SemaOverload.cpp revision 6a6c0971f29d9fb7cb5e7318a4a493ed1331258c
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309    // C++ [temp.fct]p2:
310    //   A function template can be overloaded with other function templates
311    //   and with normal (non-template) functions.
312    if ((OldTemplate == 0) != (NewTemplate == 0))
313      return true;
314
315    // Is the function New an overload of the function Old?
316    QualType OldQType = Context.getCanonicalType(Old->getType());
317    QualType NewQType = Context.getCanonicalType(New->getType());
318
319    // Compare the signatures (C++ 1.3.10) of the two functions to
320    // determine whether they are overloads. If we find any mismatch
321    // in the signature, they are overloads.
322
323    // If either of these functions is a K&R-style function (no
324    // prototype), then we consider them to have matching signatures.
325    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327      return false;
328
329    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
331
332    // The signature of a function includes the types of its
333    // parameters (C++ 1.3.10), which includes the presence or absence
334    // of the ellipsis; see C++ DR 357).
335    if (OldQType != NewQType &&
336        (OldType->getNumArgs() != NewType->getNumArgs() ||
337         OldType->isVariadic() != NewType->isVariadic() ||
338         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339                     NewType->arg_type_begin())))
340      return true;
341
342    // C++ [temp.over.link]p4:
343    //   The signature of a function template consists of its function
344    //   signature, its return type and its template parameter list. The names
345    //   of the template parameters are significant only for establishing the
346    //   relationship between the template parameters and the rest of the
347    //   signature.
348    //
349    // We check the return type and template parameter lists for function
350    // templates first; the remaining checks follow.
351    if (NewTemplate &&
352        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353                                         OldTemplate->getTemplateParameters(),
354                                         false, false, SourceLocation()) ||
355         OldType->getResultType() != NewType->getResultType()))
356      return true;
357
358    // If the function is a class member, its signature includes the
359    // cv-qualifiers (if any) on the function itself.
360    //
361    // As part of this, also check whether one of the member functions
362    // is static, in which case they are not overloads (C++
363    // 13.1p2). While not part of the definition of the signature,
364    // this check is important to determine whether these functions
365    // can be overloaded.
366    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368    if (OldMethod && NewMethod &&
369        !OldMethod->isStatic() && !NewMethod->isStatic() &&
370        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371      return true;
372
373    // The signatures match; this is not an overload.
374    return false;
375  } else {
376    // (C++ 13p1):
377    //   Only function declarations can be overloaded; object and type
378    //   declarations cannot be overloaded.
379    return false;
380  }
381}
382
383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
387///
388///   void f(float f);
389///   void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
408ImplicitConversionSequence
409Sema::TryImplicitConversion(Expr* From, QualType ToType,
410                            bool SuppressUserConversions,
411                            bool AllowExplicit, bool ForceRValue)
412{
413  ImplicitConversionSequence ICS;
414  if (IsStandardConversion(From, ToType, ICS.Standard))
415    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416  else if (getLangOptions().CPlusPlus &&
417           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418                                   !SuppressUserConversions, AllowExplicit,
419                                   ForceRValue)) {
420    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421    // C++ [over.ics.user]p4:
422    //   A conversion of an expression of class type to the same class
423    //   type is given Exact Match rank, and a conversion of an
424    //   expression of class type to a base class of that type is
425    //   given Conversion rank, in spite of the fact that a copy
426    //   constructor (i.e., a user-defined conversion function) is
427    //   called for those cases.
428    if (CXXConstructorDecl *Constructor
429          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430      QualType FromCanon
431        = Context.getCanonicalType(From->getType().getUnqualifiedType());
432      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434        // Turn this into a "standard" conversion sequence, so that it
435        // gets ranked with standard conversion sequences.
436        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437        ICS.Standard.setAsIdentityConversion();
438        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440        ICS.Standard.CopyConstructor = Constructor;
441        if (ToCanon != FromCanon)
442          ICS.Standard.Second = ICK_Derived_To_Base;
443      }
444    }
445
446    // C++ [over.best.ics]p4:
447    //   However, when considering the argument of a user-defined
448    //   conversion function that is a candidate by 13.3.1.3 when
449    //   invoked for the copying of the temporary in the second step
450    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451    //   13.3.1.6 in all cases, only standard conversion sequences and
452    //   ellipsis conversion sequences are allowed.
453    if (SuppressUserConversions &&
454        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456  } else
457    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
458
459  return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472                           StandardConversionSequence &SCS)
473{
474  QualType FromType = From->getType();
475
476  // Standard conversions (C++ [conv])
477  SCS.setAsIdentityConversion();
478  SCS.Deprecated = false;
479  SCS.IncompatibleObjC = false;
480  SCS.FromTypePtr = FromType.getAsOpaquePtr();
481  SCS.CopyConstructor = 0;
482
483  // There are no standard conversions for class types in C++, so
484  // abort early. When overloading in C, however, we do permit
485  if (FromType->isRecordType() || ToType->isRecordType()) {
486    if (getLangOptions().CPlusPlus)
487      return false;
488
489    // When we're overloading in C, we allow, as standard conversions,
490  }
491
492  // The first conversion can be an lvalue-to-rvalue conversion,
493  // array-to-pointer conversion, or function-to-pointer conversion
494  // (C++ 4p1).
495
496  // Lvalue-to-rvalue conversion (C++ 4.1):
497  //   An lvalue (3.10) of a non-function, non-array type T can be
498  //   converted to an rvalue.
499  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500  if (argIsLvalue == Expr::LV_Valid &&
501      !FromType->isFunctionType() && !FromType->isArrayType() &&
502      Context.getCanonicalType(FromType) != Context.OverloadTy) {
503    SCS.First = ICK_Lvalue_To_Rvalue;
504
505    // If T is a non-class type, the type of the rvalue is the
506    // cv-unqualified version of T. Otherwise, the type of the rvalue
507    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508    // just strip the qualifiers because they don't matter.
509
510    // FIXME: Doesn't see through to qualifiers behind a typedef!
511    FromType = FromType.getUnqualifiedType();
512  }
513  // Array-to-pointer conversion (C++ 4.2)
514  else if (FromType->isArrayType()) {
515    SCS.First = ICK_Array_To_Pointer;
516
517    // An lvalue or rvalue of type "array of N T" or "array of unknown
518    // bound of T" can be converted to an rvalue of type "pointer to
519    // T" (C++ 4.2p1).
520    FromType = Context.getArrayDecayedType(FromType);
521
522    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523      // This conversion is deprecated. (C++ D.4).
524      SCS.Deprecated = true;
525
526      // For the purpose of ranking in overload resolution
527      // (13.3.3.1.1), this conversion is considered an
528      // array-to-pointer conversion followed by a qualification
529      // conversion (4.4). (C++ 4.2p2)
530      SCS.Second = ICK_Identity;
531      SCS.Third = ICK_Qualification;
532      SCS.ToTypePtr = ToType.getAsOpaquePtr();
533      return true;
534    }
535  }
536  // Function-to-pointer conversion (C++ 4.3).
537  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
538    SCS.First = ICK_Function_To_Pointer;
539
540    // An lvalue of function type T can be converted to an rvalue of
541    // type "pointer to T." The result is a pointer to the
542    // function. (C++ 4.3p1).
543    FromType = Context.getPointerType(FromType);
544  }
545  // Address of overloaded function (C++ [over.over]).
546  else if (FunctionDecl *Fn
547             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548    SCS.First = ICK_Function_To_Pointer;
549
550    // We were able to resolve the address of the overloaded function,
551    // so we can convert to the type of that function.
552    FromType = Fn->getType();
553    if (ToType->isLValueReferenceType())
554      FromType = Context.getLValueReferenceType(FromType);
555    else if (ToType->isRValueReferenceType())
556      FromType = Context.getRValueReferenceType(FromType);
557    else if (ToType->isMemberPointerType()) {
558      // Resolve address only succeeds if both sides are member pointers,
559      // but it doesn't have to be the same class. See DR 247.
560      // Note that this means that the type of &Derived::fn can be
561      // Ret (Base::*)(Args) if the fn overload actually found is from the
562      // base class, even if it was brought into the derived class via a
563      // using declaration. The standard isn't clear on this issue at all.
564      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565      FromType = Context.getMemberPointerType(FromType,
566                    Context.getTypeDeclType(M->getParent()).getTypePtr());
567    } else
568      FromType = Context.getPointerType(FromType);
569  }
570  // We don't require any conversions for the first step.
571  else {
572    SCS.First = ICK_Identity;
573  }
574
575  // The second conversion can be an integral promotion, floating
576  // point promotion, integral conversion, floating point conversion,
577  // floating-integral conversion, pointer conversion,
578  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579  // For overloading in C, this can also be a "compatible-type"
580  // conversion.
581  bool IncompatibleObjC = false;
582  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583    // The unqualified versions of the types are the same: there's no
584    // conversion to do.
585    SCS.Second = ICK_Identity;
586  }
587  // Integral promotion (C++ 4.5).
588  else if (IsIntegralPromotion(From, FromType, ToType)) {
589    SCS.Second = ICK_Integral_Promotion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating point promotion (C++ 4.6).
593  else if (IsFloatingPointPromotion(FromType, ToType)) {
594    SCS.Second = ICK_Floating_Promotion;
595    FromType = ToType.getUnqualifiedType();
596  }
597  // Complex promotion (Clang extension)
598  else if (IsComplexPromotion(FromType, ToType)) {
599    SCS.Second = ICK_Complex_Promotion;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Integral conversions (C++ 4.7).
603  // FIXME: isIntegralType shouldn't be true for enums in C++.
604  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
605           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
606    SCS.Second = ICK_Integral_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  }
609  // Floating point conversions (C++ 4.8).
610  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
611    SCS.Second = ICK_Floating_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  }
614  // Complex conversions (C99 6.3.1.6)
615  else if (FromType->isComplexType() && ToType->isComplexType()) {
616    SCS.Second = ICK_Complex_Conversion;
617    FromType = ToType.getUnqualifiedType();
618  }
619  // Floating-integral conversions (C++ 4.9).
620  // FIXME: isIntegralType shouldn't be true for enums in C++.
621  else if ((FromType->isFloatingType() &&
622            ToType->isIntegralType() && !ToType->isBooleanType() &&
623                                        !ToType->isEnumeralType()) ||
624           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625            ToType->isFloatingType())) {
626    SCS.Second = ICK_Floating_Integral;
627    FromType = ToType.getUnqualifiedType();
628  }
629  // Complex-real conversions (C99 6.3.1.7)
630  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631           (ToType->isComplexType() && FromType->isArithmeticType())) {
632    SCS.Second = ICK_Complex_Real;
633    FromType = ToType.getUnqualifiedType();
634  }
635  // Pointer conversions (C++ 4.10).
636  else if (IsPointerConversion(From, FromType, ToType, FromType,
637                               IncompatibleObjC)) {
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  }
641  // Pointer to member conversions (4.11).
642  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643    SCS.Second = ICK_Pointer_Member;
644  }
645  // Boolean conversions (C++ 4.12).
646  else if (ToType->isBooleanType() &&
647           (FromType->isArithmeticType() ||
648            FromType->isEnumeralType() ||
649            FromType->isPointerType() ||
650            FromType->isBlockPointerType() ||
651            FromType->isMemberPointerType() ||
652            FromType->isNullPtrType())) {
653    SCS.Second = ICK_Boolean_Conversion;
654    FromType = Context.BoolTy;
655  }
656  // Compatible conversions (Clang extension for C function overloading)
657  else if (!getLangOptions().CPlusPlus &&
658           Context.typesAreCompatible(ToType, FromType)) {
659    SCS.Second = ICK_Compatible_Conversion;
660  } else {
661    // No second conversion required.
662    SCS.Second = ICK_Identity;
663  }
664
665  QualType CanonFrom;
666  QualType CanonTo;
667  // The third conversion can be a qualification conversion (C++ 4p1).
668  if (IsQualificationConversion(FromType, ToType)) {
669    SCS.Third = ICK_Qualification;
670    FromType = ToType;
671    CanonFrom = Context.getCanonicalType(FromType);
672    CanonTo = Context.getCanonicalType(ToType);
673  } else {
674    // No conversion required
675    SCS.Third = ICK_Identity;
676
677    // C++ [over.best.ics]p6:
678    //   [...] Any difference in top-level cv-qualification is
679    //   subsumed by the initialization itself and does not constitute
680    //   a conversion. [...]
681    CanonFrom = Context.getCanonicalType(FromType);
682    CanonTo = Context.getCanonicalType(ToType);
683    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
684        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685      FromType = ToType;
686      CanonFrom = CanonTo;
687    }
688  }
689
690  // If we have not converted the argument type to the parameter type,
691  // this is a bad conversion sequence.
692  if (CanonFrom != CanonTo)
693    return false;
694
695  SCS.ToTypePtr = FromType.getAsOpaquePtr();
696  return true;
697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
704{
705  const BuiltinType *To = ToType->getAsBuiltinType();
706  // All integers are built-in.
707  if (!To) {
708    return false;
709  }
710
711  // An rvalue of type char, signed char, unsigned char, short int, or
712  // unsigned short int can be converted to an rvalue of type int if
713  // int can represent all the values of the source type; otherwise,
714  // the source rvalue can be converted to an rvalue of type unsigned
715  // int (C++ 4.5p1).
716  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
717    if (// We can promote any signed, promotable integer type to an int
718        (FromType->isSignedIntegerType() ||
719         // We can promote any unsigned integer type whose size is
720         // less than int to an int.
721         (!FromType->isSignedIntegerType() &&
722          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
723      return To->getKind() == BuiltinType::Int;
724    }
725
726    return To->getKind() == BuiltinType::UInt;
727  }
728
729  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730  // can be converted to an rvalue of the first of the following types
731  // that can represent all the values of its underlying type: int,
732  // unsigned int, long, or unsigned long (C++ 4.5p2).
733  if ((FromType->isEnumeralType() || FromType->isWideCharType())
734      && ToType->isIntegerType()) {
735    // Determine whether the type we're converting from is signed or
736    // unsigned.
737    bool FromIsSigned;
738    uint64_t FromSize = Context.getTypeSize(FromType);
739    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741      FromIsSigned = UnderlyingType->isSignedIntegerType();
742    } else {
743      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744      FromIsSigned = true;
745    }
746
747    // The types we'll try to promote to, in the appropriate
748    // order. Try each of these types.
749    QualType PromoteTypes[6] = {
750      Context.IntTy, Context.UnsignedIntTy,
751      Context.LongTy, Context.UnsignedLongTy ,
752      Context.LongLongTy, Context.UnsignedLongLongTy
753    };
754    for (int Idx = 0; Idx < 6; ++Idx) {
755      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756      if (FromSize < ToSize ||
757          (FromSize == ToSize &&
758           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759        // We found the type that we can promote to. If this is the
760        // type we wanted, we have a promotion. Otherwise, no
761        // promotion.
762        return Context.getCanonicalType(ToType).getUnqualifiedType()
763          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
764      }
765    }
766  }
767
768  // An rvalue for an integral bit-field (9.6) can be converted to an
769  // rvalue of type int if int can represent all the values of the
770  // bit-field; otherwise, it can be converted to unsigned int if
771  // unsigned int can represent all the values of the bit-field. If
772  // the bit-field is larger yet, no integral promotion applies to
773  // it. If the bit-field has an enumerated type, it is treated as any
774  // other value of that type for promotion purposes (C++ 4.5p3).
775  // FIXME: We should delay checking of bit-fields until we actually perform the
776  // conversion.
777  using llvm::APSInt;
778  if (From)
779    if (FieldDecl *MemberDecl = From->getBitField()) {
780      APSInt BitWidth;
781      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784        ToSize = Context.getTypeSize(ToType);
785
786        // Are we promoting to an int from a bitfield that fits in an int?
787        if (BitWidth < ToSize ||
788            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789          return To->getKind() == BuiltinType::Int;
790        }
791
792        // Are we promoting to an unsigned int from an unsigned bitfield
793        // that fits into an unsigned int?
794        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795          return To->getKind() == BuiltinType::UInt;
796        }
797
798        return false;
799      }
800    }
801
802  // An rvalue of type bool can be converted to an rvalue of type int,
803  // with false becoming zero and true becoming one (C++ 4.5p4).
804  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
805    return true;
806  }
807
808  return false;
809}
810
811/// IsFloatingPointPromotion - Determines whether the conversion from
812/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813/// returns true and sets PromotedType to the promoted type.
814bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
815{
816  /// An rvalue of type float can be converted to an rvalue of type
817  /// double. (C++ 4.6p1).
818  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
819    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
820      if (FromBuiltin->getKind() == BuiltinType::Float &&
821          ToBuiltin->getKind() == BuiltinType::Double)
822        return true;
823
824      // C99 6.3.1.5p1:
825      //   When a float is promoted to double or long double, or a
826      //   double is promoted to long double [...].
827      if (!getLangOptions().CPlusPlus &&
828          (FromBuiltin->getKind() == BuiltinType::Float ||
829           FromBuiltin->getKind() == BuiltinType::Double) &&
830          (ToBuiltin->getKind() == BuiltinType::LongDouble))
831        return true;
832    }
833
834  return false;
835}
836
837/// \brief Determine if a conversion is a complex promotion.
838///
839/// A complex promotion is defined as a complex -> complex conversion
840/// where the conversion between the underlying real types is a
841/// floating-point or integral promotion.
842bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843  const ComplexType *FromComplex = FromType->getAsComplexType();
844  if (!FromComplex)
845    return false;
846
847  const ComplexType *ToComplex = ToType->getAsComplexType();
848  if (!ToComplex)
849    return false;
850
851  return IsFloatingPointPromotion(FromComplex->getElementType(),
852                                  ToComplex->getElementType()) ||
853    IsIntegralPromotion(0, FromComplex->getElementType(),
854                        ToComplex->getElementType());
855}
856
857/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858/// the pointer type FromPtr to a pointer to type ToPointee, with the
859/// same type qualifiers as FromPtr has on its pointee type. ToType,
860/// if non-empty, will be a pointer to ToType that may or may not have
861/// the right set of qualifiers on its pointee.
862static QualType
863BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864                                   QualType ToPointee, QualType ToType,
865                                   ASTContext &Context) {
866  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868  unsigned Quals = CanonFromPointee.getCVRQualifiers();
869
870  // Exact qualifier match -> return the pointer type we're converting to.
871  if (CanonToPointee.getCVRQualifiers() == Quals) {
872    // ToType is exactly what we need. Return it.
873    if (ToType.getTypePtr())
874      return ToType;
875
876    // Build a pointer to ToPointee. It has the right qualifiers
877    // already.
878    return Context.getPointerType(ToPointee);
879  }
880
881  // Just build a canonical type that has the right qualifiers.
882  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
883}
884
885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
891///
892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
902                               QualType& ConvertedType,
903                               bool &IncompatibleObjC)
904{
905  IncompatibleObjC = false;
906  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907    return true;
908
909  // Conversion from a null pointer constant to any Objective-C pointer type.
910  if (ToType->isObjCObjectPointerType() &&
911      From->isNullPointerConstant(Context)) {
912    ConvertedType = ToType;
913    return true;
914  }
915
916  // Blocks: Block pointers can be converted to void*.
917  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
918      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
919    ConvertedType = ToType;
920    return true;
921  }
922  // Blocks: A null pointer constant can be converted to a block
923  // pointer type.
924  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925    ConvertedType = ToType;
926    return true;
927  }
928
929  // If the left-hand-side is nullptr_t, the right side can be a null
930  // pointer constant.
931  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932    ConvertedType = ToType;
933    return true;
934  }
935
936  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
937  if (!ToTypePtr)
938    return false;
939
940  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941  if (From->isNullPointerConstant(Context)) {
942    ConvertedType = ToType;
943    return true;
944  }
945
946  // Beyond this point, both types need to be pointers.
947  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
948  if (!FromTypePtr)
949    return false;
950
951  QualType FromPointeeType = FromTypePtr->getPointeeType();
952  QualType ToPointeeType = ToTypePtr->getPointeeType();
953
954  // An rvalue of type "pointer to cv T," where T is an object type,
955  // can be converted to an rvalue of type "pointer to cv void" (C++
956  // 4.10p2).
957  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
958    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959                                                       ToPointeeType,
960                                                       ToType, Context);
961    return true;
962  }
963
964  // When we're overloading in C, we allow a special kind of pointer
965  // conversion for compatible-but-not-identical pointee types.
966  if (!getLangOptions().CPlusPlus &&
967      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969                                                       ToPointeeType,
970                                                       ToType, Context);
971    return true;
972  }
973
974  // C++ [conv.ptr]p3:
975  //
976  //   An rvalue of type "pointer to cv D," where D is a class type,
977  //   can be converted to an rvalue of type "pointer to cv B," where
978  //   B is a base class (clause 10) of D. If B is an inaccessible
979  //   (clause 11) or ambiguous (10.2) base class of D, a program that
980  //   necessitates this conversion is ill-formed. The result of the
981  //   conversion is a pointer to the base class sub-object of the
982  //   derived class object. The null pointer value is converted to
983  //   the null pointer value of the destination type.
984  //
985  // Note that we do not check for ambiguity or inaccessibility
986  // here. That is handled by CheckPointerConversion.
987  if (getLangOptions().CPlusPlus &&
988      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
989      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
990    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991                                                       ToPointeeType,
992                                                       ToType, Context);
993    return true;
994  }
995
996  return false;
997}
998
999/// isObjCPointerConversion - Determines whether this is an
1000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001/// with the same arguments and return values.
1002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003                                   QualType& ConvertedType,
1004                                   bool &IncompatibleObjC) {
1005  if (!getLangOptions().ObjC1)
1006    return false;
1007
1008  // First, we handle all conversions on ObjC object pointer types.
1009  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1010  const ObjCObjectPointerType *FromObjCPtr =
1011    FromType->getAsObjCObjectPointerType();
1012
1013  if (ToObjCPtr && FromObjCPtr) {
1014    // Objective C++: We're able to convert between "id" or "Class" and a
1015    // pointer to any interface (in both directions).
1016    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1017      ConvertedType = ToType;
1018      return true;
1019    }
1020    // Conversions with Objective-C's id<...>.
1021    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1022         ToObjCPtr->isObjCQualifiedIdType()) &&
1023        ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
1024      ConvertedType = ToType;
1025      return true;
1026    }
1027    // Objective C++: We're able to convert from a pointer to an
1028    // interface to a pointer to a different interface.
1029    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1030      ConvertedType = ToType;
1031      return true;
1032    }
1033
1034    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1035      // Okay: this is some kind of implicit downcast of Objective-C
1036      // interfaces, which is permitted. However, we're going to
1037      // complain about it.
1038      IncompatibleObjC = true;
1039      ConvertedType = FromType;
1040      return true;
1041    }
1042  }
1043  // Beyond this point, both types need to be C pointers or block pointers.
1044  QualType ToPointeeType;
1045  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1046    ToPointeeType = ToCPtr->getPointeeType();
1047  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1048    ToPointeeType = ToBlockPtr->getPointeeType();
1049  else
1050    return false;
1051
1052  QualType FromPointeeType;
1053  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1054    FromPointeeType = FromCPtr->getPointeeType();
1055  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1056    FromPointeeType = FromBlockPtr->getPointeeType();
1057  else
1058    return false;
1059
1060  // If we have pointers to pointers, recursively check whether this
1061  // is an Objective-C conversion.
1062  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1063      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1064                              IncompatibleObjC)) {
1065    // We always complain about this conversion.
1066    IncompatibleObjC = true;
1067    ConvertedType = ToType;
1068    return true;
1069  }
1070  // If we have pointers to functions or blocks, check whether the only
1071  // differences in the argument and result types are in Objective-C
1072  // pointer conversions. If so, we permit the conversion (but
1073  // complain about it).
1074  const FunctionProtoType *FromFunctionType
1075    = FromPointeeType->getAsFunctionProtoType();
1076  const FunctionProtoType *ToFunctionType
1077    = ToPointeeType->getAsFunctionProtoType();
1078  if (FromFunctionType && ToFunctionType) {
1079    // If the function types are exactly the same, this isn't an
1080    // Objective-C pointer conversion.
1081    if (Context.getCanonicalType(FromPointeeType)
1082          == Context.getCanonicalType(ToPointeeType))
1083      return false;
1084
1085    // Perform the quick checks that will tell us whether these
1086    // function types are obviously different.
1087    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1088        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1089        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1090      return false;
1091
1092    bool HasObjCConversion = false;
1093    if (Context.getCanonicalType(FromFunctionType->getResultType())
1094          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1095      // Okay, the types match exactly. Nothing to do.
1096    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1097                                       ToFunctionType->getResultType(),
1098                                       ConvertedType, IncompatibleObjC)) {
1099      // Okay, we have an Objective-C pointer conversion.
1100      HasObjCConversion = true;
1101    } else {
1102      // Function types are too different. Abort.
1103      return false;
1104    }
1105
1106    // Check argument types.
1107    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1108         ArgIdx != NumArgs; ++ArgIdx) {
1109      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1110      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1111      if (Context.getCanonicalType(FromArgType)
1112            == Context.getCanonicalType(ToArgType)) {
1113        // Okay, the types match exactly. Nothing to do.
1114      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1115                                         ConvertedType, IncompatibleObjC)) {
1116        // Okay, we have an Objective-C pointer conversion.
1117        HasObjCConversion = true;
1118      } else {
1119        // Argument types are too different. Abort.
1120        return false;
1121      }
1122    }
1123
1124    if (HasObjCConversion) {
1125      // We had an Objective-C conversion. Allow this pointer
1126      // conversion, but complain about it.
1127      ConvertedType = ToType;
1128      IncompatibleObjC = true;
1129      return true;
1130    }
1131  }
1132
1133  return false;
1134}
1135
1136/// CheckPointerConversion - Check the pointer conversion from the
1137/// expression From to the type ToType. This routine checks for
1138/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1139/// conversions for which IsPointerConversion has already returned
1140/// true. It returns true and produces a diagnostic if there was an
1141/// error, or returns false otherwise.
1142bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1143  QualType FromType = From->getType();
1144
1145  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1146    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1147      QualType FromPointeeType = FromPtrType->getPointeeType(),
1148               ToPointeeType   = ToPtrType->getPointeeType();
1149
1150      if (FromPointeeType->isRecordType() &&
1151          ToPointeeType->isRecordType()) {
1152        // We must have a derived-to-base conversion. Check an
1153        // ambiguous or inaccessible conversion.
1154        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1155                                            From->getExprLoc(),
1156                                            From->getSourceRange());
1157      }
1158    }
1159  if (const ObjCObjectPointerType *FromPtrType =
1160        FromType->getAsObjCObjectPointerType())
1161    if (const ObjCObjectPointerType *ToPtrType =
1162          ToType->getAsObjCObjectPointerType()) {
1163      // Objective-C++ conversions are always okay.
1164      // FIXME: We should have a different class of conversions for the
1165      // Objective-C++ implicit conversions.
1166      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1167        return false;
1168
1169  }
1170  return false;
1171}
1172
1173/// IsMemberPointerConversion - Determines whether the conversion of the
1174/// expression From, which has the (possibly adjusted) type FromType, can be
1175/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1176/// If so, returns true and places the converted type (that might differ from
1177/// ToType in its cv-qualifiers at some level) into ConvertedType.
1178bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1179                                     QualType ToType, QualType &ConvertedType)
1180{
1181  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1182  if (!ToTypePtr)
1183    return false;
1184
1185  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1186  if (From->isNullPointerConstant(Context)) {
1187    ConvertedType = ToType;
1188    return true;
1189  }
1190
1191  // Otherwise, both types have to be member pointers.
1192  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1193  if (!FromTypePtr)
1194    return false;
1195
1196  // A pointer to member of B can be converted to a pointer to member of D,
1197  // where D is derived from B (C++ 4.11p2).
1198  QualType FromClass(FromTypePtr->getClass(), 0);
1199  QualType ToClass(ToTypePtr->getClass(), 0);
1200  // FIXME: What happens when these are dependent? Is this function even called?
1201
1202  if (IsDerivedFrom(ToClass, FromClass)) {
1203    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1204                                                 ToClass.getTypePtr());
1205    return true;
1206  }
1207
1208  return false;
1209}
1210
1211/// CheckMemberPointerConversion - Check the member pointer conversion from the
1212/// expression From to the type ToType. This routine checks for ambiguous or
1213/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1214/// for which IsMemberPointerConversion has already returned true. It returns
1215/// true and produces a diagnostic if there was an error, or returns false
1216/// otherwise.
1217bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1218  QualType FromType = From->getType();
1219  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1220  if (!FromPtrType)
1221    return false;
1222
1223  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1224  assert(ToPtrType && "No member pointer cast has a target type "
1225                      "that is not a member pointer.");
1226
1227  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1228  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1229
1230  // FIXME: What about dependent types?
1231  assert(FromClass->isRecordType() && "Pointer into non-class.");
1232  assert(ToClass->isRecordType() && "Pointer into non-class.");
1233
1234  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1235                  /*DetectVirtual=*/true);
1236  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1237  assert(DerivationOkay &&
1238         "Should not have been called if derivation isn't OK.");
1239  (void)DerivationOkay;
1240
1241  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1242                                  getUnqualifiedType())) {
1243    // Derivation is ambiguous. Redo the check to find the exact paths.
1244    Paths.clear();
1245    Paths.setRecordingPaths(true);
1246    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1247    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1248    (void)StillOkay;
1249
1250    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1251    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1252      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1253    return true;
1254  }
1255
1256  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1257    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1258      << FromClass << ToClass << QualType(VBase, 0)
1259      << From->getSourceRange();
1260    return true;
1261  }
1262
1263  return false;
1264}
1265
1266/// IsQualificationConversion - Determines whether the conversion from
1267/// an rvalue of type FromType to ToType is a qualification conversion
1268/// (C++ 4.4).
1269bool
1270Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1271{
1272  FromType = Context.getCanonicalType(FromType);
1273  ToType = Context.getCanonicalType(ToType);
1274
1275  // If FromType and ToType are the same type, this is not a
1276  // qualification conversion.
1277  if (FromType == ToType)
1278    return false;
1279
1280  // (C++ 4.4p4):
1281  //   A conversion can add cv-qualifiers at levels other than the first
1282  //   in multi-level pointers, subject to the following rules: [...]
1283  bool PreviousToQualsIncludeConst = true;
1284  bool UnwrappedAnyPointer = false;
1285  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1286    // Within each iteration of the loop, we check the qualifiers to
1287    // determine if this still looks like a qualification
1288    // conversion. Then, if all is well, we unwrap one more level of
1289    // pointers or pointers-to-members and do it all again
1290    // until there are no more pointers or pointers-to-members left to
1291    // unwrap.
1292    UnwrappedAnyPointer = true;
1293
1294    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1295    //      2,j, and similarly for volatile.
1296    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1297      return false;
1298
1299    //   -- if the cv 1,j and cv 2,j are different, then const is in
1300    //      every cv for 0 < k < j.
1301    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1302        && !PreviousToQualsIncludeConst)
1303      return false;
1304
1305    // Keep track of whether all prior cv-qualifiers in the "to" type
1306    // include const.
1307    PreviousToQualsIncludeConst
1308      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1309  }
1310
1311  // We are left with FromType and ToType being the pointee types
1312  // after unwrapping the original FromType and ToType the same number
1313  // of types. If we unwrapped any pointers, and if FromType and
1314  // ToType have the same unqualified type (since we checked
1315  // qualifiers above), then this is a qualification conversion.
1316  return UnwrappedAnyPointer &&
1317    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1318}
1319
1320/// Determines whether there is a user-defined conversion sequence
1321/// (C++ [over.ics.user]) that converts expression From to the type
1322/// ToType. If such a conversion exists, User will contain the
1323/// user-defined conversion sequence that performs such a conversion
1324/// and this routine will return true. Otherwise, this routine returns
1325/// false and User is unspecified.
1326///
1327/// \param AllowConversionFunctions true if the conversion should
1328/// consider conversion functions at all. If false, only constructors
1329/// will be considered.
1330///
1331/// \param AllowExplicit  true if the conversion should consider C++0x
1332/// "explicit" conversion functions as well as non-explicit conversion
1333/// functions (C++0x [class.conv.fct]p2).
1334///
1335/// \param ForceRValue  true if the expression should be treated as an rvalue
1336/// for overload resolution.
1337bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1338                                   UserDefinedConversionSequence& User,
1339                                   bool AllowConversionFunctions,
1340                                   bool AllowExplicit, bool ForceRValue)
1341{
1342  OverloadCandidateSet CandidateSet;
1343  if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1344    if (CXXRecordDecl *ToRecordDecl
1345          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1346      // C++ [over.match.ctor]p1:
1347      //   When objects of class type are direct-initialized (8.5), or
1348      //   copy-initialized from an expression of the same or a
1349      //   derived class type (8.5), overload resolution selects the
1350      //   constructor. [...] For copy-initialization, the candidate
1351      //   functions are all the converting constructors (12.3.1) of
1352      //   that class. The argument list is the expression-list within
1353      //   the parentheses of the initializer.
1354      DeclarationName ConstructorName
1355        = Context.DeclarationNames.getCXXConstructorName(
1356                          Context.getCanonicalType(ToType).getUnqualifiedType());
1357      DeclContext::lookup_iterator Con, ConEnd;
1358      for (llvm::tie(Con, ConEnd)
1359             = ToRecordDecl->lookup(ConstructorName);
1360           Con != ConEnd; ++Con) {
1361        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1362        if (Constructor->isConvertingConstructor())
1363          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1364                               /*SuppressUserConversions=*/true, ForceRValue);
1365      }
1366    }
1367  }
1368
1369  if (!AllowConversionFunctions) {
1370    // Don't allow any conversion functions to enter the overload set.
1371  } else if (const RecordType *FromRecordType
1372               = From->getType()->getAsRecordType()) {
1373    if (CXXRecordDecl *FromRecordDecl
1374          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1375      // Add all of the conversion functions as candidates.
1376      // FIXME: Look for conversions in base classes!
1377      OverloadedFunctionDecl *Conversions
1378        = FromRecordDecl->getConversionFunctions();
1379      for (OverloadedFunctionDecl::function_iterator Func
1380             = Conversions->function_begin();
1381           Func != Conversions->function_end(); ++Func) {
1382        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1383        if (AllowExplicit || !Conv->isExplicit())
1384          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1385      }
1386    }
1387  }
1388
1389  OverloadCandidateSet::iterator Best;
1390  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1391    case OR_Success:
1392      // Record the standard conversion we used and the conversion function.
1393      if (CXXConstructorDecl *Constructor
1394            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1395        // C++ [over.ics.user]p1:
1396        //   If the user-defined conversion is specified by a
1397        //   constructor (12.3.1), the initial standard conversion
1398        //   sequence converts the source type to the type required by
1399        //   the argument of the constructor.
1400        //
1401        // FIXME: What about ellipsis conversions?
1402        QualType ThisType = Constructor->getThisType(Context);
1403        User.Before = Best->Conversions[0].Standard;
1404        User.ConversionFunction = Constructor;
1405        User.After.setAsIdentityConversion();
1406        User.After.FromTypePtr
1407          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1408        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1409        return true;
1410      } else if (CXXConversionDecl *Conversion
1411                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1412        // C++ [over.ics.user]p1:
1413        //
1414        //   [...] If the user-defined conversion is specified by a
1415        //   conversion function (12.3.2), the initial standard
1416        //   conversion sequence converts the source type to the
1417        //   implicit object parameter of the conversion function.
1418        User.Before = Best->Conversions[0].Standard;
1419        User.ConversionFunction = Conversion;
1420
1421        // C++ [over.ics.user]p2:
1422        //   The second standard conversion sequence converts the
1423        //   result of the user-defined conversion to the target type
1424        //   for the sequence. Since an implicit conversion sequence
1425        //   is an initialization, the special rules for
1426        //   initialization by user-defined conversion apply when
1427        //   selecting the best user-defined conversion for a
1428        //   user-defined conversion sequence (see 13.3.3 and
1429        //   13.3.3.1).
1430        User.After = Best->FinalConversion;
1431        return true;
1432      } else {
1433        assert(false && "Not a constructor or conversion function?");
1434        return false;
1435      }
1436
1437    case OR_No_Viable_Function:
1438    case OR_Deleted:
1439      // No conversion here! We're done.
1440      return false;
1441
1442    case OR_Ambiguous:
1443      // FIXME: See C++ [over.best.ics]p10 for the handling of
1444      // ambiguous conversion sequences.
1445      return false;
1446    }
1447
1448  return false;
1449}
1450
1451/// CompareImplicitConversionSequences - Compare two implicit
1452/// conversion sequences to determine whether one is better than the
1453/// other or if they are indistinguishable (C++ 13.3.3.2).
1454ImplicitConversionSequence::CompareKind
1455Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1456                                         const ImplicitConversionSequence& ICS2)
1457{
1458  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1459  // conversion sequences (as defined in 13.3.3.1)
1460  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1461  //      conversion sequence than a user-defined conversion sequence or
1462  //      an ellipsis conversion sequence, and
1463  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1464  //      conversion sequence than an ellipsis conversion sequence
1465  //      (13.3.3.1.3).
1466  //
1467  if (ICS1.ConversionKind < ICS2.ConversionKind)
1468    return ImplicitConversionSequence::Better;
1469  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1470    return ImplicitConversionSequence::Worse;
1471
1472  // Two implicit conversion sequences of the same form are
1473  // indistinguishable conversion sequences unless one of the
1474  // following rules apply: (C++ 13.3.3.2p3):
1475  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1476    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1477  else if (ICS1.ConversionKind ==
1478             ImplicitConversionSequence::UserDefinedConversion) {
1479    // User-defined conversion sequence U1 is a better conversion
1480    // sequence than another user-defined conversion sequence U2 if
1481    // they contain the same user-defined conversion function or
1482    // constructor and if the second standard conversion sequence of
1483    // U1 is better than the second standard conversion sequence of
1484    // U2 (C++ 13.3.3.2p3).
1485    if (ICS1.UserDefined.ConversionFunction ==
1486          ICS2.UserDefined.ConversionFunction)
1487      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1488                                                ICS2.UserDefined.After);
1489  }
1490
1491  return ImplicitConversionSequence::Indistinguishable;
1492}
1493
1494/// CompareStandardConversionSequences - Compare two standard
1495/// conversion sequences to determine whether one is better than the
1496/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1497ImplicitConversionSequence::CompareKind
1498Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1499                                         const StandardConversionSequence& SCS2)
1500{
1501  // Standard conversion sequence S1 is a better conversion sequence
1502  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1503
1504  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1505  //     sequences in the canonical form defined by 13.3.3.1.1,
1506  //     excluding any Lvalue Transformation; the identity conversion
1507  //     sequence is considered to be a subsequence of any
1508  //     non-identity conversion sequence) or, if not that,
1509  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1510    // Neither is a proper subsequence of the other. Do nothing.
1511    ;
1512  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1513           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1514           (SCS1.Second == ICK_Identity &&
1515            SCS1.Third == ICK_Identity))
1516    // SCS1 is a proper subsequence of SCS2.
1517    return ImplicitConversionSequence::Better;
1518  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1519           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1520           (SCS2.Second == ICK_Identity &&
1521            SCS2.Third == ICK_Identity))
1522    // SCS2 is a proper subsequence of SCS1.
1523    return ImplicitConversionSequence::Worse;
1524
1525  //  -- the rank of S1 is better than the rank of S2 (by the rules
1526  //     defined below), or, if not that,
1527  ImplicitConversionRank Rank1 = SCS1.getRank();
1528  ImplicitConversionRank Rank2 = SCS2.getRank();
1529  if (Rank1 < Rank2)
1530    return ImplicitConversionSequence::Better;
1531  else if (Rank2 < Rank1)
1532    return ImplicitConversionSequence::Worse;
1533
1534  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1535  // are indistinguishable unless one of the following rules
1536  // applies:
1537
1538  //   A conversion that is not a conversion of a pointer, or
1539  //   pointer to member, to bool is better than another conversion
1540  //   that is such a conversion.
1541  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1542    return SCS2.isPointerConversionToBool()
1543             ? ImplicitConversionSequence::Better
1544             : ImplicitConversionSequence::Worse;
1545
1546  // C++ [over.ics.rank]p4b2:
1547  //
1548  //   If class B is derived directly or indirectly from class A,
1549  //   conversion of B* to A* is better than conversion of B* to
1550  //   void*, and conversion of A* to void* is better than conversion
1551  //   of B* to void*.
1552  bool SCS1ConvertsToVoid
1553    = SCS1.isPointerConversionToVoidPointer(Context);
1554  bool SCS2ConvertsToVoid
1555    = SCS2.isPointerConversionToVoidPointer(Context);
1556  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1557    // Exactly one of the conversion sequences is a conversion to
1558    // a void pointer; it's the worse conversion.
1559    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1560                              : ImplicitConversionSequence::Worse;
1561  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1562    // Neither conversion sequence converts to a void pointer; compare
1563    // their derived-to-base conversions.
1564    if (ImplicitConversionSequence::CompareKind DerivedCK
1565          = CompareDerivedToBaseConversions(SCS1, SCS2))
1566      return DerivedCK;
1567  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1568    // Both conversion sequences are conversions to void
1569    // pointers. Compare the source types to determine if there's an
1570    // inheritance relationship in their sources.
1571    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1572    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1573
1574    // Adjust the types we're converting from via the array-to-pointer
1575    // conversion, if we need to.
1576    if (SCS1.First == ICK_Array_To_Pointer)
1577      FromType1 = Context.getArrayDecayedType(FromType1);
1578    if (SCS2.First == ICK_Array_To_Pointer)
1579      FromType2 = Context.getArrayDecayedType(FromType2);
1580
1581    QualType FromPointee1
1582      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1583    QualType FromPointee2
1584      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1585
1586    if (IsDerivedFrom(FromPointee2, FromPointee1))
1587      return ImplicitConversionSequence::Better;
1588    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1589      return ImplicitConversionSequence::Worse;
1590
1591    // Objective-C++: If one interface is more specific than the
1592    // other, it is the better one.
1593    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1594    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1595    if (FromIface1 && FromIface1) {
1596      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1597        return ImplicitConversionSequence::Better;
1598      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1599        return ImplicitConversionSequence::Worse;
1600    }
1601  }
1602
1603  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1604  // bullet 3).
1605  if (ImplicitConversionSequence::CompareKind QualCK
1606        = CompareQualificationConversions(SCS1, SCS2))
1607    return QualCK;
1608
1609  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1610    // C++0x [over.ics.rank]p3b4:
1611    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1612    //      implicit object parameter of a non-static member function declared
1613    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1614    //      rvalue and S2 binds an lvalue reference.
1615    // FIXME: We don't know if we're dealing with the implicit object parameter,
1616    // or if the member function in this case has a ref qualifier.
1617    // (Of course, we don't have ref qualifiers yet.)
1618    if (SCS1.RRefBinding != SCS2.RRefBinding)
1619      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1620                              : ImplicitConversionSequence::Worse;
1621
1622    // C++ [over.ics.rank]p3b4:
1623    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1624    //      which the references refer are the same type except for
1625    //      top-level cv-qualifiers, and the type to which the reference
1626    //      initialized by S2 refers is more cv-qualified than the type
1627    //      to which the reference initialized by S1 refers.
1628    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1629    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1630    T1 = Context.getCanonicalType(T1);
1631    T2 = Context.getCanonicalType(T2);
1632    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1633      if (T2.isMoreQualifiedThan(T1))
1634        return ImplicitConversionSequence::Better;
1635      else if (T1.isMoreQualifiedThan(T2))
1636        return ImplicitConversionSequence::Worse;
1637    }
1638  }
1639
1640  return ImplicitConversionSequence::Indistinguishable;
1641}
1642
1643/// CompareQualificationConversions - Compares two standard conversion
1644/// sequences to determine whether they can be ranked based on their
1645/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1646ImplicitConversionSequence::CompareKind
1647Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1648                                      const StandardConversionSequence& SCS2)
1649{
1650  // C++ 13.3.3.2p3:
1651  //  -- S1 and S2 differ only in their qualification conversion and
1652  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1653  //     cv-qualification signature of type T1 is a proper subset of
1654  //     the cv-qualification signature of type T2, and S1 is not the
1655  //     deprecated string literal array-to-pointer conversion (4.2).
1656  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1657      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1658    return ImplicitConversionSequence::Indistinguishable;
1659
1660  // FIXME: the example in the standard doesn't use a qualification
1661  // conversion (!)
1662  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1663  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1664  T1 = Context.getCanonicalType(T1);
1665  T2 = Context.getCanonicalType(T2);
1666
1667  // If the types are the same, we won't learn anything by unwrapped
1668  // them.
1669  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1670    return ImplicitConversionSequence::Indistinguishable;
1671
1672  ImplicitConversionSequence::CompareKind Result
1673    = ImplicitConversionSequence::Indistinguishable;
1674  while (UnwrapSimilarPointerTypes(T1, T2)) {
1675    // Within each iteration of the loop, we check the qualifiers to
1676    // determine if this still looks like a qualification
1677    // conversion. Then, if all is well, we unwrap one more level of
1678    // pointers or pointers-to-members and do it all again
1679    // until there are no more pointers or pointers-to-members left
1680    // to unwrap. This essentially mimics what
1681    // IsQualificationConversion does, but here we're checking for a
1682    // strict subset of qualifiers.
1683    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1684      // The qualifiers are the same, so this doesn't tell us anything
1685      // about how the sequences rank.
1686      ;
1687    else if (T2.isMoreQualifiedThan(T1)) {
1688      // T1 has fewer qualifiers, so it could be the better sequence.
1689      if (Result == ImplicitConversionSequence::Worse)
1690        // Neither has qualifiers that are a subset of the other's
1691        // qualifiers.
1692        return ImplicitConversionSequence::Indistinguishable;
1693
1694      Result = ImplicitConversionSequence::Better;
1695    } else if (T1.isMoreQualifiedThan(T2)) {
1696      // T2 has fewer qualifiers, so it could be the better sequence.
1697      if (Result == ImplicitConversionSequence::Better)
1698        // Neither has qualifiers that are a subset of the other's
1699        // qualifiers.
1700        return ImplicitConversionSequence::Indistinguishable;
1701
1702      Result = ImplicitConversionSequence::Worse;
1703    } else {
1704      // Qualifiers are disjoint.
1705      return ImplicitConversionSequence::Indistinguishable;
1706    }
1707
1708    // If the types after this point are equivalent, we're done.
1709    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1710      break;
1711  }
1712
1713  // Check that the winning standard conversion sequence isn't using
1714  // the deprecated string literal array to pointer conversion.
1715  switch (Result) {
1716  case ImplicitConversionSequence::Better:
1717    if (SCS1.Deprecated)
1718      Result = ImplicitConversionSequence::Indistinguishable;
1719    break;
1720
1721  case ImplicitConversionSequence::Indistinguishable:
1722    break;
1723
1724  case ImplicitConversionSequence::Worse:
1725    if (SCS2.Deprecated)
1726      Result = ImplicitConversionSequence::Indistinguishable;
1727    break;
1728  }
1729
1730  return Result;
1731}
1732
1733/// CompareDerivedToBaseConversions - Compares two standard conversion
1734/// sequences to determine whether they can be ranked based on their
1735/// various kinds of derived-to-base conversions (C++
1736/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1737/// conversions between Objective-C interface types.
1738ImplicitConversionSequence::CompareKind
1739Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1740                                      const StandardConversionSequence& SCS2) {
1741  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1742  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1743  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1744  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1745
1746  // Adjust the types we're converting from via the array-to-pointer
1747  // conversion, if we need to.
1748  if (SCS1.First == ICK_Array_To_Pointer)
1749    FromType1 = Context.getArrayDecayedType(FromType1);
1750  if (SCS2.First == ICK_Array_To_Pointer)
1751    FromType2 = Context.getArrayDecayedType(FromType2);
1752
1753  // Canonicalize all of the types.
1754  FromType1 = Context.getCanonicalType(FromType1);
1755  ToType1 = Context.getCanonicalType(ToType1);
1756  FromType2 = Context.getCanonicalType(FromType2);
1757  ToType2 = Context.getCanonicalType(ToType2);
1758
1759  // C++ [over.ics.rank]p4b3:
1760  //
1761  //   If class B is derived directly or indirectly from class A and
1762  //   class C is derived directly or indirectly from B,
1763  //
1764  // For Objective-C, we let A, B, and C also be Objective-C
1765  // interfaces.
1766
1767  // Compare based on pointer conversions.
1768  if (SCS1.Second == ICK_Pointer_Conversion &&
1769      SCS2.Second == ICK_Pointer_Conversion &&
1770      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1771      FromType1->isPointerType() && FromType2->isPointerType() &&
1772      ToType1->isPointerType() && ToType2->isPointerType()) {
1773    QualType FromPointee1
1774      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1775    QualType ToPointee1
1776      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1777    QualType FromPointee2
1778      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1779    QualType ToPointee2
1780      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1781
1782    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1783    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1784    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1785    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1786
1787    //   -- conversion of C* to B* is better than conversion of C* to A*,
1788    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1789      if (IsDerivedFrom(ToPointee1, ToPointee2))
1790        return ImplicitConversionSequence::Better;
1791      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1792        return ImplicitConversionSequence::Worse;
1793
1794      if (ToIface1 && ToIface2) {
1795        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1796          return ImplicitConversionSequence::Better;
1797        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1798          return ImplicitConversionSequence::Worse;
1799      }
1800    }
1801
1802    //   -- conversion of B* to A* is better than conversion of C* to A*,
1803    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1804      if (IsDerivedFrom(FromPointee2, FromPointee1))
1805        return ImplicitConversionSequence::Better;
1806      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1807        return ImplicitConversionSequence::Worse;
1808
1809      if (FromIface1 && FromIface2) {
1810        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1811          return ImplicitConversionSequence::Better;
1812        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1813          return ImplicitConversionSequence::Worse;
1814      }
1815    }
1816  }
1817
1818  // Compare based on reference bindings.
1819  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1820      SCS1.Second == ICK_Derived_To_Base) {
1821    //   -- binding of an expression of type C to a reference of type
1822    //      B& is better than binding an expression of type C to a
1823    //      reference of type A&,
1824    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1825        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1826      if (IsDerivedFrom(ToType1, ToType2))
1827        return ImplicitConversionSequence::Better;
1828      else if (IsDerivedFrom(ToType2, ToType1))
1829        return ImplicitConversionSequence::Worse;
1830    }
1831
1832    //   -- binding of an expression of type B to a reference of type
1833    //      A& is better than binding an expression of type C to a
1834    //      reference of type A&,
1835    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1836        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1837      if (IsDerivedFrom(FromType2, FromType1))
1838        return ImplicitConversionSequence::Better;
1839      else if (IsDerivedFrom(FromType1, FromType2))
1840        return ImplicitConversionSequence::Worse;
1841    }
1842  }
1843
1844
1845  // FIXME: conversion of A::* to B::* is better than conversion of
1846  // A::* to C::*,
1847
1848  // FIXME: conversion of B::* to C::* is better than conversion of
1849  // A::* to C::*, and
1850
1851  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1852      SCS1.Second == ICK_Derived_To_Base) {
1853    //   -- conversion of C to B is better than conversion of C to A,
1854    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1855        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1856      if (IsDerivedFrom(ToType1, ToType2))
1857        return ImplicitConversionSequence::Better;
1858      else if (IsDerivedFrom(ToType2, ToType1))
1859        return ImplicitConversionSequence::Worse;
1860    }
1861
1862    //   -- conversion of B to A is better than conversion of C to A.
1863    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1864        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1865      if (IsDerivedFrom(FromType2, FromType1))
1866        return ImplicitConversionSequence::Better;
1867      else if (IsDerivedFrom(FromType1, FromType2))
1868        return ImplicitConversionSequence::Worse;
1869    }
1870  }
1871
1872  return ImplicitConversionSequence::Indistinguishable;
1873}
1874
1875/// TryCopyInitialization - Try to copy-initialize a value of type
1876/// ToType from the expression From. Return the implicit conversion
1877/// sequence required to pass this argument, which may be a bad
1878/// conversion sequence (meaning that the argument cannot be passed to
1879/// a parameter of this type). If @p SuppressUserConversions, then we
1880/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1881/// then we treat @p From as an rvalue, even if it is an lvalue.
1882ImplicitConversionSequence
1883Sema::TryCopyInitialization(Expr *From, QualType ToType,
1884                            bool SuppressUserConversions, bool ForceRValue) {
1885  if (ToType->isReferenceType()) {
1886    ImplicitConversionSequence ICS;
1887    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1888                       /*AllowExplicit=*/false, ForceRValue);
1889    return ICS;
1890  } else {
1891    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1892                                 ForceRValue);
1893  }
1894}
1895
1896/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1897/// the expression @p From. Returns true (and emits a diagnostic) if there was
1898/// an error, returns false if the initialization succeeded. Elidable should
1899/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1900/// differently in C++0x for this case.
1901bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1902                                     const char* Flavor, bool Elidable) {
1903  if (!getLangOptions().CPlusPlus) {
1904    // In C, argument passing is the same as performing an assignment.
1905    QualType FromType = From->getType();
1906
1907    AssignConvertType ConvTy =
1908      CheckSingleAssignmentConstraints(ToType, From);
1909    if (ConvTy != Compatible &&
1910        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1911      ConvTy = Compatible;
1912
1913    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1914                                    FromType, From, Flavor);
1915  }
1916
1917  if (ToType->isReferenceType())
1918    return CheckReferenceInit(From, ToType);
1919
1920  if (!PerformImplicitConversion(From, ToType, Flavor,
1921                                 /*AllowExplicit=*/false, Elidable))
1922    return false;
1923
1924  return Diag(From->getSourceRange().getBegin(),
1925              diag::err_typecheck_convert_incompatible)
1926    << ToType << From->getType() << Flavor << From->getSourceRange();
1927}
1928
1929/// TryObjectArgumentInitialization - Try to initialize the object
1930/// parameter of the given member function (@c Method) from the
1931/// expression @p From.
1932ImplicitConversionSequence
1933Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1934  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1935  unsigned MethodQuals = Method->getTypeQualifiers();
1936  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1937
1938  // Set up the conversion sequence as a "bad" conversion, to allow us
1939  // to exit early.
1940  ImplicitConversionSequence ICS;
1941  ICS.Standard.setAsIdentityConversion();
1942  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1943
1944  // We need to have an object of class type.
1945  QualType FromType = From->getType();
1946  if (const PointerType *PT = FromType->getAs<PointerType>())
1947    FromType = PT->getPointeeType();
1948
1949  assert(FromType->isRecordType());
1950
1951  // The implicit object parmeter is has the type "reference to cv X",
1952  // where X is the class of which the function is a member
1953  // (C++ [over.match.funcs]p4). However, when finding an implicit
1954  // conversion sequence for the argument, we are not allowed to
1955  // create temporaries or perform user-defined conversions
1956  // (C++ [over.match.funcs]p5). We perform a simplified version of
1957  // reference binding here, that allows class rvalues to bind to
1958  // non-constant references.
1959
1960  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1961  // with the implicit object parameter (C++ [over.match.funcs]p5).
1962  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1963  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1964      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1965    return ICS;
1966
1967  // Check that we have either the same type or a derived type. It
1968  // affects the conversion rank.
1969  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1970  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1971    ICS.Standard.Second = ICK_Identity;
1972  else if (IsDerivedFrom(FromType, ClassType))
1973    ICS.Standard.Second = ICK_Derived_To_Base;
1974  else
1975    return ICS;
1976
1977  // Success. Mark this as a reference binding.
1978  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1979  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1980  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1981  ICS.Standard.ReferenceBinding = true;
1982  ICS.Standard.DirectBinding = true;
1983  ICS.Standard.RRefBinding = false;
1984  return ICS;
1985}
1986
1987/// PerformObjectArgumentInitialization - Perform initialization of
1988/// the implicit object parameter for the given Method with the given
1989/// expression.
1990bool
1991Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1992  QualType FromRecordType, DestType;
1993  QualType ImplicitParamRecordType  =
1994    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
1995
1996  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
1997    FromRecordType = PT->getPointeeType();
1998    DestType = Method->getThisType(Context);
1999  } else {
2000    FromRecordType = From->getType();
2001    DestType = ImplicitParamRecordType;
2002  }
2003
2004  ImplicitConversionSequence ICS
2005    = TryObjectArgumentInitialization(From, Method);
2006  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2007    return Diag(From->getSourceRange().getBegin(),
2008                diag::err_implicit_object_parameter_init)
2009       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2010
2011  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2012      CheckDerivedToBaseConversion(FromRecordType,
2013                                   ImplicitParamRecordType,
2014                                   From->getSourceRange().getBegin(),
2015                                   From->getSourceRange()))
2016    return true;
2017
2018  ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2019  return false;
2020}
2021
2022/// TryContextuallyConvertToBool - Attempt to contextually convert the
2023/// expression From to bool (C++0x [conv]p3).
2024ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2025  return TryImplicitConversion(From, Context.BoolTy, false, true);
2026}
2027
2028/// PerformContextuallyConvertToBool - Perform a contextual conversion
2029/// of the expression From to bool (C++0x [conv]p3).
2030bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2031  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2032  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2033    return false;
2034
2035  return Diag(From->getSourceRange().getBegin(),
2036              diag::err_typecheck_bool_condition)
2037    << From->getType() << From->getSourceRange();
2038}
2039
2040/// AddOverloadCandidate - Adds the given function to the set of
2041/// candidate functions, using the given function call arguments.  If
2042/// @p SuppressUserConversions, then don't allow user-defined
2043/// conversions via constructors or conversion operators.
2044/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2045/// hacky way to implement the overloading rules for elidable copy
2046/// initialization in C++0x (C++0x 12.8p15).
2047void
2048Sema::AddOverloadCandidate(FunctionDecl *Function,
2049                           Expr **Args, unsigned NumArgs,
2050                           OverloadCandidateSet& CandidateSet,
2051                           bool SuppressUserConversions,
2052                           bool ForceRValue)
2053{
2054  const FunctionProtoType* Proto
2055    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2056  assert(Proto && "Functions without a prototype cannot be overloaded");
2057  assert(!isa<CXXConversionDecl>(Function) &&
2058         "Use AddConversionCandidate for conversion functions");
2059  assert(!Function->getDescribedFunctionTemplate() &&
2060         "Use AddTemplateOverloadCandidate for function templates");
2061
2062  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2063    if (!isa<CXXConstructorDecl>(Method)) {
2064      // If we get here, it's because we're calling a member function
2065      // that is named without a member access expression (e.g.,
2066      // "this->f") that was either written explicitly or created
2067      // implicitly. This can happen with a qualified call to a member
2068      // function, e.g., X::f(). We use a NULL object as the implied
2069      // object argument (C++ [over.call.func]p3).
2070      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2071                         SuppressUserConversions, ForceRValue);
2072      return;
2073    }
2074    // We treat a constructor like a non-member function, since its object
2075    // argument doesn't participate in overload resolution.
2076  }
2077
2078
2079  // Add this candidate
2080  CandidateSet.push_back(OverloadCandidate());
2081  OverloadCandidate& Candidate = CandidateSet.back();
2082  Candidate.Function = Function;
2083  Candidate.Viable = true;
2084  Candidate.IsSurrogate = false;
2085  Candidate.IgnoreObjectArgument = false;
2086
2087  unsigned NumArgsInProto = Proto->getNumArgs();
2088
2089  // (C++ 13.3.2p2): A candidate function having fewer than m
2090  // parameters is viable only if it has an ellipsis in its parameter
2091  // list (8.3.5).
2092  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2093    Candidate.Viable = false;
2094    return;
2095  }
2096
2097  // (C++ 13.3.2p2): A candidate function having more than m parameters
2098  // is viable only if the (m+1)st parameter has a default argument
2099  // (8.3.6). For the purposes of overload resolution, the
2100  // parameter list is truncated on the right, so that there are
2101  // exactly m parameters.
2102  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2103  if (NumArgs < MinRequiredArgs) {
2104    // Not enough arguments.
2105    Candidate.Viable = false;
2106    return;
2107  }
2108
2109  // Determine the implicit conversion sequences for each of the
2110  // arguments.
2111  Candidate.Conversions.resize(NumArgs);
2112  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2113    if (ArgIdx < NumArgsInProto) {
2114      // (C++ 13.3.2p3): for F to be a viable function, there shall
2115      // exist for each argument an implicit conversion sequence
2116      // (13.3.3.1) that converts that argument to the corresponding
2117      // parameter of F.
2118      QualType ParamType = Proto->getArgType(ArgIdx);
2119      Candidate.Conversions[ArgIdx]
2120        = TryCopyInitialization(Args[ArgIdx], ParamType,
2121                                SuppressUserConversions, ForceRValue);
2122      if (Candidate.Conversions[ArgIdx].ConversionKind
2123            == ImplicitConversionSequence::BadConversion) {
2124        Candidate.Viable = false;
2125        break;
2126      }
2127    } else {
2128      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2129      // argument for which there is no corresponding parameter is
2130      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2131      Candidate.Conversions[ArgIdx].ConversionKind
2132        = ImplicitConversionSequence::EllipsisConversion;
2133    }
2134  }
2135}
2136
2137/// \brief Add all of the function declarations in the given function set to
2138/// the overload canddiate set.
2139void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2140                                 Expr **Args, unsigned NumArgs,
2141                                 OverloadCandidateSet& CandidateSet,
2142                                 bool SuppressUserConversions) {
2143  for (FunctionSet::const_iterator F = Functions.begin(),
2144                                FEnd = Functions.end();
2145       F != FEnd; ++F) {
2146    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2147      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2148                           SuppressUserConversions);
2149    else
2150      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2151                                   /*FIXME: explicit args */false, 0, 0,
2152                                   Args, NumArgs, CandidateSet,
2153                                   SuppressUserConversions);
2154  }
2155}
2156
2157/// AddMethodCandidate - Adds the given C++ member function to the set
2158/// of candidate functions, using the given function call arguments
2159/// and the object argument (@c Object). For example, in a call
2160/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2161/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2162/// allow user-defined conversions via constructors or conversion
2163/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2164/// a slightly hacky way to implement the overloading rules for elidable copy
2165/// initialization in C++0x (C++0x 12.8p15).
2166void
2167Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2168                         Expr **Args, unsigned NumArgs,
2169                         OverloadCandidateSet& CandidateSet,
2170                         bool SuppressUserConversions, bool ForceRValue)
2171{
2172  const FunctionProtoType* Proto
2173    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2174  assert(Proto && "Methods without a prototype cannot be overloaded");
2175  assert(!isa<CXXConversionDecl>(Method) &&
2176         "Use AddConversionCandidate for conversion functions");
2177  assert(!isa<CXXConstructorDecl>(Method) &&
2178         "Use AddOverloadCandidate for constructors");
2179
2180  // Add this candidate
2181  CandidateSet.push_back(OverloadCandidate());
2182  OverloadCandidate& Candidate = CandidateSet.back();
2183  Candidate.Function = Method;
2184  Candidate.IsSurrogate = false;
2185  Candidate.IgnoreObjectArgument = false;
2186
2187  unsigned NumArgsInProto = Proto->getNumArgs();
2188
2189  // (C++ 13.3.2p2): A candidate function having fewer than m
2190  // parameters is viable only if it has an ellipsis in its parameter
2191  // list (8.3.5).
2192  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2193    Candidate.Viable = false;
2194    return;
2195  }
2196
2197  // (C++ 13.3.2p2): A candidate function having more than m parameters
2198  // is viable only if the (m+1)st parameter has a default argument
2199  // (8.3.6). For the purposes of overload resolution, the
2200  // parameter list is truncated on the right, so that there are
2201  // exactly m parameters.
2202  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2203  if (NumArgs < MinRequiredArgs) {
2204    // Not enough arguments.
2205    Candidate.Viable = false;
2206    return;
2207  }
2208
2209  Candidate.Viable = true;
2210  Candidate.Conversions.resize(NumArgs + 1);
2211
2212  if (Method->isStatic() || !Object)
2213    // The implicit object argument is ignored.
2214    Candidate.IgnoreObjectArgument = true;
2215  else {
2216    // Determine the implicit conversion sequence for the object
2217    // parameter.
2218    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2219    if (Candidate.Conversions[0].ConversionKind
2220          == ImplicitConversionSequence::BadConversion) {
2221      Candidate.Viable = false;
2222      return;
2223    }
2224  }
2225
2226  // Determine the implicit conversion sequences for each of the
2227  // arguments.
2228  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2229    if (ArgIdx < NumArgsInProto) {
2230      // (C++ 13.3.2p3): for F to be a viable function, there shall
2231      // exist for each argument an implicit conversion sequence
2232      // (13.3.3.1) that converts that argument to the corresponding
2233      // parameter of F.
2234      QualType ParamType = Proto->getArgType(ArgIdx);
2235      Candidate.Conversions[ArgIdx + 1]
2236        = TryCopyInitialization(Args[ArgIdx], ParamType,
2237                                SuppressUserConversions, ForceRValue);
2238      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2239            == ImplicitConversionSequence::BadConversion) {
2240        Candidate.Viable = false;
2241        break;
2242      }
2243    } else {
2244      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2245      // argument for which there is no corresponding parameter is
2246      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2247      Candidate.Conversions[ArgIdx + 1].ConversionKind
2248        = ImplicitConversionSequence::EllipsisConversion;
2249    }
2250  }
2251}
2252
2253/// \brief Add a C++ function template as a candidate in the candidate set,
2254/// using template argument deduction to produce an appropriate function
2255/// template specialization.
2256void
2257Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2258                                   bool HasExplicitTemplateArgs,
2259                                 const TemplateArgument *ExplicitTemplateArgs,
2260                                   unsigned NumExplicitTemplateArgs,
2261                                   Expr **Args, unsigned NumArgs,
2262                                   OverloadCandidateSet& CandidateSet,
2263                                   bool SuppressUserConversions,
2264                                   bool ForceRValue) {
2265  // C++ [over.match.funcs]p7:
2266  //   In each case where a candidate is a function template, candidate
2267  //   function template specializations are generated using template argument
2268  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2269  //   candidate functions in the usual way.113) A given name can refer to one
2270  //   or more function templates and also to a set of overloaded non-template
2271  //   functions. In such a case, the candidate functions generated from each
2272  //   function template are combined with the set of non-template candidate
2273  //   functions.
2274  TemplateDeductionInfo Info(Context);
2275  FunctionDecl *Specialization = 0;
2276  if (TemplateDeductionResult Result
2277        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2278                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2279                                  Args, NumArgs, Specialization, Info)) {
2280    // FIXME: Record what happened with template argument deduction, so
2281    // that we can give the user a beautiful diagnostic.
2282    (void)Result;
2283    return;
2284  }
2285
2286  // Add the function template specialization produced by template argument
2287  // deduction as a candidate.
2288  assert(Specialization && "Missing function template specialization?");
2289  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2290                       SuppressUserConversions, ForceRValue);
2291}
2292
2293/// AddConversionCandidate - Add a C++ conversion function as a
2294/// candidate in the candidate set (C++ [over.match.conv],
2295/// C++ [over.match.copy]). From is the expression we're converting from,
2296/// and ToType is the type that we're eventually trying to convert to
2297/// (which may or may not be the same type as the type that the
2298/// conversion function produces).
2299void
2300Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2301                             Expr *From, QualType ToType,
2302                             OverloadCandidateSet& CandidateSet) {
2303  // Add this candidate
2304  CandidateSet.push_back(OverloadCandidate());
2305  OverloadCandidate& Candidate = CandidateSet.back();
2306  Candidate.Function = Conversion;
2307  Candidate.IsSurrogate = false;
2308  Candidate.IgnoreObjectArgument = false;
2309  Candidate.FinalConversion.setAsIdentityConversion();
2310  Candidate.FinalConversion.FromTypePtr
2311    = Conversion->getConversionType().getAsOpaquePtr();
2312  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2313
2314  // Determine the implicit conversion sequence for the implicit
2315  // object parameter.
2316  Candidate.Viable = true;
2317  Candidate.Conversions.resize(1);
2318  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2319
2320  if (Candidate.Conversions[0].ConversionKind
2321      == ImplicitConversionSequence::BadConversion) {
2322    Candidate.Viable = false;
2323    return;
2324  }
2325
2326  // To determine what the conversion from the result of calling the
2327  // conversion function to the type we're eventually trying to
2328  // convert to (ToType), we need to synthesize a call to the
2329  // conversion function and attempt copy initialization from it. This
2330  // makes sure that we get the right semantics with respect to
2331  // lvalues/rvalues and the type. Fortunately, we can allocate this
2332  // call on the stack and we don't need its arguments to be
2333  // well-formed.
2334  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2335                            SourceLocation());
2336  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2337                                &ConversionRef, false);
2338
2339  // Note that it is safe to allocate CallExpr on the stack here because
2340  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2341  // allocator).
2342  CallExpr Call(Context, &ConversionFn, 0, 0,
2343                Conversion->getConversionType().getNonReferenceType(),
2344                SourceLocation());
2345  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2346  switch (ICS.ConversionKind) {
2347  case ImplicitConversionSequence::StandardConversion:
2348    Candidate.FinalConversion = ICS.Standard;
2349    break;
2350
2351  case ImplicitConversionSequence::BadConversion:
2352    Candidate.Viable = false;
2353    break;
2354
2355  default:
2356    assert(false &&
2357           "Can only end up with a standard conversion sequence or failure");
2358  }
2359}
2360
2361/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2362/// converts the given @c Object to a function pointer via the
2363/// conversion function @c Conversion, and then attempts to call it
2364/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2365/// the type of function that we'll eventually be calling.
2366void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2367                                 const FunctionProtoType *Proto,
2368                                 Expr *Object, Expr **Args, unsigned NumArgs,
2369                                 OverloadCandidateSet& CandidateSet) {
2370  CandidateSet.push_back(OverloadCandidate());
2371  OverloadCandidate& Candidate = CandidateSet.back();
2372  Candidate.Function = 0;
2373  Candidate.Surrogate = Conversion;
2374  Candidate.Viable = true;
2375  Candidate.IsSurrogate = true;
2376  Candidate.IgnoreObjectArgument = false;
2377  Candidate.Conversions.resize(NumArgs + 1);
2378
2379  // Determine the implicit conversion sequence for the implicit
2380  // object parameter.
2381  ImplicitConversionSequence ObjectInit
2382    = TryObjectArgumentInitialization(Object, Conversion);
2383  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2384    Candidate.Viable = false;
2385    return;
2386  }
2387
2388  // The first conversion is actually a user-defined conversion whose
2389  // first conversion is ObjectInit's standard conversion (which is
2390  // effectively a reference binding). Record it as such.
2391  Candidate.Conversions[0].ConversionKind
2392    = ImplicitConversionSequence::UserDefinedConversion;
2393  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2394  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2395  Candidate.Conversions[0].UserDefined.After
2396    = Candidate.Conversions[0].UserDefined.Before;
2397  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2398
2399  // Find the
2400  unsigned NumArgsInProto = Proto->getNumArgs();
2401
2402  // (C++ 13.3.2p2): A candidate function having fewer than m
2403  // parameters is viable only if it has an ellipsis in its parameter
2404  // list (8.3.5).
2405  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2406    Candidate.Viable = false;
2407    return;
2408  }
2409
2410  // Function types don't have any default arguments, so just check if
2411  // we have enough arguments.
2412  if (NumArgs < NumArgsInProto) {
2413    // Not enough arguments.
2414    Candidate.Viable = false;
2415    return;
2416  }
2417
2418  // Determine the implicit conversion sequences for each of the
2419  // arguments.
2420  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2421    if (ArgIdx < NumArgsInProto) {
2422      // (C++ 13.3.2p3): for F to be a viable function, there shall
2423      // exist for each argument an implicit conversion sequence
2424      // (13.3.3.1) that converts that argument to the corresponding
2425      // parameter of F.
2426      QualType ParamType = Proto->getArgType(ArgIdx);
2427      Candidate.Conversions[ArgIdx + 1]
2428        = TryCopyInitialization(Args[ArgIdx], ParamType,
2429                                /*SuppressUserConversions=*/false);
2430      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2431            == ImplicitConversionSequence::BadConversion) {
2432        Candidate.Viable = false;
2433        break;
2434      }
2435    } else {
2436      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2437      // argument for which there is no corresponding parameter is
2438      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2439      Candidate.Conversions[ArgIdx + 1].ConversionKind
2440        = ImplicitConversionSequence::EllipsisConversion;
2441    }
2442  }
2443}
2444
2445// FIXME: This will eventually be removed, once we've migrated all of the
2446// operator overloading logic over to the scheme used by binary operators, which
2447// works for template instantiation.
2448void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2449                                 SourceLocation OpLoc,
2450                                 Expr **Args, unsigned NumArgs,
2451                                 OverloadCandidateSet& CandidateSet,
2452                                 SourceRange OpRange) {
2453
2454  FunctionSet Functions;
2455
2456  QualType T1 = Args[0]->getType();
2457  QualType T2;
2458  if (NumArgs > 1)
2459    T2 = Args[1]->getType();
2460
2461  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2462  if (S)
2463    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2464  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2465  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2466  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2467  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2468}
2469
2470/// \brief Add overload candidates for overloaded operators that are
2471/// member functions.
2472///
2473/// Add the overloaded operator candidates that are member functions
2474/// for the operator Op that was used in an operator expression such
2475/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2476/// CandidateSet will store the added overload candidates. (C++
2477/// [over.match.oper]).
2478void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2479                                       SourceLocation OpLoc,
2480                                       Expr **Args, unsigned NumArgs,
2481                                       OverloadCandidateSet& CandidateSet,
2482                                       SourceRange OpRange) {
2483  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2484
2485  // C++ [over.match.oper]p3:
2486  //   For a unary operator @ with an operand of a type whose
2487  //   cv-unqualified version is T1, and for a binary operator @ with
2488  //   a left operand of a type whose cv-unqualified version is T1 and
2489  //   a right operand of a type whose cv-unqualified version is T2,
2490  //   three sets of candidate functions, designated member
2491  //   candidates, non-member candidates and built-in candidates, are
2492  //   constructed as follows:
2493  QualType T1 = Args[0]->getType();
2494  QualType T2;
2495  if (NumArgs > 1)
2496    T2 = Args[1]->getType();
2497
2498  //     -- If T1 is a class type, the set of member candidates is the
2499  //        result of the qualified lookup of T1::operator@
2500  //        (13.3.1.1.1); otherwise, the set of member candidates is
2501  //        empty.
2502  // FIXME: Lookup in base classes, too!
2503  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2504    DeclContext::lookup_const_iterator Oper, OperEnd;
2505    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2506         Oper != OperEnd; ++Oper)
2507      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2508                         Args+1, NumArgs - 1, CandidateSet,
2509                         /*SuppressUserConversions=*/false);
2510  }
2511}
2512
2513/// AddBuiltinCandidate - Add a candidate for a built-in
2514/// operator. ResultTy and ParamTys are the result and parameter types
2515/// of the built-in candidate, respectively. Args and NumArgs are the
2516/// arguments being passed to the candidate. IsAssignmentOperator
2517/// should be true when this built-in candidate is an assignment
2518/// operator. NumContextualBoolArguments is the number of arguments
2519/// (at the beginning of the argument list) that will be contextually
2520/// converted to bool.
2521void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2522                               Expr **Args, unsigned NumArgs,
2523                               OverloadCandidateSet& CandidateSet,
2524                               bool IsAssignmentOperator,
2525                               unsigned NumContextualBoolArguments) {
2526  // Add this candidate
2527  CandidateSet.push_back(OverloadCandidate());
2528  OverloadCandidate& Candidate = CandidateSet.back();
2529  Candidate.Function = 0;
2530  Candidate.IsSurrogate = false;
2531  Candidate.IgnoreObjectArgument = false;
2532  Candidate.BuiltinTypes.ResultTy = ResultTy;
2533  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2534    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2535
2536  // Determine the implicit conversion sequences for each of the
2537  // arguments.
2538  Candidate.Viable = true;
2539  Candidate.Conversions.resize(NumArgs);
2540  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2541    // C++ [over.match.oper]p4:
2542    //   For the built-in assignment operators, conversions of the
2543    //   left operand are restricted as follows:
2544    //     -- no temporaries are introduced to hold the left operand, and
2545    //     -- no user-defined conversions are applied to the left
2546    //        operand to achieve a type match with the left-most
2547    //        parameter of a built-in candidate.
2548    //
2549    // We block these conversions by turning off user-defined
2550    // conversions, since that is the only way that initialization of
2551    // a reference to a non-class type can occur from something that
2552    // is not of the same type.
2553    if (ArgIdx < NumContextualBoolArguments) {
2554      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2555             "Contextual conversion to bool requires bool type");
2556      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2557    } else {
2558      Candidate.Conversions[ArgIdx]
2559        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2560                                ArgIdx == 0 && IsAssignmentOperator);
2561    }
2562    if (Candidate.Conversions[ArgIdx].ConversionKind
2563        == ImplicitConversionSequence::BadConversion) {
2564      Candidate.Viable = false;
2565      break;
2566    }
2567  }
2568}
2569
2570/// BuiltinCandidateTypeSet - A set of types that will be used for the
2571/// candidate operator functions for built-in operators (C++
2572/// [over.built]). The types are separated into pointer types and
2573/// enumeration types.
2574class BuiltinCandidateTypeSet  {
2575  /// TypeSet - A set of types.
2576  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2577
2578  /// PointerTypes - The set of pointer types that will be used in the
2579  /// built-in candidates.
2580  TypeSet PointerTypes;
2581
2582  /// MemberPointerTypes - The set of member pointer types that will be
2583  /// used in the built-in candidates.
2584  TypeSet MemberPointerTypes;
2585
2586  /// EnumerationTypes - The set of enumeration types that will be
2587  /// used in the built-in candidates.
2588  TypeSet EnumerationTypes;
2589
2590  /// Context - The AST context in which we will build the type sets.
2591  ASTContext &Context;
2592
2593  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2594  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2595
2596public:
2597  /// iterator - Iterates through the types that are part of the set.
2598  typedef TypeSet::iterator iterator;
2599
2600  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2601
2602  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2603                             bool AllowExplicitConversions);
2604
2605  /// pointer_begin - First pointer type found;
2606  iterator pointer_begin() { return PointerTypes.begin(); }
2607
2608  /// pointer_end - Past the last pointer type found;
2609  iterator pointer_end() { return PointerTypes.end(); }
2610
2611  /// member_pointer_begin - First member pointer type found;
2612  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2613
2614  /// member_pointer_end - Past the last member pointer type found;
2615  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2616
2617  /// enumeration_begin - First enumeration type found;
2618  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2619
2620  /// enumeration_end - Past the last enumeration type found;
2621  iterator enumeration_end() { return EnumerationTypes.end(); }
2622};
2623
2624/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2625/// the set of pointer types along with any more-qualified variants of
2626/// that type. For example, if @p Ty is "int const *", this routine
2627/// will add "int const *", "int const volatile *", "int const
2628/// restrict *", and "int const volatile restrict *" to the set of
2629/// pointer types. Returns true if the add of @p Ty itself succeeded,
2630/// false otherwise.
2631bool
2632BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2633  // Insert this type.
2634  if (!PointerTypes.insert(Ty))
2635    return false;
2636
2637  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2638    QualType PointeeTy = PointerTy->getPointeeType();
2639    // FIXME: Optimize this so that we don't keep trying to add the same types.
2640
2641    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2642    // pointer conversions that don't cast away constness?
2643    if (!PointeeTy.isConstQualified())
2644      AddPointerWithMoreQualifiedTypeVariants
2645        (Context.getPointerType(PointeeTy.withConst()));
2646    if (!PointeeTy.isVolatileQualified())
2647      AddPointerWithMoreQualifiedTypeVariants
2648        (Context.getPointerType(PointeeTy.withVolatile()));
2649    if (!PointeeTy.isRestrictQualified())
2650      AddPointerWithMoreQualifiedTypeVariants
2651        (Context.getPointerType(PointeeTy.withRestrict()));
2652  }
2653
2654  return true;
2655}
2656
2657/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2658/// to the set of pointer types along with any more-qualified variants of
2659/// that type. For example, if @p Ty is "int const *", this routine
2660/// will add "int const *", "int const volatile *", "int const
2661/// restrict *", and "int const volatile restrict *" to the set of
2662/// pointer types. Returns true if the add of @p Ty itself succeeded,
2663/// false otherwise.
2664bool
2665BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2666    QualType Ty) {
2667  // Insert this type.
2668  if (!MemberPointerTypes.insert(Ty))
2669    return false;
2670
2671  if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2672    QualType PointeeTy = PointerTy->getPointeeType();
2673    const Type *ClassTy = PointerTy->getClass();
2674    // FIXME: Optimize this so that we don't keep trying to add the same types.
2675
2676    if (!PointeeTy.isConstQualified())
2677      AddMemberPointerWithMoreQualifiedTypeVariants
2678        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2679    if (!PointeeTy.isVolatileQualified())
2680      AddMemberPointerWithMoreQualifiedTypeVariants
2681        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2682    if (!PointeeTy.isRestrictQualified())
2683      AddMemberPointerWithMoreQualifiedTypeVariants
2684        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2685  }
2686
2687  return true;
2688}
2689
2690/// AddTypesConvertedFrom - Add each of the types to which the type @p
2691/// Ty can be implicit converted to the given set of @p Types. We're
2692/// primarily interested in pointer types and enumeration types. We also
2693/// take member pointer types, for the conditional operator.
2694/// AllowUserConversions is true if we should look at the conversion
2695/// functions of a class type, and AllowExplicitConversions if we
2696/// should also include the explicit conversion functions of a class
2697/// type.
2698void
2699BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2700                                               bool AllowUserConversions,
2701                                               bool AllowExplicitConversions) {
2702  // Only deal with canonical types.
2703  Ty = Context.getCanonicalType(Ty);
2704
2705  // Look through reference types; they aren't part of the type of an
2706  // expression for the purposes of conversions.
2707  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2708    Ty = RefTy->getPointeeType();
2709
2710  // We don't care about qualifiers on the type.
2711  Ty = Ty.getUnqualifiedType();
2712
2713  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2714    QualType PointeeTy = PointerTy->getPointeeType();
2715
2716    // Insert our type, and its more-qualified variants, into the set
2717    // of types.
2718    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2719      return;
2720
2721    // Add 'cv void*' to our set of types.
2722    if (!Ty->isVoidType()) {
2723      QualType QualVoid
2724        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2725      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2726    }
2727
2728    // If this is a pointer to a class type, add pointers to its bases
2729    // (with the same level of cv-qualification as the original
2730    // derived class, of course).
2731    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2732      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2733      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2734           Base != ClassDecl->bases_end(); ++Base) {
2735        QualType BaseTy = Context.getCanonicalType(Base->getType());
2736        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2737
2738        // Add the pointer type, recursively, so that we get all of
2739        // the indirect base classes, too.
2740        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2741      }
2742    }
2743  } else if (Ty->isMemberPointerType()) {
2744    // Member pointers are far easier, since the pointee can't be converted.
2745    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2746      return;
2747  } else if (Ty->isEnumeralType()) {
2748    EnumerationTypes.insert(Ty);
2749  } else if (AllowUserConversions) {
2750    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2751      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2752      // FIXME: Visit conversion functions in the base classes, too.
2753      OverloadedFunctionDecl *Conversions
2754        = ClassDecl->getConversionFunctions();
2755      for (OverloadedFunctionDecl::function_iterator Func
2756             = Conversions->function_begin();
2757           Func != Conversions->function_end(); ++Func) {
2758        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2759        if (AllowExplicitConversions || !Conv->isExplicit())
2760          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2761      }
2762    }
2763  }
2764}
2765
2766/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2767/// operator overloads to the candidate set (C++ [over.built]), based
2768/// on the operator @p Op and the arguments given. For example, if the
2769/// operator is a binary '+', this routine might add "int
2770/// operator+(int, int)" to cover integer addition.
2771void
2772Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2773                                   Expr **Args, unsigned NumArgs,
2774                                   OverloadCandidateSet& CandidateSet) {
2775  // The set of "promoted arithmetic types", which are the arithmetic
2776  // types are that preserved by promotion (C++ [over.built]p2). Note
2777  // that the first few of these types are the promoted integral
2778  // types; these types need to be first.
2779  // FIXME: What about complex?
2780  const unsigned FirstIntegralType = 0;
2781  const unsigned LastIntegralType = 13;
2782  const unsigned FirstPromotedIntegralType = 7,
2783                 LastPromotedIntegralType = 13;
2784  const unsigned FirstPromotedArithmeticType = 7,
2785                 LastPromotedArithmeticType = 16;
2786  const unsigned NumArithmeticTypes = 16;
2787  QualType ArithmeticTypes[NumArithmeticTypes] = {
2788    Context.BoolTy, Context.CharTy, Context.WCharTy,
2789//    Context.Char16Ty, Context.Char32Ty,
2790    Context.SignedCharTy, Context.ShortTy,
2791    Context.UnsignedCharTy, Context.UnsignedShortTy,
2792    Context.IntTy, Context.LongTy, Context.LongLongTy,
2793    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2794    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2795  };
2796
2797  // Find all of the types that the arguments can convert to, but only
2798  // if the operator we're looking at has built-in operator candidates
2799  // that make use of these types.
2800  BuiltinCandidateTypeSet CandidateTypes(Context);
2801  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2802      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2803      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2804      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2805      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2806      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2807    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2808      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2809                                           true,
2810                                           (Op == OO_Exclaim ||
2811                                            Op == OO_AmpAmp ||
2812                                            Op == OO_PipePipe));
2813  }
2814
2815  bool isComparison = false;
2816  switch (Op) {
2817  case OO_None:
2818  case NUM_OVERLOADED_OPERATORS:
2819    assert(false && "Expected an overloaded operator");
2820    break;
2821
2822  case OO_Star: // '*' is either unary or binary
2823    if (NumArgs == 1)
2824      goto UnaryStar;
2825    else
2826      goto BinaryStar;
2827    break;
2828
2829  case OO_Plus: // '+' is either unary or binary
2830    if (NumArgs == 1)
2831      goto UnaryPlus;
2832    else
2833      goto BinaryPlus;
2834    break;
2835
2836  case OO_Minus: // '-' is either unary or binary
2837    if (NumArgs == 1)
2838      goto UnaryMinus;
2839    else
2840      goto BinaryMinus;
2841    break;
2842
2843  case OO_Amp: // '&' is either unary or binary
2844    if (NumArgs == 1)
2845      goto UnaryAmp;
2846    else
2847      goto BinaryAmp;
2848
2849  case OO_PlusPlus:
2850  case OO_MinusMinus:
2851    // C++ [over.built]p3:
2852    //
2853    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2854    //   is either volatile or empty, there exist candidate operator
2855    //   functions of the form
2856    //
2857    //       VQ T&      operator++(VQ T&);
2858    //       T          operator++(VQ T&, int);
2859    //
2860    // C++ [over.built]p4:
2861    //
2862    //   For every pair (T, VQ), where T is an arithmetic type other
2863    //   than bool, and VQ is either volatile or empty, there exist
2864    //   candidate operator functions of the form
2865    //
2866    //       VQ T&      operator--(VQ T&);
2867    //       T          operator--(VQ T&, int);
2868    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2869         Arith < NumArithmeticTypes; ++Arith) {
2870      QualType ArithTy = ArithmeticTypes[Arith];
2871      QualType ParamTypes[2]
2872        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2873
2874      // Non-volatile version.
2875      if (NumArgs == 1)
2876        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2877      else
2878        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2879
2880      // Volatile version
2881      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2882      if (NumArgs == 1)
2883        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2884      else
2885        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2886    }
2887
2888    // C++ [over.built]p5:
2889    //
2890    //   For every pair (T, VQ), where T is a cv-qualified or
2891    //   cv-unqualified object type, and VQ is either volatile or
2892    //   empty, there exist candidate operator functions of the form
2893    //
2894    //       T*VQ&      operator++(T*VQ&);
2895    //       T*VQ&      operator--(T*VQ&);
2896    //       T*         operator++(T*VQ&, int);
2897    //       T*         operator--(T*VQ&, int);
2898    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2899         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2900      // Skip pointer types that aren't pointers to object types.
2901      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
2902        continue;
2903
2904      QualType ParamTypes[2] = {
2905        Context.getLValueReferenceType(*Ptr), Context.IntTy
2906      };
2907
2908      // Without volatile
2909      if (NumArgs == 1)
2910        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2911      else
2912        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2913
2914      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2915        // With volatile
2916        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2917        if (NumArgs == 1)
2918          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2919        else
2920          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2921      }
2922    }
2923    break;
2924
2925  UnaryStar:
2926    // C++ [over.built]p6:
2927    //   For every cv-qualified or cv-unqualified object type T, there
2928    //   exist candidate operator functions of the form
2929    //
2930    //       T&         operator*(T*);
2931    //
2932    // C++ [over.built]p7:
2933    //   For every function type T, there exist candidate operator
2934    //   functions of the form
2935    //       T&         operator*(T*);
2936    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2937         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2938      QualType ParamTy = *Ptr;
2939      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
2940      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2941                          &ParamTy, Args, 1, CandidateSet);
2942    }
2943    break;
2944
2945  UnaryPlus:
2946    // C++ [over.built]p8:
2947    //   For every type T, there exist candidate operator functions of
2948    //   the form
2949    //
2950    //       T*         operator+(T*);
2951    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2952         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2953      QualType ParamTy = *Ptr;
2954      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2955    }
2956
2957    // Fall through
2958
2959  UnaryMinus:
2960    // C++ [over.built]p9:
2961    //  For every promoted arithmetic type T, there exist candidate
2962    //  operator functions of the form
2963    //
2964    //       T         operator+(T);
2965    //       T         operator-(T);
2966    for (unsigned Arith = FirstPromotedArithmeticType;
2967         Arith < LastPromotedArithmeticType; ++Arith) {
2968      QualType ArithTy = ArithmeticTypes[Arith];
2969      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2970    }
2971    break;
2972
2973  case OO_Tilde:
2974    // C++ [over.built]p10:
2975    //   For every promoted integral type T, there exist candidate
2976    //   operator functions of the form
2977    //
2978    //        T         operator~(T);
2979    for (unsigned Int = FirstPromotedIntegralType;
2980         Int < LastPromotedIntegralType; ++Int) {
2981      QualType IntTy = ArithmeticTypes[Int];
2982      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2983    }
2984    break;
2985
2986  case OO_New:
2987  case OO_Delete:
2988  case OO_Array_New:
2989  case OO_Array_Delete:
2990  case OO_Call:
2991    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2992    break;
2993
2994  case OO_Comma:
2995  UnaryAmp:
2996  case OO_Arrow:
2997    // C++ [over.match.oper]p3:
2998    //   -- For the operator ',', the unary operator '&', or the
2999    //      operator '->', the built-in candidates set is empty.
3000    break;
3001
3002  case OO_Less:
3003  case OO_Greater:
3004  case OO_LessEqual:
3005  case OO_GreaterEqual:
3006  case OO_EqualEqual:
3007  case OO_ExclaimEqual:
3008    // C++ [over.built]p15:
3009    //
3010    //   For every pointer or enumeration type T, there exist
3011    //   candidate operator functions of the form
3012    //
3013    //        bool       operator<(T, T);
3014    //        bool       operator>(T, T);
3015    //        bool       operator<=(T, T);
3016    //        bool       operator>=(T, T);
3017    //        bool       operator==(T, T);
3018    //        bool       operator!=(T, T);
3019    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3020         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3021      QualType ParamTypes[2] = { *Ptr, *Ptr };
3022      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3023    }
3024    for (BuiltinCandidateTypeSet::iterator Enum
3025           = CandidateTypes.enumeration_begin();
3026         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3027      QualType ParamTypes[2] = { *Enum, *Enum };
3028      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3029    }
3030
3031    // Fall through.
3032    isComparison = true;
3033
3034  BinaryPlus:
3035  BinaryMinus:
3036    if (!isComparison) {
3037      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3038
3039      // C++ [over.built]p13:
3040      //
3041      //   For every cv-qualified or cv-unqualified object type T
3042      //   there exist candidate operator functions of the form
3043      //
3044      //      T*         operator+(T*, ptrdiff_t);
3045      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3046      //      T*         operator-(T*, ptrdiff_t);
3047      //      T*         operator+(ptrdiff_t, T*);
3048      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3049      //
3050      // C++ [over.built]p14:
3051      //
3052      //   For every T, where T is a pointer to object type, there
3053      //   exist candidate operator functions of the form
3054      //
3055      //      ptrdiff_t  operator-(T, T);
3056      for (BuiltinCandidateTypeSet::iterator Ptr
3057             = CandidateTypes.pointer_begin();
3058           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3059        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3060
3061        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3062        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3063
3064        if (Op == OO_Plus) {
3065          // T* operator+(ptrdiff_t, T*);
3066          ParamTypes[0] = ParamTypes[1];
3067          ParamTypes[1] = *Ptr;
3068          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3069        } else {
3070          // ptrdiff_t operator-(T, T);
3071          ParamTypes[1] = *Ptr;
3072          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3073                              Args, 2, CandidateSet);
3074        }
3075      }
3076    }
3077    // Fall through
3078
3079  case OO_Slash:
3080  BinaryStar:
3081  Conditional:
3082    // C++ [over.built]p12:
3083    //
3084    //   For every pair of promoted arithmetic types L and R, there
3085    //   exist candidate operator functions of the form
3086    //
3087    //        LR         operator*(L, R);
3088    //        LR         operator/(L, R);
3089    //        LR         operator+(L, R);
3090    //        LR         operator-(L, R);
3091    //        bool       operator<(L, R);
3092    //        bool       operator>(L, R);
3093    //        bool       operator<=(L, R);
3094    //        bool       operator>=(L, R);
3095    //        bool       operator==(L, R);
3096    //        bool       operator!=(L, R);
3097    //
3098    //   where LR is the result of the usual arithmetic conversions
3099    //   between types L and R.
3100    //
3101    // C++ [over.built]p24:
3102    //
3103    //   For every pair of promoted arithmetic types L and R, there exist
3104    //   candidate operator functions of the form
3105    //
3106    //        LR       operator?(bool, L, R);
3107    //
3108    //   where LR is the result of the usual arithmetic conversions
3109    //   between types L and R.
3110    // Our candidates ignore the first parameter.
3111    for (unsigned Left = FirstPromotedArithmeticType;
3112         Left < LastPromotedArithmeticType; ++Left) {
3113      for (unsigned Right = FirstPromotedArithmeticType;
3114           Right < LastPromotedArithmeticType; ++Right) {
3115        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3116        QualType Result
3117          = isComparison? Context.BoolTy
3118                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3119        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3120      }
3121    }
3122    break;
3123
3124  case OO_Percent:
3125  BinaryAmp:
3126  case OO_Caret:
3127  case OO_Pipe:
3128  case OO_LessLess:
3129  case OO_GreaterGreater:
3130    // C++ [over.built]p17:
3131    //
3132    //   For every pair of promoted integral types L and R, there
3133    //   exist candidate operator functions of the form
3134    //
3135    //      LR         operator%(L, R);
3136    //      LR         operator&(L, R);
3137    //      LR         operator^(L, R);
3138    //      LR         operator|(L, R);
3139    //      L          operator<<(L, R);
3140    //      L          operator>>(L, R);
3141    //
3142    //   where LR is the result of the usual arithmetic conversions
3143    //   between types L and R.
3144    for (unsigned Left = FirstPromotedIntegralType;
3145         Left < LastPromotedIntegralType; ++Left) {
3146      for (unsigned Right = FirstPromotedIntegralType;
3147           Right < LastPromotedIntegralType; ++Right) {
3148        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3149        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3150            ? LandR[0]
3151            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3152        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3153      }
3154    }
3155    break;
3156
3157  case OO_Equal:
3158    // C++ [over.built]p20:
3159    //
3160    //   For every pair (T, VQ), where T is an enumeration or
3161    //   (FIXME:) pointer to member type and VQ is either volatile or
3162    //   empty, there exist candidate operator functions of the form
3163    //
3164    //        VQ T&      operator=(VQ T&, T);
3165    for (BuiltinCandidateTypeSet::iterator Enum
3166           = CandidateTypes.enumeration_begin();
3167         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3168      QualType ParamTypes[2];
3169
3170      // T& operator=(T&, T)
3171      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3172      ParamTypes[1] = *Enum;
3173      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3174                          /*IsAssignmentOperator=*/false);
3175
3176      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3177        // volatile T& operator=(volatile T&, T)
3178        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3179        ParamTypes[1] = *Enum;
3180        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3181                            /*IsAssignmentOperator=*/false);
3182      }
3183    }
3184    // Fall through.
3185
3186  case OO_PlusEqual:
3187  case OO_MinusEqual:
3188    // C++ [over.built]p19:
3189    //
3190    //   For every pair (T, VQ), where T is any type and VQ is either
3191    //   volatile or empty, there exist candidate operator functions
3192    //   of the form
3193    //
3194    //        T*VQ&      operator=(T*VQ&, T*);
3195    //
3196    // C++ [over.built]p21:
3197    //
3198    //   For every pair (T, VQ), where T is a cv-qualified or
3199    //   cv-unqualified object type and VQ is either volatile or
3200    //   empty, there exist candidate operator functions of the form
3201    //
3202    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3203    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3204    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3205         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3206      QualType ParamTypes[2];
3207      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3208
3209      // non-volatile version
3210      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3211      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3212                          /*IsAssigmentOperator=*/Op == OO_Equal);
3213
3214      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3215        // volatile version
3216        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3217        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3218                            /*IsAssigmentOperator=*/Op == OO_Equal);
3219      }
3220    }
3221    // Fall through.
3222
3223  case OO_StarEqual:
3224  case OO_SlashEqual:
3225    // C++ [over.built]p18:
3226    //
3227    //   For every triple (L, VQ, R), where L is an arithmetic type,
3228    //   VQ is either volatile or empty, and R is a promoted
3229    //   arithmetic type, there exist candidate operator functions of
3230    //   the form
3231    //
3232    //        VQ L&      operator=(VQ L&, R);
3233    //        VQ L&      operator*=(VQ L&, R);
3234    //        VQ L&      operator/=(VQ L&, R);
3235    //        VQ L&      operator+=(VQ L&, R);
3236    //        VQ L&      operator-=(VQ L&, R);
3237    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3238      for (unsigned Right = FirstPromotedArithmeticType;
3239           Right < LastPromotedArithmeticType; ++Right) {
3240        QualType ParamTypes[2];
3241        ParamTypes[1] = ArithmeticTypes[Right];
3242
3243        // Add this built-in operator as a candidate (VQ is empty).
3244        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3245        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3246                            /*IsAssigmentOperator=*/Op == OO_Equal);
3247
3248        // Add this built-in operator as a candidate (VQ is 'volatile').
3249        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3250        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3251        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3252                            /*IsAssigmentOperator=*/Op == OO_Equal);
3253      }
3254    }
3255    break;
3256
3257  case OO_PercentEqual:
3258  case OO_LessLessEqual:
3259  case OO_GreaterGreaterEqual:
3260  case OO_AmpEqual:
3261  case OO_CaretEqual:
3262  case OO_PipeEqual:
3263    // C++ [over.built]p22:
3264    //
3265    //   For every triple (L, VQ, R), where L is an integral type, VQ
3266    //   is either volatile or empty, and R is a promoted integral
3267    //   type, there exist candidate operator functions of the form
3268    //
3269    //        VQ L&       operator%=(VQ L&, R);
3270    //        VQ L&       operator<<=(VQ L&, R);
3271    //        VQ L&       operator>>=(VQ L&, R);
3272    //        VQ L&       operator&=(VQ L&, R);
3273    //        VQ L&       operator^=(VQ L&, R);
3274    //        VQ L&       operator|=(VQ L&, R);
3275    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3276      for (unsigned Right = FirstPromotedIntegralType;
3277           Right < LastPromotedIntegralType; ++Right) {
3278        QualType ParamTypes[2];
3279        ParamTypes[1] = ArithmeticTypes[Right];
3280
3281        // Add this built-in operator as a candidate (VQ is empty).
3282        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3283        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3284
3285        // Add this built-in operator as a candidate (VQ is 'volatile').
3286        ParamTypes[0] = ArithmeticTypes[Left];
3287        ParamTypes[0].addVolatile();
3288        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3289        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3290      }
3291    }
3292    break;
3293
3294  case OO_Exclaim: {
3295    // C++ [over.operator]p23:
3296    //
3297    //   There also exist candidate operator functions of the form
3298    //
3299    //        bool        operator!(bool);
3300    //        bool        operator&&(bool, bool);     [BELOW]
3301    //        bool        operator||(bool, bool);     [BELOW]
3302    QualType ParamTy = Context.BoolTy;
3303    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3304                        /*IsAssignmentOperator=*/false,
3305                        /*NumContextualBoolArguments=*/1);
3306    break;
3307  }
3308
3309  case OO_AmpAmp:
3310  case OO_PipePipe: {
3311    // C++ [over.operator]p23:
3312    //
3313    //   There also exist candidate operator functions of the form
3314    //
3315    //        bool        operator!(bool);            [ABOVE]
3316    //        bool        operator&&(bool, bool);
3317    //        bool        operator||(bool, bool);
3318    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3319    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3320                        /*IsAssignmentOperator=*/false,
3321                        /*NumContextualBoolArguments=*/2);
3322    break;
3323  }
3324
3325  case OO_Subscript:
3326    // C++ [over.built]p13:
3327    //
3328    //   For every cv-qualified or cv-unqualified object type T there
3329    //   exist candidate operator functions of the form
3330    //
3331    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3332    //        T&         operator[](T*, ptrdiff_t);
3333    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3334    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3335    //        T&         operator[](ptrdiff_t, T*);
3336    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3337         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3338      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3339      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3340      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3341
3342      // T& operator[](T*, ptrdiff_t)
3343      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3344
3345      // T& operator[](ptrdiff_t, T*);
3346      ParamTypes[0] = ParamTypes[1];
3347      ParamTypes[1] = *Ptr;
3348      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3349    }
3350    break;
3351
3352  case OO_ArrowStar:
3353    // FIXME: No support for pointer-to-members yet.
3354    break;
3355
3356  case OO_Conditional:
3357    // Note that we don't consider the first argument, since it has been
3358    // contextually converted to bool long ago. The candidates below are
3359    // therefore added as binary.
3360    //
3361    // C++ [over.built]p24:
3362    //   For every type T, where T is a pointer or pointer-to-member type,
3363    //   there exist candidate operator functions of the form
3364    //
3365    //        T        operator?(bool, T, T);
3366    //
3367    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3368         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3369      QualType ParamTypes[2] = { *Ptr, *Ptr };
3370      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3371    }
3372    for (BuiltinCandidateTypeSet::iterator Ptr =
3373           CandidateTypes.member_pointer_begin(),
3374         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3375      QualType ParamTypes[2] = { *Ptr, *Ptr };
3376      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3377    }
3378    goto Conditional;
3379  }
3380}
3381
3382/// \brief Add function candidates found via argument-dependent lookup
3383/// to the set of overloading candidates.
3384///
3385/// This routine performs argument-dependent name lookup based on the
3386/// given function name (which may also be an operator name) and adds
3387/// all of the overload candidates found by ADL to the overload
3388/// candidate set (C++ [basic.lookup.argdep]).
3389void
3390Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3391                                           Expr **Args, unsigned NumArgs,
3392                                           OverloadCandidateSet& CandidateSet) {
3393  FunctionSet Functions;
3394
3395  // Record all of the function candidates that we've already
3396  // added to the overload set, so that we don't add those same
3397  // candidates a second time.
3398  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3399                                   CandEnd = CandidateSet.end();
3400       Cand != CandEnd; ++Cand)
3401    if (Cand->Function) {
3402      Functions.insert(Cand->Function);
3403      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3404        Functions.insert(FunTmpl);
3405    }
3406
3407  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3408
3409  // Erase all of the candidates we already knew about.
3410  // FIXME: This is suboptimal. Is there a better way?
3411  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3412                                   CandEnd = CandidateSet.end();
3413       Cand != CandEnd; ++Cand)
3414    if (Cand->Function) {
3415      Functions.erase(Cand->Function);
3416      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3417        Functions.erase(FunTmpl);
3418    }
3419
3420  // For each of the ADL candidates we found, add it to the overload
3421  // set.
3422  for (FunctionSet::iterator Func = Functions.begin(),
3423                          FuncEnd = Functions.end();
3424       Func != FuncEnd; ++Func) {
3425    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3426      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3427    else
3428      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3429                                   /*FIXME: explicit args */false, 0, 0,
3430                                   Args, NumArgs, CandidateSet);
3431  }
3432}
3433
3434/// isBetterOverloadCandidate - Determines whether the first overload
3435/// candidate is a better candidate than the second (C++ 13.3.3p1).
3436bool
3437Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3438                                const OverloadCandidate& Cand2)
3439{
3440  // Define viable functions to be better candidates than non-viable
3441  // functions.
3442  if (!Cand2.Viable)
3443    return Cand1.Viable;
3444  else if (!Cand1.Viable)
3445    return false;
3446
3447  // C++ [over.match.best]p1:
3448  //
3449  //   -- if F is a static member function, ICS1(F) is defined such
3450  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3451  //      any function G, and, symmetrically, ICS1(G) is neither
3452  //      better nor worse than ICS1(F).
3453  unsigned StartArg = 0;
3454  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3455    StartArg = 1;
3456
3457  // C++ [over.match.best]p1:
3458  //   A viable function F1 is defined to be a better function than another
3459  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3460  //   conversion sequence than ICSi(F2), and then...
3461  unsigned NumArgs = Cand1.Conversions.size();
3462  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3463  bool HasBetterConversion = false;
3464  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3465    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3466                                               Cand2.Conversions[ArgIdx])) {
3467    case ImplicitConversionSequence::Better:
3468      // Cand1 has a better conversion sequence.
3469      HasBetterConversion = true;
3470      break;
3471
3472    case ImplicitConversionSequence::Worse:
3473      // Cand1 can't be better than Cand2.
3474      return false;
3475
3476    case ImplicitConversionSequence::Indistinguishable:
3477      // Do nothing.
3478      break;
3479    }
3480  }
3481
3482  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3483  //       ICSj(F2), or, if not that,
3484  if (HasBetterConversion)
3485    return true;
3486
3487  //     - F1 is a non-template function and F2 is a function template
3488  //       specialization, or, if not that,
3489  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3490      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3491    return true;
3492
3493  //   -- F1 and F2 are function template specializations, and the function
3494  //      template for F1 is more specialized than the template for F2
3495  //      according to the partial ordering rules described in 14.5.5.2, or,
3496  //      if not that,
3497
3498  // FIXME: Implement partial ordering of function templates.
3499
3500  //   -- the context is an initialization by user-defined conversion
3501  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3502  //      from the return type of F1 to the destination type (i.e.,
3503  //      the type of the entity being initialized) is a better
3504  //      conversion sequence than the standard conversion sequence
3505  //      from the return type of F2 to the destination type.
3506  if (Cand1.Function && Cand2.Function &&
3507      isa<CXXConversionDecl>(Cand1.Function) &&
3508      isa<CXXConversionDecl>(Cand2.Function)) {
3509    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3510                                               Cand2.FinalConversion)) {
3511    case ImplicitConversionSequence::Better:
3512      // Cand1 has a better conversion sequence.
3513      return true;
3514
3515    case ImplicitConversionSequence::Worse:
3516      // Cand1 can't be better than Cand2.
3517      return false;
3518
3519    case ImplicitConversionSequence::Indistinguishable:
3520      // Do nothing
3521      break;
3522    }
3523  }
3524
3525  return false;
3526}
3527
3528/// \brief Computes the best viable function (C++ 13.3.3)
3529/// within an overload candidate set.
3530///
3531/// \param CandidateSet the set of candidate functions.
3532///
3533/// \param Loc the location of the function name (or operator symbol) for
3534/// which overload resolution occurs.
3535///
3536/// \param Best f overload resolution was successful or found a deleted
3537/// function, Best points to the candidate function found.
3538///
3539/// \returns The result of overload resolution.
3540Sema::OverloadingResult
3541Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3542                         SourceLocation Loc,
3543                         OverloadCandidateSet::iterator& Best)
3544{
3545  // Find the best viable function.
3546  Best = CandidateSet.end();
3547  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3548       Cand != CandidateSet.end(); ++Cand) {
3549    if (Cand->Viable) {
3550      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3551        Best = Cand;
3552    }
3553  }
3554
3555  // If we didn't find any viable functions, abort.
3556  if (Best == CandidateSet.end())
3557    return OR_No_Viable_Function;
3558
3559  // Make sure that this function is better than every other viable
3560  // function. If not, we have an ambiguity.
3561  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3562       Cand != CandidateSet.end(); ++Cand) {
3563    if (Cand->Viable &&
3564        Cand != Best &&
3565        !isBetterOverloadCandidate(*Best, *Cand)) {
3566      Best = CandidateSet.end();
3567      return OR_Ambiguous;
3568    }
3569  }
3570
3571  // Best is the best viable function.
3572  if (Best->Function &&
3573      (Best->Function->isDeleted() ||
3574       Best->Function->getAttr<UnavailableAttr>()))
3575    return OR_Deleted;
3576
3577  // C++ [basic.def.odr]p2:
3578  //   An overloaded function is used if it is selected by overload resolution
3579  //   when referred to from a potentially-evaluated expression. [Note: this
3580  //   covers calls to named functions (5.2.2), operator overloading
3581  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3582  //   placement new (5.3.4), as well as non-default initialization (8.5).
3583  if (Best->Function)
3584    MarkDeclarationReferenced(Loc, Best->Function);
3585  return OR_Success;
3586}
3587
3588/// PrintOverloadCandidates - When overload resolution fails, prints
3589/// diagnostic messages containing the candidates in the candidate
3590/// set. If OnlyViable is true, only viable candidates will be printed.
3591void
3592Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3593                              bool OnlyViable)
3594{
3595  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3596                             LastCand = CandidateSet.end();
3597  for (; Cand != LastCand; ++Cand) {
3598    if (Cand->Viable || !OnlyViable) {
3599      if (Cand->Function) {
3600        if (Cand->Function->isDeleted() ||
3601            Cand->Function->getAttr<UnavailableAttr>()) {
3602          // Deleted or "unavailable" function.
3603          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3604            << Cand->Function->isDeleted();
3605        } else {
3606          // Normal function
3607          // FIXME: Give a better reason!
3608          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3609        }
3610      } else if (Cand->IsSurrogate) {
3611        // Desugar the type of the surrogate down to a function type,
3612        // retaining as many typedefs as possible while still showing
3613        // the function type (and, therefore, its parameter types).
3614        QualType FnType = Cand->Surrogate->getConversionType();
3615        bool isLValueReference = false;
3616        bool isRValueReference = false;
3617        bool isPointer = false;
3618        if (const LValueReferenceType *FnTypeRef =
3619              FnType->getAsLValueReferenceType()) {
3620          FnType = FnTypeRef->getPointeeType();
3621          isLValueReference = true;
3622        } else if (const RValueReferenceType *FnTypeRef =
3623                     FnType->getAsRValueReferenceType()) {
3624          FnType = FnTypeRef->getPointeeType();
3625          isRValueReference = true;
3626        }
3627        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3628          FnType = FnTypePtr->getPointeeType();
3629          isPointer = true;
3630        }
3631        // Desugar down to a function type.
3632        FnType = QualType(FnType->getAsFunctionType(), 0);
3633        // Reconstruct the pointer/reference as appropriate.
3634        if (isPointer) FnType = Context.getPointerType(FnType);
3635        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3636        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3637
3638        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3639          << FnType;
3640      } else {
3641        // FIXME: We need to get the identifier in here
3642        // FIXME: Do we want the error message to point at the operator?
3643        // (built-ins won't have a location)
3644        QualType FnType
3645          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3646                                    Cand->BuiltinTypes.ParamTypes,
3647                                    Cand->Conversions.size(),
3648                                    false, 0);
3649
3650        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3651      }
3652    }
3653  }
3654}
3655
3656/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3657/// an overloaded function (C++ [over.over]), where @p From is an
3658/// expression with overloaded function type and @p ToType is the type
3659/// we're trying to resolve to. For example:
3660///
3661/// @code
3662/// int f(double);
3663/// int f(int);
3664///
3665/// int (*pfd)(double) = f; // selects f(double)
3666/// @endcode
3667///
3668/// This routine returns the resulting FunctionDecl if it could be
3669/// resolved, and NULL otherwise. When @p Complain is true, this
3670/// routine will emit diagnostics if there is an error.
3671FunctionDecl *
3672Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3673                                         bool Complain) {
3674  QualType FunctionType = ToType;
3675  bool IsMember = false;
3676  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3677    FunctionType = ToTypePtr->getPointeeType();
3678  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3679    FunctionType = ToTypeRef->getPointeeType();
3680  else if (const MemberPointerType *MemTypePtr =
3681                    ToType->getAsMemberPointerType()) {
3682    FunctionType = MemTypePtr->getPointeeType();
3683    IsMember = true;
3684  }
3685
3686  // We only look at pointers or references to functions.
3687  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3688  if (!FunctionType->isFunctionType())
3689    return 0;
3690
3691  // Find the actual overloaded function declaration.
3692  OverloadedFunctionDecl *Ovl = 0;
3693
3694  // C++ [over.over]p1:
3695  //   [...] [Note: any redundant set of parentheses surrounding the
3696  //   overloaded function name is ignored (5.1). ]
3697  Expr *OvlExpr = From->IgnoreParens();
3698
3699  // C++ [over.over]p1:
3700  //   [...] The overloaded function name can be preceded by the &
3701  //   operator.
3702  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3703    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3704      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3705  }
3706
3707  // Try to dig out the overloaded function.
3708  FunctionTemplateDecl *FunctionTemplate = 0;
3709  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3710    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3711    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3712  }
3713
3714  // If there's no overloaded function declaration or function template,
3715  // we're done.
3716  if (!Ovl && !FunctionTemplate)
3717    return 0;
3718
3719  OverloadIterator Fun;
3720  if (Ovl)
3721    Fun = Ovl;
3722  else
3723    Fun = FunctionTemplate;
3724
3725  // Look through all of the overloaded functions, searching for one
3726  // whose type matches exactly.
3727  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3728
3729  bool FoundNonTemplateFunction = false;
3730  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3731    // C++ [over.over]p3:
3732    //   Non-member functions and static member functions match
3733    //   targets of type "pointer-to-function" or "reference-to-function."
3734    //   Nonstatic member functions match targets of
3735    //   type "pointer-to-member-function."
3736    // Note that according to DR 247, the containing class does not matter.
3737
3738    if (FunctionTemplateDecl *FunctionTemplate
3739          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3740      if (CXXMethodDecl *Method
3741            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3742        // Skip non-static function templates when converting to pointer, and
3743        // static when converting to member pointer.
3744        if (Method->isStatic() == IsMember)
3745          continue;
3746      } else if (IsMember)
3747        continue;
3748
3749      // C++ [over.over]p2:
3750      //   If the name is a function template, template argument deduction is
3751      //   done (14.8.2.2), and if the argument deduction succeeds, the
3752      //   resulting template argument list is used to generate a single
3753      //   function template specialization, which is added to the set of
3754      //   overloaded functions considered.
3755      FunctionDecl *Specialization = 0;
3756      TemplateDeductionInfo Info(Context);
3757      if (TemplateDeductionResult Result
3758            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3759                                      /*FIXME:*/0, /*FIXME:*/0,
3760                                      FunctionType, Specialization, Info)) {
3761        // FIXME: make a note of the failed deduction for diagnostics.
3762        (void)Result;
3763      } else {
3764        assert(FunctionType
3765                 == Context.getCanonicalType(Specialization->getType()));
3766        Matches.insert(
3767                cast<FunctionDecl>(Context.getCanonicalDecl(Specialization)));
3768      }
3769    }
3770
3771    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3772      // Skip non-static functions when converting to pointer, and static
3773      // when converting to member pointer.
3774      if (Method->isStatic() == IsMember)
3775        continue;
3776    } else if (IsMember)
3777      continue;
3778
3779    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3780      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3781        Matches.insert(cast<FunctionDecl>(Context.getCanonicalDecl(*Fun)));
3782        FoundNonTemplateFunction = true;
3783      }
3784    }
3785  }
3786
3787  // If there were 0 or 1 matches, we're done.
3788  if (Matches.empty())
3789    return 0;
3790  else if (Matches.size() == 1)
3791    return *Matches.begin();
3792
3793  // C++ [over.over]p4:
3794  //   If more than one function is selected, [...]
3795  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3796  if (FoundNonTemplateFunction) {
3797    // [...] any function template specializations in the set are eliminated
3798    // if the set also contains a non-template function, [...]
3799    for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3800                                                     MEnd = Matches.end();
3801         M != MEnd; ++M)
3802      if ((*M)->getPrimaryTemplate() == 0)
3803        RemainingMatches.push_back(*M);
3804  } else {
3805    // [...] and any given function template specialization F1 is eliminated
3806    // if the set contains a second function template specialization whose
3807    // function template is more specialized than the function template of F1
3808    // according to the partial ordering rules of 14.5.5.2.
3809    // FIXME: Implement this!
3810    RemainingMatches.append(Matches.begin(), Matches.end());
3811  }
3812
3813  // [...] After such eliminations, if any, there shall remain exactly one
3814  // selected function.
3815  if (RemainingMatches.size() == 1)
3816    return RemainingMatches.front();
3817
3818  // FIXME: We should probably return the same thing that BestViableFunction
3819  // returns (even if we issue the diagnostics here).
3820  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3821    << RemainingMatches[0]->getDeclName();
3822  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3823    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
3824  return 0;
3825}
3826
3827/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3828/// (which eventually refers to the declaration Func) and the call
3829/// arguments Args/NumArgs, attempt to resolve the function call down
3830/// to a specific function. If overload resolution succeeds, returns
3831/// the function declaration produced by overload
3832/// resolution. Otherwise, emits diagnostics, deletes all of the
3833/// arguments and Fn, and returns NULL.
3834FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3835                                            DeclarationName UnqualifiedName,
3836                                            bool HasExplicitTemplateArgs,
3837                                 const TemplateArgument *ExplicitTemplateArgs,
3838                                            unsigned NumExplicitTemplateArgs,
3839                                            SourceLocation LParenLoc,
3840                                            Expr **Args, unsigned NumArgs,
3841                                            SourceLocation *CommaLocs,
3842                                            SourceLocation RParenLoc,
3843                                            bool &ArgumentDependentLookup) {
3844  OverloadCandidateSet CandidateSet;
3845
3846  // Add the functions denoted by Callee to the set of candidate
3847  // functions. While we're doing so, track whether argument-dependent
3848  // lookup still applies, per:
3849  //
3850  // C++0x [basic.lookup.argdep]p3:
3851  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3852  //   and let Y be the lookup set produced by argument dependent
3853  //   lookup (defined as follows). If X contains
3854  //
3855  //     -- a declaration of a class member, or
3856  //
3857  //     -- a block-scope function declaration that is not a
3858  //        using-declaration, or
3859  //
3860  //     -- a declaration that is neither a function or a function
3861  //        template
3862  //
3863  //   then Y is empty.
3864  if (OverloadedFunctionDecl *Ovl
3865        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3866    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3867                                                FuncEnd = Ovl->function_end();
3868         Func != FuncEnd; ++Func) {
3869      DeclContext *Ctx = 0;
3870      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3871        if (HasExplicitTemplateArgs)
3872          continue;
3873
3874        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3875        Ctx = FunDecl->getDeclContext();
3876      } else {
3877        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3878        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3879                                     ExplicitTemplateArgs,
3880                                     NumExplicitTemplateArgs,
3881                                     Args, NumArgs, CandidateSet);
3882        Ctx = FunTmpl->getDeclContext();
3883      }
3884
3885
3886      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3887        ArgumentDependentLookup = false;
3888    }
3889  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3890    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
3891    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3892
3893    if (Func->getDeclContext()->isRecord() ||
3894        Func->getDeclContext()->isFunctionOrMethod())
3895      ArgumentDependentLookup = false;
3896  } else if (FunctionTemplateDecl *FuncTemplate
3897               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3898    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3899                                 ExplicitTemplateArgs,
3900                                 NumExplicitTemplateArgs,
3901                                 Args, NumArgs, CandidateSet);
3902
3903    if (FuncTemplate->getDeclContext()->isRecord())
3904      ArgumentDependentLookup = false;
3905  }
3906
3907  if (Callee)
3908    UnqualifiedName = Callee->getDeclName();
3909
3910  // FIXME: Pass explicit template arguments through for ADL
3911  if (ArgumentDependentLookup)
3912    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3913                                         CandidateSet);
3914
3915  OverloadCandidateSet::iterator Best;
3916  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3917  case OR_Success:
3918    return Best->Function;
3919
3920  case OR_No_Viable_Function:
3921    Diag(Fn->getSourceRange().getBegin(),
3922         diag::err_ovl_no_viable_function_in_call)
3923      << UnqualifiedName << Fn->getSourceRange();
3924    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3925    break;
3926
3927  case OR_Ambiguous:
3928    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3929      << UnqualifiedName << Fn->getSourceRange();
3930    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3931    break;
3932
3933  case OR_Deleted:
3934    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3935      << Best->Function->isDeleted()
3936      << UnqualifiedName
3937      << Fn->getSourceRange();
3938    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3939    break;
3940  }
3941
3942  // Overload resolution failed. Destroy all of the subexpressions and
3943  // return NULL.
3944  Fn->Destroy(Context);
3945  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3946    Args[Arg]->Destroy(Context);
3947  return 0;
3948}
3949
3950/// \brief Create a unary operation that may resolve to an overloaded
3951/// operator.
3952///
3953/// \param OpLoc The location of the operator itself (e.g., '*').
3954///
3955/// \param OpcIn The UnaryOperator::Opcode that describes this
3956/// operator.
3957///
3958/// \param Functions The set of non-member functions that will be
3959/// considered by overload resolution. The caller needs to build this
3960/// set based on the context using, e.g.,
3961/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3962/// set should not contain any member functions; those will be added
3963/// by CreateOverloadedUnaryOp().
3964///
3965/// \param input The input argument.
3966Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3967                                                     unsigned OpcIn,
3968                                                     FunctionSet &Functions,
3969                                                     ExprArg input) {
3970  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3971  Expr *Input = (Expr *)input.get();
3972
3973  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3974  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3975  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3976
3977  Expr *Args[2] = { Input, 0 };
3978  unsigned NumArgs = 1;
3979
3980  // For post-increment and post-decrement, add the implicit '0' as
3981  // the second argument, so that we know this is a post-increment or
3982  // post-decrement.
3983  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3984    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3985    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3986                                           SourceLocation());
3987    NumArgs = 2;
3988  }
3989
3990  if (Input->isTypeDependent()) {
3991    OverloadedFunctionDecl *Overloads
3992      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3993    for (FunctionSet::iterator Func = Functions.begin(),
3994                            FuncEnd = Functions.end();
3995         Func != FuncEnd; ++Func)
3996      Overloads->addOverload(*Func);
3997
3998    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3999                                                OpLoc, false, false);
4000
4001    input.release();
4002    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4003                                                   &Args[0], NumArgs,
4004                                                   Context.DependentTy,
4005                                                   OpLoc));
4006  }
4007
4008  // Build an empty overload set.
4009  OverloadCandidateSet CandidateSet;
4010
4011  // Add the candidates from the given function set.
4012  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4013
4014  // Add operator candidates that are member functions.
4015  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4016
4017  // Add builtin operator candidates.
4018  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4019
4020  // Perform overload resolution.
4021  OverloadCandidateSet::iterator Best;
4022  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4023  case OR_Success: {
4024    // We found a built-in operator or an overloaded operator.
4025    FunctionDecl *FnDecl = Best->Function;
4026
4027    if (FnDecl) {
4028      // We matched an overloaded operator. Build a call to that
4029      // operator.
4030
4031      // Convert the arguments.
4032      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4033        if (PerformObjectArgumentInitialization(Input, Method))
4034          return ExprError();
4035      } else {
4036        // Convert the arguments.
4037        if (PerformCopyInitialization(Input,
4038                                      FnDecl->getParamDecl(0)->getType(),
4039                                      "passing"))
4040          return ExprError();
4041      }
4042
4043      // Determine the result type
4044      QualType ResultTy
4045        = FnDecl->getType()->getAsFunctionType()->getResultType();
4046      ResultTy = ResultTy.getNonReferenceType();
4047
4048      // Build the actual expression node.
4049      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4050                                               SourceLocation());
4051      UsualUnaryConversions(FnExpr);
4052
4053      input.release();
4054      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4055                                                     &Input, 1, ResultTy,
4056                                                     OpLoc));
4057    } else {
4058      // We matched a built-in operator. Convert the arguments, then
4059      // break out so that we will build the appropriate built-in
4060      // operator node.
4061        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4062                                      Best->Conversions[0], "passing"))
4063          return ExprError();
4064
4065        break;
4066      }
4067    }
4068
4069    case OR_No_Viable_Function:
4070      // No viable function; fall through to handling this as a
4071      // built-in operator, which will produce an error message for us.
4072      break;
4073
4074    case OR_Ambiguous:
4075      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4076          << UnaryOperator::getOpcodeStr(Opc)
4077          << Input->getSourceRange();
4078      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4079      return ExprError();
4080
4081    case OR_Deleted:
4082      Diag(OpLoc, diag::err_ovl_deleted_oper)
4083        << Best->Function->isDeleted()
4084        << UnaryOperator::getOpcodeStr(Opc)
4085        << Input->getSourceRange();
4086      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4087      return ExprError();
4088    }
4089
4090  // Either we found no viable overloaded operator or we matched a
4091  // built-in operator. In either case, fall through to trying to
4092  // build a built-in operation.
4093  input.release();
4094  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4095}
4096
4097/// \brief Create a binary operation that may resolve to an overloaded
4098/// operator.
4099///
4100/// \param OpLoc The location of the operator itself (e.g., '+').
4101///
4102/// \param OpcIn The BinaryOperator::Opcode that describes this
4103/// operator.
4104///
4105/// \param Functions The set of non-member functions that will be
4106/// considered by overload resolution. The caller needs to build this
4107/// set based on the context using, e.g.,
4108/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4109/// set should not contain any member functions; those will be added
4110/// by CreateOverloadedBinOp().
4111///
4112/// \param LHS Left-hand argument.
4113/// \param RHS Right-hand argument.
4114Sema::OwningExprResult
4115Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4116                            unsigned OpcIn,
4117                            FunctionSet &Functions,
4118                            Expr *LHS, Expr *RHS) {
4119  Expr *Args[2] = { LHS, RHS };
4120
4121  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4122  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4123  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4124
4125  // If either side is type-dependent, create an appropriate dependent
4126  // expression.
4127  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4128    // .* cannot be overloaded.
4129    if (Opc == BinaryOperator::PtrMemD)
4130      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4131                                                Context.DependentTy, OpLoc));
4132
4133    OverloadedFunctionDecl *Overloads
4134      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4135    for (FunctionSet::iterator Func = Functions.begin(),
4136                            FuncEnd = Functions.end();
4137         Func != FuncEnd; ++Func)
4138      Overloads->addOverload(*Func);
4139
4140    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4141                                                OpLoc, false, false);
4142
4143    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4144                                                   Args, 2,
4145                                                   Context.DependentTy,
4146                                                   OpLoc));
4147  }
4148
4149  // If this is the .* operator, which is not overloadable, just
4150  // create a built-in binary operator.
4151  if (Opc == BinaryOperator::PtrMemD)
4152    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4153
4154  // If this is one of the assignment operators, we only perform
4155  // overload resolution if the left-hand side is a class or
4156  // enumeration type (C++ [expr.ass]p3).
4157  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4158      !LHS->getType()->isOverloadableType())
4159    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4160
4161  // Build an empty overload set.
4162  OverloadCandidateSet CandidateSet;
4163
4164  // Add the candidates from the given function set.
4165  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4166
4167  // Add operator candidates that are member functions.
4168  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4169
4170  // Add builtin operator candidates.
4171  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4172
4173  // Perform overload resolution.
4174  OverloadCandidateSet::iterator Best;
4175  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4176    case OR_Success: {
4177      // We found a built-in operator or an overloaded operator.
4178      FunctionDecl *FnDecl = Best->Function;
4179
4180      if (FnDecl) {
4181        // We matched an overloaded operator. Build a call to that
4182        // operator.
4183
4184        // Convert the arguments.
4185        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4186          if (PerformObjectArgumentInitialization(LHS, Method) ||
4187              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4188                                        "passing"))
4189            return ExprError();
4190        } else {
4191          // Convert the arguments.
4192          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4193                                        "passing") ||
4194              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4195                                        "passing"))
4196            return ExprError();
4197        }
4198
4199        // Determine the result type
4200        QualType ResultTy
4201          = FnDecl->getType()->getAsFunctionType()->getResultType();
4202        ResultTy = ResultTy.getNonReferenceType();
4203
4204        // Build the actual expression node.
4205        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4206                                                 OpLoc);
4207        UsualUnaryConversions(FnExpr);
4208
4209        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4210                                                       Args, 2, ResultTy,
4211                                                       OpLoc));
4212      } else {
4213        // We matched a built-in operator. Convert the arguments, then
4214        // break out so that we will build the appropriate built-in
4215        // operator node.
4216        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4217                                      Best->Conversions[0], "passing") ||
4218            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4219                                      Best->Conversions[1], "passing"))
4220          return ExprError();
4221
4222        break;
4223      }
4224    }
4225
4226    case OR_No_Viable_Function:
4227      // For class as left operand for assignment or compound assigment operator
4228      // do not fall through to handling in built-in, but report that no overloaded
4229      // assignment operator found
4230      if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4231        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4232             << BinaryOperator::getOpcodeStr(Opc)
4233             << LHS->getSourceRange() << RHS->getSourceRange();
4234        return ExprError();
4235      }
4236      // No viable function; fall through to handling this as a
4237      // built-in operator, which will produce an error message for us.
4238      break;
4239
4240    case OR_Ambiguous:
4241      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4242          << BinaryOperator::getOpcodeStr(Opc)
4243          << LHS->getSourceRange() << RHS->getSourceRange();
4244      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4245      return ExprError();
4246
4247    case OR_Deleted:
4248      Diag(OpLoc, diag::err_ovl_deleted_oper)
4249        << Best->Function->isDeleted()
4250        << BinaryOperator::getOpcodeStr(Opc)
4251        << LHS->getSourceRange() << RHS->getSourceRange();
4252      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4253      return ExprError();
4254    }
4255
4256  // Either we found no viable overloaded operator or we matched a
4257  // built-in operator. In either case, try to build a built-in
4258  // operation.
4259  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4260}
4261
4262/// BuildCallToMemberFunction - Build a call to a member
4263/// function. MemExpr is the expression that refers to the member
4264/// function (and includes the object parameter), Args/NumArgs are the
4265/// arguments to the function call (not including the object
4266/// parameter). The caller needs to validate that the member
4267/// expression refers to a member function or an overloaded member
4268/// function.
4269Sema::ExprResult
4270Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4271                                SourceLocation LParenLoc, Expr **Args,
4272                                unsigned NumArgs, SourceLocation *CommaLocs,
4273                                SourceLocation RParenLoc) {
4274  // Dig out the member expression. This holds both the object
4275  // argument and the member function we're referring to.
4276  MemberExpr *MemExpr = 0;
4277  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4278    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4279  else
4280    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4281  assert(MemExpr && "Building member call without member expression");
4282
4283  // Extract the object argument.
4284  Expr *ObjectArg = MemExpr->getBase();
4285
4286  CXXMethodDecl *Method = 0;
4287  if (OverloadedFunctionDecl *Ovl
4288        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4289    // Add overload candidates
4290    OverloadCandidateSet CandidateSet;
4291    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4292                                                FuncEnd = Ovl->function_end();
4293         Func != FuncEnd; ++Func) {
4294      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4295      Method = cast<CXXMethodDecl>(*Func);
4296      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4297                         /*SuppressUserConversions=*/false);
4298    }
4299
4300    OverloadCandidateSet::iterator Best;
4301    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4302    case OR_Success:
4303      Method = cast<CXXMethodDecl>(Best->Function);
4304      break;
4305
4306    case OR_No_Viable_Function:
4307      Diag(MemExpr->getSourceRange().getBegin(),
4308           diag::err_ovl_no_viable_member_function_in_call)
4309        << Ovl->getDeclName() << MemExprE->getSourceRange();
4310      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4311      // FIXME: Leaking incoming expressions!
4312      return true;
4313
4314    case OR_Ambiguous:
4315      Diag(MemExpr->getSourceRange().getBegin(),
4316           diag::err_ovl_ambiguous_member_call)
4317        << Ovl->getDeclName() << MemExprE->getSourceRange();
4318      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4319      // FIXME: Leaking incoming expressions!
4320      return true;
4321
4322    case OR_Deleted:
4323      Diag(MemExpr->getSourceRange().getBegin(),
4324           diag::err_ovl_deleted_member_call)
4325        << Best->Function->isDeleted()
4326        << Ovl->getDeclName() << MemExprE->getSourceRange();
4327      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4328      // FIXME: Leaking incoming expressions!
4329      return true;
4330    }
4331
4332    FixOverloadedFunctionReference(MemExpr, Method);
4333  } else {
4334    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4335  }
4336
4337  assert(Method && "Member call to something that isn't a method?");
4338  ExprOwningPtr<CXXMemberCallExpr>
4339    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4340                                                  NumArgs,
4341                                  Method->getResultType().getNonReferenceType(),
4342                                  RParenLoc));
4343
4344  // Convert the object argument (for a non-static member function call).
4345  if (!Method->isStatic() &&
4346      PerformObjectArgumentInitialization(ObjectArg, Method))
4347    return true;
4348  MemExpr->setBase(ObjectArg);
4349
4350  // Convert the rest of the arguments
4351  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4352  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4353                              RParenLoc))
4354    return true;
4355
4356  return CheckFunctionCall(Method, TheCall.take()).release();
4357}
4358
4359/// BuildCallToObjectOfClassType - Build a call to an object of class
4360/// type (C++ [over.call.object]), which can end up invoking an
4361/// overloaded function call operator (@c operator()) or performing a
4362/// user-defined conversion on the object argument.
4363Sema::ExprResult
4364Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4365                                   SourceLocation LParenLoc,
4366                                   Expr **Args, unsigned NumArgs,
4367                                   SourceLocation *CommaLocs,
4368                                   SourceLocation RParenLoc) {
4369  assert(Object->getType()->isRecordType() && "Requires object type argument");
4370  const RecordType *Record = Object->getType()->getAsRecordType();
4371
4372  // C++ [over.call.object]p1:
4373  //  If the primary-expression E in the function call syntax
4374  //  evaluates to a class object of type “cv T”, then the set of
4375  //  candidate functions includes at least the function call
4376  //  operators of T. The function call operators of T are obtained by
4377  //  ordinary lookup of the name operator() in the context of
4378  //  (E).operator().
4379  OverloadCandidateSet CandidateSet;
4380  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4381  DeclContext::lookup_const_iterator Oper, OperEnd;
4382  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4383       Oper != OperEnd; ++Oper)
4384    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4385                       CandidateSet, /*SuppressUserConversions=*/false);
4386
4387  // C++ [over.call.object]p2:
4388  //   In addition, for each conversion function declared in T of the
4389  //   form
4390  //
4391  //        operator conversion-type-id () cv-qualifier;
4392  //
4393  //   where cv-qualifier is the same cv-qualification as, or a
4394  //   greater cv-qualification than, cv, and where conversion-type-id
4395  //   denotes the type "pointer to function of (P1,...,Pn) returning
4396  //   R", or the type "reference to pointer to function of
4397  //   (P1,...,Pn) returning R", or the type "reference to function
4398  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4399  //   is also considered as a candidate function. Similarly,
4400  //   surrogate call functions are added to the set of candidate
4401  //   functions for each conversion function declared in an
4402  //   accessible base class provided the function is not hidden
4403  //   within T by another intervening declaration.
4404  //
4405  // FIXME: Look in base classes for more conversion operators!
4406  OverloadedFunctionDecl *Conversions
4407    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4408  for (OverloadedFunctionDecl::function_iterator
4409         Func = Conversions->function_begin(),
4410         FuncEnd = Conversions->function_end();
4411       Func != FuncEnd; ++Func) {
4412    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4413
4414    // Strip the reference type (if any) and then the pointer type (if
4415    // any) to get down to what might be a function type.
4416    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4417    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4418      ConvType = ConvPtrType->getPointeeType();
4419
4420    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4421      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4422  }
4423
4424  // Perform overload resolution.
4425  OverloadCandidateSet::iterator Best;
4426  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4427  case OR_Success:
4428    // Overload resolution succeeded; we'll build the appropriate call
4429    // below.
4430    break;
4431
4432  case OR_No_Viable_Function:
4433    Diag(Object->getSourceRange().getBegin(),
4434         diag::err_ovl_no_viable_object_call)
4435      << Object->getType() << Object->getSourceRange();
4436    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4437    break;
4438
4439  case OR_Ambiguous:
4440    Diag(Object->getSourceRange().getBegin(),
4441         diag::err_ovl_ambiguous_object_call)
4442      << Object->getType() << Object->getSourceRange();
4443    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4444    break;
4445
4446  case OR_Deleted:
4447    Diag(Object->getSourceRange().getBegin(),
4448         diag::err_ovl_deleted_object_call)
4449      << Best->Function->isDeleted()
4450      << Object->getType() << Object->getSourceRange();
4451    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4452    break;
4453  }
4454
4455  if (Best == CandidateSet.end()) {
4456    // We had an error; delete all of the subexpressions and return
4457    // the error.
4458    Object->Destroy(Context);
4459    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4460      Args[ArgIdx]->Destroy(Context);
4461    return true;
4462  }
4463
4464  if (Best->Function == 0) {
4465    // Since there is no function declaration, this is one of the
4466    // surrogate candidates. Dig out the conversion function.
4467    CXXConversionDecl *Conv
4468      = cast<CXXConversionDecl>(
4469                         Best->Conversions[0].UserDefined.ConversionFunction);
4470
4471    // We selected one of the surrogate functions that converts the
4472    // object parameter to a function pointer. Perform the conversion
4473    // on the object argument, then let ActOnCallExpr finish the job.
4474    // FIXME: Represent the user-defined conversion in the AST!
4475    ImpCastExprToType(Object,
4476                      Conv->getConversionType().getNonReferenceType(),
4477                      Conv->getConversionType()->isLValueReferenceType());
4478    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4479                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4480                         CommaLocs, RParenLoc).release();
4481  }
4482
4483  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4484  // that calls this method, using Object for the implicit object
4485  // parameter and passing along the remaining arguments.
4486  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4487  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4488
4489  unsigned NumArgsInProto = Proto->getNumArgs();
4490  unsigned NumArgsToCheck = NumArgs;
4491
4492  // Build the full argument list for the method call (the
4493  // implicit object parameter is placed at the beginning of the
4494  // list).
4495  Expr **MethodArgs;
4496  if (NumArgs < NumArgsInProto) {
4497    NumArgsToCheck = NumArgsInProto;
4498    MethodArgs = new Expr*[NumArgsInProto + 1];
4499  } else {
4500    MethodArgs = new Expr*[NumArgs + 1];
4501  }
4502  MethodArgs[0] = Object;
4503  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4504    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4505
4506  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4507                                          SourceLocation());
4508  UsualUnaryConversions(NewFn);
4509
4510  // Once we've built TheCall, all of the expressions are properly
4511  // owned.
4512  QualType ResultTy = Method->getResultType().getNonReferenceType();
4513  ExprOwningPtr<CXXOperatorCallExpr>
4514    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4515                                                    MethodArgs, NumArgs + 1,
4516                                                    ResultTy, RParenLoc));
4517  delete [] MethodArgs;
4518
4519  // We may have default arguments. If so, we need to allocate more
4520  // slots in the call for them.
4521  if (NumArgs < NumArgsInProto)
4522    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4523  else if (NumArgs > NumArgsInProto)
4524    NumArgsToCheck = NumArgsInProto;
4525
4526  bool IsError = false;
4527
4528  // Initialize the implicit object parameter.
4529  IsError |= PerformObjectArgumentInitialization(Object, Method);
4530  TheCall->setArg(0, Object);
4531
4532
4533  // Check the argument types.
4534  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4535    Expr *Arg;
4536    if (i < NumArgs) {
4537      Arg = Args[i];
4538
4539      // Pass the argument.
4540      QualType ProtoArgType = Proto->getArgType(i);
4541      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4542    } else {
4543      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4544    }
4545
4546    TheCall->setArg(i + 1, Arg);
4547  }
4548
4549  // If this is a variadic call, handle args passed through "...".
4550  if (Proto->isVariadic()) {
4551    // Promote the arguments (C99 6.5.2.2p7).
4552    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4553      Expr *Arg = Args[i];
4554      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4555      TheCall->setArg(i + 1, Arg);
4556    }
4557  }
4558
4559  if (IsError) return true;
4560
4561  return CheckFunctionCall(Method, TheCall.take()).release();
4562}
4563
4564/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4565///  (if one exists), where @c Base is an expression of class type and
4566/// @c Member is the name of the member we're trying to find.
4567Action::ExprResult
4568Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4569                               SourceLocation MemberLoc,
4570                               IdentifierInfo &Member) {
4571  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4572
4573  // C++ [over.ref]p1:
4574  //
4575  //   [...] An expression x->m is interpreted as (x.operator->())->m
4576  //   for a class object x of type T if T::operator->() exists and if
4577  //   the operator is selected as the best match function by the
4578  //   overload resolution mechanism (13.3).
4579  // FIXME: look in base classes.
4580  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4581  OverloadCandidateSet CandidateSet;
4582  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4583
4584  DeclContext::lookup_const_iterator Oper, OperEnd;
4585  for (llvm::tie(Oper, OperEnd)
4586         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4587    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4588                       /*SuppressUserConversions=*/false);
4589
4590  ExprOwningPtr<Expr> BasePtr(this, Base);
4591
4592  // Perform overload resolution.
4593  OverloadCandidateSet::iterator Best;
4594  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4595  case OR_Success:
4596    // Overload resolution succeeded; we'll build the call below.
4597    break;
4598
4599  case OR_No_Viable_Function:
4600    if (CandidateSet.empty())
4601      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4602        << BasePtr->getType() << BasePtr->getSourceRange();
4603    else
4604      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4605        << "operator->" << BasePtr->getSourceRange();
4606    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4607    return true;
4608
4609  case OR_Ambiguous:
4610    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4611      << "operator->" << BasePtr->getSourceRange();
4612    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4613    return true;
4614
4615  case OR_Deleted:
4616    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4617      << Best->Function->isDeleted()
4618      << "operator->" << BasePtr->getSourceRange();
4619    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4620    return true;
4621  }
4622
4623  // Convert the object parameter.
4624  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4625  if (PerformObjectArgumentInitialization(Base, Method))
4626    return true;
4627
4628  // No concerns about early exits now.
4629  BasePtr.take();
4630
4631  // Build the operator call.
4632  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4633                                           SourceLocation());
4634  UsualUnaryConversions(FnExpr);
4635  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4636                                 Method->getResultType().getNonReferenceType(),
4637                                 OpLoc);
4638  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4639                                  MemberLoc, Member, DeclPtrTy()).release();
4640}
4641
4642/// FixOverloadedFunctionReference - E is an expression that refers to
4643/// a C++ overloaded function (possibly with some parentheses and
4644/// perhaps a '&' around it). We have resolved the overloaded function
4645/// to the function declaration Fn, so patch up the expression E to
4646/// refer (possibly indirectly) to Fn.
4647void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4648  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4649    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4650    E->setType(PE->getSubExpr()->getType());
4651  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4652    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4653           "Can only take the address of an overloaded function");
4654    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4655      if (Method->isStatic()) {
4656        // Do nothing: static member functions aren't any different
4657        // from non-member functions.
4658      }
4659      else if (QualifiedDeclRefExpr *DRE
4660                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4661        // We have taken the address of a pointer to member
4662        // function. Perform the computation here so that we get the
4663        // appropriate pointer to member type.
4664        DRE->setDecl(Fn);
4665        DRE->setType(Fn->getType());
4666        QualType ClassType
4667          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4668        E->setType(Context.getMemberPointerType(Fn->getType(),
4669                                                ClassType.getTypePtr()));
4670        return;
4671      }
4672    }
4673    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4674    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4675  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4676    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4677            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4678           "Expected overloaded function or function template");
4679    DR->setDecl(Fn);
4680    E->setType(Fn->getType());
4681  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4682    MemExpr->setMemberDecl(Fn);
4683    E->setType(Fn->getType());
4684  } else {
4685    assert(false && "Invalid reference to overloaded function");
4686  }
4687}
4688
4689} // end namespace clang
4690