SemaOverload.cpp revision 6fd3557615e8e6e33456e147d060296282bfe7f1
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32  static const ImplicitConversionCategory
33    Category[(int)ICK_Num_Conversion_Kinds] = {
34    ICC_Identity,
35    ICC_Lvalue_Transformation,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Qualification_Adjustment,
39    ICC_Promotion,
40    ICC_Promotion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion
48  };
49  return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55  static const ImplicitConversionRank
56    Rank[(int)ICK_Num_Conversion_Kinds] = {
57    ICR_Exact_Match,
58    ICR_Exact_Match,
59    ICR_Exact_Match,
60    ICR_Exact_Match,
61    ICR_Exact_Match,
62    ICR_Promotion,
63    ICR_Promotion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion,
67    ICR_Conversion,
68    ICR_Conversion,
69    ICR_Conversion,
70    ICR_Conversion
71  };
72  return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79    "No conversion",
80    "Lvalue-to-rvalue",
81    "Array-to-pointer",
82    "Function-to-pointer",
83    "Qualification",
84    "Integral promotion",
85    "Floating point promotion",
86    "Integral conversion",
87    "Floating conversion",
88    "Floating-integral conversion",
89    "Pointer conversion",
90    "Pointer-to-member conversion",
91    "Boolean conversion",
92    "Derived-to-base conversion"
93  };
94  return Name[Kind];
95}
96
97/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100  First = ICK_Identity;
101  Second = ICK_Identity;
102  Third = ICK_Identity;
103  Deprecated = false;
104  ReferenceBinding = false;
105  DirectBinding = false;
106  CopyConstructor = 0;
107}
108
109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113  ImplicitConversionRank Rank = ICR_Exact_Match;
114  if  (GetConversionRank(First) > Rank)
115    Rank = GetConversionRank(First);
116  if  (GetConversionRank(Second) > Rank)
117    Rank = GetConversionRank(Second);
118  if  (GetConversionRank(Third) > Rank)
119    Rank = GetConversionRank(Third);
120  return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132  // Note that FromType has not necessarily been transformed by the
133  // array-to-pointer or function-to-pointer implicit conversions, so
134  // check for their presence as well as checking whether FromType is
135  // a pointer.
136  if (ToType->isBooleanType() &&
137      (FromType->isPointerType() ||
138       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139    return true;
140
141  return false;
142}
143
144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155  // Note that FromType has not necessarily been transformed by the
156  // array-to-pointer implicit conversion, so check for its presence
157  // and redo the conversion to get a pointer.
158  if (First == ICK_Array_To_Pointer)
159    FromType = Context.getArrayDecayedType(FromType);
160
161  if (Second == ICK_Pointer_Conversion)
162    if (const PointerType* ToPtrType = ToType->getAsPointerType())
163      return ToPtrType->getPointeeType()->isVoidType();
164
165  return false;
166}
167
168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171  bool PrintedSomething = false;
172  if (First != ICK_Identity) {
173    fprintf(stderr, "%s", GetImplicitConversionName(First));
174    PrintedSomething = true;
175  }
176
177  if (Second != ICK_Identity) {
178    if (PrintedSomething) {
179      fprintf(stderr, " -> ");
180    }
181    fprintf(stderr, "%s", GetImplicitConversionName(Second));
182
183    if (CopyConstructor) {
184      fprintf(stderr, " (by copy constructor)");
185    } else if (DirectBinding) {
186      fprintf(stderr, " (direct reference binding)");
187    } else if (ReferenceBinding) {
188      fprintf(stderr, " (reference binding)");
189    }
190    PrintedSomething = true;
191  }
192
193  if (Third != ICK_Identity) {
194    if (PrintedSomething) {
195      fprintf(stderr, " -> ");
196    }
197    fprintf(stderr, "%s", GetImplicitConversionName(Third));
198    PrintedSomething = true;
199  }
200
201  if (!PrintedSomething) {
202    fprintf(stderr, "No conversions required");
203  }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209  if (Before.First || Before.Second || Before.Third) {
210    Before.DebugPrint();
211    fprintf(stderr, " -> ");
212  }
213  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
214  if (After.First || After.Second || After.Third) {
215    fprintf(stderr, " -> ");
216    After.DebugPrint();
217  }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223  switch (ConversionKind) {
224  case StandardConversion:
225    fprintf(stderr, "Standard conversion: ");
226    Standard.DebugPrint();
227    break;
228  case UserDefinedConversion:
229    fprintf(stderr, "User-defined conversion: ");
230    UserDefined.DebugPrint();
231    break;
232  case EllipsisConversion:
233    fprintf(stderr, "Ellipsis conversion");
234    break;
235  case BadConversion:
236    fprintf(stderr, "Bad conversion");
237    break;
238  }
239
240  fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253//   void f(int, float); // #1
254//   void f(int, int); // #2
255//   int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1.  By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276    // Is this new function an overload of every function in the
277    // overload set?
278    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279                                           FuncEnd = Ovl->function_end();
280    for (; Func != FuncEnd; ++Func) {
281      if (!IsOverload(New, *Func, MatchedDecl)) {
282        MatchedDecl = Func;
283        return false;
284      }
285    }
286
287    // This function overloads every function in the overload set.
288    return true;
289  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290    // Is the function New an overload of the function Old?
291    QualType OldQType = Context.getCanonicalType(Old->getType());
292    QualType NewQType = Context.getCanonicalType(New->getType());
293
294    // Compare the signatures (C++ 1.3.10) of the two functions to
295    // determine whether they are overloads. If we find any mismatch
296    // in the signature, they are overloads.
297
298    // If either of these functions is a K&R-style function (no
299    // prototype), then we consider them to have matching signatures.
300    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302      return false;
303
304    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307    // The signature of a function includes the types of its
308    // parameters (C++ 1.3.10), which includes the presence or absence
309    // of the ellipsis; see C++ DR 357).
310    if (OldQType != NewQType &&
311        (OldType->getNumArgs() != NewType->getNumArgs() ||
312         OldType->isVariadic() != NewType->isVariadic() ||
313         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314                     NewType->arg_type_begin())))
315      return true;
316
317    // If the function is a class member, its signature includes the
318    // cv-qualifiers (if any) on the function itself.
319    //
320    // As part of this, also check whether one of the member functions
321    // is static, in which case they are not overloads (C++
322    // 13.1p2). While not part of the definition of the signature,
323    // this check is important to determine whether these functions
324    // can be overloaded.
325    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327    if (OldMethod && NewMethod &&
328        !OldMethod->isStatic() && !NewMethod->isStatic() &&
329        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
330      return true;
331
332    // The signatures match; this is not an overload.
333    return false;
334  } else {
335    // (C++ 13p1):
336    //   Only function declarations can be overloaded; object and type
337    //   declarations cannot be overloaded.
338    return false;
339  }
340}
341
342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
346///
347///   void f(float f);
348///   void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
363ImplicitConversionSequence
364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365                            bool SuppressUserConversions)
366{
367  ImplicitConversionSequence ICS;
368  if (IsStandardConversion(From, ToType, ICS.Standard))
369    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
370  else if (!SuppressUserConversions &&
371           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
372    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
373    // C++ [over.ics.user]p4:
374    //   A conversion of an expression of class type to the same class
375    //   type is given Exact Match rank, and a conversion of an
376    //   expression of class type to a base class of that type is
377    //   given Conversion rank, in spite of the fact that a copy
378    //   constructor (i.e., a user-defined conversion function) is
379    //   called for those cases.
380    if (CXXConstructorDecl *Constructor
381          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382      if (Constructor->isCopyConstructor(Context)) {
383        // Turn this into a "standard" conversion sequence, so that it
384        // gets ranked with standard conversion sequences.
385        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386        ICS.Standard.setAsIdentityConversion();
387        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
389        ICS.Standard.CopyConstructor = Constructor;
390        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391                          ToType.getUnqualifiedType()))
392          ICS.Standard.Second = ICK_Derived_To_Base;
393      }
394    }
395  } else
396    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
397
398  return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411                           StandardConversionSequence &SCS)
412{
413  QualType FromType = From->getType();
414
415  // There are no standard conversions for class types, so abort early.
416  if (FromType->isRecordType() || ToType->isRecordType())
417    return false;
418
419  // Standard conversions (C++ [conv])
420  SCS.setAsIdentityConversion();
421  SCS.Deprecated = false;
422  SCS.IncompatibleObjC = false;
423  SCS.FromTypePtr = FromType.getAsOpaquePtr();
424  SCS.CopyConstructor = 0;
425
426  // The first conversion can be an lvalue-to-rvalue conversion,
427  // array-to-pointer conversion, or function-to-pointer conversion
428  // (C++ 4p1).
429
430  // Lvalue-to-rvalue conversion (C++ 4.1):
431  //   An lvalue (3.10) of a non-function, non-array type T can be
432  //   converted to an rvalue.
433  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
434  if (argIsLvalue == Expr::LV_Valid &&
435      !FromType->isFunctionType() && !FromType->isArrayType() &&
436      !FromType->isOverloadType()) {
437    SCS.First = ICK_Lvalue_To_Rvalue;
438
439    // If T is a non-class type, the type of the rvalue is the
440    // cv-unqualified version of T. Otherwise, the type of the rvalue
441    // is T (C++ 4.1p1).
442    FromType = FromType.getUnqualifiedType();
443  }
444  // Array-to-pointer conversion (C++ 4.2)
445  else if (FromType->isArrayType()) {
446    SCS.First = ICK_Array_To_Pointer;
447
448    // An lvalue or rvalue of type "array of N T" or "array of unknown
449    // bound of T" can be converted to an rvalue of type "pointer to
450    // T" (C++ 4.2p1).
451    FromType = Context.getArrayDecayedType(FromType);
452
453    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
454      // This conversion is deprecated. (C++ D.4).
455      SCS.Deprecated = true;
456
457      // For the purpose of ranking in overload resolution
458      // (13.3.3.1.1), this conversion is considered an
459      // array-to-pointer conversion followed by a qualification
460      // conversion (4.4). (C++ 4.2p2)
461      SCS.Second = ICK_Identity;
462      SCS.Third = ICK_Qualification;
463      SCS.ToTypePtr = ToType.getAsOpaquePtr();
464      return true;
465    }
466  }
467  // Function-to-pointer conversion (C++ 4.3).
468  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
469    SCS.First = ICK_Function_To_Pointer;
470
471    // An lvalue of function type T can be converted to an rvalue of
472    // type "pointer to T." The result is a pointer to the
473    // function. (C++ 4.3p1).
474    FromType = Context.getPointerType(FromType);
475  }
476  // Address of overloaded function (C++ [over.over]).
477  else if (FunctionDecl *Fn
478             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
479    SCS.First = ICK_Function_To_Pointer;
480
481    // We were able to resolve the address of the overloaded function,
482    // so we can convert to the type of that function.
483    FromType = Fn->getType();
484    if (ToType->isReferenceType())
485      FromType = Context.getReferenceType(FromType);
486    else
487      FromType = Context.getPointerType(FromType);
488  }
489  // We don't require any conversions for the first step.
490  else {
491    SCS.First = ICK_Identity;
492  }
493
494  // The second conversion can be an integral promotion, floating
495  // point promotion, integral conversion, floating point conversion,
496  // floating-integral conversion, pointer conversion,
497  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
498  bool IncompatibleObjC = false;
499  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
500      Context.getCanonicalType(ToType).getUnqualifiedType()) {
501    // The unqualified versions of the types are the same: there's no
502    // conversion to do.
503    SCS.Second = ICK_Identity;
504  }
505  // Integral promotion (C++ 4.5).
506  else if (IsIntegralPromotion(From, FromType, ToType)) {
507    SCS.Second = ICK_Integral_Promotion;
508    FromType = ToType.getUnqualifiedType();
509  }
510  // Floating point promotion (C++ 4.6).
511  else if (IsFloatingPointPromotion(FromType, ToType)) {
512    SCS.Second = ICK_Floating_Promotion;
513    FromType = ToType.getUnqualifiedType();
514  }
515  // Integral conversions (C++ 4.7).
516  // FIXME: isIntegralType shouldn't be true for enums in C++.
517  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
518           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
519    SCS.Second = ICK_Integral_Conversion;
520    FromType = ToType.getUnqualifiedType();
521  }
522  // Floating point conversions (C++ 4.8).
523  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
524    SCS.Second = ICK_Floating_Conversion;
525    FromType = ToType.getUnqualifiedType();
526  }
527  // Floating-integral conversions (C++ 4.9).
528  // FIXME: isIntegralType shouldn't be true for enums in C++.
529  else if ((FromType->isFloatingType() &&
530            ToType->isIntegralType() && !ToType->isBooleanType() &&
531                                        !ToType->isEnumeralType()) ||
532           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
533            ToType->isFloatingType())) {
534    SCS.Second = ICK_Floating_Integral;
535    FromType = ToType.getUnqualifiedType();
536  }
537  // Pointer conversions (C++ 4.10).
538  else if (IsPointerConversion(From, FromType, ToType, FromType,
539                               IncompatibleObjC)) {
540    SCS.Second = ICK_Pointer_Conversion;
541    SCS.IncompatibleObjC = IncompatibleObjC;
542  }
543  // FIXME: Pointer to member conversions (4.11).
544  // Boolean conversions (C++ 4.12).
545  // FIXME: pointer-to-member type
546  else if (ToType->isBooleanType() &&
547           (FromType->isArithmeticType() ||
548            FromType->isEnumeralType() ||
549            FromType->isPointerType())) {
550    SCS.Second = ICK_Boolean_Conversion;
551    FromType = Context.BoolTy;
552  } else {
553    // No second conversion required.
554    SCS.Second = ICK_Identity;
555  }
556
557  QualType CanonFrom;
558  QualType CanonTo;
559  // The third conversion can be a qualification conversion (C++ 4p1).
560  if (IsQualificationConversion(FromType, ToType)) {
561    SCS.Third = ICK_Qualification;
562    FromType = ToType;
563    CanonFrom = Context.getCanonicalType(FromType);
564    CanonTo = Context.getCanonicalType(ToType);
565  } else {
566    // No conversion required
567    SCS.Third = ICK_Identity;
568
569    // C++ [over.best.ics]p6:
570    //   [...] Any difference in top-level cv-qualification is
571    //   subsumed by the initialization itself and does not constitute
572    //   a conversion. [...]
573    CanonFrom = Context.getCanonicalType(FromType);
574    CanonTo = Context.getCanonicalType(ToType);
575    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
576        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
577      FromType = ToType;
578      CanonFrom = CanonTo;
579    }
580  }
581
582  // If we have not converted the argument type to the parameter type,
583  // this is a bad conversion sequence.
584  if (CanonFrom != CanonTo)
585    return false;
586
587  SCS.ToTypePtr = FromType.getAsOpaquePtr();
588  return true;
589}
590
591/// IsIntegralPromotion - Determines whether the conversion from the
592/// expression From (whose potentially-adjusted type is FromType) to
593/// ToType is an integral promotion (C++ 4.5). If so, returns true and
594/// sets PromotedType to the promoted type.
595bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
596{
597  const BuiltinType *To = ToType->getAsBuiltinType();
598  // All integers are built-in.
599  if (!To) {
600    return false;
601  }
602
603  // An rvalue of type char, signed char, unsigned char, short int, or
604  // unsigned short int can be converted to an rvalue of type int if
605  // int can represent all the values of the source type; otherwise,
606  // the source rvalue can be converted to an rvalue of type unsigned
607  // int (C++ 4.5p1).
608  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
609    if (// We can promote any signed, promotable integer type to an int
610        (FromType->isSignedIntegerType() ||
611         // We can promote any unsigned integer type whose size is
612         // less than int to an int.
613         (!FromType->isSignedIntegerType() &&
614          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
615      return To->getKind() == BuiltinType::Int;
616    }
617
618    return To->getKind() == BuiltinType::UInt;
619  }
620
621  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
622  // can be converted to an rvalue of the first of the following types
623  // that can represent all the values of its underlying type: int,
624  // unsigned int, long, or unsigned long (C++ 4.5p2).
625  if ((FromType->isEnumeralType() || FromType->isWideCharType())
626      && ToType->isIntegerType()) {
627    // Determine whether the type we're converting from is signed or
628    // unsigned.
629    bool FromIsSigned;
630    uint64_t FromSize = Context.getTypeSize(FromType);
631    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
632      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
633      FromIsSigned = UnderlyingType->isSignedIntegerType();
634    } else {
635      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
636      FromIsSigned = true;
637    }
638
639    // The types we'll try to promote to, in the appropriate
640    // order. Try each of these types.
641    QualType PromoteTypes[6] = {
642      Context.IntTy, Context.UnsignedIntTy,
643      Context.LongTy, Context.UnsignedLongTy ,
644      Context.LongLongTy, Context.UnsignedLongLongTy
645    };
646    for (int Idx = 0; Idx < 6; ++Idx) {
647      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
648      if (FromSize < ToSize ||
649          (FromSize == ToSize &&
650           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
651        // We found the type that we can promote to. If this is the
652        // type we wanted, we have a promotion. Otherwise, no
653        // promotion.
654        return Context.getCanonicalType(ToType).getUnqualifiedType()
655          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
656      }
657    }
658  }
659
660  // An rvalue for an integral bit-field (9.6) can be converted to an
661  // rvalue of type int if int can represent all the values of the
662  // bit-field; otherwise, it can be converted to unsigned int if
663  // unsigned int can represent all the values of the bit-field. If
664  // the bit-field is larger yet, no integral promotion applies to
665  // it. If the bit-field has an enumerated type, it is treated as any
666  // other value of that type for promotion purposes (C++ 4.5p3).
667  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
668    using llvm::APSInt;
669    FieldDecl *MemberDecl = MemRef->getMemberDecl();
670    APSInt BitWidth;
671    if (MemberDecl->isBitField() &&
672        FromType->isIntegralType() && !FromType->isEnumeralType() &&
673        From->isIntegerConstantExpr(BitWidth, Context)) {
674      APSInt ToSize(Context.getTypeSize(ToType));
675
676      // Are we promoting to an int from a bitfield that fits in an int?
677      if (BitWidth < ToSize ||
678          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
679        return To->getKind() == BuiltinType::Int;
680      }
681
682      // Are we promoting to an unsigned int from an unsigned bitfield
683      // that fits into an unsigned int?
684      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
685        return To->getKind() == BuiltinType::UInt;
686      }
687
688      return false;
689    }
690  }
691
692  // An rvalue of type bool can be converted to an rvalue of type int,
693  // with false becoming zero and true becoming one (C++ 4.5p4).
694  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
695    return true;
696  }
697
698  return false;
699}
700
701/// IsFloatingPointPromotion - Determines whether the conversion from
702/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
703/// returns true and sets PromotedType to the promoted type.
704bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
705{
706  /// An rvalue of type float can be converted to an rvalue of type
707  /// double. (C++ 4.6p1).
708  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
709    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
710      if (FromBuiltin->getKind() == BuiltinType::Float &&
711          ToBuiltin->getKind() == BuiltinType::Double)
712        return true;
713
714  return false;
715}
716
717/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
718/// the pointer type FromPtr to a pointer to type ToPointee, with the
719/// same type qualifiers as FromPtr has on its pointee type. ToType,
720/// if non-empty, will be a pointer to ToType that may or may not have
721/// the right set of qualifiers on its pointee.
722static QualType
723BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
724                                   QualType ToPointee, QualType ToType,
725                                   ASTContext &Context) {
726  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
727  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
728  unsigned Quals = CanonFromPointee.getCVRQualifiers();
729
730  // Exact qualifier match -> return the pointer type we're converting to.
731  if (CanonToPointee.getCVRQualifiers() == Quals) {
732    // ToType is exactly what we need. Return it.
733    if (ToType.getTypePtr())
734      return ToType;
735
736    // Build a pointer to ToPointee. It has the right qualifiers
737    // already.
738    return Context.getPointerType(ToPointee);
739  }
740
741  // Just build a canonical type that has the right qualifiers.
742  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
743}
744
745/// IsPointerConversion - Determines whether the conversion of the
746/// expression From, which has the (possibly adjusted) type FromType,
747/// can be converted to the type ToType via a pointer conversion (C++
748/// 4.10). If so, returns true and places the converted type (that
749/// might differ from ToType in its cv-qualifiers at some level) into
750/// ConvertedType.
751///
752/// This routine also supports conversions to and from block pointers
753/// and conversions with Objective-C's 'id', 'id<protocols...>', and
754/// pointers to interfaces. FIXME: Once we've determined the
755/// appropriate overloading rules for Objective-C, we may want to
756/// split the Objective-C checks into a different routine; however,
757/// GCC seems to consider all of these conversions to be pointer
758/// conversions, so for now they live here. IncompatibleObjC will be
759/// set if the conversion is an allowed Objective-C conversion that
760/// should result in a warning.
761bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
762                               QualType& ConvertedType,
763                               bool &IncompatibleObjC)
764{
765  IncompatibleObjC = false;
766
767  // Blocks: Block pointers can be converted to void*.
768  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
769      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
770    ConvertedType = ToType;
771    return true;
772  }
773  // Blocks: A null pointer constant can be converted to a block
774  // pointer type.
775  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
776    ConvertedType = ToType;
777    return true;
778  }
779
780  // Conversions with Objective-C's id<...>.
781  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
782      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
783    ConvertedType = ToType;
784    return true;
785  }
786
787  const PointerType* ToTypePtr = ToType->getAsPointerType();
788  if (!ToTypePtr)
789    return false;
790
791  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
792  if (From->isNullPointerConstant(Context)) {
793    ConvertedType = ToType;
794    return true;
795  }
796
797  // Beyond this point, both types need to be pointers.
798  const PointerType *FromTypePtr = FromType->getAsPointerType();
799  if (!FromTypePtr)
800    return false;
801
802  QualType FromPointeeType = FromTypePtr->getPointeeType();
803  QualType ToPointeeType = ToTypePtr->getPointeeType();
804
805  // An rvalue of type "pointer to cv T," where T is an object type,
806  // can be converted to an rvalue of type "pointer to cv void" (C++
807  // 4.10p2).
808  if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
809    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
810                                                       ToPointeeType,
811                                                       ToType, Context);
812    return true;
813  }
814
815  // C++ [conv.ptr]p3:
816  //
817  //   An rvalue of type "pointer to cv D," where D is a class type,
818  //   can be converted to an rvalue of type "pointer to cv B," where
819  //   B is a base class (clause 10) of D. If B is an inaccessible
820  //   (clause 11) or ambiguous (10.2) base class of D, a program that
821  //   necessitates this conversion is ill-formed. The result of the
822  //   conversion is a pointer to the base class sub-object of the
823  //   derived class object. The null pointer value is converted to
824  //   the null pointer value of the destination type.
825  //
826  // Note that we do not check for ambiguity or inaccessibility
827  // here. That is handled by CheckPointerConversion.
828  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
829      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
830    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
831                                                       ToPointeeType,
832                                                       ToType, Context);
833    return true;
834  }
835
836  // Objective C++: We're able to convert from a pointer to an
837  // interface to a pointer to a different interface.
838  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
839  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
840  if (FromIface && ToIface &&
841      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
842    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
843                                                       ToPointeeType,
844                                                       ToType, Context);
845    return true;
846  }
847
848  if (FromIface && ToIface &&
849      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
850    // Okay: this is some kind of implicit downcast of Objective-C
851    // interfaces, which is permitted. However, we're going to
852    // complain about it.
853    IncompatibleObjC = true;
854    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
855                                                       ToPointeeType,
856                                                       ToType, Context);
857    return true;
858  }
859
860  // Objective C++: We're able to convert between "id" and a pointer
861  // to any interface (in both directions).
862  if ((FromIface && Context.isObjCIdType(ToPointeeType))
863      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
864    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
865                                                       ToPointeeType,
866                                                       ToType, Context);
867    return true;
868  }
869
870  // Objective C++: Allow conversions between the Objective-C "id" and
871  // "Class", in either direction.
872  if ((Context.isObjCIdType(FromPointeeType) &&
873       Context.isObjCClassType(ToPointeeType)) ||
874      (Context.isObjCClassType(FromPointeeType) &&
875       Context.isObjCIdType(ToPointeeType))) {
876    ConvertedType = ToType;
877    return true;
878  }
879
880  return false;
881}
882
883/// CheckPointerConversion - Check the pointer conversion from the
884/// expression From to the type ToType. This routine checks for
885/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
886/// conversions for which IsPointerConversion has already returned
887/// true. It returns true and produces a diagnostic if there was an
888/// error, or returns false otherwise.
889bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
890  QualType FromType = From->getType();
891
892  if (const PointerType *FromPtrType = FromType->getAsPointerType())
893    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
894      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
895                      /*DetectVirtual=*/false);
896      QualType FromPointeeType = FromPtrType->getPointeeType(),
897               ToPointeeType   = ToPtrType->getPointeeType();
898
899      // Objective-C++ conversions are always okay.
900      // FIXME: We should have a different class of conversions for
901      // the Objective-C++ implicit conversions.
902      if (Context.isObjCIdType(FromPointeeType) ||
903          Context.isObjCIdType(ToPointeeType) ||
904          Context.isObjCClassType(FromPointeeType) ||
905          Context.isObjCClassType(ToPointeeType))
906        return false;
907
908      if (FromPointeeType->isRecordType() &&
909          ToPointeeType->isRecordType()) {
910        // We must have a derived-to-base conversion. Check an
911        // ambiguous or inaccessible conversion.
912        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
913                                            From->getExprLoc(),
914                                            From->getSourceRange());
915      }
916    }
917
918  return false;
919}
920
921/// IsQualificationConversion - Determines whether the conversion from
922/// an rvalue of type FromType to ToType is a qualification conversion
923/// (C++ 4.4).
924bool
925Sema::IsQualificationConversion(QualType FromType, QualType ToType)
926{
927  FromType = Context.getCanonicalType(FromType);
928  ToType = Context.getCanonicalType(ToType);
929
930  // If FromType and ToType are the same type, this is not a
931  // qualification conversion.
932  if (FromType == ToType)
933    return false;
934
935  // (C++ 4.4p4):
936  //   A conversion can add cv-qualifiers at levels other than the first
937  //   in multi-level pointers, subject to the following rules: [...]
938  bool PreviousToQualsIncludeConst = true;
939  bool UnwrappedAnyPointer = false;
940  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
941    // Within each iteration of the loop, we check the qualifiers to
942    // determine if this still looks like a qualification
943    // conversion. Then, if all is well, we unwrap one more level of
944    // pointers or pointers-to-members and do it all again
945    // until there are no more pointers or pointers-to-members left to
946    // unwrap.
947    UnwrappedAnyPointer = true;
948
949    //   -- for every j > 0, if const is in cv 1,j then const is in cv
950    //      2,j, and similarly for volatile.
951    if (!ToType.isAtLeastAsQualifiedAs(FromType))
952      return false;
953
954    //   -- if the cv 1,j and cv 2,j are different, then const is in
955    //      every cv for 0 < k < j.
956    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
957        && !PreviousToQualsIncludeConst)
958      return false;
959
960    // Keep track of whether all prior cv-qualifiers in the "to" type
961    // include const.
962    PreviousToQualsIncludeConst
963      = PreviousToQualsIncludeConst && ToType.isConstQualified();
964  }
965
966  // We are left with FromType and ToType being the pointee types
967  // after unwrapping the original FromType and ToType the same number
968  // of types. If we unwrapped any pointers, and if FromType and
969  // ToType have the same unqualified type (since we checked
970  // qualifiers above), then this is a qualification conversion.
971  return UnwrappedAnyPointer &&
972    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
973}
974
975/// IsUserDefinedConversion - Determines whether there is a
976/// user-defined conversion sequence (C++ [over.ics.user]) that
977/// converts expression From to the type ToType. If such a conversion
978/// exists, User will contain the user-defined conversion sequence
979/// that performs such a conversion and this routine will return
980/// true. Otherwise, this routine returns false and User is
981/// unspecified.
982bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
983                                   UserDefinedConversionSequence& User)
984{
985  OverloadCandidateSet CandidateSet;
986  if (const CXXRecordType *ToRecordType
987        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
988    // C++ [over.match.ctor]p1:
989    //   When objects of class type are direct-initialized (8.5), or
990    //   copy-initialized from an expression of the same or a
991    //   derived class type (8.5), overload resolution selects the
992    //   constructor. [...] For copy-initialization, the candidate
993    //   functions are all the converting constructors (12.3.1) of
994    //   that class. The argument list is the expression-list within
995    //   the parentheses of the initializer.
996    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
997    DeclarationName ConstructorName
998      = Context.DeclarationNames.getCXXConstructorName(
999                                             Context.getCanonicalType(ToType));
1000    DeclContext::lookup_result Lookup
1001      = ToRecordDecl->lookup(Context, ConstructorName);
1002    if (Lookup.first == Lookup.second)
1003      /* No constructors. FIXME: Implicit copy constructor? */;
1004    else if (OverloadedFunctionDecl *Constructors
1005               = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
1006      for (OverloadedFunctionDecl::function_const_iterator func
1007             = Constructors->function_begin();
1008           func != Constructors->function_end(); ++func) {
1009        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
1010        if (Constructor->isConvertingConstructor())
1011          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1012                               /*SuppressUserConversions=*/true);
1013      }
1014    } else if (CXXConstructorDecl *Constructor
1015                 = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
1016      if (Constructor->isConvertingConstructor())
1017        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1018                             /*SuppressUserConversions=*/true);
1019    }
1020  }
1021
1022  if (const CXXRecordType *FromRecordType
1023        = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
1024    // Add all of the conversion functions as candidates.
1025    // FIXME: Look for conversions in base classes!
1026    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1027    OverloadedFunctionDecl *Conversions
1028      = FromRecordDecl->getConversionFunctions();
1029    for (OverloadedFunctionDecl::function_iterator Func
1030           = Conversions->function_begin();
1031         Func != Conversions->function_end(); ++Func) {
1032      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1033      AddConversionCandidate(Conv, From, ToType, CandidateSet);
1034    }
1035  }
1036
1037  OverloadCandidateSet::iterator Best;
1038  switch (BestViableFunction(CandidateSet, Best)) {
1039    case OR_Success:
1040      // Record the standard conversion we used and the conversion function.
1041      if (CXXConstructorDecl *Constructor
1042            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1043        // C++ [over.ics.user]p1:
1044        //   If the user-defined conversion is specified by a
1045        //   constructor (12.3.1), the initial standard conversion
1046        //   sequence converts the source type to the type required by
1047        //   the argument of the constructor.
1048        //
1049        // FIXME: What about ellipsis conversions?
1050        QualType ThisType = Constructor->getThisType(Context);
1051        User.Before = Best->Conversions[0].Standard;
1052        User.ConversionFunction = Constructor;
1053        User.After.setAsIdentityConversion();
1054        User.After.FromTypePtr
1055          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1056        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1057        return true;
1058      } else if (CXXConversionDecl *Conversion
1059                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1060        // C++ [over.ics.user]p1:
1061        //
1062        //   [...] If the user-defined conversion is specified by a
1063        //   conversion function (12.3.2), the initial standard
1064        //   conversion sequence converts the source type to the
1065        //   implicit object parameter of the conversion function.
1066        User.Before = Best->Conversions[0].Standard;
1067        User.ConversionFunction = Conversion;
1068
1069        // C++ [over.ics.user]p2:
1070        //   The second standard conversion sequence converts the
1071        //   result of the user-defined conversion to the target type
1072        //   for the sequence. Since an implicit conversion sequence
1073        //   is an initialization, the special rules for
1074        //   initialization by user-defined conversion apply when
1075        //   selecting the best user-defined conversion for a
1076        //   user-defined conversion sequence (see 13.3.3 and
1077        //   13.3.3.1).
1078        User.After = Best->FinalConversion;
1079        return true;
1080      } else {
1081        assert(false && "Not a constructor or conversion function?");
1082        return false;
1083      }
1084
1085    case OR_No_Viable_Function:
1086      // No conversion here! We're done.
1087      return false;
1088
1089    case OR_Ambiguous:
1090      // FIXME: See C++ [over.best.ics]p10 for the handling of
1091      // ambiguous conversion sequences.
1092      return false;
1093    }
1094
1095  return false;
1096}
1097
1098/// CompareImplicitConversionSequences - Compare two implicit
1099/// conversion sequences to determine whether one is better than the
1100/// other or if they are indistinguishable (C++ 13.3.3.2).
1101ImplicitConversionSequence::CompareKind
1102Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1103                                         const ImplicitConversionSequence& ICS2)
1104{
1105  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1106  // conversion sequences (as defined in 13.3.3.1)
1107  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1108  //      conversion sequence than a user-defined conversion sequence or
1109  //      an ellipsis conversion sequence, and
1110  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1111  //      conversion sequence than an ellipsis conversion sequence
1112  //      (13.3.3.1.3).
1113  //
1114  if (ICS1.ConversionKind < ICS2.ConversionKind)
1115    return ImplicitConversionSequence::Better;
1116  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1117    return ImplicitConversionSequence::Worse;
1118
1119  // Two implicit conversion sequences of the same form are
1120  // indistinguishable conversion sequences unless one of the
1121  // following rules apply: (C++ 13.3.3.2p3):
1122  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1123    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1124  else if (ICS1.ConversionKind ==
1125             ImplicitConversionSequence::UserDefinedConversion) {
1126    // User-defined conversion sequence U1 is a better conversion
1127    // sequence than another user-defined conversion sequence U2 if
1128    // they contain the same user-defined conversion function or
1129    // constructor and if the second standard conversion sequence of
1130    // U1 is better than the second standard conversion sequence of
1131    // U2 (C++ 13.3.3.2p3).
1132    if (ICS1.UserDefined.ConversionFunction ==
1133          ICS2.UserDefined.ConversionFunction)
1134      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1135                                                ICS2.UserDefined.After);
1136  }
1137
1138  return ImplicitConversionSequence::Indistinguishable;
1139}
1140
1141/// CompareStandardConversionSequences - Compare two standard
1142/// conversion sequences to determine whether one is better than the
1143/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1144ImplicitConversionSequence::CompareKind
1145Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1146                                         const StandardConversionSequence& SCS2)
1147{
1148  // Standard conversion sequence S1 is a better conversion sequence
1149  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1150
1151  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1152  //     sequences in the canonical form defined by 13.3.3.1.1,
1153  //     excluding any Lvalue Transformation; the identity conversion
1154  //     sequence is considered to be a subsequence of any
1155  //     non-identity conversion sequence) or, if not that,
1156  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1157    // Neither is a proper subsequence of the other. Do nothing.
1158    ;
1159  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1160           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1161           (SCS1.Second == ICK_Identity &&
1162            SCS1.Third == ICK_Identity))
1163    // SCS1 is a proper subsequence of SCS2.
1164    return ImplicitConversionSequence::Better;
1165  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1166           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1167           (SCS2.Second == ICK_Identity &&
1168            SCS2.Third == ICK_Identity))
1169    // SCS2 is a proper subsequence of SCS1.
1170    return ImplicitConversionSequence::Worse;
1171
1172  //  -- the rank of S1 is better than the rank of S2 (by the rules
1173  //     defined below), or, if not that,
1174  ImplicitConversionRank Rank1 = SCS1.getRank();
1175  ImplicitConversionRank Rank2 = SCS2.getRank();
1176  if (Rank1 < Rank2)
1177    return ImplicitConversionSequence::Better;
1178  else if (Rank2 < Rank1)
1179    return ImplicitConversionSequence::Worse;
1180
1181  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1182  // are indistinguishable unless one of the following rules
1183  // applies:
1184
1185  //   A conversion that is not a conversion of a pointer, or
1186  //   pointer to member, to bool is better than another conversion
1187  //   that is such a conversion.
1188  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1189    return SCS2.isPointerConversionToBool()
1190             ? ImplicitConversionSequence::Better
1191             : ImplicitConversionSequence::Worse;
1192
1193  // C++ [over.ics.rank]p4b2:
1194  //
1195  //   If class B is derived directly or indirectly from class A,
1196  //   conversion of B* to A* is better than conversion of B* to
1197  //   void*, and conversion of A* to void* is better than conversion
1198  //   of B* to void*.
1199  bool SCS1ConvertsToVoid
1200    = SCS1.isPointerConversionToVoidPointer(Context);
1201  bool SCS2ConvertsToVoid
1202    = SCS2.isPointerConversionToVoidPointer(Context);
1203  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1204    // Exactly one of the conversion sequences is a conversion to
1205    // a void pointer; it's the worse conversion.
1206    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1207                              : ImplicitConversionSequence::Worse;
1208  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1209    // Neither conversion sequence converts to a void pointer; compare
1210    // their derived-to-base conversions.
1211    if (ImplicitConversionSequence::CompareKind DerivedCK
1212          = CompareDerivedToBaseConversions(SCS1, SCS2))
1213      return DerivedCK;
1214  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1215    // Both conversion sequences are conversions to void
1216    // pointers. Compare the source types to determine if there's an
1217    // inheritance relationship in their sources.
1218    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1219    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1220
1221    // Adjust the types we're converting from via the array-to-pointer
1222    // conversion, if we need to.
1223    if (SCS1.First == ICK_Array_To_Pointer)
1224      FromType1 = Context.getArrayDecayedType(FromType1);
1225    if (SCS2.First == ICK_Array_To_Pointer)
1226      FromType2 = Context.getArrayDecayedType(FromType2);
1227
1228    QualType FromPointee1
1229      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1230    QualType FromPointee2
1231      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1232
1233    if (IsDerivedFrom(FromPointee2, FromPointee1))
1234      return ImplicitConversionSequence::Better;
1235    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1236      return ImplicitConversionSequence::Worse;
1237
1238    // Objective-C++: If one interface is more specific than the
1239    // other, it is the better one.
1240    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1241    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1242    if (FromIface1 && FromIface1) {
1243      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1244        return ImplicitConversionSequence::Better;
1245      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1246        return ImplicitConversionSequence::Worse;
1247    }
1248  }
1249
1250  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1251  // bullet 3).
1252  if (ImplicitConversionSequence::CompareKind QualCK
1253        = CompareQualificationConversions(SCS1, SCS2))
1254    return QualCK;
1255
1256  // C++ [over.ics.rank]p3b4:
1257  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1258  //      which the references refer are the same type except for
1259  //      top-level cv-qualifiers, and the type to which the reference
1260  //      initialized by S2 refers is more cv-qualified than the type
1261  //      to which the reference initialized by S1 refers.
1262  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1263    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1264    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1265    T1 = Context.getCanonicalType(T1);
1266    T2 = Context.getCanonicalType(T2);
1267    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1268      if (T2.isMoreQualifiedThan(T1))
1269        return ImplicitConversionSequence::Better;
1270      else if (T1.isMoreQualifiedThan(T2))
1271        return ImplicitConversionSequence::Worse;
1272    }
1273  }
1274
1275  return ImplicitConversionSequence::Indistinguishable;
1276}
1277
1278/// CompareQualificationConversions - Compares two standard conversion
1279/// sequences to determine whether they can be ranked based on their
1280/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1281ImplicitConversionSequence::CompareKind
1282Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1283                                      const StandardConversionSequence& SCS2)
1284{
1285  // C++ 13.3.3.2p3:
1286  //  -- S1 and S2 differ only in their qualification conversion and
1287  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1288  //     cv-qualification signature of type T1 is a proper subset of
1289  //     the cv-qualification signature of type T2, and S1 is not the
1290  //     deprecated string literal array-to-pointer conversion (4.2).
1291  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1292      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1293    return ImplicitConversionSequence::Indistinguishable;
1294
1295  // FIXME: the example in the standard doesn't use a qualification
1296  // conversion (!)
1297  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1298  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1299  T1 = Context.getCanonicalType(T1);
1300  T2 = Context.getCanonicalType(T2);
1301
1302  // If the types are the same, we won't learn anything by unwrapped
1303  // them.
1304  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1305    return ImplicitConversionSequence::Indistinguishable;
1306
1307  ImplicitConversionSequence::CompareKind Result
1308    = ImplicitConversionSequence::Indistinguishable;
1309  while (UnwrapSimilarPointerTypes(T1, T2)) {
1310    // Within each iteration of the loop, we check the qualifiers to
1311    // determine if this still looks like a qualification
1312    // conversion. Then, if all is well, we unwrap one more level of
1313    // pointers or pointers-to-members and do it all again
1314    // until there are no more pointers or pointers-to-members left
1315    // to unwrap. This essentially mimics what
1316    // IsQualificationConversion does, but here we're checking for a
1317    // strict subset of qualifiers.
1318    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1319      // The qualifiers are the same, so this doesn't tell us anything
1320      // about how the sequences rank.
1321      ;
1322    else if (T2.isMoreQualifiedThan(T1)) {
1323      // T1 has fewer qualifiers, so it could be the better sequence.
1324      if (Result == ImplicitConversionSequence::Worse)
1325        // Neither has qualifiers that are a subset of the other's
1326        // qualifiers.
1327        return ImplicitConversionSequence::Indistinguishable;
1328
1329      Result = ImplicitConversionSequence::Better;
1330    } else if (T1.isMoreQualifiedThan(T2)) {
1331      // T2 has fewer qualifiers, so it could be the better sequence.
1332      if (Result == ImplicitConversionSequence::Better)
1333        // Neither has qualifiers that are a subset of the other's
1334        // qualifiers.
1335        return ImplicitConversionSequence::Indistinguishable;
1336
1337      Result = ImplicitConversionSequence::Worse;
1338    } else {
1339      // Qualifiers are disjoint.
1340      return ImplicitConversionSequence::Indistinguishable;
1341    }
1342
1343    // If the types after this point are equivalent, we're done.
1344    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1345      break;
1346  }
1347
1348  // Check that the winning standard conversion sequence isn't using
1349  // the deprecated string literal array to pointer conversion.
1350  switch (Result) {
1351  case ImplicitConversionSequence::Better:
1352    if (SCS1.Deprecated)
1353      Result = ImplicitConversionSequence::Indistinguishable;
1354    break;
1355
1356  case ImplicitConversionSequence::Indistinguishable:
1357    break;
1358
1359  case ImplicitConversionSequence::Worse:
1360    if (SCS2.Deprecated)
1361      Result = ImplicitConversionSequence::Indistinguishable;
1362    break;
1363  }
1364
1365  return Result;
1366}
1367
1368/// CompareDerivedToBaseConversions - Compares two standard conversion
1369/// sequences to determine whether they can be ranked based on their
1370/// various kinds of derived-to-base conversions (C++
1371/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1372/// conversions between Objective-C interface types.
1373ImplicitConversionSequence::CompareKind
1374Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1375                                      const StandardConversionSequence& SCS2) {
1376  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1377  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1378  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1379  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1380
1381  // Adjust the types we're converting from via the array-to-pointer
1382  // conversion, if we need to.
1383  if (SCS1.First == ICK_Array_To_Pointer)
1384    FromType1 = Context.getArrayDecayedType(FromType1);
1385  if (SCS2.First == ICK_Array_To_Pointer)
1386    FromType2 = Context.getArrayDecayedType(FromType2);
1387
1388  // Canonicalize all of the types.
1389  FromType1 = Context.getCanonicalType(FromType1);
1390  ToType1 = Context.getCanonicalType(ToType1);
1391  FromType2 = Context.getCanonicalType(FromType2);
1392  ToType2 = Context.getCanonicalType(ToType2);
1393
1394  // C++ [over.ics.rank]p4b3:
1395  //
1396  //   If class B is derived directly or indirectly from class A and
1397  //   class C is derived directly or indirectly from B,
1398  //
1399  // For Objective-C, we let A, B, and C also be Objective-C
1400  // interfaces.
1401
1402  // Compare based on pointer conversions.
1403  if (SCS1.Second == ICK_Pointer_Conversion &&
1404      SCS2.Second == ICK_Pointer_Conversion &&
1405      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1406      FromType1->isPointerType() && FromType2->isPointerType() &&
1407      ToType1->isPointerType() && ToType2->isPointerType()) {
1408    QualType FromPointee1
1409      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1410    QualType ToPointee1
1411      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1412    QualType FromPointee2
1413      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1414    QualType ToPointee2
1415      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1416
1417    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1418    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1419    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1420    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1421
1422    //   -- conversion of C* to B* is better than conversion of C* to A*,
1423    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1424      if (IsDerivedFrom(ToPointee1, ToPointee2))
1425        return ImplicitConversionSequence::Better;
1426      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1427        return ImplicitConversionSequence::Worse;
1428
1429      if (ToIface1 && ToIface2) {
1430        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1431          return ImplicitConversionSequence::Better;
1432        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1433          return ImplicitConversionSequence::Worse;
1434      }
1435    }
1436
1437    //   -- conversion of B* to A* is better than conversion of C* to A*,
1438    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1439      if (IsDerivedFrom(FromPointee2, FromPointee1))
1440        return ImplicitConversionSequence::Better;
1441      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1442        return ImplicitConversionSequence::Worse;
1443
1444      if (FromIface1 && FromIface2) {
1445        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1446          return ImplicitConversionSequence::Better;
1447        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1448          return ImplicitConversionSequence::Worse;
1449      }
1450    }
1451  }
1452
1453  // Compare based on reference bindings.
1454  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1455      SCS1.Second == ICK_Derived_To_Base) {
1456    //   -- binding of an expression of type C to a reference of type
1457    //      B& is better than binding an expression of type C to a
1458    //      reference of type A&,
1459    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1460        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1461      if (IsDerivedFrom(ToType1, ToType2))
1462        return ImplicitConversionSequence::Better;
1463      else if (IsDerivedFrom(ToType2, ToType1))
1464        return ImplicitConversionSequence::Worse;
1465    }
1466
1467    //   -- binding of an expression of type B to a reference of type
1468    //      A& is better than binding an expression of type C to a
1469    //      reference of type A&,
1470    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1471        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1472      if (IsDerivedFrom(FromType2, FromType1))
1473        return ImplicitConversionSequence::Better;
1474      else if (IsDerivedFrom(FromType1, FromType2))
1475        return ImplicitConversionSequence::Worse;
1476    }
1477  }
1478
1479
1480  // FIXME: conversion of A::* to B::* is better than conversion of
1481  // A::* to C::*,
1482
1483  // FIXME: conversion of B::* to C::* is better than conversion of
1484  // A::* to C::*, and
1485
1486  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1487      SCS1.Second == ICK_Derived_To_Base) {
1488    //   -- conversion of C to B is better than conversion of C to A,
1489    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1490        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1491      if (IsDerivedFrom(ToType1, ToType2))
1492        return ImplicitConversionSequence::Better;
1493      else if (IsDerivedFrom(ToType2, ToType1))
1494        return ImplicitConversionSequence::Worse;
1495    }
1496
1497    //   -- conversion of B to A is better than conversion of C to A.
1498    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1499        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1500      if (IsDerivedFrom(FromType2, FromType1))
1501        return ImplicitConversionSequence::Better;
1502      else if (IsDerivedFrom(FromType1, FromType2))
1503        return ImplicitConversionSequence::Worse;
1504    }
1505  }
1506
1507  return ImplicitConversionSequence::Indistinguishable;
1508}
1509
1510/// TryCopyInitialization - Try to copy-initialize a value of type
1511/// ToType from the expression From. Return the implicit conversion
1512/// sequence required to pass this argument, which may be a bad
1513/// conversion sequence (meaning that the argument cannot be passed to
1514/// a parameter of this type). If @p SuppressUserConversions, then we
1515/// do not permit any user-defined conversion sequences.
1516ImplicitConversionSequence
1517Sema::TryCopyInitialization(Expr *From, QualType ToType,
1518                            bool SuppressUserConversions) {
1519  if (!getLangOptions().CPlusPlus) {
1520    // In C, copy initialization is the same as performing an assignment.
1521    AssignConvertType ConvTy =
1522      CheckSingleAssignmentConstraints(ToType, From);
1523    ImplicitConversionSequence ICS;
1524    if (getLangOptions().NoExtensions? ConvTy != Compatible
1525                                     : ConvTy == Incompatible)
1526      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1527    else
1528      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1529    return ICS;
1530  } else if (ToType->isReferenceType()) {
1531    ImplicitConversionSequence ICS;
1532    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1533    return ICS;
1534  } else {
1535    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1536  }
1537}
1538
1539/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1540/// type ToType. Returns true (and emits a diagnostic) if there was
1541/// an error, returns false if the initialization succeeded.
1542bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1543                                     const char* Flavor) {
1544  if (!getLangOptions().CPlusPlus) {
1545    // In C, argument passing is the same as performing an assignment.
1546    QualType FromType = From->getType();
1547    AssignConvertType ConvTy =
1548      CheckSingleAssignmentConstraints(ToType, From);
1549
1550    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1551                                    FromType, From, Flavor);
1552  }
1553
1554  if (ToType->isReferenceType())
1555    return CheckReferenceInit(From, ToType);
1556
1557  if (!PerformImplicitConversion(From, ToType, Flavor))
1558    return false;
1559
1560  return Diag(From->getSourceRange().getBegin(),
1561              diag::err_typecheck_convert_incompatible)
1562    << ToType << From->getType() << Flavor << From->getSourceRange();
1563}
1564
1565/// TryObjectArgumentInitialization - Try to initialize the object
1566/// parameter of the given member function (@c Method) from the
1567/// expression @p From.
1568ImplicitConversionSequence
1569Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1570  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1571  unsigned MethodQuals = Method->getTypeQualifiers();
1572  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1573
1574  // Set up the conversion sequence as a "bad" conversion, to allow us
1575  // to exit early.
1576  ImplicitConversionSequence ICS;
1577  ICS.Standard.setAsIdentityConversion();
1578  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1579
1580  // We need to have an object of class type.
1581  QualType FromType = From->getType();
1582  if (!FromType->isRecordType())
1583    return ICS;
1584
1585  // The implicit object parmeter is has the type "reference to cv X",
1586  // where X is the class of which the function is a member
1587  // (C++ [over.match.funcs]p4). However, when finding an implicit
1588  // conversion sequence for the argument, we are not allowed to
1589  // create temporaries or perform user-defined conversions
1590  // (C++ [over.match.funcs]p5). We perform a simplified version of
1591  // reference binding here, that allows class rvalues to bind to
1592  // non-constant references.
1593
1594  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1595  // with the implicit object parameter (C++ [over.match.funcs]p5).
1596  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1597  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1598      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1599    return ICS;
1600
1601  // Check that we have either the same type or a derived type. It
1602  // affects the conversion rank.
1603  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1604  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1605    ICS.Standard.Second = ICK_Identity;
1606  else if (IsDerivedFrom(FromType, ClassType))
1607    ICS.Standard.Second = ICK_Derived_To_Base;
1608  else
1609    return ICS;
1610
1611  // Success. Mark this as a reference binding.
1612  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1613  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1614  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1615  ICS.Standard.ReferenceBinding = true;
1616  ICS.Standard.DirectBinding = true;
1617  return ICS;
1618}
1619
1620/// PerformObjectArgumentInitialization - Perform initialization of
1621/// the implicit object parameter for the given Method with the given
1622/// expression.
1623bool
1624Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1625  QualType ImplicitParamType
1626    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1627  ImplicitConversionSequence ICS
1628    = TryObjectArgumentInitialization(From, Method);
1629  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1630    return Diag(From->getSourceRange().getBegin(),
1631                diag::err_implicit_object_parameter_init)
1632       << ImplicitParamType << From->getType() << From->getSourceRange();
1633
1634  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1635      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1636                                   From->getSourceRange().getBegin(),
1637                                   From->getSourceRange()))
1638    return true;
1639
1640  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1641  return false;
1642}
1643
1644/// AddOverloadCandidate - Adds the given function to the set of
1645/// candidate functions, using the given function call arguments.  If
1646/// @p SuppressUserConversions, then don't allow user-defined
1647/// conversions via constructors or conversion operators.
1648void
1649Sema::AddOverloadCandidate(FunctionDecl *Function,
1650                           Expr **Args, unsigned NumArgs,
1651                           OverloadCandidateSet& CandidateSet,
1652                           bool SuppressUserConversions)
1653{
1654  const FunctionTypeProto* Proto
1655    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1656  assert(Proto && "Functions without a prototype cannot be overloaded");
1657  assert(!isa<CXXConversionDecl>(Function) &&
1658         "Use AddConversionCandidate for conversion functions");
1659
1660  // Add this candidate
1661  CandidateSet.push_back(OverloadCandidate());
1662  OverloadCandidate& Candidate = CandidateSet.back();
1663  Candidate.Function = Function;
1664  Candidate.IsSurrogate = false;
1665
1666  unsigned NumArgsInProto = Proto->getNumArgs();
1667
1668  // (C++ 13.3.2p2): A candidate function having fewer than m
1669  // parameters is viable only if it has an ellipsis in its parameter
1670  // list (8.3.5).
1671  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1672    Candidate.Viable = false;
1673    return;
1674  }
1675
1676  // (C++ 13.3.2p2): A candidate function having more than m parameters
1677  // is viable only if the (m+1)st parameter has a default argument
1678  // (8.3.6). For the purposes of overload resolution, the
1679  // parameter list is truncated on the right, so that there are
1680  // exactly m parameters.
1681  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1682  if (NumArgs < MinRequiredArgs) {
1683    // Not enough arguments.
1684    Candidate.Viable = false;
1685    return;
1686  }
1687
1688  // Determine the implicit conversion sequences for each of the
1689  // arguments.
1690  Candidate.Viable = true;
1691  Candidate.Conversions.resize(NumArgs);
1692  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1693    if (ArgIdx < NumArgsInProto) {
1694      // (C++ 13.3.2p3): for F to be a viable function, there shall
1695      // exist for each argument an implicit conversion sequence
1696      // (13.3.3.1) that converts that argument to the corresponding
1697      // parameter of F.
1698      QualType ParamType = Proto->getArgType(ArgIdx);
1699      Candidate.Conversions[ArgIdx]
1700        = TryCopyInitialization(Args[ArgIdx], ParamType,
1701                                SuppressUserConversions);
1702      if (Candidate.Conversions[ArgIdx].ConversionKind
1703            == ImplicitConversionSequence::BadConversion) {
1704        Candidate.Viable = false;
1705        break;
1706      }
1707    } else {
1708      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1709      // argument for which there is no corresponding parameter is
1710      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1711      Candidate.Conversions[ArgIdx].ConversionKind
1712        = ImplicitConversionSequence::EllipsisConversion;
1713    }
1714  }
1715}
1716
1717/// AddMethodCandidate - Adds the given C++ member function to the set
1718/// of candidate functions, using the given function call arguments
1719/// and the object argument (@c Object). For example, in a call
1720/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1721/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1722/// allow user-defined conversions via constructors or conversion
1723/// operators.
1724void
1725Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1726                         Expr **Args, unsigned NumArgs,
1727                         OverloadCandidateSet& CandidateSet,
1728                         bool SuppressUserConversions)
1729{
1730  const FunctionTypeProto* Proto
1731    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1732  assert(Proto && "Methods without a prototype cannot be overloaded");
1733  assert(!isa<CXXConversionDecl>(Method) &&
1734         "Use AddConversionCandidate for conversion functions");
1735
1736  // Add this candidate
1737  CandidateSet.push_back(OverloadCandidate());
1738  OverloadCandidate& Candidate = CandidateSet.back();
1739  Candidate.Function = Method;
1740  Candidate.IsSurrogate = false;
1741
1742  unsigned NumArgsInProto = Proto->getNumArgs();
1743
1744  // (C++ 13.3.2p2): A candidate function having fewer than m
1745  // parameters is viable only if it has an ellipsis in its parameter
1746  // list (8.3.5).
1747  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1748    Candidate.Viable = false;
1749    return;
1750  }
1751
1752  // (C++ 13.3.2p2): A candidate function having more than m parameters
1753  // is viable only if the (m+1)st parameter has a default argument
1754  // (8.3.6). For the purposes of overload resolution, the
1755  // parameter list is truncated on the right, so that there are
1756  // exactly m parameters.
1757  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1758  if (NumArgs < MinRequiredArgs) {
1759    // Not enough arguments.
1760    Candidate.Viable = false;
1761    return;
1762  }
1763
1764  Candidate.Viable = true;
1765  Candidate.Conversions.resize(NumArgs + 1);
1766
1767  // Determine the implicit conversion sequence for the object
1768  // parameter.
1769  Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1770  if (Candidate.Conversions[0].ConversionKind
1771        == ImplicitConversionSequence::BadConversion) {
1772    Candidate.Viable = false;
1773    return;
1774  }
1775
1776  // Determine the implicit conversion sequences for each of the
1777  // arguments.
1778  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1779    if (ArgIdx < NumArgsInProto) {
1780      // (C++ 13.3.2p3): for F to be a viable function, there shall
1781      // exist for each argument an implicit conversion sequence
1782      // (13.3.3.1) that converts that argument to the corresponding
1783      // parameter of F.
1784      QualType ParamType = Proto->getArgType(ArgIdx);
1785      Candidate.Conversions[ArgIdx + 1]
1786        = TryCopyInitialization(Args[ArgIdx], ParamType,
1787                                SuppressUserConversions);
1788      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1789            == ImplicitConversionSequence::BadConversion) {
1790        Candidate.Viable = false;
1791        break;
1792      }
1793    } else {
1794      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1795      // argument for which there is no corresponding parameter is
1796      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1797      Candidate.Conversions[ArgIdx + 1].ConversionKind
1798        = ImplicitConversionSequence::EllipsisConversion;
1799    }
1800  }
1801}
1802
1803/// AddConversionCandidate - Add a C++ conversion function as a
1804/// candidate in the candidate set (C++ [over.match.conv],
1805/// C++ [over.match.copy]). From is the expression we're converting from,
1806/// and ToType is the type that we're eventually trying to convert to
1807/// (which may or may not be the same type as the type that the
1808/// conversion function produces).
1809void
1810Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1811                             Expr *From, QualType ToType,
1812                             OverloadCandidateSet& CandidateSet) {
1813  // Add this candidate
1814  CandidateSet.push_back(OverloadCandidate());
1815  OverloadCandidate& Candidate = CandidateSet.back();
1816  Candidate.Function = Conversion;
1817  Candidate.IsSurrogate = false;
1818  Candidate.FinalConversion.setAsIdentityConversion();
1819  Candidate.FinalConversion.FromTypePtr
1820    = Conversion->getConversionType().getAsOpaquePtr();
1821  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1822
1823  // Determine the implicit conversion sequence for the implicit
1824  // object parameter.
1825  Candidate.Viable = true;
1826  Candidate.Conversions.resize(1);
1827  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
1828
1829  if (Candidate.Conversions[0].ConversionKind
1830      == ImplicitConversionSequence::BadConversion) {
1831    Candidate.Viable = false;
1832    return;
1833  }
1834
1835  // To determine what the conversion from the result of calling the
1836  // conversion function to the type we're eventually trying to
1837  // convert to (ToType), we need to synthesize a call to the
1838  // conversion function and attempt copy initialization from it. This
1839  // makes sure that we get the right semantics with respect to
1840  // lvalues/rvalues and the type. Fortunately, we can allocate this
1841  // call on the stack and we don't need its arguments to be
1842  // well-formed.
1843  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1844                            SourceLocation());
1845  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
1846                                &ConversionRef, false);
1847  CallExpr Call(&ConversionFn, 0, 0,
1848                Conversion->getConversionType().getNonReferenceType(),
1849                SourceLocation());
1850  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1851  switch (ICS.ConversionKind) {
1852  case ImplicitConversionSequence::StandardConversion:
1853    Candidate.FinalConversion = ICS.Standard;
1854    break;
1855
1856  case ImplicitConversionSequence::BadConversion:
1857    Candidate.Viable = false;
1858    break;
1859
1860  default:
1861    assert(false &&
1862           "Can only end up with a standard conversion sequence or failure");
1863  }
1864}
1865
1866/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1867/// converts the given @c Object to a function pointer via the
1868/// conversion function @c Conversion, and then attempts to call it
1869/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1870/// the type of function that we'll eventually be calling.
1871void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1872                                 const FunctionTypeProto *Proto,
1873                                 Expr *Object, Expr **Args, unsigned NumArgs,
1874                                 OverloadCandidateSet& CandidateSet) {
1875  CandidateSet.push_back(OverloadCandidate());
1876  OverloadCandidate& Candidate = CandidateSet.back();
1877  Candidate.Function = 0;
1878  Candidate.Surrogate = Conversion;
1879  Candidate.Viable = true;
1880  Candidate.IsSurrogate = true;
1881  Candidate.Conversions.resize(NumArgs + 1);
1882
1883  // Determine the implicit conversion sequence for the implicit
1884  // object parameter.
1885  ImplicitConversionSequence ObjectInit
1886    = TryObjectArgumentInitialization(Object, Conversion);
1887  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1888    Candidate.Viable = false;
1889    return;
1890  }
1891
1892  // The first conversion is actually a user-defined conversion whose
1893  // first conversion is ObjectInit's standard conversion (which is
1894  // effectively a reference binding). Record it as such.
1895  Candidate.Conversions[0].ConversionKind
1896    = ImplicitConversionSequence::UserDefinedConversion;
1897  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1898  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1899  Candidate.Conversions[0].UserDefined.After
1900    = Candidate.Conversions[0].UserDefined.Before;
1901  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1902
1903  // Find the
1904  unsigned NumArgsInProto = Proto->getNumArgs();
1905
1906  // (C++ 13.3.2p2): A candidate function having fewer than m
1907  // parameters is viable only if it has an ellipsis in its parameter
1908  // list (8.3.5).
1909  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1910    Candidate.Viable = false;
1911    return;
1912  }
1913
1914  // Function types don't have any default arguments, so just check if
1915  // we have enough arguments.
1916  if (NumArgs < NumArgsInProto) {
1917    // Not enough arguments.
1918    Candidate.Viable = false;
1919    return;
1920  }
1921
1922  // Determine the implicit conversion sequences for each of the
1923  // arguments.
1924  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1925    if (ArgIdx < NumArgsInProto) {
1926      // (C++ 13.3.2p3): for F to be a viable function, there shall
1927      // exist for each argument an implicit conversion sequence
1928      // (13.3.3.1) that converts that argument to the corresponding
1929      // parameter of F.
1930      QualType ParamType = Proto->getArgType(ArgIdx);
1931      Candidate.Conversions[ArgIdx + 1]
1932        = TryCopyInitialization(Args[ArgIdx], ParamType,
1933                                /*SuppressUserConversions=*/false);
1934      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1935            == ImplicitConversionSequence::BadConversion) {
1936        Candidate.Viable = false;
1937        break;
1938      }
1939    } else {
1940      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1941      // argument for which there is no corresponding parameter is
1942      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1943      Candidate.Conversions[ArgIdx + 1].ConversionKind
1944        = ImplicitConversionSequence::EllipsisConversion;
1945    }
1946  }
1947}
1948
1949/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1950/// an acceptable non-member overloaded operator for a call whose
1951/// arguments have types T1 (and, if non-empty, T2). This routine
1952/// implements the check in C++ [over.match.oper]p3b2 concerning
1953/// enumeration types.
1954static bool
1955IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1956                                       QualType T1, QualType T2,
1957                                       ASTContext &Context) {
1958  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1959    return true;
1960
1961  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1962  if (Proto->getNumArgs() < 1)
1963    return false;
1964
1965  if (T1->isEnumeralType()) {
1966    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1967    if (Context.getCanonicalType(T1).getUnqualifiedType()
1968          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1969      return true;
1970  }
1971
1972  if (Proto->getNumArgs() < 2)
1973    return false;
1974
1975  if (!T2.isNull() && T2->isEnumeralType()) {
1976    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1977    if (Context.getCanonicalType(T2).getUnqualifiedType()
1978          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1979      return true;
1980  }
1981
1982  return false;
1983}
1984
1985/// AddOperatorCandidates - Add the overloaded operator candidates for
1986/// the operator Op that was used in an operator expression such as "x
1987/// Op y". S is the scope in which the expression occurred (used for
1988/// name lookup of the operator), Args/NumArgs provides the operator
1989/// arguments, and CandidateSet will store the added overload
1990/// candidates. (C++ [over.match.oper]).
1991void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1992                                 Expr **Args, unsigned NumArgs,
1993                                 OverloadCandidateSet& CandidateSet) {
1994  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1995
1996  // C++ [over.match.oper]p3:
1997  //   For a unary operator @ with an operand of a type whose
1998  //   cv-unqualified version is T1, and for a binary operator @ with
1999  //   a left operand of a type whose cv-unqualified version is T1 and
2000  //   a right operand of a type whose cv-unqualified version is T2,
2001  //   three sets of candidate functions, designated member
2002  //   candidates, non-member candidates and built-in candidates, are
2003  //   constructed as follows:
2004  QualType T1 = Args[0]->getType();
2005  QualType T2;
2006  if (NumArgs > 1)
2007    T2 = Args[1]->getType();
2008
2009  //     -- If T1 is a class type, the set of member candidates is the
2010  //        result of the qualified lookup of T1::operator@
2011  //        (13.3.1.1.1); otherwise, the set of member candidates is
2012  //        empty.
2013  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2014    DeclContext::lookup_const_result Lookup
2015      = T1Rec->getDecl()->lookup(Context, OpName);
2016    NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
2017    if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
2018      AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2019                         /*SuppressUserConversions=*/false);
2020    else if (OverloadedFunctionDecl *Ovl
2021               = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
2022      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2023                                                  FEnd = Ovl->function_end();
2024           F != FEnd; ++F) {
2025        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
2026          AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2027                             /*SuppressUserConversions=*/false);
2028      }
2029    }
2030  }
2031
2032  //     -- The set of non-member candidates is the result of the
2033  //        unqualified lookup of operator@ in the context of the
2034  //        expression according to the usual rules for name lookup in
2035  //        unqualified function calls (3.4.2) except that all member
2036  //        functions are ignored. However, if no operand has a class
2037  //        type, only those non-member functions in the lookup set
2038  //        that have a first parameter of type T1 or “reference to
2039  //        (possibly cv-qualified) T1”, when T1 is an enumeration
2040  //        type, or (if there is a right operand) a second parameter
2041  //        of type T2 or “reference to (possibly cv-qualified) T2”,
2042  //        when T2 is an enumeration type, are candidate functions.
2043  {
2044    NamedDecl *NonMemberOps = 0;
2045    for (IdentifierResolver::iterator I
2046           = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
2047         I != IdResolver.end(); ++I) {
2048      // We don't need to check the identifier namespace, because
2049      // operator names can only be ordinary identifiers.
2050
2051      // Ignore member functions.
2052      if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
2053        if (SD->getDeclContext()->isCXXRecord())
2054          continue;
2055      }
2056
2057      // We found something with this name. We're done.
2058      NonMemberOps = *I;
2059      break;
2060    }
2061
2062    if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2063      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2064        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2065                             /*SuppressUserConversions=*/false);
2066    } else if (OverloadedFunctionDecl *Ovl
2067                 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
2068      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2069                                                  FEnd = Ovl->function_end();
2070           F != FEnd; ++F) {
2071        if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2072          AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2073                               /*SuppressUserConversions=*/false);
2074      }
2075    }
2076  }
2077
2078  // Add builtin overload candidates (C++ [over.built]).
2079  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2080}
2081
2082/// AddBuiltinCandidate - Add a candidate for a built-in
2083/// operator. ResultTy and ParamTys are the result and parameter types
2084/// of the built-in candidate, respectively. Args and NumArgs are the
2085/// arguments being passed to the candidate.
2086void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2087                               Expr **Args, unsigned NumArgs,
2088                               OverloadCandidateSet& CandidateSet) {
2089  // Add this candidate
2090  CandidateSet.push_back(OverloadCandidate());
2091  OverloadCandidate& Candidate = CandidateSet.back();
2092  Candidate.Function = 0;
2093  Candidate.IsSurrogate = false;
2094  Candidate.BuiltinTypes.ResultTy = ResultTy;
2095  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2096    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2097
2098  // Determine the implicit conversion sequences for each of the
2099  // arguments.
2100  Candidate.Viable = true;
2101  Candidate.Conversions.resize(NumArgs);
2102  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2103    Candidate.Conversions[ArgIdx]
2104      = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2105    if (Candidate.Conversions[ArgIdx].ConversionKind
2106        == ImplicitConversionSequence::BadConversion) {
2107      Candidate.Viable = false;
2108      break;
2109    }
2110  }
2111}
2112
2113/// BuiltinCandidateTypeSet - A set of types that will be used for the
2114/// candidate operator functions for built-in operators (C++
2115/// [over.built]). The types are separated into pointer types and
2116/// enumeration types.
2117class BuiltinCandidateTypeSet  {
2118  /// TypeSet - A set of types.
2119  typedef llvm::SmallPtrSet<void*, 8> TypeSet;
2120
2121  /// PointerTypes - The set of pointer types that will be used in the
2122  /// built-in candidates.
2123  TypeSet PointerTypes;
2124
2125  /// EnumerationTypes - The set of enumeration types that will be
2126  /// used in the built-in candidates.
2127  TypeSet EnumerationTypes;
2128
2129  /// Context - The AST context in which we will build the type sets.
2130  ASTContext &Context;
2131
2132  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2133
2134public:
2135  /// iterator - Iterates through the types that are part of the set.
2136  class iterator {
2137    TypeSet::iterator Base;
2138
2139  public:
2140    typedef QualType                 value_type;
2141    typedef QualType                 reference;
2142    typedef QualType                 pointer;
2143    typedef std::ptrdiff_t           difference_type;
2144    typedef std::input_iterator_tag  iterator_category;
2145
2146    iterator(TypeSet::iterator B) : Base(B) { }
2147
2148    iterator& operator++() {
2149      ++Base;
2150      return *this;
2151    }
2152
2153    iterator operator++(int) {
2154      iterator tmp(*this);
2155      ++(*this);
2156      return tmp;
2157    }
2158
2159    reference operator*() const {
2160      return QualType::getFromOpaquePtr(*Base);
2161    }
2162
2163    pointer operator->() const {
2164      return **this;
2165    }
2166
2167    friend bool operator==(iterator LHS, iterator RHS) {
2168      return LHS.Base == RHS.Base;
2169    }
2170
2171    friend bool operator!=(iterator LHS, iterator RHS) {
2172      return LHS.Base != RHS.Base;
2173    }
2174  };
2175
2176  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2177
2178  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2179
2180  /// pointer_begin - First pointer type found;
2181  iterator pointer_begin() { return PointerTypes.begin(); }
2182
2183  /// pointer_end - Last pointer type found;
2184  iterator pointer_end() { return PointerTypes.end(); }
2185
2186  /// enumeration_begin - First enumeration type found;
2187  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2188
2189  /// enumeration_end - Last enumeration type found;
2190  iterator enumeration_end() { return EnumerationTypes.end(); }
2191};
2192
2193/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2194/// the set of pointer types along with any more-qualified variants of
2195/// that type. For example, if @p Ty is "int const *", this routine
2196/// will add "int const *", "int const volatile *", "int const
2197/// restrict *", and "int const volatile restrict *" to the set of
2198/// pointer types. Returns true if the add of @p Ty itself succeeded,
2199/// false otherwise.
2200bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2201  // Insert this type.
2202  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
2203    return false;
2204
2205  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2206    QualType PointeeTy = PointerTy->getPointeeType();
2207    // FIXME: Optimize this so that we don't keep trying to add the same types.
2208
2209    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2210    // with all pointer conversions that don't cast away constness?
2211    if (!PointeeTy.isConstQualified())
2212      AddWithMoreQualifiedTypeVariants
2213        (Context.getPointerType(PointeeTy.withConst()));
2214    if (!PointeeTy.isVolatileQualified())
2215      AddWithMoreQualifiedTypeVariants
2216        (Context.getPointerType(PointeeTy.withVolatile()));
2217    if (!PointeeTy.isRestrictQualified())
2218      AddWithMoreQualifiedTypeVariants
2219        (Context.getPointerType(PointeeTy.withRestrict()));
2220  }
2221
2222  return true;
2223}
2224
2225/// AddTypesConvertedFrom - Add each of the types to which the type @p
2226/// Ty can be implicit converted to the given set of @p Types. We're
2227/// primarily interested in pointer types, enumeration types,
2228void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2229                                                    bool AllowUserConversions) {
2230  // Only deal with canonical types.
2231  Ty = Context.getCanonicalType(Ty);
2232
2233  // Look through reference types; they aren't part of the type of an
2234  // expression for the purposes of conversions.
2235  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2236    Ty = RefTy->getPointeeType();
2237
2238  // We don't care about qualifiers on the type.
2239  Ty = Ty.getUnqualifiedType();
2240
2241  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2242    QualType PointeeTy = PointerTy->getPointeeType();
2243
2244    // Insert our type, and its more-qualified variants, into the set
2245    // of types.
2246    if (!AddWithMoreQualifiedTypeVariants(Ty))
2247      return;
2248
2249    // Add 'cv void*' to our set of types.
2250    if (!Ty->isVoidType()) {
2251      QualType QualVoid
2252        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2253      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2254    }
2255
2256    // If this is a pointer to a class type, add pointers to its bases
2257    // (with the same level of cv-qualification as the original
2258    // derived class, of course).
2259    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2260      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2261      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2262           Base != ClassDecl->bases_end(); ++Base) {
2263        QualType BaseTy = Context.getCanonicalType(Base->getType());
2264        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2265
2266        // Add the pointer type, recursively, so that we get all of
2267        // the indirect base classes, too.
2268        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2269      }
2270    }
2271  } else if (Ty->isEnumeralType()) {
2272    EnumerationTypes.insert(Ty.getAsOpaquePtr());
2273  } else if (AllowUserConversions) {
2274    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2275      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2276      // FIXME: Visit conversion functions in the base classes, too.
2277      OverloadedFunctionDecl *Conversions
2278        = ClassDecl->getConversionFunctions();
2279      for (OverloadedFunctionDecl::function_iterator Func
2280             = Conversions->function_begin();
2281           Func != Conversions->function_end(); ++Func) {
2282        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2283        AddTypesConvertedFrom(Conv->getConversionType(), false);
2284      }
2285    }
2286  }
2287}
2288
2289/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2290/// operator overloads to the candidate set (C++ [over.built]), based
2291/// on the operator @p Op and the arguments given. For example, if the
2292/// operator is a binary '+', this routine might add "int
2293/// operator+(int, int)" to cover integer addition.
2294void
2295Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2296                                   Expr **Args, unsigned NumArgs,
2297                                   OverloadCandidateSet& CandidateSet) {
2298  // The set of "promoted arithmetic types", which are the arithmetic
2299  // types are that preserved by promotion (C++ [over.built]p2). Note
2300  // that the first few of these types are the promoted integral
2301  // types; these types need to be first.
2302  // FIXME: What about complex?
2303  const unsigned FirstIntegralType = 0;
2304  const unsigned LastIntegralType = 13;
2305  const unsigned FirstPromotedIntegralType = 7,
2306                 LastPromotedIntegralType = 13;
2307  const unsigned FirstPromotedArithmeticType = 7,
2308                 LastPromotedArithmeticType = 16;
2309  const unsigned NumArithmeticTypes = 16;
2310  QualType ArithmeticTypes[NumArithmeticTypes] = {
2311    Context.BoolTy, Context.CharTy, Context.WCharTy,
2312    Context.SignedCharTy, Context.ShortTy,
2313    Context.UnsignedCharTy, Context.UnsignedShortTy,
2314    Context.IntTy, Context.LongTy, Context.LongLongTy,
2315    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2316    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2317  };
2318
2319  // Find all of the types that the arguments can convert to, but only
2320  // if the operator we're looking at has built-in operator candidates
2321  // that make use of these types.
2322  BuiltinCandidateTypeSet CandidateTypes(Context);
2323  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2324      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2325      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2326      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2327      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2328      (Op == OO_Star && NumArgs == 1)) {
2329    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2330      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2331  }
2332
2333  bool isComparison = false;
2334  switch (Op) {
2335  case OO_None:
2336  case NUM_OVERLOADED_OPERATORS:
2337    assert(false && "Expected an overloaded operator");
2338    break;
2339
2340  case OO_Star: // '*' is either unary or binary
2341    if (NumArgs == 1)
2342      goto UnaryStar;
2343    else
2344      goto BinaryStar;
2345    break;
2346
2347  case OO_Plus: // '+' is either unary or binary
2348    if (NumArgs == 1)
2349      goto UnaryPlus;
2350    else
2351      goto BinaryPlus;
2352    break;
2353
2354  case OO_Minus: // '-' is either unary or binary
2355    if (NumArgs == 1)
2356      goto UnaryMinus;
2357    else
2358      goto BinaryMinus;
2359    break;
2360
2361  case OO_Amp: // '&' is either unary or binary
2362    if (NumArgs == 1)
2363      goto UnaryAmp;
2364    else
2365      goto BinaryAmp;
2366
2367  case OO_PlusPlus:
2368  case OO_MinusMinus:
2369    // C++ [over.built]p3:
2370    //
2371    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2372    //   is either volatile or empty, there exist candidate operator
2373    //   functions of the form
2374    //
2375    //       VQ T&      operator++(VQ T&);
2376    //       T          operator++(VQ T&, int);
2377    //
2378    // C++ [over.built]p4:
2379    //
2380    //   For every pair (T, VQ), where T is an arithmetic type other
2381    //   than bool, and VQ is either volatile or empty, there exist
2382    //   candidate operator functions of the form
2383    //
2384    //       VQ T&      operator--(VQ T&);
2385    //       T          operator--(VQ T&, int);
2386    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2387         Arith < NumArithmeticTypes; ++Arith) {
2388      QualType ArithTy = ArithmeticTypes[Arith];
2389      QualType ParamTypes[2]
2390        = { Context.getReferenceType(ArithTy), Context.IntTy };
2391
2392      // Non-volatile version.
2393      if (NumArgs == 1)
2394        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2395      else
2396        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2397
2398      // Volatile version
2399      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2400      if (NumArgs == 1)
2401        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2402      else
2403        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2404    }
2405
2406    // C++ [over.built]p5:
2407    //
2408    //   For every pair (T, VQ), where T is a cv-qualified or
2409    //   cv-unqualified object type, and VQ is either volatile or
2410    //   empty, there exist candidate operator functions of the form
2411    //
2412    //       T*VQ&      operator++(T*VQ&);
2413    //       T*VQ&      operator--(T*VQ&);
2414    //       T*         operator++(T*VQ&, int);
2415    //       T*         operator--(T*VQ&, int);
2416    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2417         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2418      // Skip pointer types that aren't pointers to object types.
2419      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
2420        continue;
2421
2422      QualType ParamTypes[2] = {
2423        Context.getReferenceType(*Ptr), Context.IntTy
2424      };
2425
2426      // Without volatile
2427      if (NumArgs == 1)
2428        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2429      else
2430        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2431
2432      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2433        // With volatile
2434        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2435        if (NumArgs == 1)
2436          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2437        else
2438          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2439      }
2440    }
2441    break;
2442
2443  UnaryStar:
2444    // C++ [over.built]p6:
2445    //   For every cv-qualified or cv-unqualified object type T, there
2446    //   exist candidate operator functions of the form
2447    //
2448    //       T&         operator*(T*);
2449    //
2450    // C++ [over.built]p7:
2451    //   For every function type T, there exist candidate operator
2452    //   functions of the form
2453    //       T&         operator*(T*);
2454    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2455         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2456      QualType ParamTy = *Ptr;
2457      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2458      AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2459                          &ParamTy, Args, 1, CandidateSet);
2460    }
2461    break;
2462
2463  UnaryPlus:
2464    // C++ [over.built]p8:
2465    //   For every type T, there exist candidate operator functions of
2466    //   the form
2467    //
2468    //       T*         operator+(T*);
2469    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2470         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2471      QualType ParamTy = *Ptr;
2472      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2473    }
2474
2475    // Fall through
2476
2477  UnaryMinus:
2478    // C++ [over.built]p9:
2479    //  For every promoted arithmetic type T, there exist candidate
2480    //  operator functions of the form
2481    //
2482    //       T         operator+(T);
2483    //       T         operator-(T);
2484    for (unsigned Arith = FirstPromotedArithmeticType;
2485         Arith < LastPromotedArithmeticType; ++Arith) {
2486      QualType ArithTy = ArithmeticTypes[Arith];
2487      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2488    }
2489    break;
2490
2491  case OO_Tilde:
2492    // C++ [over.built]p10:
2493    //   For every promoted integral type T, there exist candidate
2494    //   operator functions of the form
2495    //
2496    //        T         operator~(T);
2497    for (unsigned Int = FirstPromotedIntegralType;
2498         Int < LastPromotedIntegralType; ++Int) {
2499      QualType IntTy = ArithmeticTypes[Int];
2500      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2501    }
2502    break;
2503
2504  case OO_New:
2505  case OO_Delete:
2506  case OO_Array_New:
2507  case OO_Array_Delete:
2508  case OO_Call:
2509    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2510    break;
2511
2512  case OO_Comma:
2513  UnaryAmp:
2514  case OO_Arrow:
2515    // C++ [over.match.oper]p3:
2516    //   -- For the operator ',', the unary operator '&', or the
2517    //      operator '->', the built-in candidates set is empty.
2518    break;
2519
2520  case OO_Less:
2521  case OO_Greater:
2522  case OO_LessEqual:
2523  case OO_GreaterEqual:
2524  case OO_EqualEqual:
2525  case OO_ExclaimEqual:
2526    // C++ [over.built]p15:
2527    //
2528    //   For every pointer or enumeration type T, there exist
2529    //   candidate operator functions of the form
2530    //
2531    //        bool       operator<(T, T);
2532    //        bool       operator>(T, T);
2533    //        bool       operator<=(T, T);
2534    //        bool       operator>=(T, T);
2535    //        bool       operator==(T, T);
2536    //        bool       operator!=(T, T);
2537    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2538         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2539      QualType ParamTypes[2] = { *Ptr, *Ptr };
2540      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2541    }
2542    for (BuiltinCandidateTypeSet::iterator Enum
2543           = CandidateTypes.enumeration_begin();
2544         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2545      QualType ParamTypes[2] = { *Enum, *Enum };
2546      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2547    }
2548
2549    // Fall through.
2550    isComparison = true;
2551
2552  BinaryPlus:
2553  BinaryMinus:
2554    if (!isComparison) {
2555      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2556
2557      // C++ [over.built]p13:
2558      //
2559      //   For every cv-qualified or cv-unqualified object type T
2560      //   there exist candidate operator functions of the form
2561      //
2562      //      T*         operator+(T*, ptrdiff_t);
2563      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2564      //      T*         operator-(T*, ptrdiff_t);
2565      //      T*         operator+(ptrdiff_t, T*);
2566      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2567      //
2568      // C++ [over.built]p14:
2569      //
2570      //   For every T, where T is a pointer to object type, there
2571      //   exist candidate operator functions of the form
2572      //
2573      //      ptrdiff_t  operator-(T, T);
2574      for (BuiltinCandidateTypeSet::iterator Ptr
2575             = CandidateTypes.pointer_begin();
2576           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2577        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2578
2579        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2580        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2581
2582        if (Op == OO_Plus) {
2583          // T* operator+(ptrdiff_t, T*);
2584          ParamTypes[0] = ParamTypes[1];
2585          ParamTypes[1] = *Ptr;
2586          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2587        } else {
2588          // ptrdiff_t operator-(T, T);
2589          ParamTypes[1] = *Ptr;
2590          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2591                              Args, 2, CandidateSet);
2592        }
2593      }
2594    }
2595    // Fall through
2596
2597  case OO_Slash:
2598  BinaryStar:
2599    // C++ [over.built]p12:
2600    //
2601    //   For every pair of promoted arithmetic types L and R, there
2602    //   exist candidate operator functions of the form
2603    //
2604    //        LR         operator*(L, R);
2605    //        LR         operator/(L, R);
2606    //        LR         operator+(L, R);
2607    //        LR         operator-(L, R);
2608    //        bool       operator<(L, R);
2609    //        bool       operator>(L, R);
2610    //        bool       operator<=(L, R);
2611    //        bool       operator>=(L, R);
2612    //        bool       operator==(L, R);
2613    //        bool       operator!=(L, R);
2614    //
2615    //   where LR is the result of the usual arithmetic conversions
2616    //   between types L and R.
2617    for (unsigned Left = FirstPromotedArithmeticType;
2618         Left < LastPromotedArithmeticType; ++Left) {
2619      for (unsigned Right = FirstPromotedArithmeticType;
2620           Right < LastPromotedArithmeticType; ++Right) {
2621        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2622        QualType Result
2623          = isComparison? Context.BoolTy
2624                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2625        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2626      }
2627    }
2628    break;
2629
2630  case OO_Percent:
2631  BinaryAmp:
2632  case OO_Caret:
2633  case OO_Pipe:
2634  case OO_LessLess:
2635  case OO_GreaterGreater:
2636    // C++ [over.built]p17:
2637    //
2638    //   For every pair of promoted integral types L and R, there
2639    //   exist candidate operator functions of the form
2640    //
2641    //      LR         operator%(L, R);
2642    //      LR         operator&(L, R);
2643    //      LR         operator^(L, R);
2644    //      LR         operator|(L, R);
2645    //      L          operator<<(L, R);
2646    //      L          operator>>(L, R);
2647    //
2648    //   where LR is the result of the usual arithmetic conversions
2649    //   between types L and R.
2650    for (unsigned Left = FirstPromotedIntegralType;
2651         Left < LastPromotedIntegralType; ++Left) {
2652      for (unsigned Right = FirstPromotedIntegralType;
2653           Right < LastPromotedIntegralType; ++Right) {
2654        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2655        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2656            ? LandR[0]
2657            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2658        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2659      }
2660    }
2661    break;
2662
2663  case OO_Equal:
2664    // C++ [over.built]p20:
2665    //
2666    //   For every pair (T, VQ), where T is an enumeration or
2667    //   (FIXME:) pointer to member type and VQ is either volatile or
2668    //   empty, there exist candidate operator functions of the form
2669    //
2670    //        VQ T&      operator=(VQ T&, T);
2671    for (BuiltinCandidateTypeSet::iterator Enum
2672           = CandidateTypes.enumeration_begin();
2673         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2674      QualType ParamTypes[2];
2675
2676      // T& operator=(T&, T)
2677      ParamTypes[0] = Context.getReferenceType(*Enum);
2678      ParamTypes[1] = *Enum;
2679      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2680
2681      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2682        // volatile T& operator=(volatile T&, T)
2683        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2684        ParamTypes[1] = *Enum;
2685        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2686      }
2687    }
2688    // Fall through.
2689
2690  case OO_PlusEqual:
2691  case OO_MinusEqual:
2692    // C++ [over.built]p19:
2693    //
2694    //   For every pair (T, VQ), where T is any type and VQ is either
2695    //   volatile or empty, there exist candidate operator functions
2696    //   of the form
2697    //
2698    //        T*VQ&      operator=(T*VQ&, T*);
2699    //
2700    // C++ [over.built]p21:
2701    //
2702    //   For every pair (T, VQ), where T is a cv-qualified or
2703    //   cv-unqualified object type and VQ is either volatile or
2704    //   empty, there exist candidate operator functions of the form
2705    //
2706    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
2707    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
2708    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2709         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2710      QualType ParamTypes[2];
2711      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2712
2713      // non-volatile version
2714      ParamTypes[0] = Context.getReferenceType(*Ptr);
2715      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2716
2717      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2718        // volatile version
2719        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2720        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2721      }
2722    }
2723    // Fall through.
2724
2725  case OO_StarEqual:
2726  case OO_SlashEqual:
2727    // C++ [over.built]p18:
2728    //
2729    //   For every triple (L, VQ, R), where L is an arithmetic type,
2730    //   VQ is either volatile or empty, and R is a promoted
2731    //   arithmetic type, there exist candidate operator functions of
2732    //   the form
2733    //
2734    //        VQ L&      operator=(VQ L&, R);
2735    //        VQ L&      operator*=(VQ L&, R);
2736    //        VQ L&      operator/=(VQ L&, R);
2737    //        VQ L&      operator+=(VQ L&, R);
2738    //        VQ L&      operator-=(VQ L&, R);
2739    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2740      for (unsigned Right = FirstPromotedArithmeticType;
2741           Right < LastPromotedArithmeticType; ++Right) {
2742        QualType ParamTypes[2];
2743        ParamTypes[1] = ArithmeticTypes[Right];
2744
2745        // Add this built-in operator as a candidate (VQ is empty).
2746        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2747        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2748
2749        // Add this built-in operator as a candidate (VQ is 'volatile').
2750        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2751        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2752        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2753      }
2754    }
2755    break;
2756
2757  case OO_PercentEqual:
2758  case OO_LessLessEqual:
2759  case OO_GreaterGreaterEqual:
2760  case OO_AmpEqual:
2761  case OO_CaretEqual:
2762  case OO_PipeEqual:
2763    // C++ [over.built]p22:
2764    //
2765    //   For every triple (L, VQ, R), where L is an integral type, VQ
2766    //   is either volatile or empty, and R is a promoted integral
2767    //   type, there exist candidate operator functions of the form
2768    //
2769    //        VQ L&       operator%=(VQ L&, R);
2770    //        VQ L&       operator<<=(VQ L&, R);
2771    //        VQ L&       operator>>=(VQ L&, R);
2772    //        VQ L&       operator&=(VQ L&, R);
2773    //        VQ L&       operator^=(VQ L&, R);
2774    //        VQ L&       operator|=(VQ L&, R);
2775    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2776      for (unsigned Right = FirstPromotedIntegralType;
2777           Right < LastPromotedIntegralType; ++Right) {
2778        QualType ParamTypes[2];
2779        ParamTypes[1] = ArithmeticTypes[Right];
2780
2781        // Add this built-in operator as a candidate (VQ is empty).
2782        // FIXME: We should be caching these declarations somewhere,
2783        // rather than re-building them every time.
2784        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2785        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2786
2787        // Add this built-in operator as a candidate (VQ is 'volatile').
2788        ParamTypes[0] = ArithmeticTypes[Left];
2789        ParamTypes[0].addVolatile();
2790        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2791        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2792      }
2793    }
2794    break;
2795
2796  case OO_Exclaim: {
2797    // C++ [over.operator]p23:
2798    //
2799    //   There also exist candidate operator functions of the form
2800    //
2801    //        bool        operator!(bool);
2802    //        bool        operator&&(bool, bool);     [BELOW]
2803    //        bool        operator||(bool, bool);     [BELOW]
2804    QualType ParamTy = Context.BoolTy;
2805    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2806    break;
2807  }
2808
2809  case OO_AmpAmp:
2810  case OO_PipePipe: {
2811    // C++ [over.operator]p23:
2812    //
2813    //   There also exist candidate operator functions of the form
2814    //
2815    //        bool        operator!(bool);            [ABOVE]
2816    //        bool        operator&&(bool, bool);
2817    //        bool        operator||(bool, bool);
2818    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2819    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2820    break;
2821  }
2822
2823  case OO_Subscript:
2824    // C++ [over.built]p13:
2825    //
2826    //   For every cv-qualified or cv-unqualified object type T there
2827    //   exist candidate operator functions of the form
2828    //
2829    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
2830    //        T&         operator[](T*, ptrdiff_t);
2831    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
2832    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
2833    //        T&         operator[](ptrdiff_t, T*);
2834    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2835         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2836      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2837      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2838      QualType ResultTy = Context.getReferenceType(PointeeType);
2839
2840      // T& operator[](T*, ptrdiff_t)
2841      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2842
2843      // T& operator[](ptrdiff_t, T*);
2844      ParamTypes[0] = ParamTypes[1];
2845      ParamTypes[1] = *Ptr;
2846      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2847    }
2848    break;
2849
2850  case OO_ArrowStar:
2851    // FIXME: No support for pointer-to-members yet.
2852    break;
2853  }
2854}
2855
2856/// AddOverloadCandidates - Add all of the function overloads in Ovl
2857/// to the candidate set.
2858void
2859Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
2860                            Expr **Args, unsigned NumArgs,
2861                            OverloadCandidateSet& CandidateSet,
2862                            bool SuppressUserConversions)
2863{
2864  for (OverloadedFunctionDecl::function_const_iterator Func
2865         = Ovl->function_begin();
2866       Func != Ovl->function_end(); ++Func)
2867    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2868                         SuppressUserConversions);
2869}
2870
2871/// isBetterOverloadCandidate - Determines whether the first overload
2872/// candidate is a better candidate than the second (C++ 13.3.3p1).
2873bool
2874Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2875                                const OverloadCandidate& Cand2)
2876{
2877  // Define viable functions to be better candidates than non-viable
2878  // functions.
2879  if (!Cand2.Viable)
2880    return Cand1.Viable;
2881  else if (!Cand1.Viable)
2882    return false;
2883
2884  // FIXME: Deal with the implicit object parameter for static member
2885  // functions. (C++ 13.3.3p1).
2886
2887  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2888  // function than another viable function F2 if for all arguments i,
2889  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2890  // then...
2891  unsigned NumArgs = Cand1.Conversions.size();
2892  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2893  bool HasBetterConversion = false;
2894  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2895    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2896                                               Cand2.Conversions[ArgIdx])) {
2897    case ImplicitConversionSequence::Better:
2898      // Cand1 has a better conversion sequence.
2899      HasBetterConversion = true;
2900      break;
2901
2902    case ImplicitConversionSequence::Worse:
2903      // Cand1 can't be better than Cand2.
2904      return false;
2905
2906    case ImplicitConversionSequence::Indistinguishable:
2907      // Do nothing.
2908      break;
2909    }
2910  }
2911
2912  if (HasBetterConversion)
2913    return true;
2914
2915  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2916  // implemented, but they require template support.
2917
2918  // C++ [over.match.best]p1b4:
2919  //
2920  //   -- the context is an initialization by user-defined conversion
2921  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
2922  //      from the return type of F1 to the destination type (i.e.,
2923  //      the type of the entity being initialized) is a better
2924  //      conversion sequence than the standard conversion sequence
2925  //      from the return type of F2 to the destination type.
2926  if (Cand1.Function && Cand2.Function &&
2927      isa<CXXConversionDecl>(Cand1.Function) &&
2928      isa<CXXConversionDecl>(Cand2.Function)) {
2929    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2930                                               Cand2.FinalConversion)) {
2931    case ImplicitConversionSequence::Better:
2932      // Cand1 has a better conversion sequence.
2933      return true;
2934
2935    case ImplicitConversionSequence::Worse:
2936      // Cand1 can't be better than Cand2.
2937      return false;
2938
2939    case ImplicitConversionSequence::Indistinguishable:
2940      // Do nothing
2941      break;
2942    }
2943  }
2944
2945  return false;
2946}
2947
2948/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2949/// within an overload candidate set. If overloading is successful,
2950/// the result will be OR_Success and Best will be set to point to the
2951/// best viable function within the candidate set. Otherwise, one of
2952/// several kinds of errors will be returned; see
2953/// Sema::OverloadingResult.
2954Sema::OverloadingResult
2955Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2956                         OverloadCandidateSet::iterator& Best)
2957{
2958  // Find the best viable function.
2959  Best = CandidateSet.end();
2960  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2961       Cand != CandidateSet.end(); ++Cand) {
2962    if (Cand->Viable) {
2963      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2964        Best = Cand;
2965    }
2966  }
2967
2968  // If we didn't find any viable functions, abort.
2969  if (Best == CandidateSet.end())
2970    return OR_No_Viable_Function;
2971
2972  // Make sure that this function is better than every other viable
2973  // function. If not, we have an ambiguity.
2974  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2975       Cand != CandidateSet.end(); ++Cand) {
2976    if (Cand->Viable &&
2977        Cand != Best &&
2978        !isBetterOverloadCandidate(*Best, *Cand)) {
2979      Best = CandidateSet.end();
2980      return OR_Ambiguous;
2981    }
2982  }
2983
2984  // Best is the best viable function.
2985  return OR_Success;
2986}
2987
2988/// PrintOverloadCandidates - When overload resolution fails, prints
2989/// diagnostic messages containing the candidates in the candidate
2990/// set. If OnlyViable is true, only viable candidates will be printed.
2991void
2992Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2993                              bool OnlyViable)
2994{
2995  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2996                             LastCand = CandidateSet.end();
2997  for (; Cand != LastCand; ++Cand) {
2998    if (Cand->Viable || !OnlyViable) {
2999      if (Cand->Function) {
3000        // Normal function
3001        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3002      } else if (Cand->IsSurrogate) {
3003        // Desugar the type of the surrogate down to a function type,
3004        // retaining as many typedefs as possible while still showing
3005        // the function type (and, therefore, its parameter types).
3006        QualType FnType = Cand->Surrogate->getConversionType();
3007        bool isReference = false;
3008        bool isPointer = false;
3009        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3010          FnType = FnTypeRef->getPointeeType();
3011          isReference = true;
3012        }
3013        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3014          FnType = FnTypePtr->getPointeeType();
3015          isPointer = true;
3016        }
3017        // Desugar down to a function type.
3018        FnType = QualType(FnType->getAsFunctionType(), 0);
3019        // Reconstruct the pointer/reference as appropriate.
3020        if (isPointer) FnType = Context.getPointerType(FnType);
3021        if (isReference) FnType = Context.getReferenceType(FnType);
3022
3023        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3024          << FnType;
3025      } else {
3026        // FIXME: We need to get the identifier in here
3027        // FIXME: Do we want the error message to point at the
3028        // operator? (built-ins won't have a location)
3029        QualType FnType
3030          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3031                                    Cand->BuiltinTypes.ParamTypes,
3032                                    Cand->Conversions.size(),
3033                                    false, 0);
3034
3035        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3036      }
3037    }
3038  }
3039}
3040
3041/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3042/// an overloaded function (C++ [over.over]), where @p From is an
3043/// expression with overloaded function type and @p ToType is the type
3044/// we're trying to resolve to. For example:
3045///
3046/// @code
3047/// int f(double);
3048/// int f(int);
3049///
3050/// int (*pfd)(double) = f; // selects f(double)
3051/// @endcode
3052///
3053/// This routine returns the resulting FunctionDecl if it could be
3054/// resolved, and NULL otherwise. When @p Complain is true, this
3055/// routine will emit diagnostics if there is an error.
3056FunctionDecl *
3057Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3058                                         bool Complain) {
3059  QualType FunctionType = ToType;
3060  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3061    FunctionType = ToTypePtr->getPointeeType();
3062
3063  // We only look at pointers or references to functions.
3064  if (!FunctionType->isFunctionType())
3065    return 0;
3066
3067  // Find the actual overloaded function declaration.
3068  OverloadedFunctionDecl *Ovl = 0;
3069
3070  // C++ [over.over]p1:
3071  //   [...] [Note: any redundant set of parentheses surrounding the
3072  //   overloaded function name is ignored (5.1). ]
3073  Expr *OvlExpr = From->IgnoreParens();
3074
3075  // C++ [over.over]p1:
3076  //   [...] The overloaded function name can be preceded by the &
3077  //   operator.
3078  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3079    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3080      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3081  }
3082
3083  // Try to dig out the overloaded function.
3084  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3085    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3086
3087  // If there's no overloaded function declaration, we're done.
3088  if (!Ovl)
3089    return 0;
3090
3091  // Look through all of the overloaded functions, searching for one
3092  // whose type matches exactly.
3093  // FIXME: When templates or using declarations come along, we'll actually
3094  // have to deal with duplicates, partial ordering, etc. For now, we
3095  // can just do a simple search.
3096  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3097  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3098       Fun != Ovl->function_end(); ++Fun) {
3099    // C++ [over.over]p3:
3100    //   Non-member functions and static member functions match
3101    //   targets of type “pointer-to-function”or
3102    //   “reference-to-function.”
3103    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3104      if (!Method->isStatic())
3105        continue;
3106
3107    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3108      return *Fun;
3109  }
3110
3111  return 0;
3112}
3113
3114/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3115/// (which eventually refers to the set of overloaded functions in
3116/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3117/// function call down to a specific function. If overload resolution
3118/// succeeds, returns the function declaration produced by overload
3119/// resolution. Otherwise, emits diagnostics, deletes all of the
3120/// arguments and Fn, and returns NULL.
3121FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3122                                            SourceLocation LParenLoc,
3123                                            Expr **Args, unsigned NumArgs,
3124                                            SourceLocation *CommaLocs,
3125                                            SourceLocation RParenLoc) {
3126  OverloadCandidateSet CandidateSet;
3127  AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3128  OverloadCandidateSet::iterator Best;
3129  switch (BestViableFunction(CandidateSet, Best)) {
3130  case OR_Success:
3131    return Best->Function;
3132
3133  case OR_No_Viable_Function:
3134    Diag(Fn->getSourceRange().getBegin(),
3135         diag::err_ovl_no_viable_function_in_call)
3136      << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3137      << Fn->getSourceRange();
3138    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3139    break;
3140
3141  case OR_Ambiguous:
3142    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3143      << Ovl->getDeclName() << Fn->getSourceRange();
3144    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3145    break;
3146  }
3147
3148  // Overload resolution failed. Destroy all of the subexpressions and
3149  // return NULL.
3150  Fn->Destroy(Context);
3151  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3152    Args[Arg]->Destroy(Context);
3153  return 0;
3154}
3155
3156/// BuildCallToObjectOfClassType - Build a call to an object of class
3157/// type (C++ [over.call.object]), which can end up invoking an
3158/// overloaded function call operator (@c operator()) or performing a
3159/// user-defined conversion on the object argument.
3160Action::ExprResult
3161Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3162                                   SourceLocation LParenLoc,
3163                                   Expr **Args, unsigned NumArgs,
3164                                   SourceLocation *CommaLocs,
3165                                   SourceLocation RParenLoc) {
3166  assert(Object->getType()->isRecordType() && "Requires object type argument");
3167  const RecordType *Record = Object->getType()->getAsRecordType();
3168
3169  // C++ [over.call.object]p1:
3170  //  If the primary-expression E in the function call syntax
3171  //  evaluates to a class object of type “cv T”, then the set of
3172  //  candidate functions includes at least the function call
3173  //  operators of T. The function call operators of T are obtained by
3174  //  ordinary lookup of the name operator() in the context of
3175  //  (E).operator().
3176  OverloadCandidateSet CandidateSet;
3177  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3178  DeclContext::lookup_const_result Lookup
3179    = Record->getDecl()->lookup(Context, OpName);
3180  NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
3181  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3182    AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3183                       /*SuppressUserConversions=*/false);
3184  else if (OverloadedFunctionDecl *Ovl
3185           = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3186    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3187           FEnd = Ovl->function_end();
3188         F != FEnd; ++F) {
3189      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3190        AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3191                           /*SuppressUserConversions=*/false);
3192    }
3193  }
3194
3195  // C++ [over.call.object]p2:
3196  //   In addition, for each conversion function declared in T of the
3197  //   form
3198  //
3199  //        operator conversion-type-id () cv-qualifier;
3200  //
3201  //   where cv-qualifier is the same cv-qualification as, or a
3202  //   greater cv-qualification than, cv, and where conversion-type-id
3203  //   denotes the type "pointer to function of (P1,...,Pn) returning
3204  //   R", or the type "reference to pointer to function of
3205  //   (P1,...,Pn) returning R", or the type "reference to function
3206  //   of (P1,...,Pn) returning R", a surrogate call function [...]
3207  //   is also considered as a candidate function. Similarly,
3208  //   surrogate call functions are added to the set of candidate
3209  //   functions for each conversion function declared in an
3210  //   accessible base class provided the function is not hidden
3211  //   within T by another intervening declaration.
3212  //
3213  // FIXME: Look in base classes for more conversion operators!
3214  OverloadedFunctionDecl *Conversions
3215    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
3216  for (OverloadedFunctionDecl::function_iterator
3217         Func = Conversions->function_begin(),
3218         FuncEnd = Conversions->function_end();
3219       Func != FuncEnd; ++Func) {
3220    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3221
3222    // Strip the reference type (if any) and then the pointer type (if
3223    // any) to get down to what might be a function type.
3224    QualType ConvType = Conv->getConversionType().getNonReferenceType();
3225    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3226      ConvType = ConvPtrType->getPointeeType();
3227
3228    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3229      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3230  }
3231
3232  // Perform overload resolution.
3233  OverloadCandidateSet::iterator Best;
3234  switch (BestViableFunction(CandidateSet, Best)) {
3235  case OR_Success:
3236    // Overload resolution succeeded; we'll build the appropriate call
3237    // below.
3238    break;
3239
3240  case OR_No_Viable_Function:
3241    Diag(Object->getSourceRange().getBegin(),
3242         diag::err_ovl_no_viable_object_call)
3243      << Object->getType() << (unsigned)CandidateSet.size()
3244      << Object->getSourceRange();
3245    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3246    break;
3247
3248  case OR_Ambiguous:
3249    Diag(Object->getSourceRange().getBegin(),
3250         diag::err_ovl_ambiguous_object_call)
3251      << Object->getType() << Object->getSourceRange();
3252    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3253    break;
3254  }
3255
3256  if (Best == CandidateSet.end()) {
3257    // We had an error; delete all of the subexpressions and return
3258    // the error.
3259    delete Object;
3260    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3261      delete Args[ArgIdx];
3262    return true;
3263  }
3264
3265  if (Best->Function == 0) {
3266    // Since there is no function declaration, this is one of the
3267    // surrogate candidates. Dig out the conversion function.
3268    CXXConversionDecl *Conv
3269      = cast<CXXConversionDecl>(
3270                         Best->Conversions[0].UserDefined.ConversionFunction);
3271
3272    // We selected one of the surrogate functions that converts the
3273    // object parameter to a function pointer. Perform the conversion
3274    // on the object argument, then let ActOnCallExpr finish the job.
3275    // FIXME: Represent the user-defined conversion in the AST!
3276    ImpCastExprToType(Object,
3277                      Conv->getConversionType().getNonReferenceType(),
3278                      Conv->getConversionType()->isReferenceType());
3279    return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3280                         CommaLocs, RParenLoc);
3281  }
3282
3283  // We found an overloaded operator(). Build a CXXOperatorCallExpr
3284  // that calls this method, using Object for the implicit object
3285  // parameter and passing along the remaining arguments.
3286  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3287  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3288
3289  unsigned NumArgsInProto = Proto->getNumArgs();
3290  unsigned NumArgsToCheck = NumArgs;
3291
3292  // Build the full argument list for the method call (the
3293  // implicit object parameter is placed at the beginning of the
3294  // list).
3295  Expr **MethodArgs;
3296  if (NumArgs < NumArgsInProto) {
3297    NumArgsToCheck = NumArgsInProto;
3298    MethodArgs = new Expr*[NumArgsInProto + 1];
3299  } else {
3300    MethodArgs = new Expr*[NumArgs + 1];
3301  }
3302  MethodArgs[0] = Object;
3303  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3304    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3305
3306  Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3307                                SourceLocation());
3308  UsualUnaryConversions(NewFn);
3309
3310  // Once we've built TheCall, all of the expressions are properly
3311  // owned.
3312  QualType ResultTy = Method->getResultType().getNonReferenceType();
3313  llvm::OwningPtr<CXXOperatorCallExpr>
3314    TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3315                                    ResultTy, RParenLoc));
3316  delete [] MethodArgs;
3317
3318  // Initialize the implicit object parameter.
3319  if (!PerformObjectArgumentInitialization(Object, Method))
3320    return true;
3321  TheCall->setArg(0, Object);
3322
3323  // Check the argument types.
3324  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3325    QualType ProtoArgType = Proto->getArgType(i);
3326
3327    Expr *Arg;
3328    if (i < NumArgs)
3329      Arg = Args[i];
3330    else
3331      Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3332    QualType ArgType = Arg->getType();
3333
3334    // Pass the argument.
3335    if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3336      return true;
3337
3338    TheCall->setArg(i + 1, Arg);
3339  }
3340
3341  // If this is a variadic call, handle args passed through "...".
3342  if (Proto->isVariadic()) {
3343    // Promote the arguments (C99 6.5.2.2p7).
3344    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3345      Expr *Arg = Args[i];
3346      DefaultArgumentPromotion(Arg);
3347      TheCall->setArg(i + 1, Arg);
3348    }
3349  }
3350
3351  return CheckFunctionCall(Method, TheCall.take());
3352}
3353
3354/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3355///  (if one exists), where @c Base is an expression of class type and
3356/// @c Member is the name of the member we're trying to find.
3357Action::ExprResult
3358Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3359                               SourceLocation MemberLoc,
3360                               IdentifierInfo &Member) {
3361  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3362
3363  // C++ [over.ref]p1:
3364  //
3365  //   [...] An expression x->m is interpreted as (x.operator->())->m
3366  //   for a class object x of type T if T::operator->() exists and if
3367  //   the operator is selected as the best match function by the
3368  //   overload resolution mechanism (13.3).
3369  // FIXME: look in base classes.
3370  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3371  OverloadCandidateSet CandidateSet;
3372  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3373  DeclContext::lookup_const_result Lookup
3374    = BaseRecord->getDecl()->lookup(Context, OpName);
3375  NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
3376  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3377    AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3378                       /*SuppressUserConversions=*/false);
3379  else if (OverloadedFunctionDecl *Ovl
3380             = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3381    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3382           FEnd = Ovl->function_end();
3383         F != FEnd; ++F) {
3384      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3385        AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3386                           /*SuppressUserConversions=*/false);
3387    }
3388  }
3389
3390  llvm::OwningPtr<Expr> BasePtr(Base);
3391
3392  // Perform overload resolution.
3393  OverloadCandidateSet::iterator Best;
3394  switch (BestViableFunction(CandidateSet, Best)) {
3395  case OR_Success:
3396    // Overload resolution succeeded; we'll build the call below.
3397    break;
3398
3399  case OR_No_Viable_Function:
3400    if (CandidateSet.empty())
3401      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
3402        << BasePtr->getType() << BasePtr->getSourceRange();
3403    else
3404      Diag(OpLoc, diag::err_ovl_no_viable_oper)
3405        << "operator->" << (unsigned)CandidateSet.size()
3406        << BasePtr->getSourceRange();
3407    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3408    return true;
3409
3410  case OR_Ambiguous:
3411    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3412      << "operator->" << BasePtr->getSourceRange();
3413    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3414    return true;
3415  }
3416
3417  // Convert the object parameter.
3418  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3419  if (PerformObjectArgumentInitialization(Base, Method))
3420    return true;
3421
3422  // No concerns about early exits now.
3423  BasePtr.take();
3424
3425  // Build the operator call.
3426  Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3427  UsualUnaryConversions(FnExpr);
3428  Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3429                                 Method->getResultType().getNonReferenceType(),
3430                                 OpLoc);
3431  return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3432}
3433
3434/// FixOverloadedFunctionReference - E is an expression that refers to
3435/// a C++ overloaded function (possibly with some parentheses and
3436/// perhaps a '&' around it). We have resolved the overloaded function
3437/// to the function declaration Fn, so patch up the expression E to
3438/// refer (possibly indirectly) to Fn.
3439void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3440  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3441    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3442    E->setType(PE->getSubExpr()->getType());
3443  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3444    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3445           "Can only take the address of an overloaded function");
3446    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3447    E->setType(Context.getPointerType(E->getType()));
3448  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3449    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3450           "Expected overloaded function");
3451    DR->setDecl(Fn);
3452    E->setType(Fn->getType());
3453  } else {
3454    assert(false && "Invalid reference to overloaded function");
3455  }
3456}
3457
3458} // end namespace clang
3459