SemaOverload.cpp revision 7034fae7a14dd2241ba421132856ff7f3d62ddac
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Overload.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateDeduction.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36
37namespace clang {
38using namespace sema;
39
40/// A convenience routine for creating a decayed reference to a function.
41static ExprResult
42CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
43                      bool HadMultipleCandidates,
44                      SourceLocation Loc = SourceLocation(),
45                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
46  if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
47    return ExprError();
48  // If FoundDecl is different from Fn (such as if one is a template
49  // and the other a specialization), make sure DiagnoseUseOfDecl is
50  // called on both.
51  // FIXME: This would be more comprehensively addressed by modifying
52  // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
53  // being used.
54  if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
55    return ExprError();
56  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
57                                                 VK_LValue, Loc, LocInfo);
58  if (HadMultipleCandidates)
59    DRE->setHadMultipleCandidates(true);
60
61  S.MarkDeclRefReferenced(DRE);
62
63  ExprResult E = S.Owned(DRE);
64  E = S.DefaultFunctionArrayConversion(E.take());
65  if (E.isInvalid())
66    return ExprError();
67  return E;
68}
69
70static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
71                                 bool InOverloadResolution,
72                                 StandardConversionSequence &SCS,
73                                 bool CStyle,
74                                 bool AllowObjCWritebackConversion);
75
76static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
77                                                 QualType &ToType,
78                                                 bool InOverloadResolution,
79                                                 StandardConversionSequence &SCS,
80                                                 bool CStyle);
81static OverloadingResult
82IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
83                        UserDefinedConversionSequence& User,
84                        OverloadCandidateSet& Conversions,
85                        bool AllowExplicit);
86
87
88static ImplicitConversionSequence::CompareKind
89CompareStandardConversionSequences(Sema &S,
90                                   const StandardConversionSequence& SCS1,
91                                   const StandardConversionSequence& SCS2);
92
93static ImplicitConversionSequence::CompareKind
94CompareQualificationConversions(Sema &S,
95                                const StandardConversionSequence& SCS1,
96                                const StandardConversionSequence& SCS2);
97
98static ImplicitConversionSequence::CompareKind
99CompareDerivedToBaseConversions(Sema &S,
100                                const StandardConversionSequence& SCS1,
101                                const StandardConversionSequence& SCS2);
102
103
104
105/// GetConversionCategory - Retrieve the implicit conversion
106/// category corresponding to the given implicit conversion kind.
107ImplicitConversionCategory
108GetConversionCategory(ImplicitConversionKind Kind) {
109  static const ImplicitConversionCategory
110    Category[(int)ICK_Num_Conversion_Kinds] = {
111    ICC_Identity,
112    ICC_Lvalue_Transformation,
113    ICC_Lvalue_Transformation,
114    ICC_Lvalue_Transformation,
115    ICC_Identity,
116    ICC_Qualification_Adjustment,
117    ICC_Promotion,
118    ICC_Promotion,
119    ICC_Promotion,
120    ICC_Conversion,
121    ICC_Conversion,
122    ICC_Conversion,
123    ICC_Conversion,
124    ICC_Conversion,
125    ICC_Conversion,
126    ICC_Conversion,
127    ICC_Conversion,
128    ICC_Conversion,
129    ICC_Conversion,
130    ICC_Conversion,
131    ICC_Conversion,
132    ICC_Conversion
133  };
134  return Category[(int)Kind];
135}
136
137/// GetConversionRank - Retrieve the implicit conversion rank
138/// corresponding to the given implicit conversion kind.
139ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
140  static const ImplicitConversionRank
141    Rank[(int)ICK_Num_Conversion_Kinds] = {
142    ICR_Exact_Match,
143    ICR_Exact_Match,
144    ICR_Exact_Match,
145    ICR_Exact_Match,
146    ICR_Exact_Match,
147    ICR_Exact_Match,
148    ICR_Promotion,
149    ICR_Promotion,
150    ICR_Promotion,
151    ICR_Conversion,
152    ICR_Conversion,
153    ICR_Conversion,
154    ICR_Conversion,
155    ICR_Conversion,
156    ICR_Conversion,
157    ICR_Conversion,
158    ICR_Conversion,
159    ICR_Conversion,
160    ICR_Conversion,
161    ICR_Conversion,
162    ICR_Complex_Real_Conversion,
163    ICR_Conversion,
164    ICR_Conversion,
165    ICR_Writeback_Conversion
166  };
167  return Rank[(int)Kind];
168}
169
170/// GetImplicitConversionName - Return the name of this kind of
171/// implicit conversion.
172const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
173  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
174    "No conversion",
175    "Lvalue-to-rvalue",
176    "Array-to-pointer",
177    "Function-to-pointer",
178    "Noreturn adjustment",
179    "Qualification",
180    "Integral promotion",
181    "Floating point promotion",
182    "Complex promotion",
183    "Integral conversion",
184    "Floating conversion",
185    "Complex conversion",
186    "Floating-integral conversion",
187    "Pointer conversion",
188    "Pointer-to-member conversion",
189    "Boolean conversion",
190    "Compatible-types conversion",
191    "Derived-to-base conversion",
192    "Vector conversion",
193    "Vector splat",
194    "Complex-real conversion",
195    "Block Pointer conversion",
196    "Transparent Union Conversion"
197    "Writeback conversion"
198  };
199  return Name[Kind];
200}
201
202/// StandardConversionSequence - Set the standard conversion
203/// sequence to the identity conversion.
204void StandardConversionSequence::setAsIdentityConversion() {
205  First = ICK_Identity;
206  Second = ICK_Identity;
207  Third = ICK_Identity;
208  DeprecatedStringLiteralToCharPtr = false;
209  QualificationIncludesObjCLifetime = false;
210  ReferenceBinding = false;
211  DirectBinding = false;
212  IsLvalueReference = true;
213  BindsToFunctionLvalue = false;
214  BindsToRvalue = false;
215  BindsImplicitObjectArgumentWithoutRefQualifier = false;
216  ObjCLifetimeConversionBinding = false;
217  CopyConstructor = 0;
218}
219
220/// getRank - Retrieve the rank of this standard conversion sequence
221/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
222/// implicit conversions.
223ImplicitConversionRank StandardConversionSequence::getRank() const {
224  ImplicitConversionRank Rank = ICR_Exact_Match;
225  if  (GetConversionRank(First) > Rank)
226    Rank = GetConversionRank(First);
227  if  (GetConversionRank(Second) > Rank)
228    Rank = GetConversionRank(Second);
229  if  (GetConversionRank(Third) > Rank)
230    Rank = GetConversionRank(Third);
231  return Rank;
232}
233
234/// isPointerConversionToBool - Determines whether this conversion is
235/// a conversion of a pointer or pointer-to-member to bool. This is
236/// used as part of the ranking of standard conversion sequences
237/// (C++ 13.3.3.2p4).
238bool StandardConversionSequence::isPointerConversionToBool() const {
239  // Note that FromType has not necessarily been transformed by the
240  // array-to-pointer or function-to-pointer implicit conversions, so
241  // check for their presence as well as checking whether FromType is
242  // a pointer.
243  if (getToType(1)->isBooleanType() &&
244      (getFromType()->isPointerType() ||
245       getFromType()->isObjCObjectPointerType() ||
246       getFromType()->isBlockPointerType() ||
247       getFromType()->isNullPtrType() ||
248       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
249    return true;
250
251  return false;
252}
253
254/// isPointerConversionToVoidPointer - Determines whether this
255/// conversion is a conversion of a pointer to a void pointer. This is
256/// used as part of the ranking of standard conversion sequences (C++
257/// 13.3.3.2p4).
258bool
259StandardConversionSequence::
260isPointerConversionToVoidPointer(ASTContext& Context) const {
261  QualType FromType = getFromType();
262  QualType ToType = getToType(1);
263
264  // Note that FromType has not necessarily been transformed by the
265  // array-to-pointer implicit conversion, so check for its presence
266  // and redo the conversion to get a pointer.
267  if (First == ICK_Array_To_Pointer)
268    FromType = Context.getArrayDecayedType(FromType);
269
270  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
271    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
272      return ToPtrType->getPointeeType()->isVoidType();
273
274  return false;
275}
276
277/// Skip any implicit casts which could be either part of a narrowing conversion
278/// or after one in an implicit conversion.
279static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
280  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
281    switch (ICE->getCastKind()) {
282    case CK_NoOp:
283    case CK_IntegralCast:
284    case CK_IntegralToBoolean:
285    case CK_IntegralToFloating:
286    case CK_FloatingToIntegral:
287    case CK_FloatingToBoolean:
288    case CK_FloatingCast:
289      Converted = ICE->getSubExpr();
290      continue;
291
292    default:
293      return Converted;
294    }
295  }
296
297  return Converted;
298}
299
300/// Check if this standard conversion sequence represents a narrowing
301/// conversion, according to C++11 [dcl.init.list]p7.
302///
303/// \param Ctx  The AST context.
304/// \param Converted  The result of applying this standard conversion sequence.
305/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
306///        value of the expression prior to the narrowing conversion.
307/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
308///        type of the expression prior to the narrowing conversion.
309NarrowingKind
310StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
311                                             const Expr *Converted,
312                                             APValue &ConstantValue,
313                                             QualType &ConstantType) const {
314  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
315
316  // C++11 [dcl.init.list]p7:
317  //   A narrowing conversion is an implicit conversion ...
318  QualType FromType = getToType(0);
319  QualType ToType = getToType(1);
320  switch (Second) {
321  // -- from a floating-point type to an integer type, or
322  //
323  // -- from an integer type or unscoped enumeration type to a floating-point
324  //    type, except where the source is a constant expression and the actual
325  //    value after conversion will fit into the target type and will produce
326  //    the original value when converted back to the original type, or
327  case ICK_Floating_Integral:
328    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
329      return NK_Type_Narrowing;
330    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
331      llvm::APSInt IntConstantValue;
332      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
333      if (Initializer &&
334          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
335        // Convert the integer to the floating type.
336        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
337        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
338                                llvm::APFloat::rmNearestTiesToEven);
339        // And back.
340        llvm::APSInt ConvertedValue = IntConstantValue;
341        bool ignored;
342        Result.convertToInteger(ConvertedValue,
343                                llvm::APFloat::rmTowardZero, &ignored);
344        // If the resulting value is different, this was a narrowing conversion.
345        if (IntConstantValue != ConvertedValue) {
346          ConstantValue = APValue(IntConstantValue);
347          ConstantType = Initializer->getType();
348          return NK_Constant_Narrowing;
349        }
350      } else {
351        // Variables are always narrowings.
352        return NK_Variable_Narrowing;
353      }
354    }
355    return NK_Not_Narrowing;
356
357  // -- from long double to double or float, or from double to float, except
358  //    where the source is a constant expression and the actual value after
359  //    conversion is within the range of values that can be represented (even
360  //    if it cannot be represented exactly), or
361  case ICK_Floating_Conversion:
362    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
363        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
364      // FromType is larger than ToType.
365      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
366      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
367        // Constant!
368        assert(ConstantValue.isFloat());
369        llvm::APFloat FloatVal = ConstantValue.getFloat();
370        // Convert the source value into the target type.
371        bool ignored;
372        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
373          Ctx.getFloatTypeSemantics(ToType),
374          llvm::APFloat::rmNearestTiesToEven, &ignored);
375        // If there was no overflow, the source value is within the range of
376        // values that can be represented.
377        if (ConvertStatus & llvm::APFloat::opOverflow) {
378          ConstantType = Initializer->getType();
379          return NK_Constant_Narrowing;
380        }
381      } else {
382        return NK_Variable_Narrowing;
383      }
384    }
385    return NK_Not_Narrowing;
386
387  // -- from an integer type or unscoped enumeration type to an integer type
388  //    that cannot represent all the values of the original type, except where
389  //    the source is a constant expression and the actual value after
390  //    conversion will fit into the target type and will produce the original
391  //    value when converted back to the original type.
392  case ICK_Boolean_Conversion:  // Bools are integers too.
393    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
394      // Boolean conversions can be from pointers and pointers to members
395      // [conv.bool], and those aren't considered narrowing conversions.
396      return NK_Not_Narrowing;
397    }  // Otherwise, fall through to the integral case.
398  case ICK_Integral_Conversion: {
399    assert(FromType->isIntegralOrUnscopedEnumerationType());
400    assert(ToType->isIntegralOrUnscopedEnumerationType());
401    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
402    const unsigned FromWidth = Ctx.getIntWidth(FromType);
403    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
404    const unsigned ToWidth = Ctx.getIntWidth(ToType);
405
406    if (FromWidth > ToWidth ||
407        (FromWidth == ToWidth && FromSigned != ToSigned) ||
408        (FromSigned && !ToSigned)) {
409      // Not all values of FromType can be represented in ToType.
410      llvm::APSInt InitializerValue;
411      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
412      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
413        // Such conversions on variables are always narrowing.
414        return NK_Variable_Narrowing;
415      }
416      bool Narrowing = false;
417      if (FromWidth < ToWidth) {
418        // Negative -> unsigned is narrowing. Otherwise, more bits is never
419        // narrowing.
420        if (InitializerValue.isSigned() && InitializerValue.isNegative())
421          Narrowing = true;
422      } else {
423        // Add a bit to the InitializerValue so we don't have to worry about
424        // signed vs. unsigned comparisons.
425        InitializerValue = InitializerValue.extend(
426          InitializerValue.getBitWidth() + 1);
427        // Convert the initializer to and from the target width and signed-ness.
428        llvm::APSInt ConvertedValue = InitializerValue;
429        ConvertedValue = ConvertedValue.trunc(ToWidth);
430        ConvertedValue.setIsSigned(ToSigned);
431        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
432        ConvertedValue.setIsSigned(InitializerValue.isSigned());
433        // If the result is different, this was a narrowing conversion.
434        if (ConvertedValue != InitializerValue)
435          Narrowing = true;
436      }
437      if (Narrowing) {
438        ConstantType = Initializer->getType();
439        ConstantValue = APValue(InitializerValue);
440        return NK_Constant_Narrowing;
441      }
442    }
443    return NK_Not_Narrowing;
444  }
445
446  default:
447    // Other kinds of conversions are not narrowings.
448    return NK_Not_Narrowing;
449  }
450}
451
452/// DebugPrint - Print this standard conversion sequence to standard
453/// error. Useful for debugging overloading issues.
454void StandardConversionSequence::DebugPrint() const {
455  raw_ostream &OS = llvm::errs();
456  bool PrintedSomething = false;
457  if (First != ICK_Identity) {
458    OS << GetImplicitConversionName(First);
459    PrintedSomething = true;
460  }
461
462  if (Second != ICK_Identity) {
463    if (PrintedSomething) {
464      OS << " -> ";
465    }
466    OS << GetImplicitConversionName(Second);
467
468    if (CopyConstructor) {
469      OS << " (by copy constructor)";
470    } else if (DirectBinding) {
471      OS << " (direct reference binding)";
472    } else if (ReferenceBinding) {
473      OS << " (reference binding)";
474    }
475    PrintedSomething = true;
476  }
477
478  if (Third != ICK_Identity) {
479    if (PrintedSomething) {
480      OS << " -> ";
481    }
482    OS << GetImplicitConversionName(Third);
483    PrintedSomething = true;
484  }
485
486  if (!PrintedSomething) {
487    OS << "No conversions required";
488  }
489}
490
491/// DebugPrint - Print this user-defined conversion sequence to standard
492/// error. Useful for debugging overloading issues.
493void UserDefinedConversionSequence::DebugPrint() const {
494  raw_ostream &OS = llvm::errs();
495  if (Before.First || Before.Second || Before.Third) {
496    Before.DebugPrint();
497    OS << " -> ";
498  }
499  if (ConversionFunction)
500    OS << '\'' << *ConversionFunction << '\'';
501  else
502    OS << "aggregate initialization";
503  if (After.First || After.Second || After.Third) {
504    OS << " -> ";
505    After.DebugPrint();
506  }
507}
508
509/// DebugPrint - Print this implicit conversion sequence to standard
510/// error. Useful for debugging overloading issues.
511void ImplicitConversionSequence::DebugPrint() const {
512  raw_ostream &OS = llvm::errs();
513  if (isStdInitializerListElement())
514    OS << "Worst std::initializer_list element conversion: ";
515  switch (ConversionKind) {
516  case StandardConversion:
517    OS << "Standard conversion: ";
518    Standard.DebugPrint();
519    break;
520  case UserDefinedConversion:
521    OS << "User-defined conversion: ";
522    UserDefined.DebugPrint();
523    break;
524  case EllipsisConversion:
525    OS << "Ellipsis conversion";
526    break;
527  case AmbiguousConversion:
528    OS << "Ambiguous conversion";
529    break;
530  case BadConversion:
531    OS << "Bad conversion";
532    break;
533  }
534
535  OS << "\n";
536}
537
538void AmbiguousConversionSequence::construct() {
539  new (&conversions()) ConversionSet();
540}
541
542void AmbiguousConversionSequence::destruct() {
543  conversions().~ConversionSet();
544}
545
546void
547AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
548  FromTypePtr = O.FromTypePtr;
549  ToTypePtr = O.ToTypePtr;
550  new (&conversions()) ConversionSet(O.conversions());
551}
552
553namespace {
554  // Structure used by DeductionFailureInfo to store
555  // template argument information.
556  struct DFIArguments {
557    TemplateArgument FirstArg;
558    TemplateArgument SecondArg;
559  };
560  // Structure used by DeductionFailureInfo to store
561  // template parameter and template argument information.
562  struct DFIParamWithArguments : DFIArguments {
563    TemplateParameter Param;
564  };
565}
566
567/// \brief Convert from Sema's representation of template deduction information
568/// to the form used in overload-candidate information.
569DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context,
570                                              Sema::TemplateDeductionResult TDK,
571                                              TemplateDeductionInfo &Info) {
572  DeductionFailureInfo Result;
573  Result.Result = static_cast<unsigned>(TDK);
574  Result.HasDiagnostic = false;
575  Result.Data = 0;
576  switch (TDK) {
577  case Sema::TDK_Success:
578  case Sema::TDK_Invalid:
579  case Sema::TDK_InstantiationDepth:
580  case Sema::TDK_TooManyArguments:
581  case Sema::TDK_TooFewArguments:
582    break;
583
584  case Sema::TDK_Incomplete:
585  case Sema::TDK_InvalidExplicitArguments:
586    Result.Data = Info.Param.getOpaqueValue();
587    break;
588
589  case Sema::TDK_NonDeducedMismatch: {
590    // FIXME: Should allocate from normal heap so that we can free this later.
591    DFIArguments *Saved = new (Context) DFIArguments;
592    Saved->FirstArg = Info.FirstArg;
593    Saved->SecondArg = Info.SecondArg;
594    Result.Data = Saved;
595    break;
596  }
597
598  case Sema::TDK_Inconsistent:
599  case Sema::TDK_Underqualified: {
600    // FIXME: Should allocate from normal heap so that we can free this later.
601    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
602    Saved->Param = Info.Param;
603    Saved->FirstArg = Info.FirstArg;
604    Saved->SecondArg = Info.SecondArg;
605    Result.Data = Saved;
606    break;
607  }
608
609  case Sema::TDK_SubstitutionFailure:
610    Result.Data = Info.take();
611    if (Info.hasSFINAEDiagnostic()) {
612      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
613          SourceLocation(), PartialDiagnostic::NullDiagnostic());
614      Info.takeSFINAEDiagnostic(*Diag);
615      Result.HasDiagnostic = true;
616    }
617    break;
618
619  case Sema::TDK_FailedOverloadResolution:
620    Result.Data = Info.Expression;
621    break;
622
623  case Sema::TDK_MiscellaneousDeductionFailure:
624    break;
625  }
626
627  return Result;
628}
629
630void DeductionFailureInfo::Destroy() {
631  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
632  case Sema::TDK_Success:
633  case Sema::TDK_Invalid:
634  case Sema::TDK_InstantiationDepth:
635  case Sema::TDK_Incomplete:
636  case Sema::TDK_TooManyArguments:
637  case Sema::TDK_TooFewArguments:
638  case Sema::TDK_InvalidExplicitArguments:
639  case Sema::TDK_FailedOverloadResolution:
640    break;
641
642  case Sema::TDK_Inconsistent:
643  case Sema::TDK_Underqualified:
644  case Sema::TDK_NonDeducedMismatch:
645    // FIXME: Destroy the data?
646    Data = 0;
647    break;
648
649  case Sema::TDK_SubstitutionFailure:
650    // FIXME: Destroy the template argument list?
651    Data = 0;
652    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
653      Diag->~PartialDiagnosticAt();
654      HasDiagnostic = false;
655    }
656    break;
657
658  // Unhandled
659  case Sema::TDK_MiscellaneousDeductionFailure:
660    break;
661  }
662}
663
664PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
665  if (HasDiagnostic)
666    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
667  return 0;
668}
669
670TemplateParameter DeductionFailureInfo::getTemplateParameter() {
671  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
672  case Sema::TDK_Success:
673  case Sema::TDK_Invalid:
674  case Sema::TDK_InstantiationDepth:
675  case Sema::TDK_TooManyArguments:
676  case Sema::TDK_TooFewArguments:
677  case Sema::TDK_SubstitutionFailure:
678  case Sema::TDK_NonDeducedMismatch:
679  case Sema::TDK_FailedOverloadResolution:
680    return TemplateParameter();
681
682  case Sema::TDK_Incomplete:
683  case Sema::TDK_InvalidExplicitArguments:
684    return TemplateParameter::getFromOpaqueValue(Data);
685
686  case Sema::TDK_Inconsistent:
687  case Sema::TDK_Underqualified:
688    return static_cast<DFIParamWithArguments*>(Data)->Param;
689
690  // Unhandled
691  case Sema::TDK_MiscellaneousDeductionFailure:
692    break;
693  }
694
695  return TemplateParameter();
696}
697
698TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
699  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
700  case Sema::TDK_Success:
701  case Sema::TDK_Invalid:
702  case Sema::TDK_InstantiationDepth:
703  case Sema::TDK_TooManyArguments:
704  case Sema::TDK_TooFewArguments:
705  case Sema::TDK_Incomplete:
706  case Sema::TDK_InvalidExplicitArguments:
707  case Sema::TDK_Inconsistent:
708  case Sema::TDK_Underqualified:
709  case Sema::TDK_NonDeducedMismatch:
710  case Sema::TDK_FailedOverloadResolution:
711    return 0;
712
713  case Sema::TDK_SubstitutionFailure:
714    return static_cast<TemplateArgumentList*>(Data);
715
716  // Unhandled
717  case Sema::TDK_MiscellaneousDeductionFailure:
718    break;
719  }
720
721  return 0;
722}
723
724const TemplateArgument *DeductionFailureInfo::getFirstArg() {
725  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
726  case Sema::TDK_Success:
727  case Sema::TDK_Invalid:
728  case Sema::TDK_InstantiationDepth:
729  case Sema::TDK_Incomplete:
730  case Sema::TDK_TooManyArguments:
731  case Sema::TDK_TooFewArguments:
732  case Sema::TDK_InvalidExplicitArguments:
733  case Sema::TDK_SubstitutionFailure:
734  case Sema::TDK_FailedOverloadResolution:
735    return 0;
736
737  case Sema::TDK_Inconsistent:
738  case Sema::TDK_Underqualified:
739  case Sema::TDK_NonDeducedMismatch:
740    return &static_cast<DFIArguments*>(Data)->FirstArg;
741
742  // Unhandled
743  case Sema::TDK_MiscellaneousDeductionFailure:
744    break;
745  }
746
747  return 0;
748}
749
750const TemplateArgument *DeductionFailureInfo::getSecondArg() {
751  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
752  case Sema::TDK_Success:
753  case Sema::TDK_Invalid:
754  case Sema::TDK_InstantiationDepth:
755  case Sema::TDK_Incomplete:
756  case Sema::TDK_TooManyArguments:
757  case Sema::TDK_TooFewArguments:
758  case Sema::TDK_InvalidExplicitArguments:
759  case Sema::TDK_SubstitutionFailure:
760  case Sema::TDK_FailedOverloadResolution:
761    return 0;
762
763  case Sema::TDK_Inconsistent:
764  case Sema::TDK_Underqualified:
765  case Sema::TDK_NonDeducedMismatch:
766    return &static_cast<DFIArguments*>(Data)->SecondArg;
767
768  // Unhandled
769  case Sema::TDK_MiscellaneousDeductionFailure:
770    break;
771  }
772
773  return 0;
774}
775
776Expr *DeductionFailureInfo::getExpr() {
777  if (static_cast<Sema::TemplateDeductionResult>(Result) ==
778        Sema::TDK_FailedOverloadResolution)
779    return static_cast<Expr*>(Data);
780
781  return 0;
782}
783
784void OverloadCandidateSet::destroyCandidates() {
785  for (iterator i = begin(), e = end(); i != e; ++i) {
786    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
787      i->Conversions[ii].~ImplicitConversionSequence();
788    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
789      i->DeductionFailure.Destroy();
790  }
791}
792
793void OverloadCandidateSet::clear() {
794  destroyCandidates();
795  NumInlineSequences = 0;
796  Candidates.clear();
797  Functions.clear();
798}
799
800namespace {
801  class UnbridgedCastsSet {
802    struct Entry {
803      Expr **Addr;
804      Expr *Saved;
805    };
806    SmallVector<Entry, 2> Entries;
807
808  public:
809    void save(Sema &S, Expr *&E) {
810      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
811      Entry entry = { &E, E };
812      Entries.push_back(entry);
813      E = S.stripARCUnbridgedCast(E);
814    }
815
816    void restore() {
817      for (SmallVectorImpl<Entry>::iterator
818             i = Entries.begin(), e = Entries.end(); i != e; ++i)
819        *i->Addr = i->Saved;
820    }
821  };
822}
823
824/// checkPlaceholderForOverload - Do any interesting placeholder-like
825/// preprocessing on the given expression.
826///
827/// \param unbridgedCasts a collection to which to add unbridged casts;
828///   without this, they will be immediately diagnosed as errors
829///
830/// Return true on unrecoverable error.
831static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
832                                        UnbridgedCastsSet *unbridgedCasts = 0) {
833  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
834    // We can't handle overloaded expressions here because overload
835    // resolution might reasonably tweak them.
836    if (placeholder->getKind() == BuiltinType::Overload) return false;
837
838    // If the context potentially accepts unbridged ARC casts, strip
839    // the unbridged cast and add it to the collection for later restoration.
840    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
841        unbridgedCasts) {
842      unbridgedCasts->save(S, E);
843      return false;
844    }
845
846    // Go ahead and check everything else.
847    ExprResult result = S.CheckPlaceholderExpr(E);
848    if (result.isInvalid())
849      return true;
850
851    E = result.take();
852    return false;
853  }
854
855  // Nothing to do.
856  return false;
857}
858
859/// checkArgPlaceholdersForOverload - Check a set of call operands for
860/// placeholders.
861static bool checkArgPlaceholdersForOverload(Sema &S,
862                                            MultiExprArg Args,
863                                            UnbridgedCastsSet &unbridged) {
864  for (unsigned i = 0, e = Args.size(); i != e; ++i)
865    if (checkPlaceholderForOverload(S, Args[i], &unbridged))
866      return true;
867
868  return false;
869}
870
871// IsOverload - Determine whether the given New declaration is an
872// overload of the declarations in Old. This routine returns false if
873// New and Old cannot be overloaded, e.g., if New has the same
874// signature as some function in Old (C++ 1.3.10) or if the Old
875// declarations aren't functions (or function templates) at all. When
876// it does return false, MatchedDecl will point to the decl that New
877// cannot be overloaded with.  This decl may be a UsingShadowDecl on
878// top of the underlying declaration.
879//
880// Example: Given the following input:
881//
882//   void f(int, float); // #1
883//   void f(int, int); // #2
884//   int f(int, int); // #3
885//
886// When we process #1, there is no previous declaration of "f",
887// so IsOverload will not be used.
888//
889// When we process #2, Old contains only the FunctionDecl for #1.  By
890// comparing the parameter types, we see that #1 and #2 are overloaded
891// (since they have different signatures), so this routine returns
892// false; MatchedDecl is unchanged.
893//
894// When we process #3, Old is an overload set containing #1 and #2. We
895// compare the signatures of #3 to #1 (they're overloaded, so we do
896// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
897// identical (return types of functions are not part of the
898// signature), IsOverload returns false and MatchedDecl will be set to
899// point to the FunctionDecl for #2.
900//
901// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
902// into a class by a using declaration.  The rules for whether to hide
903// shadow declarations ignore some properties which otherwise figure
904// into a function template's signature.
905Sema::OverloadKind
906Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
907                    NamedDecl *&Match, bool NewIsUsingDecl) {
908  for (LookupResult::iterator I = Old.begin(), E = Old.end();
909         I != E; ++I) {
910    NamedDecl *OldD = *I;
911
912    bool OldIsUsingDecl = false;
913    if (isa<UsingShadowDecl>(OldD)) {
914      OldIsUsingDecl = true;
915
916      // We can always introduce two using declarations into the same
917      // context, even if they have identical signatures.
918      if (NewIsUsingDecl) continue;
919
920      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
921    }
922
923    // If either declaration was introduced by a using declaration,
924    // we'll need to use slightly different rules for matching.
925    // Essentially, these rules are the normal rules, except that
926    // function templates hide function templates with different
927    // return types or template parameter lists.
928    bool UseMemberUsingDeclRules =
929      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
930      !New->getFriendObjectKind();
931
932    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
933      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
934        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
935          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
936          continue;
937        }
938
939        Match = *I;
940        return Ovl_Match;
941      }
942    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
943      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
944        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
945          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
946          continue;
947        }
948
949        if (!shouldLinkPossiblyHiddenDecl(*I, New))
950          continue;
951
952        Match = *I;
953        return Ovl_Match;
954      }
955    } else if (isa<UsingDecl>(OldD)) {
956      // We can overload with these, which can show up when doing
957      // redeclaration checks for UsingDecls.
958      assert(Old.getLookupKind() == LookupUsingDeclName);
959    } else if (isa<TagDecl>(OldD)) {
960      // We can always overload with tags by hiding them.
961    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
962      // Optimistically assume that an unresolved using decl will
963      // overload; if it doesn't, we'll have to diagnose during
964      // template instantiation.
965    } else {
966      // (C++ 13p1):
967      //   Only function declarations can be overloaded; object and type
968      //   declarations cannot be overloaded.
969      Match = *I;
970      return Ovl_NonFunction;
971    }
972  }
973
974  return Ovl_Overload;
975}
976
977bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
978                      bool UseUsingDeclRules) {
979  // C++ [basic.start.main]p2: This function shall not be overloaded.
980  if (New->isMain())
981    return false;
982
983  // MSVCRT user defined entry points cannot be overloaded.
984  if (New->isMSVCRTEntryPoint())
985    return false;
986
987  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
988  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
989
990  // C++ [temp.fct]p2:
991  //   A function template can be overloaded with other function templates
992  //   and with normal (non-template) functions.
993  if ((OldTemplate == 0) != (NewTemplate == 0))
994    return true;
995
996  // Is the function New an overload of the function Old?
997  QualType OldQType = Context.getCanonicalType(Old->getType());
998  QualType NewQType = Context.getCanonicalType(New->getType());
999
1000  // Compare the signatures (C++ 1.3.10) of the two functions to
1001  // determine whether they are overloads. If we find any mismatch
1002  // in the signature, they are overloads.
1003
1004  // If either of these functions is a K&R-style function (no
1005  // prototype), then we consider them to have matching signatures.
1006  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1007      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1008    return false;
1009
1010  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
1011  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
1012
1013  // The signature of a function includes the types of its
1014  // parameters (C++ 1.3.10), which includes the presence or absence
1015  // of the ellipsis; see C++ DR 357).
1016  if (OldQType != NewQType &&
1017      (OldType->getNumArgs() != NewType->getNumArgs() ||
1018       OldType->isVariadic() != NewType->isVariadic() ||
1019       !FunctionArgTypesAreEqual(OldType, NewType)))
1020    return true;
1021
1022  // C++ [temp.over.link]p4:
1023  //   The signature of a function template consists of its function
1024  //   signature, its return type and its template parameter list. The names
1025  //   of the template parameters are significant only for establishing the
1026  //   relationship between the template parameters and the rest of the
1027  //   signature.
1028  //
1029  // We check the return type and template parameter lists for function
1030  // templates first; the remaining checks follow.
1031  //
1032  // However, we don't consider either of these when deciding whether
1033  // a member introduced by a shadow declaration is hidden.
1034  if (!UseUsingDeclRules && NewTemplate &&
1035      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1036                                       OldTemplate->getTemplateParameters(),
1037                                       false, TPL_TemplateMatch) ||
1038       OldType->getResultType() != NewType->getResultType()))
1039    return true;
1040
1041  // If the function is a class member, its signature includes the
1042  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1043  //
1044  // As part of this, also check whether one of the member functions
1045  // is static, in which case they are not overloads (C++
1046  // 13.1p2). While not part of the definition of the signature,
1047  // this check is important to determine whether these functions
1048  // can be overloaded.
1049  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1050  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1051  if (OldMethod && NewMethod &&
1052      !OldMethod->isStatic() && !NewMethod->isStatic()) {
1053    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1054      if (!UseUsingDeclRules &&
1055          (OldMethod->getRefQualifier() == RQ_None ||
1056           NewMethod->getRefQualifier() == RQ_None)) {
1057        // C++0x [over.load]p2:
1058        //   - Member function declarations with the same name and the same
1059        //     parameter-type-list as well as member function template
1060        //     declarations with the same name, the same parameter-type-list, and
1061        //     the same template parameter lists cannot be overloaded if any of
1062        //     them, but not all, have a ref-qualifier (8.3.5).
1063        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1064          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1065        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1066      }
1067      return true;
1068    }
1069
1070    // We may not have applied the implicit const for a constexpr member
1071    // function yet (because we haven't yet resolved whether this is a static
1072    // or non-static member function). Add it now, on the assumption that this
1073    // is a redeclaration of OldMethod.
1074    unsigned NewQuals = NewMethod->getTypeQualifiers();
1075    if (!getLangOpts().CPlusPlus1y && NewMethod->isConstexpr() &&
1076        !isa<CXXConstructorDecl>(NewMethod))
1077      NewQuals |= Qualifiers::Const;
1078    if (OldMethod->getTypeQualifiers() != NewQuals)
1079      return true;
1080  }
1081
1082  // The signatures match; this is not an overload.
1083  return false;
1084}
1085
1086/// \brief Checks availability of the function depending on the current
1087/// function context. Inside an unavailable function, unavailability is ignored.
1088///
1089/// \returns true if \arg FD is unavailable and current context is inside
1090/// an available function, false otherwise.
1091bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1092  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1093}
1094
1095/// \brief Tries a user-defined conversion from From to ToType.
1096///
1097/// Produces an implicit conversion sequence for when a standard conversion
1098/// is not an option. See TryImplicitConversion for more information.
1099static ImplicitConversionSequence
1100TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1101                         bool SuppressUserConversions,
1102                         bool AllowExplicit,
1103                         bool InOverloadResolution,
1104                         bool CStyle,
1105                         bool AllowObjCWritebackConversion) {
1106  ImplicitConversionSequence ICS;
1107
1108  if (SuppressUserConversions) {
1109    // We're not in the case above, so there is no conversion that
1110    // we can perform.
1111    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1112    return ICS;
1113  }
1114
1115  // Attempt user-defined conversion.
1116  OverloadCandidateSet Conversions(From->getExprLoc());
1117  OverloadingResult UserDefResult
1118    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1119                              AllowExplicit);
1120
1121  if (UserDefResult == OR_Success) {
1122    ICS.setUserDefined();
1123    // C++ [over.ics.user]p4:
1124    //   A conversion of an expression of class type to the same class
1125    //   type is given Exact Match rank, and a conversion of an
1126    //   expression of class type to a base class of that type is
1127    //   given Conversion rank, in spite of the fact that a copy
1128    //   constructor (i.e., a user-defined conversion function) is
1129    //   called for those cases.
1130    if (CXXConstructorDecl *Constructor
1131          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1132      QualType FromCanon
1133        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1134      QualType ToCanon
1135        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1136      if (Constructor->isCopyConstructor() &&
1137          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1138        // Turn this into a "standard" conversion sequence, so that it
1139        // gets ranked with standard conversion sequences.
1140        ICS.setStandard();
1141        ICS.Standard.setAsIdentityConversion();
1142        ICS.Standard.setFromType(From->getType());
1143        ICS.Standard.setAllToTypes(ToType);
1144        ICS.Standard.CopyConstructor = Constructor;
1145        if (ToCanon != FromCanon)
1146          ICS.Standard.Second = ICK_Derived_To_Base;
1147      }
1148    }
1149
1150    // C++ [over.best.ics]p4:
1151    //   However, when considering the argument of a user-defined
1152    //   conversion function that is a candidate by 13.3.1.3 when
1153    //   invoked for the copying of the temporary in the second step
1154    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1155    //   13.3.1.6 in all cases, only standard conversion sequences and
1156    //   ellipsis conversion sequences are allowed.
1157    if (SuppressUserConversions && ICS.isUserDefined()) {
1158      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1159    }
1160  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1161    ICS.setAmbiguous();
1162    ICS.Ambiguous.setFromType(From->getType());
1163    ICS.Ambiguous.setToType(ToType);
1164    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1165         Cand != Conversions.end(); ++Cand)
1166      if (Cand->Viable)
1167        ICS.Ambiguous.addConversion(Cand->Function);
1168  } else {
1169    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1170  }
1171
1172  return ICS;
1173}
1174
1175/// TryImplicitConversion - Attempt to perform an implicit conversion
1176/// from the given expression (Expr) to the given type (ToType). This
1177/// function returns an implicit conversion sequence that can be used
1178/// to perform the initialization. Given
1179///
1180///   void f(float f);
1181///   void g(int i) { f(i); }
1182///
1183/// this routine would produce an implicit conversion sequence to
1184/// describe the initialization of f from i, which will be a standard
1185/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1186/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1187//
1188/// Note that this routine only determines how the conversion can be
1189/// performed; it does not actually perform the conversion. As such,
1190/// it will not produce any diagnostics if no conversion is available,
1191/// but will instead return an implicit conversion sequence of kind
1192/// "BadConversion".
1193///
1194/// If @p SuppressUserConversions, then user-defined conversions are
1195/// not permitted.
1196/// If @p AllowExplicit, then explicit user-defined conversions are
1197/// permitted.
1198///
1199/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1200/// writeback conversion, which allows __autoreleasing id* parameters to
1201/// be initialized with __strong id* or __weak id* arguments.
1202static ImplicitConversionSequence
1203TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1204                      bool SuppressUserConversions,
1205                      bool AllowExplicit,
1206                      bool InOverloadResolution,
1207                      bool CStyle,
1208                      bool AllowObjCWritebackConversion) {
1209  ImplicitConversionSequence ICS;
1210  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1211                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1212    ICS.setStandard();
1213    return ICS;
1214  }
1215
1216  if (!S.getLangOpts().CPlusPlus) {
1217    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1218    return ICS;
1219  }
1220
1221  // C++ [over.ics.user]p4:
1222  //   A conversion of an expression of class type to the same class
1223  //   type is given Exact Match rank, and a conversion of an
1224  //   expression of class type to a base class of that type is
1225  //   given Conversion rank, in spite of the fact that a copy/move
1226  //   constructor (i.e., a user-defined conversion function) is
1227  //   called for those cases.
1228  QualType FromType = From->getType();
1229  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1230      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1231       S.IsDerivedFrom(FromType, ToType))) {
1232    ICS.setStandard();
1233    ICS.Standard.setAsIdentityConversion();
1234    ICS.Standard.setFromType(FromType);
1235    ICS.Standard.setAllToTypes(ToType);
1236
1237    // We don't actually check at this point whether there is a valid
1238    // copy/move constructor, since overloading just assumes that it
1239    // exists. When we actually perform initialization, we'll find the
1240    // appropriate constructor to copy the returned object, if needed.
1241    ICS.Standard.CopyConstructor = 0;
1242
1243    // Determine whether this is considered a derived-to-base conversion.
1244    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1245      ICS.Standard.Second = ICK_Derived_To_Base;
1246
1247    return ICS;
1248  }
1249
1250  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1251                                  AllowExplicit, InOverloadResolution, CStyle,
1252                                  AllowObjCWritebackConversion);
1253}
1254
1255ImplicitConversionSequence
1256Sema::TryImplicitConversion(Expr *From, QualType ToType,
1257                            bool SuppressUserConversions,
1258                            bool AllowExplicit,
1259                            bool InOverloadResolution,
1260                            bool CStyle,
1261                            bool AllowObjCWritebackConversion) {
1262  return clang::TryImplicitConversion(*this, From, ToType,
1263                                      SuppressUserConversions, AllowExplicit,
1264                                      InOverloadResolution, CStyle,
1265                                      AllowObjCWritebackConversion);
1266}
1267
1268/// PerformImplicitConversion - Perform an implicit conversion of the
1269/// expression From to the type ToType. Returns the
1270/// converted expression. Flavor is the kind of conversion we're
1271/// performing, used in the error message. If @p AllowExplicit,
1272/// explicit user-defined conversions are permitted.
1273ExprResult
1274Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1275                                AssignmentAction Action, bool AllowExplicit) {
1276  ImplicitConversionSequence ICS;
1277  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1278}
1279
1280ExprResult
1281Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1282                                AssignmentAction Action, bool AllowExplicit,
1283                                ImplicitConversionSequence& ICS) {
1284  if (checkPlaceholderForOverload(*this, From))
1285    return ExprError();
1286
1287  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1288  bool AllowObjCWritebackConversion
1289    = getLangOpts().ObjCAutoRefCount &&
1290      (Action == AA_Passing || Action == AA_Sending);
1291
1292  ICS = clang::TryImplicitConversion(*this, From, ToType,
1293                                     /*SuppressUserConversions=*/false,
1294                                     AllowExplicit,
1295                                     /*InOverloadResolution=*/false,
1296                                     /*CStyle=*/false,
1297                                     AllowObjCWritebackConversion);
1298  return PerformImplicitConversion(From, ToType, ICS, Action);
1299}
1300
1301/// \brief Determine whether the conversion from FromType to ToType is a valid
1302/// conversion that strips "noreturn" off the nested function type.
1303bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1304                                QualType &ResultTy) {
1305  if (Context.hasSameUnqualifiedType(FromType, ToType))
1306    return false;
1307
1308  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1309  // where F adds one of the following at most once:
1310  //   - a pointer
1311  //   - a member pointer
1312  //   - a block pointer
1313  CanQualType CanTo = Context.getCanonicalType(ToType);
1314  CanQualType CanFrom = Context.getCanonicalType(FromType);
1315  Type::TypeClass TyClass = CanTo->getTypeClass();
1316  if (TyClass != CanFrom->getTypeClass()) return false;
1317  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1318    if (TyClass == Type::Pointer) {
1319      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1320      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1321    } else if (TyClass == Type::BlockPointer) {
1322      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1323      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1324    } else if (TyClass == Type::MemberPointer) {
1325      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1326      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1327    } else {
1328      return false;
1329    }
1330
1331    TyClass = CanTo->getTypeClass();
1332    if (TyClass != CanFrom->getTypeClass()) return false;
1333    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1334      return false;
1335  }
1336
1337  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1338  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1339  if (!EInfo.getNoReturn()) return false;
1340
1341  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1342  assert(QualType(FromFn, 0).isCanonical());
1343  if (QualType(FromFn, 0) != CanTo) return false;
1344
1345  ResultTy = ToType;
1346  return true;
1347}
1348
1349/// \brief Determine whether the conversion from FromType to ToType is a valid
1350/// vector conversion.
1351///
1352/// \param ICK Will be set to the vector conversion kind, if this is a vector
1353/// conversion.
1354static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1355                               QualType ToType, ImplicitConversionKind &ICK) {
1356  // We need at least one of these types to be a vector type to have a vector
1357  // conversion.
1358  if (!ToType->isVectorType() && !FromType->isVectorType())
1359    return false;
1360
1361  // Identical types require no conversions.
1362  if (Context.hasSameUnqualifiedType(FromType, ToType))
1363    return false;
1364
1365  // There are no conversions between extended vector types, only identity.
1366  if (ToType->isExtVectorType()) {
1367    // There are no conversions between extended vector types other than the
1368    // identity conversion.
1369    if (FromType->isExtVectorType())
1370      return false;
1371
1372    // Vector splat from any arithmetic type to a vector.
1373    if (FromType->isArithmeticType()) {
1374      ICK = ICK_Vector_Splat;
1375      return true;
1376    }
1377  }
1378
1379  // We can perform the conversion between vector types in the following cases:
1380  // 1)vector types are equivalent AltiVec and GCC vector types
1381  // 2)lax vector conversions are permitted and the vector types are of the
1382  //   same size
1383  if (ToType->isVectorType() && FromType->isVectorType()) {
1384    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1385        (Context.getLangOpts().LaxVectorConversions &&
1386         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1387      ICK = ICK_Vector_Conversion;
1388      return true;
1389    }
1390  }
1391
1392  return false;
1393}
1394
1395static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1396                                bool InOverloadResolution,
1397                                StandardConversionSequence &SCS,
1398                                bool CStyle);
1399
1400/// IsStandardConversion - Determines whether there is a standard
1401/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1402/// expression From to the type ToType. Standard conversion sequences
1403/// only consider non-class types; for conversions that involve class
1404/// types, use TryImplicitConversion. If a conversion exists, SCS will
1405/// contain the standard conversion sequence required to perform this
1406/// conversion and this routine will return true. Otherwise, this
1407/// routine will return false and the value of SCS is unspecified.
1408static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1409                                 bool InOverloadResolution,
1410                                 StandardConversionSequence &SCS,
1411                                 bool CStyle,
1412                                 bool AllowObjCWritebackConversion) {
1413  QualType FromType = From->getType();
1414
1415  // Standard conversions (C++ [conv])
1416  SCS.setAsIdentityConversion();
1417  SCS.DeprecatedStringLiteralToCharPtr = false;
1418  SCS.IncompatibleObjC = false;
1419  SCS.setFromType(FromType);
1420  SCS.CopyConstructor = 0;
1421
1422  // There are no standard conversions for class types in C++, so
1423  // abort early. When overloading in C, however, we do permit
1424  if (FromType->isRecordType() || ToType->isRecordType()) {
1425    if (S.getLangOpts().CPlusPlus)
1426      return false;
1427
1428    // When we're overloading in C, we allow, as standard conversions,
1429  }
1430
1431  // The first conversion can be an lvalue-to-rvalue conversion,
1432  // array-to-pointer conversion, or function-to-pointer conversion
1433  // (C++ 4p1).
1434
1435  if (FromType == S.Context.OverloadTy) {
1436    DeclAccessPair AccessPair;
1437    if (FunctionDecl *Fn
1438          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1439                                                 AccessPair)) {
1440      // We were able to resolve the address of the overloaded function,
1441      // so we can convert to the type of that function.
1442      FromType = Fn->getType();
1443
1444      // we can sometimes resolve &foo<int> regardless of ToType, so check
1445      // if the type matches (identity) or we are converting to bool
1446      if (!S.Context.hasSameUnqualifiedType(
1447                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1448        QualType resultTy;
1449        // if the function type matches except for [[noreturn]], it's ok
1450        if (!S.IsNoReturnConversion(FromType,
1451              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1452          // otherwise, only a boolean conversion is standard
1453          if (!ToType->isBooleanType())
1454            return false;
1455      }
1456
1457      // Check if the "from" expression is taking the address of an overloaded
1458      // function and recompute the FromType accordingly. Take advantage of the
1459      // fact that non-static member functions *must* have such an address-of
1460      // expression.
1461      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1462      if (Method && !Method->isStatic()) {
1463        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1464               "Non-unary operator on non-static member address");
1465        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1466               == UO_AddrOf &&
1467               "Non-address-of operator on non-static member address");
1468        const Type *ClassType
1469          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1470        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1471      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1472        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1473               UO_AddrOf &&
1474               "Non-address-of operator for overloaded function expression");
1475        FromType = S.Context.getPointerType(FromType);
1476      }
1477
1478      // Check that we've computed the proper type after overload resolution.
1479      assert(S.Context.hasSameType(
1480        FromType,
1481        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1482    } else {
1483      return false;
1484    }
1485  }
1486  // Lvalue-to-rvalue conversion (C++11 4.1):
1487  //   A glvalue (3.10) of a non-function, non-array type T can
1488  //   be converted to a prvalue.
1489  bool argIsLValue = From->isGLValue();
1490  if (argIsLValue &&
1491      !FromType->isFunctionType() && !FromType->isArrayType() &&
1492      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1493    SCS.First = ICK_Lvalue_To_Rvalue;
1494
1495    // C11 6.3.2.1p2:
1496    //   ... if the lvalue has atomic type, the value has the non-atomic version
1497    //   of the type of the lvalue ...
1498    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1499      FromType = Atomic->getValueType();
1500
1501    // If T is a non-class type, the type of the rvalue is the
1502    // cv-unqualified version of T. Otherwise, the type of the rvalue
1503    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1504    // just strip the qualifiers because they don't matter.
1505    FromType = FromType.getUnqualifiedType();
1506  } else if (FromType->isArrayType()) {
1507    // Array-to-pointer conversion (C++ 4.2)
1508    SCS.First = ICK_Array_To_Pointer;
1509
1510    // An lvalue or rvalue of type "array of N T" or "array of unknown
1511    // bound of T" can be converted to an rvalue of type "pointer to
1512    // T" (C++ 4.2p1).
1513    FromType = S.Context.getArrayDecayedType(FromType);
1514
1515    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1516      // This conversion is deprecated. (C++ D.4).
1517      SCS.DeprecatedStringLiteralToCharPtr = true;
1518
1519      // For the purpose of ranking in overload resolution
1520      // (13.3.3.1.1), this conversion is considered an
1521      // array-to-pointer conversion followed by a qualification
1522      // conversion (4.4). (C++ 4.2p2)
1523      SCS.Second = ICK_Identity;
1524      SCS.Third = ICK_Qualification;
1525      SCS.QualificationIncludesObjCLifetime = false;
1526      SCS.setAllToTypes(FromType);
1527      return true;
1528    }
1529  } else if (FromType->isFunctionType() && argIsLValue) {
1530    // Function-to-pointer conversion (C++ 4.3).
1531    SCS.First = ICK_Function_To_Pointer;
1532
1533    // An lvalue of function type T can be converted to an rvalue of
1534    // type "pointer to T." The result is a pointer to the
1535    // function. (C++ 4.3p1).
1536    FromType = S.Context.getPointerType(FromType);
1537  } else {
1538    // We don't require any conversions for the first step.
1539    SCS.First = ICK_Identity;
1540  }
1541  SCS.setToType(0, FromType);
1542
1543  // The second conversion can be an integral promotion, floating
1544  // point promotion, integral conversion, floating point conversion,
1545  // floating-integral conversion, pointer conversion,
1546  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1547  // For overloading in C, this can also be a "compatible-type"
1548  // conversion.
1549  bool IncompatibleObjC = false;
1550  ImplicitConversionKind SecondICK = ICK_Identity;
1551  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1552    // The unqualified versions of the types are the same: there's no
1553    // conversion to do.
1554    SCS.Second = ICK_Identity;
1555  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1556    // Integral promotion (C++ 4.5).
1557    SCS.Second = ICK_Integral_Promotion;
1558    FromType = ToType.getUnqualifiedType();
1559  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1560    // Floating point promotion (C++ 4.6).
1561    SCS.Second = ICK_Floating_Promotion;
1562    FromType = ToType.getUnqualifiedType();
1563  } else if (S.IsComplexPromotion(FromType, ToType)) {
1564    // Complex promotion (Clang extension)
1565    SCS.Second = ICK_Complex_Promotion;
1566    FromType = ToType.getUnqualifiedType();
1567  } else if (ToType->isBooleanType() &&
1568             (FromType->isArithmeticType() ||
1569              FromType->isAnyPointerType() ||
1570              FromType->isBlockPointerType() ||
1571              FromType->isMemberPointerType() ||
1572              FromType->isNullPtrType())) {
1573    // Boolean conversions (C++ 4.12).
1574    SCS.Second = ICK_Boolean_Conversion;
1575    FromType = S.Context.BoolTy;
1576  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1577             ToType->isIntegralType(S.Context)) {
1578    // Integral conversions (C++ 4.7).
1579    SCS.Second = ICK_Integral_Conversion;
1580    FromType = ToType.getUnqualifiedType();
1581  } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1582    // Complex conversions (C99 6.3.1.6)
1583    SCS.Second = ICK_Complex_Conversion;
1584    FromType = ToType.getUnqualifiedType();
1585  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1586             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1587    // Complex-real conversions (C99 6.3.1.7)
1588    SCS.Second = ICK_Complex_Real;
1589    FromType = ToType.getUnqualifiedType();
1590  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1591    // Floating point conversions (C++ 4.8).
1592    SCS.Second = ICK_Floating_Conversion;
1593    FromType = ToType.getUnqualifiedType();
1594  } else if ((FromType->isRealFloatingType() &&
1595              ToType->isIntegralType(S.Context)) ||
1596             (FromType->isIntegralOrUnscopedEnumerationType() &&
1597              ToType->isRealFloatingType())) {
1598    // Floating-integral conversions (C++ 4.9).
1599    SCS.Second = ICK_Floating_Integral;
1600    FromType = ToType.getUnqualifiedType();
1601  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1602    SCS.Second = ICK_Block_Pointer_Conversion;
1603  } else if (AllowObjCWritebackConversion &&
1604             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1605    SCS.Second = ICK_Writeback_Conversion;
1606  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1607                                   FromType, IncompatibleObjC)) {
1608    // Pointer conversions (C++ 4.10).
1609    SCS.Second = ICK_Pointer_Conversion;
1610    SCS.IncompatibleObjC = IncompatibleObjC;
1611    FromType = FromType.getUnqualifiedType();
1612  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1613                                         InOverloadResolution, FromType)) {
1614    // Pointer to member conversions (4.11).
1615    SCS.Second = ICK_Pointer_Member;
1616  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1617    SCS.Second = SecondICK;
1618    FromType = ToType.getUnqualifiedType();
1619  } else if (!S.getLangOpts().CPlusPlus &&
1620             S.Context.typesAreCompatible(ToType, FromType)) {
1621    // Compatible conversions (Clang extension for C function overloading)
1622    SCS.Second = ICK_Compatible_Conversion;
1623    FromType = ToType.getUnqualifiedType();
1624  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1625    // Treat a conversion that strips "noreturn" as an identity conversion.
1626    SCS.Second = ICK_NoReturn_Adjustment;
1627  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1628                                             InOverloadResolution,
1629                                             SCS, CStyle)) {
1630    SCS.Second = ICK_TransparentUnionConversion;
1631    FromType = ToType;
1632  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1633                                 CStyle)) {
1634    // tryAtomicConversion has updated the standard conversion sequence
1635    // appropriately.
1636    return true;
1637  } else if (ToType->isEventT() &&
1638             From->isIntegerConstantExpr(S.getASTContext()) &&
1639             (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1640    SCS.Second = ICK_Zero_Event_Conversion;
1641    FromType = ToType;
1642  } else {
1643    // No second conversion required.
1644    SCS.Second = ICK_Identity;
1645  }
1646  SCS.setToType(1, FromType);
1647
1648  QualType CanonFrom;
1649  QualType CanonTo;
1650  // The third conversion can be a qualification conversion (C++ 4p1).
1651  bool ObjCLifetimeConversion;
1652  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1653                                  ObjCLifetimeConversion)) {
1654    SCS.Third = ICK_Qualification;
1655    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1656    FromType = ToType;
1657    CanonFrom = S.Context.getCanonicalType(FromType);
1658    CanonTo = S.Context.getCanonicalType(ToType);
1659  } else {
1660    // No conversion required
1661    SCS.Third = ICK_Identity;
1662
1663    // C++ [over.best.ics]p6:
1664    //   [...] Any difference in top-level cv-qualification is
1665    //   subsumed by the initialization itself and does not constitute
1666    //   a conversion. [...]
1667    CanonFrom = S.Context.getCanonicalType(FromType);
1668    CanonTo = S.Context.getCanonicalType(ToType);
1669    if (CanonFrom.getLocalUnqualifiedType()
1670                                       == CanonTo.getLocalUnqualifiedType() &&
1671        CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1672      FromType = ToType;
1673      CanonFrom = CanonTo;
1674    }
1675  }
1676  SCS.setToType(2, FromType);
1677
1678  // If we have not converted the argument type to the parameter type,
1679  // this is a bad conversion sequence.
1680  if (CanonFrom != CanonTo)
1681    return false;
1682
1683  return true;
1684}
1685
1686static bool
1687IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1688                                     QualType &ToType,
1689                                     bool InOverloadResolution,
1690                                     StandardConversionSequence &SCS,
1691                                     bool CStyle) {
1692
1693  const RecordType *UT = ToType->getAsUnionType();
1694  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1695    return false;
1696  // The field to initialize within the transparent union.
1697  RecordDecl *UD = UT->getDecl();
1698  // It's compatible if the expression matches any of the fields.
1699  for (RecordDecl::field_iterator it = UD->field_begin(),
1700       itend = UD->field_end();
1701       it != itend; ++it) {
1702    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1703                             CStyle, /*ObjCWritebackConversion=*/false)) {
1704      ToType = it->getType();
1705      return true;
1706    }
1707  }
1708  return false;
1709}
1710
1711/// IsIntegralPromotion - Determines whether the conversion from the
1712/// expression From (whose potentially-adjusted type is FromType) to
1713/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1714/// sets PromotedType to the promoted type.
1715bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1716  const BuiltinType *To = ToType->getAs<BuiltinType>();
1717  // All integers are built-in.
1718  if (!To) {
1719    return false;
1720  }
1721
1722  // An rvalue of type char, signed char, unsigned char, short int, or
1723  // unsigned short int can be converted to an rvalue of type int if
1724  // int can represent all the values of the source type; otherwise,
1725  // the source rvalue can be converted to an rvalue of type unsigned
1726  // int (C++ 4.5p1).
1727  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1728      !FromType->isEnumeralType()) {
1729    if (// We can promote any signed, promotable integer type to an int
1730        (FromType->isSignedIntegerType() ||
1731         // We can promote any unsigned integer type whose size is
1732         // less than int to an int.
1733         (!FromType->isSignedIntegerType() &&
1734          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1735      return To->getKind() == BuiltinType::Int;
1736    }
1737
1738    return To->getKind() == BuiltinType::UInt;
1739  }
1740
1741  // C++11 [conv.prom]p3:
1742  //   A prvalue of an unscoped enumeration type whose underlying type is not
1743  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1744  //   following types that can represent all the values of the enumeration
1745  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1746  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1747  //   long long int. If none of the types in that list can represent all the
1748  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1749  //   type can be converted to an rvalue a prvalue of the extended integer type
1750  //   with lowest integer conversion rank (4.13) greater than the rank of long
1751  //   long in which all the values of the enumeration can be represented. If
1752  //   there are two such extended types, the signed one is chosen.
1753  // C++11 [conv.prom]p4:
1754  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1755  //   can be converted to a prvalue of its underlying type. Moreover, if
1756  //   integral promotion can be applied to its underlying type, a prvalue of an
1757  //   unscoped enumeration type whose underlying type is fixed can also be
1758  //   converted to a prvalue of the promoted underlying type.
1759  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1760    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1761    // provided for a scoped enumeration.
1762    if (FromEnumType->getDecl()->isScoped())
1763      return false;
1764
1765    // We can perform an integral promotion to the underlying type of the enum,
1766    // even if that's not the promoted type.
1767    if (FromEnumType->getDecl()->isFixed()) {
1768      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1769      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1770             IsIntegralPromotion(From, Underlying, ToType);
1771    }
1772
1773    // We have already pre-calculated the promotion type, so this is trivial.
1774    if (ToType->isIntegerType() &&
1775        !RequireCompleteType(From->getLocStart(), FromType, 0))
1776      return Context.hasSameUnqualifiedType(ToType,
1777                                FromEnumType->getDecl()->getPromotionType());
1778  }
1779
1780  // C++0x [conv.prom]p2:
1781  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1782  //   to an rvalue a prvalue of the first of the following types that can
1783  //   represent all the values of its underlying type: int, unsigned int,
1784  //   long int, unsigned long int, long long int, or unsigned long long int.
1785  //   If none of the types in that list can represent all the values of its
1786  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1787  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1788  //   type.
1789  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1790      ToType->isIntegerType()) {
1791    // Determine whether the type we're converting from is signed or
1792    // unsigned.
1793    bool FromIsSigned = FromType->isSignedIntegerType();
1794    uint64_t FromSize = Context.getTypeSize(FromType);
1795
1796    // The types we'll try to promote to, in the appropriate
1797    // order. Try each of these types.
1798    QualType PromoteTypes[6] = {
1799      Context.IntTy, Context.UnsignedIntTy,
1800      Context.LongTy, Context.UnsignedLongTy ,
1801      Context.LongLongTy, Context.UnsignedLongLongTy
1802    };
1803    for (int Idx = 0; Idx < 6; ++Idx) {
1804      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1805      if (FromSize < ToSize ||
1806          (FromSize == ToSize &&
1807           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1808        // We found the type that we can promote to. If this is the
1809        // type we wanted, we have a promotion. Otherwise, no
1810        // promotion.
1811        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1812      }
1813    }
1814  }
1815
1816  // An rvalue for an integral bit-field (9.6) can be converted to an
1817  // rvalue of type int if int can represent all the values of the
1818  // bit-field; otherwise, it can be converted to unsigned int if
1819  // unsigned int can represent all the values of the bit-field. If
1820  // the bit-field is larger yet, no integral promotion applies to
1821  // it. If the bit-field has an enumerated type, it is treated as any
1822  // other value of that type for promotion purposes (C++ 4.5p3).
1823  // FIXME: We should delay checking of bit-fields until we actually perform the
1824  // conversion.
1825  using llvm::APSInt;
1826  if (From)
1827    if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1828      APSInt BitWidth;
1829      if (FromType->isIntegralType(Context) &&
1830          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1831        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1832        ToSize = Context.getTypeSize(ToType);
1833
1834        // Are we promoting to an int from a bitfield that fits in an int?
1835        if (BitWidth < ToSize ||
1836            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1837          return To->getKind() == BuiltinType::Int;
1838        }
1839
1840        // Are we promoting to an unsigned int from an unsigned bitfield
1841        // that fits into an unsigned int?
1842        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1843          return To->getKind() == BuiltinType::UInt;
1844        }
1845
1846        return false;
1847      }
1848    }
1849
1850  // An rvalue of type bool can be converted to an rvalue of type int,
1851  // with false becoming zero and true becoming one (C++ 4.5p4).
1852  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1853    return true;
1854  }
1855
1856  return false;
1857}
1858
1859/// IsFloatingPointPromotion - Determines whether the conversion from
1860/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1861/// returns true and sets PromotedType to the promoted type.
1862bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1863  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1864    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1865      /// An rvalue of type float can be converted to an rvalue of type
1866      /// double. (C++ 4.6p1).
1867      if (FromBuiltin->getKind() == BuiltinType::Float &&
1868          ToBuiltin->getKind() == BuiltinType::Double)
1869        return true;
1870
1871      // C99 6.3.1.5p1:
1872      //   When a float is promoted to double or long double, or a
1873      //   double is promoted to long double [...].
1874      if (!getLangOpts().CPlusPlus &&
1875          (FromBuiltin->getKind() == BuiltinType::Float ||
1876           FromBuiltin->getKind() == BuiltinType::Double) &&
1877          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1878        return true;
1879
1880      // Half can be promoted to float.
1881      if (!getLangOpts().NativeHalfType &&
1882           FromBuiltin->getKind() == BuiltinType::Half &&
1883          ToBuiltin->getKind() == BuiltinType::Float)
1884        return true;
1885    }
1886
1887  return false;
1888}
1889
1890/// \brief Determine if a conversion is a complex promotion.
1891///
1892/// A complex promotion is defined as a complex -> complex conversion
1893/// where the conversion between the underlying real types is a
1894/// floating-point or integral promotion.
1895bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1896  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1897  if (!FromComplex)
1898    return false;
1899
1900  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1901  if (!ToComplex)
1902    return false;
1903
1904  return IsFloatingPointPromotion(FromComplex->getElementType(),
1905                                  ToComplex->getElementType()) ||
1906    IsIntegralPromotion(0, FromComplex->getElementType(),
1907                        ToComplex->getElementType());
1908}
1909
1910/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1911/// the pointer type FromPtr to a pointer to type ToPointee, with the
1912/// same type qualifiers as FromPtr has on its pointee type. ToType,
1913/// if non-empty, will be a pointer to ToType that may or may not have
1914/// the right set of qualifiers on its pointee.
1915///
1916static QualType
1917BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1918                                   QualType ToPointee, QualType ToType,
1919                                   ASTContext &Context,
1920                                   bool StripObjCLifetime = false) {
1921  assert((FromPtr->getTypeClass() == Type::Pointer ||
1922          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1923         "Invalid similarly-qualified pointer type");
1924
1925  /// Conversions to 'id' subsume cv-qualifier conversions.
1926  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1927    return ToType.getUnqualifiedType();
1928
1929  QualType CanonFromPointee
1930    = Context.getCanonicalType(FromPtr->getPointeeType());
1931  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1932  Qualifiers Quals = CanonFromPointee.getQualifiers();
1933
1934  if (StripObjCLifetime)
1935    Quals.removeObjCLifetime();
1936
1937  // Exact qualifier match -> return the pointer type we're converting to.
1938  if (CanonToPointee.getLocalQualifiers() == Quals) {
1939    // ToType is exactly what we need. Return it.
1940    if (!ToType.isNull())
1941      return ToType.getUnqualifiedType();
1942
1943    // Build a pointer to ToPointee. It has the right qualifiers
1944    // already.
1945    if (isa<ObjCObjectPointerType>(ToType))
1946      return Context.getObjCObjectPointerType(ToPointee);
1947    return Context.getPointerType(ToPointee);
1948  }
1949
1950  // Just build a canonical type that has the right qualifiers.
1951  QualType QualifiedCanonToPointee
1952    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1953
1954  if (isa<ObjCObjectPointerType>(ToType))
1955    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1956  return Context.getPointerType(QualifiedCanonToPointee);
1957}
1958
1959static bool isNullPointerConstantForConversion(Expr *Expr,
1960                                               bool InOverloadResolution,
1961                                               ASTContext &Context) {
1962  // Handle value-dependent integral null pointer constants correctly.
1963  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1964  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1965      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1966    return !InOverloadResolution;
1967
1968  return Expr->isNullPointerConstant(Context,
1969                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1970                                        : Expr::NPC_ValueDependentIsNull);
1971}
1972
1973/// IsPointerConversion - Determines whether the conversion of the
1974/// expression From, which has the (possibly adjusted) type FromType,
1975/// can be converted to the type ToType via a pointer conversion (C++
1976/// 4.10). If so, returns true and places the converted type (that
1977/// might differ from ToType in its cv-qualifiers at some level) into
1978/// ConvertedType.
1979///
1980/// This routine also supports conversions to and from block pointers
1981/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1982/// pointers to interfaces. FIXME: Once we've determined the
1983/// appropriate overloading rules for Objective-C, we may want to
1984/// split the Objective-C checks into a different routine; however,
1985/// GCC seems to consider all of these conversions to be pointer
1986/// conversions, so for now they live here. IncompatibleObjC will be
1987/// set if the conversion is an allowed Objective-C conversion that
1988/// should result in a warning.
1989bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1990                               bool InOverloadResolution,
1991                               QualType& ConvertedType,
1992                               bool &IncompatibleObjC) {
1993  IncompatibleObjC = false;
1994  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1995                              IncompatibleObjC))
1996    return true;
1997
1998  // Conversion from a null pointer constant to any Objective-C pointer type.
1999  if (ToType->isObjCObjectPointerType() &&
2000      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2001    ConvertedType = ToType;
2002    return true;
2003  }
2004
2005  // Blocks: Block pointers can be converted to void*.
2006  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2007      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2008    ConvertedType = ToType;
2009    return true;
2010  }
2011  // Blocks: A null pointer constant can be converted to a block
2012  // pointer type.
2013  if (ToType->isBlockPointerType() &&
2014      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2015    ConvertedType = ToType;
2016    return true;
2017  }
2018
2019  // If the left-hand-side is nullptr_t, the right side can be a null
2020  // pointer constant.
2021  if (ToType->isNullPtrType() &&
2022      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2023    ConvertedType = ToType;
2024    return true;
2025  }
2026
2027  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2028  if (!ToTypePtr)
2029    return false;
2030
2031  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2032  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2033    ConvertedType = ToType;
2034    return true;
2035  }
2036
2037  // Beyond this point, both types need to be pointers
2038  // , including objective-c pointers.
2039  QualType ToPointeeType = ToTypePtr->getPointeeType();
2040  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2041      !getLangOpts().ObjCAutoRefCount) {
2042    ConvertedType = BuildSimilarlyQualifiedPointerType(
2043                                      FromType->getAs<ObjCObjectPointerType>(),
2044                                                       ToPointeeType,
2045                                                       ToType, Context);
2046    return true;
2047  }
2048  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2049  if (!FromTypePtr)
2050    return false;
2051
2052  QualType FromPointeeType = FromTypePtr->getPointeeType();
2053
2054  // If the unqualified pointee types are the same, this can't be a
2055  // pointer conversion, so don't do all of the work below.
2056  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2057    return false;
2058
2059  // An rvalue of type "pointer to cv T," where T is an object type,
2060  // can be converted to an rvalue of type "pointer to cv void" (C++
2061  // 4.10p2).
2062  if (FromPointeeType->isIncompleteOrObjectType() &&
2063      ToPointeeType->isVoidType()) {
2064    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2065                                                       ToPointeeType,
2066                                                       ToType, Context,
2067                                                   /*StripObjCLifetime=*/true);
2068    return true;
2069  }
2070
2071  // MSVC allows implicit function to void* type conversion.
2072  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2073      ToPointeeType->isVoidType()) {
2074    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2075                                                       ToPointeeType,
2076                                                       ToType, Context);
2077    return true;
2078  }
2079
2080  // When we're overloading in C, we allow a special kind of pointer
2081  // conversion for compatible-but-not-identical pointee types.
2082  if (!getLangOpts().CPlusPlus &&
2083      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2084    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2085                                                       ToPointeeType,
2086                                                       ToType, Context);
2087    return true;
2088  }
2089
2090  // C++ [conv.ptr]p3:
2091  //
2092  //   An rvalue of type "pointer to cv D," where D is a class type,
2093  //   can be converted to an rvalue of type "pointer to cv B," where
2094  //   B is a base class (clause 10) of D. If B is an inaccessible
2095  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2096  //   necessitates this conversion is ill-formed. The result of the
2097  //   conversion is a pointer to the base class sub-object of the
2098  //   derived class object. The null pointer value is converted to
2099  //   the null pointer value of the destination type.
2100  //
2101  // Note that we do not check for ambiguity or inaccessibility
2102  // here. That is handled by CheckPointerConversion.
2103  if (getLangOpts().CPlusPlus &&
2104      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2105      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2106      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2107      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2108    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2109                                                       ToPointeeType,
2110                                                       ToType, Context);
2111    return true;
2112  }
2113
2114  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2115      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2116    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2117                                                       ToPointeeType,
2118                                                       ToType, Context);
2119    return true;
2120  }
2121
2122  return false;
2123}
2124
2125/// \brief Adopt the given qualifiers for the given type.
2126static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2127  Qualifiers TQs = T.getQualifiers();
2128
2129  // Check whether qualifiers already match.
2130  if (TQs == Qs)
2131    return T;
2132
2133  if (Qs.compatiblyIncludes(TQs))
2134    return Context.getQualifiedType(T, Qs);
2135
2136  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2137}
2138
2139/// isObjCPointerConversion - Determines whether this is an
2140/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2141/// with the same arguments and return values.
2142bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2143                                   QualType& ConvertedType,
2144                                   bool &IncompatibleObjC) {
2145  if (!getLangOpts().ObjC1)
2146    return false;
2147
2148  // The set of qualifiers on the type we're converting from.
2149  Qualifiers FromQualifiers = FromType.getQualifiers();
2150
2151  // First, we handle all conversions on ObjC object pointer types.
2152  const ObjCObjectPointerType* ToObjCPtr =
2153    ToType->getAs<ObjCObjectPointerType>();
2154  const ObjCObjectPointerType *FromObjCPtr =
2155    FromType->getAs<ObjCObjectPointerType>();
2156
2157  if (ToObjCPtr && FromObjCPtr) {
2158    // If the pointee types are the same (ignoring qualifications),
2159    // then this is not a pointer conversion.
2160    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2161                                       FromObjCPtr->getPointeeType()))
2162      return false;
2163
2164    // Check for compatible
2165    // Objective C++: We're able to convert between "id" or "Class" and a
2166    // pointer to any interface (in both directions).
2167    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2168      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2169      return true;
2170    }
2171    // Conversions with Objective-C's id<...>.
2172    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2173         ToObjCPtr->isObjCQualifiedIdType()) &&
2174        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2175                                                  /*compare=*/false)) {
2176      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2177      return true;
2178    }
2179    // Objective C++: We're able to convert from a pointer to an
2180    // interface to a pointer to a different interface.
2181    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2182      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2183      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2184      if (getLangOpts().CPlusPlus && LHS && RHS &&
2185          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2186                                                FromObjCPtr->getPointeeType()))
2187        return false;
2188      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2189                                                   ToObjCPtr->getPointeeType(),
2190                                                         ToType, Context);
2191      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2192      return true;
2193    }
2194
2195    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2196      // Okay: this is some kind of implicit downcast of Objective-C
2197      // interfaces, which is permitted. However, we're going to
2198      // complain about it.
2199      IncompatibleObjC = true;
2200      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2201                                                   ToObjCPtr->getPointeeType(),
2202                                                         ToType, Context);
2203      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2204      return true;
2205    }
2206  }
2207  // Beyond this point, both types need to be C pointers or block pointers.
2208  QualType ToPointeeType;
2209  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2210    ToPointeeType = ToCPtr->getPointeeType();
2211  else if (const BlockPointerType *ToBlockPtr =
2212            ToType->getAs<BlockPointerType>()) {
2213    // Objective C++: We're able to convert from a pointer to any object
2214    // to a block pointer type.
2215    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2216      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2217      return true;
2218    }
2219    ToPointeeType = ToBlockPtr->getPointeeType();
2220  }
2221  else if (FromType->getAs<BlockPointerType>() &&
2222           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2223    // Objective C++: We're able to convert from a block pointer type to a
2224    // pointer to any object.
2225    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2226    return true;
2227  }
2228  else
2229    return false;
2230
2231  QualType FromPointeeType;
2232  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2233    FromPointeeType = FromCPtr->getPointeeType();
2234  else if (const BlockPointerType *FromBlockPtr =
2235           FromType->getAs<BlockPointerType>())
2236    FromPointeeType = FromBlockPtr->getPointeeType();
2237  else
2238    return false;
2239
2240  // If we have pointers to pointers, recursively check whether this
2241  // is an Objective-C conversion.
2242  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2243      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2244                              IncompatibleObjC)) {
2245    // We always complain about this conversion.
2246    IncompatibleObjC = true;
2247    ConvertedType = Context.getPointerType(ConvertedType);
2248    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2249    return true;
2250  }
2251  // Allow conversion of pointee being objective-c pointer to another one;
2252  // as in I* to id.
2253  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2254      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2255      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2256                              IncompatibleObjC)) {
2257
2258    ConvertedType = Context.getPointerType(ConvertedType);
2259    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2260    return true;
2261  }
2262
2263  // If we have pointers to functions or blocks, check whether the only
2264  // differences in the argument and result types are in Objective-C
2265  // pointer conversions. If so, we permit the conversion (but
2266  // complain about it).
2267  const FunctionProtoType *FromFunctionType
2268    = FromPointeeType->getAs<FunctionProtoType>();
2269  const FunctionProtoType *ToFunctionType
2270    = ToPointeeType->getAs<FunctionProtoType>();
2271  if (FromFunctionType && ToFunctionType) {
2272    // If the function types are exactly the same, this isn't an
2273    // Objective-C pointer conversion.
2274    if (Context.getCanonicalType(FromPointeeType)
2275          == Context.getCanonicalType(ToPointeeType))
2276      return false;
2277
2278    // Perform the quick checks that will tell us whether these
2279    // function types are obviously different.
2280    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2281        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2282        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2283      return false;
2284
2285    bool HasObjCConversion = false;
2286    if (Context.getCanonicalType(FromFunctionType->getResultType())
2287          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2288      // Okay, the types match exactly. Nothing to do.
2289    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2290                                       ToFunctionType->getResultType(),
2291                                       ConvertedType, IncompatibleObjC)) {
2292      // Okay, we have an Objective-C pointer conversion.
2293      HasObjCConversion = true;
2294    } else {
2295      // Function types are too different. Abort.
2296      return false;
2297    }
2298
2299    // Check argument types.
2300    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2301         ArgIdx != NumArgs; ++ArgIdx) {
2302      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2303      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2304      if (Context.getCanonicalType(FromArgType)
2305            == Context.getCanonicalType(ToArgType)) {
2306        // Okay, the types match exactly. Nothing to do.
2307      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2308                                         ConvertedType, IncompatibleObjC)) {
2309        // Okay, we have an Objective-C pointer conversion.
2310        HasObjCConversion = true;
2311      } else {
2312        // Argument types are too different. Abort.
2313        return false;
2314      }
2315    }
2316
2317    if (HasObjCConversion) {
2318      // We had an Objective-C conversion. Allow this pointer
2319      // conversion, but complain about it.
2320      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2321      IncompatibleObjC = true;
2322      return true;
2323    }
2324  }
2325
2326  return false;
2327}
2328
2329/// \brief Determine whether this is an Objective-C writeback conversion,
2330/// used for parameter passing when performing automatic reference counting.
2331///
2332/// \param FromType The type we're converting form.
2333///
2334/// \param ToType The type we're converting to.
2335///
2336/// \param ConvertedType The type that will be produced after applying
2337/// this conversion.
2338bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2339                                     QualType &ConvertedType) {
2340  if (!getLangOpts().ObjCAutoRefCount ||
2341      Context.hasSameUnqualifiedType(FromType, ToType))
2342    return false;
2343
2344  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2345  QualType ToPointee;
2346  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2347    ToPointee = ToPointer->getPointeeType();
2348  else
2349    return false;
2350
2351  Qualifiers ToQuals = ToPointee.getQualifiers();
2352  if (!ToPointee->isObjCLifetimeType() ||
2353      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2354      !ToQuals.withoutObjCLifetime().empty())
2355    return false;
2356
2357  // Argument must be a pointer to __strong to __weak.
2358  QualType FromPointee;
2359  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2360    FromPointee = FromPointer->getPointeeType();
2361  else
2362    return false;
2363
2364  Qualifiers FromQuals = FromPointee.getQualifiers();
2365  if (!FromPointee->isObjCLifetimeType() ||
2366      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2367       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2368    return false;
2369
2370  // Make sure that we have compatible qualifiers.
2371  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2372  if (!ToQuals.compatiblyIncludes(FromQuals))
2373    return false;
2374
2375  // Remove qualifiers from the pointee type we're converting from; they
2376  // aren't used in the compatibility check belong, and we'll be adding back
2377  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2378  FromPointee = FromPointee.getUnqualifiedType();
2379
2380  // The unqualified form of the pointee types must be compatible.
2381  ToPointee = ToPointee.getUnqualifiedType();
2382  bool IncompatibleObjC;
2383  if (Context.typesAreCompatible(FromPointee, ToPointee))
2384    FromPointee = ToPointee;
2385  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2386                                    IncompatibleObjC))
2387    return false;
2388
2389  /// \brief Construct the type we're converting to, which is a pointer to
2390  /// __autoreleasing pointee.
2391  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2392  ConvertedType = Context.getPointerType(FromPointee);
2393  return true;
2394}
2395
2396bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2397                                    QualType& ConvertedType) {
2398  QualType ToPointeeType;
2399  if (const BlockPointerType *ToBlockPtr =
2400        ToType->getAs<BlockPointerType>())
2401    ToPointeeType = ToBlockPtr->getPointeeType();
2402  else
2403    return false;
2404
2405  QualType FromPointeeType;
2406  if (const BlockPointerType *FromBlockPtr =
2407      FromType->getAs<BlockPointerType>())
2408    FromPointeeType = FromBlockPtr->getPointeeType();
2409  else
2410    return false;
2411  // We have pointer to blocks, check whether the only
2412  // differences in the argument and result types are in Objective-C
2413  // pointer conversions. If so, we permit the conversion.
2414
2415  const FunctionProtoType *FromFunctionType
2416    = FromPointeeType->getAs<FunctionProtoType>();
2417  const FunctionProtoType *ToFunctionType
2418    = ToPointeeType->getAs<FunctionProtoType>();
2419
2420  if (!FromFunctionType || !ToFunctionType)
2421    return false;
2422
2423  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2424    return true;
2425
2426  // Perform the quick checks that will tell us whether these
2427  // function types are obviously different.
2428  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2429      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2430    return false;
2431
2432  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2433  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2434  if (FromEInfo != ToEInfo)
2435    return false;
2436
2437  bool IncompatibleObjC = false;
2438  if (Context.hasSameType(FromFunctionType->getResultType(),
2439                          ToFunctionType->getResultType())) {
2440    // Okay, the types match exactly. Nothing to do.
2441  } else {
2442    QualType RHS = FromFunctionType->getResultType();
2443    QualType LHS = ToFunctionType->getResultType();
2444    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2445        !RHS.hasQualifiers() && LHS.hasQualifiers())
2446       LHS = LHS.getUnqualifiedType();
2447
2448     if (Context.hasSameType(RHS,LHS)) {
2449       // OK exact match.
2450     } else if (isObjCPointerConversion(RHS, LHS,
2451                                        ConvertedType, IncompatibleObjC)) {
2452     if (IncompatibleObjC)
2453       return false;
2454     // Okay, we have an Objective-C pointer conversion.
2455     }
2456     else
2457       return false;
2458   }
2459
2460   // Check argument types.
2461   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2462        ArgIdx != NumArgs; ++ArgIdx) {
2463     IncompatibleObjC = false;
2464     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2465     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2466     if (Context.hasSameType(FromArgType, ToArgType)) {
2467       // Okay, the types match exactly. Nothing to do.
2468     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2469                                        ConvertedType, IncompatibleObjC)) {
2470       if (IncompatibleObjC)
2471         return false;
2472       // Okay, we have an Objective-C pointer conversion.
2473     } else
2474       // Argument types are too different. Abort.
2475       return false;
2476   }
2477   if (LangOpts.ObjCAutoRefCount &&
2478       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2479                                                    ToFunctionType))
2480     return false;
2481
2482   ConvertedType = ToType;
2483   return true;
2484}
2485
2486enum {
2487  ft_default,
2488  ft_different_class,
2489  ft_parameter_arity,
2490  ft_parameter_mismatch,
2491  ft_return_type,
2492  ft_qualifer_mismatch
2493};
2494
2495/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2496/// function types.  Catches different number of parameter, mismatch in
2497/// parameter types, and different return types.
2498void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2499                                      QualType FromType, QualType ToType) {
2500  // If either type is not valid, include no extra info.
2501  if (FromType.isNull() || ToType.isNull()) {
2502    PDiag << ft_default;
2503    return;
2504  }
2505
2506  // Get the function type from the pointers.
2507  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2508    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2509                            *ToMember = ToType->getAs<MemberPointerType>();
2510    if (FromMember->getClass() != ToMember->getClass()) {
2511      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2512            << QualType(FromMember->getClass(), 0);
2513      return;
2514    }
2515    FromType = FromMember->getPointeeType();
2516    ToType = ToMember->getPointeeType();
2517  }
2518
2519  if (FromType->isPointerType())
2520    FromType = FromType->getPointeeType();
2521  if (ToType->isPointerType())
2522    ToType = ToType->getPointeeType();
2523
2524  // Remove references.
2525  FromType = FromType.getNonReferenceType();
2526  ToType = ToType.getNonReferenceType();
2527
2528  // Don't print extra info for non-specialized template functions.
2529  if (FromType->isInstantiationDependentType() &&
2530      !FromType->getAs<TemplateSpecializationType>()) {
2531    PDiag << ft_default;
2532    return;
2533  }
2534
2535  // No extra info for same types.
2536  if (Context.hasSameType(FromType, ToType)) {
2537    PDiag << ft_default;
2538    return;
2539  }
2540
2541  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2542                          *ToFunction = ToType->getAs<FunctionProtoType>();
2543
2544  // Both types need to be function types.
2545  if (!FromFunction || !ToFunction) {
2546    PDiag << ft_default;
2547    return;
2548  }
2549
2550  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2551    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2552          << FromFunction->getNumArgs();
2553    return;
2554  }
2555
2556  // Handle different parameter types.
2557  unsigned ArgPos;
2558  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2559    PDiag << ft_parameter_mismatch << ArgPos + 1
2560          << ToFunction->getArgType(ArgPos)
2561          << FromFunction->getArgType(ArgPos);
2562    return;
2563  }
2564
2565  // Handle different return type.
2566  if (!Context.hasSameType(FromFunction->getResultType(),
2567                           ToFunction->getResultType())) {
2568    PDiag << ft_return_type << ToFunction->getResultType()
2569          << FromFunction->getResultType();
2570    return;
2571  }
2572
2573  unsigned FromQuals = FromFunction->getTypeQuals(),
2574           ToQuals = ToFunction->getTypeQuals();
2575  if (FromQuals != ToQuals) {
2576    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2577    return;
2578  }
2579
2580  // Unable to find a difference, so add no extra info.
2581  PDiag << ft_default;
2582}
2583
2584/// FunctionArgTypesAreEqual - This routine checks two function proto types
2585/// for equality of their argument types. Caller has already checked that
2586/// they have same number of arguments.  If the parameters are different,
2587/// ArgPos will have the parameter index of the first different parameter.
2588bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2589                                    const FunctionProtoType *NewType,
2590                                    unsigned *ArgPos) {
2591  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2592       N = NewType->arg_type_begin(),
2593       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2594    if (!Context.hasSameType(O->getUnqualifiedType(),
2595                             N->getUnqualifiedType())) {
2596      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2597      return false;
2598    }
2599  }
2600  return true;
2601}
2602
2603/// CheckPointerConversion - Check the pointer conversion from the
2604/// expression From to the type ToType. This routine checks for
2605/// ambiguous or inaccessible derived-to-base pointer
2606/// conversions for which IsPointerConversion has already returned
2607/// true. It returns true and produces a diagnostic if there was an
2608/// error, or returns false otherwise.
2609bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2610                                  CastKind &Kind,
2611                                  CXXCastPath& BasePath,
2612                                  bool IgnoreBaseAccess) {
2613  QualType FromType = From->getType();
2614  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2615
2616  Kind = CK_BitCast;
2617
2618  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2619      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2620      Expr::NPCK_ZeroExpression) {
2621    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2622      DiagRuntimeBehavior(From->getExprLoc(), From,
2623                          PDiag(diag::warn_impcast_bool_to_null_pointer)
2624                            << ToType << From->getSourceRange());
2625    else if (!isUnevaluatedContext())
2626      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2627        << ToType << From->getSourceRange();
2628  }
2629  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2630    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2631      QualType FromPointeeType = FromPtrType->getPointeeType(),
2632               ToPointeeType   = ToPtrType->getPointeeType();
2633
2634      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2635          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2636        // We must have a derived-to-base conversion. Check an
2637        // ambiguous or inaccessible conversion.
2638        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2639                                         From->getExprLoc(),
2640                                         From->getSourceRange(), &BasePath,
2641                                         IgnoreBaseAccess))
2642          return true;
2643
2644        // The conversion was successful.
2645        Kind = CK_DerivedToBase;
2646      }
2647    }
2648  } else if (const ObjCObjectPointerType *ToPtrType =
2649               ToType->getAs<ObjCObjectPointerType>()) {
2650    if (const ObjCObjectPointerType *FromPtrType =
2651          FromType->getAs<ObjCObjectPointerType>()) {
2652      // Objective-C++ conversions are always okay.
2653      // FIXME: We should have a different class of conversions for the
2654      // Objective-C++ implicit conversions.
2655      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2656        return false;
2657    } else if (FromType->isBlockPointerType()) {
2658      Kind = CK_BlockPointerToObjCPointerCast;
2659    } else {
2660      Kind = CK_CPointerToObjCPointerCast;
2661    }
2662  } else if (ToType->isBlockPointerType()) {
2663    if (!FromType->isBlockPointerType())
2664      Kind = CK_AnyPointerToBlockPointerCast;
2665  }
2666
2667  // We shouldn't fall into this case unless it's valid for other
2668  // reasons.
2669  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2670    Kind = CK_NullToPointer;
2671
2672  return false;
2673}
2674
2675/// IsMemberPointerConversion - Determines whether the conversion of the
2676/// expression From, which has the (possibly adjusted) type FromType, can be
2677/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2678/// If so, returns true and places the converted type (that might differ from
2679/// ToType in its cv-qualifiers at some level) into ConvertedType.
2680bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2681                                     QualType ToType,
2682                                     bool InOverloadResolution,
2683                                     QualType &ConvertedType) {
2684  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2685  if (!ToTypePtr)
2686    return false;
2687
2688  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2689  if (From->isNullPointerConstant(Context,
2690                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2691                                        : Expr::NPC_ValueDependentIsNull)) {
2692    ConvertedType = ToType;
2693    return true;
2694  }
2695
2696  // Otherwise, both types have to be member pointers.
2697  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2698  if (!FromTypePtr)
2699    return false;
2700
2701  // A pointer to member of B can be converted to a pointer to member of D,
2702  // where D is derived from B (C++ 4.11p2).
2703  QualType FromClass(FromTypePtr->getClass(), 0);
2704  QualType ToClass(ToTypePtr->getClass(), 0);
2705
2706  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2707      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2708      IsDerivedFrom(ToClass, FromClass)) {
2709    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2710                                                 ToClass.getTypePtr());
2711    return true;
2712  }
2713
2714  return false;
2715}
2716
2717/// CheckMemberPointerConversion - Check the member pointer conversion from the
2718/// expression From to the type ToType. This routine checks for ambiguous or
2719/// virtual or inaccessible base-to-derived member pointer conversions
2720/// for which IsMemberPointerConversion has already returned true. It returns
2721/// true and produces a diagnostic if there was an error, or returns false
2722/// otherwise.
2723bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2724                                        CastKind &Kind,
2725                                        CXXCastPath &BasePath,
2726                                        bool IgnoreBaseAccess) {
2727  QualType FromType = From->getType();
2728  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2729  if (!FromPtrType) {
2730    // This must be a null pointer to member pointer conversion
2731    assert(From->isNullPointerConstant(Context,
2732                                       Expr::NPC_ValueDependentIsNull) &&
2733           "Expr must be null pointer constant!");
2734    Kind = CK_NullToMemberPointer;
2735    return false;
2736  }
2737
2738  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2739  assert(ToPtrType && "No member pointer cast has a target type "
2740                      "that is not a member pointer.");
2741
2742  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2743  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2744
2745  // FIXME: What about dependent types?
2746  assert(FromClass->isRecordType() && "Pointer into non-class.");
2747  assert(ToClass->isRecordType() && "Pointer into non-class.");
2748
2749  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2750                     /*DetectVirtual=*/true);
2751  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2752  assert(DerivationOkay &&
2753         "Should not have been called if derivation isn't OK.");
2754  (void)DerivationOkay;
2755
2756  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2757                                  getUnqualifiedType())) {
2758    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2759    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2760      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2761    return true;
2762  }
2763
2764  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2765    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2766      << FromClass << ToClass << QualType(VBase, 0)
2767      << From->getSourceRange();
2768    return true;
2769  }
2770
2771  if (!IgnoreBaseAccess)
2772    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2773                         Paths.front(),
2774                         diag::err_downcast_from_inaccessible_base);
2775
2776  // Must be a base to derived member conversion.
2777  BuildBasePathArray(Paths, BasePath);
2778  Kind = CK_BaseToDerivedMemberPointer;
2779  return false;
2780}
2781
2782/// IsQualificationConversion - Determines whether the conversion from
2783/// an rvalue of type FromType to ToType is a qualification conversion
2784/// (C++ 4.4).
2785///
2786/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2787/// when the qualification conversion involves a change in the Objective-C
2788/// object lifetime.
2789bool
2790Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2791                                bool CStyle, bool &ObjCLifetimeConversion) {
2792  FromType = Context.getCanonicalType(FromType);
2793  ToType = Context.getCanonicalType(ToType);
2794  ObjCLifetimeConversion = false;
2795
2796  // If FromType and ToType are the same type, this is not a
2797  // qualification conversion.
2798  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2799    return false;
2800
2801  // (C++ 4.4p4):
2802  //   A conversion can add cv-qualifiers at levels other than the first
2803  //   in multi-level pointers, subject to the following rules: [...]
2804  bool PreviousToQualsIncludeConst = true;
2805  bool UnwrappedAnyPointer = false;
2806  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2807    // Within each iteration of the loop, we check the qualifiers to
2808    // determine if this still looks like a qualification
2809    // conversion. Then, if all is well, we unwrap one more level of
2810    // pointers or pointers-to-members and do it all again
2811    // until there are no more pointers or pointers-to-members left to
2812    // unwrap.
2813    UnwrappedAnyPointer = true;
2814
2815    Qualifiers FromQuals = FromType.getQualifiers();
2816    Qualifiers ToQuals = ToType.getQualifiers();
2817
2818    // Objective-C ARC:
2819    //   Check Objective-C lifetime conversions.
2820    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2821        UnwrappedAnyPointer) {
2822      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2823        ObjCLifetimeConversion = true;
2824        FromQuals.removeObjCLifetime();
2825        ToQuals.removeObjCLifetime();
2826      } else {
2827        // Qualification conversions cannot cast between different
2828        // Objective-C lifetime qualifiers.
2829        return false;
2830      }
2831    }
2832
2833    // Allow addition/removal of GC attributes but not changing GC attributes.
2834    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2835        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2836      FromQuals.removeObjCGCAttr();
2837      ToQuals.removeObjCGCAttr();
2838    }
2839
2840    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2841    //      2,j, and similarly for volatile.
2842    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2843      return false;
2844
2845    //   -- if the cv 1,j and cv 2,j are different, then const is in
2846    //      every cv for 0 < k < j.
2847    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2848        && !PreviousToQualsIncludeConst)
2849      return false;
2850
2851    // Keep track of whether all prior cv-qualifiers in the "to" type
2852    // include const.
2853    PreviousToQualsIncludeConst
2854      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2855  }
2856
2857  // We are left with FromType and ToType being the pointee types
2858  // after unwrapping the original FromType and ToType the same number
2859  // of types. If we unwrapped any pointers, and if FromType and
2860  // ToType have the same unqualified type (since we checked
2861  // qualifiers above), then this is a qualification conversion.
2862  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2863}
2864
2865/// \brief - Determine whether this is a conversion from a scalar type to an
2866/// atomic type.
2867///
2868/// If successful, updates \c SCS's second and third steps in the conversion
2869/// sequence to finish the conversion.
2870static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2871                                bool InOverloadResolution,
2872                                StandardConversionSequence &SCS,
2873                                bool CStyle) {
2874  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2875  if (!ToAtomic)
2876    return false;
2877
2878  StandardConversionSequence InnerSCS;
2879  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2880                            InOverloadResolution, InnerSCS,
2881                            CStyle, /*AllowObjCWritebackConversion=*/false))
2882    return false;
2883
2884  SCS.Second = InnerSCS.Second;
2885  SCS.setToType(1, InnerSCS.getToType(1));
2886  SCS.Third = InnerSCS.Third;
2887  SCS.QualificationIncludesObjCLifetime
2888    = InnerSCS.QualificationIncludesObjCLifetime;
2889  SCS.setToType(2, InnerSCS.getToType(2));
2890  return true;
2891}
2892
2893static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2894                                              CXXConstructorDecl *Constructor,
2895                                              QualType Type) {
2896  const FunctionProtoType *CtorType =
2897      Constructor->getType()->getAs<FunctionProtoType>();
2898  if (CtorType->getNumArgs() > 0) {
2899    QualType FirstArg = CtorType->getArgType(0);
2900    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2901      return true;
2902  }
2903  return false;
2904}
2905
2906static OverloadingResult
2907IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2908                                       CXXRecordDecl *To,
2909                                       UserDefinedConversionSequence &User,
2910                                       OverloadCandidateSet &CandidateSet,
2911                                       bool AllowExplicit) {
2912  DeclContext::lookup_result R = S.LookupConstructors(To);
2913  for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2914       Con != ConEnd; ++Con) {
2915    NamedDecl *D = *Con;
2916    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2917
2918    // Find the constructor (which may be a template).
2919    CXXConstructorDecl *Constructor = 0;
2920    FunctionTemplateDecl *ConstructorTmpl
2921      = dyn_cast<FunctionTemplateDecl>(D);
2922    if (ConstructorTmpl)
2923      Constructor
2924        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2925    else
2926      Constructor = cast<CXXConstructorDecl>(D);
2927
2928    bool Usable = !Constructor->isInvalidDecl() &&
2929                  S.isInitListConstructor(Constructor) &&
2930                  (AllowExplicit || !Constructor->isExplicit());
2931    if (Usable) {
2932      // If the first argument is (a reference to) the target type,
2933      // suppress conversions.
2934      bool SuppressUserConversions =
2935          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2936      if (ConstructorTmpl)
2937        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2938                                       /*ExplicitArgs*/ 0,
2939                                       From, CandidateSet,
2940                                       SuppressUserConversions);
2941      else
2942        S.AddOverloadCandidate(Constructor, FoundDecl,
2943                               From, CandidateSet,
2944                               SuppressUserConversions);
2945    }
2946  }
2947
2948  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2949
2950  OverloadCandidateSet::iterator Best;
2951  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2952  case OR_Success: {
2953    // Record the standard conversion we used and the conversion function.
2954    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2955    QualType ThisType = Constructor->getThisType(S.Context);
2956    // Initializer lists don't have conversions as such.
2957    User.Before.setAsIdentityConversion();
2958    User.HadMultipleCandidates = HadMultipleCandidates;
2959    User.ConversionFunction = Constructor;
2960    User.FoundConversionFunction = Best->FoundDecl;
2961    User.After.setAsIdentityConversion();
2962    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2963    User.After.setAllToTypes(ToType);
2964    return OR_Success;
2965  }
2966
2967  case OR_No_Viable_Function:
2968    return OR_No_Viable_Function;
2969  case OR_Deleted:
2970    return OR_Deleted;
2971  case OR_Ambiguous:
2972    return OR_Ambiguous;
2973  }
2974
2975  llvm_unreachable("Invalid OverloadResult!");
2976}
2977
2978/// Determines whether there is a user-defined conversion sequence
2979/// (C++ [over.ics.user]) that converts expression From to the type
2980/// ToType. If such a conversion exists, User will contain the
2981/// user-defined conversion sequence that performs such a conversion
2982/// and this routine will return true. Otherwise, this routine returns
2983/// false and User is unspecified.
2984///
2985/// \param AllowExplicit  true if the conversion should consider C++0x
2986/// "explicit" conversion functions as well as non-explicit conversion
2987/// functions (C++0x [class.conv.fct]p2).
2988static OverloadingResult
2989IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2990                        UserDefinedConversionSequence &User,
2991                        OverloadCandidateSet &CandidateSet,
2992                        bool AllowExplicit) {
2993  // Whether we will only visit constructors.
2994  bool ConstructorsOnly = false;
2995
2996  // If the type we are conversion to is a class type, enumerate its
2997  // constructors.
2998  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2999    // C++ [over.match.ctor]p1:
3000    //   When objects of class type are direct-initialized (8.5), or
3001    //   copy-initialized from an expression of the same or a
3002    //   derived class type (8.5), overload resolution selects the
3003    //   constructor. [...] For copy-initialization, the candidate
3004    //   functions are all the converting constructors (12.3.1) of
3005    //   that class. The argument list is the expression-list within
3006    //   the parentheses of the initializer.
3007    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3008        (From->getType()->getAs<RecordType>() &&
3009         S.IsDerivedFrom(From->getType(), ToType)))
3010      ConstructorsOnly = true;
3011
3012    S.RequireCompleteType(From->getExprLoc(), ToType, 0);
3013    // RequireCompleteType may have returned true due to some invalid decl
3014    // during template instantiation, but ToType may be complete enough now
3015    // to try to recover.
3016    if (ToType->isIncompleteType()) {
3017      // We're not going to find any constructors.
3018    } else if (CXXRecordDecl *ToRecordDecl
3019                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3020
3021      Expr **Args = &From;
3022      unsigned NumArgs = 1;
3023      bool ListInitializing = false;
3024      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3025        // But first, see if there is an init-list-constructor that will work.
3026        OverloadingResult Result = IsInitializerListConstructorConversion(
3027            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3028        if (Result != OR_No_Viable_Function)
3029          return Result;
3030        // Never mind.
3031        CandidateSet.clear();
3032
3033        // If we're list-initializing, we pass the individual elements as
3034        // arguments, not the entire list.
3035        Args = InitList->getInits();
3036        NumArgs = InitList->getNumInits();
3037        ListInitializing = true;
3038      }
3039
3040      DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3041      for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3042           Con != ConEnd; ++Con) {
3043        NamedDecl *D = *Con;
3044        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3045
3046        // Find the constructor (which may be a template).
3047        CXXConstructorDecl *Constructor = 0;
3048        FunctionTemplateDecl *ConstructorTmpl
3049          = dyn_cast<FunctionTemplateDecl>(D);
3050        if (ConstructorTmpl)
3051          Constructor
3052            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3053        else
3054          Constructor = cast<CXXConstructorDecl>(D);
3055
3056        bool Usable = !Constructor->isInvalidDecl();
3057        if (ListInitializing)
3058          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3059        else
3060          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3061        if (Usable) {
3062          bool SuppressUserConversions = !ConstructorsOnly;
3063          if (SuppressUserConversions && ListInitializing) {
3064            SuppressUserConversions = false;
3065            if (NumArgs == 1) {
3066              // If the first argument is (a reference to) the target type,
3067              // suppress conversions.
3068              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3069                                                S.Context, Constructor, ToType);
3070            }
3071          }
3072          if (ConstructorTmpl)
3073            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3074                                           /*ExplicitArgs*/ 0,
3075                                           llvm::makeArrayRef(Args, NumArgs),
3076                                           CandidateSet, SuppressUserConversions);
3077          else
3078            // Allow one user-defined conversion when user specifies a
3079            // From->ToType conversion via an static cast (c-style, etc).
3080            S.AddOverloadCandidate(Constructor, FoundDecl,
3081                                   llvm::makeArrayRef(Args, NumArgs),
3082                                   CandidateSet, SuppressUserConversions);
3083        }
3084      }
3085    }
3086  }
3087
3088  // Enumerate conversion functions, if we're allowed to.
3089  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3090  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3091    // No conversion functions from incomplete types.
3092  } else if (const RecordType *FromRecordType
3093                                   = From->getType()->getAs<RecordType>()) {
3094    if (CXXRecordDecl *FromRecordDecl
3095         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3096      // Add all of the conversion functions as candidates.
3097      std::pair<CXXRecordDecl::conversion_iterator,
3098                CXXRecordDecl::conversion_iterator>
3099        Conversions = FromRecordDecl->getVisibleConversionFunctions();
3100      for (CXXRecordDecl::conversion_iterator
3101             I = Conversions.first, E = Conversions.second; I != E; ++I) {
3102        DeclAccessPair FoundDecl = I.getPair();
3103        NamedDecl *D = FoundDecl.getDecl();
3104        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3105        if (isa<UsingShadowDecl>(D))
3106          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3107
3108        CXXConversionDecl *Conv;
3109        FunctionTemplateDecl *ConvTemplate;
3110        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3111          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3112        else
3113          Conv = cast<CXXConversionDecl>(D);
3114
3115        if (AllowExplicit || !Conv->isExplicit()) {
3116          if (ConvTemplate)
3117            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3118                                             ActingContext, From, ToType,
3119                                             CandidateSet);
3120          else
3121            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3122                                     From, ToType, CandidateSet);
3123        }
3124      }
3125    }
3126  }
3127
3128  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3129
3130  OverloadCandidateSet::iterator Best;
3131  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3132  case OR_Success:
3133    // Record the standard conversion we used and the conversion function.
3134    if (CXXConstructorDecl *Constructor
3135          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3136      // C++ [over.ics.user]p1:
3137      //   If the user-defined conversion is specified by a
3138      //   constructor (12.3.1), the initial standard conversion
3139      //   sequence converts the source type to the type required by
3140      //   the argument of the constructor.
3141      //
3142      QualType ThisType = Constructor->getThisType(S.Context);
3143      if (isa<InitListExpr>(From)) {
3144        // Initializer lists don't have conversions as such.
3145        User.Before.setAsIdentityConversion();
3146      } else {
3147        if (Best->Conversions[0].isEllipsis())
3148          User.EllipsisConversion = true;
3149        else {
3150          User.Before = Best->Conversions[0].Standard;
3151          User.EllipsisConversion = false;
3152        }
3153      }
3154      User.HadMultipleCandidates = HadMultipleCandidates;
3155      User.ConversionFunction = Constructor;
3156      User.FoundConversionFunction = Best->FoundDecl;
3157      User.After.setAsIdentityConversion();
3158      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3159      User.After.setAllToTypes(ToType);
3160      return OR_Success;
3161    }
3162    if (CXXConversionDecl *Conversion
3163                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3164      // C++ [over.ics.user]p1:
3165      //
3166      //   [...] If the user-defined conversion is specified by a
3167      //   conversion function (12.3.2), the initial standard
3168      //   conversion sequence converts the source type to the
3169      //   implicit object parameter of the conversion function.
3170      User.Before = Best->Conversions[0].Standard;
3171      User.HadMultipleCandidates = HadMultipleCandidates;
3172      User.ConversionFunction = Conversion;
3173      User.FoundConversionFunction = Best->FoundDecl;
3174      User.EllipsisConversion = false;
3175
3176      // C++ [over.ics.user]p2:
3177      //   The second standard conversion sequence converts the
3178      //   result of the user-defined conversion to the target type
3179      //   for the sequence. Since an implicit conversion sequence
3180      //   is an initialization, the special rules for
3181      //   initialization by user-defined conversion apply when
3182      //   selecting the best user-defined conversion for a
3183      //   user-defined conversion sequence (see 13.3.3 and
3184      //   13.3.3.1).
3185      User.After = Best->FinalConversion;
3186      return OR_Success;
3187    }
3188    llvm_unreachable("Not a constructor or conversion function?");
3189
3190  case OR_No_Viable_Function:
3191    return OR_No_Viable_Function;
3192  case OR_Deleted:
3193    // No conversion here! We're done.
3194    return OR_Deleted;
3195
3196  case OR_Ambiguous:
3197    return OR_Ambiguous;
3198  }
3199
3200  llvm_unreachable("Invalid OverloadResult!");
3201}
3202
3203bool
3204Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3205  ImplicitConversionSequence ICS;
3206  OverloadCandidateSet CandidateSet(From->getExprLoc());
3207  OverloadingResult OvResult =
3208    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3209                            CandidateSet, false);
3210  if (OvResult == OR_Ambiguous)
3211    Diag(From->getLocStart(),
3212         diag::err_typecheck_ambiguous_condition)
3213          << From->getType() << ToType << From->getSourceRange();
3214  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3215    if (!RequireCompleteType(From->getLocStart(), ToType,
3216                          diag::err_typecheck_nonviable_condition_incomplete,
3217                             From->getType(), From->getSourceRange()))
3218      Diag(From->getLocStart(),
3219           diag::err_typecheck_nonviable_condition)
3220           << From->getType() << From->getSourceRange() << ToType;
3221  }
3222  else
3223    return false;
3224  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3225  return true;
3226}
3227
3228/// \brief Compare the user-defined conversion functions or constructors
3229/// of two user-defined conversion sequences to determine whether any ordering
3230/// is possible.
3231static ImplicitConversionSequence::CompareKind
3232compareConversionFunctions(Sema &S,
3233                           FunctionDecl *Function1,
3234                           FunctionDecl *Function2) {
3235  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3236    return ImplicitConversionSequence::Indistinguishable;
3237
3238  // Objective-C++:
3239  //   If both conversion functions are implicitly-declared conversions from
3240  //   a lambda closure type to a function pointer and a block pointer,
3241  //   respectively, always prefer the conversion to a function pointer,
3242  //   because the function pointer is more lightweight and is more likely
3243  //   to keep code working.
3244  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3245  if (!Conv1)
3246    return ImplicitConversionSequence::Indistinguishable;
3247
3248  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3249  if (!Conv2)
3250    return ImplicitConversionSequence::Indistinguishable;
3251
3252  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3253    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3254    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3255    if (Block1 != Block2)
3256      return Block1? ImplicitConversionSequence::Worse
3257                   : ImplicitConversionSequence::Better;
3258  }
3259
3260  return ImplicitConversionSequence::Indistinguishable;
3261}
3262
3263/// CompareImplicitConversionSequences - Compare two implicit
3264/// conversion sequences to determine whether one is better than the
3265/// other or if they are indistinguishable (C++ 13.3.3.2).
3266static ImplicitConversionSequence::CompareKind
3267CompareImplicitConversionSequences(Sema &S,
3268                                   const ImplicitConversionSequence& ICS1,
3269                                   const ImplicitConversionSequence& ICS2)
3270{
3271  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3272  // conversion sequences (as defined in 13.3.3.1)
3273  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3274  //      conversion sequence than a user-defined conversion sequence or
3275  //      an ellipsis conversion sequence, and
3276  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3277  //      conversion sequence than an ellipsis conversion sequence
3278  //      (13.3.3.1.3).
3279  //
3280  // C++0x [over.best.ics]p10:
3281  //   For the purpose of ranking implicit conversion sequences as
3282  //   described in 13.3.3.2, the ambiguous conversion sequence is
3283  //   treated as a user-defined sequence that is indistinguishable
3284  //   from any other user-defined conversion sequence.
3285  if (ICS1.getKindRank() < ICS2.getKindRank())
3286    return ImplicitConversionSequence::Better;
3287  if (ICS2.getKindRank() < ICS1.getKindRank())
3288    return ImplicitConversionSequence::Worse;
3289
3290  // The following checks require both conversion sequences to be of
3291  // the same kind.
3292  if (ICS1.getKind() != ICS2.getKind())
3293    return ImplicitConversionSequence::Indistinguishable;
3294
3295  ImplicitConversionSequence::CompareKind Result =
3296      ImplicitConversionSequence::Indistinguishable;
3297
3298  // Two implicit conversion sequences of the same form are
3299  // indistinguishable conversion sequences unless one of the
3300  // following rules apply: (C++ 13.3.3.2p3):
3301  if (ICS1.isStandard())
3302    Result = CompareStandardConversionSequences(S,
3303                                                ICS1.Standard, ICS2.Standard);
3304  else if (ICS1.isUserDefined()) {
3305    // User-defined conversion sequence U1 is a better conversion
3306    // sequence than another user-defined conversion sequence U2 if
3307    // they contain the same user-defined conversion function or
3308    // constructor and if the second standard conversion sequence of
3309    // U1 is better than the second standard conversion sequence of
3310    // U2 (C++ 13.3.3.2p3).
3311    if (ICS1.UserDefined.ConversionFunction ==
3312          ICS2.UserDefined.ConversionFunction)
3313      Result = CompareStandardConversionSequences(S,
3314                                                  ICS1.UserDefined.After,
3315                                                  ICS2.UserDefined.After);
3316    else
3317      Result = compareConversionFunctions(S,
3318                                          ICS1.UserDefined.ConversionFunction,
3319                                          ICS2.UserDefined.ConversionFunction);
3320  }
3321
3322  // List-initialization sequence L1 is a better conversion sequence than
3323  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3324  // for some X and L2 does not.
3325  if (Result == ImplicitConversionSequence::Indistinguishable &&
3326      !ICS1.isBad()) {
3327    if (ICS1.isStdInitializerListElement() &&
3328        !ICS2.isStdInitializerListElement())
3329      return ImplicitConversionSequence::Better;
3330    if (!ICS1.isStdInitializerListElement() &&
3331        ICS2.isStdInitializerListElement())
3332      return ImplicitConversionSequence::Worse;
3333  }
3334
3335  return Result;
3336}
3337
3338static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3339  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3340    Qualifiers Quals;
3341    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3342    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3343  }
3344
3345  return Context.hasSameUnqualifiedType(T1, T2);
3346}
3347
3348// Per 13.3.3.2p3, compare the given standard conversion sequences to
3349// determine if one is a proper subset of the other.
3350static ImplicitConversionSequence::CompareKind
3351compareStandardConversionSubsets(ASTContext &Context,
3352                                 const StandardConversionSequence& SCS1,
3353                                 const StandardConversionSequence& SCS2) {
3354  ImplicitConversionSequence::CompareKind Result
3355    = ImplicitConversionSequence::Indistinguishable;
3356
3357  // the identity conversion sequence is considered to be a subsequence of
3358  // any non-identity conversion sequence
3359  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3360    return ImplicitConversionSequence::Better;
3361  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3362    return ImplicitConversionSequence::Worse;
3363
3364  if (SCS1.Second != SCS2.Second) {
3365    if (SCS1.Second == ICK_Identity)
3366      Result = ImplicitConversionSequence::Better;
3367    else if (SCS2.Second == ICK_Identity)
3368      Result = ImplicitConversionSequence::Worse;
3369    else
3370      return ImplicitConversionSequence::Indistinguishable;
3371  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3372    return ImplicitConversionSequence::Indistinguishable;
3373
3374  if (SCS1.Third == SCS2.Third) {
3375    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3376                             : ImplicitConversionSequence::Indistinguishable;
3377  }
3378
3379  if (SCS1.Third == ICK_Identity)
3380    return Result == ImplicitConversionSequence::Worse
3381             ? ImplicitConversionSequence::Indistinguishable
3382             : ImplicitConversionSequence::Better;
3383
3384  if (SCS2.Third == ICK_Identity)
3385    return Result == ImplicitConversionSequence::Better
3386             ? ImplicitConversionSequence::Indistinguishable
3387             : ImplicitConversionSequence::Worse;
3388
3389  return ImplicitConversionSequence::Indistinguishable;
3390}
3391
3392/// \brief Determine whether one of the given reference bindings is better
3393/// than the other based on what kind of bindings they are.
3394static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3395                                       const StandardConversionSequence &SCS2) {
3396  // C++0x [over.ics.rank]p3b4:
3397  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3398  //      implicit object parameter of a non-static member function declared
3399  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3400  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3401  //      lvalue reference to a function lvalue and S2 binds an rvalue
3402  //      reference*.
3403  //
3404  // FIXME: Rvalue references. We're going rogue with the above edits,
3405  // because the semantics in the current C++0x working paper (N3225 at the
3406  // time of this writing) break the standard definition of std::forward
3407  // and std::reference_wrapper when dealing with references to functions.
3408  // Proposed wording changes submitted to CWG for consideration.
3409  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3410      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3411    return false;
3412
3413  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3414          SCS2.IsLvalueReference) ||
3415         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3416          !SCS2.IsLvalueReference);
3417}
3418
3419/// CompareStandardConversionSequences - Compare two standard
3420/// conversion sequences to determine whether one is better than the
3421/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3422static ImplicitConversionSequence::CompareKind
3423CompareStandardConversionSequences(Sema &S,
3424                                   const StandardConversionSequence& SCS1,
3425                                   const StandardConversionSequence& SCS2)
3426{
3427  // Standard conversion sequence S1 is a better conversion sequence
3428  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3429
3430  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3431  //     sequences in the canonical form defined by 13.3.3.1.1,
3432  //     excluding any Lvalue Transformation; the identity conversion
3433  //     sequence is considered to be a subsequence of any
3434  //     non-identity conversion sequence) or, if not that,
3435  if (ImplicitConversionSequence::CompareKind CK
3436        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3437    return CK;
3438
3439  //  -- the rank of S1 is better than the rank of S2 (by the rules
3440  //     defined below), or, if not that,
3441  ImplicitConversionRank Rank1 = SCS1.getRank();
3442  ImplicitConversionRank Rank2 = SCS2.getRank();
3443  if (Rank1 < Rank2)
3444    return ImplicitConversionSequence::Better;
3445  else if (Rank2 < Rank1)
3446    return ImplicitConversionSequence::Worse;
3447
3448  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3449  // are indistinguishable unless one of the following rules
3450  // applies:
3451
3452  //   A conversion that is not a conversion of a pointer, or
3453  //   pointer to member, to bool is better than another conversion
3454  //   that is such a conversion.
3455  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3456    return SCS2.isPointerConversionToBool()
3457             ? ImplicitConversionSequence::Better
3458             : ImplicitConversionSequence::Worse;
3459
3460  // C++ [over.ics.rank]p4b2:
3461  //
3462  //   If class B is derived directly or indirectly from class A,
3463  //   conversion of B* to A* is better than conversion of B* to
3464  //   void*, and conversion of A* to void* is better than conversion
3465  //   of B* to void*.
3466  bool SCS1ConvertsToVoid
3467    = SCS1.isPointerConversionToVoidPointer(S.Context);
3468  bool SCS2ConvertsToVoid
3469    = SCS2.isPointerConversionToVoidPointer(S.Context);
3470  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3471    // Exactly one of the conversion sequences is a conversion to
3472    // a void pointer; it's the worse conversion.
3473    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3474                              : ImplicitConversionSequence::Worse;
3475  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3476    // Neither conversion sequence converts to a void pointer; compare
3477    // their derived-to-base conversions.
3478    if (ImplicitConversionSequence::CompareKind DerivedCK
3479          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3480      return DerivedCK;
3481  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3482             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3483    // Both conversion sequences are conversions to void
3484    // pointers. Compare the source types to determine if there's an
3485    // inheritance relationship in their sources.
3486    QualType FromType1 = SCS1.getFromType();
3487    QualType FromType2 = SCS2.getFromType();
3488
3489    // Adjust the types we're converting from via the array-to-pointer
3490    // conversion, if we need to.
3491    if (SCS1.First == ICK_Array_To_Pointer)
3492      FromType1 = S.Context.getArrayDecayedType(FromType1);
3493    if (SCS2.First == ICK_Array_To_Pointer)
3494      FromType2 = S.Context.getArrayDecayedType(FromType2);
3495
3496    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3497    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3498
3499    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3500      return ImplicitConversionSequence::Better;
3501    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3502      return ImplicitConversionSequence::Worse;
3503
3504    // Objective-C++: If one interface is more specific than the
3505    // other, it is the better one.
3506    const ObjCObjectPointerType* FromObjCPtr1
3507      = FromType1->getAs<ObjCObjectPointerType>();
3508    const ObjCObjectPointerType* FromObjCPtr2
3509      = FromType2->getAs<ObjCObjectPointerType>();
3510    if (FromObjCPtr1 && FromObjCPtr2) {
3511      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3512                                                          FromObjCPtr2);
3513      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3514                                                           FromObjCPtr1);
3515      if (AssignLeft != AssignRight) {
3516        return AssignLeft? ImplicitConversionSequence::Better
3517                         : ImplicitConversionSequence::Worse;
3518      }
3519    }
3520  }
3521
3522  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3523  // bullet 3).
3524  if (ImplicitConversionSequence::CompareKind QualCK
3525        = CompareQualificationConversions(S, SCS1, SCS2))
3526    return QualCK;
3527
3528  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3529    // Check for a better reference binding based on the kind of bindings.
3530    if (isBetterReferenceBindingKind(SCS1, SCS2))
3531      return ImplicitConversionSequence::Better;
3532    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3533      return ImplicitConversionSequence::Worse;
3534
3535    // C++ [over.ics.rank]p3b4:
3536    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3537    //      which the references refer are the same type except for
3538    //      top-level cv-qualifiers, and the type to which the reference
3539    //      initialized by S2 refers is more cv-qualified than the type
3540    //      to which the reference initialized by S1 refers.
3541    QualType T1 = SCS1.getToType(2);
3542    QualType T2 = SCS2.getToType(2);
3543    T1 = S.Context.getCanonicalType(T1);
3544    T2 = S.Context.getCanonicalType(T2);
3545    Qualifiers T1Quals, T2Quals;
3546    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3547    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3548    if (UnqualT1 == UnqualT2) {
3549      // Objective-C++ ARC: If the references refer to objects with different
3550      // lifetimes, prefer bindings that don't change lifetime.
3551      if (SCS1.ObjCLifetimeConversionBinding !=
3552                                          SCS2.ObjCLifetimeConversionBinding) {
3553        return SCS1.ObjCLifetimeConversionBinding
3554                                           ? ImplicitConversionSequence::Worse
3555                                           : ImplicitConversionSequence::Better;
3556      }
3557
3558      // If the type is an array type, promote the element qualifiers to the
3559      // type for comparison.
3560      if (isa<ArrayType>(T1) && T1Quals)
3561        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3562      if (isa<ArrayType>(T2) && T2Quals)
3563        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3564      if (T2.isMoreQualifiedThan(T1))
3565        return ImplicitConversionSequence::Better;
3566      else if (T1.isMoreQualifiedThan(T2))
3567        return ImplicitConversionSequence::Worse;
3568    }
3569  }
3570
3571  // In Microsoft mode, prefer an integral conversion to a
3572  // floating-to-integral conversion if the integral conversion
3573  // is between types of the same size.
3574  // For example:
3575  // void f(float);
3576  // void f(int);
3577  // int main {
3578  //    long a;
3579  //    f(a);
3580  // }
3581  // Here, MSVC will call f(int) instead of generating a compile error
3582  // as clang will do in standard mode.
3583  if (S.getLangOpts().MicrosoftMode &&
3584      SCS1.Second == ICK_Integral_Conversion &&
3585      SCS2.Second == ICK_Floating_Integral &&
3586      S.Context.getTypeSize(SCS1.getFromType()) ==
3587      S.Context.getTypeSize(SCS1.getToType(2)))
3588    return ImplicitConversionSequence::Better;
3589
3590  return ImplicitConversionSequence::Indistinguishable;
3591}
3592
3593/// CompareQualificationConversions - Compares two standard conversion
3594/// sequences to determine whether they can be ranked based on their
3595/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3596ImplicitConversionSequence::CompareKind
3597CompareQualificationConversions(Sema &S,
3598                                const StandardConversionSequence& SCS1,
3599                                const StandardConversionSequence& SCS2) {
3600  // C++ 13.3.3.2p3:
3601  //  -- S1 and S2 differ only in their qualification conversion and
3602  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3603  //     cv-qualification signature of type T1 is a proper subset of
3604  //     the cv-qualification signature of type T2, and S1 is not the
3605  //     deprecated string literal array-to-pointer conversion (4.2).
3606  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3607      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3608    return ImplicitConversionSequence::Indistinguishable;
3609
3610  // FIXME: the example in the standard doesn't use a qualification
3611  // conversion (!)
3612  QualType T1 = SCS1.getToType(2);
3613  QualType T2 = SCS2.getToType(2);
3614  T1 = S.Context.getCanonicalType(T1);
3615  T2 = S.Context.getCanonicalType(T2);
3616  Qualifiers T1Quals, T2Quals;
3617  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3618  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3619
3620  // If the types are the same, we won't learn anything by unwrapped
3621  // them.
3622  if (UnqualT1 == UnqualT2)
3623    return ImplicitConversionSequence::Indistinguishable;
3624
3625  // If the type is an array type, promote the element qualifiers to the type
3626  // for comparison.
3627  if (isa<ArrayType>(T1) && T1Quals)
3628    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3629  if (isa<ArrayType>(T2) && T2Quals)
3630    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3631
3632  ImplicitConversionSequence::CompareKind Result
3633    = ImplicitConversionSequence::Indistinguishable;
3634
3635  // Objective-C++ ARC:
3636  //   Prefer qualification conversions not involving a change in lifetime
3637  //   to qualification conversions that do not change lifetime.
3638  if (SCS1.QualificationIncludesObjCLifetime !=
3639                                      SCS2.QualificationIncludesObjCLifetime) {
3640    Result = SCS1.QualificationIncludesObjCLifetime
3641               ? ImplicitConversionSequence::Worse
3642               : ImplicitConversionSequence::Better;
3643  }
3644
3645  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3646    // Within each iteration of the loop, we check the qualifiers to
3647    // determine if this still looks like a qualification
3648    // conversion. Then, if all is well, we unwrap one more level of
3649    // pointers or pointers-to-members and do it all again
3650    // until there are no more pointers or pointers-to-members left
3651    // to unwrap. This essentially mimics what
3652    // IsQualificationConversion does, but here we're checking for a
3653    // strict subset of qualifiers.
3654    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3655      // The qualifiers are the same, so this doesn't tell us anything
3656      // about how the sequences rank.
3657      ;
3658    else if (T2.isMoreQualifiedThan(T1)) {
3659      // T1 has fewer qualifiers, so it could be the better sequence.
3660      if (Result == ImplicitConversionSequence::Worse)
3661        // Neither has qualifiers that are a subset of the other's
3662        // qualifiers.
3663        return ImplicitConversionSequence::Indistinguishable;
3664
3665      Result = ImplicitConversionSequence::Better;
3666    } else if (T1.isMoreQualifiedThan(T2)) {
3667      // T2 has fewer qualifiers, so it could be the better sequence.
3668      if (Result == ImplicitConversionSequence::Better)
3669        // Neither has qualifiers that are a subset of the other's
3670        // qualifiers.
3671        return ImplicitConversionSequence::Indistinguishable;
3672
3673      Result = ImplicitConversionSequence::Worse;
3674    } else {
3675      // Qualifiers are disjoint.
3676      return ImplicitConversionSequence::Indistinguishable;
3677    }
3678
3679    // If the types after this point are equivalent, we're done.
3680    if (S.Context.hasSameUnqualifiedType(T1, T2))
3681      break;
3682  }
3683
3684  // Check that the winning standard conversion sequence isn't using
3685  // the deprecated string literal array to pointer conversion.
3686  switch (Result) {
3687  case ImplicitConversionSequence::Better:
3688    if (SCS1.DeprecatedStringLiteralToCharPtr)
3689      Result = ImplicitConversionSequence::Indistinguishable;
3690    break;
3691
3692  case ImplicitConversionSequence::Indistinguishable:
3693    break;
3694
3695  case ImplicitConversionSequence::Worse:
3696    if (SCS2.DeprecatedStringLiteralToCharPtr)
3697      Result = ImplicitConversionSequence::Indistinguishable;
3698    break;
3699  }
3700
3701  return Result;
3702}
3703
3704/// CompareDerivedToBaseConversions - Compares two standard conversion
3705/// sequences to determine whether they can be ranked based on their
3706/// various kinds of derived-to-base conversions (C++
3707/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3708/// conversions between Objective-C interface types.
3709ImplicitConversionSequence::CompareKind
3710CompareDerivedToBaseConversions(Sema &S,
3711                                const StandardConversionSequence& SCS1,
3712                                const StandardConversionSequence& SCS2) {
3713  QualType FromType1 = SCS1.getFromType();
3714  QualType ToType1 = SCS1.getToType(1);
3715  QualType FromType2 = SCS2.getFromType();
3716  QualType ToType2 = SCS2.getToType(1);
3717
3718  // Adjust the types we're converting from via the array-to-pointer
3719  // conversion, if we need to.
3720  if (SCS1.First == ICK_Array_To_Pointer)
3721    FromType1 = S.Context.getArrayDecayedType(FromType1);
3722  if (SCS2.First == ICK_Array_To_Pointer)
3723    FromType2 = S.Context.getArrayDecayedType(FromType2);
3724
3725  // Canonicalize all of the types.
3726  FromType1 = S.Context.getCanonicalType(FromType1);
3727  ToType1 = S.Context.getCanonicalType(ToType1);
3728  FromType2 = S.Context.getCanonicalType(FromType2);
3729  ToType2 = S.Context.getCanonicalType(ToType2);
3730
3731  // C++ [over.ics.rank]p4b3:
3732  //
3733  //   If class B is derived directly or indirectly from class A and
3734  //   class C is derived directly or indirectly from B,
3735  //
3736  // Compare based on pointer conversions.
3737  if (SCS1.Second == ICK_Pointer_Conversion &&
3738      SCS2.Second == ICK_Pointer_Conversion &&
3739      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3740      FromType1->isPointerType() && FromType2->isPointerType() &&
3741      ToType1->isPointerType() && ToType2->isPointerType()) {
3742    QualType FromPointee1
3743      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3744    QualType ToPointee1
3745      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3746    QualType FromPointee2
3747      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3748    QualType ToPointee2
3749      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3750
3751    //   -- conversion of C* to B* is better than conversion of C* to A*,
3752    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3753      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3754        return ImplicitConversionSequence::Better;
3755      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3756        return ImplicitConversionSequence::Worse;
3757    }
3758
3759    //   -- conversion of B* to A* is better than conversion of C* to A*,
3760    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3761      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3762        return ImplicitConversionSequence::Better;
3763      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3764        return ImplicitConversionSequence::Worse;
3765    }
3766  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3767             SCS2.Second == ICK_Pointer_Conversion) {
3768    const ObjCObjectPointerType *FromPtr1
3769      = FromType1->getAs<ObjCObjectPointerType>();
3770    const ObjCObjectPointerType *FromPtr2
3771      = FromType2->getAs<ObjCObjectPointerType>();
3772    const ObjCObjectPointerType *ToPtr1
3773      = ToType1->getAs<ObjCObjectPointerType>();
3774    const ObjCObjectPointerType *ToPtr2
3775      = ToType2->getAs<ObjCObjectPointerType>();
3776
3777    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3778      // Apply the same conversion ranking rules for Objective-C pointer types
3779      // that we do for C++ pointers to class types. However, we employ the
3780      // Objective-C pseudo-subtyping relationship used for assignment of
3781      // Objective-C pointer types.
3782      bool FromAssignLeft
3783        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3784      bool FromAssignRight
3785        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3786      bool ToAssignLeft
3787        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3788      bool ToAssignRight
3789        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3790
3791      // A conversion to an a non-id object pointer type or qualified 'id'
3792      // type is better than a conversion to 'id'.
3793      if (ToPtr1->isObjCIdType() &&
3794          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3795        return ImplicitConversionSequence::Worse;
3796      if (ToPtr2->isObjCIdType() &&
3797          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3798        return ImplicitConversionSequence::Better;
3799
3800      // A conversion to a non-id object pointer type is better than a
3801      // conversion to a qualified 'id' type
3802      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3803        return ImplicitConversionSequence::Worse;
3804      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3805        return ImplicitConversionSequence::Better;
3806
3807      // A conversion to an a non-Class object pointer type or qualified 'Class'
3808      // type is better than a conversion to 'Class'.
3809      if (ToPtr1->isObjCClassType() &&
3810          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3811        return ImplicitConversionSequence::Worse;
3812      if (ToPtr2->isObjCClassType() &&
3813          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3814        return ImplicitConversionSequence::Better;
3815
3816      // A conversion to a non-Class object pointer type is better than a
3817      // conversion to a qualified 'Class' type.
3818      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3819        return ImplicitConversionSequence::Worse;
3820      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3821        return ImplicitConversionSequence::Better;
3822
3823      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3824      if (S.Context.hasSameType(FromType1, FromType2) &&
3825          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3826          (ToAssignLeft != ToAssignRight))
3827        return ToAssignLeft? ImplicitConversionSequence::Worse
3828                           : ImplicitConversionSequence::Better;
3829
3830      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3831      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3832          (FromAssignLeft != FromAssignRight))
3833        return FromAssignLeft? ImplicitConversionSequence::Better
3834        : ImplicitConversionSequence::Worse;
3835    }
3836  }
3837
3838  // Ranking of member-pointer types.
3839  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3840      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3841      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3842    const MemberPointerType * FromMemPointer1 =
3843                                        FromType1->getAs<MemberPointerType>();
3844    const MemberPointerType * ToMemPointer1 =
3845                                          ToType1->getAs<MemberPointerType>();
3846    const MemberPointerType * FromMemPointer2 =
3847                                          FromType2->getAs<MemberPointerType>();
3848    const MemberPointerType * ToMemPointer2 =
3849                                          ToType2->getAs<MemberPointerType>();
3850    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3851    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3852    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3853    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3854    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3855    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3856    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3857    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3858    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3859    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3860      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3861        return ImplicitConversionSequence::Worse;
3862      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3863        return ImplicitConversionSequence::Better;
3864    }
3865    // conversion of B::* to C::* is better than conversion of A::* to C::*
3866    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3867      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3868        return ImplicitConversionSequence::Better;
3869      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3870        return ImplicitConversionSequence::Worse;
3871    }
3872  }
3873
3874  if (SCS1.Second == ICK_Derived_To_Base) {
3875    //   -- conversion of C to B is better than conversion of C to A,
3876    //   -- binding of an expression of type C to a reference of type
3877    //      B& is better than binding an expression of type C to a
3878    //      reference of type A&,
3879    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3880        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3881      if (S.IsDerivedFrom(ToType1, ToType2))
3882        return ImplicitConversionSequence::Better;
3883      else if (S.IsDerivedFrom(ToType2, ToType1))
3884        return ImplicitConversionSequence::Worse;
3885    }
3886
3887    //   -- conversion of B to A is better than conversion of C to A.
3888    //   -- binding of an expression of type B to a reference of type
3889    //      A& is better than binding an expression of type C to a
3890    //      reference of type A&,
3891    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3892        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3893      if (S.IsDerivedFrom(FromType2, FromType1))
3894        return ImplicitConversionSequence::Better;
3895      else if (S.IsDerivedFrom(FromType1, FromType2))
3896        return ImplicitConversionSequence::Worse;
3897    }
3898  }
3899
3900  return ImplicitConversionSequence::Indistinguishable;
3901}
3902
3903/// \brief Determine whether the given type is valid, e.g., it is not an invalid
3904/// C++ class.
3905static bool isTypeValid(QualType T) {
3906  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3907    return !Record->isInvalidDecl();
3908
3909  return true;
3910}
3911
3912/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3913/// determine whether they are reference-related,
3914/// reference-compatible, reference-compatible with added
3915/// qualification, or incompatible, for use in C++ initialization by
3916/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3917/// type, and the first type (T1) is the pointee type of the reference
3918/// type being initialized.
3919Sema::ReferenceCompareResult
3920Sema::CompareReferenceRelationship(SourceLocation Loc,
3921                                   QualType OrigT1, QualType OrigT2,
3922                                   bool &DerivedToBase,
3923                                   bool &ObjCConversion,
3924                                   bool &ObjCLifetimeConversion) {
3925  assert(!OrigT1->isReferenceType() &&
3926    "T1 must be the pointee type of the reference type");
3927  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3928
3929  QualType T1 = Context.getCanonicalType(OrigT1);
3930  QualType T2 = Context.getCanonicalType(OrigT2);
3931  Qualifiers T1Quals, T2Quals;
3932  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3933  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3934
3935  // C++ [dcl.init.ref]p4:
3936  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3937  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3938  //   T1 is a base class of T2.
3939  DerivedToBase = false;
3940  ObjCConversion = false;
3941  ObjCLifetimeConversion = false;
3942  if (UnqualT1 == UnqualT2) {
3943    // Nothing to do.
3944  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3945             isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
3946             IsDerivedFrom(UnqualT2, UnqualT1))
3947    DerivedToBase = true;
3948  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3949           UnqualT2->isObjCObjectOrInterfaceType() &&
3950           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3951    ObjCConversion = true;
3952  else
3953    return Ref_Incompatible;
3954
3955  // At this point, we know that T1 and T2 are reference-related (at
3956  // least).
3957
3958  // If the type is an array type, promote the element qualifiers to the type
3959  // for comparison.
3960  if (isa<ArrayType>(T1) && T1Quals)
3961    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3962  if (isa<ArrayType>(T2) && T2Quals)
3963    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3964
3965  // C++ [dcl.init.ref]p4:
3966  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3967  //   reference-related to T2 and cv1 is the same cv-qualification
3968  //   as, or greater cv-qualification than, cv2. For purposes of
3969  //   overload resolution, cases for which cv1 is greater
3970  //   cv-qualification than cv2 are identified as
3971  //   reference-compatible with added qualification (see 13.3.3.2).
3972  //
3973  // Note that we also require equivalence of Objective-C GC and address-space
3974  // qualifiers when performing these computations, so that e.g., an int in
3975  // address space 1 is not reference-compatible with an int in address
3976  // space 2.
3977  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3978      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3979    T1Quals.removeObjCLifetime();
3980    T2Quals.removeObjCLifetime();
3981    ObjCLifetimeConversion = true;
3982  }
3983
3984  if (T1Quals == T2Quals)
3985    return Ref_Compatible;
3986  else if (T1Quals.compatiblyIncludes(T2Quals))
3987    return Ref_Compatible_With_Added_Qualification;
3988  else
3989    return Ref_Related;
3990}
3991
3992/// \brief Look for a user-defined conversion to an value reference-compatible
3993///        with DeclType. Return true if something definite is found.
3994static bool
3995FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3996                         QualType DeclType, SourceLocation DeclLoc,
3997                         Expr *Init, QualType T2, bool AllowRvalues,
3998                         bool AllowExplicit) {
3999  assert(T2->isRecordType() && "Can only find conversions of record types.");
4000  CXXRecordDecl *T2RecordDecl
4001    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4002
4003  OverloadCandidateSet CandidateSet(DeclLoc);
4004  std::pair<CXXRecordDecl::conversion_iterator,
4005            CXXRecordDecl::conversion_iterator>
4006    Conversions = T2RecordDecl->getVisibleConversionFunctions();
4007  for (CXXRecordDecl::conversion_iterator
4008         I = Conversions.first, E = Conversions.second; I != E; ++I) {
4009    NamedDecl *D = *I;
4010    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4011    if (isa<UsingShadowDecl>(D))
4012      D = cast<UsingShadowDecl>(D)->getTargetDecl();
4013
4014    FunctionTemplateDecl *ConvTemplate
4015      = dyn_cast<FunctionTemplateDecl>(D);
4016    CXXConversionDecl *Conv;
4017    if (ConvTemplate)
4018      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4019    else
4020      Conv = cast<CXXConversionDecl>(D);
4021
4022    // If this is an explicit conversion, and we're not allowed to consider
4023    // explicit conversions, skip it.
4024    if (!AllowExplicit && Conv->isExplicit())
4025      continue;
4026
4027    if (AllowRvalues) {
4028      bool DerivedToBase = false;
4029      bool ObjCConversion = false;
4030      bool ObjCLifetimeConversion = false;
4031
4032      // If we are initializing an rvalue reference, don't permit conversion
4033      // functions that return lvalues.
4034      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4035        const ReferenceType *RefType
4036          = Conv->getConversionType()->getAs<LValueReferenceType>();
4037        if (RefType && !RefType->getPointeeType()->isFunctionType())
4038          continue;
4039      }
4040
4041      if (!ConvTemplate &&
4042          S.CompareReferenceRelationship(
4043            DeclLoc,
4044            Conv->getConversionType().getNonReferenceType()
4045              .getUnqualifiedType(),
4046            DeclType.getNonReferenceType().getUnqualifiedType(),
4047            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4048          Sema::Ref_Incompatible)
4049        continue;
4050    } else {
4051      // If the conversion function doesn't return a reference type,
4052      // it can't be considered for this conversion. An rvalue reference
4053      // is only acceptable if its referencee is a function type.
4054
4055      const ReferenceType *RefType =
4056        Conv->getConversionType()->getAs<ReferenceType>();
4057      if (!RefType ||
4058          (!RefType->isLValueReferenceType() &&
4059           !RefType->getPointeeType()->isFunctionType()))
4060        continue;
4061    }
4062
4063    if (ConvTemplate)
4064      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4065                                       Init, DeclType, CandidateSet);
4066    else
4067      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4068                               DeclType, CandidateSet);
4069  }
4070
4071  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4072
4073  OverloadCandidateSet::iterator Best;
4074  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4075  case OR_Success:
4076    // C++ [over.ics.ref]p1:
4077    //
4078    //   [...] If the parameter binds directly to the result of
4079    //   applying a conversion function to the argument
4080    //   expression, the implicit conversion sequence is a
4081    //   user-defined conversion sequence (13.3.3.1.2), with the
4082    //   second standard conversion sequence either an identity
4083    //   conversion or, if the conversion function returns an
4084    //   entity of a type that is a derived class of the parameter
4085    //   type, a derived-to-base Conversion.
4086    if (!Best->FinalConversion.DirectBinding)
4087      return false;
4088
4089    ICS.setUserDefined();
4090    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4091    ICS.UserDefined.After = Best->FinalConversion;
4092    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4093    ICS.UserDefined.ConversionFunction = Best->Function;
4094    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4095    ICS.UserDefined.EllipsisConversion = false;
4096    assert(ICS.UserDefined.After.ReferenceBinding &&
4097           ICS.UserDefined.After.DirectBinding &&
4098           "Expected a direct reference binding!");
4099    return true;
4100
4101  case OR_Ambiguous:
4102    ICS.setAmbiguous();
4103    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4104         Cand != CandidateSet.end(); ++Cand)
4105      if (Cand->Viable)
4106        ICS.Ambiguous.addConversion(Cand->Function);
4107    return true;
4108
4109  case OR_No_Viable_Function:
4110  case OR_Deleted:
4111    // There was no suitable conversion, or we found a deleted
4112    // conversion; continue with other checks.
4113    return false;
4114  }
4115
4116  llvm_unreachable("Invalid OverloadResult!");
4117}
4118
4119/// \brief Compute an implicit conversion sequence for reference
4120/// initialization.
4121static ImplicitConversionSequence
4122TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4123                 SourceLocation DeclLoc,
4124                 bool SuppressUserConversions,
4125                 bool AllowExplicit) {
4126  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4127
4128  // Most paths end in a failed conversion.
4129  ImplicitConversionSequence ICS;
4130  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4131
4132  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4133  QualType T2 = Init->getType();
4134
4135  // If the initializer is the address of an overloaded function, try
4136  // to resolve the overloaded function. If all goes well, T2 is the
4137  // type of the resulting function.
4138  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4139    DeclAccessPair Found;
4140    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4141                                                                false, Found))
4142      T2 = Fn->getType();
4143  }
4144
4145  // Compute some basic properties of the types and the initializer.
4146  bool isRValRef = DeclType->isRValueReferenceType();
4147  bool DerivedToBase = false;
4148  bool ObjCConversion = false;
4149  bool ObjCLifetimeConversion = false;
4150  Expr::Classification InitCategory = Init->Classify(S.Context);
4151  Sema::ReferenceCompareResult RefRelationship
4152    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4153                                     ObjCConversion, ObjCLifetimeConversion);
4154
4155
4156  // C++0x [dcl.init.ref]p5:
4157  //   A reference to type "cv1 T1" is initialized by an expression
4158  //   of type "cv2 T2" as follows:
4159
4160  //     -- If reference is an lvalue reference and the initializer expression
4161  if (!isRValRef) {
4162    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4163    //        reference-compatible with "cv2 T2," or
4164    //
4165    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4166    if (InitCategory.isLValue() &&
4167        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4168      // C++ [over.ics.ref]p1:
4169      //   When a parameter of reference type binds directly (8.5.3)
4170      //   to an argument expression, the implicit conversion sequence
4171      //   is the identity conversion, unless the argument expression
4172      //   has a type that is a derived class of the parameter type,
4173      //   in which case the implicit conversion sequence is a
4174      //   derived-to-base Conversion (13.3.3.1).
4175      ICS.setStandard();
4176      ICS.Standard.First = ICK_Identity;
4177      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4178                         : ObjCConversion? ICK_Compatible_Conversion
4179                         : ICK_Identity;
4180      ICS.Standard.Third = ICK_Identity;
4181      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4182      ICS.Standard.setToType(0, T2);
4183      ICS.Standard.setToType(1, T1);
4184      ICS.Standard.setToType(2, T1);
4185      ICS.Standard.ReferenceBinding = true;
4186      ICS.Standard.DirectBinding = true;
4187      ICS.Standard.IsLvalueReference = !isRValRef;
4188      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4189      ICS.Standard.BindsToRvalue = false;
4190      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4191      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4192      ICS.Standard.CopyConstructor = 0;
4193
4194      // Nothing more to do: the inaccessibility/ambiguity check for
4195      // derived-to-base conversions is suppressed when we're
4196      // computing the implicit conversion sequence (C++
4197      // [over.best.ics]p2).
4198      return ICS;
4199    }
4200
4201    //       -- has a class type (i.e., T2 is a class type), where T1 is
4202    //          not reference-related to T2, and can be implicitly
4203    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4204    //          is reference-compatible with "cv3 T3" 92) (this
4205    //          conversion is selected by enumerating the applicable
4206    //          conversion functions (13.3.1.6) and choosing the best
4207    //          one through overload resolution (13.3)),
4208    if (!SuppressUserConversions && T2->isRecordType() &&
4209        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4210        RefRelationship == Sema::Ref_Incompatible) {
4211      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4212                                   Init, T2, /*AllowRvalues=*/false,
4213                                   AllowExplicit))
4214        return ICS;
4215    }
4216  }
4217
4218  //     -- Otherwise, the reference shall be an lvalue reference to a
4219  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4220  //        shall be an rvalue reference.
4221  //
4222  // We actually handle one oddity of C++ [over.ics.ref] at this
4223  // point, which is that, due to p2 (which short-circuits reference
4224  // binding by only attempting a simple conversion for non-direct
4225  // bindings) and p3's strange wording, we allow a const volatile
4226  // reference to bind to an rvalue. Hence the check for the presence
4227  // of "const" rather than checking for "const" being the only
4228  // qualifier.
4229  // This is also the point where rvalue references and lvalue inits no longer
4230  // go together.
4231  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4232    return ICS;
4233
4234  //       -- If the initializer expression
4235  //
4236  //            -- is an xvalue, class prvalue, array prvalue or function
4237  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4238  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4239      (InitCategory.isXValue() ||
4240      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4241      (InitCategory.isLValue() && T2->isFunctionType()))) {
4242    ICS.setStandard();
4243    ICS.Standard.First = ICK_Identity;
4244    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4245                      : ObjCConversion? ICK_Compatible_Conversion
4246                      : ICK_Identity;
4247    ICS.Standard.Third = ICK_Identity;
4248    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4249    ICS.Standard.setToType(0, T2);
4250    ICS.Standard.setToType(1, T1);
4251    ICS.Standard.setToType(2, T1);
4252    ICS.Standard.ReferenceBinding = true;
4253    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4254    // binding unless we're binding to a class prvalue.
4255    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4256    // allow the use of rvalue references in C++98/03 for the benefit of
4257    // standard library implementors; therefore, we need the xvalue check here.
4258    ICS.Standard.DirectBinding =
4259      S.getLangOpts().CPlusPlus11 ||
4260      (InitCategory.isPRValue() && !T2->isRecordType());
4261    ICS.Standard.IsLvalueReference = !isRValRef;
4262    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4263    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4264    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4265    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4266    ICS.Standard.CopyConstructor = 0;
4267    return ICS;
4268  }
4269
4270  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4271  //               reference-related to T2, and can be implicitly converted to
4272  //               an xvalue, class prvalue, or function lvalue of type
4273  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4274  //               "cv3 T3",
4275  //
4276  //          then the reference is bound to the value of the initializer
4277  //          expression in the first case and to the result of the conversion
4278  //          in the second case (or, in either case, to an appropriate base
4279  //          class subobject).
4280  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4281      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4282      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4283                               Init, T2, /*AllowRvalues=*/true,
4284                               AllowExplicit)) {
4285    // In the second case, if the reference is an rvalue reference
4286    // and the second standard conversion sequence of the
4287    // user-defined conversion sequence includes an lvalue-to-rvalue
4288    // conversion, the program is ill-formed.
4289    if (ICS.isUserDefined() && isRValRef &&
4290        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4291      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4292
4293    return ICS;
4294  }
4295
4296  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4297  //          initialized from the initializer expression using the
4298  //          rules for a non-reference copy initialization (8.5). The
4299  //          reference is then bound to the temporary. If T1 is
4300  //          reference-related to T2, cv1 must be the same
4301  //          cv-qualification as, or greater cv-qualification than,
4302  //          cv2; otherwise, the program is ill-formed.
4303  if (RefRelationship == Sema::Ref_Related) {
4304    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4305    // we would be reference-compatible or reference-compatible with
4306    // added qualification. But that wasn't the case, so the reference
4307    // initialization fails.
4308    //
4309    // Note that we only want to check address spaces and cvr-qualifiers here.
4310    // ObjC GC and lifetime qualifiers aren't important.
4311    Qualifiers T1Quals = T1.getQualifiers();
4312    Qualifiers T2Quals = T2.getQualifiers();
4313    T1Quals.removeObjCGCAttr();
4314    T1Quals.removeObjCLifetime();
4315    T2Quals.removeObjCGCAttr();
4316    T2Quals.removeObjCLifetime();
4317    if (!T1Quals.compatiblyIncludes(T2Quals))
4318      return ICS;
4319  }
4320
4321  // If at least one of the types is a class type, the types are not
4322  // related, and we aren't allowed any user conversions, the
4323  // reference binding fails. This case is important for breaking
4324  // recursion, since TryImplicitConversion below will attempt to
4325  // create a temporary through the use of a copy constructor.
4326  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4327      (T1->isRecordType() || T2->isRecordType()))
4328    return ICS;
4329
4330  // If T1 is reference-related to T2 and the reference is an rvalue
4331  // reference, the initializer expression shall not be an lvalue.
4332  if (RefRelationship >= Sema::Ref_Related &&
4333      isRValRef && Init->Classify(S.Context).isLValue())
4334    return ICS;
4335
4336  // C++ [over.ics.ref]p2:
4337  //   When a parameter of reference type is not bound directly to
4338  //   an argument expression, the conversion sequence is the one
4339  //   required to convert the argument expression to the
4340  //   underlying type of the reference according to
4341  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4342  //   to copy-initializing a temporary of the underlying type with
4343  //   the argument expression. Any difference in top-level
4344  //   cv-qualification is subsumed by the initialization itself
4345  //   and does not constitute a conversion.
4346  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4347                              /*AllowExplicit=*/false,
4348                              /*InOverloadResolution=*/false,
4349                              /*CStyle=*/false,
4350                              /*AllowObjCWritebackConversion=*/false);
4351
4352  // Of course, that's still a reference binding.
4353  if (ICS.isStandard()) {
4354    ICS.Standard.ReferenceBinding = true;
4355    ICS.Standard.IsLvalueReference = !isRValRef;
4356    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4357    ICS.Standard.BindsToRvalue = true;
4358    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4359    ICS.Standard.ObjCLifetimeConversionBinding = false;
4360  } else if (ICS.isUserDefined()) {
4361    // Don't allow rvalue references to bind to lvalues.
4362    if (DeclType->isRValueReferenceType()) {
4363      if (const ReferenceType *RefType
4364            = ICS.UserDefined.ConversionFunction->getResultType()
4365                ->getAs<LValueReferenceType>()) {
4366        if (!RefType->getPointeeType()->isFunctionType()) {
4367          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4368                     DeclType);
4369          return ICS;
4370        }
4371      }
4372    }
4373
4374    ICS.UserDefined.After.ReferenceBinding = true;
4375    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4376    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4377    ICS.UserDefined.After.BindsToRvalue = true;
4378    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4379    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4380  }
4381
4382  return ICS;
4383}
4384
4385static ImplicitConversionSequence
4386TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4387                      bool SuppressUserConversions,
4388                      bool InOverloadResolution,
4389                      bool AllowObjCWritebackConversion,
4390                      bool AllowExplicit = false);
4391
4392/// TryListConversion - Try to copy-initialize a value of type ToType from the
4393/// initializer list From.
4394static ImplicitConversionSequence
4395TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4396                  bool SuppressUserConversions,
4397                  bool InOverloadResolution,
4398                  bool AllowObjCWritebackConversion) {
4399  // C++11 [over.ics.list]p1:
4400  //   When an argument is an initializer list, it is not an expression and
4401  //   special rules apply for converting it to a parameter type.
4402
4403  ImplicitConversionSequence Result;
4404  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4405
4406  // We need a complete type for what follows. Incomplete types can never be
4407  // initialized from init lists.
4408  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4409    return Result;
4410
4411  // C++11 [over.ics.list]p2:
4412  //   If the parameter type is std::initializer_list<X> or "array of X" and
4413  //   all the elements can be implicitly converted to X, the implicit
4414  //   conversion sequence is the worst conversion necessary to convert an
4415  //   element of the list to X.
4416  bool toStdInitializerList = false;
4417  QualType X;
4418  if (ToType->isArrayType())
4419    X = S.Context.getAsArrayType(ToType)->getElementType();
4420  else
4421    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4422  if (!X.isNull()) {
4423    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4424      Expr *Init = From->getInit(i);
4425      ImplicitConversionSequence ICS =
4426          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4427                                InOverloadResolution,
4428                                AllowObjCWritebackConversion);
4429      // If a single element isn't convertible, fail.
4430      if (ICS.isBad()) {
4431        Result = ICS;
4432        break;
4433      }
4434      // Otherwise, look for the worst conversion.
4435      if (Result.isBad() ||
4436          CompareImplicitConversionSequences(S, ICS, Result) ==
4437              ImplicitConversionSequence::Worse)
4438        Result = ICS;
4439    }
4440
4441    // For an empty list, we won't have computed any conversion sequence.
4442    // Introduce the identity conversion sequence.
4443    if (From->getNumInits() == 0) {
4444      Result.setStandard();
4445      Result.Standard.setAsIdentityConversion();
4446      Result.Standard.setFromType(ToType);
4447      Result.Standard.setAllToTypes(ToType);
4448    }
4449
4450    Result.setStdInitializerListElement(toStdInitializerList);
4451    return Result;
4452  }
4453
4454  // C++11 [over.ics.list]p3:
4455  //   Otherwise, if the parameter is a non-aggregate class X and overload
4456  //   resolution chooses a single best constructor [...] the implicit
4457  //   conversion sequence is a user-defined conversion sequence. If multiple
4458  //   constructors are viable but none is better than the others, the
4459  //   implicit conversion sequence is a user-defined conversion sequence.
4460  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4461    // This function can deal with initializer lists.
4462    return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4463                                    /*AllowExplicit=*/false,
4464                                    InOverloadResolution, /*CStyle=*/false,
4465                                    AllowObjCWritebackConversion);
4466  }
4467
4468  // C++11 [over.ics.list]p4:
4469  //   Otherwise, if the parameter has an aggregate type which can be
4470  //   initialized from the initializer list [...] the implicit conversion
4471  //   sequence is a user-defined conversion sequence.
4472  if (ToType->isAggregateType()) {
4473    // Type is an aggregate, argument is an init list. At this point it comes
4474    // down to checking whether the initialization works.
4475    // FIXME: Find out whether this parameter is consumed or not.
4476    InitializedEntity Entity =
4477        InitializedEntity::InitializeParameter(S.Context, ToType,
4478                                               /*Consumed=*/false);
4479    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4480      Result.setUserDefined();
4481      Result.UserDefined.Before.setAsIdentityConversion();
4482      // Initializer lists don't have a type.
4483      Result.UserDefined.Before.setFromType(QualType());
4484      Result.UserDefined.Before.setAllToTypes(QualType());
4485
4486      Result.UserDefined.After.setAsIdentityConversion();
4487      Result.UserDefined.After.setFromType(ToType);
4488      Result.UserDefined.After.setAllToTypes(ToType);
4489      Result.UserDefined.ConversionFunction = 0;
4490    }
4491    return Result;
4492  }
4493
4494  // C++11 [over.ics.list]p5:
4495  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4496  if (ToType->isReferenceType()) {
4497    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4498    // mention initializer lists in any way. So we go by what list-
4499    // initialization would do and try to extrapolate from that.
4500
4501    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4502
4503    // If the initializer list has a single element that is reference-related
4504    // to the parameter type, we initialize the reference from that.
4505    if (From->getNumInits() == 1) {
4506      Expr *Init = From->getInit(0);
4507
4508      QualType T2 = Init->getType();
4509
4510      // If the initializer is the address of an overloaded function, try
4511      // to resolve the overloaded function. If all goes well, T2 is the
4512      // type of the resulting function.
4513      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4514        DeclAccessPair Found;
4515        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4516                                   Init, ToType, false, Found))
4517          T2 = Fn->getType();
4518      }
4519
4520      // Compute some basic properties of the types and the initializer.
4521      bool dummy1 = false;
4522      bool dummy2 = false;
4523      bool dummy3 = false;
4524      Sema::ReferenceCompareResult RefRelationship
4525        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4526                                         dummy2, dummy3);
4527
4528      if (RefRelationship >= Sema::Ref_Related) {
4529        return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4530                                SuppressUserConversions,
4531                                /*AllowExplicit=*/false);
4532      }
4533    }
4534
4535    // Otherwise, we bind the reference to a temporary created from the
4536    // initializer list.
4537    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4538                               InOverloadResolution,
4539                               AllowObjCWritebackConversion);
4540    if (Result.isFailure())
4541      return Result;
4542    assert(!Result.isEllipsis() &&
4543           "Sub-initialization cannot result in ellipsis conversion.");
4544
4545    // Can we even bind to a temporary?
4546    if (ToType->isRValueReferenceType() ||
4547        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4548      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4549                                            Result.UserDefined.After;
4550      SCS.ReferenceBinding = true;
4551      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4552      SCS.BindsToRvalue = true;
4553      SCS.BindsToFunctionLvalue = false;
4554      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4555      SCS.ObjCLifetimeConversionBinding = false;
4556    } else
4557      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4558                    From, ToType);
4559    return Result;
4560  }
4561
4562  // C++11 [over.ics.list]p6:
4563  //   Otherwise, if the parameter type is not a class:
4564  if (!ToType->isRecordType()) {
4565    //    - if the initializer list has one element, the implicit conversion
4566    //      sequence is the one required to convert the element to the
4567    //      parameter type.
4568    unsigned NumInits = From->getNumInits();
4569    if (NumInits == 1)
4570      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4571                                     SuppressUserConversions,
4572                                     InOverloadResolution,
4573                                     AllowObjCWritebackConversion);
4574    //    - if the initializer list has no elements, the implicit conversion
4575    //      sequence is the identity conversion.
4576    else if (NumInits == 0) {
4577      Result.setStandard();
4578      Result.Standard.setAsIdentityConversion();
4579      Result.Standard.setFromType(ToType);
4580      Result.Standard.setAllToTypes(ToType);
4581    }
4582    return Result;
4583  }
4584
4585  // C++11 [over.ics.list]p7:
4586  //   In all cases other than those enumerated above, no conversion is possible
4587  return Result;
4588}
4589
4590/// TryCopyInitialization - Try to copy-initialize a value of type
4591/// ToType from the expression From. Return the implicit conversion
4592/// sequence required to pass this argument, which may be a bad
4593/// conversion sequence (meaning that the argument cannot be passed to
4594/// a parameter of this type). If @p SuppressUserConversions, then we
4595/// do not permit any user-defined conversion sequences.
4596static ImplicitConversionSequence
4597TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4598                      bool SuppressUserConversions,
4599                      bool InOverloadResolution,
4600                      bool AllowObjCWritebackConversion,
4601                      bool AllowExplicit) {
4602  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4603    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4604                             InOverloadResolution,AllowObjCWritebackConversion);
4605
4606  if (ToType->isReferenceType())
4607    return TryReferenceInit(S, From, ToType,
4608                            /*FIXME:*/From->getLocStart(),
4609                            SuppressUserConversions,
4610                            AllowExplicit);
4611
4612  return TryImplicitConversion(S, From, ToType,
4613                               SuppressUserConversions,
4614                               /*AllowExplicit=*/false,
4615                               InOverloadResolution,
4616                               /*CStyle=*/false,
4617                               AllowObjCWritebackConversion);
4618}
4619
4620static bool TryCopyInitialization(const CanQualType FromQTy,
4621                                  const CanQualType ToQTy,
4622                                  Sema &S,
4623                                  SourceLocation Loc,
4624                                  ExprValueKind FromVK) {
4625  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4626  ImplicitConversionSequence ICS =
4627    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4628
4629  return !ICS.isBad();
4630}
4631
4632/// TryObjectArgumentInitialization - Try to initialize the object
4633/// parameter of the given member function (@c Method) from the
4634/// expression @p From.
4635static ImplicitConversionSequence
4636TryObjectArgumentInitialization(Sema &S, QualType FromType,
4637                                Expr::Classification FromClassification,
4638                                CXXMethodDecl *Method,
4639                                CXXRecordDecl *ActingContext) {
4640  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4641  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4642  //                 const volatile object.
4643  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4644    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4645  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4646
4647  // Set up the conversion sequence as a "bad" conversion, to allow us
4648  // to exit early.
4649  ImplicitConversionSequence ICS;
4650
4651  // We need to have an object of class type.
4652  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4653    FromType = PT->getPointeeType();
4654
4655    // When we had a pointer, it's implicitly dereferenced, so we
4656    // better have an lvalue.
4657    assert(FromClassification.isLValue());
4658  }
4659
4660  assert(FromType->isRecordType());
4661
4662  // C++0x [over.match.funcs]p4:
4663  //   For non-static member functions, the type of the implicit object
4664  //   parameter is
4665  //
4666  //     - "lvalue reference to cv X" for functions declared without a
4667  //        ref-qualifier or with the & ref-qualifier
4668  //     - "rvalue reference to cv X" for functions declared with the &&
4669  //        ref-qualifier
4670  //
4671  // where X is the class of which the function is a member and cv is the
4672  // cv-qualification on the member function declaration.
4673  //
4674  // However, when finding an implicit conversion sequence for the argument, we
4675  // are not allowed to create temporaries or perform user-defined conversions
4676  // (C++ [over.match.funcs]p5). We perform a simplified version of
4677  // reference binding here, that allows class rvalues to bind to
4678  // non-constant references.
4679
4680  // First check the qualifiers.
4681  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4682  if (ImplicitParamType.getCVRQualifiers()
4683                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4684      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4685    ICS.setBad(BadConversionSequence::bad_qualifiers,
4686               FromType, ImplicitParamType);
4687    return ICS;
4688  }
4689
4690  // Check that we have either the same type or a derived type. It
4691  // affects the conversion rank.
4692  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4693  ImplicitConversionKind SecondKind;
4694  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4695    SecondKind = ICK_Identity;
4696  } else if (S.IsDerivedFrom(FromType, ClassType))
4697    SecondKind = ICK_Derived_To_Base;
4698  else {
4699    ICS.setBad(BadConversionSequence::unrelated_class,
4700               FromType, ImplicitParamType);
4701    return ICS;
4702  }
4703
4704  // Check the ref-qualifier.
4705  switch (Method->getRefQualifier()) {
4706  case RQ_None:
4707    // Do nothing; we don't care about lvalueness or rvalueness.
4708    break;
4709
4710  case RQ_LValue:
4711    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4712      // non-const lvalue reference cannot bind to an rvalue
4713      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4714                 ImplicitParamType);
4715      return ICS;
4716    }
4717    break;
4718
4719  case RQ_RValue:
4720    if (!FromClassification.isRValue()) {
4721      // rvalue reference cannot bind to an lvalue
4722      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4723                 ImplicitParamType);
4724      return ICS;
4725    }
4726    break;
4727  }
4728
4729  // Success. Mark this as a reference binding.
4730  ICS.setStandard();
4731  ICS.Standard.setAsIdentityConversion();
4732  ICS.Standard.Second = SecondKind;
4733  ICS.Standard.setFromType(FromType);
4734  ICS.Standard.setAllToTypes(ImplicitParamType);
4735  ICS.Standard.ReferenceBinding = true;
4736  ICS.Standard.DirectBinding = true;
4737  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4738  ICS.Standard.BindsToFunctionLvalue = false;
4739  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4740  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4741    = (Method->getRefQualifier() == RQ_None);
4742  return ICS;
4743}
4744
4745/// PerformObjectArgumentInitialization - Perform initialization of
4746/// the implicit object parameter for the given Method with the given
4747/// expression.
4748ExprResult
4749Sema::PerformObjectArgumentInitialization(Expr *From,
4750                                          NestedNameSpecifier *Qualifier,
4751                                          NamedDecl *FoundDecl,
4752                                          CXXMethodDecl *Method) {
4753  QualType FromRecordType, DestType;
4754  QualType ImplicitParamRecordType  =
4755    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4756
4757  Expr::Classification FromClassification;
4758  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4759    FromRecordType = PT->getPointeeType();
4760    DestType = Method->getThisType(Context);
4761    FromClassification = Expr::Classification::makeSimpleLValue();
4762  } else {
4763    FromRecordType = From->getType();
4764    DestType = ImplicitParamRecordType;
4765    FromClassification = From->Classify(Context);
4766  }
4767
4768  // Note that we always use the true parent context when performing
4769  // the actual argument initialization.
4770  ImplicitConversionSequence ICS
4771    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4772                                      Method, Method->getParent());
4773  if (ICS.isBad()) {
4774    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4775      Qualifiers FromQs = FromRecordType.getQualifiers();
4776      Qualifiers ToQs = DestType.getQualifiers();
4777      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4778      if (CVR) {
4779        Diag(From->getLocStart(),
4780             diag::err_member_function_call_bad_cvr)
4781          << Method->getDeclName() << FromRecordType << (CVR - 1)
4782          << From->getSourceRange();
4783        Diag(Method->getLocation(), diag::note_previous_decl)
4784          << Method->getDeclName();
4785        return ExprError();
4786      }
4787    }
4788
4789    return Diag(From->getLocStart(),
4790                diag::err_implicit_object_parameter_init)
4791       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4792  }
4793
4794  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4795    ExprResult FromRes =
4796      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4797    if (FromRes.isInvalid())
4798      return ExprError();
4799    From = FromRes.take();
4800  }
4801
4802  if (!Context.hasSameType(From->getType(), DestType))
4803    From = ImpCastExprToType(From, DestType, CK_NoOp,
4804                             From->getValueKind()).take();
4805  return Owned(From);
4806}
4807
4808/// TryContextuallyConvertToBool - Attempt to contextually convert the
4809/// expression From to bool (C++0x [conv]p3).
4810static ImplicitConversionSequence
4811TryContextuallyConvertToBool(Sema &S, Expr *From) {
4812  // FIXME: This is pretty broken.
4813  return TryImplicitConversion(S, From, S.Context.BoolTy,
4814                               // FIXME: Are these flags correct?
4815                               /*SuppressUserConversions=*/false,
4816                               /*AllowExplicit=*/true,
4817                               /*InOverloadResolution=*/false,
4818                               /*CStyle=*/false,
4819                               /*AllowObjCWritebackConversion=*/false);
4820}
4821
4822/// PerformContextuallyConvertToBool - Perform a contextual conversion
4823/// of the expression From to bool (C++0x [conv]p3).
4824ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4825  if (checkPlaceholderForOverload(*this, From))
4826    return ExprError();
4827
4828  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4829  if (!ICS.isBad())
4830    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4831
4832  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4833    return Diag(From->getLocStart(),
4834                diag::err_typecheck_bool_condition)
4835                  << From->getType() << From->getSourceRange();
4836  return ExprError();
4837}
4838
4839/// Check that the specified conversion is permitted in a converted constant
4840/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4841/// is acceptable.
4842static bool CheckConvertedConstantConversions(Sema &S,
4843                                              StandardConversionSequence &SCS) {
4844  // Since we know that the target type is an integral or unscoped enumeration
4845  // type, most conversion kinds are impossible. All possible First and Third
4846  // conversions are fine.
4847  switch (SCS.Second) {
4848  case ICK_Identity:
4849  case ICK_Integral_Promotion:
4850  case ICK_Integral_Conversion:
4851  case ICK_Zero_Event_Conversion:
4852    return true;
4853
4854  case ICK_Boolean_Conversion:
4855    // Conversion from an integral or unscoped enumeration type to bool is
4856    // classified as ICK_Boolean_Conversion, but it's also an integral
4857    // conversion, so it's permitted in a converted constant expression.
4858    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4859           SCS.getToType(2)->isBooleanType();
4860
4861  case ICK_Floating_Integral:
4862  case ICK_Complex_Real:
4863    return false;
4864
4865  case ICK_Lvalue_To_Rvalue:
4866  case ICK_Array_To_Pointer:
4867  case ICK_Function_To_Pointer:
4868  case ICK_NoReturn_Adjustment:
4869  case ICK_Qualification:
4870  case ICK_Compatible_Conversion:
4871  case ICK_Vector_Conversion:
4872  case ICK_Vector_Splat:
4873  case ICK_Derived_To_Base:
4874  case ICK_Pointer_Conversion:
4875  case ICK_Pointer_Member:
4876  case ICK_Block_Pointer_Conversion:
4877  case ICK_Writeback_Conversion:
4878  case ICK_Floating_Promotion:
4879  case ICK_Complex_Promotion:
4880  case ICK_Complex_Conversion:
4881  case ICK_Floating_Conversion:
4882  case ICK_TransparentUnionConversion:
4883    llvm_unreachable("unexpected second conversion kind");
4884
4885  case ICK_Num_Conversion_Kinds:
4886    break;
4887  }
4888
4889  llvm_unreachable("unknown conversion kind");
4890}
4891
4892/// CheckConvertedConstantExpression - Check that the expression From is a
4893/// converted constant expression of type T, perform the conversion and produce
4894/// the converted expression, per C++11 [expr.const]p3.
4895ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4896                                                  llvm::APSInt &Value,
4897                                                  CCEKind CCE) {
4898  assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
4899  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4900
4901  if (checkPlaceholderForOverload(*this, From))
4902    return ExprError();
4903
4904  // C++11 [expr.const]p3 with proposed wording fixes:
4905  //  A converted constant expression of type T is a core constant expression,
4906  //  implicitly converted to a prvalue of type T, where the converted
4907  //  expression is a literal constant expression and the implicit conversion
4908  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4909  //  conversions, integral promotions, and integral conversions other than
4910  //  narrowing conversions.
4911  ImplicitConversionSequence ICS =
4912    TryImplicitConversion(From, T,
4913                          /*SuppressUserConversions=*/false,
4914                          /*AllowExplicit=*/false,
4915                          /*InOverloadResolution=*/false,
4916                          /*CStyle=*/false,
4917                          /*AllowObjcWritebackConversion=*/false);
4918  StandardConversionSequence *SCS = 0;
4919  switch (ICS.getKind()) {
4920  case ImplicitConversionSequence::StandardConversion:
4921    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4922      return Diag(From->getLocStart(),
4923                  diag::err_typecheck_converted_constant_expression_disallowed)
4924               << From->getType() << From->getSourceRange() << T;
4925    SCS = &ICS.Standard;
4926    break;
4927  case ImplicitConversionSequence::UserDefinedConversion:
4928    // We are converting from class type to an integral or enumeration type, so
4929    // the Before sequence must be trivial.
4930    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4931      return Diag(From->getLocStart(),
4932                  diag::err_typecheck_converted_constant_expression_disallowed)
4933               << From->getType() << From->getSourceRange() << T;
4934    SCS = &ICS.UserDefined.After;
4935    break;
4936  case ImplicitConversionSequence::AmbiguousConversion:
4937  case ImplicitConversionSequence::BadConversion:
4938    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4939      return Diag(From->getLocStart(),
4940                  diag::err_typecheck_converted_constant_expression)
4941                    << From->getType() << From->getSourceRange() << T;
4942    return ExprError();
4943
4944  case ImplicitConversionSequence::EllipsisConversion:
4945    llvm_unreachable("ellipsis conversion in converted constant expression");
4946  }
4947
4948  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4949  if (Result.isInvalid())
4950    return Result;
4951
4952  // Check for a narrowing implicit conversion.
4953  APValue PreNarrowingValue;
4954  QualType PreNarrowingType;
4955  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4956                                PreNarrowingType)) {
4957  case NK_Variable_Narrowing:
4958    // Implicit conversion to a narrower type, and the value is not a constant
4959    // expression. We'll diagnose this in a moment.
4960  case NK_Not_Narrowing:
4961    break;
4962
4963  case NK_Constant_Narrowing:
4964    Diag(From->getLocStart(),
4965         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4966                             diag::err_cce_narrowing)
4967      << CCE << /*Constant*/1
4968      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4969    break;
4970
4971  case NK_Type_Narrowing:
4972    Diag(From->getLocStart(),
4973         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4974                             diag::err_cce_narrowing)
4975      << CCE << /*Constant*/0 << From->getType() << T;
4976    break;
4977  }
4978
4979  // Check the expression is a constant expression.
4980  SmallVector<PartialDiagnosticAt, 8> Notes;
4981  Expr::EvalResult Eval;
4982  Eval.Diag = &Notes;
4983
4984  if (!Result.get()->EvaluateAsRValue(Eval, Context) || !Eval.Val.isInt()) {
4985    // The expression can't be folded, so we can't keep it at this position in
4986    // the AST.
4987    Result = ExprError();
4988  } else {
4989    Value = Eval.Val.getInt();
4990
4991    if (Notes.empty()) {
4992      // It's a constant expression.
4993      return Result;
4994    }
4995  }
4996
4997  // It's not a constant expression. Produce an appropriate diagnostic.
4998  if (Notes.size() == 1 &&
4999      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5000    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5001  else {
5002    Diag(From->getLocStart(), diag::err_expr_not_cce)
5003      << CCE << From->getSourceRange();
5004    for (unsigned I = 0; I < Notes.size(); ++I)
5005      Diag(Notes[I].first, Notes[I].second);
5006  }
5007  return Result;
5008}
5009
5010/// dropPointerConversions - If the given standard conversion sequence
5011/// involves any pointer conversions, remove them.  This may change
5012/// the result type of the conversion sequence.
5013static void dropPointerConversion(StandardConversionSequence &SCS) {
5014  if (SCS.Second == ICK_Pointer_Conversion) {
5015    SCS.Second = ICK_Identity;
5016    SCS.Third = ICK_Identity;
5017    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5018  }
5019}
5020
5021/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5022/// convert the expression From to an Objective-C pointer type.
5023static ImplicitConversionSequence
5024TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5025  // Do an implicit conversion to 'id'.
5026  QualType Ty = S.Context.getObjCIdType();
5027  ImplicitConversionSequence ICS
5028    = TryImplicitConversion(S, From, Ty,
5029                            // FIXME: Are these flags correct?
5030                            /*SuppressUserConversions=*/false,
5031                            /*AllowExplicit=*/true,
5032                            /*InOverloadResolution=*/false,
5033                            /*CStyle=*/false,
5034                            /*AllowObjCWritebackConversion=*/false);
5035
5036  // Strip off any final conversions to 'id'.
5037  switch (ICS.getKind()) {
5038  case ImplicitConversionSequence::BadConversion:
5039  case ImplicitConversionSequence::AmbiguousConversion:
5040  case ImplicitConversionSequence::EllipsisConversion:
5041    break;
5042
5043  case ImplicitConversionSequence::UserDefinedConversion:
5044    dropPointerConversion(ICS.UserDefined.After);
5045    break;
5046
5047  case ImplicitConversionSequence::StandardConversion:
5048    dropPointerConversion(ICS.Standard);
5049    break;
5050  }
5051
5052  return ICS;
5053}
5054
5055/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5056/// conversion of the expression From to an Objective-C pointer type.
5057ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5058  if (checkPlaceholderForOverload(*this, From))
5059    return ExprError();
5060
5061  QualType Ty = Context.getObjCIdType();
5062  ImplicitConversionSequence ICS =
5063    TryContextuallyConvertToObjCPointer(*this, From);
5064  if (!ICS.isBad())
5065    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5066  return ExprError();
5067}
5068
5069/// Determine whether the provided type is an integral type, or an enumeration
5070/// type of a permitted flavor.
5071bool Sema::ICEConvertDiagnoser::match(QualType T) {
5072  return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5073                                 : T->isIntegralOrUnscopedEnumerationType();
5074}
5075
5076static ExprResult
5077diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5078                            Sema::ContextualImplicitConverter &Converter,
5079                            QualType T, UnresolvedSetImpl &ViableConversions) {
5080
5081  if (Converter.Suppress)
5082    return ExprError();
5083
5084  Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5085  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5086    CXXConversionDecl *Conv =
5087        cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5088    QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5089    Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5090  }
5091  return SemaRef.Owned(From);
5092}
5093
5094static bool
5095diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5096                           Sema::ContextualImplicitConverter &Converter,
5097                           QualType T, bool HadMultipleCandidates,
5098                           UnresolvedSetImpl &ExplicitConversions) {
5099  if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5100    DeclAccessPair Found = ExplicitConversions[0];
5101    CXXConversionDecl *Conversion =
5102        cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5103
5104    // The user probably meant to invoke the given explicit
5105    // conversion; use it.
5106    QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5107    std::string TypeStr;
5108    ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5109
5110    Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5111        << FixItHint::CreateInsertion(From->getLocStart(),
5112                                      "static_cast<" + TypeStr + ">(")
5113        << FixItHint::CreateInsertion(
5114               SemaRef.PP.getLocForEndOfToken(From->getLocEnd()), ")");
5115    Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5116
5117    // If we aren't in a SFINAE context, build a call to the
5118    // explicit conversion function.
5119    if (SemaRef.isSFINAEContext())
5120      return true;
5121
5122    SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5123    ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5124                                                       HadMultipleCandidates);
5125    if (Result.isInvalid())
5126      return true;
5127    // Record usage of conversion in an implicit cast.
5128    From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5129                                    CK_UserDefinedConversion, Result.get(), 0,
5130                                    Result.get()->getValueKind());
5131  }
5132  return false;
5133}
5134
5135static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5136                             Sema::ContextualImplicitConverter &Converter,
5137                             QualType T, bool HadMultipleCandidates,
5138                             DeclAccessPair &Found) {
5139  CXXConversionDecl *Conversion =
5140      cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5141  SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5142
5143  QualType ToType = Conversion->getConversionType().getNonReferenceType();
5144  if (!Converter.SuppressConversion) {
5145    if (SemaRef.isSFINAEContext())
5146      return true;
5147
5148    Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5149        << From->getSourceRange();
5150  }
5151
5152  ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5153                                                     HadMultipleCandidates);
5154  if (Result.isInvalid())
5155    return true;
5156  // Record usage of conversion in an implicit cast.
5157  From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5158                                  CK_UserDefinedConversion, Result.get(), 0,
5159                                  Result.get()->getValueKind());
5160  return false;
5161}
5162
5163static ExprResult finishContextualImplicitConversion(
5164    Sema &SemaRef, SourceLocation Loc, Expr *From,
5165    Sema::ContextualImplicitConverter &Converter) {
5166  if (!Converter.match(From->getType()) && !Converter.Suppress)
5167    Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5168        << From->getSourceRange();
5169
5170  return SemaRef.DefaultLvalueConversion(From);
5171}
5172
5173static void
5174collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5175                                  UnresolvedSetImpl &ViableConversions,
5176                                  OverloadCandidateSet &CandidateSet) {
5177  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5178    DeclAccessPair FoundDecl = ViableConversions[I];
5179    NamedDecl *D = FoundDecl.getDecl();
5180    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5181    if (isa<UsingShadowDecl>(D))
5182      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5183
5184    CXXConversionDecl *Conv;
5185    FunctionTemplateDecl *ConvTemplate;
5186    if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5187      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5188    else
5189      Conv = cast<CXXConversionDecl>(D);
5190
5191    if (ConvTemplate)
5192      SemaRef.AddTemplateConversionCandidate(
5193          ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet);
5194    else
5195      SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5196                                     ToType, CandidateSet);
5197  }
5198}
5199
5200/// \brief Attempt to convert the given expression to a type which is accepted
5201/// by the given converter.
5202///
5203/// This routine will attempt to convert an expression of class type to a
5204/// type accepted by the specified converter. In C++11 and before, the class
5205/// must have a single non-explicit conversion function converting to a matching
5206/// type. In C++1y, there can be multiple such conversion functions, but only
5207/// one target type.
5208///
5209/// \param Loc The source location of the construct that requires the
5210/// conversion.
5211///
5212/// \param From The expression we're converting from.
5213///
5214/// \param Converter Used to control and diagnose the conversion process.
5215///
5216/// \returns The expression, converted to an integral or enumeration type if
5217/// successful.
5218ExprResult Sema::PerformContextualImplicitConversion(
5219    SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5220  // We can't perform any more checking for type-dependent expressions.
5221  if (From->isTypeDependent())
5222    return Owned(From);
5223
5224  // Process placeholders immediately.
5225  if (From->hasPlaceholderType()) {
5226    ExprResult result = CheckPlaceholderExpr(From);
5227    if (result.isInvalid())
5228      return result;
5229    From = result.take();
5230  }
5231
5232  // If the expression already has a matching type, we're golden.
5233  QualType T = From->getType();
5234  if (Converter.match(T))
5235    return DefaultLvalueConversion(From);
5236
5237  // FIXME: Check for missing '()' if T is a function type?
5238
5239  // We can only perform contextual implicit conversions on objects of class
5240  // type.
5241  const RecordType *RecordTy = T->getAs<RecordType>();
5242  if (!RecordTy || !getLangOpts().CPlusPlus) {
5243    if (!Converter.Suppress)
5244      Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5245    return Owned(From);
5246  }
5247
5248  // We must have a complete class type.
5249  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5250    ContextualImplicitConverter &Converter;
5251    Expr *From;
5252
5253    TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5254        : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
5255
5256    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5257      Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5258    }
5259  } IncompleteDiagnoser(Converter, From);
5260
5261  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5262    return Owned(From);
5263
5264  // Look for a conversion to an integral or enumeration type.
5265  UnresolvedSet<4>
5266      ViableConversions; // These are *potentially* viable in C++1y.
5267  UnresolvedSet<4> ExplicitConversions;
5268  std::pair<CXXRecordDecl::conversion_iterator,
5269            CXXRecordDecl::conversion_iterator> Conversions =
5270      cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5271
5272  bool HadMultipleCandidates =
5273      (std::distance(Conversions.first, Conversions.second) > 1);
5274
5275  // To check that there is only one target type, in C++1y:
5276  QualType ToType;
5277  bool HasUniqueTargetType = true;
5278
5279  // Collect explicit or viable (potentially in C++1y) conversions.
5280  for (CXXRecordDecl::conversion_iterator I = Conversions.first,
5281                                          E = Conversions.second;
5282       I != E; ++I) {
5283    NamedDecl *D = (*I)->getUnderlyingDecl();
5284    CXXConversionDecl *Conversion;
5285    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5286    if (ConvTemplate) {
5287      if (getLangOpts().CPlusPlus1y)
5288        Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5289      else
5290        continue; // C++11 does not consider conversion operator templates(?).
5291    } else
5292      Conversion = cast<CXXConversionDecl>(D);
5293
5294    assert((!ConvTemplate || getLangOpts().CPlusPlus1y) &&
5295           "Conversion operator templates are considered potentially "
5296           "viable in C++1y");
5297
5298    QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5299    if (Converter.match(CurToType) || ConvTemplate) {
5300
5301      if (Conversion->isExplicit()) {
5302        // FIXME: For C++1y, do we need this restriction?
5303        // cf. diagnoseNoViableConversion()
5304        if (!ConvTemplate)
5305          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5306      } else {
5307        if (!ConvTemplate && getLangOpts().CPlusPlus1y) {
5308          if (ToType.isNull())
5309            ToType = CurToType.getUnqualifiedType();
5310          else if (HasUniqueTargetType &&
5311                   (CurToType.getUnqualifiedType() != ToType))
5312            HasUniqueTargetType = false;
5313        }
5314        ViableConversions.addDecl(I.getDecl(), I.getAccess());
5315      }
5316    }
5317  }
5318
5319  if (getLangOpts().CPlusPlus1y) {
5320    // C++1y [conv]p6:
5321    // ... An expression e of class type E appearing in such a context
5322    // is said to be contextually implicitly converted to a specified
5323    // type T and is well-formed if and only if e can be implicitly
5324    // converted to a type T that is determined as follows: E is searched
5325    // for conversion functions whose return type is cv T or reference to
5326    // cv T such that T is allowed by the context. There shall be
5327    // exactly one such T.
5328
5329    // If no unique T is found:
5330    if (ToType.isNull()) {
5331      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5332                                     HadMultipleCandidates,
5333                                     ExplicitConversions))
5334        return ExprError();
5335      return finishContextualImplicitConversion(*this, Loc, From, Converter);
5336    }
5337
5338    // If more than one unique Ts are found:
5339    if (!HasUniqueTargetType)
5340      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5341                                         ViableConversions);
5342
5343    // If one unique T is found:
5344    // First, build a candidate set from the previously recorded
5345    // potentially viable conversions.
5346    OverloadCandidateSet CandidateSet(Loc);
5347    collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5348                                      CandidateSet);
5349
5350    // Then, perform overload resolution over the candidate set.
5351    OverloadCandidateSet::iterator Best;
5352    switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5353    case OR_Success: {
5354      // Apply this conversion.
5355      DeclAccessPair Found =
5356          DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5357      if (recordConversion(*this, Loc, From, Converter, T,
5358                           HadMultipleCandidates, Found))
5359        return ExprError();
5360      break;
5361    }
5362    case OR_Ambiguous:
5363      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5364                                         ViableConversions);
5365    case OR_No_Viable_Function:
5366      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5367                                     HadMultipleCandidates,
5368                                     ExplicitConversions))
5369        return ExprError();
5370    // fall through 'OR_Deleted' case.
5371    case OR_Deleted:
5372      // We'll complain below about a non-integral condition type.
5373      break;
5374    }
5375  } else {
5376    switch (ViableConversions.size()) {
5377    case 0: {
5378      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5379                                     HadMultipleCandidates,
5380                                     ExplicitConversions))
5381        return ExprError();
5382
5383      // We'll complain below about a non-integral condition type.
5384      break;
5385    }
5386    case 1: {
5387      // Apply this conversion.
5388      DeclAccessPair Found = ViableConversions[0];
5389      if (recordConversion(*this, Loc, From, Converter, T,
5390                           HadMultipleCandidates, Found))
5391        return ExprError();
5392      break;
5393    }
5394    default:
5395      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5396                                         ViableConversions);
5397    }
5398  }
5399
5400  return finishContextualImplicitConversion(*this, Loc, From, Converter);
5401}
5402
5403/// AddOverloadCandidate - Adds the given function to the set of
5404/// candidate functions, using the given function call arguments.  If
5405/// @p SuppressUserConversions, then don't allow user-defined
5406/// conversions via constructors or conversion operators.
5407///
5408/// \param PartialOverloading true if we are performing "partial" overloading
5409/// based on an incomplete set of function arguments. This feature is used by
5410/// code completion.
5411void
5412Sema::AddOverloadCandidate(FunctionDecl *Function,
5413                           DeclAccessPair FoundDecl,
5414                           ArrayRef<Expr *> Args,
5415                           OverloadCandidateSet& CandidateSet,
5416                           bool SuppressUserConversions,
5417                           bool PartialOverloading,
5418                           bool AllowExplicit) {
5419  const FunctionProtoType* Proto
5420    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5421  assert(Proto && "Functions without a prototype cannot be overloaded");
5422  assert(!Function->getDescribedFunctionTemplate() &&
5423         "Use AddTemplateOverloadCandidate for function templates");
5424
5425  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5426    if (!isa<CXXConstructorDecl>(Method)) {
5427      // If we get here, it's because we're calling a member function
5428      // that is named without a member access expression (e.g.,
5429      // "this->f") that was either written explicitly or created
5430      // implicitly. This can happen with a qualified call to a member
5431      // function, e.g., X::f(). We use an empty type for the implied
5432      // object argument (C++ [over.call.func]p3), and the acting context
5433      // is irrelevant.
5434      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5435                         QualType(), Expr::Classification::makeSimpleLValue(),
5436                         Args, CandidateSet, SuppressUserConversions);
5437      return;
5438    }
5439    // We treat a constructor like a non-member function, since its object
5440    // argument doesn't participate in overload resolution.
5441  }
5442
5443  if (!CandidateSet.isNewCandidate(Function))
5444    return;
5445
5446  // Overload resolution is always an unevaluated context.
5447  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5448
5449  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5450    // C++ [class.copy]p3:
5451    //   A member function template is never instantiated to perform the copy
5452    //   of a class object to an object of its class type.
5453    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5454    if (Args.size() == 1 &&
5455        Constructor->isSpecializationCopyingObject() &&
5456        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5457         IsDerivedFrom(Args[0]->getType(), ClassType)))
5458      return;
5459  }
5460
5461  // Add this candidate
5462  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5463  Candidate.FoundDecl = FoundDecl;
5464  Candidate.Function = Function;
5465  Candidate.Viable = true;
5466  Candidate.IsSurrogate = false;
5467  Candidate.IgnoreObjectArgument = false;
5468  Candidate.ExplicitCallArguments = Args.size();
5469
5470  unsigned NumArgsInProto = Proto->getNumArgs();
5471
5472  // (C++ 13.3.2p2): A candidate function having fewer than m
5473  // parameters is viable only if it has an ellipsis in its parameter
5474  // list (8.3.5).
5475  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5476      !Proto->isVariadic()) {
5477    Candidate.Viable = false;
5478    Candidate.FailureKind = ovl_fail_too_many_arguments;
5479    return;
5480  }
5481
5482  // (C++ 13.3.2p2): A candidate function having more than m parameters
5483  // is viable only if the (m+1)st parameter has a default argument
5484  // (8.3.6). For the purposes of overload resolution, the
5485  // parameter list is truncated on the right, so that there are
5486  // exactly m parameters.
5487  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5488  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5489    // Not enough arguments.
5490    Candidate.Viable = false;
5491    Candidate.FailureKind = ovl_fail_too_few_arguments;
5492    return;
5493  }
5494
5495  // (CUDA B.1): Check for invalid calls between targets.
5496  if (getLangOpts().CUDA)
5497    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5498      if (CheckCUDATarget(Caller, Function)) {
5499        Candidate.Viable = false;
5500        Candidate.FailureKind = ovl_fail_bad_target;
5501        return;
5502      }
5503
5504  // Determine the implicit conversion sequences for each of the
5505  // arguments.
5506  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5507    if (ArgIdx < NumArgsInProto) {
5508      // (C++ 13.3.2p3): for F to be a viable function, there shall
5509      // exist for each argument an implicit conversion sequence
5510      // (13.3.3.1) that converts that argument to the corresponding
5511      // parameter of F.
5512      QualType ParamType = Proto->getArgType(ArgIdx);
5513      Candidate.Conversions[ArgIdx]
5514        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5515                                SuppressUserConversions,
5516                                /*InOverloadResolution=*/true,
5517                                /*AllowObjCWritebackConversion=*/
5518                                  getLangOpts().ObjCAutoRefCount,
5519                                AllowExplicit);
5520      if (Candidate.Conversions[ArgIdx].isBad()) {
5521        Candidate.Viable = false;
5522        Candidate.FailureKind = ovl_fail_bad_conversion;
5523        break;
5524      }
5525    } else {
5526      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5527      // argument for which there is no corresponding parameter is
5528      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5529      Candidate.Conversions[ArgIdx].setEllipsis();
5530    }
5531  }
5532}
5533
5534/// \brief Add all of the function declarations in the given function set to
5535/// the overload candidate set.
5536void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5537                                 ArrayRef<Expr *> Args,
5538                                 OverloadCandidateSet& CandidateSet,
5539                                 bool SuppressUserConversions,
5540                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5541  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5542    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5543    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5544      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5545        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5546                           cast<CXXMethodDecl>(FD)->getParent(),
5547                           Args[0]->getType(), Args[0]->Classify(Context),
5548                           Args.slice(1), CandidateSet,
5549                           SuppressUserConversions);
5550      else
5551        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5552                             SuppressUserConversions);
5553    } else {
5554      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5555      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5556          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5557        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5558                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5559                                   ExplicitTemplateArgs,
5560                                   Args[0]->getType(),
5561                                   Args[0]->Classify(Context), Args.slice(1),
5562                                   CandidateSet, SuppressUserConversions);
5563      else
5564        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5565                                     ExplicitTemplateArgs, Args,
5566                                     CandidateSet, SuppressUserConversions);
5567    }
5568  }
5569}
5570
5571/// AddMethodCandidate - Adds a named decl (which is some kind of
5572/// method) as a method candidate to the given overload set.
5573void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5574                              QualType ObjectType,
5575                              Expr::Classification ObjectClassification,
5576                              ArrayRef<Expr *> Args,
5577                              OverloadCandidateSet& CandidateSet,
5578                              bool SuppressUserConversions) {
5579  NamedDecl *Decl = FoundDecl.getDecl();
5580  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5581
5582  if (isa<UsingShadowDecl>(Decl))
5583    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5584
5585  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5586    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5587           "Expected a member function template");
5588    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5589                               /*ExplicitArgs*/ 0,
5590                               ObjectType, ObjectClassification,
5591                               Args, CandidateSet,
5592                               SuppressUserConversions);
5593  } else {
5594    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5595                       ObjectType, ObjectClassification,
5596                       Args,
5597                       CandidateSet, SuppressUserConversions);
5598  }
5599}
5600
5601/// AddMethodCandidate - Adds the given C++ member function to the set
5602/// of candidate functions, using the given function call arguments
5603/// and the object argument (@c Object). For example, in a call
5604/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5605/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5606/// allow user-defined conversions via constructors or conversion
5607/// operators.
5608void
5609Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5610                         CXXRecordDecl *ActingContext, QualType ObjectType,
5611                         Expr::Classification ObjectClassification,
5612                         ArrayRef<Expr *> Args,
5613                         OverloadCandidateSet& CandidateSet,
5614                         bool SuppressUserConversions) {
5615  const FunctionProtoType* Proto
5616    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5617  assert(Proto && "Methods without a prototype cannot be overloaded");
5618  assert(!isa<CXXConstructorDecl>(Method) &&
5619         "Use AddOverloadCandidate for constructors");
5620
5621  if (!CandidateSet.isNewCandidate(Method))
5622    return;
5623
5624  // Overload resolution is always an unevaluated context.
5625  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5626
5627  // Add this candidate
5628  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5629  Candidate.FoundDecl = FoundDecl;
5630  Candidate.Function = Method;
5631  Candidate.IsSurrogate = false;
5632  Candidate.IgnoreObjectArgument = false;
5633  Candidate.ExplicitCallArguments = Args.size();
5634
5635  unsigned NumArgsInProto = Proto->getNumArgs();
5636
5637  // (C++ 13.3.2p2): A candidate function having fewer than m
5638  // parameters is viable only if it has an ellipsis in its parameter
5639  // list (8.3.5).
5640  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5641    Candidate.Viable = false;
5642    Candidate.FailureKind = ovl_fail_too_many_arguments;
5643    return;
5644  }
5645
5646  // (C++ 13.3.2p2): A candidate function having more than m parameters
5647  // is viable only if the (m+1)st parameter has a default argument
5648  // (8.3.6). For the purposes of overload resolution, the
5649  // parameter list is truncated on the right, so that there are
5650  // exactly m parameters.
5651  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5652  if (Args.size() < MinRequiredArgs) {
5653    // Not enough arguments.
5654    Candidate.Viable = false;
5655    Candidate.FailureKind = ovl_fail_too_few_arguments;
5656    return;
5657  }
5658
5659  Candidate.Viable = true;
5660
5661  if (Method->isStatic() || ObjectType.isNull())
5662    // The implicit object argument is ignored.
5663    Candidate.IgnoreObjectArgument = true;
5664  else {
5665    // Determine the implicit conversion sequence for the object
5666    // parameter.
5667    Candidate.Conversions[0]
5668      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5669                                        Method, ActingContext);
5670    if (Candidate.Conversions[0].isBad()) {
5671      Candidate.Viable = false;
5672      Candidate.FailureKind = ovl_fail_bad_conversion;
5673      return;
5674    }
5675  }
5676
5677  // Determine the implicit conversion sequences for each of the
5678  // arguments.
5679  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5680    if (ArgIdx < NumArgsInProto) {
5681      // (C++ 13.3.2p3): for F to be a viable function, there shall
5682      // exist for each argument an implicit conversion sequence
5683      // (13.3.3.1) that converts that argument to the corresponding
5684      // parameter of F.
5685      QualType ParamType = Proto->getArgType(ArgIdx);
5686      Candidate.Conversions[ArgIdx + 1]
5687        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5688                                SuppressUserConversions,
5689                                /*InOverloadResolution=*/true,
5690                                /*AllowObjCWritebackConversion=*/
5691                                  getLangOpts().ObjCAutoRefCount);
5692      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5693        Candidate.Viable = false;
5694        Candidate.FailureKind = ovl_fail_bad_conversion;
5695        break;
5696      }
5697    } else {
5698      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5699      // argument for which there is no corresponding parameter is
5700      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5701      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5702    }
5703  }
5704}
5705
5706/// \brief Add a C++ member function template as a candidate to the candidate
5707/// set, using template argument deduction to produce an appropriate member
5708/// function template specialization.
5709void
5710Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5711                                 DeclAccessPair FoundDecl,
5712                                 CXXRecordDecl *ActingContext,
5713                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5714                                 QualType ObjectType,
5715                                 Expr::Classification ObjectClassification,
5716                                 ArrayRef<Expr *> Args,
5717                                 OverloadCandidateSet& CandidateSet,
5718                                 bool SuppressUserConversions) {
5719  if (!CandidateSet.isNewCandidate(MethodTmpl))
5720    return;
5721
5722  // C++ [over.match.funcs]p7:
5723  //   In each case where a candidate is a function template, candidate
5724  //   function template specializations are generated using template argument
5725  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5726  //   candidate functions in the usual way.113) A given name can refer to one
5727  //   or more function templates and also to a set of overloaded non-template
5728  //   functions. In such a case, the candidate functions generated from each
5729  //   function template are combined with the set of non-template candidate
5730  //   functions.
5731  TemplateDeductionInfo Info(CandidateSet.getLocation());
5732  FunctionDecl *Specialization = 0;
5733  if (TemplateDeductionResult Result
5734      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5735                                Specialization, Info)) {
5736    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5737    Candidate.FoundDecl = FoundDecl;
5738    Candidate.Function = MethodTmpl->getTemplatedDecl();
5739    Candidate.Viable = false;
5740    Candidate.FailureKind = ovl_fail_bad_deduction;
5741    Candidate.IsSurrogate = false;
5742    Candidate.IgnoreObjectArgument = false;
5743    Candidate.ExplicitCallArguments = Args.size();
5744    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5745                                                          Info);
5746    return;
5747  }
5748
5749  // Add the function template specialization produced by template argument
5750  // deduction as a candidate.
5751  assert(Specialization && "Missing member function template specialization?");
5752  assert(isa<CXXMethodDecl>(Specialization) &&
5753         "Specialization is not a member function?");
5754  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5755                     ActingContext, ObjectType, ObjectClassification, Args,
5756                     CandidateSet, SuppressUserConversions);
5757}
5758
5759/// \brief Add a C++ function template specialization as a candidate
5760/// in the candidate set, using template argument deduction to produce
5761/// an appropriate function template specialization.
5762void
5763Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5764                                   DeclAccessPair FoundDecl,
5765                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5766                                   ArrayRef<Expr *> Args,
5767                                   OverloadCandidateSet& CandidateSet,
5768                                   bool SuppressUserConversions) {
5769  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5770    return;
5771
5772  // C++ [over.match.funcs]p7:
5773  //   In each case where a candidate is a function template, candidate
5774  //   function template specializations are generated using template argument
5775  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5776  //   candidate functions in the usual way.113) A given name can refer to one
5777  //   or more function templates and also to a set of overloaded non-template
5778  //   functions. In such a case, the candidate functions generated from each
5779  //   function template are combined with the set of non-template candidate
5780  //   functions.
5781  TemplateDeductionInfo Info(CandidateSet.getLocation());
5782  FunctionDecl *Specialization = 0;
5783  if (TemplateDeductionResult Result
5784        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5785                                  Specialization, Info)) {
5786    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5787    Candidate.FoundDecl = FoundDecl;
5788    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5789    Candidate.Viable = false;
5790    Candidate.FailureKind = ovl_fail_bad_deduction;
5791    Candidate.IsSurrogate = false;
5792    Candidate.IgnoreObjectArgument = false;
5793    Candidate.ExplicitCallArguments = Args.size();
5794    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5795                                                          Info);
5796    return;
5797  }
5798
5799  // Add the function template specialization produced by template argument
5800  // deduction as a candidate.
5801  assert(Specialization && "Missing function template specialization?");
5802  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5803                       SuppressUserConversions);
5804}
5805
5806/// AddConversionCandidate - Add a C++ conversion function as a
5807/// candidate in the candidate set (C++ [over.match.conv],
5808/// C++ [over.match.copy]). From is the expression we're converting from,
5809/// and ToType is the type that we're eventually trying to convert to
5810/// (which may or may not be the same type as the type that the
5811/// conversion function produces).
5812void
5813Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5814                             DeclAccessPair FoundDecl,
5815                             CXXRecordDecl *ActingContext,
5816                             Expr *From, QualType ToType,
5817                             OverloadCandidateSet& CandidateSet) {
5818  assert(!Conversion->getDescribedFunctionTemplate() &&
5819         "Conversion function templates use AddTemplateConversionCandidate");
5820  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5821  if (!CandidateSet.isNewCandidate(Conversion))
5822    return;
5823
5824  // If the conversion function has an undeduced return type, trigger its
5825  // deduction now.
5826  if (getLangOpts().CPlusPlus1y && ConvType->isUndeducedType()) {
5827    if (DeduceReturnType(Conversion, From->getExprLoc()))
5828      return;
5829    ConvType = Conversion->getConversionType().getNonReferenceType();
5830  }
5831
5832  // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
5833  // operator is only a candidate if its return type is the target type or
5834  // can be converted to the target type with a qualification conversion.
5835  bool ObjCLifetimeConversion;
5836  QualType ToNonRefType = ToType.getNonReferenceType();
5837  if (Conversion->isExplicit() &&
5838      !Context.hasSameUnqualifiedType(ConvType, ToNonRefType) &&
5839      !IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
5840                                 ObjCLifetimeConversion))
5841    return;
5842
5843  // Overload resolution is always an unevaluated context.
5844  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5845
5846  // Add this candidate
5847  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5848  Candidate.FoundDecl = FoundDecl;
5849  Candidate.Function = Conversion;
5850  Candidate.IsSurrogate = false;
5851  Candidate.IgnoreObjectArgument = false;
5852  Candidate.FinalConversion.setAsIdentityConversion();
5853  Candidate.FinalConversion.setFromType(ConvType);
5854  Candidate.FinalConversion.setAllToTypes(ToType);
5855  Candidate.Viable = true;
5856  Candidate.ExplicitCallArguments = 1;
5857
5858  // C++ [over.match.funcs]p4:
5859  //   For conversion functions, the function is considered to be a member of
5860  //   the class of the implicit implied object argument for the purpose of
5861  //   defining the type of the implicit object parameter.
5862  //
5863  // Determine the implicit conversion sequence for the implicit
5864  // object parameter.
5865  QualType ImplicitParamType = From->getType();
5866  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5867    ImplicitParamType = FromPtrType->getPointeeType();
5868  CXXRecordDecl *ConversionContext
5869    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5870
5871  Candidate.Conversions[0]
5872    = TryObjectArgumentInitialization(*this, From->getType(),
5873                                      From->Classify(Context),
5874                                      Conversion, ConversionContext);
5875
5876  if (Candidate.Conversions[0].isBad()) {
5877    Candidate.Viable = false;
5878    Candidate.FailureKind = ovl_fail_bad_conversion;
5879    return;
5880  }
5881
5882  // We won't go through a user-define type conversion function to convert a
5883  // derived to base as such conversions are given Conversion Rank. They only
5884  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5885  QualType FromCanon
5886    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5887  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5888  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5889    Candidate.Viable = false;
5890    Candidate.FailureKind = ovl_fail_trivial_conversion;
5891    return;
5892  }
5893
5894  // To determine what the conversion from the result of calling the
5895  // conversion function to the type we're eventually trying to
5896  // convert to (ToType), we need to synthesize a call to the
5897  // conversion function and attempt copy initialization from it. This
5898  // makes sure that we get the right semantics with respect to
5899  // lvalues/rvalues and the type. Fortunately, we can allocate this
5900  // call on the stack and we don't need its arguments to be
5901  // well-formed.
5902  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5903                            VK_LValue, From->getLocStart());
5904  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5905                                Context.getPointerType(Conversion->getType()),
5906                                CK_FunctionToPointerDecay,
5907                                &ConversionRef, VK_RValue);
5908
5909  QualType ConversionType = Conversion->getConversionType();
5910  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5911    Candidate.Viable = false;
5912    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5913    return;
5914  }
5915
5916  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5917
5918  // Note that it is safe to allocate CallExpr on the stack here because
5919  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5920  // allocator).
5921  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5922  CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
5923                From->getLocStart());
5924  ImplicitConversionSequence ICS =
5925    TryCopyInitialization(*this, &Call, ToType,
5926                          /*SuppressUserConversions=*/true,
5927                          /*InOverloadResolution=*/false,
5928                          /*AllowObjCWritebackConversion=*/false);
5929
5930  switch (ICS.getKind()) {
5931  case ImplicitConversionSequence::StandardConversion:
5932    Candidate.FinalConversion = ICS.Standard;
5933
5934    // C++ [over.ics.user]p3:
5935    //   If the user-defined conversion is specified by a specialization of a
5936    //   conversion function template, the second standard conversion sequence
5937    //   shall have exact match rank.
5938    if (Conversion->getPrimaryTemplate() &&
5939        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5940      Candidate.Viable = false;
5941      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5942    }
5943
5944    // C++0x [dcl.init.ref]p5:
5945    //    In the second case, if the reference is an rvalue reference and
5946    //    the second standard conversion sequence of the user-defined
5947    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5948    //    program is ill-formed.
5949    if (ToType->isRValueReferenceType() &&
5950        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5951      Candidate.Viable = false;
5952      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5953    }
5954    break;
5955
5956  case ImplicitConversionSequence::BadConversion:
5957    Candidate.Viable = false;
5958    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5959    break;
5960
5961  default:
5962    llvm_unreachable(
5963           "Can only end up with a standard conversion sequence or failure");
5964  }
5965}
5966
5967/// \brief Adds a conversion function template specialization
5968/// candidate to the overload set, using template argument deduction
5969/// to deduce the template arguments of the conversion function
5970/// template from the type that we are converting to (C++
5971/// [temp.deduct.conv]).
5972void
5973Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5974                                     DeclAccessPair FoundDecl,
5975                                     CXXRecordDecl *ActingDC,
5976                                     Expr *From, QualType ToType,
5977                                     OverloadCandidateSet &CandidateSet) {
5978  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5979         "Only conversion function templates permitted here");
5980
5981  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5982    return;
5983
5984  TemplateDeductionInfo Info(CandidateSet.getLocation());
5985  CXXConversionDecl *Specialization = 0;
5986  if (TemplateDeductionResult Result
5987        = DeduceTemplateArguments(FunctionTemplate, ToType,
5988                                  Specialization, Info)) {
5989    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5990    Candidate.FoundDecl = FoundDecl;
5991    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5992    Candidate.Viable = false;
5993    Candidate.FailureKind = ovl_fail_bad_deduction;
5994    Candidate.IsSurrogate = false;
5995    Candidate.IgnoreObjectArgument = false;
5996    Candidate.ExplicitCallArguments = 1;
5997    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5998                                                          Info);
5999    return;
6000  }
6001
6002  // Add the conversion function template specialization produced by
6003  // template argument deduction as a candidate.
6004  assert(Specialization && "Missing function template specialization?");
6005  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6006                         CandidateSet);
6007}
6008
6009/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6010/// converts the given @c Object to a function pointer via the
6011/// conversion function @c Conversion, and then attempts to call it
6012/// with the given arguments (C++ [over.call.object]p2-4). Proto is
6013/// the type of function that we'll eventually be calling.
6014void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6015                                 DeclAccessPair FoundDecl,
6016                                 CXXRecordDecl *ActingContext,
6017                                 const FunctionProtoType *Proto,
6018                                 Expr *Object,
6019                                 ArrayRef<Expr *> Args,
6020                                 OverloadCandidateSet& CandidateSet) {
6021  if (!CandidateSet.isNewCandidate(Conversion))
6022    return;
6023
6024  // Overload resolution is always an unevaluated context.
6025  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6026
6027  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6028  Candidate.FoundDecl = FoundDecl;
6029  Candidate.Function = 0;
6030  Candidate.Surrogate = Conversion;
6031  Candidate.Viable = true;
6032  Candidate.IsSurrogate = true;
6033  Candidate.IgnoreObjectArgument = false;
6034  Candidate.ExplicitCallArguments = Args.size();
6035
6036  // Determine the implicit conversion sequence for the implicit
6037  // object parameter.
6038  ImplicitConversionSequence ObjectInit
6039    = TryObjectArgumentInitialization(*this, Object->getType(),
6040                                      Object->Classify(Context),
6041                                      Conversion, ActingContext);
6042  if (ObjectInit.isBad()) {
6043    Candidate.Viable = false;
6044    Candidate.FailureKind = ovl_fail_bad_conversion;
6045    Candidate.Conversions[0] = ObjectInit;
6046    return;
6047  }
6048
6049  // The first conversion is actually a user-defined conversion whose
6050  // first conversion is ObjectInit's standard conversion (which is
6051  // effectively a reference binding). Record it as such.
6052  Candidate.Conversions[0].setUserDefined();
6053  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6054  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6055  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6056  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6057  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6058  Candidate.Conversions[0].UserDefined.After
6059    = Candidate.Conversions[0].UserDefined.Before;
6060  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6061
6062  // Find the
6063  unsigned NumArgsInProto = Proto->getNumArgs();
6064
6065  // (C++ 13.3.2p2): A candidate function having fewer than m
6066  // parameters is viable only if it has an ellipsis in its parameter
6067  // list (8.3.5).
6068  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
6069    Candidate.Viable = false;
6070    Candidate.FailureKind = ovl_fail_too_many_arguments;
6071    return;
6072  }
6073
6074  // Function types don't have any default arguments, so just check if
6075  // we have enough arguments.
6076  if (Args.size() < NumArgsInProto) {
6077    // Not enough arguments.
6078    Candidate.Viable = false;
6079    Candidate.FailureKind = ovl_fail_too_few_arguments;
6080    return;
6081  }
6082
6083  // Determine the implicit conversion sequences for each of the
6084  // arguments.
6085  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6086    if (ArgIdx < NumArgsInProto) {
6087      // (C++ 13.3.2p3): for F to be a viable function, there shall
6088      // exist for each argument an implicit conversion sequence
6089      // (13.3.3.1) that converts that argument to the corresponding
6090      // parameter of F.
6091      QualType ParamType = Proto->getArgType(ArgIdx);
6092      Candidate.Conversions[ArgIdx + 1]
6093        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6094                                /*SuppressUserConversions=*/false,
6095                                /*InOverloadResolution=*/false,
6096                                /*AllowObjCWritebackConversion=*/
6097                                  getLangOpts().ObjCAutoRefCount);
6098      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6099        Candidate.Viable = false;
6100        Candidate.FailureKind = ovl_fail_bad_conversion;
6101        break;
6102      }
6103    } else {
6104      // (C++ 13.3.2p2): For the purposes of overload resolution, any
6105      // argument for which there is no corresponding parameter is
6106      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6107      Candidate.Conversions[ArgIdx + 1].setEllipsis();
6108    }
6109  }
6110}
6111
6112/// \brief Add overload candidates for overloaded operators that are
6113/// member functions.
6114///
6115/// Add the overloaded operator candidates that are member functions
6116/// for the operator Op that was used in an operator expression such
6117/// as "x Op y". , Args/NumArgs provides the operator arguments, and
6118/// CandidateSet will store the added overload candidates. (C++
6119/// [over.match.oper]).
6120void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6121                                       SourceLocation OpLoc,
6122                                       ArrayRef<Expr *> Args,
6123                                       OverloadCandidateSet& CandidateSet,
6124                                       SourceRange OpRange) {
6125  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6126
6127  // C++ [over.match.oper]p3:
6128  //   For a unary operator @ with an operand of a type whose
6129  //   cv-unqualified version is T1, and for a binary operator @ with
6130  //   a left operand of a type whose cv-unqualified version is T1 and
6131  //   a right operand of a type whose cv-unqualified version is T2,
6132  //   three sets of candidate functions, designated member
6133  //   candidates, non-member candidates and built-in candidates, are
6134  //   constructed as follows:
6135  QualType T1 = Args[0]->getType();
6136
6137  //     -- If T1 is a complete class type or a class currently being
6138  //        defined, the set of member candidates is the result of the
6139  //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6140  //        the set of member candidates is empty.
6141  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6142    // Complete the type if it can be completed.
6143    RequireCompleteType(OpLoc, T1, 0);
6144    // If the type is neither complete nor being defined, bail out now.
6145    if (!T1Rec->getDecl()->getDefinition())
6146      return;
6147
6148    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6149    LookupQualifiedName(Operators, T1Rec->getDecl());
6150    Operators.suppressDiagnostics();
6151
6152    for (LookupResult::iterator Oper = Operators.begin(),
6153                             OperEnd = Operators.end();
6154         Oper != OperEnd;
6155         ++Oper)
6156      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6157                         Args[0]->Classify(Context),
6158                         Args.slice(1),
6159                         CandidateSet,
6160                         /* SuppressUserConversions = */ false);
6161  }
6162}
6163
6164/// AddBuiltinCandidate - Add a candidate for a built-in
6165/// operator. ResultTy and ParamTys are the result and parameter types
6166/// of the built-in candidate, respectively. Args and NumArgs are the
6167/// arguments being passed to the candidate. IsAssignmentOperator
6168/// should be true when this built-in candidate is an assignment
6169/// operator. NumContextualBoolArguments is the number of arguments
6170/// (at the beginning of the argument list) that will be contextually
6171/// converted to bool.
6172void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6173                               ArrayRef<Expr *> Args,
6174                               OverloadCandidateSet& CandidateSet,
6175                               bool IsAssignmentOperator,
6176                               unsigned NumContextualBoolArguments) {
6177  // Overload resolution is always an unevaluated context.
6178  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6179
6180  // Add this candidate
6181  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6182  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
6183  Candidate.Function = 0;
6184  Candidate.IsSurrogate = false;
6185  Candidate.IgnoreObjectArgument = false;
6186  Candidate.BuiltinTypes.ResultTy = ResultTy;
6187  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6188    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6189
6190  // Determine the implicit conversion sequences for each of the
6191  // arguments.
6192  Candidate.Viable = true;
6193  Candidate.ExplicitCallArguments = Args.size();
6194  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6195    // C++ [over.match.oper]p4:
6196    //   For the built-in assignment operators, conversions of the
6197    //   left operand are restricted as follows:
6198    //     -- no temporaries are introduced to hold the left operand, and
6199    //     -- no user-defined conversions are applied to the left
6200    //        operand to achieve a type match with the left-most
6201    //        parameter of a built-in candidate.
6202    //
6203    // We block these conversions by turning off user-defined
6204    // conversions, since that is the only way that initialization of
6205    // a reference to a non-class type can occur from something that
6206    // is not of the same type.
6207    if (ArgIdx < NumContextualBoolArguments) {
6208      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6209             "Contextual conversion to bool requires bool type");
6210      Candidate.Conversions[ArgIdx]
6211        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6212    } else {
6213      Candidate.Conversions[ArgIdx]
6214        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6215                                ArgIdx == 0 && IsAssignmentOperator,
6216                                /*InOverloadResolution=*/false,
6217                                /*AllowObjCWritebackConversion=*/
6218                                  getLangOpts().ObjCAutoRefCount);
6219    }
6220    if (Candidate.Conversions[ArgIdx].isBad()) {
6221      Candidate.Viable = false;
6222      Candidate.FailureKind = ovl_fail_bad_conversion;
6223      break;
6224    }
6225  }
6226}
6227
6228namespace {
6229
6230/// BuiltinCandidateTypeSet - A set of types that will be used for the
6231/// candidate operator functions for built-in operators (C++
6232/// [over.built]). The types are separated into pointer types and
6233/// enumeration types.
6234class BuiltinCandidateTypeSet  {
6235  /// TypeSet - A set of types.
6236  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6237
6238  /// PointerTypes - The set of pointer types that will be used in the
6239  /// built-in candidates.
6240  TypeSet PointerTypes;
6241
6242  /// MemberPointerTypes - The set of member pointer types that will be
6243  /// used in the built-in candidates.
6244  TypeSet MemberPointerTypes;
6245
6246  /// EnumerationTypes - The set of enumeration types that will be
6247  /// used in the built-in candidates.
6248  TypeSet EnumerationTypes;
6249
6250  /// \brief The set of vector types that will be used in the built-in
6251  /// candidates.
6252  TypeSet VectorTypes;
6253
6254  /// \brief A flag indicating non-record types are viable candidates
6255  bool HasNonRecordTypes;
6256
6257  /// \brief A flag indicating whether either arithmetic or enumeration types
6258  /// were present in the candidate set.
6259  bool HasArithmeticOrEnumeralTypes;
6260
6261  /// \brief A flag indicating whether the nullptr type was present in the
6262  /// candidate set.
6263  bool HasNullPtrType;
6264
6265  /// Sema - The semantic analysis instance where we are building the
6266  /// candidate type set.
6267  Sema &SemaRef;
6268
6269  /// Context - The AST context in which we will build the type sets.
6270  ASTContext &Context;
6271
6272  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6273                                               const Qualifiers &VisibleQuals);
6274  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6275
6276public:
6277  /// iterator - Iterates through the types that are part of the set.
6278  typedef TypeSet::iterator iterator;
6279
6280  BuiltinCandidateTypeSet(Sema &SemaRef)
6281    : HasNonRecordTypes(false),
6282      HasArithmeticOrEnumeralTypes(false),
6283      HasNullPtrType(false),
6284      SemaRef(SemaRef),
6285      Context(SemaRef.Context) { }
6286
6287  void AddTypesConvertedFrom(QualType Ty,
6288                             SourceLocation Loc,
6289                             bool AllowUserConversions,
6290                             bool AllowExplicitConversions,
6291                             const Qualifiers &VisibleTypeConversionsQuals);
6292
6293  /// pointer_begin - First pointer type found;
6294  iterator pointer_begin() { return PointerTypes.begin(); }
6295
6296  /// pointer_end - Past the last pointer type found;
6297  iterator pointer_end() { return PointerTypes.end(); }
6298
6299  /// member_pointer_begin - First member pointer type found;
6300  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6301
6302  /// member_pointer_end - Past the last member pointer type found;
6303  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6304
6305  /// enumeration_begin - First enumeration type found;
6306  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6307
6308  /// enumeration_end - Past the last enumeration type found;
6309  iterator enumeration_end() { return EnumerationTypes.end(); }
6310
6311  iterator vector_begin() { return VectorTypes.begin(); }
6312  iterator vector_end() { return VectorTypes.end(); }
6313
6314  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6315  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6316  bool hasNullPtrType() const { return HasNullPtrType; }
6317};
6318
6319} // end anonymous namespace
6320
6321/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6322/// the set of pointer types along with any more-qualified variants of
6323/// that type. For example, if @p Ty is "int const *", this routine
6324/// will add "int const *", "int const volatile *", "int const
6325/// restrict *", and "int const volatile restrict *" to the set of
6326/// pointer types. Returns true if the add of @p Ty itself succeeded,
6327/// false otherwise.
6328///
6329/// FIXME: what to do about extended qualifiers?
6330bool
6331BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6332                                             const Qualifiers &VisibleQuals) {
6333
6334  // Insert this type.
6335  if (!PointerTypes.insert(Ty))
6336    return false;
6337
6338  QualType PointeeTy;
6339  const PointerType *PointerTy = Ty->getAs<PointerType>();
6340  bool buildObjCPtr = false;
6341  if (!PointerTy) {
6342    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6343    PointeeTy = PTy->getPointeeType();
6344    buildObjCPtr = true;
6345  } else {
6346    PointeeTy = PointerTy->getPointeeType();
6347  }
6348
6349  // Don't add qualified variants of arrays. For one, they're not allowed
6350  // (the qualifier would sink to the element type), and for another, the
6351  // only overload situation where it matters is subscript or pointer +- int,
6352  // and those shouldn't have qualifier variants anyway.
6353  if (PointeeTy->isArrayType())
6354    return true;
6355
6356  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6357  bool hasVolatile = VisibleQuals.hasVolatile();
6358  bool hasRestrict = VisibleQuals.hasRestrict();
6359
6360  // Iterate through all strict supersets of BaseCVR.
6361  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6362    if ((CVR | BaseCVR) != CVR) continue;
6363    // Skip over volatile if no volatile found anywhere in the types.
6364    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6365
6366    // Skip over restrict if no restrict found anywhere in the types, or if
6367    // the type cannot be restrict-qualified.
6368    if ((CVR & Qualifiers::Restrict) &&
6369        (!hasRestrict ||
6370         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6371      continue;
6372
6373    // Build qualified pointee type.
6374    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6375
6376    // Build qualified pointer type.
6377    QualType QPointerTy;
6378    if (!buildObjCPtr)
6379      QPointerTy = Context.getPointerType(QPointeeTy);
6380    else
6381      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6382
6383    // Insert qualified pointer type.
6384    PointerTypes.insert(QPointerTy);
6385  }
6386
6387  return true;
6388}
6389
6390/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6391/// to the set of pointer types along with any more-qualified variants of
6392/// that type. For example, if @p Ty is "int const *", this routine
6393/// will add "int const *", "int const volatile *", "int const
6394/// restrict *", and "int const volatile restrict *" to the set of
6395/// pointer types. Returns true if the add of @p Ty itself succeeded,
6396/// false otherwise.
6397///
6398/// FIXME: what to do about extended qualifiers?
6399bool
6400BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6401    QualType Ty) {
6402  // Insert this type.
6403  if (!MemberPointerTypes.insert(Ty))
6404    return false;
6405
6406  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6407  assert(PointerTy && "type was not a member pointer type!");
6408
6409  QualType PointeeTy = PointerTy->getPointeeType();
6410  // Don't add qualified variants of arrays. For one, they're not allowed
6411  // (the qualifier would sink to the element type), and for another, the
6412  // only overload situation where it matters is subscript or pointer +- int,
6413  // and those shouldn't have qualifier variants anyway.
6414  if (PointeeTy->isArrayType())
6415    return true;
6416  const Type *ClassTy = PointerTy->getClass();
6417
6418  // Iterate through all strict supersets of the pointee type's CVR
6419  // qualifiers.
6420  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6421  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6422    if ((CVR | BaseCVR) != CVR) continue;
6423
6424    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6425    MemberPointerTypes.insert(
6426      Context.getMemberPointerType(QPointeeTy, ClassTy));
6427  }
6428
6429  return true;
6430}
6431
6432/// AddTypesConvertedFrom - Add each of the types to which the type @p
6433/// Ty can be implicit converted to the given set of @p Types. We're
6434/// primarily interested in pointer types and enumeration types. We also
6435/// take member pointer types, for the conditional operator.
6436/// AllowUserConversions is true if we should look at the conversion
6437/// functions of a class type, and AllowExplicitConversions if we
6438/// should also include the explicit conversion functions of a class
6439/// type.
6440void
6441BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6442                                               SourceLocation Loc,
6443                                               bool AllowUserConversions,
6444                                               bool AllowExplicitConversions,
6445                                               const Qualifiers &VisibleQuals) {
6446  // Only deal with canonical types.
6447  Ty = Context.getCanonicalType(Ty);
6448
6449  // Look through reference types; they aren't part of the type of an
6450  // expression for the purposes of conversions.
6451  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6452    Ty = RefTy->getPointeeType();
6453
6454  // If we're dealing with an array type, decay to the pointer.
6455  if (Ty->isArrayType())
6456    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6457
6458  // Otherwise, we don't care about qualifiers on the type.
6459  Ty = Ty.getLocalUnqualifiedType();
6460
6461  // Flag if we ever add a non-record type.
6462  const RecordType *TyRec = Ty->getAs<RecordType>();
6463  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6464
6465  // Flag if we encounter an arithmetic type.
6466  HasArithmeticOrEnumeralTypes =
6467    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6468
6469  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6470    PointerTypes.insert(Ty);
6471  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6472    // Insert our type, and its more-qualified variants, into the set
6473    // of types.
6474    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6475      return;
6476  } else if (Ty->isMemberPointerType()) {
6477    // Member pointers are far easier, since the pointee can't be converted.
6478    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6479      return;
6480  } else if (Ty->isEnumeralType()) {
6481    HasArithmeticOrEnumeralTypes = true;
6482    EnumerationTypes.insert(Ty);
6483  } else if (Ty->isVectorType()) {
6484    // We treat vector types as arithmetic types in many contexts as an
6485    // extension.
6486    HasArithmeticOrEnumeralTypes = true;
6487    VectorTypes.insert(Ty);
6488  } else if (Ty->isNullPtrType()) {
6489    HasNullPtrType = true;
6490  } else if (AllowUserConversions && TyRec) {
6491    // No conversion functions in incomplete types.
6492    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6493      return;
6494
6495    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6496    std::pair<CXXRecordDecl::conversion_iterator,
6497              CXXRecordDecl::conversion_iterator>
6498      Conversions = ClassDecl->getVisibleConversionFunctions();
6499    for (CXXRecordDecl::conversion_iterator
6500           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6501      NamedDecl *D = I.getDecl();
6502      if (isa<UsingShadowDecl>(D))
6503        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6504
6505      // Skip conversion function templates; they don't tell us anything
6506      // about which builtin types we can convert to.
6507      if (isa<FunctionTemplateDecl>(D))
6508        continue;
6509
6510      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6511      if (AllowExplicitConversions || !Conv->isExplicit()) {
6512        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6513                              VisibleQuals);
6514      }
6515    }
6516  }
6517}
6518
6519/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6520/// the volatile- and non-volatile-qualified assignment operators for the
6521/// given type to the candidate set.
6522static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6523                                                   QualType T,
6524                                                   ArrayRef<Expr *> Args,
6525                                    OverloadCandidateSet &CandidateSet) {
6526  QualType ParamTypes[2];
6527
6528  // T& operator=(T&, T)
6529  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6530  ParamTypes[1] = T;
6531  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6532                        /*IsAssignmentOperator=*/true);
6533
6534  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6535    // volatile T& operator=(volatile T&, T)
6536    ParamTypes[0]
6537      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6538    ParamTypes[1] = T;
6539    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6540                          /*IsAssignmentOperator=*/true);
6541  }
6542}
6543
6544/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6545/// if any, found in visible type conversion functions found in ArgExpr's type.
6546static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6547    Qualifiers VRQuals;
6548    const RecordType *TyRec;
6549    if (const MemberPointerType *RHSMPType =
6550        ArgExpr->getType()->getAs<MemberPointerType>())
6551      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6552    else
6553      TyRec = ArgExpr->getType()->getAs<RecordType>();
6554    if (!TyRec) {
6555      // Just to be safe, assume the worst case.
6556      VRQuals.addVolatile();
6557      VRQuals.addRestrict();
6558      return VRQuals;
6559    }
6560
6561    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6562    if (!ClassDecl->hasDefinition())
6563      return VRQuals;
6564
6565    std::pair<CXXRecordDecl::conversion_iterator,
6566              CXXRecordDecl::conversion_iterator>
6567      Conversions = ClassDecl->getVisibleConversionFunctions();
6568
6569    for (CXXRecordDecl::conversion_iterator
6570           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6571      NamedDecl *D = I.getDecl();
6572      if (isa<UsingShadowDecl>(D))
6573        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6574      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6575        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6576        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6577          CanTy = ResTypeRef->getPointeeType();
6578        // Need to go down the pointer/mempointer chain and add qualifiers
6579        // as see them.
6580        bool done = false;
6581        while (!done) {
6582          if (CanTy.isRestrictQualified())
6583            VRQuals.addRestrict();
6584          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6585            CanTy = ResTypePtr->getPointeeType();
6586          else if (const MemberPointerType *ResTypeMPtr =
6587                CanTy->getAs<MemberPointerType>())
6588            CanTy = ResTypeMPtr->getPointeeType();
6589          else
6590            done = true;
6591          if (CanTy.isVolatileQualified())
6592            VRQuals.addVolatile();
6593          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6594            return VRQuals;
6595        }
6596      }
6597    }
6598    return VRQuals;
6599}
6600
6601namespace {
6602
6603/// \brief Helper class to manage the addition of builtin operator overload
6604/// candidates. It provides shared state and utility methods used throughout
6605/// the process, as well as a helper method to add each group of builtin
6606/// operator overloads from the standard to a candidate set.
6607class BuiltinOperatorOverloadBuilder {
6608  // Common instance state available to all overload candidate addition methods.
6609  Sema &S;
6610  ArrayRef<Expr *> Args;
6611  Qualifiers VisibleTypeConversionsQuals;
6612  bool HasArithmeticOrEnumeralCandidateType;
6613  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6614  OverloadCandidateSet &CandidateSet;
6615
6616  // Define some constants used to index and iterate over the arithemetic types
6617  // provided via the getArithmeticType() method below.
6618  // The "promoted arithmetic types" are the arithmetic
6619  // types are that preserved by promotion (C++ [over.built]p2).
6620  static const unsigned FirstIntegralType = 3;
6621  static const unsigned LastIntegralType = 20;
6622  static const unsigned FirstPromotedIntegralType = 3,
6623                        LastPromotedIntegralType = 11;
6624  static const unsigned FirstPromotedArithmeticType = 0,
6625                        LastPromotedArithmeticType = 11;
6626  static const unsigned NumArithmeticTypes = 20;
6627
6628  /// \brief Get the canonical type for a given arithmetic type index.
6629  CanQualType getArithmeticType(unsigned index) {
6630    assert(index < NumArithmeticTypes);
6631    static CanQualType ASTContext::* const
6632      ArithmeticTypes[NumArithmeticTypes] = {
6633      // Start of promoted types.
6634      &ASTContext::FloatTy,
6635      &ASTContext::DoubleTy,
6636      &ASTContext::LongDoubleTy,
6637
6638      // Start of integral types.
6639      &ASTContext::IntTy,
6640      &ASTContext::LongTy,
6641      &ASTContext::LongLongTy,
6642      &ASTContext::Int128Ty,
6643      &ASTContext::UnsignedIntTy,
6644      &ASTContext::UnsignedLongTy,
6645      &ASTContext::UnsignedLongLongTy,
6646      &ASTContext::UnsignedInt128Ty,
6647      // End of promoted types.
6648
6649      &ASTContext::BoolTy,
6650      &ASTContext::CharTy,
6651      &ASTContext::WCharTy,
6652      &ASTContext::Char16Ty,
6653      &ASTContext::Char32Ty,
6654      &ASTContext::SignedCharTy,
6655      &ASTContext::ShortTy,
6656      &ASTContext::UnsignedCharTy,
6657      &ASTContext::UnsignedShortTy,
6658      // End of integral types.
6659      // FIXME: What about complex? What about half?
6660    };
6661    return S.Context.*ArithmeticTypes[index];
6662  }
6663
6664  /// \brief Gets the canonical type resulting from the usual arithemetic
6665  /// converions for the given arithmetic types.
6666  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6667    // Accelerator table for performing the usual arithmetic conversions.
6668    // The rules are basically:
6669    //   - if either is floating-point, use the wider floating-point
6670    //   - if same signedness, use the higher rank
6671    //   - if same size, use unsigned of the higher rank
6672    //   - use the larger type
6673    // These rules, together with the axiom that higher ranks are
6674    // never smaller, are sufficient to precompute all of these results
6675    // *except* when dealing with signed types of higher rank.
6676    // (we could precompute SLL x UI for all known platforms, but it's
6677    // better not to make any assumptions).
6678    // We assume that int128 has a higher rank than long long on all platforms.
6679    enum PromotedType {
6680            Dep=-1,
6681            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6682    };
6683    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6684                                        [LastPromotedArithmeticType] = {
6685/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6686/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6687/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6688/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6689/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6690/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6691/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6692/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6693/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6694/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6695/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6696    };
6697
6698    assert(L < LastPromotedArithmeticType);
6699    assert(R < LastPromotedArithmeticType);
6700    int Idx = ConversionsTable[L][R];
6701
6702    // Fast path: the table gives us a concrete answer.
6703    if (Idx != Dep) return getArithmeticType(Idx);
6704
6705    // Slow path: we need to compare widths.
6706    // An invariant is that the signed type has higher rank.
6707    CanQualType LT = getArithmeticType(L),
6708                RT = getArithmeticType(R);
6709    unsigned LW = S.Context.getIntWidth(LT),
6710             RW = S.Context.getIntWidth(RT);
6711
6712    // If they're different widths, use the signed type.
6713    if (LW > RW) return LT;
6714    else if (LW < RW) return RT;
6715
6716    // Otherwise, use the unsigned type of the signed type's rank.
6717    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6718    assert(L == SLL || R == SLL);
6719    return S.Context.UnsignedLongLongTy;
6720  }
6721
6722  /// \brief Helper method to factor out the common pattern of adding overloads
6723  /// for '++' and '--' builtin operators.
6724  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6725                                           bool HasVolatile,
6726                                           bool HasRestrict) {
6727    QualType ParamTypes[2] = {
6728      S.Context.getLValueReferenceType(CandidateTy),
6729      S.Context.IntTy
6730    };
6731
6732    // Non-volatile version.
6733    if (Args.size() == 1)
6734      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6735    else
6736      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6737
6738    // Use a heuristic to reduce number of builtin candidates in the set:
6739    // add volatile version only if there are conversions to a volatile type.
6740    if (HasVolatile) {
6741      ParamTypes[0] =
6742        S.Context.getLValueReferenceType(
6743          S.Context.getVolatileType(CandidateTy));
6744      if (Args.size() == 1)
6745        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6746      else
6747        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6748    }
6749
6750    // Add restrict version only if there are conversions to a restrict type
6751    // and our candidate type is a non-restrict-qualified pointer.
6752    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6753        !CandidateTy.isRestrictQualified()) {
6754      ParamTypes[0]
6755        = S.Context.getLValueReferenceType(
6756            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6757      if (Args.size() == 1)
6758        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6759      else
6760        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6761
6762      if (HasVolatile) {
6763        ParamTypes[0]
6764          = S.Context.getLValueReferenceType(
6765              S.Context.getCVRQualifiedType(CandidateTy,
6766                                            (Qualifiers::Volatile |
6767                                             Qualifiers::Restrict)));
6768        if (Args.size() == 1)
6769          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6770        else
6771          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6772      }
6773    }
6774
6775  }
6776
6777public:
6778  BuiltinOperatorOverloadBuilder(
6779    Sema &S, ArrayRef<Expr *> Args,
6780    Qualifiers VisibleTypeConversionsQuals,
6781    bool HasArithmeticOrEnumeralCandidateType,
6782    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6783    OverloadCandidateSet &CandidateSet)
6784    : S(S), Args(Args),
6785      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6786      HasArithmeticOrEnumeralCandidateType(
6787        HasArithmeticOrEnumeralCandidateType),
6788      CandidateTypes(CandidateTypes),
6789      CandidateSet(CandidateSet) {
6790    // Validate some of our static helper constants in debug builds.
6791    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6792           "Invalid first promoted integral type");
6793    assert(getArithmeticType(LastPromotedIntegralType - 1)
6794             == S.Context.UnsignedInt128Ty &&
6795           "Invalid last promoted integral type");
6796    assert(getArithmeticType(FirstPromotedArithmeticType)
6797             == S.Context.FloatTy &&
6798           "Invalid first promoted arithmetic type");
6799    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6800             == S.Context.UnsignedInt128Ty &&
6801           "Invalid last promoted arithmetic type");
6802  }
6803
6804  // C++ [over.built]p3:
6805  //
6806  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6807  //   is either volatile or empty, there exist candidate operator
6808  //   functions of the form
6809  //
6810  //       VQ T&      operator++(VQ T&);
6811  //       T          operator++(VQ T&, int);
6812  //
6813  // C++ [over.built]p4:
6814  //
6815  //   For every pair (T, VQ), where T is an arithmetic type other
6816  //   than bool, and VQ is either volatile or empty, there exist
6817  //   candidate operator functions of the form
6818  //
6819  //       VQ T&      operator--(VQ T&);
6820  //       T          operator--(VQ T&, int);
6821  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6822    if (!HasArithmeticOrEnumeralCandidateType)
6823      return;
6824
6825    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6826         Arith < NumArithmeticTypes; ++Arith) {
6827      addPlusPlusMinusMinusStyleOverloads(
6828        getArithmeticType(Arith),
6829        VisibleTypeConversionsQuals.hasVolatile(),
6830        VisibleTypeConversionsQuals.hasRestrict());
6831    }
6832  }
6833
6834  // C++ [over.built]p5:
6835  //
6836  //   For every pair (T, VQ), where T is a cv-qualified or
6837  //   cv-unqualified object type, and VQ is either volatile or
6838  //   empty, there exist candidate operator functions of the form
6839  //
6840  //       T*VQ&      operator++(T*VQ&);
6841  //       T*VQ&      operator--(T*VQ&);
6842  //       T*         operator++(T*VQ&, int);
6843  //       T*         operator--(T*VQ&, int);
6844  void addPlusPlusMinusMinusPointerOverloads() {
6845    for (BuiltinCandidateTypeSet::iterator
6846              Ptr = CandidateTypes[0].pointer_begin(),
6847           PtrEnd = CandidateTypes[0].pointer_end();
6848         Ptr != PtrEnd; ++Ptr) {
6849      // Skip pointer types that aren't pointers to object types.
6850      if (!(*Ptr)->getPointeeType()->isObjectType())
6851        continue;
6852
6853      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6854        (!(*Ptr).isVolatileQualified() &&
6855         VisibleTypeConversionsQuals.hasVolatile()),
6856        (!(*Ptr).isRestrictQualified() &&
6857         VisibleTypeConversionsQuals.hasRestrict()));
6858    }
6859  }
6860
6861  // C++ [over.built]p6:
6862  //   For every cv-qualified or cv-unqualified object type T, there
6863  //   exist candidate operator functions of the form
6864  //
6865  //       T&         operator*(T*);
6866  //
6867  // C++ [over.built]p7:
6868  //   For every function type T that does not have cv-qualifiers or a
6869  //   ref-qualifier, there exist candidate operator functions of the form
6870  //       T&         operator*(T*);
6871  void addUnaryStarPointerOverloads() {
6872    for (BuiltinCandidateTypeSet::iterator
6873              Ptr = CandidateTypes[0].pointer_begin(),
6874           PtrEnd = CandidateTypes[0].pointer_end();
6875         Ptr != PtrEnd; ++Ptr) {
6876      QualType ParamTy = *Ptr;
6877      QualType PointeeTy = ParamTy->getPointeeType();
6878      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6879        continue;
6880
6881      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6882        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6883          continue;
6884
6885      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6886                            &ParamTy, Args, CandidateSet);
6887    }
6888  }
6889
6890  // C++ [over.built]p9:
6891  //  For every promoted arithmetic type T, there exist candidate
6892  //  operator functions of the form
6893  //
6894  //       T         operator+(T);
6895  //       T         operator-(T);
6896  void addUnaryPlusOrMinusArithmeticOverloads() {
6897    if (!HasArithmeticOrEnumeralCandidateType)
6898      return;
6899
6900    for (unsigned Arith = FirstPromotedArithmeticType;
6901         Arith < LastPromotedArithmeticType; ++Arith) {
6902      QualType ArithTy = getArithmeticType(Arith);
6903      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
6904    }
6905
6906    // Extension: We also add these operators for vector types.
6907    for (BuiltinCandidateTypeSet::iterator
6908              Vec = CandidateTypes[0].vector_begin(),
6909           VecEnd = CandidateTypes[0].vector_end();
6910         Vec != VecEnd; ++Vec) {
6911      QualType VecTy = *Vec;
6912      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6913    }
6914  }
6915
6916  // C++ [over.built]p8:
6917  //   For every type T, there exist candidate operator functions of
6918  //   the form
6919  //
6920  //       T*         operator+(T*);
6921  void addUnaryPlusPointerOverloads() {
6922    for (BuiltinCandidateTypeSet::iterator
6923              Ptr = CandidateTypes[0].pointer_begin(),
6924           PtrEnd = CandidateTypes[0].pointer_end();
6925         Ptr != PtrEnd; ++Ptr) {
6926      QualType ParamTy = *Ptr;
6927      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
6928    }
6929  }
6930
6931  // C++ [over.built]p10:
6932  //   For every promoted integral type T, there exist candidate
6933  //   operator functions of the form
6934  //
6935  //        T         operator~(T);
6936  void addUnaryTildePromotedIntegralOverloads() {
6937    if (!HasArithmeticOrEnumeralCandidateType)
6938      return;
6939
6940    for (unsigned Int = FirstPromotedIntegralType;
6941         Int < LastPromotedIntegralType; ++Int) {
6942      QualType IntTy = getArithmeticType(Int);
6943      S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
6944    }
6945
6946    // Extension: We also add this operator for vector types.
6947    for (BuiltinCandidateTypeSet::iterator
6948              Vec = CandidateTypes[0].vector_begin(),
6949           VecEnd = CandidateTypes[0].vector_end();
6950         Vec != VecEnd; ++Vec) {
6951      QualType VecTy = *Vec;
6952      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6953    }
6954  }
6955
6956  // C++ [over.match.oper]p16:
6957  //   For every pointer to member type T, there exist candidate operator
6958  //   functions of the form
6959  //
6960  //        bool operator==(T,T);
6961  //        bool operator!=(T,T);
6962  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6963    /// Set of (canonical) types that we've already handled.
6964    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6965
6966    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6967      for (BuiltinCandidateTypeSet::iterator
6968                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6969             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6970           MemPtr != MemPtrEnd;
6971           ++MemPtr) {
6972        // Don't add the same builtin candidate twice.
6973        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6974          continue;
6975
6976        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6977        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
6978      }
6979    }
6980  }
6981
6982  // C++ [over.built]p15:
6983  //
6984  //   For every T, where T is an enumeration type, a pointer type, or
6985  //   std::nullptr_t, there exist candidate operator functions of the form
6986  //
6987  //        bool       operator<(T, T);
6988  //        bool       operator>(T, T);
6989  //        bool       operator<=(T, T);
6990  //        bool       operator>=(T, T);
6991  //        bool       operator==(T, T);
6992  //        bool       operator!=(T, T);
6993  void addRelationalPointerOrEnumeralOverloads() {
6994    // C++ [over.match.oper]p3:
6995    //   [...]the built-in candidates include all of the candidate operator
6996    //   functions defined in 13.6 that, compared to the given operator, [...]
6997    //   do not have the same parameter-type-list as any non-template non-member
6998    //   candidate.
6999    //
7000    // Note that in practice, this only affects enumeration types because there
7001    // aren't any built-in candidates of record type, and a user-defined operator
7002    // must have an operand of record or enumeration type. Also, the only other
7003    // overloaded operator with enumeration arguments, operator=,
7004    // cannot be overloaded for enumeration types, so this is the only place
7005    // where we must suppress candidates like this.
7006    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7007      UserDefinedBinaryOperators;
7008
7009    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7010      if (CandidateTypes[ArgIdx].enumeration_begin() !=
7011          CandidateTypes[ArgIdx].enumeration_end()) {
7012        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7013                                         CEnd = CandidateSet.end();
7014             C != CEnd; ++C) {
7015          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7016            continue;
7017
7018          if (C->Function->isFunctionTemplateSpecialization())
7019            continue;
7020
7021          QualType FirstParamType =
7022            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7023          QualType SecondParamType =
7024            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7025
7026          // Skip if either parameter isn't of enumeral type.
7027          if (!FirstParamType->isEnumeralType() ||
7028              !SecondParamType->isEnumeralType())
7029            continue;
7030
7031          // Add this operator to the set of known user-defined operators.
7032          UserDefinedBinaryOperators.insert(
7033            std::make_pair(S.Context.getCanonicalType(FirstParamType),
7034                           S.Context.getCanonicalType(SecondParamType)));
7035        }
7036      }
7037    }
7038
7039    /// Set of (canonical) types that we've already handled.
7040    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7041
7042    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7043      for (BuiltinCandidateTypeSet::iterator
7044                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7045             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7046           Ptr != PtrEnd; ++Ptr) {
7047        // Don't add the same builtin candidate twice.
7048        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7049          continue;
7050
7051        QualType ParamTypes[2] = { *Ptr, *Ptr };
7052        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7053      }
7054      for (BuiltinCandidateTypeSet::iterator
7055                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7056             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7057           Enum != EnumEnd; ++Enum) {
7058        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7059
7060        // Don't add the same builtin candidate twice, or if a user defined
7061        // candidate exists.
7062        if (!AddedTypes.insert(CanonType) ||
7063            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7064                                                            CanonType)))
7065          continue;
7066
7067        QualType ParamTypes[2] = { *Enum, *Enum };
7068        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7069      }
7070
7071      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7072        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7073        if (AddedTypes.insert(NullPtrTy) &&
7074            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7075                                                             NullPtrTy))) {
7076          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7077          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7078                                CandidateSet);
7079        }
7080      }
7081    }
7082  }
7083
7084  // C++ [over.built]p13:
7085  //
7086  //   For every cv-qualified or cv-unqualified object type T
7087  //   there exist candidate operator functions of the form
7088  //
7089  //      T*         operator+(T*, ptrdiff_t);
7090  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7091  //      T*         operator-(T*, ptrdiff_t);
7092  //      T*         operator+(ptrdiff_t, T*);
7093  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7094  //
7095  // C++ [over.built]p14:
7096  //
7097  //   For every T, where T is a pointer to object type, there
7098  //   exist candidate operator functions of the form
7099  //
7100  //      ptrdiff_t  operator-(T, T);
7101  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7102    /// Set of (canonical) types that we've already handled.
7103    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7104
7105    for (int Arg = 0; Arg < 2; ++Arg) {
7106      QualType AsymetricParamTypes[2] = {
7107        S.Context.getPointerDiffType(),
7108        S.Context.getPointerDiffType(),
7109      };
7110      for (BuiltinCandidateTypeSet::iterator
7111                Ptr = CandidateTypes[Arg].pointer_begin(),
7112             PtrEnd = CandidateTypes[Arg].pointer_end();
7113           Ptr != PtrEnd; ++Ptr) {
7114        QualType PointeeTy = (*Ptr)->getPointeeType();
7115        if (!PointeeTy->isObjectType())
7116          continue;
7117
7118        AsymetricParamTypes[Arg] = *Ptr;
7119        if (Arg == 0 || Op == OO_Plus) {
7120          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7121          // T* operator+(ptrdiff_t, T*);
7122          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
7123        }
7124        if (Op == OO_Minus) {
7125          // ptrdiff_t operator-(T, T);
7126          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7127            continue;
7128
7129          QualType ParamTypes[2] = { *Ptr, *Ptr };
7130          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7131                                Args, CandidateSet);
7132        }
7133      }
7134    }
7135  }
7136
7137  // C++ [over.built]p12:
7138  //
7139  //   For every pair of promoted arithmetic types L and R, there
7140  //   exist candidate operator functions of the form
7141  //
7142  //        LR         operator*(L, R);
7143  //        LR         operator/(L, R);
7144  //        LR         operator+(L, R);
7145  //        LR         operator-(L, R);
7146  //        bool       operator<(L, R);
7147  //        bool       operator>(L, R);
7148  //        bool       operator<=(L, R);
7149  //        bool       operator>=(L, R);
7150  //        bool       operator==(L, R);
7151  //        bool       operator!=(L, R);
7152  //
7153  //   where LR is the result of the usual arithmetic conversions
7154  //   between types L and R.
7155  //
7156  // C++ [over.built]p24:
7157  //
7158  //   For every pair of promoted arithmetic types L and R, there exist
7159  //   candidate operator functions of the form
7160  //
7161  //        LR       operator?(bool, L, R);
7162  //
7163  //   where LR is the result of the usual arithmetic conversions
7164  //   between types L and R.
7165  // Our candidates ignore the first parameter.
7166  void addGenericBinaryArithmeticOverloads(bool isComparison) {
7167    if (!HasArithmeticOrEnumeralCandidateType)
7168      return;
7169
7170    for (unsigned Left = FirstPromotedArithmeticType;
7171         Left < LastPromotedArithmeticType; ++Left) {
7172      for (unsigned Right = FirstPromotedArithmeticType;
7173           Right < LastPromotedArithmeticType; ++Right) {
7174        QualType LandR[2] = { getArithmeticType(Left),
7175                              getArithmeticType(Right) };
7176        QualType Result =
7177          isComparison ? S.Context.BoolTy
7178                       : getUsualArithmeticConversions(Left, Right);
7179        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7180      }
7181    }
7182
7183    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7184    // conditional operator for vector types.
7185    for (BuiltinCandidateTypeSet::iterator
7186              Vec1 = CandidateTypes[0].vector_begin(),
7187           Vec1End = CandidateTypes[0].vector_end();
7188         Vec1 != Vec1End; ++Vec1) {
7189      for (BuiltinCandidateTypeSet::iterator
7190                Vec2 = CandidateTypes[1].vector_begin(),
7191             Vec2End = CandidateTypes[1].vector_end();
7192           Vec2 != Vec2End; ++Vec2) {
7193        QualType LandR[2] = { *Vec1, *Vec2 };
7194        QualType Result = S.Context.BoolTy;
7195        if (!isComparison) {
7196          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7197            Result = *Vec1;
7198          else
7199            Result = *Vec2;
7200        }
7201
7202        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7203      }
7204    }
7205  }
7206
7207  // C++ [over.built]p17:
7208  //
7209  //   For every pair of promoted integral types L and R, there
7210  //   exist candidate operator functions of the form
7211  //
7212  //      LR         operator%(L, R);
7213  //      LR         operator&(L, R);
7214  //      LR         operator^(L, R);
7215  //      LR         operator|(L, R);
7216  //      L          operator<<(L, R);
7217  //      L          operator>>(L, R);
7218  //
7219  //   where LR is the result of the usual arithmetic conversions
7220  //   between types L and R.
7221  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7222    if (!HasArithmeticOrEnumeralCandidateType)
7223      return;
7224
7225    for (unsigned Left = FirstPromotedIntegralType;
7226         Left < LastPromotedIntegralType; ++Left) {
7227      for (unsigned Right = FirstPromotedIntegralType;
7228           Right < LastPromotedIntegralType; ++Right) {
7229        QualType LandR[2] = { getArithmeticType(Left),
7230                              getArithmeticType(Right) };
7231        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7232            ? LandR[0]
7233            : getUsualArithmeticConversions(Left, Right);
7234        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7235      }
7236    }
7237  }
7238
7239  // C++ [over.built]p20:
7240  //
7241  //   For every pair (T, VQ), where T is an enumeration or
7242  //   pointer to member type and VQ is either volatile or
7243  //   empty, there exist candidate operator functions of the form
7244  //
7245  //        VQ T&      operator=(VQ T&, T);
7246  void addAssignmentMemberPointerOrEnumeralOverloads() {
7247    /// Set of (canonical) types that we've already handled.
7248    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7249
7250    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7251      for (BuiltinCandidateTypeSet::iterator
7252                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7253             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7254           Enum != EnumEnd; ++Enum) {
7255        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7256          continue;
7257
7258        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7259      }
7260
7261      for (BuiltinCandidateTypeSet::iterator
7262                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7263             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7264           MemPtr != MemPtrEnd; ++MemPtr) {
7265        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7266          continue;
7267
7268        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7269      }
7270    }
7271  }
7272
7273  // C++ [over.built]p19:
7274  //
7275  //   For every pair (T, VQ), where T is any type and VQ is either
7276  //   volatile or empty, there exist candidate operator functions
7277  //   of the form
7278  //
7279  //        T*VQ&      operator=(T*VQ&, T*);
7280  //
7281  // C++ [over.built]p21:
7282  //
7283  //   For every pair (T, VQ), where T is a cv-qualified or
7284  //   cv-unqualified object type and VQ is either volatile or
7285  //   empty, there exist candidate operator functions of the form
7286  //
7287  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7288  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7289  void addAssignmentPointerOverloads(bool isEqualOp) {
7290    /// Set of (canonical) types that we've already handled.
7291    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7292
7293    for (BuiltinCandidateTypeSet::iterator
7294              Ptr = CandidateTypes[0].pointer_begin(),
7295           PtrEnd = CandidateTypes[0].pointer_end();
7296         Ptr != PtrEnd; ++Ptr) {
7297      // If this is operator=, keep track of the builtin candidates we added.
7298      if (isEqualOp)
7299        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7300      else if (!(*Ptr)->getPointeeType()->isObjectType())
7301        continue;
7302
7303      // non-volatile version
7304      QualType ParamTypes[2] = {
7305        S.Context.getLValueReferenceType(*Ptr),
7306        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7307      };
7308      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7309                            /*IsAssigmentOperator=*/ isEqualOp);
7310
7311      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7312                          VisibleTypeConversionsQuals.hasVolatile();
7313      if (NeedVolatile) {
7314        // volatile version
7315        ParamTypes[0] =
7316          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7317        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7318                              /*IsAssigmentOperator=*/isEqualOp);
7319      }
7320
7321      if (!(*Ptr).isRestrictQualified() &&
7322          VisibleTypeConversionsQuals.hasRestrict()) {
7323        // restrict version
7324        ParamTypes[0]
7325          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7326        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7327                              /*IsAssigmentOperator=*/isEqualOp);
7328
7329        if (NeedVolatile) {
7330          // volatile restrict version
7331          ParamTypes[0]
7332            = S.Context.getLValueReferenceType(
7333                S.Context.getCVRQualifiedType(*Ptr,
7334                                              (Qualifiers::Volatile |
7335                                               Qualifiers::Restrict)));
7336          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7337                                /*IsAssigmentOperator=*/isEqualOp);
7338        }
7339      }
7340    }
7341
7342    if (isEqualOp) {
7343      for (BuiltinCandidateTypeSet::iterator
7344                Ptr = CandidateTypes[1].pointer_begin(),
7345             PtrEnd = CandidateTypes[1].pointer_end();
7346           Ptr != PtrEnd; ++Ptr) {
7347        // Make sure we don't add the same candidate twice.
7348        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7349          continue;
7350
7351        QualType ParamTypes[2] = {
7352          S.Context.getLValueReferenceType(*Ptr),
7353          *Ptr,
7354        };
7355
7356        // non-volatile version
7357        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7358                              /*IsAssigmentOperator=*/true);
7359
7360        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7361                           VisibleTypeConversionsQuals.hasVolatile();
7362        if (NeedVolatile) {
7363          // volatile version
7364          ParamTypes[0] =
7365            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7366          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7367                                /*IsAssigmentOperator=*/true);
7368        }
7369
7370        if (!(*Ptr).isRestrictQualified() &&
7371            VisibleTypeConversionsQuals.hasRestrict()) {
7372          // restrict version
7373          ParamTypes[0]
7374            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7375          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7376                                /*IsAssigmentOperator=*/true);
7377
7378          if (NeedVolatile) {
7379            // volatile restrict version
7380            ParamTypes[0]
7381              = S.Context.getLValueReferenceType(
7382                  S.Context.getCVRQualifiedType(*Ptr,
7383                                                (Qualifiers::Volatile |
7384                                                 Qualifiers::Restrict)));
7385            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7386                                  /*IsAssigmentOperator=*/true);
7387          }
7388        }
7389      }
7390    }
7391  }
7392
7393  // C++ [over.built]p18:
7394  //
7395  //   For every triple (L, VQ, R), where L is an arithmetic type,
7396  //   VQ is either volatile or empty, and R is a promoted
7397  //   arithmetic type, there exist candidate operator functions of
7398  //   the form
7399  //
7400  //        VQ L&      operator=(VQ L&, R);
7401  //        VQ L&      operator*=(VQ L&, R);
7402  //        VQ L&      operator/=(VQ L&, R);
7403  //        VQ L&      operator+=(VQ L&, R);
7404  //        VQ L&      operator-=(VQ L&, R);
7405  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7406    if (!HasArithmeticOrEnumeralCandidateType)
7407      return;
7408
7409    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7410      for (unsigned Right = FirstPromotedArithmeticType;
7411           Right < LastPromotedArithmeticType; ++Right) {
7412        QualType ParamTypes[2];
7413        ParamTypes[1] = getArithmeticType(Right);
7414
7415        // Add this built-in operator as a candidate (VQ is empty).
7416        ParamTypes[0] =
7417          S.Context.getLValueReferenceType(getArithmeticType(Left));
7418        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7419                              /*IsAssigmentOperator=*/isEqualOp);
7420
7421        // Add this built-in operator as a candidate (VQ is 'volatile').
7422        if (VisibleTypeConversionsQuals.hasVolatile()) {
7423          ParamTypes[0] =
7424            S.Context.getVolatileType(getArithmeticType(Left));
7425          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7426          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7427                                /*IsAssigmentOperator=*/isEqualOp);
7428        }
7429      }
7430    }
7431
7432    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7433    for (BuiltinCandidateTypeSet::iterator
7434              Vec1 = CandidateTypes[0].vector_begin(),
7435           Vec1End = CandidateTypes[0].vector_end();
7436         Vec1 != Vec1End; ++Vec1) {
7437      for (BuiltinCandidateTypeSet::iterator
7438                Vec2 = CandidateTypes[1].vector_begin(),
7439             Vec2End = CandidateTypes[1].vector_end();
7440           Vec2 != Vec2End; ++Vec2) {
7441        QualType ParamTypes[2];
7442        ParamTypes[1] = *Vec2;
7443        // Add this built-in operator as a candidate (VQ is empty).
7444        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7445        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7446                              /*IsAssigmentOperator=*/isEqualOp);
7447
7448        // Add this built-in operator as a candidate (VQ is 'volatile').
7449        if (VisibleTypeConversionsQuals.hasVolatile()) {
7450          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7451          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7452          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7453                                /*IsAssigmentOperator=*/isEqualOp);
7454        }
7455      }
7456    }
7457  }
7458
7459  // C++ [over.built]p22:
7460  //
7461  //   For every triple (L, VQ, R), where L is an integral type, VQ
7462  //   is either volatile or empty, and R is a promoted integral
7463  //   type, there exist candidate operator functions of the form
7464  //
7465  //        VQ L&       operator%=(VQ L&, R);
7466  //        VQ L&       operator<<=(VQ L&, R);
7467  //        VQ L&       operator>>=(VQ L&, R);
7468  //        VQ L&       operator&=(VQ L&, R);
7469  //        VQ L&       operator^=(VQ L&, R);
7470  //        VQ L&       operator|=(VQ L&, R);
7471  void addAssignmentIntegralOverloads() {
7472    if (!HasArithmeticOrEnumeralCandidateType)
7473      return;
7474
7475    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7476      for (unsigned Right = FirstPromotedIntegralType;
7477           Right < LastPromotedIntegralType; ++Right) {
7478        QualType ParamTypes[2];
7479        ParamTypes[1] = getArithmeticType(Right);
7480
7481        // Add this built-in operator as a candidate (VQ is empty).
7482        ParamTypes[0] =
7483          S.Context.getLValueReferenceType(getArithmeticType(Left));
7484        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7485        if (VisibleTypeConversionsQuals.hasVolatile()) {
7486          // Add this built-in operator as a candidate (VQ is 'volatile').
7487          ParamTypes[0] = getArithmeticType(Left);
7488          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7489          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7490          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7491        }
7492      }
7493    }
7494  }
7495
7496  // C++ [over.operator]p23:
7497  //
7498  //   There also exist candidate operator functions of the form
7499  //
7500  //        bool        operator!(bool);
7501  //        bool        operator&&(bool, bool);
7502  //        bool        operator||(bool, bool);
7503  void addExclaimOverload() {
7504    QualType ParamTy = S.Context.BoolTy;
7505    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
7506                          /*IsAssignmentOperator=*/false,
7507                          /*NumContextualBoolArguments=*/1);
7508  }
7509  void addAmpAmpOrPipePipeOverload() {
7510    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7511    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
7512                          /*IsAssignmentOperator=*/false,
7513                          /*NumContextualBoolArguments=*/2);
7514  }
7515
7516  // C++ [over.built]p13:
7517  //
7518  //   For every cv-qualified or cv-unqualified object type T there
7519  //   exist candidate operator functions of the form
7520  //
7521  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7522  //        T&         operator[](T*, ptrdiff_t);
7523  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7524  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7525  //        T&         operator[](ptrdiff_t, T*);
7526  void addSubscriptOverloads() {
7527    for (BuiltinCandidateTypeSet::iterator
7528              Ptr = CandidateTypes[0].pointer_begin(),
7529           PtrEnd = CandidateTypes[0].pointer_end();
7530         Ptr != PtrEnd; ++Ptr) {
7531      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7532      QualType PointeeType = (*Ptr)->getPointeeType();
7533      if (!PointeeType->isObjectType())
7534        continue;
7535
7536      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7537
7538      // T& operator[](T*, ptrdiff_t)
7539      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7540    }
7541
7542    for (BuiltinCandidateTypeSet::iterator
7543              Ptr = CandidateTypes[1].pointer_begin(),
7544           PtrEnd = CandidateTypes[1].pointer_end();
7545         Ptr != PtrEnd; ++Ptr) {
7546      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7547      QualType PointeeType = (*Ptr)->getPointeeType();
7548      if (!PointeeType->isObjectType())
7549        continue;
7550
7551      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7552
7553      // T& operator[](ptrdiff_t, T*)
7554      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7555    }
7556  }
7557
7558  // C++ [over.built]p11:
7559  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7560  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7561  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7562  //    there exist candidate operator functions of the form
7563  //
7564  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7565  //
7566  //    where CV12 is the union of CV1 and CV2.
7567  void addArrowStarOverloads() {
7568    for (BuiltinCandidateTypeSet::iterator
7569             Ptr = CandidateTypes[0].pointer_begin(),
7570           PtrEnd = CandidateTypes[0].pointer_end();
7571         Ptr != PtrEnd; ++Ptr) {
7572      QualType C1Ty = (*Ptr);
7573      QualType C1;
7574      QualifierCollector Q1;
7575      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7576      if (!isa<RecordType>(C1))
7577        continue;
7578      // heuristic to reduce number of builtin candidates in the set.
7579      // Add volatile/restrict version only if there are conversions to a
7580      // volatile/restrict type.
7581      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7582        continue;
7583      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7584        continue;
7585      for (BuiltinCandidateTypeSet::iterator
7586                MemPtr = CandidateTypes[1].member_pointer_begin(),
7587             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7588           MemPtr != MemPtrEnd; ++MemPtr) {
7589        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7590        QualType C2 = QualType(mptr->getClass(), 0);
7591        C2 = C2.getUnqualifiedType();
7592        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7593          break;
7594        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7595        // build CV12 T&
7596        QualType T = mptr->getPointeeType();
7597        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7598            T.isVolatileQualified())
7599          continue;
7600        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7601            T.isRestrictQualified())
7602          continue;
7603        T = Q1.apply(S.Context, T);
7604        QualType ResultTy = S.Context.getLValueReferenceType(T);
7605        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7606      }
7607    }
7608  }
7609
7610  // Note that we don't consider the first argument, since it has been
7611  // contextually converted to bool long ago. The candidates below are
7612  // therefore added as binary.
7613  //
7614  // C++ [over.built]p25:
7615  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7616  //   enumeration type, there exist candidate operator functions of the form
7617  //
7618  //        T        operator?(bool, T, T);
7619  //
7620  void addConditionalOperatorOverloads() {
7621    /// Set of (canonical) types that we've already handled.
7622    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7623
7624    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7625      for (BuiltinCandidateTypeSet::iterator
7626                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7627             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7628           Ptr != PtrEnd; ++Ptr) {
7629        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7630          continue;
7631
7632        QualType ParamTypes[2] = { *Ptr, *Ptr };
7633        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
7634      }
7635
7636      for (BuiltinCandidateTypeSet::iterator
7637                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7638             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7639           MemPtr != MemPtrEnd; ++MemPtr) {
7640        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7641          continue;
7642
7643        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7644        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
7645      }
7646
7647      if (S.getLangOpts().CPlusPlus11) {
7648        for (BuiltinCandidateTypeSet::iterator
7649                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7650               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7651             Enum != EnumEnd; ++Enum) {
7652          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7653            continue;
7654
7655          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7656            continue;
7657
7658          QualType ParamTypes[2] = { *Enum, *Enum };
7659          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
7660        }
7661      }
7662    }
7663  }
7664};
7665
7666} // end anonymous namespace
7667
7668/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7669/// operator overloads to the candidate set (C++ [over.built]), based
7670/// on the operator @p Op and the arguments given. For example, if the
7671/// operator is a binary '+', this routine might add "int
7672/// operator+(int, int)" to cover integer addition.
7673void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7674                                        SourceLocation OpLoc,
7675                                        ArrayRef<Expr *> Args,
7676                                        OverloadCandidateSet &CandidateSet) {
7677  // Find all of the types that the arguments can convert to, but only
7678  // if the operator we're looking at has built-in operator candidates
7679  // that make use of these types. Also record whether we encounter non-record
7680  // candidate types or either arithmetic or enumeral candidate types.
7681  Qualifiers VisibleTypeConversionsQuals;
7682  VisibleTypeConversionsQuals.addConst();
7683  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
7684    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7685
7686  bool HasNonRecordCandidateType = false;
7687  bool HasArithmeticOrEnumeralCandidateType = false;
7688  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7689  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7690    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7691    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7692                                                 OpLoc,
7693                                                 true,
7694                                                 (Op == OO_Exclaim ||
7695                                                  Op == OO_AmpAmp ||
7696                                                  Op == OO_PipePipe),
7697                                                 VisibleTypeConversionsQuals);
7698    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7699        CandidateTypes[ArgIdx].hasNonRecordTypes();
7700    HasArithmeticOrEnumeralCandidateType =
7701        HasArithmeticOrEnumeralCandidateType ||
7702        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7703  }
7704
7705  // Exit early when no non-record types have been added to the candidate set
7706  // for any of the arguments to the operator.
7707  //
7708  // We can't exit early for !, ||, or &&, since there we have always have
7709  // 'bool' overloads.
7710  if (!HasNonRecordCandidateType &&
7711      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7712    return;
7713
7714  // Setup an object to manage the common state for building overloads.
7715  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
7716                                           VisibleTypeConversionsQuals,
7717                                           HasArithmeticOrEnumeralCandidateType,
7718                                           CandidateTypes, CandidateSet);
7719
7720  // Dispatch over the operation to add in only those overloads which apply.
7721  switch (Op) {
7722  case OO_None:
7723  case NUM_OVERLOADED_OPERATORS:
7724    llvm_unreachable("Expected an overloaded operator");
7725
7726  case OO_New:
7727  case OO_Delete:
7728  case OO_Array_New:
7729  case OO_Array_Delete:
7730  case OO_Call:
7731    llvm_unreachable(
7732                    "Special operators don't use AddBuiltinOperatorCandidates");
7733
7734  case OO_Comma:
7735  case OO_Arrow:
7736    // C++ [over.match.oper]p3:
7737    //   -- For the operator ',', the unary operator '&', or the
7738    //      operator '->', the built-in candidates set is empty.
7739    break;
7740
7741  case OO_Plus: // '+' is either unary or binary
7742    if (Args.size() == 1)
7743      OpBuilder.addUnaryPlusPointerOverloads();
7744    // Fall through.
7745
7746  case OO_Minus: // '-' is either unary or binary
7747    if (Args.size() == 1) {
7748      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7749    } else {
7750      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7751      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7752    }
7753    break;
7754
7755  case OO_Star: // '*' is either unary or binary
7756    if (Args.size() == 1)
7757      OpBuilder.addUnaryStarPointerOverloads();
7758    else
7759      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7760    break;
7761
7762  case OO_Slash:
7763    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7764    break;
7765
7766  case OO_PlusPlus:
7767  case OO_MinusMinus:
7768    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7769    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7770    break;
7771
7772  case OO_EqualEqual:
7773  case OO_ExclaimEqual:
7774    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7775    // Fall through.
7776
7777  case OO_Less:
7778  case OO_Greater:
7779  case OO_LessEqual:
7780  case OO_GreaterEqual:
7781    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7782    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7783    break;
7784
7785  case OO_Percent:
7786  case OO_Caret:
7787  case OO_Pipe:
7788  case OO_LessLess:
7789  case OO_GreaterGreater:
7790    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7791    break;
7792
7793  case OO_Amp: // '&' is either unary or binary
7794    if (Args.size() == 1)
7795      // C++ [over.match.oper]p3:
7796      //   -- For the operator ',', the unary operator '&', or the
7797      //      operator '->', the built-in candidates set is empty.
7798      break;
7799
7800    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7801    break;
7802
7803  case OO_Tilde:
7804    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7805    break;
7806
7807  case OO_Equal:
7808    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7809    // Fall through.
7810
7811  case OO_PlusEqual:
7812  case OO_MinusEqual:
7813    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7814    // Fall through.
7815
7816  case OO_StarEqual:
7817  case OO_SlashEqual:
7818    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7819    break;
7820
7821  case OO_PercentEqual:
7822  case OO_LessLessEqual:
7823  case OO_GreaterGreaterEqual:
7824  case OO_AmpEqual:
7825  case OO_CaretEqual:
7826  case OO_PipeEqual:
7827    OpBuilder.addAssignmentIntegralOverloads();
7828    break;
7829
7830  case OO_Exclaim:
7831    OpBuilder.addExclaimOverload();
7832    break;
7833
7834  case OO_AmpAmp:
7835  case OO_PipePipe:
7836    OpBuilder.addAmpAmpOrPipePipeOverload();
7837    break;
7838
7839  case OO_Subscript:
7840    OpBuilder.addSubscriptOverloads();
7841    break;
7842
7843  case OO_ArrowStar:
7844    OpBuilder.addArrowStarOverloads();
7845    break;
7846
7847  case OO_Conditional:
7848    OpBuilder.addConditionalOperatorOverloads();
7849    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7850    break;
7851  }
7852}
7853
7854/// \brief Add function candidates found via argument-dependent lookup
7855/// to the set of overloading candidates.
7856///
7857/// This routine performs argument-dependent name lookup based on the
7858/// given function name (which may also be an operator name) and adds
7859/// all of the overload candidates found by ADL to the overload
7860/// candidate set (C++ [basic.lookup.argdep]).
7861void
7862Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7863                                           bool Operator, SourceLocation Loc,
7864                                           ArrayRef<Expr *> Args,
7865                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7866                                           OverloadCandidateSet& CandidateSet,
7867                                           bool PartialOverloading) {
7868  ADLResult Fns;
7869
7870  // FIXME: This approach for uniquing ADL results (and removing
7871  // redundant candidates from the set) relies on pointer-equality,
7872  // which means we need to key off the canonical decl.  However,
7873  // always going back to the canonical decl might not get us the
7874  // right set of default arguments.  What default arguments are
7875  // we supposed to consider on ADL candidates, anyway?
7876
7877  // FIXME: Pass in the explicit template arguments?
7878  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
7879
7880  // Erase all of the candidates we already knew about.
7881  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7882                                   CandEnd = CandidateSet.end();
7883       Cand != CandEnd; ++Cand)
7884    if (Cand->Function) {
7885      Fns.erase(Cand->Function);
7886      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7887        Fns.erase(FunTmpl);
7888    }
7889
7890  // For each of the ADL candidates we found, add it to the overload
7891  // set.
7892  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7893    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7894    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7895      if (ExplicitTemplateArgs)
7896        continue;
7897
7898      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7899                           PartialOverloading);
7900    } else
7901      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7902                                   FoundDecl, ExplicitTemplateArgs,
7903                                   Args, CandidateSet);
7904  }
7905}
7906
7907/// isBetterOverloadCandidate - Determines whether the first overload
7908/// candidate is a better candidate than the second (C++ 13.3.3p1).
7909bool
7910isBetterOverloadCandidate(Sema &S,
7911                          const OverloadCandidate &Cand1,
7912                          const OverloadCandidate &Cand2,
7913                          SourceLocation Loc,
7914                          bool UserDefinedConversion) {
7915  // Define viable functions to be better candidates than non-viable
7916  // functions.
7917  if (!Cand2.Viable)
7918    return Cand1.Viable;
7919  else if (!Cand1.Viable)
7920    return false;
7921
7922  // C++ [over.match.best]p1:
7923  //
7924  //   -- if F is a static member function, ICS1(F) is defined such
7925  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7926  //      any function G, and, symmetrically, ICS1(G) is neither
7927  //      better nor worse than ICS1(F).
7928  unsigned StartArg = 0;
7929  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7930    StartArg = 1;
7931
7932  // C++ [over.match.best]p1:
7933  //   A viable function F1 is defined to be a better function than another
7934  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7935  //   conversion sequence than ICSi(F2), and then...
7936  unsigned NumArgs = Cand1.NumConversions;
7937  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7938  bool HasBetterConversion = false;
7939  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7940    switch (CompareImplicitConversionSequences(S,
7941                                               Cand1.Conversions[ArgIdx],
7942                                               Cand2.Conversions[ArgIdx])) {
7943    case ImplicitConversionSequence::Better:
7944      // Cand1 has a better conversion sequence.
7945      HasBetterConversion = true;
7946      break;
7947
7948    case ImplicitConversionSequence::Worse:
7949      // Cand1 can't be better than Cand2.
7950      return false;
7951
7952    case ImplicitConversionSequence::Indistinguishable:
7953      // Do nothing.
7954      break;
7955    }
7956  }
7957
7958  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7959  //       ICSj(F2), or, if not that,
7960  if (HasBetterConversion)
7961    return true;
7962
7963  //     - F1 is a non-template function and F2 is a function template
7964  //       specialization, or, if not that,
7965  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7966      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7967    return true;
7968
7969  //   -- F1 and F2 are function template specializations, and the function
7970  //      template for F1 is more specialized than the template for F2
7971  //      according to the partial ordering rules described in 14.5.5.2, or,
7972  //      if not that,
7973  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7974      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7975    if (FunctionTemplateDecl *BetterTemplate
7976          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7977                                         Cand2.Function->getPrimaryTemplate(),
7978                                         Loc,
7979                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7980                                                             : TPOC_Call,
7981                                         Cand1.ExplicitCallArguments,
7982                                         Cand2.ExplicitCallArguments))
7983      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7984  }
7985
7986  //   -- the context is an initialization by user-defined conversion
7987  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7988  //      from the return type of F1 to the destination type (i.e.,
7989  //      the type of the entity being initialized) is a better
7990  //      conversion sequence than the standard conversion sequence
7991  //      from the return type of F2 to the destination type.
7992  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7993      isa<CXXConversionDecl>(Cand1.Function) &&
7994      isa<CXXConversionDecl>(Cand2.Function)) {
7995    // First check whether we prefer one of the conversion functions over the
7996    // other. This only distinguishes the results in non-standard, extension
7997    // cases such as the conversion from a lambda closure type to a function
7998    // pointer or block.
7999    ImplicitConversionSequence::CompareKind FuncResult
8000      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8001    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
8002      return FuncResult;
8003
8004    switch (CompareStandardConversionSequences(S,
8005                                               Cand1.FinalConversion,
8006                                               Cand2.FinalConversion)) {
8007    case ImplicitConversionSequence::Better:
8008      // Cand1 has a better conversion sequence.
8009      return true;
8010
8011    case ImplicitConversionSequence::Worse:
8012      // Cand1 can't be better than Cand2.
8013      return false;
8014
8015    case ImplicitConversionSequence::Indistinguishable:
8016      // Do nothing
8017      break;
8018    }
8019  }
8020
8021  return false;
8022}
8023
8024/// \brief Computes the best viable function (C++ 13.3.3)
8025/// within an overload candidate set.
8026///
8027/// \param Loc The location of the function name (or operator symbol) for
8028/// which overload resolution occurs.
8029///
8030/// \param Best If overload resolution was successful or found a deleted
8031/// function, \p Best points to the candidate function found.
8032///
8033/// \returns The result of overload resolution.
8034OverloadingResult
8035OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8036                                         iterator &Best,
8037                                         bool UserDefinedConversion) {
8038  // Find the best viable function.
8039  Best = end();
8040  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8041    if (Cand->Viable)
8042      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8043                                                     UserDefinedConversion))
8044        Best = Cand;
8045  }
8046
8047  // If we didn't find any viable functions, abort.
8048  if (Best == end())
8049    return OR_No_Viable_Function;
8050
8051  // Make sure that this function is better than every other viable
8052  // function. If not, we have an ambiguity.
8053  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8054    if (Cand->Viable &&
8055        Cand != Best &&
8056        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8057                                   UserDefinedConversion)) {
8058      Best = end();
8059      return OR_Ambiguous;
8060    }
8061  }
8062
8063  // Best is the best viable function.
8064  if (Best->Function &&
8065      (Best->Function->isDeleted() ||
8066       S.isFunctionConsideredUnavailable(Best->Function)))
8067    return OR_Deleted;
8068
8069  return OR_Success;
8070}
8071
8072namespace {
8073
8074enum OverloadCandidateKind {
8075  oc_function,
8076  oc_method,
8077  oc_constructor,
8078  oc_function_template,
8079  oc_method_template,
8080  oc_constructor_template,
8081  oc_implicit_default_constructor,
8082  oc_implicit_copy_constructor,
8083  oc_implicit_move_constructor,
8084  oc_implicit_copy_assignment,
8085  oc_implicit_move_assignment,
8086  oc_implicit_inherited_constructor
8087};
8088
8089OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8090                                                FunctionDecl *Fn,
8091                                                std::string &Description) {
8092  bool isTemplate = false;
8093
8094  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8095    isTemplate = true;
8096    Description = S.getTemplateArgumentBindingsText(
8097      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8098  }
8099
8100  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8101    if (!Ctor->isImplicit())
8102      return isTemplate ? oc_constructor_template : oc_constructor;
8103
8104    if (Ctor->getInheritedConstructor())
8105      return oc_implicit_inherited_constructor;
8106
8107    if (Ctor->isDefaultConstructor())
8108      return oc_implicit_default_constructor;
8109
8110    if (Ctor->isMoveConstructor())
8111      return oc_implicit_move_constructor;
8112
8113    assert(Ctor->isCopyConstructor() &&
8114           "unexpected sort of implicit constructor");
8115    return oc_implicit_copy_constructor;
8116  }
8117
8118  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8119    // This actually gets spelled 'candidate function' for now, but
8120    // it doesn't hurt to split it out.
8121    if (!Meth->isImplicit())
8122      return isTemplate ? oc_method_template : oc_method;
8123
8124    if (Meth->isMoveAssignmentOperator())
8125      return oc_implicit_move_assignment;
8126
8127    if (Meth->isCopyAssignmentOperator())
8128      return oc_implicit_copy_assignment;
8129
8130    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8131    return oc_method;
8132  }
8133
8134  return isTemplate ? oc_function_template : oc_function;
8135}
8136
8137void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
8138  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8139  if (!Ctor) return;
8140
8141  Ctor = Ctor->getInheritedConstructor();
8142  if (!Ctor) return;
8143
8144  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8145}
8146
8147} // end anonymous namespace
8148
8149// Notes the location of an overload candidate.
8150void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
8151  std::string FnDesc;
8152  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8153  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8154                             << (unsigned) K << FnDesc;
8155  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8156  Diag(Fn->getLocation(), PD);
8157  MaybeEmitInheritedConstructorNote(*this, Fn);
8158}
8159
8160// Notes the location of all overload candidates designated through
8161// OverloadedExpr
8162void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
8163  assert(OverloadedExpr->getType() == Context.OverloadTy);
8164
8165  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8166  OverloadExpr *OvlExpr = Ovl.Expression;
8167
8168  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8169                            IEnd = OvlExpr->decls_end();
8170       I != IEnd; ++I) {
8171    if (FunctionTemplateDecl *FunTmpl =
8172                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8173      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
8174    } else if (FunctionDecl *Fun
8175                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8176      NoteOverloadCandidate(Fun, DestType);
8177    }
8178  }
8179}
8180
8181/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
8182/// "lead" diagnostic; it will be given two arguments, the source and
8183/// target types of the conversion.
8184void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8185                                 Sema &S,
8186                                 SourceLocation CaretLoc,
8187                                 const PartialDiagnostic &PDiag) const {
8188  S.Diag(CaretLoc, PDiag)
8189    << Ambiguous.getFromType() << Ambiguous.getToType();
8190  // FIXME: The note limiting machinery is borrowed from
8191  // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8192  // refactoring here.
8193  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8194  unsigned CandsShown = 0;
8195  AmbiguousConversionSequence::const_iterator I, E;
8196  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8197    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8198      break;
8199    ++CandsShown;
8200    S.NoteOverloadCandidate(*I);
8201  }
8202  if (I != E)
8203    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8204}
8205
8206namespace {
8207
8208void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8209  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8210  assert(Conv.isBad());
8211  assert(Cand->Function && "for now, candidate must be a function");
8212  FunctionDecl *Fn = Cand->Function;
8213
8214  // There's a conversion slot for the object argument if this is a
8215  // non-constructor method.  Note that 'I' corresponds the
8216  // conversion-slot index.
8217  bool isObjectArgument = false;
8218  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8219    if (I == 0)
8220      isObjectArgument = true;
8221    else
8222      I--;
8223  }
8224
8225  std::string FnDesc;
8226  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8227
8228  Expr *FromExpr = Conv.Bad.FromExpr;
8229  QualType FromTy = Conv.Bad.getFromType();
8230  QualType ToTy = Conv.Bad.getToType();
8231
8232  if (FromTy == S.Context.OverloadTy) {
8233    assert(FromExpr && "overload set argument came from implicit argument?");
8234    Expr *E = FromExpr->IgnoreParens();
8235    if (isa<UnaryOperator>(E))
8236      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8237    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8238
8239    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8240      << (unsigned) FnKind << FnDesc
8241      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8242      << ToTy << Name << I+1;
8243    MaybeEmitInheritedConstructorNote(S, Fn);
8244    return;
8245  }
8246
8247  // Do some hand-waving analysis to see if the non-viability is due
8248  // to a qualifier mismatch.
8249  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8250  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8251  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8252    CToTy = RT->getPointeeType();
8253  else {
8254    // TODO: detect and diagnose the full richness of const mismatches.
8255    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8256      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8257        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8258  }
8259
8260  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8261      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8262    Qualifiers FromQs = CFromTy.getQualifiers();
8263    Qualifiers ToQs = CToTy.getQualifiers();
8264
8265    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8266      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8267        << (unsigned) FnKind << FnDesc
8268        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8269        << FromTy
8270        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8271        << (unsigned) isObjectArgument << I+1;
8272      MaybeEmitInheritedConstructorNote(S, Fn);
8273      return;
8274    }
8275
8276    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8277      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8278        << (unsigned) FnKind << FnDesc
8279        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8280        << FromTy
8281        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8282        << (unsigned) isObjectArgument << I+1;
8283      MaybeEmitInheritedConstructorNote(S, Fn);
8284      return;
8285    }
8286
8287    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8288      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8289      << (unsigned) FnKind << FnDesc
8290      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8291      << FromTy
8292      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8293      << (unsigned) isObjectArgument << I+1;
8294      MaybeEmitInheritedConstructorNote(S, Fn);
8295      return;
8296    }
8297
8298    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8299    assert(CVR && "unexpected qualifiers mismatch");
8300
8301    if (isObjectArgument) {
8302      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8303        << (unsigned) FnKind << FnDesc
8304        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8305        << FromTy << (CVR - 1);
8306    } else {
8307      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8308        << (unsigned) FnKind << FnDesc
8309        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8310        << FromTy << (CVR - 1) << I+1;
8311    }
8312    MaybeEmitInheritedConstructorNote(S, Fn);
8313    return;
8314  }
8315
8316  // Special diagnostic for failure to convert an initializer list, since
8317  // telling the user that it has type void is not useful.
8318  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8319    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8320      << (unsigned) FnKind << FnDesc
8321      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8322      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8323    MaybeEmitInheritedConstructorNote(S, Fn);
8324    return;
8325  }
8326
8327  // Diagnose references or pointers to incomplete types differently,
8328  // since it's far from impossible that the incompleteness triggered
8329  // the failure.
8330  QualType TempFromTy = FromTy.getNonReferenceType();
8331  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8332    TempFromTy = PTy->getPointeeType();
8333  if (TempFromTy->isIncompleteType()) {
8334    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8335      << (unsigned) FnKind << FnDesc
8336      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8337      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8338    MaybeEmitInheritedConstructorNote(S, Fn);
8339    return;
8340  }
8341
8342  // Diagnose base -> derived pointer conversions.
8343  unsigned BaseToDerivedConversion = 0;
8344  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8345    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8346      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8347                                               FromPtrTy->getPointeeType()) &&
8348          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8349          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8350          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8351                          FromPtrTy->getPointeeType()))
8352        BaseToDerivedConversion = 1;
8353    }
8354  } else if (const ObjCObjectPointerType *FromPtrTy
8355                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8356    if (const ObjCObjectPointerType *ToPtrTy
8357                                        = ToTy->getAs<ObjCObjectPointerType>())
8358      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8359        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8360          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8361                                                FromPtrTy->getPointeeType()) &&
8362              FromIface->isSuperClassOf(ToIface))
8363            BaseToDerivedConversion = 2;
8364  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8365    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8366        !FromTy->isIncompleteType() &&
8367        !ToRefTy->getPointeeType()->isIncompleteType() &&
8368        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8369      BaseToDerivedConversion = 3;
8370    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8371               ToTy.getNonReferenceType().getCanonicalType() ==
8372               FromTy.getNonReferenceType().getCanonicalType()) {
8373      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8374        << (unsigned) FnKind << FnDesc
8375        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8376        << (unsigned) isObjectArgument << I + 1;
8377      MaybeEmitInheritedConstructorNote(S, Fn);
8378      return;
8379    }
8380  }
8381
8382  if (BaseToDerivedConversion) {
8383    S.Diag(Fn->getLocation(),
8384           diag::note_ovl_candidate_bad_base_to_derived_conv)
8385      << (unsigned) FnKind << FnDesc
8386      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8387      << (BaseToDerivedConversion - 1)
8388      << FromTy << ToTy << I+1;
8389    MaybeEmitInheritedConstructorNote(S, Fn);
8390    return;
8391  }
8392
8393  if (isa<ObjCObjectPointerType>(CFromTy) &&
8394      isa<PointerType>(CToTy)) {
8395      Qualifiers FromQs = CFromTy.getQualifiers();
8396      Qualifiers ToQs = CToTy.getQualifiers();
8397      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8398        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8399        << (unsigned) FnKind << FnDesc
8400        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8401        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8402        MaybeEmitInheritedConstructorNote(S, Fn);
8403        return;
8404      }
8405  }
8406
8407  // Emit the generic diagnostic and, optionally, add the hints to it.
8408  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8409  FDiag << (unsigned) FnKind << FnDesc
8410    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8411    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8412    << (unsigned) (Cand->Fix.Kind);
8413
8414  // If we can fix the conversion, suggest the FixIts.
8415  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8416       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8417    FDiag << *HI;
8418  S.Diag(Fn->getLocation(), FDiag);
8419
8420  MaybeEmitInheritedConstructorNote(S, Fn);
8421}
8422
8423/// Additional arity mismatch diagnosis specific to a function overload
8424/// candidates. This is not covered by the more general DiagnoseArityMismatch()
8425/// over a candidate in any candidate set.
8426bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
8427                        unsigned NumArgs) {
8428  FunctionDecl *Fn = Cand->Function;
8429  unsigned MinParams = Fn->getMinRequiredArguments();
8430
8431  // With invalid overloaded operators, it's possible that we think we
8432  // have an arity mismatch when in fact it looks like we have the
8433  // right number of arguments, because only overloaded operators have
8434  // the weird behavior of overloading member and non-member functions.
8435  // Just don't report anything.
8436  if (Fn->isInvalidDecl() &&
8437      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8438    return true;
8439
8440  if (NumArgs < MinParams) {
8441    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8442           (Cand->FailureKind == ovl_fail_bad_deduction &&
8443            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8444  } else {
8445    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8446           (Cand->FailureKind == ovl_fail_bad_deduction &&
8447            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8448  }
8449
8450  return false;
8451}
8452
8453/// General arity mismatch diagnosis over a candidate in a candidate set.
8454void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
8455  assert(isa<FunctionDecl>(D) &&
8456      "The templated declaration should at least be a function"
8457      " when diagnosing bad template argument deduction due to too many"
8458      " or too few arguments");
8459
8460  FunctionDecl *Fn = cast<FunctionDecl>(D);
8461
8462  // TODO: treat calls to a missing default constructor as a special case
8463  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8464  unsigned MinParams = Fn->getMinRequiredArguments();
8465
8466  // at least / at most / exactly
8467  unsigned mode, modeCount;
8468  if (NumFormalArgs < MinParams) {
8469    if (MinParams != FnTy->getNumArgs() ||
8470        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8471      mode = 0; // "at least"
8472    else
8473      mode = 2; // "exactly"
8474    modeCount = MinParams;
8475  } else {
8476    if (MinParams != FnTy->getNumArgs())
8477      mode = 1; // "at most"
8478    else
8479      mode = 2; // "exactly"
8480    modeCount = FnTy->getNumArgs();
8481  }
8482
8483  std::string Description;
8484  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8485
8486  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8487    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8488      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8489      << Fn->getParamDecl(0) << NumFormalArgs;
8490  else
8491    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8492      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8493      << modeCount << NumFormalArgs;
8494  MaybeEmitInheritedConstructorNote(S, Fn);
8495}
8496
8497/// Arity mismatch diagnosis specific to a function overload candidate.
8498void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8499                           unsigned NumFormalArgs) {
8500  if (!CheckArityMismatch(S, Cand, NumFormalArgs))
8501    DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
8502}
8503
8504TemplateDecl *getDescribedTemplate(Decl *Templated) {
8505  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
8506    return FD->getDescribedFunctionTemplate();
8507  else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
8508    return RD->getDescribedClassTemplate();
8509
8510  llvm_unreachable("Unsupported: Getting the described template declaration"
8511                   " for bad deduction diagnosis");
8512}
8513
8514/// Diagnose a failed template-argument deduction.
8515void DiagnoseBadDeduction(Sema &S, Decl *Templated,
8516                          DeductionFailureInfo &DeductionFailure,
8517                          unsigned NumArgs) {
8518  TemplateParameter Param = DeductionFailure.getTemplateParameter();
8519  NamedDecl *ParamD;
8520  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8521  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8522  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8523  switch (DeductionFailure.Result) {
8524  case Sema::TDK_Success:
8525    llvm_unreachable("TDK_success while diagnosing bad deduction");
8526
8527  case Sema::TDK_Incomplete: {
8528    assert(ParamD && "no parameter found for incomplete deduction result");
8529    S.Diag(Templated->getLocation(),
8530           diag::note_ovl_candidate_incomplete_deduction)
8531        << ParamD->getDeclName();
8532    MaybeEmitInheritedConstructorNote(S, Templated);
8533    return;
8534  }
8535
8536  case Sema::TDK_Underqualified: {
8537    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8538    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8539
8540    QualType Param = DeductionFailure.getFirstArg()->getAsType();
8541
8542    // Param will have been canonicalized, but it should just be a
8543    // qualified version of ParamD, so move the qualifiers to that.
8544    QualifierCollector Qs;
8545    Qs.strip(Param);
8546    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8547    assert(S.Context.hasSameType(Param, NonCanonParam));
8548
8549    // Arg has also been canonicalized, but there's nothing we can do
8550    // about that.  It also doesn't matter as much, because it won't
8551    // have any template parameters in it (because deduction isn't
8552    // done on dependent types).
8553    QualType Arg = DeductionFailure.getSecondArg()->getAsType();
8554
8555    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
8556        << ParamD->getDeclName() << Arg << NonCanonParam;
8557    MaybeEmitInheritedConstructorNote(S, Templated);
8558    return;
8559  }
8560
8561  case Sema::TDK_Inconsistent: {
8562    assert(ParamD && "no parameter found for inconsistent deduction result");
8563    int which = 0;
8564    if (isa<TemplateTypeParmDecl>(ParamD))
8565      which = 0;
8566    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8567      which = 1;
8568    else {
8569      which = 2;
8570    }
8571
8572    S.Diag(Templated->getLocation(),
8573           diag::note_ovl_candidate_inconsistent_deduction)
8574        << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
8575        << *DeductionFailure.getSecondArg();
8576    MaybeEmitInheritedConstructorNote(S, Templated);
8577    return;
8578  }
8579
8580  case Sema::TDK_InvalidExplicitArguments:
8581    assert(ParamD && "no parameter found for invalid explicit arguments");
8582    if (ParamD->getDeclName())
8583      S.Diag(Templated->getLocation(),
8584             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8585          << ParamD->getDeclName();
8586    else {
8587      int index = 0;
8588      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8589        index = TTP->getIndex();
8590      else if (NonTypeTemplateParmDecl *NTTP
8591                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8592        index = NTTP->getIndex();
8593      else
8594        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8595      S.Diag(Templated->getLocation(),
8596             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8597          << (index + 1);
8598    }
8599    MaybeEmitInheritedConstructorNote(S, Templated);
8600    return;
8601
8602  case Sema::TDK_TooManyArguments:
8603  case Sema::TDK_TooFewArguments:
8604    DiagnoseArityMismatch(S, Templated, NumArgs);
8605    return;
8606
8607  case Sema::TDK_InstantiationDepth:
8608    S.Diag(Templated->getLocation(),
8609           diag::note_ovl_candidate_instantiation_depth);
8610    MaybeEmitInheritedConstructorNote(S, Templated);
8611    return;
8612
8613  case Sema::TDK_SubstitutionFailure: {
8614    // Format the template argument list into the argument string.
8615    SmallString<128> TemplateArgString;
8616    if (TemplateArgumentList *Args =
8617            DeductionFailure.getTemplateArgumentList()) {
8618      TemplateArgString = " ";
8619      TemplateArgString += S.getTemplateArgumentBindingsText(
8620          getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
8621    }
8622
8623    // If this candidate was disabled by enable_if, say so.
8624    PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
8625    if (PDiag && PDiag->second.getDiagID() ==
8626          diag::err_typename_nested_not_found_enable_if) {
8627      // FIXME: Use the source range of the condition, and the fully-qualified
8628      //        name of the enable_if template. These are both present in PDiag.
8629      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8630        << "'enable_if'" << TemplateArgString;
8631      return;
8632    }
8633
8634    // Format the SFINAE diagnostic into the argument string.
8635    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8636    //        formatted message in another diagnostic.
8637    SmallString<128> SFINAEArgString;
8638    SourceRange R;
8639    if (PDiag) {
8640      SFINAEArgString = ": ";
8641      R = SourceRange(PDiag->first, PDiag->first);
8642      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8643    }
8644
8645    S.Diag(Templated->getLocation(),
8646           diag::note_ovl_candidate_substitution_failure)
8647        << TemplateArgString << SFINAEArgString << R;
8648    MaybeEmitInheritedConstructorNote(S, Templated);
8649    return;
8650  }
8651
8652  case Sema::TDK_FailedOverloadResolution: {
8653    OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
8654    S.Diag(Templated->getLocation(),
8655           diag::note_ovl_candidate_failed_overload_resolution)
8656        << R.Expression->getName();
8657    return;
8658  }
8659
8660  case Sema::TDK_NonDeducedMismatch: {
8661    // FIXME: Provide a source location to indicate what we couldn't match.
8662    TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
8663    TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
8664    if (FirstTA.getKind() == TemplateArgument::Template &&
8665        SecondTA.getKind() == TemplateArgument::Template) {
8666      TemplateName FirstTN = FirstTA.getAsTemplate();
8667      TemplateName SecondTN = SecondTA.getAsTemplate();
8668      if (FirstTN.getKind() == TemplateName::Template &&
8669          SecondTN.getKind() == TemplateName::Template) {
8670        if (FirstTN.getAsTemplateDecl()->getName() ==
8671            SecondTN.getAsTemplateDecl()->getName()) {
8672          // FIXME: This fixes a bad diagnostic where both templates are named
8673          // the same.  This particular case is a bit difficult since:
8674          // 1) It is passed as a string to the diagnostic printer.
8675          // 2) The diagnostic printer only attempts to find a better
8676          //    name for types, not decls.
8677          // Ideally, this should folded into the diagnostic printer.
8678          S.Diag(Templated->getLocation(),
8679                 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
8680              << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
8681          return;
8682        }
8683      }
8684    }
8685    S.Diag(Templated->getLocation(),
8686           diag::note_ovl_candidate_non_deduced_mismatch)
8687        << FirstTA << SecondTA;
8688    return;
8689  }
8690  // TODO: diagnose these individually, then kill off
8691  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8692  case Sema::TDK_MiscellaneousDeductionFailure:
8693    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
8694    MaybeEmitInheritedConstructorNote(S, Templated);
8695    return;
8696  }
8697}
8698
8699/// Diagnose a failed template-argument deduction, for function calls.
8700void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, unsigned NumArgs) {
8701  unsigned TDK = Cand->DeductionFailure.Result;
8702  if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
8703    if (CheckArityMismatch(S, Cand, NumArgs))
8704      return;
8705  }
8706  DiagnoseBadDeduction(S, Cand->Function, // pattern
8707                       Cand->DeductionFailure, NumArgs);
8708}
8709
8710/// CUDA: diagnose an invalid call across targets.
8711void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8712  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8713  FunctionDecl *Callee = Cand->Function;
8714
8715  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8716                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8717
8718  std::string FnDesc;
8719  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8720
8721  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8722      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8723}
8724
8725/// Generates a 'note' diagnostic for an overload candidate.  We've
8726/// already generated a primary error at the call site.
8727///
8728/// It really does need to be a single diagnostic with its caret
8729/// pointed at the candidate declaration.  Yes, this creates some
8730/// major challenges of technical writing.  Yes, this makes pointing
8731/// out problems with specific arguments quite awkward.  It's still
8732/// better than generating twenty screens of text for every failed
8733/// overload.
8734///
8735/// It would be great to be able to express per-candidate problems
8736/// more richly for those diagnostic clients that cared, but we'd
8737/// still have to be just as careful with the default diagnostics.
8738void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8739                           unsigned NumArgs) {
8740  FunctionDecl *Fn = Cand->Function;
8741
8742  // Note deleted candidates, but only if they're viable.
8743  if (Cand->Viable && (Fn->isDeleted() ||
8744      S.isFunctionConsideredUnavailable(Fn))) {
8745    std::string FnDesc;
8746    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8747
8748    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8749      << FnKind << FnDesc
8750      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8751    MaybeEmitInheritedConstructorNote(S, Fn);
8752    return;
8753  }
8754
8755  // We don't really have anything else to say about viable candidates.
8756  if (Cand->Viable) {
8757    S.NoteOverloadCandidate(Fn);
8758    return;
8759  }
8760
8761  switch (Cand->FailureKind) {
8762  case ovl_fail_too_many_arguments:
8763  case ovl_fail_too_few_arguments:
8764    return DiagnoseArityMismatch(S, Cand, NumArgs);
8765
8766  case ovl_fail_bad_deduction:
8767    return DiagnoseBadDeduction(S, Cand, NumArgs);
8768
8769  case ovl_fail_trivial_conversion:
8770  case ovl_fail_bad_final_conversion:
8771  case ovl_fail_final_conversion_not_exact:
8772    return S.NoteOverloadCandidate(Fn);
8773
8774  case ovl_fail_bad_conversion: {
8775    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8776    for (unsigned N = Cand->NumConversions; I != N; ++I)
8777      if (Cand->Conversions[I].isBad())
8778        return DiagnoseBadConversion(S, Cand, I);
8779
8780    // FIXME: this currently happens when we're called from SemaInit
8781    // when user-conversion overload fails.  Figure out how to handle
8782    // those conditions and diagnose them well.
8783    return S.NoteOverloadCandidate(Fn);
8784  }
8785
8786  case ovl_fail_bad_target:
8787    return DiagnoseBadTarget(S, Cand);
8788  }
8789}
8790
8791void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8792  // Desugar the type of the surrogate down to a function type,
8793  // retaining as many typedefs as possible while still showing
8794  // the function type (and, therefore, its parameter types).
8795  QualType FnType = Cand->Surrogate->getConversionType();
8796  bool isLValueReference = false;
8797  bool isRValueReference = false;
8798  bool isPointer = false;
8799  if (const LValueReferenceType *FnTypeRef =
8800        FnType->getAs<LValueReferenceType>()) {
8801    FnType = FnTypeRef->getPointeeType();
8802    isLValueReference = true;
8803  } else if (const RValueReferenceType *FnTypeRef =
8804               FnType->getAs<RValueReferenceType>()) {
8805    FnType = FnTypeRef->getPointeeType();
8806    isRValueReference = true;
8807  }
8808  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8809    FnType = FnTypePtr->getPointeeType();
8810    isPointer = true;
8811  }
8812  // Desugar down to a function type.
8813  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8814  // Reconstruct the pointer/reference as appropriate.
8815  if (isPointer) FnType = S.Context.getPointerType(FnType);
8816  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8817  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8818
8819  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8820    << FnType;
8821  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8822}
8823
8824void NoteBuiltinOperatorCandidate(Sema &S,
8825                                  StringRef Opc,
8826                                  SourceLocation OpLoc,
8827                                  OverloadCandidate *Cand) {
8828  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8829  std::string TypeStr("operator");
8830  TypeStr += Opc;
8831  TypeStr += "(";
8832  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8833  if (Cand->NumConversions == 1) {
8834    TypeStr += ")";
8835    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8836  } else {
8837    TypeStr += ", ";
8838    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8839    TypeStr += ")";
8840    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8841  }
8842}
8843
8844void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8845                                  OverloadCandidate *Cand) {
8846  unsigned NoOperands = Cand->NumConversions;
8847  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8848    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8849    if (ICS.isBad()) break; // all meaningless after first invalid
8850    if (!ICS.isAmbiguous()) continue;
8851
8852    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8853                              S.PDiag(diag::note_ambiguous_type_conversion));
8854  }
8855}
8856
8857static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8858  if (Cand->Function)
8859    return Cand->Function->getLocation();
8860  if (Cand->IsSurrogate)
8861    return Cand->Surrogate->getLocation();
8862  return SourceLocation();
8863}
8864
8865static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
8866  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8867  case Sema::TDK_Success:
8868    llvm_unreachable("TDK_success while diagnosing bad deduction");
8869
8870  case Sema::TDK_Invalid:
8871  case Sema::TDK_Incomplete:
8872    return 1;
8873
8874  case Sema::TDK_Underqualified:
8875  case Sema::TDK_Inconsistent:
8876    return 2;
8877
8878  case Sema::TDK_SubstitutionFailure:
8879  case Sema::TDK_NonDeducedMismatch:
8880  case Sema::TDK_MiscellaneousDeductionFailure:
8881    return 3;
8882
8883  case Sema::TDK_InstantiationDepth:
8884  case Sema::TDK_FailedOverloadResolution:
8885    return 4;
8886
8887  case Sema::TDK_InvalidExplicitArguments:
8888    return 5;
8889
8890  case Sema::TDK_TooManyArguments:
8891  case Sema::TDK_TooFewArguments:
8892    return 6;
8893  }
8894  llvm_unreachable("Unhandled deduction result");
8895}
8896
8897struct CompareOverloadCandidatesForDisplay {
8898  Sema &S;
8899  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8900
8901  bool operator()(const OverloadCandidate *L,
8902                  const OverloadCandidate *R) {
8903    // Fast-path this check.
8904    if (L == R) return false;
8905
8906    // Order first by viability.
8907    if (L->Viable) {
8908      if (!R->Viable) return true;
8909
8910      // TODO: introduce a tri-valued comparison for overload
8911      // candidates.  Would be more worthwhile if we had a sort
8912      // that could exploit it.
8913      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8914      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8915    } else if (R->Viable)
8916      return false;
8917
8918    assert(L->Viable == R->Viable);
8919
8920    // Criteria by which we can sort non-viable candidates:
8921    if (!L->Viable) {
8922      // 1. Arity mismatches come after other candidates.
8923      if (L->FailureKind == ovl_fail_too_many_arguments ||
8924          L->FailureKind == ovl_fail_too_few_arguments)
8925        return false;
8926      if (R->FailureKind == ovl_fail_too_many_arguments ||
8927          R->FailureKind == ovl_fail_too_few_arguments)
8928        return true;
8929
8930      // 2. Bad conversions come first and are ordered by the number
8931      // of bad conversions and quality of good conversions.
8932      if (L->FailureKind == ovl_fail_bad_conversion) {
8933        if (R->FailureKind != ovl_fail_bad_conversion)
8934          return true;
8935
8936        // The conversion that can be fixed with a smaller number of changes,
8937        // comes first.
8938        unsigned numLFixes = L->Fix.NumConversionsFixed;
8939        unsigned numRFixes = R->Fix.NumConversionsFixed;
8940        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8941        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8942        if (numLFixes != numRFixes) {
8943          if (numLFixes < numRFixes)
8944            return true;
8945          else
8946            return false;
8947        }
8948
8949        // If there's any ordering between the defined conversions...
8950        // FIXME: this might not be transitive.
8951        assert(L->NumConversions == R->NumConversions);
8952
8953        int leftBetter = 0;
8954        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8955        for (unsigned E = L->NumConversions; I != E; ++I) {
8956          switch (CompareImplicitConversionSequences(S,
8957                                                     L->Conversions[I],
8958                                                     R->Conversions[I])) {
8959          case ImplicitConversionSequence::Better:
8960            leftBetter++;
8961            break;
8962
8963          case ImplicitConversionSequence::Worse:
8964            leftBetter--;
8965            break;
8966
8967          case ImplicitConversionSequence::Indistinguishable:
8968            break;
8969          }
8970        }
8971        if (leftBetter > 0) return true;
8972        if (leftBetter < 0) return false;
8973
8974      } else if (R->FailureKind == ovl_fail_bad_conversion)
8975        return false;
8976
8977      if (L->FailureKind == ovl_fail_bad_deduction) {
8978        if (R->FailureKind != ovl_fail_bad_deduction)
8979          return true;
8980
8981        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8982          return RankDeductionFailure(L->DeductionFailure)
8983               < RankDeductionFailure(R->DeductionFailure);
8984      } else if (R->FailureKind == ovl_fail_bad_deduction)
8985        return false;
8986
8987      // TODO: others?
8988    }
8989
8990    // Sort everything else by location.
8991    SourceLocation LLoc = GetLocationForCandidate(L);
8992    SourceLocation RLoc = GetLocationForCandidate(R);
8993
8994    // Put candidates without locations (e.g. builtins) at the end.
8995    if (LLoc.isInvalid()) return false;
8996    if (RLoc.isInvalid()) return true;
8997
8998    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8999  }
9000};
9001
9002/// CompleteNonViableCandidate - Normally, overload resolution only
9003/// computes up to the first. Produces the FixIt set if possible.
9004void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9005                                ArrayRef<Expr *> Args) {
9006  assert(!Cand->Viable);
9007
9008  // Don't do anything on failures other than bad conversion.
9009  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9010
9011  // We only want the FixIts if all the arguments can be corrected.
9012  bool Unfixable = false;
9013  // Use a implicit copy initialization to check conversion fixes.
9014  Cand->Fix.setConversionChecker(TryCopyInitialization);
9015
9016  // Skip forward to the first bad conversion.
9017  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
9018  unsigned ConvCount = Cand->NumConversions;
9019  while (true) {
9020    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
9021    ConvIdx++;
9022    if (Cand->Conversions[ConvIdx - 1].isBad()) {
9023      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
9024      break;
9025    }
9026  }
9027
9028  if (ConvIdx == ConvCount)
9029    return;
9030
9031  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
9032         "remaining conversion is initialized?");
9033
9034  // FIXME: this should probably be preserved from the overload
9035  // operation somehow.
9036  bool SuppressUserConversions = false;
9037
9038  const FunctionProtoType* Proto;
9039  unsigned ArgIdx = ConvIdx;
9040
9041  if (Cand->IsSurrogate) {
9042    QualType ConvType
9043      = Cand->Surrogate->getConversionType().getNonReferenceType();
9044    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9045      ConvType = ConvPtrType->getPointeeType();
9046    Proto = ConvType->getAs<FunctionProtoType>();
9047    ArgIdx--;
9048  } else if (Cand->Function) {
9049    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
9050    if (isa<CXXMethodDecl>(Cand->Function) &&
9051        !isa<CXXConstructorDecl>(Cand->Function))
9052      ArgIdx--;
9053  } else {
9054    // Builtin binary operator with a bad first conversion.
9055    assert(ConvCount <= 3);
9056    for (; ConvIdx != ConvCount; ++ConvIdx)
9057      Cand->Conversions[ConvIdx]
9058        = TryCopyInitialization(S, Args[ConvIdx],
9059                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
9060                                SuppressUserConversions,
9061                                /*InOverloadResolution*/ true,
9062                                /*AllowObjCWritebackConversion=*/
9063                                  S.getLangOpts().ObjCAutoRefCount);
9064    return;
9065  }
9066
9067  // Fill in the rest of the conversions.
9068  unsigned NumArgsInProto = Proto->getNumArgs();
9069  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9070    if (ArgIdx < NumArgsInProto) {
9071      Cand->Conversions[ConvIdx]
9072        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
9073                                SuppressUserConversions,
9074                                /*InOverloadResolution=*/true,
9075                                /*AllowObjCWritebackConversion=*/
9076                                  S.getLangOpts().ObjCAutoRefCount);
9077      // Store the FixIt in the candidate if it exists.
9078      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9079        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9080    }
9081    else
9082      Cand->Conversions[ConvIdx].setEllipsis();
9083  }
9084}
9085
9086} // end anonymous namespace
9087
9088/// PrintOverloadCandidates - When overload resolution fails, prints
9089/// diagnostic messages containing the candidates in the candidate
9090/// set.
9091void OverloadCandidateSet::NoteCandidates(Sema &S,
9092                                          OverloadCandidateDisplayKind OCD,
9093                                          ArrayRef<Expr *> Args,
9094                                          StringRef Opc,
9095                                          SourceLocation OpLoc) {
9096  // Sort the candidates by viability and position.  Sorting directly would
9097  // be prohibitive, so we make a set of pointers and sort those.
9098  SmallVector<OverloadCandidate*, 32> Cands;
9099  if (OCD == OCD_AllCandidates) Cands.reserve(size());
9100  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9101    if (Cand->Viable)
9102      Cands.push_back(Cand);
9103    else if (OCD == OCD_AllCandidates) {
9104      CompleteNonViableCandidate(S, Cand, Args);
9105      if (Cand->Function || Cand->IsSurrogate)
9106        Cands.push_back(Cand);
9107      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
9108      // want to list every possible builtin candidate.
9109    }
9110  }
9111
9112  std::sort(Cands.begin(), Cands.end(),
9113            CompareOverloadCandidatesForDisplay(S));
9114
9115  bool ReportedAmbiguousConversions = false;
9116
9117  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9118  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9119  unsigned CandsShown = 0;
9120  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9121    OverloadCandidate *Cand = *I;
9122
9123    // Set an arbitrary limit on the number of candidate functions we'll spam
9124    // the user with.  FIXME: This limit should depend on details of the
9125    // candidate list.
9126    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9127      break;
9128    }
9129    ++CandsShown;
9130
9131    if (Cand->Function)
9132      NoteFunctionCandidate(S, Cand, Args.size());
9133    else if (Cand->IsSurrogate)
9134      NoteSurrogateCandidate(S, Cand);
9135    else {
9136      assert(Cand->Viable &&
9137             "Non-viable built-in candidates are not added to Cands.");
9138      // Generally we only see ambiguities including viable builtin
9139      // operators if overload resolution got screwed up by an
9140      // ambiguous user-defined conversion.
9141      //
9142      // FIXME: It's quite possible for different conversions to see
9143      // different ambiguities, though.
9144      if (!ReportedAmbiguousConversions) {
9145        NoteAmbiguousUserConversions(S, OpLoc, Cand);
9146        ReportedAmbiguousConversions = true;
9147      }
9148
9149      // If this is a viable builtin, print it.
9150      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9151    }
9152  }
9153
9154  if (I != E)
9155    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9156}
9157
9158static SourceLocation
9159GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
9160  return Cand->Specialization ? Cand->Specialization->getLocation()
9161                              : SourceLocation();
9162}
9163
9164struct CompareTemplateSpecCandidatesForDisplay {
9165  Sema &S;
9166  CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
9167
9168  bool operator()(const TemplateSpecCandidate *L,
9169                  const TemplateSpecCandidate *R) {
9170    // Fast-path this check.
9171    if (L == R)
9172      return false;
9173
9174    // Assuming that both candidates are not matches...
9175
9176    // Sort by the ranking of deduction failures.
9177    if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9178      return RankDeductionFailure(L->DeductionFailure) <
9179             RankDeductionFailure(R->DeductionFailure);
9180
9181    // Sort everything else by location.
9182    SourceLocation LLoc = GetLocationForCandidate(L);
9183    SourceLocation RLoc = GetLocationForCandidate(R);
9184
9185    // Put candidates without locations (e.g. builtins) at the end.
9186    if (LLoc.isInvalid())
9187      return false;
9188    if (RLoc.isInvalid())
9189      return true;
9190
9191    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9192  }
9193};
9194
9195/// Diagnose a template argument deduction failure.
9196/// We are treating these failures as overload failures due to bad
9197/// deductions.
9198void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
9199  DiagnoseBadDeduction(S, Specialization, // pattern
9200                       DeductionFailure, /*NumArgs=*/0);
9201}
9202
9203void TemplateSpecCandidateSet::destroyCandidates() {
9204  for (iterator i = begin(), e = end(); i != e; ++i) {
9205    i->DeductionFailure.Destroy();
9206  }
9207}
9208
9209void TemplateSpecCandidateSet::clear() {
9210  destroyCandidates();
9211  Candidates.clear();
9212}
9213
9214/// NoteCandidates - When no template specialization match is found, prints
9215/// diagnostic messages containing the non-matching specializations that form
9216/// the candidate set.
9217/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
9218/// OCD == OCD_AllCandidates and Cand->Viable == false.
9219void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
9220  // Sort the candidates by position (assuming no candidate is a match).
9221  // Sorting directly would be prohibitive, so we make a set of pointers
9222  // and sort those.
9223  SmallVector<TemplateSpecCandidate *, 32> Cands;
9224  Cands.reserve(size());
9225  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9226    if (Cand->Specialization)
9227      Cands.push_back(Cand);
9228    // Otherwise, this is a non matching builtin candidate.  We do not,
9229    // in general, want to list every possible builtin candidate.
9230  }
9231
9232  std::sort(Cands.begin(), Cands.end(),
9233            CompareTemplateSpecCandidatesForDisplay(S));
9234
9235  // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
9236  // for generalization purposes (?).
9237  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9238
9239  SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
9240  unsigned CandsShown = 0;
9241  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9242    TemplateSpecCandidate *Cand = *I;
9243
9244    // Set an arbitrary limit on the number of candidates we'll spam
9245    // the user with.  FIXME: This limit should depend on details of the
9246    // candidate list.
9247    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9248      break;
9249    ++CandsShown;
9250
9251    assert(Cand->Specialization &&
9252           "Non-matching built-in candidates are not added to Cands.");
9253    Cand->NoteDeductionFailure(S);
9254  }
9255
9256  if (I != E)
9257    S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
9258}
9259
9260// [PossiblyAFunctionType]  -->   [Return]
9261// NonFunctionType --> NonFunctionType
9262// R (A) --> R(A)
9263// R (*)(A) --> R (A)
9264// R (&)(A) --> R (A)
9265// R (S::*)(A) --> R (A)
9266QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
9267  QualType Ret = PossiblyAFunctionType;
9268  if (const PointerType *ToTypePtr =
9269    PossiblyAFunctionType->getAs<PointerType>())
9270    Ret = ToTypePtr->getPointeeType();
9271  else if (const ReferenceType *ToTypeRef =
9272    PossiblyAFunctionType->getAs<ReferenceType>())
9273    Ret = ToTypeRef->getPointeeType();
9274  else if (const MemberPointerType *MemTypePtr =
9275    PossiblyAFunctionType->getAs<MemberPointerType>())
9276    Ret = MemTypePtr->getPointeeType();
9277  Ret =
9278    Context.getCanonicalType(Ret).getUnqualifiedType();
9279  return Ret;
9280}
9281
9282// A helper class to help with address of function resolution
9283// - allows us to avoid passing around all those ugly parameters
9284class AddressOfFunctionResolver
9285{
9286  Sema& S;
9287  Expr* SourceExpr;
9288  const QualType& TargetType;
9289  QualType TargetFunctionType; // Extracted function type from target type
9290
9291  bool Complain;
9292  //DeclAccessPair& ResultFunctionAccessPair;
9293  ASTContext& Context;
9294
9295  bool TargetTypeIsNonStaticMemberFunction;
9296  bool FoundNonTemplateFunction;
9297  bool StaticMemberFunctionFromBoundPointer;
9298
9299  OverloadExpr::FindResult OvlExprInfo;
9300  OverloadExpr *OvlExpr;
9301  TemplateArgumentListInfo OvlExplicitTemplateArgs;
9302  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
9303  TemplateSpecCandidateSet FailedCandidates;
9304
9305public:
9306  AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
9307                            const QualType &TargetType, bool Complain)
9308      : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
9309        Complain(Complain), Context(S.getASTContext()),
9310        TargetTypeIsNonStaticMemberFunction(
9311            !!TargetType->getAs<MemberPointerType>()),
9312        FoundNonTemplateFunction(false),
9313        StaticMemberFunctionFromBoundPointer(false),
9314        OvlExprInfo(OverloadExpr::find(SourceExpr)),
9315        OvlExpr(OvlExprInfo.Expression),
9316        FailedCandidates(OvlExpr->getNameLoc()) {
9317    ExtractUnqualifiedFunctionTypeFromTargetType();
9318
9319    if (TargetFunctionType->isFunctionType()) {
9320      if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
9321        if (!UME->isImplicitAccess() &&
9322            !S.ResolveSingleFunctionTemplateSpecialization(UME))
9323          StaticMemberFunctionFromBoundPointer = true;
9324    } else if (OvlExpr->hasExplicitTemplateArgs()) {
9325      DeclAccessPair dap;
9326      if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
9327              OvlExpr, false, &dap)) {
9328        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
9329          if (!Method->isStatic()) {
9330            // If the target type is a non-function type and the function found
9331            // is a non-static member function, pretend as if that was the
9332            // target, it's the only possible type to end up with.
9333            TargetTypeIsNonStaticMemberFunction = true;
9334
9335            // And skip adding the function if its not in the proper form.
9336            // We'll diagnose this due to an empty set of functions.
9337            if (!OvlExprInfo.HasFormOfMemberPointer)
9338              return;
9339          }
9340
9341        Matches.push_back(std::make_pair(dap, Fn));
9342      }
9343      return;
9344    }
9345
9346    if (OvlExpr->hasExplicitTemplateArgs())
9347      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
9348
9349    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
9350      // C++ [over.over]p4:
9351      //   If more than one function is selected, [...]
9352      if (Matches.size() > 1) {
9353        if (FoundNonTemplateFunction)
9354          EliminateAllTemplateMatches();
9355        else
9356          EliminateAllExceptMostSpecializedTemplate();
9357      }
9358    }
9359  }
9360
9361private:
9362  bool isTargetTypeAFunction() const {
9363    return TargetFunctionType->isFunctionType();
9364  }
9365
9366  // [ToType]     [Return]
9367
9368  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
9369  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
9370  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
9371  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
9372    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
9373  }
9374
9375  // return true if any matching specializations were found
9376  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
9377                                   const DeclAccessPair& CurAccessFunPair) {
9378    if (CXXMethodDecl *Method
9379              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
9380      // Skip non-static function templates when converting to pointer, and
9381      // static when converting to member pointer.
9382      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9383        return false;
9384    }
9385    else if (TargetTypeIsNonStaticMemberFunction)
9386      return false;
9387
9388    // C++ [over.over]p2:
9389    //   If the name is a function template, template argument deduction is
9390    //   done (14.8.2.2), and if the argument deduction succeeds, the
9391    //   resulting template argument list is used to generate a single
9392    //   function template specialization, which is added to the set of
9393    //   overloaded functions considered.
9394    FunctionDecl *Specialization = 0;
9395    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9396    if (Sema::TemplateDeductionResult Result
9397          = S.DeduceTemplateArguments(FunctionTemplate,
9398                                      &OvlExplicitTemplateArgs,
9399                                      TargetFunctionType, Specialization,
9400                                      Info, /*InOverloadResolution=*/true)) {
9401      // Make a note of the failed deduction for diagnostics.
9402      FailedCandidates.addCandidate()
9403          .set(FunctionTemplate->getTemplatedDecl(),
9404               MakeDeductionFailureInfo(Context, Result, Info));
9405      return false;
9406    }
9407
9408    // Template argument deduction ensures that we have an exact match or
9409    // compatible pointer-to-function arguments that would be adjusted by ICS.
9410    // This function template specicalization works.
9411    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9412    assert(S.isSameOrCompatibleFunctionType(
9413              Context.getCanonicalType(Specialization->getType()),
9414              Context.getCanonicalType(TargetFunctionType)));
9415    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9416    return true;
9417  }
9418
9419  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9420                                      const DeclAccessPair& CurAccessFunPair) {
9421    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9422      // Skip non-static functions when converting to pointer, and static
9423      // when converting to member pointer.
9424      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9425        return false;
9426    }
9427    else if (TargetTypeIsNonStaticMemberFunction)
9428      return false;
9429
9430    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9431      if (S.getLangOpts().CUDA)
9432        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9433          if (S.CheckCUDATarget(Caller, FunDecl))
9434            return false;
9435
9436      // If any candidate has a placeholder return type, trigger its deduction
9437      // now.
9438      if (S.getLangOpts().CPlusPlus1y &&
9439          FunDecl->getResultType()->isUndeducedType() &&
9440          S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
9441        return false;
9442
9443      QualType ResultTy;
9444      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9445                                         FunDecl->getType()) ||
9446          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9447                                 ResultTy)) {
9448        Matches.push_back(std::make_pair(CurAccessFunPair,
9449          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9450        FoundNonTemplateFunction = true;
9451        return true;
9452      }
9453    }
9454
9455    return false;
9456  }
9457
9458  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9459    bool Ret = false;
9460
9461    // If the overload expression doesn't have the form of a pointer to
9462    // member, don't try to convert it to a pointer-to-member type.
9463    if (IsInvalidFormOfPointerToMemberFunction())
9464      return false;
9465
9466    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9467                               E = OvlExpr->decls_end();
9468         I != E; ++I) {
9469      // Look through any using declarations to find the underlying function.
9470      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9471
9472      // C++ [over.over]p3:
9473      //   Non-member functions and static member functions match
9474      //   targets of type "pointer-to-function" or "reference-to-function."
9475      //   Nonstatic member functions match targets of
9476      //   type "pointer-to-member-function."
9477      // Note that according to DR 247, the containing class does not matter.
9478      if (FunctionTemplateDecl *FunctionTemplate
9479                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9480        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9481          Ret = true;
9482      }
9483      // If we have explicit template arguments supplied, skip non-templates.
9484      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9485               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9486        Ret = true;
9487    }
9488    assert(Ret || Matches.empty());
9489    return Ret;
9490  }
9491
9492  void EliminateAllExceptMostSpecializedTemplate() {
9493    //   [...] and any given function template specialization F1 is
9494    //   eliminated if the set contains a second function template
9495    //   specialization whose function template is more specialized
9496    //   than the function template of F1 according to the partial
9497    //   ordering rules of 14.5.5.2.
9498
9499    // The algorithm specified above is quadratic. We instead use a
9500    // two-pass algorithm (similar to the one used to identify the
9501    // best viable function in an overload set) that identifies the
9502    // best function template (if it exists).
9503
9504    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9505    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9506      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9507
9508    // TODO: It looks like FailedCandidates does not serve much purpose
9509    // here, since the no_viable diagnostic has index 0.
9510    UnresolvedSetIterator Result = S.getMostSpecialized(
9511        MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
9512        SourceExpr->getLocStart(), S.PDiag(),
9513        S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
9514                                                     .second->getDeclName(),
9515        S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
9516        Complain, TargetFunctionType);
9517
9518    if (Result != MatchesCopy.end()) {
9519      // Make it the first and only element
9520      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9521      Matches[0].second = cast<FunctionDecl>(*Result);
9522      Matches.resize(1);
9523    }
9524  }
9525
9526  void EliminateAllTemplateMatches() {
9527    //   [...] any function template specializations in the set are
9528    //   eliminated if the set also contains a non-template function, [...]
9529    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9530      if (Matches[I].second->getPrimaryTemplate() == 0)
9531        ++I;
9532      else {
9533        Matches[I] = Matches[--N];
9534        Matches.set_size(N);
9535      }
9536    }
9537  }
9538
9539public:
9540  void ComplainNoMatchesFound() const {
9541    assert(Matches.empty());
9542    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9543        << OvlExpr->getName() << TargetFunctionType
9544        << OvlExpr->getSourceRange();
9545    if (FailedCandidates.empty())
9546      S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9547    else {
9548      // We have some deduction failure messages. Use them to diagnose
9549      // the function templates, and diagnose the non-template candidates
9550      // normally.
9551      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9552                                 IEnd = OvlExpr->decls_end();
9553           I != IEnd; ++I)
9554        if (FunctionDecl *Fun =
9555                dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
9556          S.NoteOverloadCandidate(Fun, TargetFunctionType);
9557      FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
9558    }
9559  }
9560
9561  bool IsInvalidFormOfPointerToMemberFunction() const {
9562    return TargetTypeIsNonStaticMemberFunction &&
9563      !OvlExprInfo.HasFormOfMemberPointer;
9564  }
9565
9566  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9567      // TODO: Should we condition this on whether any functions might
9568      // have matched, or is it more appropriate to do that in callers?
9569      // TODO: a fixit wouldn't hurt.
9570      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9571        << TargetType << OvlExpr->getSourceRange();
9572  }
9573
9574  bool IsStaticMemberFunctionFromBoundPointer() const {
9575    return StaticMemberFunctionFromBoundPointer;
9576  }
9577
9578  void ComplainIsStaticMemberFunctionFromBoundPointer() const {
9579    S.Diag(OvlExpr->getLocStart(),
9580           diag::err_invalid_form_pointer_member_function)
9581      << OvlExpr->getSourceRange();
9582  }
9583
9584  void ComplainOfInvalidConversion() const {
9585    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9586      << OvlExpr->getName() << TargetType;
9587  }
9588
9589  void ComplainMultipleMatchesFound() const {
9590    assert(Matches.size() > 1);
9591    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9592      << OvlExpr->getName()
9593      << OvlExpr->getSourceRange();
9594    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9595  }
9596
9597  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9598
9599  int getNumMatches() const { return Matches.size(); }
9600
9601  FunctionDecl* getMatchingFunctionDecl() const {
9602    if (Matches.size() != 1) return 0;
9603    return Matches[0].second;
9604  }
9605
9606  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9607    if (Matches.size() != 1) return 0;
9608    return &Matches[0].first;
9609  }
9610};
9611
9612/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9613/// an overloaded function (C++ [over.over]), where @p From is an
9614/// expression with overloaded function type and @p ToType is the type
9615/// we're trying to resolve to. For example:
9616///
9617/// @code
9618/// int f(double);
9619/// int f(int);
9620///
9621/// int (*pfd)(double) = f; // selects f(double)
9622/// @endcode
9623///
9624/// This routine returns the resulting FunctionDecl if it could be
9625/// resolved, and NULL otherwise. When @p Complain is true, this
9626/// routine will emit diagnostics if there is an error.
9627FunctionDecl *
9628Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9629                                         QualType TargetType,
9630                                         bool Complain,
9631                                         DeclAccessPair &FoundResult,
9632                                         bool *pHadMultipleCandidates) {
9633  assert(AddressOfExpr->getType() == Context.OverloadTy);
9634
9635  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9636                                     Complain);
9637  int NumMatches = Resolver.getNumMatches();
9638  FunctionDecl* Fn = 0;
9639  if (NumMatches == 0 && Complain) {
9640    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9641      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9642    else
9643      Resolver.ComplainNoMatchesFound();
9644  }
9645  else if (NumMatches > 1 && Complain)
9646    Resolver.ComplainMultipleMatchesFound();
9647  else if (NumMatches == 1) {
9648    Fn = Resolver.getMatchingFunctionDecl();
9649    assert(Fn);
9650    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9651    if (Complain) {
9652      if (Resolver.IsStaticMemberFunctionFromBoundPointer())
9653        Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
9654      else
9655        CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9656    }
9657  }
9658
9659  if (pHadMultipleCandidates)
9660    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9661  return Fn;
9662}
9663
9664/// \brief Given an expression that refers to an overloaded function, try to
9665/// resolve that overloaded function expression down to a single function.
9666///
9667/// This routine can only resolve template-ids that refer to a single function
9668/// template, where that template-id refers to a single template whose template
9669/// arguments are either provided by the template-id or have defaults,
9670/// as described in C++0x [temp.arg.explicit]p3.
9671FunctionDecl *
9672Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9673                                                  bool Complain,
9674                                                  DeclAccessPair *FoundResult) {
9675  // C++ [over.over]p1:
9676  //   [...] [Note: any redundant set of parentheses surrounding the
9677  //   overloaded function name is ignored (5.1). ]
9678  // C++ [over.over]p1:
9679  //   [...] The overloaded function name can be preceded by the &
9680  //   operator.
9681
9682  // If we didn't actually find any template-ids, we're done.
9683  if (!ovl->hasExplicitTemplateArgs())
9684    return 0;
9685
9686  TemplateArgumentListInfo ExplicitTemplateArgs;
9687  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9688  TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
9689
9690  // Look through all of the overloaded functions, searching for one
9691  // whose type matches exactly.
9692  FunctionDecl *Matched = 0;
9693  for (UnresolvedSetIterator I = ovl->decls_begin(),
9694         E = ovl->decls_end(); I != E; ++I) {
9695    // C++0x [temp.arg.explicit]p3:
9696    //   [...] In contexts where deduction is done and fails, or in contexts
9697    //   where deduction is not done, if a template argument list is
9698    //   specified and it, along with any default template arguments,
9699    //   identifies a single function template specialization, then the
9700    //   template-id is an lvalue for the function template specialization.
9701    FunctionTemplateDecl *FunctionTemplate
9702      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9703
9704    // C++ [over.over]p2:
9705    //   If the name is a function template, template argument deduction is
9706    //   done (14.8.2.2), and if the argument deduction succeeds, the
9707    //   resulting template argument list is used to generate a single
9708    //   function template specialization, which is added to the set of
9709    //   overloaded functions considered.
9710    FunctionDecl *Specialization = 0;
9711    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9712    if (TemplateDeductionResult Result
9713          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9714                                    Specialization, Info,
9715                                    /*InOverloadResolution=*/true)) {
9716      // Make a note of the failed deduction for diagnostics.
9717      // TODO: Actually use the failed-deduction info?
9718      FailedCandidates.addCandidate()
9719          .set(FunctionTemplate->getTemplatedDecl(),
9720               MakeDeductionFailureInfo(Context, Result, Info));
9721      continue;
9722    }
9723
9724    assert(Specialization && "no specialization and no error?");
9725
9726    // Multiple matches; we can't resolve to a single declaration.
9727    if (Matched) {
9728      if (Complain) {
9729        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9730          << ovl->getName();
9731        NoteAllOverloadCandidates(ovl);
9732      }
9733      return 0;
9734    }
9735
9736    Matched = Specialization;
9737    if (FoundResult) *FoundResult = I.getPair();
9738  }
9739
9740  if (Matched && getLangOpts().CPlusPlus1y &&
9741      Matched->getResultType()->isUndeducedType() &&
9742      DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
9743    return 0;
9744
9745  return Matched;
9746}
9747
9748
9749
9750
9751// Resolve and fix an overloaded expression that can be resolved
9752// because it identifies a single function template specialization.
9753//
9754// Last three arguments should only be supplied if Complain = true
9755//
9756// Return true if it was logically possible to so resolve the
9757// expression, regardless of whether or not it succeeded.  Always
9758// returns true if 'complain' is set.
9759bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9760                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9761                   bool complain, const SourceRange& OpRangeForComplaining,
9762                                           QualType DestTypeForComplaining,
9763                                            unsigned DiagIDForComplaining) {
9764  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9765
9766  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9767
9768  DeclAccessPair found;
9769  ExprResult SingleFunctionExpression;
9770  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9771                           ovl.Expression, /*complain*/ false, &found)) {
9772    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9773      SrcExpr = ExprError();
9774      return true;
9775    }
9776
9777    // It is only correct to resolve to an instance method if we're
9778    // resolving a form that's permitted to be a pointer to member.
9779    // Otherwise we'll end up making a bound member expression, which
9780    // is illegal in all the contexts we resolve like this.
9781    if (!ovl.HasFormOfMemberPointer &&
9782        isa<CXXMethodDecl>(fn) &&
9783        cast<CXXMethodDecl>(fn)->isInstance()) {
9784      if (!complain) return false;
9785
9786      Diag(ovl.Expression->getExprLoc(),
9787           diag::err_bound_member_function)
9788        << 0 << ovl.Expression->getSourceRange();
9789
9790      // TODO: I believe we only end up here if there's a mix of
9791      // static and non-static candidates (otherwise the expression
9792      // would have 'bound member' type, not 'overload' type).
9793      // Ideally we would note which candidate was chosen and why
9794      // the static candidates were rejected.
9795      SrcExpr = ExprError();
9796      return true;
9797    }
9798
9799    // Fix the expression to refer to 'fn'.
9800    SingleFunctionExpression =
9801      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9802
9803    // If desired, do function-to-pointer decay.
9804    if (doFunctionPointerConverion) {
9805      SingleFunctionExpression =
9806        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9807      if (SingleFunctionExpression.isInvalid()) {
9808        SrcExpr = ExprError();
9809        return true;
9810      }
9811    }
9812  }
9813
9814  if (!SingleFunctionExpression.isUsable()) {
9815    if (complain) {
9816      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9817        << ovl.Expression->getName()
9818        << DestTypeForComplaining
9819        << OpRangeForComplaining
9820        << ovl.Expression->getQualifierLoc().getSourceRange();
9821      NoteAllOverloadCandidates(SrcExpr.get());
9822
9823      SrcExpr = ExprError();
9824      return true;
9825    }
9826
9827    return false;
9828  }
9829
9830  SrcExpr = SingleFunctionExpression;
9831  return true;
9832}
9833
9834/// \brief Add a single candidate to the overload set.
9835static void AddOverloadedCallCandidate(Sema &S,
9836                                       DeclAccessPair FoundDecl,
9837                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9838                                       ArrayRef<Expr *> Args,
9839                                       OverloadCandidateSet &CandidateSet,
9840                                       bool PartialOverloading,
9841                                       bool KnownValid) {
9842  NamedDecl *Callee = FoundDecl.getDecl();
9843  if (isa<UsingShadowDecl>(Callee))
9844    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9845
9846  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9847    if (ExplicitTemplateArgs) {
9848      assert(!KnownValid && "Explicit template arguments?");
9849      return;
9850    }
9851    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9852                           PartialOverloading);
9853    return;
9854  }
9855
9856  if (FunctionTemplateDecl *FuncTemplate
9857      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9858    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9859                                   ExplicitTemplateArgs, Args, CandidateSet);
9860    return;
9861  }
9862
9863  assert(!KnownValid && "unhandled case in overloaded call candidate");
9864}
9865
9866/// \brief Add the overload candidates named by callee and/or found by argument
9867/// dependent lookup to the given overload set.
9868void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9869                                       ArrayRef<Expr *> Args,
9870                                       OverloadCandidateSet &CandidateSet,
9871                                       bool PartialOverloading) {
9872
9873#ifndef NDEBUG
9874  // Verify that ArgumentDependentLookup is consistent with the rules
9875  // in C++0x [basic.lookup.argdep]p3:
9876  //
9877  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9878  //   and let Y be the lookup set produced by argument dependent
9879  //   lookup (defined as follows). If X contains
9880  //
9881  //     -- a declaration of a class member, or
9882  //
9883  //     -- a block-scope function declaration that is not a
9884  //        using-declaration, or
9885  //
9886  //     -- a declaration that is neither a function or a function
9887  //        template
9888  //
9889  //   then Y is empty.
9890
9891  if (ULE->requiresADL()) {
9892    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9893           E = ULE->decls_end(); I != E; ++I) {
9894      assert(!(*I)->getDeclContext()->isRecord());
9895      assert(isa<UsingShadowDecl>(*I) ||
9896             !(*I)->getDeclContext()->isFunctionOrMethod());
9897      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9898    }
9899  }
9900#endif
9901
9902  // It would be nice to avoid this copy.
9903  TemplateArgumentListInfo TABuffer;
9904  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9905  if (ULE->hasExplicitTemplateArgs()) {
9906    ULE->copyTemplateArgumentsInto(TABuffer);
9907    ExplicitTemplateArgs = &TABuffer;
9908  }
9909
9910  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9911         E = ULE->decls_end(); I != E; ++I)
9912    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9913                               CandidateSet, PartialOverloading,
9914                               /*KnownValid*/ true);
9915
9916  if (ULE->requiresADL())
9917    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9918                                         ULE->getExprLoc(),
9919                                         Args, ExplicitTemplateArgs,
9920                                         CandidateSet, PartialOverloading);
9921}
9922
9923/// Determine whether a declaration with the specified name could be moved into
9924/// a different namespace.
9925static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
9926  switch (Name.getCXXOverloadedOperator()) {
9927  case OO_New: case OO_Array_New:
9928  case OO_Delete: case OO_Array_Delete:
9929    return false;
9930
9931  default:
9932    return true;
9933  }
9934}
9935
9936/// Attempt to recover from an ill-formed use of a non-dependent name in a
9937/// template, where the non-dependent name was declared after the template
9938/// was defined. This is common in code written for a compilers which do not
9939/// correctly implement two-stage name lookup.
9940///
9941/// Returns true if a viable candidate was found and a diagnostic was issued.
9942static bool
9943DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9944                       const CXXScopeSpec &SS, LookupResult &R,
9945                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9946                       ArrayRef<Expr *> Args) {
9947  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9948    return false;
9949
9950  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9951    if (DC->isTransparentContext())
9952      continue;
9953
9954    SemaRef.LookupQualifiedName(R, DC);
9955
9956    if (!R.empty()) {
9957      R.suppressDiagnostics();
9958
9959      if (isa<CXXRecordDecl>(DC)) {
9960        // Don't diagnose names we find in classes; we get much better
9961        // diagnostics for these from DiagnoseEmptyLookup.
9962        R.clear();
9963        return false;
9964      }
9965
9966      OverloadCandidateSet Candidates(FnLoc);
9967      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9968        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9969                                   ExplicitTemplateArgs, Args,
9970                                   Candidates, false, /*KnownValid*/ false);
9971
9972      OverloadCandidateSet::iterator Best;
9973      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9974        // No viable functions. Don't bother the user with notes for functions
9975        // which don't work and shouldn't be found anyway.
9976        R.clear();
9977        return false;
9978      }
9979
9980      // Find the namespaces where ADL would have looked, and suggest
9981      // declaring the function there instead.
9982      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9983      Sema::AssociatedClassSet AssociatedClasses;
9984      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
9985                                                 AssociatedNamespaces,
9986                                                 AssociatedClasses);
9987      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9988      if (canBeDeclaredInNamespace(R.getLookupName())) {
9989        DeclContext *Std = SemaRef.getStdNamespace();
9990        for (Sema::AssociatedNamespaceSet::iterator
9991               it = AssociatedNamespaces.begin(),
9992               end = AssociatedNamespaces.end(); it != end; ++it) {
9993          // Never suggest declaring a function within namespace 'std'.
9994          if (Std && Std->Encloses(*it))
9995            continue;
9996
9997          // Never suggest declaring a function within a namespace with a
9998          // reserved name, like __gnu_cxx.
9999          NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
10000          if (NS &&
10001              NS->getQualifiedNameAsString().find("__") != std::string::npos)
10002            continue;
10003
10004          SuggestedNamespaces.insert(*it);
10005        }
10006      }
10007
10008      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
10009        << R.getLookupName();
10010      if (SuggestedNamespaces.empty()) {
10011        SemaRef.Diag(Best->Function->getLocation(),
10012                     diag::note_not_found_by_two_phase_lookup)
10013          << R.getLookupName() << 0;
10014      } else if (SuggestedNamespaces.size() == 1) {
10015        SemaRef.Diag(Best->Function->getLocation(),
10016                     diag::note_not_found_by_two_phase_lookup)
10017          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
10018      } else {
10019        // FIXME: It would be useful to list the associated namespaces here,
10020        // but the diagnostics infrastructure doesn't provide a way to produce
10021        // a localized representation of a list of items.
10022        SemaRef.Diag(Best->Function->getLocation(),
10023                     diag::note_not_found_by_two_phase_lookup)
10024          << R.getLookupName() << 2;
10025      }
10026
10027      // Try to recover by calling this function.
10028      return true;
10029    }
10030
10031    R.clear();
10032  }
10033
10034  return false;
10035}
10036
10037/// Attempt to recover from ill-formed use of a non-dependent operator in a
10038/// template, where the non-dependent operator was declared after the template
10039/// was defined.
10040///
10041/// Returns true if a viable candidate was found and a diagnostic was issued.
10042static bool
10043DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
10044                               SourceLocation OpLoc,
10045                               ArrayRef<Expr *> Args) {
10046  DeclarationName OpName =
10047    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
10048  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
10049  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
10050                                /*ExplicitTemplateArgs=*/0, Args);
10051}
10052
10053namespace {
10054class BuildRecoveryCallExprRAII {
10055  Sema &SemaRef;
10056public:
10057  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
10058    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
10059    SemaRef.IsBuildingRecoveryCallExpr = true;
10060  }
10061
10062  ~BuildRecoveryCallExprRAII() {
10063    SemaRef.IsBuildingRecoveryCallExpr = false;
10064  }
10065};
10066
10067}
10068
10069/// Attempts to recover from a call where no functions were found.
10070///
10071/// Returns true if new candidates were found.
10072static ExprResult
10073BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10074                      UnresolvedLookupExpr *ULE,
10075                      SourceLocation LParenLoc,
10076                      llvm::MutableArrayRef<Expr *> Args,
10077                      SourceLocation RParenLoc,
10078                      bool EmptyLookup, bool AllowTypoCorrection) {
10079  // Do not try to recover if it is already building a recovery call.
10080  // This stops infinite loops for template instantiations like
10081  //
10082  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
10083  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
10084  //
10085  if (SemaRef.IsBuildingRecoveryCallExpr)
10086    return ExprError();
10087  BuildRecoveryCallExprRAII RCE(SemaRef);
10088
10089  CXXScopeSpec SS;
10090  SS.Adopt(ULE->getQualifierLoc());
10091  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
10092
10093  TemplateArgumentListInfo TABuffer;
10094  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
10095  if (ULE->hasExplicitTemplateArgs()) {
10096    ULE->copyTemplateArgumentsInto(TABuffer);
10097    ExplicitTemplateArgs = &TABuffer;
10098  }
10099
10100  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
10101                 Sema::LookupOrdinaryName);
10102  FunctionCallFilterCCC Validator(SemaRef, Args.size(),
10103                                  ExplicitTemplateArgs != 0);
10104  NoTypoCorrectionCCC RejectAll;
10105  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
10106      (CorrectionCandidateCallback*)&Validator :
10107      (CorrectionCandidateCallback*)&RejectAll;
10108  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
10109                              ExplicitTemplateArgs, Args) &&
10110      (!EmptyLookup ||
10111       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
10112                                   ExplicitTemplateArgs, Args)))
10113    return ExprError();
10114
10115  assert(!R.empty() && "lookup results empty despite recovery");
10116
10117  // Build an implicit member call if appropriate.  Just drop the
10118  // casts and such from the call, we don't really care.
10119  ExprResult NewFn = ExprError();
10120  if ((*R.begin())->isCXXClassMember())
10121    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
10122                                                    R, ExplicitTemplateArgs);
10123  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
10124    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
10125                                        ExplicitTemplateArgs);
10126  else
10127    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
10128
10129  if (NewFn.isInvalid())
10130    return ExprError();
10131
10132  // This shouldn't cause an infinite loop because we're giving it
10133  // an expression with viable lookup results, which should never
10134  // end up here.
10135  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
10136                               MultiExprArg(Args.data(), Args.size()),
10137                               RParenLoc);
10138}
10139
10140/// \brief Constructs and populates an OverloadedCandidateSet from
10141/// the given function.
10142/// \returns true when an the ExprResult output parameter has been set.
10143bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
10144                                  UnresolvedLookupExpr *ULE,
10145                                  MultiExprArg Args,
10146                                  SourceLocation RParenLoc,
10147                                  OverloadCandidateSet *CandidateSet,
10148                                  ExprResult *Result) {
10149#ifndef NDEBUG
10150  if (ULE->requiresADL()) {
10151    // To do ADL, we must have found an unqualified name.
10152    assert(!ULE->getQualifier() && "qualified name with ADL");
10153
10154    // We don't perform ADL for implicit declarations of builtins.
10155    // Verify that this was correctly set up.
10156    FunctionDecl *F;
10157    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
10158        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
10159        F->getBuiltinID() && F->isImplicit())
10160      llvm_unreachable("performing ADL for builtin");
10161
10162    // We don't perform ADL in C.
10163    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
10164  }
10165#endif
10166
10167  UnbridgedCastsSet UnbridgedCasts;
10168  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
10169    *Result = ExprError();
10170    return true;
10171  }
10172
10173  // Add the functions denoted by the callee to the set of candidate
10174  // functions, including those from argument-dependent lookup.
10175  AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
10176
10177  // If we found nothing, try to recover.
10178  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
10179  // out if it fails.
10180  if (CandidateSet->empty()) {
10181    // In Microsoft mode, if we are inside a template class member function then
10182    // create a type dependent CallExpr. The goal is to postpone name lookup
10183    // to instantiation time to be able to search into type dependent base
10184    // classes.
10185    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
10186        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
10187      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
10188                                            Context.DependentTy, VK_RValue,
10189                                            RParenLoc);
10190      CE->setTypeDependent(true);
10191      *Result = Owned(CE);
10192      return true;
10193    }
10194    return false;
10195  }
10196
10197  UnbridgedCasts.restore();
10198  return false;
10199}
10200
10201/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
10202/// the completed call expression. If overload resolution fails, emits
10203/// diagnostics and returns ExprError()
10204static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10205                                           UnresolvedLookupExpr *ULE,
10206                                           SourceLocation LParenLoc,
10207                                           MultiExprArg Args,
10208                                           SourceLocation RParenLoc,
10209                                           Expr *ExecConfig,
10210                                           OverloadCandidateSet *CandidateSet,
10211                                           OverloadCandidateSet::iterator *Best,
10212                                           OverloadingResult OverloadResult,
10213                                           bool AllowTypoCorrection) {
10214  if (CandidateSet->empty())
10215    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
10216                                 RParenLoc, /*EmptyLookup=*/true,
10217                                 AllowTypoCorrection);
10218
10219  switch (OverloadResult) {
10220  case OR_Success: {
10221    FunctionDecl *FDecl = (*Best)->Function;
10222    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
10223    if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
10224      return ExprError();
10225    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10226    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10227                                         ExecConfig);
10228  }
10229
10230  case OR_No_Viable_Function: {
10231    // Try to recover by looking for viable functions which the user might
10232    // have meant to call.
10233    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
10234                                                Args, RParenLoc,
10235                                                /*EmptyLookup=*/false,
10236                                                AllowTypoCorrection);
10237    if (!Recovery.isInvalid())
10238      return Recovery;
10239
10240    SemaRef.Diag(Fn->getLocStart(),
10241         diag::err_ovl_no_viable_function_in_call)
10242      << ULE->getName() << Fn->getSourceRange();
10243    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10244    break;
10245  }
10246
10247  case OR_Ambiguous:
10248    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
10249      << ULE->getName() << Fn->getSourceRange();
10250    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
10251    break;
10252
10253  case OR_Deleted: {
10254    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
10255      << (*Best)->Function->isDeleted()
10256      << ULE->getName()
10257      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
10258      << Fn->getSourceRange();
10259    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10260
10261    // We emitted an error for the unvailable/deleted function call but keep
10262    // the call in the AST.
10263    FunctionDecl *FDecl = (*Best)->Function;
10264    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10265    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10266                                         ExecConfig);
10267  }
10268  }
10269
10270  // Overload resolution failed.
10271  return ExprError();
10272}
10273
10274/// BuildOverloadedCallExpr - Given the call expression that calls Fn
10275/// (which eventually refers to the declaration Func) and the call
10276/// arguments Args/NumArgs, attempt to resolve the function call down
10277/// to a specific function. If overload resolution succeeds, returns
10278/// the call expression produced by overload resolution.
10279/// Otherwise, emits diagnostics and returns ExprError.
10280ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
10281                                         UnresolvedLookupExpr *ULE,
10282                                         SourceLocation LParenLoc,
10283                                         MultiExprArg Args,
10284                                         SourceLocation RParenLoc,
10285                                         Expr *ExecConfig,
10286                                         bool AllowTypoCorrection) {
10287  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
10288  ExprResult result;
10289
10290  if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
10291                             &result))
10292    return result;
10293
10294  OverloadCandidateSet::iterator Best;
10295  OverloadingResult OverloadResult =
10296      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
10297
10298  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
10299                                  RParenLoc, ExecConfig, &CandidateSet,
10300                                  &Best, OverloadResult,
10301                                  AllowTypoCorrection);
10302}
10303
10304static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
10305  return Functions.size() > 1 ||
10306    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
10307}
10308
10309/// \brief Create a unary operation that may resolve to an overloaded
10310/// operator.
10311///
10312/// \param OpLoc The location of the operator itself (e.g., '*').
10313///
10314/// \param OpcIn The UnaryOperator::Opcode that describes this
10315/// operator.
10316///
10317/// \param Fns The set of non-member functions that will be
10318/// considered by overload resolution. The caller needs to build this
10319/// set based on the context using, e.g.,
10320/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10321/// set should not contain any member functions; those will be added
10322/// by CreateOverloadedUnaryOp().
10323///
10324/// \param Input The input argument.
10325ExprResult
10326Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
10327                              const UnresolvedSetImpl &Fns,
10328                              Expr *Input) {
10329  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
10330
10331  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
10332  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
10333  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10334  // TODO: provide better source location info.
10335  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10336
10337  if (checkPlaceholderForOverload(*this, Input))
10338    return ExprError();
10339
10340  Expr *Args[2] = { Input, 0 };
10341  unsigned NumArgs = 1;
10342
10343  // For post-increment and post-decrement, add the implicit '0' as
10344  // the second argument, so that we know this is a post-increment or
10345  // post-decrement.
10346  if (Opc == UO_PostInc || Opc == UO_PostDec) {
10347    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
10348    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
10349                                     SourceLocation());
10350    NumArgs = 2;
10351  }
10352
10353  ArrayRef<Expr *> ArgsArray(Args, NumArgs);
10354
10355  if (Input->isTypeDependent()) {
10356    if (Fns.empty())
10357      return Owned(new (Context) UnaryOperator(Input,
10358                                               Opc,
10359                                               Context.DependentTy,
10360                                               VK_RValue, OK_Ordinary,
10361                                               OpLoc));
10362
10363    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10364    UnresolvedLookupExpr *Fn
10365      = UnresolvedLookupExpr::Create(Context, NamingClass,
10366                                     NestedNameSpecifierLoc(), OpNameInfo,
10367                                     /*ADL*/ true, IsOverloaded(Fns),
10368                                     Fns.begin(), Fns.end());
10369    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, ArgsArray,
10370                                                   Context.DependentTy,
10371                                                   VK_RValue,
10372                                                   OpLoc, false));
10373  }
10374
10375  // Build an empty overload set.
10376  OverloadCandidateSet CandidateSet(OpLoc);
10377
10378  // Add the candidates from the given function set.
10379  AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
10380
10381  // Add operator candidates that are member functions.
10382  AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10383
10384  // Add candidates from ADL.
10385  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, OpLoc,
10386                                       ArgsArray, /*ExplicitTemplateArgs*/ 0,
10387                                       CandidateSet);
10388
10389  // Add builtin operator candidates.
10390  AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10391
10392  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10393
10394  // Perform overload resolution.
10395  OverloadCandidateSet::iterator Best;
10396  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10397  case OR_Success: {
10398    // We found a built-in operator or an overloaded operator.
10399    FunctionDecl *FnDecl = Best->Function;
10400
10401    if (FnDecl) {
10402      // We matched an overloaded operator. Build a call to that
10403      // operator.
10404
10405      // Convert the arguments.
10406      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10407        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
10408
10409        ExprResult InputRes =
10410          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
10411                                              Best->FoundDecl, Method);
10412        if (InputRes.isInvalid())
10413          return ExprError();
10414        Input = InputRes.take();
10415      } else {
10416        // Convert the arguments.
10417        ExprResult InputInit
10418          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10419                                                      Context,
10420                                                      FnDecl->getParamDecl(0)),
10421                                      SourceLocation(),
10422                                      Input);
10423        if (InputInit.isInvalid())
10424          return ExprError();
10425        Input = InputInit.take();
10426      }
10427
10428      // Determine the result type.
10429      QualType ResultTy = FnDecl->getResultType();
10430      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10431      ResultTy = ResultTy.getNonLValueExprType(Context);
10432
10433      // Build the actual expression node.
10434      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
10435                                                HadMultipleCandidates, OpLoc);
10436      if (FnExpr.isInvalid())
10437        return ExprError();
10438
10439      Args[0] = Input;
10440      CallExpr *TheCall =
10441        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), ArgsArray,
10442                                          ResultTy, VK, OpLoc, false);
10443
10444      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10445                              FnDecl))
10446        return ExprError();
10447
10448      return MaybeBindToTemporary(TheCall);
10449    } else {
10450      // We matched a built-in operator. Convert the arguments, then
10451      // break out so that we will build the appropriate built-in
10452      // operator node.
10453      ExprResult InputRes =
10454        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10455                                  Best->Conversions[0], AA_Passing);
10456      if (InputRes.isInvalid())
10457        return ExprError();
10458      Input = InputRes.take();
10459      break;
10460    }
10461  }
10462
10463  case OR_No_Viable_Function:
10464    // This is an erroneous use of an operator which can be overloaded by
10465    // a non-member function. Check for non-member operators which were
10466    // defined too late to be candidates.
10467    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
10468      // FIXME: Recover by calling the found function.
10469      return ExprError();
10470
10471    // No viable function; fall through to handling this as a
10472    // built-in operator, which will produce an error message for us.
10473    break;
10474
10475  case OR_Ambiguous:
10476    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10477        << UnaryOperator::getOpcodeStr(Opc)
10478        << Input->getType()
10479        << Input->getSourceRange();
10480    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
10481                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10482    return ExprError();
10483
10484  case OR_Deleted:
10485    Diag(OpLoc, diag::err_ovl_deleted_oper)
10486      << Best->Function->isDeleted()
10487      << UnaryOperator::getOpcodeStr(Opc)
10488      << getDeletedOrUnavailableSuffix(Best->Function)
10489      << Input->getSourceRange();
10490    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
10491                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10492    return ExprError();
10493  }
10494
10495  // Either we found no viable overloaded operator or we matched a
10496  // built-in operator. In either case, fall through to trying to
10497  // build a built-in operation.
10498  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10499}
10500
10501/// \brief Create a binary operation that may resolve to an overloaded
10502/// operator.
10503///
10504/// \param OpLoc The location of the operator itself (e.g., '+').
10505///
10506/// \param OpcIn The BinaryOperator::Opcode that describes this
10507/// operator.
10508///
10509/// \param Fns The set of non-member functions that will be
10510/// considered by overload resolution. The caller needs to build this
10511/// set based on the context using, e.g.,
10512/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10513/// set should not contain any member functions; those will be added
10514/// by CreateOverloadedBinOp().
10515///
10516/// \param LHS Left-hand argument.
10517/// \param RHS Right-hand argument.
10518ExprResult
10519Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10520                            unsigned OpcIn,
10521                            const UnresolvedSetImpl &Fns,
10522                            Expr *LHS, Expr *RHS) {
10523  Expr *Args[2] = { LHS, RHS };
10524  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10525
10526  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10527  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10528  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10529
10530  // If either side is type-dependent, create an appropriate dependent
10531  // expression.
10532  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10533    if (Fns.empty()) {
10534      // If there are no functions to store, just build a dependent
10535      // BinaryOperator or CompoundAssignment.
10536      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10537        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10538                                                  Context.DependentTy,
10539                                                  VK_RValue, OK_Ordinary,
10540                                                  OpLoc,
10541                                                  FPFeatures.fp_contract));
10542
10543      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10544                                                        Context.DependentTy,
10545                                                        VK_LValue,
10546                                                        OK_Ordinary,
10547                                                        Context.DependentTy,
10548                                                        Context.DependentTy,
10549                                                        OpLoc,
10550                                                        FPFeatures.fp_contract));
10551    }
10552
10553    // FIXME: save results of ADL from here?
10554    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10555    // TODO: provide better source location info in DNLoc component.
10556    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10557    UnresolvedLookupExpr *Fn
10558      = UnresolvedLookupExpr::Create(Context, NamingClass,
10559                                     NestedNameSpecifierLoc(), OpNameInfo,
10560                                     /*ADL*/ true, IsOverloaded(Fns),
10561                                     Fns.begin(), Fns.end());
10562    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
10563                                                Context.DependentTy, VK_RValue,
10564                                                OpLoc, FPFeatures.fp_contract));
10565  }
10566
10567  // Always do placeholder-like conversions on the RHS.
10568  if (checkPlaceholderForOverload(*this, Args[1]))
10569    return ExprError();
10570
10571  // Do placeholder-like conversion on the LHS; note that we should
10572  // not get here with a PseudoObject LHS.
10573  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10574  if (checkPlaceholderForOverload(*this, Args[0]))
10575    return ExprError();
10576
10577  // If this is the assignment operator, we only perform overload resolution
10578  // if the left-hand side is a class or enumeration type. This is actually
10579  // a hack. The standard requires that we do overload resolution between the
10580  // various built-in candidates, but as DR507 points out, this can lead to
10581  // problems. So we do it this way, which pretty much follows what GCC does.
10582  // Note that we go the traditional code path for compound assignment forms.
10583  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10584    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10585
10586  // If this is the .* operator, which is not overloadable, just
10587  // create a built-in binary operator.
10588  if (Opc == BO_PtrMemD)
10589    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10590
10591  // Build an empty overload set.
10592  OverloadCandidateSet CandidateSet(OpLoc);
10593
10594  // Add the candidates from the given function set.
10595  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10596
10597  // Add operator candidates that are member functions.
10598  AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10599
10600  // Add candidates from ADL.
10601  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10602                                       OpLoc, Args,
10603                                       /*ExplicitTemplateArgs*/ 0,
10604                                       CandidateSet);
10605
10606  // Add builtin operator candidates.
10607  AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10608
10609  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10610
10611  // Perform overload resolution.
10612  OverloadCandidateSet::iterator Best;
10613  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10614    case OR_Success: {
10615      // We found a built-in operator or an overloaded operator.
10616      FunctionDecl *FnDecl = Best->Function;
10617
10618      if (FnDecl) {
10619        // We matched an overloaded operator. Build a call to that
10620        // operator.
10621
10622        // Convert the arguments.
10623        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10624          // Best->Access is only meaningful for class members.
10625          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10626
10627          ExprResult Arg1 =
10628            PerformCopyInitialization(
10629              InitializedEntity::InitializeParameter(Context,
10630                                                     FnDecl->getParamDecl(0)),
10631              SourceLocation(), Owned(Args[1]));
10632          if (Arg1.isInvalid())
10633            return ExprError();
10634
10635          ExprResult Arg0 =
10636            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10637                                                Best->FoundDecl, Method);
10638          if (Arg0.isInvalid())
10639            return ExprError();
10640          Args[0] = Arg0.takeAs<Expr>();
10641          Args[1] = RHS = Arg1.takeAs<Expr>();
10642        } else {
10643          // Convert the arguments.
10644          ExprResult Arg0 = PerformCopyInitialization(
10645            InitializedEntity::InitializeParameter(Context,
10646                                                   FnDecl->getParamDecl(0)),
10647            SourceLocation(), Owned(Args[0]));
10648          if (Arg0.isInvalid())
10649            return ExprError();
10650
10651          ExprResult Arg1 =
10652            PerformCopyInitialization(
10653              InitializedEntity::InitializeParameter(Context,
10654                                                     FnDecl->getParamDecl(1)),
10655              SourceLocation(), Owned(Args[1]));
10656          if (Arg1.isInvalid())
10657            return ExprError();
10658          Args[0] = LHS = Arg0.takeAs<Expr>();
10659          Args[1] = RHS = Arg1.takeAs<Expr>();
10660        }
10661
10662        // Determine the result type.
10663        QualType ResultTy = FnDecl->getResultType();
10664        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10665        ResultTy = ResultTy.getNonLValueExprType(Context);
10666
10667        // Build the actual expression node.
10668        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10669                                                  Best->FoundDecl,
10670                                                  HadMultipleCandidates, OpLoc);
10671        if (FnExpr.isInvalid())
10672          return ExprError();
10673
10674        CXXOperatorCallExpr *TheCall =
10675          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10676                                            Args, ResultTy, VK, OpLoc,
10677                                            FPFeatures.fp_contract);
10678
10679        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10680                                FnDecl))
10681          return ExprError();
10682
10683        ArrayRef<const Expr *> ArgsArray(Args, 2);
10684        // Cut off the implicit 'this'.
10685        if (isa<CXXMethodDecl>(FnDecl))
10686          ArgsArray = ArgsArray.slice(1);
10687        checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
10688                  TheCall->getSourceRange(), VariadicDoesNotApply);
10689
10690        return MaybeBindToTemporary(TheCall);
10691      } else {
10692        // We matched a built-in operator. Convert the arguments, then
10693        // break out so that we will build the appropriate built-in
10694        // operator node.
10695        ExprResult ArgsRes0 =
10696          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10697                                    Best->Conversions[0], AA_Passing);
10698        if (ArgsRes0.isInvalid())
10699          return ExprError();
10700        Args[0] = ArgsRes0.take();
10701
10702        ExprResult ArgsRes1 =
10703          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10704                                    Best->Conversions[1], AA_Passing);
10705        if (ArgsRes1.isInvalid())
10706          return ExprError();
10707        Args[1] = ArgsRes1.take();
10708        break;
10709      }
10710    }
10711
10712    case OR_No_Viable_Function: {
10713      // C++ [over.match.oper]p9:
10714      //   If the operator is the operator , [...] and there are no
10715      //   viable functions, then the operator is assumed to be the
10716      //   built-in operator and interpreted according to clause 5.
10717      if (Opc == BO_Comma)
10718        break;
10719
10720      // For class as left operand for assignment or compound assigment
10721      // operator do not fall through to handling in built-in, but report that
10722      // no overloaded assignment operator found
10723      ExprResult Result = ExprError();
10724      if (Args[0]->getType()->isRecordType() &&
10725          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10726        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10727             << BinaryOperator::getOpcodeStr(Opc)
10728             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10729        if (Args[0]->getType()->isIncompleteType()) {
10730          Diag(OpLoc, diag::note_assign_lhs_incomplete)
10731            << Args[0]->getType()
10732            << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10733        }
10734      } else {
10735        // This is an erroneous use of an operator which can be overloaded by
10736        // a non-member function. Check for non-member operators which were
10737        // defined too late to be candidates.
10738        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10739          // FIXME: Recover by calling the found function.
10740          return ExprError();
10741
10742        // No viable function; try to create a built-in operation, which will
10743        // produce an error. Then, show the non-viable candidates.
10744        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10745      }
10746      assert(Result.isInvalid() &&
10747             "C++ binary operator overloading is missing candidates!");
10748      if (Result.isInvalid())
10749        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10750                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10751      return Result;
10752    }
10753
10754    case OR_Ambiguous:
10755      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10756          << BinaryOperator::getOpcodeStr(Opc)
10757          << Args[0]->getType() << Args[1]->getType()
10758          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10759      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10760                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10761      return ExprError();
10762
10763    case OR_Deleted:
10764      if (isImplicitlyDeleted(Best->Function)) {
10765        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10766        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10767          << Context.getRecordType(Method->getParent())
10768          << getSpecialMember(Method);
10769
10770        // The user probably meant to call this special member. Just
10771        // explain why it's deleted.
10772        NoteDeletedFunction(Method);
10773        return ExprError();
10774      } else {
10775        Diag(OpLoc, diag::err_ovl_deleted_oper)
10776          << Best->Function->isDeleted()
10777          << BinaryOperator::getOpcodeStr(Opc)
10778          << getDeletedOrUnavailableSuffix(Best->Function)
10779          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10780      }
10781      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10782                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10783      return ExprError();
10784  }
10785
10786  // We matched a built-in operator; build it.
10787  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10788}
10789
10790ExprResult
10791Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10792                                         SourceLocation RLoc,
10793                                         Expr *Base, Expr *Idx) {
10794  Expr *Args[2] = { Base, Idx };
10795  DeclarationName OpName =
10796      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10797
10798  // If either side is type-dependent, create an appropriate dependent
10799  // expression.
10800  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10801
10802    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10803    // CHECKME: no 'operator' keyword?
10804    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10805    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10806    UnresolvedLookupExpr *Fn
10807      = UnresolvedLookupExpr::Create(Context, NamingClass,
10808                                     NestedNameSpecifierLoc(), OpNameInfo,
10809                                     /*ADL*/ true, /*Overloaded*/ false,
10810                                     UnresolvedSetIterator(),
10811                                     UnresolvedSetIterator());
10812    // Can't add any actual overloads yet
10813
10814    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10815                                                   Args,
10816                                                   Context.DependentTy,
10817                                                   VK_RValue,
10818                                                   RLoc, false));
10819  }
10820
10821  // Handle placeholders on both operands.
10822  if (checkPlaceholderForOverload(*this, Args[0]))
10823    return ExprError();
10824  if (checkPlaceholderForOverload(*this, Args[1]))
10825    return ExprError();
10826
10827  // Build an empty overload set.
10828  OverloadCandidateSet CandidateSet(LLoc);
10829
10830  // Subscript can only be overloaded as a member function.
10831
10832  // Add operator candidates that are member functions.
10833  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10834
10835  // Add builtin operator candidates.
10836  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10837
10838  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10839
10840  // Perform overload resolution.
10841  OverloadCandidateSet::iterator Best;
10842  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10843    case OR_Success: {
10844      // We found a built-in operator or an overloaded operator.
10845      FunctionDecl *FnDecl = Best->Function;
10846
10847      if (FnDecl) {
10848        // We matched an overloaded operator. Build a call to that
10849        // operator.
10850
10851        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10852
10853        // Convert the arguments.
10854        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10855        ExprResult Arg0 =
10856          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10857                                              Best->FoundDecl, Method);
10858        if (Arg0.isInvalid())
10859          return ExprError();
10860        Args[0] = Arg0.take();
10861
10862        // Convert the arguments.
10863        ExprResult InputInit
10864          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10865                                                      Context,
10866                                                      FnDecl->getParamDecl(0)),
10867                                      SourceLocation(),
10868                                      Owned(Args[1]));
10869        if (InputInit.isInvalid())
10870          return ExprError();
10871
10872        Args[1] = InputInit.takeAs<Expr>();
10873
10874        // Determine the result type
10875        QualType ResultTy = FnDecl->getResultType();
10876        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10877        ResultTy = ResultTy.getNonLValueExprType(Context);
10878
10879        // Build the actual expression node.
10880        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10881        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10882        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10883                                                  Best->FoundDecl,
10884                                                  HadMultipleCandidates,
10885                                                  OpLocInfo.getLoc(),
10886                                                  OpLocInfo.getInfo());
10887        if (FnExpr.isInvalid())
10888          return ExprError();
10889
10890        CXXOperatorCallExpr *TheCall =
10891          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10892                                            FnExpr.take(), Args,
10893                                            ResultTy, VK, RLoc,
10894                                            false);
10895
10896        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10897                                FnDecl))
10898          return ExprError();
10899
10900        return MaybeBindToTemporary(TheCall);
10901      } else {
10902        // We matched a built-in operator. Convert the arguments, then
10903        // break out so that we will build the appropriate built-in
10904        // operator node.
10905        ExprResult ArgsRes0 =
10906          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10907                                    Best->Conversions[0], AA_Passing);
10908        if (ArgsRes0.isInvalid())
10909          return ExprError();
10910        Args[0] = ArgsRes0.take();
10911
10912        ExprResult ArgsRes1 =
10913          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10914                                    Best->Conversions[1], AA_Passing);
10915        if (ArgsRes1.isInvalid())
10916          return ExprError();
10917        Args[1] = ArgsRes1.take();
10918
10919        break;
10920      }
10921    }
10922
10923    case OR_No_Viable_Function: {
10924      if (CandidateSet.empty())
10925        Diag(LLoc, diag::err_ovl_no_oper)
10926          << Args[0]->getType() << /*subscript*/ 0
10927          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10928      else
10929        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10930          << Args[0]->getType()
10931          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10932      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10933                                  "[]", LLoc);
10934      return ExprError();
10935    }
10936
10937    case OR_Ambiguous:
10938      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10939          << "[]"
10940          << Args[0]->getType() << Args[1]->getType()
10941          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10942      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10943                                  "[]", LLoc);
10944      return ExprError();
10945
10946    case OR_Deleted:
10947      Diag(LLoc, diag::err_ovl_deleted_oper)
10948        << Best->Function->isDeleted() << "[]"
10949        << getDeletedOrUnavailableSuffix(Best->Function)
10950        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10951      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10952                                  "[]", LLoc);
10953      return ExprError();
10954    }
10955
10956  // We matched a built-in operator; build it.
10957  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10958}
10959
10960/// BuildCallToMemberFunction - Build a call to a member
10961/// function. MemExpr is the expression that refers to the member
10962/// function (and includes the object parameter), Args/NumArgs are the
10963/// arguments to the function call (not including the object
10964/// parameter). The caller needs to validate that the member
10965/// expression refers to a non-static member function or an overloaded
10966/// member function.
10967ExprResult
10968Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10969                                SourceLocation LParenLoc,
10970                                MultiExprArg Args,
10971                                SourceLocation RParenLoc) {
10972  assert(MemExprE->getType() == Context.BoundMemberTy ||
10973         MemExprE->getType() == Context.OverloadTy);
10974
10975  // Dig out the member expression. This holds both the object
10976  // argument and the member function we're referring to.
10977  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10978
10979  // Determine whether this is a call to a pointer-to-member function.
10980  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10981    assert(op->getType() == Context.BoundMemberTy);
10982    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10983
10984    QualType fnType =
10985      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10986
10987    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10988    QualType resultType = proto->getCallResultType(Context);
10989    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10990
10991    // Check that the object type isn't more qualified than the
10992    // member function we're calling.
10993    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10994
10995    QualType objectType = op->getLHS()->getType();
10996    if (op->getOpcode() == BO_PtrMemI)
10997      objectType = objectType->castAs<PointerType>()->getPointeeType();
10998    Qualifiers objectQuals = objectType.getQualifiers();
10999
11000    Qualifiers difference = objectQuals - funcQuals;
11001    difference.removeObjCGCAttr();
11002    difference.removeAddressSpace();
11003    if (difference) {
11004      std::string qualsString = difference.getAsString();
11005      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
11006        << fnType.getUnqualifiedType()
11007        << qualsString
11008        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
11009    }
11010
11011    CXXMemberCallExpr *call
11012      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11013                                        resultType, valueKind, RParenLoc);
11014
11015    if (CheckCallReturnType(proto->getResultType(),
11016                            op->getRHS()->getLocStart(),
11017                            call, 0))
11018      return ExprError();
11019
11020    if (ConvertArgumentsForCall(call, op, 0, proto, Args, RParenLoc))
11021      return ExprError();
11022
11023    if (CheckOtherCall(call, proto))
11024      return ExprError();
11025
11026    return MaybeBindToTemporary(call);
11027  }
11028
11029  UnbridgedCastsSet UnbridgedCasts;
11030  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11031    return ExprError();
11032
11033  MemberExpr *MemExpr;
11034  CXXMethodDecl *Method = 0;
11035  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
11036  NestedNameSpecifier *Qualifier = 0;
11037  if (isa<MemberExpr>(NakedMemExpr)) {
11038    MemExpr = cast<MemberExpr>(NakedMemExpr);
11039    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
11040    FoundDecl = MemExpr->getFoundDecl();
11041    Qualifier = MemExpr->getQualifier();
11042    UnbridgedCasts.restore();
11043  } else {
11044    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
11045    Qualifier = UnresExpr->getQualifier();
11046
11047    QualType ObjectType = UnresExpr->getBaseType();
11048    Expr::Classification ObjectClassification
11049      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
11050                            : UnresExpr->getBase()->Classify(Context);
11051
11052    // Add overload candidates
11053    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
11054
11055    // FIXME: avoid copy.
11056    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11057    if (UnresExpr->hasExplicitTemplateArgs()) {
11058      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11059      TemplateArgs = &TemplateArgsBuffer;
11060    }
11061
11062    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
11063           E = UnresExpr->decls_end(); I != E; ++I) {
11064
11065      NamedDecl *Func = *I;
11066      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
11067      if (isa<UsingShadowDecl>(Func))
11068        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
11069
11070
11071      // Microsoft supports direct constructor calls.
11072      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
11073        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
11074                             Args, CandidateSet);
11075      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
11076        // If explicit template arguments were provided, we can't call a
11077        // non-template member function.
11078        if (TemplateArgs)
11079          continue;
11080
11081        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
11082                           ObjectClassification, Args, CandidateSet,
11083                           /*SuppressUserConversions=*/false);
11084      } else {
11085        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
11086                                   I.getPair(), ActingDC, TemplateArgs,
11087                                   ObjectType,  ObjectClassification,
11088                                   Args, CandidateSet,
11089                                   /*SuppressUsedConversions=*/false);
11090      }
11091    }
11092
11093    DeclarationName DeclName = UnresExpr->getMemberName();
11094
11095    UnbridgedCasts.restore();
11096
11097    OverloadCandidateSet::iterator Best;
11098    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
11099                                            Best)) {
11100    case OR_Success:
11101      Method = cast<CXXMethodDecl>(Best->Function);
11102      FoundDecl = Best->FoundDecl;
11103      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
11104      if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
11105        return ExprError();
11106      // If FoundDecl is different from Method (such as if one is a template
11107      // and the other a specialization), make sure DiagnoseUseOfDecl is
11108      // called on both.
11109      // FIXME: This would be more comprehensively addressed by modifying
11110      // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
11111      // being used.
11112      if (Method != FoundDecl.getDecl() &&
11113                      DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
11114        return ExprError();
11115      break;
11116
11117    case OR_No_Viable_Function:
11118      Diag(UnresExpr->getMemberLoc(),
11119           diag::err_ovl_no_viable_member_function_in_call)
11120        << DeclName << MemExprE->getSourceRange();
11121      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11122      // FIXME: Leaking incoming expressions!
11123      return ExprError();
11124
11125    case OR_Ambiguous:
11126      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
11127        << DeclName << MemExprE->getSourceRange();
11128      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11129      // FIXME: Leaking incoming expressions!
11130      return ExprError();
11131
11132    case OR_Deleted:
11133      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
11134        << Best->Function->isDeleted()
11135        << DeclName
11136        << getDeletedOrUnavailableSuffix(Best->Function)
11137        << MemExprE->getSourceRange();
11138      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11139      // FIXME: Leaking incoming expressions!
11140      return ExprError();
11141    }
11142
11143    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
11144
11145    // If overload resolution picked a static member, build a
11146    // non-member call based on that function.
11147    if (Method->isStatic()) {
11148      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
11149                                   RParenLoc);
11150    }
11151
11152    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
11153  }
11154
11155  QualType ResultType = Method->getResultType();
11156  ExprValueKind VK = Expr::getValueKindForType(ResultType);
11157  ResultType = ResultType.getNonLValueExprType(Context);
11158
11159  assert(Method && "Member call to something that isn't a method?");
11160  CXXMemberCallExpr *TheCall =
11161    new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11162                                    ResultType, VK, RParenLoc);
11163
11164  // Check for a valid return type.
11165  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
11166                          TheCall, Method))
11167    return ExprError();
11168
11169  // Convert the object argument (for a non-static member function call).
11170  // We only need to do this if there was actually an overload; otherwise
11171  // it was done at lookup.
11172  if (!Method->isStatic()) {
11173    ExprResult ObjectArg =
11174      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
11175                                          FoundDecl, Method);
11176    if (ObjectArg.isInvalid())
11177      return ExprError();
11178    MemExpr->setBase(ObjectArg.take());
11179  }
11180
11181  // Convert the rest of the arguments
11182  const FunctionProtoType *Proto =
11183    Method->getType()->getAs<FunctionProtoType>();
11184  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
11185                              RParenLoc))
11186    return ExprError();
11187
11188  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11189
11190  if (CheckFunctionCall(Method, TheCall, Proto))
11191    return ExprError();
11192
11193  if ((isa<CXXConstructorDecl>(CurContext) ||
11194       isa<CXXDestructorDecl>(CurContext)) &&
11195      TheCall->getMethodDecl()->isPure()) {
11196    const CXXMethodDecl *MD = TheCall->getMethodDecl();
11197
11198    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
11199      Diag(MemExpr->getLocStart(),
11200           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
11201        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
11202        << MD->getParent()->getDeclName();
11203
11204      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
11205    }
11206  }
11207  return MaybeBindToTemporary(TheCall);
11208}
11209
11210/// BuildCallToObjectOfClassType - Build a call to an object of class
11211/// type (C++ [over.call.object]), which can end up invoking an
11212/// overloaded function call operator (@c operator()) or performing a
11213/// user-defined conversion on the object argument.
11214ExprResult
11215Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
11216                                   SourceLocation LParenLoc,
11217                                   MultiExprArg Args,
11218                                   SourceLocation RParenLoc) {
11219  if (checkPlaceholderForOverload(*this, Obj))
11220    return ExprError();
11221  ExprResult Object = Owned(Obj);
11222
11223  UnbridgedCastsSet UnbridgedCasts;
11224  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11225    return ExprError();
11226
11227  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
11228  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
11229
11230  // C++ [over.call.object]p1:
11231  //  If the primary-expression E in the function call syntax
11232  //  evaluates to a class object of type "cv T", then the set of
11233  //  candidate functions includes at least the function call
11234  //  operators of T. The function call operators of T are obtained by
11235  //  ordinary lookup of the name operator() in the context of
11236  //  (E).operator().
11237  OverloadCandidateSet CandidateSet(LParenLoc);
11238  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
11239
11240  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
11241                          diag::err_incomplete_object_call, Object.get()))
11242    return true;
11243
11244  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
11245  LookupQualifiedName(R, Record->getDecl());
11246  R.suppressDiagnostics();
11247
11248  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11249       Oper != OperEnd; ++Oper) {
11250    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
11251                       Object.get()->Classify(Context),
11252                       Args, CandidateSet,
11253                       /*SuppressUserConversions=*/ false);
11254  }
11255
11256  // C++ [over.call.object]p2:
11257  //   In addition, for each (non-explicit in C++0x) conversion function
11258  //   declared in T of the form
11259  //
11260  //        operator conversion-type-id () cv-qualifier;
11261  //
11262  //   where cv-qualifier is the same cv-qualification as, or a
11263  //   greater cv-qualification than, cv, and where conversion-type-id
11264  //   denotes the type "pointer to function of (P1,...,Pn) returning
11265  //   R", or the type "reference to pointer to function of
11266  //   (P1,...,Pn) returning R", or the type "reference to function
11267  //   of (P1,...,Pn) returning R", a surrogate call function [...]
11268  //   is also considered as a candidate function. Similarly,
11269  //   surrogate call functions are added to the set of candidate
11270  //   functions for each conversion function declared in an
11271  //   accessible base class provided the function is not hidden
11272  //   within T by another intervening declaration.
11273  std::pair<CXXRecordDecl::conversion_iterator,
11274            CXXRecordDecl::conversion_iterator> Conversions
11275    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
11276  for (CXXRecordDecl::conversion_iterator
11277         I = Conversions.first, E = Conversions.second; I != E; ++I) {
11278    NamedDecl *D = *I;
11279    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
11280    if (isa<UsingShadowDecl>(D))
11281      D = cast<UsingShadowDecl>(D)->getTargetDecl();
11282
11283    // Skip over templated conversion functions; they aren't
11284    // surrogates.
11285    if (isa<FunctionTemplateDecl>(D))
11286      continue;
11287
11288    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
11289    if (!Conv->isExplicit()) {
11290      // Strip the reference type (if any) and then the pointer type (if
11291      // any) to get down to what might be a function type.
11292      QualType ConvType = Conv->getConversionType().getNonReferenceType();
11293      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11294        ConvType = ConvPtrType->getPointeeType();
11295
11296      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
11297      {
11298        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
11299                              Object.get(), Args, CandidateSet);
11300      }
11301    }
11302  }
11303
11304  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11305
11306  // Perform overload resolution.
11307  OverloadCandidateSet::iterator Best;
11308  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
11309                             Best)) {
11310  case OR_Success:
11311    // Overload resolution succeeded; we'll build the appropriate call
11312    // below.
11313    break;
11314
11315  case OR_No_Viable_Function:
11316    if (CandidateSet.empty())
11317      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
11318        << Object.get()->getType() << /*call*/ 1
11319        << Object.get()->getSourceRange();
11320    else
11321      Diag(Object.get()->getLocStart(),
11322           diag::err_ovl_no_viable_object_call)
11323        << Object.get()->getType() << Object.get()->getSourceRange();
11324    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11325    break;
11326
11327  case OR_Ambiguous:
11328    Diag(Object.get()->getLocStart(),
11329         diag::err_ovl_ambiguous_object_call)
11330      << Object.get()->getType() << Object.get()->getSourceRange();
11331    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11332    break;
11333
11334  case OR_Deleted:
11335    Diag(Object.get()->getLocStart(),
11336         diag::err_ovl_deleted_object_call)
11337      << Best->Function->isDeleted()
11338      << Object.get()->getType()
11339      << getDeletedOrUnavailableSuffix(Best->Function)
11340      << Object.get()->getSourceRange();
11341    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11342    break;
11343  }
11344
11345  if (Best == CandidateSet.end())
11346    return true;
11347
11348  UnbridgedCasts.restore();
11349
11350  if (Best->Function == 0) {
11351    // Since there is no function declaration, this is one of the
11352    // surrogate candidates. Dig out the conversion function.
11353    CXXConversionDecl *Conv
11354      = cast<CXXConversionDecl>(
11355                         Best->Conversions[0].UserDefined.ConversionFunction);
11356
11357    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11358    if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
11359      return ExprError();
11360    assert(Conv == Best->FoundDecl.getDecl() &&
11361             "Found Decl & conversion-to-functionptr should be same, right?!");
11362    // We selected one of the surrogate functions that converts the
11363    // object parameter to a function pointer. Perform the conversion
11364    // on the object argument, then let ActOnCallExpr finish the job.
11365
11366    // Create an implicit member expr to refer to the conversion operator.
11367    // and then call it.
11368    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
11369                                             Conv, HadMultipleCandidates);
11370    if (Call.isInvalid())
11371      return ExprError();
11372    // Record usage of conversion in an implicit cast.
11373    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
11374                                          CK_UserDefinedConversion,
11375                                          Call.get(), 0, VK_RValue));
11376
11377    return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
11378  }
11379
11380  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11381
11382  // We found an overloaded operator(). Build a CXXOperatorCallExpr
11383  // that calls this method, using Object for the implicit object
11384  // parameter and passing along the remaining arguments.
11385  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11386
11387  // An error diagnostic has already been printed when parsing the declaration.
11388  if (Method->isInvalidDecl())
11389    return ExprError();
11390
11391  const FunctionProtoType *Proto =
11392    Method->getType()->getAs<FunctionProtoType>();
11393
11394  unsigned NumArgsInProto = Proto->getNumArgs();
11395  unsigned NumArgsToCheck = std::max<unsigned>(Args.size(), NumArgsInProto);
11396
11397  DeclarationNameInfo OpLocInfo(
11398               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11399  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11400  ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11401                                           HadMultipleCandidates,
11402                                           OpLocInfo.getLoc(),
11403                                           OpLocInfo.getInfo());
11404  if (NewFn.isInvalid())
11405    return true;
11406
11407  // Build the full argument list for the method call (the implicit object
11408  // parameter is placed at the beginning of the list).
11409  llvm::OwningArrayPtr<Expr *> MethodArgs(new Expr*[Args.size() + 1]);
11410  MethodArgs[0] = Object.get();
11411  std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
11412
11413  // Once we've built TheCall, all of the expressions are properly
11414  // owned.
11415  QualType ResultTy = Method->getResultType();
11416  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11417  ResultTy = ResultTy.getNonLValueExprType(Context);
11418
11419  CXXOperatorCallExpr *TheCall = new (Context)
11420      CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
11421                          llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
11422                          ResultTy, VK, RParenLoc, false);
11423  MethodArgs.reset();
11424
11425  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
11426                          Method))
11427    return true;
11428
11429  // We may have default arguments. If so, we need to allocate more
11430  // slots in the call for them.
11431  if (Args.size() < NumArgsInProto)
11432    TheCall->setNumArgs(Context, NumArgsInProto + 1);
11433  else if (Args.size() > NumArgsInProto)
11434    NumArgsToCheck = NumArgsInProto;
11435
11436  bool IsError = false;
11437
11438  // Initialize the implicit object parameter.
11439  ExprResult ObjRes =
11440    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11441                                        Best->FoundDecl, Method);
11442  if (ObjRes.isInvalid())
11443    IsError = true;
11444  else
11445    Object = ObjRes;
11446  TheCall->setArg(0, Object.take());
11447
11448  // Check the argument types.
11449  for (unsigned i = 0; i != NumArgsToCheck; i++) {
11450    Expr *Arg;
11451    if (i < Args.size()) {
11452      Arg = Args[i];
11453
11454      // Pass the argument.
11455
11456      ExprResult InputInit
11457        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11458                                                    Context,
11459                                                    Method->getParamDecl(i)),
11460                                    SourceLocation(), Arg);
11461
11462      IsError |= InputInit.isInvalid();
11463      Arg = InputInit.takeAs<Expr>();
11464    } else {
11465      ExprResult DefArg
11466        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11467      if (DefArg.isInvalid()) {
11468        IsError = true;
11469        break;
11470      }
11471
11472      Arg = DefArg.takeAs<Expr>();
11473    }
11474
11475    TheCall->setArg(i + 1, Arg);
11476  }
11477
11478  // If this is a variadic call, handle args passed through "...".
11479  if (Proto->isVariadic()) {
11480    // Promote the arguments (C99 6.5.2.2p7).
11481    for (unsigned i = NumArgsInProto, e = Args.size(); i < e; i++) {
11482      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11483      IsError |= Arg.isInvalid();
11484      TheCall->setArg(i + 1, Arg.take());
11485    }
11486  }
11487
11488  if (IsError) return true;
11489
11490  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11491
11492  if (CheckFunctionCall(Method, TheCall, Proto))
11493    return true;
11494
11495  return MaybeBindToTemporary(TheCall);
11496}
11497
11498/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11499///  (if one exists), where @c Base is an expression of class type and
11500/// @c Member is the name of the member we're trying to find.
11501ExprResult
11502Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
11503                               bool *NoArrowOperatorFound) {
11504  assert(Base->getType()->isRecordType() &&
11505         "left-hand side must have class type");
11506
11507  if (checkPlaceholderForOverload(*this, Base))
11508    return ExprError();
11509
11510  SourceLocation Loc = Base->getExprLoc();
11511
11512  // C++ [over.ref]p1:
11513  //
11514  //   [...] An expression x->m is interpreted as (x.operator->())->m
11515  //   for a class object x of type T if T::operator->() exists and if
11516  //   the operator is selected as the best match function by the
11517  //   overload resolution mechanism (13.3).
11518  DeclarationName OpName =
11519    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11520  OverloadCandidateSet CandidateSet(Loc);
11521  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11522
11523  if (RequireCompleteType(Loc, Base->getType(),
11524                          diag::err_typecheck_incomplete_tag, Base))
11525    return ExprError();
11526
11527  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11528  LookupQualifiedName(R, BaseRecord->getDecl());
11529  R.suppressDiagnostics();
11530
11531  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11532       Oper != OperEnd; ++Oper) {
11533    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11534                       None, CandidateSet, /*SuppressUserConversions=*/false);
11535  }
11536
11537  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11538
11539  // Perform overload resolution.
11540  OverloadCandidateSet::iterator Best;
11541  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11542  case OR_Success:
11543    // Overload resolution succeeded; we'll build the call below.
11544    break;
11545
11546  case OR_No_Viable_Function:
11547    if (CandidateSet.empty()) {
11548      QualType BaseType = Base->getType();
11549      if (NoArrowOperatorFound) {
11550        // Report this specific error to the caller instead of emitting a
11551        // diagnostic, as requested.
11552        *NoArrowOperatorFound = true;
11553        return ExprError();
11554      }
11555      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11556        << BaseType << Base->getSourceRange();
11557      if (BaseType->isRecordType() && !BaseType->isPointerType()) {
11558        Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
11559          << FixItHint::CreateReplacement(OpLoc, ".");
11560      }
11561    } else
11562      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11563        << "operator->" << Base->getSourceRange();
11564    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11565    return ExprError();
11566
11567  case OR_Ambiguous:
11568    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11569      << "->" << Base->getType() << Base->getSourceRange();
11570    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11571    return ExprError();
11572
11573  case OR_Deleted:
11574    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11575      << Best->Function->isDeleted()
11576      << "->"
11577      << getDeletedOrUnavailableSuffix(Best->Function)
11578      << Base->getSourceRange();
11579    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11580    return ExprError();
11581  }
11582
11583  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11584
11585  // Convert the object parameter.
11586  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11587  ExprResult BaseResult =
11588    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11589                                        Best->FoundDecl, Method);
11590  if (BaseResult.isInvalid())
11591    return ExprError();
11592  Base = BaseResult.take();
11593
11594  // Build the operator call.
11595  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11596                                            HadMultipleCandidates, OpLoc);
11597  if (FnExpr.isInvalid())
11598    return ExprError();
11599
11600  QualType ResultTy = Method->getResultType();
11601  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11602  ResultTy = ResultTy.getNonLValueExprType(Context);
11603  CXXOperatorCallExpr *TheCall =
11604    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11605                                      Base, ResultTy, VK, OpLoc, false);
11606
11607  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11608                          Method))
11609          return ExprError();
11610
11611  return MaybeBindToTemporary(TheCall);
11612}
11613
11614/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11615/// a literal operator described by the provided lookup results.
11616ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11617                                          DeclarationNameInfo &SuffixInfo,
11618                                          ArrayRef<Expr*> Args,
11619                                          SourceLocation LitEndLoc,
11620                                       TemplateArgumentListInfo *TemplateArgs) {
11621  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11622
11623  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11624  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11625                        TemplateArgs);
11626
11627  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11628
11629  // Perform overload resolution. This will usually be trivial, but might need
11630  // to perform substitutions for a literal operator template.
11631  OverloadCandidateSet::iterator Best;
11632  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11633  case OR_Success:
11634  case OR_Deleted:
11635    break;
11636
11637  case OR_No_Viable_Function:
11638    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11639      << R.getLookupName();
11640    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11641    return ExprError();
11642
11643  case OR_Ambiguous:
11644    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11645    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11646    return ExprError();
11647  }
11648
11649  FunctionDecl *FD = Best->Function;
11650  ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
11651                                        HadMultipleCandidates,
11652                                        SuffixInfo.getLoc(),
11653                                        SuffixInfo.getInfo());
11654  if (Fn.isInvalid())
11655    return true;
11656
11657  // Check the argument types. This should almost always be a no-op, except
11658  // that array-to-pointer decay is applied to string literals.
11659  Expr *ConvArgs[2];
11660  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
11661    ExprResult InputInit = PerformCopyInitialization(
11662      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11663      SourceLocation(), Args[ArgIdx]);
11664    if (InputInit.isInvalid())
11665      return true;
11666    ConvArgs[ArgIdx] = InputInit.take();
11667  }
11668
11669  QualType ResultTy = FD->getResultType();
11670  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11671  ResultTy = ResultTy.getNonLValueExprType(Context);
11672
11673  UserDefinedLiteral *UDL =
11674    new (Context) UserDefinedLiteral(Context, Fn.take(),
11675                                     llvm::makeArrayRef(ConvArgs, Args.size()),
11676                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11677
11678  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11679    return ExprError();
11680
11681  if (CheckFunctionCall(FD, UDL, NULL))
11682    return ExprError();
11683
11684  return MaybeBindToTemporary(UDL);
11685}
11686
11687/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11688/// given LookupResult is non-empty, it is assumed to describe a member which
11689/// will be invoked. Otherwise, the function will be found via argument
11690/// dependent lookup.
11691/// CallExpr is set to a valid expression and FRS_Success returned on success,
11692/// otherwise CallExpr is set to ExprError() and some non-success value
11693/// is returned.
11694Sema::ForRangeStatus
11695Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11696                                SourceLocation RangeLoc, VarDecl *Decl,
11697                                BeginEndFunction BEF,
11698                                const DeclarationNameInfo &NameInfo,
11699                                LookupResult &MemberLookup,
11700                                OverloadCandidateSet *CandidateSet,
11701                                Expr *Range, ExprResult *CallExpr) {
11702  CandidateSet->clear();
11703  if (!MemberLookup.empty()) {
11704    ExprResult MemberRef =
11705        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11706                                 /*IsPtr=*/false, CXXScopeSpec(),
11707                                 /*TemplateKWLoc=*/SourceLocation(),
11708                                 /*FirstQualifierInScope=*/0,
11709                                 MemberLookup,
11710                                 /*TemplateArgs=*/0);
11711    if (MemberRef.isInvalid()) {
11712      *CallExpr = ExprError();
11713      Diag(Range->getLocStart(), diag::note_in_for_range)
11714          << RangeLoc << BEF << Range->getType();
11715      return FRS_DiagnosticIssued;
11716    }
11717    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, 0);
11718    if (CallExpr->isInvalid()) {
11719      *CallExpr = ExprError();
11720      Diag(Range->getLocStart(), diag::note_in_for_range)
11721          << RangeLoc << BEF << Range->getType();
11722      return FRS_DiagnosticIssued;
11723    }
11724  } else {
11725    UnresolvedSet<0> FoundNames;
11726    UnresolvedLookupExpr *Fn =
11727      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11728                                   NestedNameSpecifierLoc(), NameInfo,
11729                                   /*NeedsADL=*/true, /*Overloaded=*/false,
11730                                   FoundNames.begin(), FoundNames.end());
11731
11732    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
11733                                                    CandidateSet, CallExpr);
11734    if (CandidateSet->empty() || CandidateSetError) {
11735      *CallExpr = ExprError();
11736      return FRS_NoViableFunction;
11737    }
11738    OverloadCandidateSet::iterator Best;
11739    OverloadingResult OverloadResult =
11740        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11741
11742    if (OverloadResult == OR_No_Viable_Function) {
11743      *CallExpr = ExprError();
11744      return FRS_NoViableFunction;
11745    }
11746    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
11747                                         Loc, 0, CandidateSet, &Best,
11748                                         OverloadResult,
11749                                         /*AllowTypoCorrection=*/false);
11750    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11751      *CallExpr = ExprError();
11752      Diag(Range->getLocStart(), diag::note_in_for_range)
11753          << RangeLoc << BEF << Range->getType();
11754      return FRS_DiagnosticIssued;
11755    }
11756  }
11757  return FRS_Success;
11758}
11759
11760
11761/// FixOverloadedFunctionReference - E is an expression that refers to
11762/// a C++ overloaded function (possibly with some parentheses and
11763/// perhaps a '&' around it). We have resolved the overloaded function
11764/// to the function declaration Fn, so patch up the expression E to
11765/// refer (possibly indirectly) to Fn. Returns the new expr.
11766Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11767                                           FunctionDecl *Fn) {
11768  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11769    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11770                                                   Found, Fn);
11771    if (SubExpr == PE->getSubExpr())
11772      return PE;
11773
11774    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11775  }
11776
11777  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11778    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11779                                                   Found, Fn);
11780    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11781                               SubExpr->getType()) &&
11782           "Implicit cast type cannot be determined from overload");
11783    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11784    if (SubExpr == ICE->getSubExpr())
11785      return ICE;
11786
11787    return ImplicitCastExpr::Create(Context, ICE->getType(),
11788                                    ICE->getCastKind(),
11789                                    SubExpr, 0,
11790                                    ICE->getValueKind());
11791  }
11792
11793  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11794    assert(UnOp->getOpcode() == UO_AddrOf &&
11795           "Can only take the address of an overloaded function");
11796    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11797      if (Method->isStatic()) {
11798        // Do nothing: static member functions aren't any different
11799        // from non-member functions.
11800      } else {
11801        // Fix the sub expression, which really has to be an
11802        // UnresolvedLookupExpr holding an overloaded member function
11803        // or template.
11804        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11805                                                       Found, Fn);
11806        if (SubExpr == UnOp->getSubExpr())
11807          return UnOp;
11808
11809        assert(isa<DeclRefExpr>(SubExpr)
11810               && "fixed to something other than a decl ref");
11811        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11812               && "fixed to a member ref with no nested name qualifier");
11813
11814        // We have taken the address of a pointer to member
11815        // function. Perform the computation here so that we get the
11816        // appropriate pointer to member type.
11817        QualType ClassType
11818          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11819        QualType MemPtrType
11820          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11821
11822        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11823                                           VK_RValue, OK_Ordinary,
11824                                           UnOp->getOperatorLoc());
11825      }
11826    }
11827    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11828                                                   Found, Fn);
11829    if (SubExpr == UnOp->getSubExpr())
11830      return UnOp;
11831
11832    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11833                                     Context.getPointerType(SubExpr->getType()),
11834                                       VK_RValue, OK_Ordinary,
11835                                       UnOp->getOperatorLoc());
11836  }
11837
11838  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11839    // FIXME: avoid copy.
11840    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11841    if (ULE->hasExplicitTemplateArgs()) {
11842      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11843      TemplateArgs = &TemplateArgsBuffer;
11844    }
11845
11846    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11847                                           ULE->getQualifierLoc(),
11848                                           ULE->getTemplateKeywordLoc(),
11849                                           Fn,
11850                                           /*enclosing*/ false, // FIXME?
11851                                           ULE->getNameLoc(),
11852                                           Fn->getType(),
11853                                           VK_LValue,
11854                                           Found.getDecl(),
11855                                           TemplateArgs);
11856    MarkDeclRefReferenced(DRE);
11857    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11858    return DRE;
11859  }
11860
11861  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11862    // FIXME: avoid copy.
11863    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11864    if (MemExpr->hasExplicitTemplateArgs()) {
11865      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11866      TemplateArgs = &TemplateArgsBuffer;
11867    }
11868
11869    Expr *Base;
11870
11871    // If we're filling in a static method where we used to have an
11872    // implicit member access, rewrite to a simple decl ref.
11873    if (MemExpr->isImplicitAccess()) {
11874      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11875        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11876                                               MemExpr->getQualifierLoc(),
11877                                               MemExpr->getTemplateKeywordLoc(),
11878                                               Fn,
11879                                               /*enclosing*/ false,
11880                                               MemExpr->getMemberLoc(),
11881                                               Fn->getType(),
11882                                               VK_LValue,
11883                                               Found.getDecl(),
11884                                               TemplateArgs);
11885        MarkDeclRefReferenced(DRE);
11886        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11887        return DRE;
11888      } else {
11889        SourceLocation Loc = MemExpr->getMemberLoc();
11890        if (MemExpr->getQualifier())
11891          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11892        CheckCXXThisCapture(Loc);
11893        Base = new (Context) CXXThisExpr(Loc,
11894                                         MemExpr->getBaseType(),
11895                                         /*isImplicit=*/true);
11896      }
11897    } else
11898      Base = MemExpr->getBase();
11899
11900    ExprValueKind valueKind;
11901    QualType type;
11902    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11903      valueKind = VK_LValue;
11904      type = Fn->getType();
11905    } else {
11906      valueKind = VK_RValue;
11907      type = Context.BoundMemberTy;
11908    }
11909
11910    MemberExpr *ME = MemberExpr::Create(Context, Base,
11911                                        MemExpr->isArrow(),
11912                                        MemExpr->getQualifierLoc(),
11913                                        MemExpr->getTemplateKeywordLoc(),
11914                                        Fn,
11915                                        Found,
11916                                        MemExpr->getMemberNameInfo(),
11917                                        TemplateArgs,
11918                                        type, valueKind, OK_Ordinary);
11919    ME->setHadMultipleCandidates(true);
11920    MarkMemberReferenced(ME);
11921    return ME;
11922  }
11923
11924  llvm_unreachable("Invalid reference to overloaded function");
11925}
11926
11927ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11928                                                DeclAccessPair Found,
11929                                                FunctionDecl *Fn) {
11930  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11931}
11932
11933} // end namespace clang
11934