*InOverloadResolution*/ true);
5186    return;
5187  }
5188
5189  // Fill in the rest of the conversions.
5190  unsigned NumArgsInProto = Proto->getNumArgs();
5191  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5192    if (ArgIdx < NumArgsInProto)
5193      Cand->Conversions[ConvIdx]
5194        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
5195                                  SuppressUserConversions, ForceRValue,
5196                                  /*InOverloadResolution=*/true);
5197    else
5198      Cand->Conversions[ConvIdx].setEllipsis();
5199  }
5200}
5201
5202} // end anonymous namespace
5203
5204/// PrintOverloadCandidates - When overload resolution fails, prints
5205/// diagnostic messages containing the candidates in the candidate
5206/// set.
5207void
5208Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5209                              OverloadCandidateDisplayKind OCD,
5210                              Expr **Args, unsigned NumArgs,
5211                              const char *Opc,
5212                              SourceLocation OpLoc) {
5213  // Sort the candidates by viability and position.  Sorting directly would
5214  // be prohibitive, so we make a set of pointers and sort those.
5215  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5216  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5217  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5218                                  LastCand = CandidateSet.end();
5219       Cand != LastCand; ++Cand) {
5220    if (Cand->Viable)
5221      Cands.push_back(Cand);
5222    else if (OCD == OCD_AllCandidates) {
5223      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5224      Cands.push_back(Cand);
5225    }
5226  }
5227
5228  std::sort(Cands.begin(), Cands.end(),
5229            CompareOverloadCandidatesForDisplay(*this));
5230
5231  bool ReportedAmbiguousConversions = false;
5232
5233  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5234  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5235    OverloadCandidate *Cand = *I;
5236
5237    if (Cand->Function)
5238      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5239    else if (Cand->IsSurrogate)
5240      NoteSurrogateCandidate(*this, Cand);
5241
5242    // This a builtin candidate.  We do not, in general, want to list
5243    // every possible builtin candidate.
5244    else if (Cand->Viable) {
5245      // Generally we only see ambiguities including viable builtin
5246      // operators if overload resolution got screwed up by an
5247      // ambiguous user-defined conversion.
5248      //
5249      // FIXME: It's quite possible for different conversions to see
5250      // different ambiguities, though.
5251      if (!ReportedAmbiguousConversions) {
5252        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5253        ReportedAmbiguousConversions = true;
5254      }
5255
5256      // If this is a viable builtin, print it.
5257      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5258    }
5259  }
5260}
5261
5262static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5263  if (isa<UnresolvedLookupExpr>(E))
5264    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5265
5266  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5267}
5268
5269/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5270/// an overloaded function (C++ [over.over]), where @p From is an
5271/// expression with overloaded function type and @p ToType is the type
5272/// we're trying to resolve to. For example:
5273///
5274/// @code
5275/// int f(double);
5276/// int f(int);
5277///
5278/// int (*pfd)(double) = f; // selects f(double)
5279/// @endcode
5280///
5281/// This routine returns the resulting FunctionDecl if it could be
5282/// resolved, and NULL otherwise. When @p Complain is true, this
5283/// routine will emit diagnostics if there is an error.
5284FunctionDecl *
5285Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5286                                         bool Complain,
5287                                         DeclAccessPair &FoundResult) {
5288  QualType FunctionType = ToType;
5289  bool IsMember = false;
5290  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5291    FunctionType = ToTypePtr->getPointeeType();
5292  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5293    FunctionType = ToTypeRef->getPointeeType();
5294  else if (const MemberPointerType *MemTypePtr =
5295                    ToType->getAs<MemberPointerType>()) {
5296    FunctionType = MemTypePtr->getPointeeType();
5297    IsMember = true;
5298  }
5299
5300  // C++ [over.over]p1:
5301  //   [...] [Note: any redundant set of parentheses surrounding the
5302  //   overloaded function name is ignored (5.1). ]
5303  // C++ [over.over]p1:
5304  //   [...] The overloaded function name can be preceded by the &
5305  //   operator.
5306  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5307  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5308  if (OvlExpr->hasExplicitTemplateArgs()) {
5309    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5310    ExplicitTemplateArgs = &ETABuffer;
5311  }
5312
5313  // We expect a pointer or reference to function, or a function pointer.
5314  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5315  if (!FunctionType->isFunctionType()) {
5316    if (Complain)
5317      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5318        << OvlExpr->getName() << ToType;
5319
5320    return 0;
5321  }
5322
5323  assert(From->getType() == Context.OverloadTy);
5324
5325  // Look through all of the overloaded functions, searching for one
5326  // whose type matches exactly.
5327  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5328  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5329
5330  bool FoundNonTemplateFunction = false;
5331  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5332         E = OvlExpr->decls_end(); I != E; ++I) {
5333    // Look through any using declarations to find the underlying function.
5334    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5335
5336    // C++ [over.over]p3:
5337    //   Non-member functions and static member functions match
5338    //   targets of type "pointer-to-function" or "reference-to-function."
5339    //   Nonstatic member functions match targets of
5340    //   type "pointer-to-member-function."
5341    // Note that according to DR 247, the containing class does not matter.
5342
5343    if (FunctionTemplateDecl *FunctionTemplate
5344          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5345      if (CXXMethodDecl *Method
5346            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5347        // Skip non-static function templates when converting to pointer, and
5348        // static when converting to member pointer.
5349        if (Method->isStatic() == IsMember)
5350          continue;
5351      } else if (IsMember)
5352        continue;
5353
5354      // C++ [over.over]p2:
5355      //   If the name is a function template, template argument deduction is
5356      //   done (14.8.2.2), and if the argument deduction succeeds, the
5357      //   resulting template argument list is used to generate a single
5358      //   function template specialization, which is added to the set of
5359      //   overloaded functions considered.
5360      // FIXME: We don't really want to build the specialization here, do we?
5361      FunctionDecl *Specialization = 0;
5362      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5363      if (TemplateDeductionResult Result
5364            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5365                                      FunctionType, Specialization, Info)) {
5366        // FIXME: make a note of the failed deduction for diagnostics.
5367        (void)Result;
5368      } else {
5369        // FIXME: If the match isn't exact, shouldn't we just drop this as
5370        // a candidate? Find a testcase before changing the code.
5371        assert(FunctionType
5372                 == Context.getCanonicalType(Specialization->getType()));
5373        Matches.push_back(std::make_pair(I.getPair(),
5374                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5375      }
5376
5377      continue;
5378    }
5379
5380    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5381      // Skip non-static functions when converting to pointer, and static
5382      // when converting to member pointer.
5383      if (Method->isStatic() == IsMember)
5384        continue;
5385
5386      // If we have explicit template arguments, skip non-templates.
5387      if (OvlExpr->hasExplicitTemplateArgs())
5388        continue;
5389    } else if (IsMember)
5390      continue;
5391
5392    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5393      QualType ResultTy;
5394      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5395          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5396                               ResultTy)) {
5397        Matches.push_back(std::make_pair(I.getPair(),
5398                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5399        FoundNonTemplateFunction = true;
5400      }
5401    }
5402  }
5403
5404  // If there were 0 or 1 matches, we're done.
5405  if (Matches.empty()) {
5406    if (Complain) {
5407      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5408        << OvlExpr->getName() << FunctionType;
5409      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5410                                 E = OvlExpr->decls_end();
5411           I != E; ++I)
5412        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5413          NoteOverloadCandidate(F);
5414    }
5415
5416    return 0;
5417  } else if (Matches.size() == 1) {
5418    FunctionDecl *Result = Matches[0].second;
5419    FoundResult = Matches[0].first;
5420    MarkDeclarationReferenced(From->getLocStart(), Result);
5421    if (Complain)
5422      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5423    return Result;
5424  }
5425
5426  // C++ [over.over]p4:
5427  //   If more than one function is selected, [...]
5428  if (!FoundNonTemplateFunction) {
5429    //   [...] and any given function template specialization F1 is
5430    //   eliminated if the set contains a second function template
5431    //   specialization whose function template is more specialized
5432    //   than the function template of F1 according to the partial
5433    //   ordering rules of 14.5.5.2.
5434
5435    // The algorithm specified above is quadratic. We instead use a
5436    // two-pass algorithm (similar to the one used to identify the
5437    // best viable function in an overload set) that identifies the
5438    // best function template (if it exists).
5439
5440    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5441    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5442      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5443
5444    UnresolvedSetIterator Result =
5445        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5446                           TPOC_Other, From->getLocStart(),
5447                           PDiag(),
5448                           PDiag(diag::err_addr_ovl_ambiguous)
5449                               << Matches[0].second->getDeclName(),
5450                           PDiag(diag::note_ovl_candidate)
5451                               << (unsigned) oc_function_template);
5452    assert(Result != MatchesCopy.end() && "no most-specialized template");
5453    MarkDeclarationReferenced(From->getLocStart(), *Result);
5454    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5455    if (Complain)
5456      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5457    return cast<FunctionDecl>(*Result);
5458  }
5459
5460  //   [...] any function template specializations in the set are
5461  //   eliminated if the set also contains a non-template function, [...]
5462  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5463    if (Matches[I].second->getPrimaryTemplate() == 0)
5464      ++I;
5465    else {
5466      Matches[I] = Matches[--N];
5467      Matches.set_size(N);
5468    }
5469  }
5470
5471  // [...] After such eliminations, if any, there shall remain exactly one
5472  // selected function.
5473  if (Matches.size() == 1) {
5474    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5475    FoundResult = Matches[0].first;
5476    if (Complain)
5477      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5478    return cast<FunctionDecl>(Matches[0].second);
5479  }
5480
5481  // FIXME: We should probably return the same thing that BestViableFunction
5482  // returns (even if we issue the diagnostics here).
5483  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5484    << Matches[0].second->getDeclName();
5485  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5486    NoteOverloadCandidate(Matches[I].second);
5487  return 0;
5488}
5489
5490/// \brief Given an expression that refers to an overloaded function, try to
5491/// resolve that overloaded function expression down to a single function.
5492///
5493/// This routine can only resolve template-ids that refer to a single function
5494/// template, where that template-id refers to a single template whose template
5495/// arguments are either provided by the template-id or have defaults,
5496/// as described in C++0x [temp.arg.explicit]p3.
5497FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5498  // C++ [over.over]p1:
5499  //   [...] [Note: any redundant set of parentheses surrounding the
5500  //   overloaded function name is ignored (5.1). ]
5501  // C++ [over.over]p1:
5502  //   [...] The overloaded function name can be preceded by the &
5503  //   operator.
5504
5505  if (From->getType() != Context.OverloadTy)
5506    return 0;
5507
5508  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5509
5510  // If we didn't actually find any template-ids, we're done.
5511  if (!OvlExpr->hasExplicitTemplateArgs())
5512    return 0;
5513
5514  TemplateArgumentListInfo ExplicitTemplateArgs;
5515  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5516
5517  // Look through all of the overloaded functions, searching for one
5518  // whose type matches exactly.
5519  FunctionDecl *Matched = 0;
5520  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5521         E = OvlExpr->decls_end(); I != E; ++I) {
5522    // C++0x [temp.arg.explicit]p3:
5523    //   [...] In contexts where deduction is done and fails, or in contexts
5524    //   where deduction is not done, if a template argument list is
5525    //   specified and it, along with any default template arguments,
5526    //   identifies a single function template specialization, then the
5527    //   template-id is an lvalue for the function template specialization.
5528    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5529
5530    // C++ [over.over]p2:
5531    //   If the name is a function template, template argument deduction is
5532    //   done (14.8.2.2), and if the argument deduction succeeds, the
5533    //   resulting template argument list is used to generate a single
5534    //   function template specialization, which is added to the set of
5535    //   overloaded functions considered.
5536    FunctionDecl *Specialization = 0;
5537    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5538    if (TemplateDeductionResult Result
5539          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5540                                    Specialization, Info)) {
5541      // FIXME: make a note of the failed deduction for diagnostics.
5542      (void)Result;
5543      continue;
5544    }
5545
5546    // Multiple matches; we can't resolve to a single declaration.
5547    if (Matched)
5548      return 0;
5549
5550    Matched = Specialization;
5551  }
5552
5553  return Matched;
5554}
5555
5556/// \brief Add a single candidate to the overload set.
5557static void AddOverloadedCallCandidate(Sema &S,
5558                                       DeclAccessPair FoundDecl,
5559                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5560                                       Expr **Args, unsigned NumArgs,
5561                                       OverloadCandidateSet &CandidateSet,
5562                                       bool PartialOverloading) {
5563  NamedDecl *Callee = FoundDecl.getDecl();
5564  if (isa<UsingShadowDecl>(Callee))
5565    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5566
5567  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5568    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5569    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5570                           false, false, PartialOverloading);
5571    return;
5572  }
5573
5574  if (FunctionTemplateDecl *FuncTemplate
5575      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5576    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5577                                   ExplicitTemplateArgs,
5578                                   Args, NumArgs, CandidateSet);
5579    return;
5580  }
5581
5582  assert(false && "unhandled case in overloaded call candidate");
5583
5584  // do nothing?
5585}
5586
5587/// \brief Add the overload candidates named by callee and/or found by argument
5588/// dependent lookup to the given overload set.
5589void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5590                                       Expr **Args, unsigned NumArgs,
5591                                       OverloadCandidateSet &CandidateSet,
5592                                       bool PartialOverloading) {
5593
5594#ifndef NDEBUG
5595  // Verify that ArgumentDependentLookup is consistent with the rules
5596  // in C++0x [basic.lookup.argdep]p3:
5597  //
5598  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5599  //   and let Y be the lookup set produced by argument dependent
5600  //   lookup (defined as follows). If X contains
5601  //
5602  //     -- a declaration of a class member, or
5603  //
5604  //     -- a block-scope function declaration that is not a
5605  //        using-declaration, or
5606  //
5607  //     -- a declaration that is neither a function or a function
5608  //        template
5609  //
5610  //   then Y is empty.
5611
5612  if (ULE->requiresADL()) {
5613    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5614           E = ULE->decls_end(); I != E; ++I) {
5615      assert(!(*I)->getDeclContext()->isRecord());
5616      assert(isa<UsingShadowDecl>(*I) ||
5617             !(*I)->getDeclContext()->isFunctionOrMethod());
5618      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5619    }
5620  }
5621#endif
5622
5623  // It would be nice to avoid this copy.
5624  TemplateArgumentListInfo TABuffer;
5625  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5626  if (ULE->hasExplicitTemplateArgs()) {
5627    ULE->copyTemplateArgumentsInto(TABuffer);
5628    ExplicitTemplateArgs = &TABuffer;
5629  }
5630
5631  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5632         E = ULE->decls_end(); I != E; ++I)
5633    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5634                               Args, NumArgs, CandidateSet,
5635                               PartialOverloading);
5636
5637  if (ULE->requiresADL())
5638    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5639                                         Args, NumArgs,
5640                                         ExplicitTemplateArgs,
5641                                         CandidateSet,
5642                                         PartialOverloading);
5643}
5644
5645static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5646                                      Expr **Args, unsigned NumArgs) {
5647  Fn->Destroy(SemaRef.Context);
5648  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5649    Args[Arg]->Destroy(SemaRef.Context);
5650  return SemaRef.ExprError();
5651}
5652
5653/// Attempts to recover from a call where no functions were found.
5654///
5655/// Returns true if new candidates were found.
5656static Sema::OwningExprResult
5657BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5658                      UnresolvedLookupExpr *ULE,
5659                      SourceLocation LParenLoc,
5660                      Expr **Args, unsigned NumArgs,
5661                      SourceLocation *CommaLocs,
5662                      SourceLocation RParenLoc) {
5663
5664  CXXScopeSpec SS;
5665  if (ULE->getQualifier()) {
5666    SS.setScopeRep(ULE->getQualifier());
5667    SS.setRange(ULE->getQualifierRange());
5668  }
5669
5670  TemplateArgumentListInfo TABuffer;
5671  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5672  if (ULE->hasExplicitTemplateArgs()) {
5673    ULE->copyTemplateArgumentsInto(TABuffer);
5674    ExplicitTemplateArgs = &TABuffer;
5675  }
5676
5677  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5678                 Sema::LookupOrdinaryName);
5679  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5680    return Destroy(SemaRef, Fn, Args, NumArgs);
5681
5682  assert(!R.empty() && "lookup results empty despite recovery");
5683
5684  // Build an implicit member call if appropriate.  Just drop the
5685  // casts and such from the call, we don't really care.
5686  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5687  if ((*R.begin())->isCXXClassMember())
5688    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5689  else if (ExplicitTemplateArgs)
5690    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5691  else
5692    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5693
5694  if (NewFn.isInvalid())
5695    return Destroy(SemaRef, Fn, Args, NumArgs);
5696
5697  Fn->Destroy(SemaRef.Context);
5698
5699  // This shouldn't cause an infinite loop because we're giving it
5700  // an expression with non-empty lookup results, which should never
5701  // end up here.
5702  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5703                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5704                               CommaLocs, RParenLoc);
5705}
5706
5707/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5708/// (which eventually refers to the declaration Func) and the call
5709/// arguments Args/NumArgs, attempt to resolve the function call down
5710/// to a specific function. If overload resolution succeeds, returns
5711/// the function declaration produced by overload
5712/// resolution. Otherwise, emits diagnostics, deletes all of the
5713/// arguments and Fn, and returns NULL.
5714Sema::OwningExprResult
5715Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5716                              SourceLocation LParenLoc,
5717                              Expr **Args, unsigned NumArgs,
5718                              SourceLocation *CommaLocs,
5719                              SourceLocation RParenLoc) {
5720#ifndef NDEBUG
5721  if (ULE->requiresADL()) {
5722    // To do ADL, we must have found an unqualified name.
5723    assert(!ULE->getQualifier() && "qualified name with ADL");
5724
5725    // We don't perform ADL for implicit declarations of builtins.
5726    // Verify that this was correctly set up.
5727    FunctionDecl *F;
5728    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5729        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5730        F->getBuiltinID() && F->isImplicit())
5731      assert(0 && "performing ADL for builtin");
5732
5733    // We don't perform ADL in C.
5734    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5735  }
5736#endif
5737
5738  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5739
5740  // Add the functions denoted by the callee to the set of candidate
5741  // functions, including those from argument-dependent lookup.
5742  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5743
5744  // If we found nothing, try to recover.
5745  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5746  // bailout out if it fails.
5747  if (CandidateSet.empty())
5748    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5749                                 CommaLocs, RParenLoc);
5750
5751  OverloadCandidateSet::iterator Best;
5752  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5753  case OR_Success: {
5754    FunctionDecl *FDecl = Best->Function;
5755    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5756    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5757    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5758  }
5759
5760  case OR_No_Viable_Function:
5761    Diag(Fn->getSourceRange().getBegin(),
5762         diag::err_ovl_no_viable_function_in_call)
5763      << ULE->getName() << Fn->getSourceRange();
5764    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5765    break;
5766
5767  case OR_Ambiguous:
5768    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5769      << ULE->getName() << Fn->getSourceRange();
5770    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5771    break;
5772
5773  case OR_Deleted:
5774    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5775      << Best->Function->isDeleted()
5776      << ULE->getName()
5777      << Fn->getSourceRange();
5778    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5779    break;
5780  }
5781
5782  // Overload resolution failed. Destroy all of the subexpressions and
5783  // return NULL.
5784  Fn->Destroy(Context);
5785  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5786    Args[Arg]->Destroy(Context);
5787  return ExprError();
5788}
5789
5790static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5791  return Functions.size() > 1 ||
5792    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5793}
5794
5795/// \brief Create a unary operation that may resolve to an overloaded
5796/// operator.
5797///
5798/// \param OpLoc The location of the operator itself (e.g., '*').
5799///
5800/// \param OpcIn The UnaryOperator::Opcode that describes this
5801/// operator.
5802///
5803/// \param Functions The set of non-member functions that will be
5804/// considered by overload resolution. The caller needs to build this
5805/// set based on the context using, e.g.,
5806/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5807/// set should not contain any member functions; those will be added
5808/// by CreateOverloadedUnaryOp().
5809///
5810/// \param input The input argument.
5811Sema::OwningExprResult
5812Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5813                              const UnresolvedSetImpl &Fns,
5814                              ExprArg input) {
5815  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5816  Expr *Input = (Expr *)input.get();
5817
5818  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5819  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5820  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5821
5822  Expr *Args[2] = { Input, 0 };
5823  unsigned NumArgs = 1;
5824
5825  // For post-increment and post-decrement, add the implicit '0' as
5826  // the second argument, so that we know this is a post-increment or
5827  // post-decrement.
5828  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5829    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5830    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5831                                           SourceLocation());
5832    NumArgs = 2;
5833  }
5834
5835  if (Input->isTypeDependent()) {
5836    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5837    UnresolvedLookupExpr *Fn
5838      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5839                                     0, SourceRange(), OpName, OpLoc,
5840                                     /*ADL*/ true, IsOverloaded(Fns));
5841    Fn->addDecls(Fns.begin(), Fns.end());
5842
5843    input.release();
5844    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5845                                                   &Args[0], NumArgs,
5846                                                   Context.DependentTy,
5847                                                   OpLoc));
5848  }
5849
5850  // Build an empty overload set.
5851  OverloadCandidateSet CandidateSet(OpLoc);
5852
5853  // Add the candidates from the given function set.
5854  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5855
5856  // Add operator candidates that are member functions.
5857  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5858
5859  // Add candidates from ADL.
5860  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5861                                       Args, NumArgs,
5862                                       /*ExplicitTemplateArgs*/ 0,
5863                                       CandidateSet);
5864
5865  // Add builtin operator candidates.
5866  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5867
5868  // Perform overload resolution.
5869  OverloadCandidateSet::iterator Best;
5870  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5871  case OR_Success: {
5872    // We found a built-in operator or an overloaded operator.
5873    FunctionDecl *FnDecl = Best->Function;
5874
5875    if (FnDecl) {
5876      // We matched an overloaded operator. Build a call to that
5877      // operator.
5878
5879      // Convert the arguments.
5880      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5881        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5882
5883        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5884                                                Best->FoundDecl, Method))
5885          return ExprError();
5886      } else {
5887        // Convert the arguments.
5888        OwningExprResult InputInit
5889          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5890                                                      FnDecl->getParamDecl(0)),
5891                                      SourceLocation(),
5892                                      move(input));
5893        if (InputInit.isInvalid())
5894          return ExprError();
5895
5896        input = move(InputInit);
5897        Input = (Expr *)input.get();
5898      }
5899
5900      // Determine the result type
5901      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5902
5903      // Build the actual expression node.
5904      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5905                                               SourceLocation());
5906      UsualUnaryConversions(FnExpr);
5907
5908      input.release();
5909      Args[0] = Input;
5910      ExprOwningPtr<CallExpr> TheCall(this,
5911        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5912                                          Args, NumArgs, ResultTy, OpLoc));
5913
5914      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5915                              FnDecl))
5916        return ExprError();
5917
5918      return MaybeBindToTemporary(TheCall.release());
5919    } else {
5920      // We matched a built-in operator. Convert the arguments, then
5921      // break out so that we will build the appropriate built-in
5922      // operator node.
5923        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5924                                      Best->Conversions[0], AA_Passing))
5925          return ExprError();
5926
5927        break;
5928      }
5929    }
5930
5931    case OR_No_Viable_Function:
5932      // No viable function; fall through to handling this as a
5933      // built-in operator, which will produce an error message for us.
5934      break;
5935
5936    case OR_Ambiguous:
5937      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5938          << UnaryOperator::getOpcodeStr(Opc)
5939          << Input->getSourceRange();
5940      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5941                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5942      return ExprError();
5943
5944    case OR_Deleted:
5945      Diag(OpLoc, diag::err_ovl_deleted_oper)
5946        << Best->Function->isDeleted()
5947        << UnaryOperator::getOpcodeStr(Opc)
5948        << Input->getSourceRange();
5949      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5950      return ExprError();
5951    }
5952
5953  // Either we found no viable overloaded operator or we matched a
5954  // built-in operator. In either case, fall through to trying to
5955  // build a built-in operation.
5956  input.release();
5957  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5958}
5959
5960/// \brief Create a binary operation that may resolve to an overloaded
5961/// operator.
5962///
5963/// \param OpLoc The location of the operator itself (e.g., '+').
5964///
5965/// \param OpcIn The BinaryOperator::Opcode that describes this
5966/// operator.
5967///
5968/// \param Functions The set of non-member functions that will be
5969/// considered by overload resolution. The caller needs to build this
5970/// set based on the context using, e.g.,
5971/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5972/// set should not contain any member functions; those will be added
5973/// by CreateOverloadedBinOp().
5974///
5975/// \param LHS Left-hand argument.
5976/// \param RHS Right-hand argument.
5977Sema::OwningExprResult
5978Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5979                            unsigned OpcIn,
5980                            const UnresolvedSetImpl &Fns,
5981                            Expr *LHS, Expr *RHS) {
5982  Expr *Args[2] = { LHS, RHS };
5983  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5984
5985  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5986  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5987  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5988
5989  // If either side is type-dependent, create an appropriate dependent
5990  // expression.
5991  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5992    if (Fns.empty()) {
5993      // If there are no functions to store, just build a dependent
5994      // BinaryOperator or CompoundAssignment.
5995      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5996        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5997                                                  Context.DependentTy, OpLoc));
5998
5999      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6000                                                        Context.DependentTy,
6001                                                        Context.DependentTy,
6002                                                        Context.DependentTy,
6003                                                        OpLoc));
6004    }
6005
6006    // FIXME: save results of ADL from here?
6007    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6008    UnresolvedLookupExpr *Fn
6009      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6010                                     0, SourceRange(), OpName, OpLoc,
6011                                     /*ADL*/ true, IsOverloaded(Fns));
6012
6013    Fn->addDecls(Fns.begin(), Fns.end());
6014    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6015                                                   Args, 2,
6016                                                   Context.DependentTy,
6017                                                   OpLoc));
6018  }
6019
6020  // If this is the .* operator, which is not overloadable, just
6021  // create a built-in binary operator.
6022  if (Opc == BinaryOperator::PtrMemD)
6023    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6024
6025  // If this is the assignment operator, we only perform overload resolution
6026  // if the left-hand side is a class or enumeration type. This is actually
6027  // a hack. The standard requires that we do overload resolution between the
6028  // various built-in candidates, but as DR507 points out, this can lead to
6029  // problems. So we do it this way, which pretty much follows what GCC does.
6030  // Note that we go the traditional code path for compound assignment forms.
6031  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6032    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6033
6034  // Build an empty overload set.
6035  OverloadCandidateSet CandidateSet(OpLoc);
6036
6037  // Add the candidates from the given function set.
6038  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6039
6040  // Add operator candidates that are member functions.
6041  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6042
6043  // Add candidates from ADL.
6044  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6045                                       Args, 2,
6046                                       /*ExplicitTemplateArgs*/ 0,
6047                                       CandidateSet);
6048
6049  // Add builtin operator candidates.
6050  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6051
6052  // Perform overload resolution.
6053  OverloadCandidateSet::iterator Best;
6054  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6055    case OR_Success: {
6056      // We found a built-in operator or an overloaded operator.
6057      FunctionDecl *FnDecl = Best->Function;
6058
6059      if (FnDecl) {
6060        // We matched an overloaded operator. Build a call to that
6061        // operator.
6062
6063        // Convert the arguments.
6064        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6065          // Best->Access is only meaningful for class members.
6066          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6067
6068          OwningExprResult Arg1
6069            = PerformCopyInitialization(
6070                                        InitializedEntity::InitializeParameter(
6071                                                        FnDecl->getParamDecl(0)),
6072                                        SourceLocation(),
6073                                        Owned(Args[1]));
6074          if (Arg1.isInvalid())
6075            return ExprError();
6076
6077          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6078                                                  Best->FoundDecl, Method))
6079            return ExprError();
6080
6081          Args[1] = RHS = Arg1.takeAs<Expr>();
6082        } else {
6083          // Convert the arguments.
6084          OwningExprResult Arg0
6085            = PerformCopyInitialization(
6086                                        InitializedEntity::InitializeParameter(
6087                                                        FnDecl->getParamDecl(0)),
6088                                        SourceLocation(),
6089                                        Owned(Args[0]));
6090          if (Arg0.isInvalid())
6091            return ExprError();
6092
6093          OwningExprResult Arg1
6094            = PerformCopyInitialization(
6095                                        InitializedEntity::InitializeParameter(
6096                                                        FnDecl->getParamDecl(1)),
6097                                        SourceLocation(),
6098                                        Owned(Args[1]));
6099          if (Arg1.isInvalid())
6100            return ExprError();
6101          Args[0] = LHS = Arg0.takeAs<Expr>();
6102          Args[1] = RHS = Arg1.takeAs<Expr>();
6103        }
6104
6105        // Determine the result type
6106        QualType ResultTy
6107          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6108        ResultTy = ResultTy.getNonReferenceType();
6109
6110        // Build the actual expression node.
6111        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6112                                                 OpLoc);
6113        UsualUnaryConversions(FnExpr);
6114
6115        ExprOwningPtr<CXXOperatorCallExpr>
6116          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6117                                                          Args, 2, ResultTy,
6118                                                          OpLoc));
6119
6120        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6121                                FnDecl))
6122          return ExprError();
6123
6124        return MaybeBindToTemporary(TheCall.release());
6125      } else {
6126        // We matched a built-in operator. Convert the arguments, then
6127        // break out so that we will build the appropriate built-in
6128        // operator node.
6129        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6130                                      Best->Conversions[0], AA_Passing) ||
6131            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6132                                      Best->Conversions[1], AA_Passing))
6133          return ExprError();
6134
6135        break;
6136      }
6137    }
6138
6139    case OR_No_Viable_Function: {
6140      // C++ [over.match.oper]p9:
6141      //   If the operator is the operator , [...] and there are no
6142      //   viable functions, then the operator is assumed to be the
6143      //   built-in operator and interpreted according to clause 5.
6144      if (Opc == BinaryOperator::Comma)
6145        break;
6146
6147      // For class as left operand for assignment or compound assigment operator
6148      // do not fall through to handling in built-in, but report that no overloaded
6149      // assignment operator found
6150      OwningExprResult Result = ExprError();
6151      if (Args[0]->getType()->isRecordType() &&
6152          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6153        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6154             << BinaryOperator::getOpcodeStr(Opc)
6155             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6156      } else {
6157        // No viable function; try to create a built-in operation, which will
6158        // produce an error. Then, show the non-viable candidates.
6159        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6160      }
6161      assert(Result.isInvalid() &&
6162             "C++ binary operator overloading is missing candidates!");
6163      if (Result.isInvalid())
6164        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6165                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6166      return move(Result);
6167    }
6168
6169    case OR_Ambiguous:
6170      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6171          << BinaryOperator::getOpcodeStr(Opc)
6172          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6173      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6174                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6175      return ExprError();
6176
6177    case OR_Deleted:
6178      Diag(OpLoc, diag::err_ovl_deleted_oper)
6179        << Best->Function->isDeleted()
6180        << BinaryOperator::getOpcodeStr(Opc)
6181        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6182      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6183      return ExprError();
6184  }
6185
6186  // We matched a built-in operator; build it.
6187  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6188}
6189
6190Action::OwningExprResult
6191Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6192                                         SourceLocation RLoc,
6193                                         ExprArg Base, ExprArg Idx) {
6194  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6195                    static_cast<Expr*>(Idx.get()) };
6196  DeclarationName OpName =
6197      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6198
6199  // If either side is type-dependent, create an appropriate dependent
6200  // expression.
6201  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6202
6203    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6204    UnresolvedLookupExpr *Fn
6205      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6206                                     0, SourceRange(), OpName, LLoc,
6207                                     /*ADL*/ true, /*Overloaded*/ false);
6208    // Can't add any actual overloads yet
6209
6210    Base.release();
6211    Idx.release();
6212    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6213                                                   Args, 2,
6214                                                   Context.DependentTy,
6215                                                   RLoc));
6216  }
6217
6218  // Build an empty overload set.
6219  OverloadCandidateSet CandidateSet(LLoc);
6220
6221  // Subscript can only be overloaded as a member function.
6222
6223  // Add operator candidates that are member functions.
6224  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6225
6226  // Add builtin operator candidates.
6227  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6228
6229  // Perform overload resolution.
6230  OverloadCandidateSet::iterator Best;
6231  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6232    case OR_Success: {
6233      // We found a built-in operator or an overloaded operator.
6234      FunctionDecl *FnDecl = Best->Function;
6235
6236      if (FnDecl) {
6237        // We matched an overloaded operator. Build a call to that
6238        // operator.
6239
6240        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6241
6242        // Convert the arguments.
6243        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6244        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6245                                                Best->FoundDecl, Method))
6246          return ExprError();
6247
6248        // Convert the arguments.
6249        OwningExprResult InputInit
6250          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6251                                                      FnDecl->getParamDecl(0)),
6252                                      SourceLocation(),
6253                                      Owned(Args[1]));
6254        if (InputInit.isInvalid())
6255          return ExprError();
6256
6257        Args[1] = InputInit.takeAs<Expr>();
6258
6259        // Determine the result type
6260        QualType ResultTy
6261          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6262        ResultTy = ResultTy.getNonReferenceType();
6263
6264        // Build the actual expression node.
6265        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6266                                                 LLoc);
6267        UsualUnaryConversions(FnExpr);
6268
6269        Base.release();
6270        Idx.release();
6271        ExprOwningPtr<CXXOperatorCallExpr>
6272          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6273                                                          FnExpr, Args, 2,
6274                                                          ResultTy, RLoc));
6275
6276        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6277                                FnDecl))
6278          return ExprError();
6279
6280        return MaybeBindToTemporary(TheCall.release());
6281      } else {
6282        // We matched a built-in operator. Convert the arguments, then
6283        // break out so that we will build the appropriate built-in
6284        // operator node.
6285        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6286                                      Best->Conversions[0], AA_Passing) ||
6287            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6288                                      Best->Conversions[1], AA_Passing))
6289          return ExprError();
6290
6291        break;
6292      }
6293    }
6294
6295    case OR_No_Viable_Function: {
6296      if (CandidateSet.empty())
6297        Diag(LLoc, diag::err_ovl_no_oper)
6298          << Args[0]->getType() << /*subscript*/ 0
6299          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6300      else
6301        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6302          << Args[0]->getType()
6303          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6304      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6305                              "[]", LLoc);
6306      return ExprError();
6307    }
6308
6309    case OR_Ambiguous:
6310      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6311          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6312      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6313                              "[]", LLoc);
6314      return ExprError();
6315
6316    case OR_Deleted:
6317      Diag(LLoc, diag::err_ovl_deleted_oper)
6318        << Best->Function->isDeleted() << "[]"
6319        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6320      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6321                              "[]", LLoc);
6322      return ExprError();
6323    }
6324
6325  // We matched a built-in operator; build it.
6326  Base.release();
6327  Idx.release();
6328  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6329                                         Owned(Args[1]), RLoc);
6330}
6331
6332/// BuildCallToMemberFunction - Build a call to a member
6333/// function. MemExpr is the expression that refers to the member
6334/// function (and includes the object parameter), Args/NumArgs are the
6335/// arguments to the function call (not including the object
6336/// parameter). The caller needs to validate that the member
6337/// expression refers to a member function or an overloaded member
6338/// function.
6339Sema::OwningExprResult
6340Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6341                                SourceLocation LParenLoc, Expr **Args,
6342                                unsigned NumArgs, SourceLocation *CommaLocs,
6343                                SourceLocation RParenLoc) {
6344  // Dig out the member expression. This holds both the object
6345  // argument and the member function we're referring to.
6346  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6347
6348  MemberExpr *MemExpr;
6349  CXXMethodDecl *Method = 0;
6350  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6351  NestedNameSpecifier *Qualifier = 0;
6352  if (isa<MemberExpr>(NakedMemExpr)) {
6353    MemExpr = cast<MemberExpr>(NakedMemExpr);
6354    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6355    FoundDecl = MemExpr->getFoundDecl();
6356    Qualifier = MemExpr->getQualifier();
6357  } else {
6358    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6359    Qualifier = UnresExpr->getQualifier();
6360
6361    QualType ObjectType = UnresExpr->getBaseType();
6362
6363    // Add overload candidates
6364    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6365
6366    // FIXME: avoid copy.
6367    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6368    if (UnresExpr->hasExplicitTemplateArgs()) {
6369      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6370      TemplateArgs = &TemplateArgsBuffer;
6371    }
6372
6373    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6374           E = UnresExpr->decls_end(); I != E; ++I) {
6375
6376      NamedDecl *Func = *I;
6377      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6378      if (isa<UsingShadowDecl>(Func))
6379        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6380
6381      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6382        // If explicit template arguments were provided, we can't call a
6383        // non-template member function.
6384        if (TemplateArgs)
6385          continue;
6386
6387        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6388                           Args, NumArgs,
6389                           CandidateSet, /*SuppressUserConversions=*/false);
6390      } else {
6391        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6392                                   I.getPair(), ActingDC, TemplateArgs,
6393                                   ObjectType, Args, NumArgs,
6394                                   CandidateSet,
6395                                   /*SuppressUsedConversions=*/false);
6396      }
6397    }
6398
6399    DeclarationName DeclName = UnresExpr->getMemberName();
6400
6401    OverloadCandidateSet::iterator Best;
6402    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6403    case OR_Success:
6404      Method = cast<CXXMethodDecl>(Best->Function);
6405      FoundDecl = Best->FoundDecl;
6406      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6407      break;
6408
6409    case OR_No_Viable_Function:
6410      Diag(UnresExpr->getMemberLoc(),
6411           diag::err_ovl_no_viable_member_function_in_call)
6412        << DeclName << MemExprE->getSourceRange();
6413      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6414      // FIXME: Leaking incoming expressions!
6415      return ExprError();
6416
6417    case OR_Ambiguous:
6418      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6419        << DeclName << MemExprE->getSourceRange();
6420      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6421      // FIXME: Leaking incoming expressions!
6422      return ExprError();
6423
6424    case OR_Deleted:
6425      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6426        << Best->Function->isDeleted()
6427        << DeclName << MemExprE->getSourceRange();
6428      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6429      // FIXME: Leaking incoming expressions!
6430      return ExprError();
6431    }
6432
6433    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6434
6435    // If overload resolution picked a static member, build a
6436    // non-member call based on that function.
6437    if (Method->isStatic()) {
6438      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6439                                   Args, NumArgs, RParenLoc);
6440    }
6441
6442    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6443  }
6444
6445  assert(Method && "Member call to something that isn't a method?");
6446  ExprOwningPtr<CXXMemberCallExpr>
6447    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6448                                                  NumArgs,
6449                                  Method->getResultType().getNonReferenceType(),
6450                                  RParenLoc));
6451
6452  // Check for a valid return type.
6453  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6454                          TheCall.get(), Method))
6455    return ExprError();
6456
6457  // Convert the object argument (for a non-static member function call).
6458  // We only need to do this if there was actually an overload; otherwise
6459  // it was done at lookup.
6460  Expr *ObjectArg = MemExpr->getBase();
6461  if (!Method->isStatic() &&
6462      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6463                                          FoundDecl, Method))
6464    return ExprError();
6465  MemExpr->setBase(ObjectArg);
6466
6467  // Convert the rest of the arguments
6468  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6469  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6470                              RParenLoc))
6471    return ExprError();
6472
6473  if (CheckFunctionCall(Method, TheCall.get()))
6474    return ExprError();
6475
6476  return MaybeBindToTemporary(TheCall.release());
6477}
6478
6479/// BuildCallToObjectOfClassType - Build a call to an object of class
6480/// type (C++ [over.call.object]), which can end up invoking an
6481/// overloaded function call operator (@c operator()) or performing a
6482/// user-defined conversion on the object argument.
6483Sema::ExprResult
6484Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6485                                   SourceLocation LParenLoc,
6486                                   Expr **Args, unsigned NumArgs,
6487                                   SourceLocation *CommaLocs,
6488                                   SourceLocation RParenLoc) {
6489  assert(Object->getType()->isRecordType() && "Requires object type argument");
6490  const RecordType *Record = Object->getType()->getAs<RecordType>();
6491
6492  // C++ [over.call.object]p1:
6493  //  If the primary-expression E in the function call syntax
6494  //  evaluates to a class object of type "cv T", then the set of
6495  //  candidate functions includes at least the function call
6496  //  operators of T. The function call operators of T are obtained by
6497  //  ordinary lookup of the name operator() in the context of
6498  //  (E).operator().
6499  OverloadCandidateSet CandidateSet(LParenLoc);
6500  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6501
6502  if (RequireCompleteType(LParenLoc, Object->getType(),
6503                          PDiag(diag::err_incomplete_object_call)
6504                          << Object->getSourceRange()))
6505    return true;
6506
6507  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6508  LookupQualifiedName(R, Record->getDecl());
6509  R.suppressDiagnostics();
6510
6511  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6512       Oper != OperEnd; ++Oper) {
6513    AddMethodCandidate(Oper.getPair(), Object->getType(),
6514                       Args, NumArgs, CandidateSet,
6515                       /*SuppressUserConversions=*/ false);
6516  }
6517
6518  // C++ [over.call.object]p2:
6519  //   In addition, for each conversion function declared in T of the
6520  //   form
6521  //
6522  //        operator conversion-type-id () cv-qualifier;
6523  //
6524  //   where cv-qualifier is the same cv-qualification as, or a
6525  //   greater cv-qualification than, cv, and where conversion-type-id
6526  //   denotes the type "pointer to function of (P1,...,Pn) returning
6527  //   R", or the type "reference to pointer to function of
6528  //   (P1,...,Pn) returning R", or the type "reference to function
6529  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6530  //   is also considered as a candidate function. Similarly,
6531  //   surrogate call functions are added to the set of candidate
6532  //   functions for each conversion function declared in an
6533  //   accessible base class provided the function is not hidden
6534  //   within T by another intervening declaration.
6535  const UnresolvedSetImpl *Conversions
6536    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6537  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6538         E = Conversions->end(); I != E; ++I) {
6539    NamedDecl *D = *I;
6540    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6541    if (isa<UsingShadowDecl>(D))
6542      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6543
6544    // Skip over templated conversion functions; they aren't
6545    // surrogates.
6546    if (isa<FunctionTemplateDecl>(D))
6547      continue;
6548
6549    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6550
6551    // Strip the reference type (if any) and then the pointer type (if
6552    // any) to get down to what might be a function type.
6553    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6554    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6555      ConvType = ConvPtrType->getPointeeType();
6556
6557    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6558      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6559                            Object->getType(), Args, NumArgs,
6560                            CandidateSet);
6561  }
6562
6563  // Perform overload resolution.
6564  OverloadCandidateSet::iterator Best;
6565  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6566  case OR_Success:
6567    // Overload resolution succeeded; we'll build the appropriate call
6568    // below.
6569    break;
6570
6571  case OR_No_Viable_Function:
6572    if (CandidateSet.empty())
6573      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6574        << Object->getType() << /*call*/ 1
6575        << Object->getSourceRange();
6576    else
6577      Diag(Object->getSourceRange().getBegin(),
6578           diag::err_ovl_no_viable_object_call)
6579        << Object->getType() << Object->getSourceRange();
6580    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6581    break;
6582
6583  case OR_Ambiguous:
6584    Diag(Object->getSourceRange().getBegin(),
6585         diag::err_ovl_ambiguous_object_call)
6586      << Object->getType() << Object->getSourceRange();
6587    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6588    break;
6589
6590  case OR_Deleted:
6591    Diag(Object->getSourceRange().getBegin(),
6592         diag::err_ovl_deleted_object_call)
6593      << Best->Function->isDeleted()
6594      << Object->getType() << Object->getSourceRange();
6595    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6596    break;
6597  }
6598
6599  if (Best == CandidateSet.end()) {
6600    // We had an error; delete all of the subexpressions and return
6601    // the error.
6602    Object->Destroy(Context);
6603    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6604      Args[ArgIdx]->Destroy(Context);
6605    return true;
6606  }
6607
6608  if (Best->Function == 0) {
6609    // Since there is no function declaration, this is one of the
6610    // surrogate candidates. Dig out the conversion function.
6611    CXXConversionDecl *Conv
6612      = cast<CXXConversionDecl>(
6613                         Best->Conversions[0].UserDefined.ConversionFunction);
6614
6615    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6616
6617    // We selected one of the surrogate functions that converts the
6618    // object parameter to a function pointer. Perform the conversion
6619    // on the object argument, then let ActOnCallExpr finish the job.
6620
6621    // Create an implicit member expr to refer to the conversion operator.
6622    // and then call it.
6623    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6624                                                   Conv);
6625
6626    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6627                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6628                         CommaLocs, RParenLoc).result();
6629  }
6630
6631  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6632
6633  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6634  // that calls this method, using Object for the implicit object
6635  // parameter and passing along the remaining arguments.
6636  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6637  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6638
6639  unsigned NumArgsInProto = Proto->getNumArgs();
6640  unsigned NumArgsToCheck = NumArgs;
6641
6642  // Build the full argument list for the method call (the
6643  // implicit object parameter is placed at the beginning of the
6644  // list).
6645  Expr **MethodArgs;
6646  if (NumArgs < NumArgsInProto) {
6647    NumArgsToCheck = NumArgsInProto;
6648    MethodArgs = new Expr*[NumArgsInProto + 1];
6649  } else {
6650    MethodArgs = new Expr*[NumArgs + 1];
6651  }
6652  MethodArgs[0] = Object;
6653  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6654    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6655
6656  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6657                                          SourceLocation());
6658  UsualUnaryConversions(NewFn);
6659
6660  // Once we've built TheCall, all of the expressions are properly
6661  // owned.
6662  QualType ResultTy = Method->getResultType().getNonReferenceType();
6663  ExprOwningPtr<CXXOperatorCallExpr>
6664    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6665                                                    MethodArgs, NumArgs + 1,
6666                                                    ResultTy, RParenLoc));
6667  delete [] MethodArgs;
6668
6669  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6670                          Method))
6671    return true;
6672
6673  // We may have default arguments. If so, we need to allocate more
6674  // slots in the call for them.
6675  if (NumArgs < NumArgsInProto)
6676    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6677  else if (NumArgs > NumArgsInProto)
6678    NumArgsToCheck = NumArgsInProto;
6679
6680  bool IsError = false;
6681
6682  // Initialize the implicit object parameter.
6683  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6684                                                 Best->FoundDecl, Method);
6685  TheCall->setArg(0, Object);
6686
6687
6688  // Check the argument types.
6689  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6690    Expr *Arg;
6691    if (i < NumArgs) {
6692      Arg = Args[i];
6693
6694      // Pass the argument.
6695
6696      OwningExprResult InputInit
6697        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6698                                                    Method->getParamDecl(i)),
6699                                    SourceLocation(), Owned(Arg));
6700
6701      IsError |= InputInit.isInvalid();
6702      Arg = InputInit.takeAs<Expr>();
6703    } else {
6704      OwningExprResult DefArg
6705        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6706      if (DefArg.isInvalid()) {
6707        IsError = true;
6708        break;
6709      }
6710
6711      Arg = DefArg.takeAs<Expr>();
6712    }
6713
6714    TheCall->setArg(i + 1, Arg);
6715  }
6716
6717  // If this is a variadic call, handle args passed through "...".
6718  if (Proto->isVariadic()) {
6719    // Promote the arguments (C99 6.5.2.2p7).
6720    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6721      Expr *Arg = Args[i];
6722      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6723      TheCall->setArg(i + 1, Arg);
6724    }
6725  }
6726
6727  if (IsError) return true;
6728
6729  if (CheckFunctionCall(Method, TheCall.get()))
6730    return true;
6731
6732  return MaybeBindToTemporary(TheCall.release()).result();
6733}
6734
6735/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6736///  (if one exists), where @c Base is an expression of class type and
6737/// @c Member is the name of the member we're trying to find.
6738Sema::OwningExprResult
6739Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6740  Expr *Base = static_cast<Expr *>(BaseIn.get());
6741  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6742
6743  SourceLocation Loc = Base->getExprLoc();
6744
6745  // C++ [over.ref]p1:
6746  //
6747  //   [...] An expression x->m is interpreted as (x.operator->())->m
6748  //   for a class object x of type T if T::operator->() exists and if
6749  //   the operator is selected as the best match function by the
6750  //   overload resolution mechanism (13.3).
6751  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6752  OverloadCandidateSet CandidateSet(Loc);
6753  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6754
6755  if (RequireCompleteType(Loc, Base->getType(),
6756                          PDiag(diag::err_typecheck_incomplete_tag)
6757                            << Base->getSourceRange()))
6758    return ExprError();
6759
6760  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6761  LookupQualifiedName(R, BaseRecord->getDecl());
6762  R.suppressDiagnostics();
6763
6764  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6765       Oper != OperEnd; ++Oper) {
6766    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6767                       /*SuppressUserConversions=*/false);
6768  }
6769
6770  // Perform overload resolution.
6771  OverloadCandidateSet::iterator Best;
6772  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6773  case OR_Success:
6774    // Overload resolution succeeded; we'll build the call below.
6775    break;
6776
6777  case OR_No_Viable_Function:
6778    if (CandidateSet.empty())
6779      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6780        << Base->getType() << Base->getSourceRange();
6781    else
6782      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6783        << "operator->" << Base->getSourceRange();
6784    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6785    return ExprError();
6786
6787  case OR_Ambiguous:
6788    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6789      << "->" << Base->getSourceRange();
6790    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6791    return ExprError();
6792
6793  case OR_Deleted:
6794    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6795      << Best->Function->isDeleted()
6796      << "->" << Base->getSourceRange();
6797    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6798    return ExprError();
6799  }
6800
6801  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6802
6803  // Convert the object parameter.
6804  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6805  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6806                                          Best->FoundDecl, Method))
6807    return ExprError();
6808
6809  // No concerns about early exits now.
6810  BaseIn.release();
6811
6812  // Build the operator call.
6813  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6814                                           SourceLocation());
6815  UsualUnaryConversions(FnExpr);
6816
6817  QualType ResultTy = Method->getResultType().getNonReferenceType();
6818  ExprOwningPtr<CXXOperatorCallExpr>
6819    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6820                                                    &Base, 1, ResultTy, OpLoc));
6821
6822  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6823                          Method))
6824          return ExprError();
6825  return move(TheCall);
6826}
6827
6828/// FixOverloadedFunctionReference - E is an expression that refers to
6829/// a C++ overloaded function (possibly with some parentheses and
6830/// perhaps a '&' around it). We have resolved the overloaded function
6831/// to the function declaration Fn, so patch up the expression E to
6832/// refer (possibly indirectly) to Fn. Returns the new expr.
6833Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6834                                           FunctionDecl *Fn) {
6835  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6836    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6837                                                   Found, Fn);
6838    if (SubExpr == PE->getSubExpr())
6839      return PE->Retain();
6840
6841    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6842  }
6843
6844  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6845    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6846                                                   Found, Fn);
6847    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6848                               SubExpr->getType()) &&
6849           "Implicit cast type cannot be determined from overload");
6850    if (SubExpr == ICE->getSubExpr())
6851      return ICE->Retain();
6852
6853    return new (Context) ImplicitCastExpr(ICE->getType(),
6854                                          ICE->getCastKind(),
6855                                          SubExpr,
6856                                          ICE->isLvalueCast());
6857  }
6858
6859  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6860    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6861           "Can only take the address of an overloaded function");
6862    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6863      if (Method->isStatic()) {
6864        // Do nothing: static member functions aren't any different
6865        // from non-member functions.
6866      } else {
6867        // Fix the sub expression, which really has to be an
6868        // UnresolvedLookupExpr holding an overloaded member function
6869        // or template.
6870        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6871                                                       Found, Fn);
6872        if (SubExpr == UnOp->getSubExpr())
6873          return UnOp->Retain();
6874
6875        assert(isa<DeclRefExpr>(SubExpr)
6876               && "fixed to something other than a decl ref");
6877        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6878               && "fixed to a member ref with no nested name qualifier");
6879
6880        // We have taken the address of a pointer to member
6881        // function. Perform the computation here so that we get the
6882        // appropriate pointer to member type.
6883        QualType ClassType
6884          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6885        QualType MemPtrType
6886          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6887
6888        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6889                                           MemPtrType, UnOp->getOperatorLoc());
6890      }
6891    }
6892    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6893                                                   Found, Fn);
6894    if (SubExpr == UnOp->getSubExpr())
6895      return UnOp->Retain();
6896
6897    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6898                                     Context.getPointerType(SubExpr->getType()),
6899                                       UnOp->getOperatorLoc());
6900  }
6901
6902  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6903    // FIXME: avoid copy.
6904    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6905    if (ULE->hasExplicitTemplateArgs()) {
6906      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6907      TemplateArgs = &TemplateArgsBuffer;
6908    }
6909
6910    return DeclRefExpr::Create(Context,
6911                               ULE->getQualifier(),
6912                               ULE->getQualifierRange(),
6913                               Fn,
6914                               ULE->getNameLoc(),
6915                               Fn->getType(),
6916                               TemplateArgs);
6917  }
6918
6919  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6920    // FIXME: avoid copy.
6921    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6922    if (MemExpr->hasExplicitTemplateArgs()) {
6923      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6924      TemplateArgs = &TemplateArgsBuffer;
6925    }
6926
6927    Expr *Base;
6928
6929    // If we're filling in
6930    if (MemExpr->isImplicitAccess()) {
6931      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6932        return DeclRefExpr::Create(Context,
6933                                   MemExpr->getQualifier(),
6934                                   MemExpr->getQualifierRange(),
6935                                   Fn,
6936                                   MemExpr->getMemberLoc(),
6937                                   Fn->getType(),
6938                                   TemplateArgs);
6939      } else {
6940        SourceLocation Loc = MemExpr->getMemberLoc();
6941        if (MemExpr->getQualifier())
6942          Loc = MemExpr->getQualifierRange().getBegin();
6943        Base = new (Context) CXXThisExpr(Loc,
6944                                         MemExpr->getBaseType(),
6945                                         /*isImplicit=*/true);
6946      }
6947    } else
6948      Base = MemExpr->getBase()->Retain();
6949
6950    return MemberExpr::Create(Context, Base,
6951                              MemExpr->isArrow(),
6952                              MemExpr->getQualifier(),
6953                              MemExpr->getQualifierRange(),
6954                              Fn,
6955                              Found,
6956                              MemExpr->getMemberLoc(),
6957                              TemplateArgs,
6958                              Fn->getType());
6959  }
6960
6961  assert(false && "Invalid reference to overloaded function");
6962  return E->Retain();
6963}
6964
6965Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6966                                                          DeclAccessPair Found,
6967                                                            FunctionDecl *Fn) {
6968  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6969}
6970
6971} // end namespace clang
6972