SemaOverload.cpp revision 79e244f49a60a90167d23daf387dc600d603641d
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
44                                                 VK_LValue, Loc, LocInfo);
45  if (HadMultipleCandidates)
46    DRE->setHadMultipleCandidates(true);
47  ExprResult E = S.Owned(DRE);
48  E = S.DefaultFunctionArrayConversion(E.take());
49  if (E.isInvalid())
50    return ExprError();
51  return move(E);
52}
53
54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
55                                 bool InOverloadResolution,
56                                 StandardConversionSequence &SCS,
57                                 bool CStyle,
58                                 bool AllowObjCWritebackConversion);
59
60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
61                                                 QualType &ToType,
62                                                 bool InOverloadResolution,
63                                                 StandardConversionSequence &SCS,
64                                                 bool CStyle);
65static OverloadingResult
66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
67                        UserDefinedConversionSequence& User,
68                        OverloadCandidateSet& Conversions,
69                        bool AllowExplicit);
70
71
72static ImplicitConversionSequence::CompareKind
73CompareStandardConversionSequences(Sema &S,
74                                   const StandardConversionSequence& SCS1,
75                                   const StandardConversionSequence& SCS2);
76
77static ImplicitConversionSequence::CompareKind
78CompareQualificationConversions(Sema &S,
79                                const StandardConversionSequence& SCS1,
80                                const StandardConversionSequence& SCS2);
81
82static ImplicitConversionSequence::CompareKind
83CompareDerivedToBaseConversions(Sema &S,
84                                const StandardConversionSequence& SCS1,
85                                const StandardConversionSequence& SCS2);
86
87
88
89/// GetConversionCategory - Retrieve the implicit conversion
90/// category corresponding to the given implicit conversion kind.
91ImplicitConversionCategory
92GetConversionCategory(ImplicitConversionKind Kind) {
93  static const ImplicitConversionCategory
94    Category[(int)ICK_Num_Conversion_Kinds] = {
95    ICC_Identity,
96    ICC_Lvalue_Transformation,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Identity,
100    ICC_Qualification_Adjustment,
101    ICC_Promotion,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion
117  };
118  return Category[(int)Kind];
119}
120
121/// GetConversionRank - Retrieve the implicit conversion rank
122/// corresponding to the given implicit conversion kind.
123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
124  static const ImplicitConversionRank
125    Rank[(int)ICK_Num_Conversion_Kinds] = {
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Promotion,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Complex_Real_Conversion,
147    ICR_Conversion,
148    ICR_Conversion,
149    ICR_Writeback_Conversion
150  };
151  return Rank[(int)Kind];
152}
153
154/// GetImplicitConversionName - Return the name of this kind of
155/// implicit conversion.
156const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158    "No conversion",
159    "Lvalue-to-rvalue",
160    "Array-to-pointer",
161    "Function-to-pointer",
162    "Noreturn adjustment",
163    "Qualification",
164    "Integral promotion",
165    "Floating point promotion",
166    "Complex promotion",
167    "Integral conversion",
168    "Floating conversion",
169    "Complex conversion",
170    "Floating-integral conversion",
171    "Pointer conversion",
172    "Pointer-to-member conversion",
173    "Boolean conversion",
174    "Compatible-types conversion",
175    "Derived-to-base conversion",
176    "Vector conversion",
177    "Vector splat",
178    "Complex-real conversion",
179    "Block Pointer conversion",
180    "Transparent Union Conversion"
181    "Writeback conversion"
182  };
183  return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189  First = ICK_Identity;
190  Second = ICK_Identity;
191  Third = ICK_Identity;
192  DeprecatedStringLiteralToCharPtr = false;
193  QualificationIncludesObjCLifetime = false;
194  ReferenceBinding = false;
195  DirectBinding = false;
196  IsLvalueReference = true;
197  BindsToFunctionLvalue = false;
198  BindsToRvalue = false;
199  BindsImplicitObjectArgumentWithoutRefQualifier = false;
200  ObjCLifetimeConversionBinding = false;
201  CopyConstructor = 0;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208  ImplicitConversionRank Rank = ICR_Exact_Match;
209  if  (GetConversionRank(First) > Rank)
210    Rank = GetConversionRank(First);
211  if  (GetConversionRank(Second) > Rank)
212    Rank = GetConversionRank(Second);
213  if  (GetConversionRank(Third) > Rank)
214    Rank = GetConversionRank(Third);
215  return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer or function-to-pointer implicit conversions, so
225  // check for their presence as well as checking whether FromType is
226  // a pointer.
227  if (getToType(1)->isBooleanType() &&
228      (getFromType()->isPointerType() ||
229       getFromType()->isObjCObjectPointerType() ||
230       getFromType()->isBlockPointerType() ||
231       getFromType()->isNullPtrType() ||
232       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
233    return true;
234
235  return false;
236}
237
238/// isPointerConversionToVoidPointer - Determines whether this
239/// conversion is a conversion of a pointer to a void pointer. This is
240/// used as part of the ranking of standard conversion sequences (C++
241/// 13.3.3.2p4).
242bool
243StandardConversionSequence::
244isPointerConversionToVoidPointer(ASTContext& Context) const {
245  QualType FromType = getFromType();
246  QualType ToType = getToType(1);
247
248  // Note that FromType has not necessarily been transformed by the
249  // array-to-pointer implicit conversion, so check for its presence
250  // and redo the conversion to get a pointer.
251  if (First == ICK_Array_To_Pointer)
252    FromType = Context.getArrayDecayedType(FromType);
253
254  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
255    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
256      return ToPtrType->getPointeeType()->isVoidType();
257
258  return false;
259}
260
261/// Skip any implicit casts which could be either part of a narrowing conversion
262/// or after one in an implicit conversion.
263static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
264  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
265    switch (ICE->getCastKind()) {
266    case CK_NoOp:
267    case CK_IntegralCast:
268    case CK_IntegralToBoolean:
269    case CK_IntegralToFloating:
270    case CK_FloatingToIntegral:
271    case CK_FloatingToBoolean:
272    case CK_FloatingCast:
273      Converted = ICE->getSubExpr();
274      continue;
275
276    default:
277      return Converted;
278    }
279  }
280
281  return Converted;
282}
283
284/// Check if this standard conversion sequence represents a narrowing
285/// conversion, according to C++11 [dcl.init.list]p7.
286///
287/// \param Ctx  The AST context.
288/// \param Converted  The result of applying this standard conversion sequence.
289/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
290///        value of the expression prior to the narrowing conversion.
291/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
292///        type of the expression prior to the narrowing conversion.
293NarrowingKind
294StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
295                                             const Expr *Converted,
296                                             APValue &ConstantValue,
297                                             QualType &ConstantType) const {
298  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
299
300  // C++11 [dcl.init.list]p7:
301  //   A narrowing conversion is an implicit conversion ...
302  QualType FromType = getToType(0);
303  QualType ToType = getToType(1);
304  switch (Second) {
305  // -- from a floating-point type to an integer type, or
306  //
307  // -- from an integer type or unscoped enumeration type to a floating-point
308  //    type, except where the source is a constant expression and the actual
309  //    value after conversion will fit into the target type and will produce
310  //    the original value when converted back to the original type, or
311  case ICK_Floating_Integral:
312    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
313      return NK_Type_Narrowing;
314    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
315      llvm::APSInt IntConstantValue;
316      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
317      if (Initializer &&
318          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
319        // Convert the integer to the floating type.
320        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
321        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
322                                llvm::APFloat::rmNearestTiesToEven);
323        // And back.
324        llvm::APSInt ConvertedValue = IntConstantValue;
325        bool ignored;
326        Result.convertToInteger(ConvertedValue,
327                                llvm::APFloat::rmTowardZero, &ignored);
328        // If the resulting value is different, this was a narrowing conversion.
329        if (IntConstantValue != ConvertedValue) {
330          ConstantValue = APValue(IntConstantValue);
331          ConstantType = Initializer->getType();
332          return NK_Constant_Narrowing;
333        }
334      } else {
335        // Variables are always narrowings.
336        return NK_Variable_Narrowing;
337      }
338    }
339    return NK_Not_Narrowing;
340
341  // -- from long double to double or float, or from double to float, except
342  //    where the source is a constant expression and the actual value after
343  //    conversion is within the range of values that can be represented (even
344  //    if it cannot be represented exactly), or
345  case ICK_Floating_Conversion:
346    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
347        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
348      // FromType is larger than ToType.
349      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
350      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
351        // Constant!
352        assert(ConstantValue.isFloat());
353        llvm::APFloat FloatVal = ConstantValue.getFloat();
354        // Convert the source value into the target type.
355        bool ignored;
356        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
357          Ctx.getFloatTypeSemantics(ToType),
358          llvm::APFloat::rmNearestTiesToEven, &ignored);
359        // If there was no overflow, the source value is within the range of
360        // values that can be represented.
361        if (ConvertStatus & llvm::APFloat::opOverflow) {
362          ConstantType = Initializer->getType();
363          return NK_Constant_Narrowing;
364        }
365      } else {
366        return NK_Variable_Narrowing;
367      }
368    }
369    return NK_Not_Narrowing;
370
371  // -- from an integer type or unscoped enumeration type to an integer type
372  //    that cannot represent all the values of the original type, except where
373  //    the source is a constant expression and the actual value after
374  //    conversion will fit into the target type and will produce the original
375  //    value when converted back to the original type.
376  case ICK_Boolean_Conversion:  // Bools are integers too.
377    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
378      // Boolean conversions can be from pointers and pointers to members
379      // [conv.bool], and those aren't considered narrowing conversions.
380      return NK_Not_Narrowing;
381    }  // Otherwise, fall through to the integral case.
382  case ICK_Integral_Conversion: {
383    assert(FromType->isIntegralOrUnscopedEnumerationType());
384    assert(ToType->isIntegralOrUnscopedEnumerationType());
385    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
386    const unsigned FromWidth = Ctx.getIntWidth(FromType);
387    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
388    const unsigned ToWidth = Ctx.getIntWidth(ToType);
389
390    if (FromWidth > ToWidth ||
391        (FromWidth == ToWidth && FromSigned != ToSigned)) {
392      // Not all values of FromType can be represented in ToType.
393      llvm::APSInt InitializerValue;
394      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
395      if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
396        ConstantValue = APValue(InitializerValue);
397
398        // Add a bit to the InitializerValue so we don't have to worry about
399        // signed vs. unsigned comparisons.
400        InitializerValue = InitializerValue.extend(
401          InitializerValue.getBitWidth() + 1);
402        // Convert the initializer to and from the target width and signed-ness.
403        llvm::APSInt ConvertedValue = InitializerValue;
404        ConvertedValue = ConvertedValue.trunc(ToWidth);
405        ConvertedValue.setIsSigned(ToSigned);
406        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
407        ConvertedValue.setIsSigned(InitializerValue.isSigned());
408        // If the result is different, this was a narrowing conversion.
409        if (ConvertedValue != InitializerValue) {
410          ConstantType = Initializer->getType();
411          return NK_Constant_Narrowing;
412        }
413      } else {
414        // Variables are always narrowings.
415        return NK_Variable_Narrowing;
416      }
417    }
418    return NK_Not_Narrowing;
419  }
420
421  default:
422    // Other kinds of conversions are not narrowings.
423    return NK_Not_Narrowing;
424  }
425}
426
427/// DebugPrint - Print this standard conversion sequence to standard
428/// error. Useful for debugging overloading issues.
429void StandardConversionSequence::DebugPrint() const {
430  raw_ostream &OS = llvm::errs();
431  bool PrintedSomething = false;
432  if (First != ICK_Identity) {
433    OS << GetImplicitConversionName(First);
434    PrintedSomething = true;
435  }
436
437  if (Second != ICK_Identity) {
438    if (PrintedSomething) {
439      OS << " -> ";
440    }
441    OS << GetImplicitConversionName(Second);
442
443    if (CopyConstructor) {
444      OS << " (by copy constructor)";
445    } else if (DirectBinding) {
446      OS << " (direct reference binding)";
447    } else if (ReferenceBinding) {
448      OS << " (reference binding)";
449    }
450    PrintedSomething = true;
451  }
452
453  if (Third != ICK_Identity) {
454    if (PrintedSomething) {
455      OS << " -> ";
456    }
457    OS << GetImplicitConversionName(Third);
458    PrintedSomething = true;
459  }
460
461  if (!PrintedSomething) {
462    OS << "No conversions required";
463  }
464}
465
466/// DebugPrint - Print this user-defined conversion sequence to standard
467/// error. Useful for debugging overloading issues.
468void UserDefinedConversionSequence::DebugPrint() const {
469  raw_ostream &OS = llvm::errs();
470  if (Before.First || Before.Second || Before.Third) {
471    Before.DebugPrint();
472    OS << " -> ";
473  }
474  if (ConversionFunction)
475    OS << '\'' << *ConversionFunction << '\'';
476  else
477    OS << "aggregate initialization";
478  if (After.First || After.Second || After.Third) {
479    OS << " -> ";
480    After.DebugPrint();
481  }
482}
483
484/// DebugPrint - Print this implicit conversion sequence to standard
485/// error. Useful for debugging overloading issues.
486void ImplicitConversionSequence::DebugPrint() const {
487  raw_ostream &OS = llvm::errs();
488  switch (ConversionKind) {
489  case StandardConversion:
490    OS << "Standard conversion: ";
491    Standard.DebugPrint();
492    break;
493  case UserDefinedConversion:
494    OS << "User-defined conversion: ";
495    UserDefined.DebugPrint();
496    break;
497  case EllipsisConversion:
498    OS << "Ellipsis conversion";
499    break;
500  case AmbiguousConversion:
501    OS << "Ambiguous conversion";
502    break;
503  case BadConversion:
504    OS << "Bad conversion";
505    break;
506  }
507
508  OS << "\n";
509}
510
511void AmbiguousConversionSequence::construct() {
512  new (&conversions()) ConversionSet();
513}
514
515void AmbiguousConversionSequence::destruct() {
516  conversions().~ConversionSet();
517}
518
519void
520AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
521  FromTypePtr = O.FromTypePtr;
522  ToTypePtr = O.ToTypePtr;
523  new (&conversions()) ConversionSet(O.conversions());
524}
525
526namespace {
527  // Structure used by OverloadCandidate::DeductionFailureInfo to store
528  // template parameter and template argument information.
529  struct DFIParamWithArguments {
530    TemplateParameter Param;
531    TemplateArgument FirstArg;
532    TemplateArgument SecondArg;
533  };
534}
535
536/// \brief Convert from Sema's representation of template deduction information
537/// to the form used in overload-candidate information.
538OverloadCandidate::DeductionFailureInfo
539static MakeDeductionFailureInfo(ASTContext &Context,
540                                Sema::TemplateDeductionResult TDK,
541                                TemplateDeductionInfo &Info) {
542  OverloadCandidate::DeductionFailureInfo Result;
543  Result.Result = static_cast<unsigned>(TDK);
544  Result.Data = 0;
545  switch (TDK) {
546  case Sema::TDK_Success:
547  case Sema::TDK_InstantiationDepth:
548  case Sema::TDK_TooManyArguments:
549  case Sema::TDK_TooFewArguments:
550    break;
551
552  case Sema::TDK_Incomplete:
553  case Sema::TDK_InvalidExplicitArguments:
554    Result.Data = Info.Param.getOpaqueValue();
555    break;
556
557  case Sema::TDK_Inconsistent:
558  case Sema::TDK_Underqualified: {
559    // FIXME: Should allocate from normal heap so that we can free this later.
560    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
561    Saved->Param = Info.Param;
562    Saved->FirstArg = Info.FirstArg;
563    Saved->SecondArg = Info.SecondArg;
564    Result.Data = Saved;
565    break;
566  }
567
568  case Sema::TDK_SubstitutionFailure:
569    Result.Data = Info.take();
570    break;
571
572  case Sema::TDK_NonDeducedMismatch:
573  case Sema::TDK_FailedOverloadResolution:
574    break;
575  }
576
577  return Result;
578}
579
580void OverloadCandidate::DeductionFailureInfo::Destroy() {
581  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
582  case Sema::TDK_Success:
583  case Sema::TDK_InstantiationDepth:
584  case Sema::TDK_Incomplete:
585  case Sema::TDK_TooManyArguments:
586  case Sema::TDK_TooFewArguments:
587  case Sema::TDK_InvalidExplicitArguments:
588    break;
589
590  case Sema::TDK_Inconsistent:
591  case Sema::TDK_Underqualified:
592    // FIXME: Destroy the data?
593    Data = 0;
594    break;
595
596  case Sema::TDK_SubstitutionFailure:
597    // FIXME: Destroy the template arugment list?
598    Data = 0;
599    break;
600
601  // Unhandled
602  case Sema::TDK_NonDeducedMismatch:
603  case Sema::TDK_FailedOverloadResolution:
604    break;
605  }
606}
607
608TemplateParameter
609OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
610  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
611  case Sema::TDK_Success:
612  case Sema::TDK_InstantiationDepth:
613  case Sema::TDK_TooManyArguments:
614  case Sema::TDK_TooFewArguments:
615  case Sema::TDK_SubstitutionFailure:
616    return TemplateParameter();
617
618  case Sema::TDK_Incomplete:
619  case Sema::TDK_InvalidExplicitArguments:
620    return TemplateParameter::getFromOpaqueValue(Data);
621
622  case Sema::TDK_Inconsistent:
623  case Sema::TDK_Underqualified:
624    return static_cast<DFIParamWithArguments*>(Data)->Param;
625
626  // Unhandled
627  case Sema::TDK_NonDeducedMismatch:
628  case Sema::TDK_FailedOverloadResolution:
629    break;
630  }
631
632  return TemplateParameter();
633}
634
635TemplateArgumentList *
636OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
637  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
638    case Sema::TDK_Success:
639    case Sema::TDK_InstantiationDepth:
640    case Sema::TDK_TooManyArguments:
641    case Sema::TDK_TooFewArguments:
642    case Sema::TDK_Incomplete:
643    case Sema::TDK_InvalidExplicitArguments:
644    case Sema::TDK_Inconsistent:
645    case Sema::TDK_Underqualified:
646      return 0;
647
648    case Sema::TDK_SubstitutionFailure:
649      return static_cast<TemplateArgumentList*>(Data);
650
651    // Unhandled
652    case Sema::TDK_NonDeducedMismatch:
653    case Sema::TDK_FailedOverloadResolution:
654      break;
655  }
656
657  return 0;
658}
659
660const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
661  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
662  case Sema::TDK_Success:
663  case Sema::TDK_InstantiationDepth:
664  case Sema::TDK_Incomplete:
665  case Sema::TDK_TooManyArguments:
666  case Sema::TDK_TooFewArguments:
667  case Sema::TDK_InvalidExplicitArguments:
668  case Sema::TDK_SubstitutionFailure:
669    return 0;
670
671  case Sema::TDK_Inconsistent:
672  case Sema::TDK_Underqualified:
673    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
674
675  // Unhandled
676  case Sema::TDK_NonDeducedMismatch:
677  case Sema::TDK_FailedOverloadResolution:
678    break;
679  }
680
681  return 0;
682}
683
684const TemplateArgument *
685OverloadCandidate::DeductionFailureInfo::getSecondArg() {
686  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
687  case Sema::TDK_Success:
688  case Sema::TDK_InstantiationDepth:
689  case Sema::TDK_Incomplete:
690  case Sema::TDK_TooManyArguments:
691  case Sema::TDK_TooFewArguments:
692  case Sema::TDK_InvalidExplicitArguments:
693  case Sema::TDK_SubstitutionFailure:
694    return 0;
695
696  case Sema::TDK_Inconsistent:
697  case Sema::TDK_Underqualified:
698    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
699
700  // Unhandled
701  case Sema::TDK_NonDeducedMismatch:
702  case Sema::TDK_FailedOverloadResolution:
703    break;
704  }
705
706  return 0;
707}
708
709void OverloadCandidateSet::clear() {
710  for (iterator i = begin(), e = end(); i != e; ++i)
711    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
712      i->Conversions[ii].~ImplicitConversionSequence();
713  NumInlineSequences = 0;
714  Candidates.clear();
715  Functions.clear();
716}
717
718namespace {
719  class UnbridgedCastsSet {
720    struct Entry {
721      Expr **Addr;
722      Expr *Saved;
723    };
724    SmallVector<Entry, 2> Entries;
725
726  public:
727    void save(Sema &S, Expr *&E) {
728      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
729      Entry entry = { &E, E };
730      Entries.push_back(entry);
731      E = S.stripARCUnbridgedCast(E);
732    }
733
734    void restore() {
735      for (SmallVectorImpl<Entry>::iterator
736             i = Entries.begin(), e = Entries.end(); i != e; ++i)
737        *i->Addr = i->Saved;
738    }
739  };
740}
741
742/// checkPlaceholderForOverload - Do any interesting placeholder-like
743/// preprocessing on the given expression.
744///
745/// \param unbridgedCasts a collection to which to add unbridged casts;
746///   without this, they will be immediately diagnosed as errors
747///
748/// Return true on unrecoverable error.
749static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
750                                        UnbridgedCastsSet *unbridgedCasts = 0) {
751  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
752    // We can't handle overloaded expressions here because overload
753    // resolution might reasonably tweak them.
754    if (placeholder->getKind() == BuiltinType::Overload) return false;
755
756    // If the context potentially accepts unbridged ARC casts, strip
757    // the unbridged cast and add it to the collection for later restoration.
758    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
759        unbridgedCasts) {
760      unbridgedCasts->save(S, E);
761      return false;
762    }
763
764    // Go ahead and check everything else.
765    ExprResult result = S.CheckPlaceholderExpr(E);
766    if (result.isInvalid())
767      return true;
768
769    E = result.take();
770    return false;
771  }
772
773  // Nothing to do.
774  return false;
775}
776
777/// checkArgPlaceholdersForOverload - Check a set of call operands for
778/// placeholders.
779static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
780                                            unsigned numArgs,
781                                            UnbridgedCastsSet &unbridged) {
782  for (unsigned i = 0; i != numArgs; ++i)
783    if (checkPlaceholderForOverload(S, args[i], &unbridged))
784      return true;
785
786  return false;
787}
788
789// IsOverload - Determine whether the given New declaration is an
790// overload of the declarations in Old. This routine returns false if
791// New and Old cannot be overloaded, e.g., if New has the same
792// signature as some function in Old (C++ 1.3.10) or if the Old
793// declarations aren't functions (or function templates) at all. When
794// it does return false, MatchedDecl will point to the decl that New
795// cannot be overloaded with.  This decl may be a UsingShadowDecl on
796// top of the underlying declaration.
797//
798// Example: Given the following input:
799//
800//   void f(int, float); // #1
801//   void f(int, int); // #2
802//   int f(int, int); // #3
803//
804// When we process #1, there is no previous declaration of "f",
805// so IsOverload will not be used.
806//
807// When we process #2, Old contains only the FunctionDecl for #1.  By
808// comparing the parameter types, we see that #1 and #2 are overloaded
809// (since they have different signatures), so this routine returns
810// false; MatchedDecl is unchanged.
811//
812// When we process #3, Old is an overload set containing #1 and #2. We
813// compare the signatures of #3 to #1 (they're overloaded, so we do
814// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
815// identical (return types of functions are not part of the
816// signature), IsOverload returns false and MatchedDecl will be set to
817// point to the FunctionDecl for #2.
818//
819// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
820// into a class by a using declaration.  The rules for whether to hide
821// shadow declarations ignore some properties which otherwise figure
822// into a function template's signature.
823Sema::OverloadKind
824Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
825                    NamedDecl *&Match, bool NewIsUsingDecl) {
826  for (LookupResult::iterator I = Old.begin(), E = Old.end();
827         I != E; ++I) {
828    NamedDecl *OldD = *I;
829
830    bool OldIsUsingDecl = false;
831    if (isa<UsingShadowDecl>(OldD)) {
832      OldIsUsingDecl = true;
833
834      // We can always introduce two using declarations into the same
835      // context, even if they have identical signatures.
836      if (NewIsUsingDecl) continue;
837
838      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
839    }
840
841    // If either declaration was introduced by a using declaration,
842    // we'll need to use slightly different rules for matching.
843    // Essentially, these rules are the normal rules, except that
844    // function templates hide function templates with different
845    // return types or template parameter lists.
846    bool UseMemberUsingDeclRules =
847      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
848
849    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
850      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
851        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
852          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
853          continue;
854        }
855
856        Match = *I;
857        return Ovl_Match;
858      }
859    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
860      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
861        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
862          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
863          continue;
864        }
865
866        Match = *I;
867        return Ovl_Match;
868      }
869    } else if (isa<UsingDecl>(OldD)) {
870      // We can overload with these, which can show up when doing
871      // redeclaration checks for UsingDecls.
872      assert(Old.getLookupKind() == LookupUsingDeclName);
873    } else if (isa<TagDecl>(OldD)) {
874      // We can always overload with tags by hiding them.
875    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
876      // Optimistically assume that an unresolved using decl will
877      // overload; if it doesn't, we'll have to diagnose during
878      // template instantiation.
879    } else {
880      // (C++ 13p1):
881      //   Only function declarations can be overloaded; object and type
882      //   declarations cannot be overloaded.
883      Match = *I;
884      return Ovl_NonFunction;
885    }
886  }
887
888  return Ovl_Overload;
889}
890
891bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
892                      bool UseUsingDeclRules) {
893  // If both of the functions are extern "C", then they are not
894  // overloads.
895  if (Old->isExternC() && New->isExternC())
896    return false;
897
898  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
899  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
900
901  // C++ [temp.fct]p2:
902  //   A function template can be overloaded with other function templates
903  //   and with normal (non-template) functions.
904  if ((OldTemplate == 0) != (NewTemplate == 0))
905    return true;
906
907  // Is the function New an overload of the function Old?
908  QualType OldQType = Context.getCanonicalType(Old->getType());
909  QualType NewQType = Context.getCanonicalType(New->getType());
910
911  // Compare the signatures (C++ 1.3.10) of the two functions to
912  // determine whether they are overloads. If we find any mismatch
913  // in the signature, they are overloads.
914
915  // If either of these functions is a K&R-style function (no
916  // prototype), then we consider them to have matching signatures.
917  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
918      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
919    return false;
920
921  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
922  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
923
924  // The signature of a function includes the types of its
925  // parameters (C++ 1.3.10), which includes the presence or absence
926  // of the ellipsis; see C++ DR 357).
927  if (OldQType != NewQType &&
928      (OldType->getNumArgs() != NewType->getNumArgs() ||
929       OldType->isVariadic() != NewType->isVariadic() ||
930       !FunctionArgTypesAreEqual(OldType, NewType)))
931    return true;
932
933  // C++ [temp.over.link]p4:
934  //   The signature of a function template consists of its function
935  //   signature, its return type and its template parameter list. The names
936  //   of the template parameters are significant only for establishing the
937  //   relationship between the template parameters and the rest of the
938  //   signature.
939  //
940  // We check the return type and template parameter lists for function
941  // templates first; the remaining checks follow.
942  //
943  // However, we don't consider either of these when deciding whether
944  // a member introduced by a shadow declaration is hidden.
945  if (!UseUsingDeclRules && NewTemplate &&
946      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
947                                       OldTemplate->getTemplateParameters(),
948                                       false, TPL_TemplateMatch) ||
949       OldType->getResultType() != NewType->getResultType()))
950    return true;
951
952  // If the function is a class member, its signature includes the
953  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
954  //
955  // As part of this, also check whether one of the member functions
956  // is static, in which case they are not overloads (C++
957  // 13.1p2). While not part of the definition of the signature,
958  // this check is important to determine whether these functions
959  // can be overloaded.
960  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
961  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
962  if (OldMethod && NewMethod &&
963      !OldMethod->isStatic() && !NewMethod->isStatic() &&
964      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
965       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
966    if (!UseUsingDeclRules &&
967        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
968        (OldMethod->getRefQualifier() == RQ_None ||
969         NewMethod->getRefQualifier() == RQ_None)) {
970      // C++0x [over.load]p2:
971      //   - Member function declarations with the same name and the same
972      //     parameter-type-list as well as member function template
973      //     declarations with the same name, the same parameter-type-list, and
974      //     the same template parameter lists cannot be overloaded if any of
975      //     them, but not all, have a ref-qualifier (8.3.5).
976      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
977        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
978      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
979    }
980
981    return true;
982  }
983
984  // The signatures match; this is not an overload.
985  return false;
986}
987
988/// \brief Checks availability of the function depending on the current
989/// function context. Inside an unavailable function, unavailability is ignored.
990///
991/// \returns true if \arg FD is unavailable and current context is inside
992/// an available function, false otherwise.
993bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
994  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
995}
996
997/// \brief Tries a user-defined conversion from From to ToType.
998///
999/// Produces an implicit conversion sequence for when a standard conversion
1000/// is not an option. See TryImplicitConversion for more information.
1001static ImplicitConversionSequence
1002TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1003                         bool SuppressUserConversions,
1004                         bool AllowExplicit,
1005                         bool InOverloadResolution,
1006                         bool CStyle,
1007                         bool AllowObjCWritebackConversion) {
1008  ImplicitConversionSequence ICS;
1009
1010  if (SuppressUserConversions) {
1011    // We're not in the case above, so there is no conversion that
1012    // we can perform.
1013    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1014    return ICS;
1015  }
1016
1017  // Attempt user-defined conversion.
1018  OverloadCandidateSet Conversions(From->getExprLoc());
1019  OverloadingResult UserDefResult
1020    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1021                              AllowExplicit);
1022
1023  if (UserDefResult == OR_Success) {
1024    ICS.setUserDefined();
1025    // C++ [over.ics.user]p4:
1026    //   A conversion of an expression of class type to the same class
1027    //   type is given Exact Match rank, and a conversion of an
1028    //   expression of class type to a base class of that type is
1029    //   given Conversion rank, in spite of the fact that a copy
1030    //   constructor (i.e., a user-defined conversion function) is
1031    //   called for those cases.
1032    if (CXXConstructorDecl *Constructor
1033          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1034      QualType FromCanon
1035        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1036      QualType ToCanon
1037        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1038      if (Constructor->isCopyConstructor() &&
1039          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1040        // Turn this into a "standard" conversion sequence, so that it
1041        // gets ranked with standard conversion sequences.
1042        ICS.setStandard();
1043        ICS.Standard.setAsIdentityConversion();
1044        ICS.Standard.setFromType(From->getType());
1045        ICS.Standard.setAllToTypes(ToType);
1046        ICS.Standard.CopyConstructor = Constructor;
1047        if (ToCanon != FromCanon)
1048          ICS.Standard.Second = ICK_Derived_To_Base;
1049      }
1050    }
1051
1052    // C++ [over.best.ics]p4:
1053    //   However, when considering the argument of a user-defined
1054    //   conversion function that is a candidate by 13.3.1.3 when
1055    //   invoked for the copying of the temporary in the second step
1056    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1057    //   13.3.1.6 in all cases, only standard conversion sequences and
1058    //   ellipsis conversion sequences are allowed.
1059    if (SuppressUserConversions && ICS.isUserDefined()) {
1060      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1061    }
1062  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1063    ICS.setAmbiguous();
1064    ICS.Ambiguous.setFromType(From->getType());
1065    ICS.Ambiguous.setToType(ToType);
1066    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1067         Cand != Conversions.end(); ++Cand)
1068      if (Cand->Viable)
1069        ICS.Ambiguous.addConversion(Cand->Function);
1070  } else {
1071    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1072  }
1073
1074  return ICS;
1075}
1076
1077/// TryImplicitConversion - Attempt to perform an implicit conversion
1078/// from the given expression (Expr) to the given type (ToType). This
1079/// function returns an implicit conversion sequence that can be used
1080/// to perform the initialization. Given
1081///
1082///   void f(float f);
1083///   void g(int i) { f(i); }
1084///
1085/// this routine would produce an implicit conversion sequence to
1086/// describe the initialization of f from i, which will be a standard
1087/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1088/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1089//
1090/// Note that this routine only determines how the conversion can be
1091/// performed; it does not actually perform the conversion. As such,
1092/// it will not produce any diagnostics if no conversion is available,
1093/// but will instead return an implicit conversion sequence of kind
1094/// "BadConversion".
1095///
1096/// If @p SuppressUserConversions, then user-defined conversions are
1097/// not permitted.
1098/// If @p AllowExplicit, then explicit user-defined conversions are
1099/// permitted.
1100///
1101/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1102/// writeback conversion, which allows __autoreleasing id* parameters to
1103/// be initialized with __strong id* or __weak id* arguments.
1104static ImplicitConversionSequence
1105TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1106                      bool SuppressUserConversions,
1107                      bool AllowExplicit,
1108                      bool InOverloadResolution,
1109                      bool CStyle,
1110                      bool AllowObjCWritebackConversion) {
1111  ImplicitConversionSequence ICS;
1112  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1113                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1114    ICS.setStandard();
1115    return ICS;
1116  }
1117
1118  if (!S.getLangOpts().CPlusPlus) {
1119    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1120    return ICS;
1121  }
1122
1123  // C++ [over.ics.user]p4:
1124  //   A conversion of an expression of class type to the same class
1125  //   type is given Exact Match rank, and a conversion of an
1126  //   expression of class type to a base class of that type is
1127  //   given Conversion rank, in spite of the fact that a copy/move
1128  //   constructor (i.e., a user-defined conversion function) is
1129  //   called for those cases.
1130  QualType FromType = From->getType();
1131  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1132      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1133       S.IsDerivedFrom(FromType, ToType))) {
1134    ICS.setStandard();
1135    ICS.Standard.setAsIdentityConversion();
1136    ICS.Standard.setFromType(FromType);
1137    ICS.Standard.setAllToTypes(ToType);
1138
1139    // We don't actually check at this point whether there is a valid
1140    // copy/move constructor, since overloading just assumes that it
1141    // exists. When we actually perform initialization, we'll find the
1142    // appropriate constructor to copy the returned object, if needed.
1143    ICS.Standard.CopyConstructor = 0;
1144
1145    // Determine whether this is considered a derived-to-base conversion.
1146    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1147      ICS.Standard.Second = ICK_Derived_To_Base;
1148
1149    return ICS;
1150  }
1151
1152  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1153                                  AllowExplicit, InOverloadResolution, CStyle,
1154                                  AllowObjCWritebackConversion);
1155}
1156
1157ImplicitConversionSequence
1158Sema::TryImplicitConversion(Expr *From, QualType ToType,
1159                            bool SuppressUserConversions,
1160                            bool AllowExplicit,
1161                            bool InOverloadResolution,
1162                            bool CStyle,
1163                            bool AllowObjCWritebackConversion) {
1164  return clang::TryImplicitConversion(*this, From, ToType,
1165                                      SuppressUserConversions, AllowExplicit,
1166                                      InOverloadResolution, CStyle,
1167                                      AllowObjCWritebackConversion);
1168}
1169
1170/// PerformImplicitConversion - Perform an implicit conversion of the
1171/// expression From to the type ToType. Returns the
1172/// converted expression. Flavor is the kind of conversion we're
1173/// performing, used in the error message. If @p AllowExplicit,
1174/// explicit user-defined conversions are permitted.
1175ExprResult
1176Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1177                                AssignmentAction Action, bool AllowExplicit) {
1178  ImplicitConversionSequence ICS;
1179  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1180}
1181
1182ExprResult
1183Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1184                                AssignmentAction Action, bool AllowExplicit,
1185                                ImplicitConversionSequence& ICS) {
1186  if (checkPlaceholderForOverload(*this, From))
1187    return ExprError();
1188
1189  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1190  bool AllowObjCWritebackConversion
1191    = getLangOpts().ObjCAutoRefCount &&
1192      (Action == AA_Passing || Action == AA_Sending);
1193
1194  ICS = clang::TryImplicitConversion(*this, From, ToType,
1195                                     /*SuppressUserConversions=*/false,
1196                                     AllowExplicit,
1197                                     /*InOverloadResolution=*/false,
1198                                     /*CStyle=*/false,
1199                                     AllowObjCWritebackConversion);
1200  return PerformImplicitConversion(From, ToType, ICS, Action);
1201}
1202
1203/// \brief Determine whether the conversion from FromType to ToType is a valid
1204/// conversion that strips "noreturn" off the nested function type.
1205bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1206                                QualType &ResultTy) {
1207  if (Context.hasSameUnqualifiedType(FromType, ToType))
1208    return false;
1209
1210  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1211  // where F adds one of the following at most once:
1212  //   - a pointer
1213  //   - a member pointer
1214  //   - a block pointer
1215  CanQualType CanTo = Context.getCanonicalType(ToType);
1216  CanQualType CanFrom = Context.getCanonicalType(FromType);
1217  Type::TypeClass TyClass = CanTo->getTypeClass();
1218  if (TyClass != CanFrom->getTypeClass()) return false;
1219  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1220    if (TyClass == Type::Pointer) {
1221      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1222      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1223    } else if (TyClass == Type::BlockPointer) {
1224      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1225      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1226    } else if (TyClass == Type::MemberPointer) {
1227      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1228      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1229    } else {
1230      return false;
1231    }
1232
1233    TyClass = CanTo->getTypeClass();
1234    if (TyClass != CanFrom->getTypeClass()) return false;
1235    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1236      return false;
1237  }
1238
1239  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1240  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1241  if (!EInfo.getNoReturn()) return false;
1242
1243  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1244  assert(QualType(FromFn, 0).isCanonical());
1245  if (QualType(FromFn, 0) != CanTo) return false;
1246
1247  ResultTy = ToType;
1248  return true;
1249}
1250
1251/// \brief Determine whether the conversion from FromType to ToType is a valid
1252/// vector conversion.
1253///
1254/// \param ICK Will be set to the vector conversion kind, if this is a vector
1255/// conversion.
1256static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1257                               QualType ToType, ImplicitConversionKind &ICK) {
1258  // We need at least one of these types to be a vector type to have a vector
1259  // conversion.
1260  if (!ToType->isVectorType() && !FromType->isVectorType())
1261    return false;
1262
1263  // Identical types require no conversions.
1264  if (Context.hasSameUnqualifiedType(FromType, ToType))
1265    return false;
1266
1267  // There are no conversions between extended vector types, only identity.
1268  if (ToType->isExtVectorType()) {
1269    // There are no conversions between extended vector types other than the
1270    // identity conversion.
1271    if (FromType->isExtVectorType())
1272      return false;
1273
1274    // Vector splat from any arithmetic type to a vector.
1275    if (FromType->isArithmeticType()) {
1276      ICK = ICK_Vector_Splat;
1277      return true;
1278    }
1279  }
1280
1281  // We can perform the conversion between vector types in the following cases:
1282  // 1)vector types are equivalent AltiVec and GCC vector types
1283  // 2)lax vector conversions are permitted and the vector types are of the
1284  //   same size
1285  if (ToType->isVectorType() && FromType->isVectorType()) {
1286    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1287        (Context.getLangOpts().LaxVectorConversions &&
1288         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1289      ICK = ICK_Vector_Conversion;
1290      return true;
1291    }
1292  }
1293
1294  return false;
1295}
1296
1297static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1298                                bool InOverloadResolution,
1299                                StandardConversionSequence &SCS,
1300                                bool CStyle);
1301
1302/// IsStandardConversion - Determines whether there is a standard
1303/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1304/// expression From to the type ToType. Standard conversion sequences
1305/// only consider non-class types; for conversions that involve class
1306/// types, use TryImplicitConversion. If a conversion exists, SCS will
1307/// contain the standard conversion sequence required to perform this
1308/// conversion and this routine will return true. Otherwise, this
1309/// routine will return false and the value of SCS is unspecified.
1310static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1311                                 bool InOverloadResolution,
1312                                 StandardConversionSequence &SCS,
1313                                 bool CStyle,
1314                                 bool AllowObjCWritebackConversion) {
1315  QualType FromType = From->getType();
1316
1317  // Standard conversions (C++ [conv])
1318  SCS.setAsIdentityConversion();
1319  SCS.DeprecatedStringLiteralToCharPtr = false;
1320  SCS.IncompatibleObjC = false;
1321  SCS.setFromType(FromType);
1322  SCS.CopyConstructor = 0;
1323
1324  // There are no standard conversions for class types in C++, so
1325  // abort early. When overloading in C, however, we do permit
1326  if (FromType->isRecordType() || ToType->isRecordType()) {
1327    if (S.getLangOpts().CPlusPlus)
1328      return false;
1329
1330    // When we're overloading in C, we allow, as standard conversions,
1331  }
1332
1333  // The first conversion can be an lvalue-to-rvalue conversion,
1334  // array-to-pointer conversion, or function-to-pointer conversion
1335  // (C++ 4p1).
1336
1337  if (FromType == S.Context.OverloadTy) {
1338    DeclAccessPair AccessPair;
1339    if (FunctionDecl *Fn
1340          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1341                                                 AccessPair)) {
1342      // We were able to resolve the address of the overloaded function,
1343      // so we can convert to the type of that function.
1344      FromType = Fn->getType();
1345
1346      // we can sometimes resolve &foo<int> regardless of ToType, so check
1347      // if the type matches (identity) or we are converting to bool
1348      if (!S.Context.hasSameUnqualifiedType(
1349                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1350        QualType resultTy;
1351        // if the function type matches except for [[noreturn]], it's ok
1352        if (!S.IsNoReturnConversion(FromType,
1353              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1354          // otherwise, only a boolean conversion is standard
1355          if (!ToType->isBooleanType())
1356            return false;
1357      }
1358
1359      // Check if the "from" expression is taking the address of an overloaded
1360      // function and recompute the FromType accordingly. Take advantage of the
1361      // fact that non-static member functions *must* have such an address-of
1362      // expression.
1363      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1364      if (Method && !Method->isStatic()) {
1365        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1366               "Non-unary operator on non-static member address");
1367        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1368               == UO_AddrOf &&
1369               "Non-address-of operator on non-static member address");
1370        const Type *ClassType
1371          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1372        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1373      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1374        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1375               UO_AddrOf &&
1376               "Non-address-of operator for overloaded function expression");
1377        FromType = S.Context.getPointerType(FromType);
1378      }
1379
1380      // Check that we've computed the proper type after overload resolution.
1381      assert(S.Context.hasSameType(
1382        FromType,
1383        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1384    } else {
1385      return false;
1386    }
1387  }
1388  // Lvalue-to-rvalue conversion (C++11 4.1):
1389  //   A glvalue (3.10) of a non-function, non-array type T can
1390  //   be converted to a prvalue.
1391  bool argIsLValue = From->isGLValue();
1392  if (argIsLValue &&
1393      !FromType->isFunctionType() && !FromType->isArrayType() &&
1394      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1395    SCS.First = ICK_Lvalue_To_Rvalue;
1396
1397    // C11 6.3.2.1p2:
1398    //   ... if the lvalue has atomic type, the value has the non-atomic version
1399    //   of the type of the lvalue ...
1400    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1401      FromType = Atomic->getValueType();
1402
1403    // If T is a non-class type, the type of the rvalue is the
1404    // cv-unqualified version of T. Otherwise, the type of the rvalue
1405    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1406    // just strip the qualifiers because they don't matter.
1407    FromType = FromType.getUnqualifiedType();
1408  } else if (FromType->isArrayType()) {
1409    // Array-to-pointer conversion (C++ 4.2)
1410    SCS.First = ICK_Array_To_Pointer;
1411
1412    // An lvalue or rvalue of type "array of N T" or "array of unknown
1413    // bound of T" can be converted to an rvalue of type "pointer to
1414    // T" (C++ 4.2p1).
1415    FromType = S.Context.getArrayDecayedType(FromType);
1416
1417    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1418      // This conversion is deprecated. (C++ D.4).
1419      SCS.DeprecatedStringLiteralToCharPtr = true;
1420
1421      // For the purpose of ranking in overload resolution
1422      // (13.3.3.1.1), this conversion is considered an
1423      // array-to-pointer conversion followed by a qualification
1424      // conversion (4.4). (C++ 4.2p2)
1425      SCS.Second = ICK_Identity;
1426      SCS.Third = ICK_Qualification;
1427      SCS.QualificationIncludesObjCLifetime = false;
1428      SCS.setAllToTypes(FromType);
1429      return true;
1430    }
1431  } else if (FromType->isFunctionType() && argIsLValue) {
1432    // Function-to-pointer conversion (C++ 4.3).
1433    SCS.First = ICK_Function_To_Pointer;
1434
1435    // An lvalue of function type T can be converted to an rvalue of
1436    // type "pointer to T." The result is a pointer to the
1437    // function. (C++ 4.3p1).
1438    FromType = S.Context.getPointerType(FromType);
1439  } else {
1440    // We don't require any conversions for the first step.
1441    SCS.First = ICK_Identity;
1442  }
1443  SCS.setToType(0, FromType);
1444
1445  // The second conversion can be an integral promotion, floating
1446  // point promotion, integral conversion, floating point conversion,
1447  // floating-integral conversion, pointer conversion,
1448  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1449  // For overloading in C, this can also be a "compatible-type"
1450  // conversion.
1451  bool IncompatibleObjC = false;
1452  ImplicitConversionKind SecondICK = ICK_Identity;
1453  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1454    // The unqualified versions of the types are the same: there's no
1455    // conversion to do.
1456    SCS.Second = ICK_Identity;
1457  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1458    // Integral promotion (C++ 4.5).
1459    SCS.Second = ICK_Integral_Promotion;
1460    FromType = ToType.getUnqualifiedType();
1461  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1462    // Floating point promotion (C++ 4.6).
1463    SCS.Second = ICK_Floating_Promotion;
1464    FromType = ToType.getUnqualifiedType();
1465  } else if (S.IsComplexPromotion(FromType, ToType)) {
1466    // Complex promotion (Clang extension)
1467    SCS.Second = ICK_Complex_Promotion;
1468    FromType = ToType.getUnqualifiedType();
1469  } else if (ToType->isBooleanType() &&
1470             (FromType->isArithmeticType() ||
1471              FromType->isAnyPointerType() ||
1472              FromType->isBlockPointerType() ||
1473              FromType->isMemberPointerType() ||
1474              FromType->isNullPtrType())) {
1475    // Boolean conversions (C++ 4.12).
1476    SCS.Second = ICK_Boolean_Conversion;
1477    FromType = S.Context.BoolTy;
1478  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1479             ToType->isIntegralType(S.Context)) {
1480    // Integral conversions (C++ 4.7).
1481    SCS.Second = ICK_Integral_Conversion;
1482    FromType = ToType.getUnqualifiedType();
1483  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1484    // Complex conversions (C99 6.3.1.6)
1485    SCS.Second = ICK_Complex_Conversion;
1486    FromType = ToType.getUnqualifiedType();
1487  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1488             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1489    // Complex-real conversions (C99 6.3.1.7)
1490    SCS.Second = ICK_Complex_Real;
1491    FromType = ToType.getUnqualifiedType();
1492  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1493    // Floating point conversions (C++ 4.8).
1494    SCS.Second = ICK_Floating_Conversion;
1495    FromType = ToType.getUnqualifiedType();
1496  } else if ((FromType->isRealFloatingType() &&
1497              ToType->isIntegralType(S.Context)) ||
1498             (FromType->isIntegralOrUnscopedEnumerationType() &&
1499              ToType->isRealFloatingType())) {
1500    // Floating-integral conversions (C++ 4.9).
1501    SCS.Second = ICK_Floating_Integral;
1502    FromType = ToType.getUnqualifiedType();
1503  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1504    SCS.Second = ICK_Block_Pointer_Conversion;
1505  } else if (AllowObjCWritebackConversion &&
1506             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1507    SCS.Second = ICK_Writeback_Conversion;
1508  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1509                                   FromType, IncompatibleObjC)) {
1510    // Pointer conversions (C++ 4.10).
1511    SCS.Second = ICK_Pointer_Conversion;
1512    SCS.IncompatibleObjC = IncompatibleObjC;
1513    FromType = FromType.getUnqualifiedType();
1514  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1515                                         InOverloadResolution, FromType)) {
1516    // Pointer to member conversions (4.11).
1517    SCS.Second = ICK_Pointer_Member;
1518  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1519    SCS.Second = SecondICK;
1520    FromType = ToType.getUnqualifiedType();
1521  } else if (!S.getLangOpts().CPlusPlus &&
1522             S.Context.typesAreCompatible(ToType, FromType)) {
1523    // Compatible conversions (Clang extension for C function overloading)
1524    SCS.Second = ICK_Compatible_Conversion;
1525    FromType = ToType.getUnqualifiedType();
1526  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1527    // Treat a conversion that strips "noreturn" as an identity conversion.
1528    SCS.Second = ICK_NoReturn_Adjustment;
1529  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1530                                             InOverloadResolution,
1531                                             SCS, CStyle)) {
1532    SCS.Second = ICK_TransparentUnionConversion;
1533    FromType = ToType;
1534  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1535                                 CStyle)) {
1536    // tryAtomicConversion has updated the standard conversion sequence
1537    // appropriately.
1538    return true;
1539  } else {
1540    // No second conversion required.
1541    SCS.Second = ICK_Identity;
1542  }
1543  SCS.setToType(1, FromType);
1544
1545  QualType CanonFrom;
1546  QualType CanonTo;
1547  // The third conversion can be a qualification conversion (C++ 4p1).
1548  bool ObjCLifetimeConversion;
1549  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1550                                  ObjCLifetimeConversion)) {
1551    SCS.Third = ICK_Qualification;
1552    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1553    FromType = ToType;
1554    CanonFrom = S.Context.getCanonicalType(FromType);
1555    CanonTo = S.Context.getCanonicalType(ToType);
1556  } else {
1557    // No conversion required
1558    SCS.Third = ICK_Identity;
1559
1560    // C++ [over.best.ics]p6:
1561    //   [...] Any difference in top-level cv-qualification is
1562    //   subsumed by the initialization itself and does not constitute
1563    //   a conversion. [...]
1564    CanonFrom = S.Context.getCanonicalType(FromType);
1565    CanonTo = S.Context.getCanonicalType(ToType);
1566    if (CanonFrom.getLocalUnqualifiedType()
1567                                       == CanonTo.getLocalUnqualifiedType() &&
1568        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1569         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1570         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1571      FromType = ToType;
1572      CanonFrom = CanonTo;
1573    }
1574  }
1575  SCS.setToType(2, FromType);
1576
1577  // If we have not converted the argument type to the parameter type,
1578  // this is a bad conversion sequence.
1579  if (CanonFrom != CanonTo)
1580    return false;
1581
1582  return true;
1583}
1584
1585static bool
1586IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1587                                     QualType &ToType,
1588                                     bool InOverloadResolution,
1589                                     StandardConversionSequence &SCS,
1590                                     bool CStyle) {
1591
1592  const RecordType *UT = ToType->getAsUnionType();
1593  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1594    return false;
1595  // The field to initialize within the transparent union.
1596  RecordDecl *UD = UT->getDecl();
1597  // It's compatible if the expression matches any of the fields.
1598  for (RecordDecl::field_iterator it = UD->field_begin(),
1599       itend = UD->field_end();
1600       it != itend; ++it) {
1601    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1602                             CStyle, /*ObjCWritebackConversion=*/false)) {
1603      ToType = it->getType();
1604      return true;
1605    }
1606  }
1607  return false;
1608}
1609
1610/// IsIntegralPromotion - Determines whether the conversion from the
1611/// expression From (whose potentially-adjusted type is FromType) to
1612/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1613/// sets PromotedType to the promoted type.
1614bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1615  const BuiltinType *To = ToType->getAs<BuiltinType>();
1616  // All integers are built-in.
1617  if (!To) {
1618    return false;
1619  }
1620
1621  // An rvalue of type char, signed char, unsigned char, short int, or
1622  // unsigned short int can be converted to an rvalue of type int if
1623  // int can represent all the values of the source type; otherwise,
1624  // the source rvalue can be converted to an rvalue of type unsigned
1625  // int (C++ 4.5p1).
1626  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1627      !FromType->isEnumeralType()) {
1628    if (// We can promote any signed, promotable integer type to an int
1629        (FromType->isSignedIntegerType() ||
1630         // We can promote any unsigned integer type whose size is
1631         // less than int to an int.
1632         (!FromType->isSignedIntegerType() &&
1633          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1634      return To->getKind() == BuiltinType::Int;
1635    }
1636
1637    return To->getKind() == BuiltinType::UInt;
1638  }
1639
1640  // C++0x [conv.prom]p3:
1641  //   A prvalue of an unscoped enumeration type whose underlying type is not
1642  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1643  //   following types that can represent all the values of the enumeration
1644  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1645  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1646  //   long long int. If none of the types in that list can represent all the
1647  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1648  //   type can be converted to an rvalue a prvalue of the extended integer type
1649  //   with lowest integer conversion rank (4.13) greater than the rank of long
1650  //   long in which all the values of the enumeration can be represented. If
1651  //   there are two such extended types, the signed one is chosen.
1652  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1653    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1654    // provided for a scoped enumeration.
1655    if (FromEnumType->getDecl()->isScoped())
1656      return false;
1657
1658    // We have already pre-calculated the promotion type, so this is trivial.
1659    if (ToType->isIntegerType() &&
1660        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1661      return Context.hasSameUnqualifiedType(ToType,
1662                                FromEnumType->getDecl()->getPromotionType());
1663  }
1664
1665  // C++0x [conv.prom]p2:
1666  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1667  //   to an rvalue a prvalue of the first of the following types that can
1668  //   represent all the values of its underlying type: int, unsigned int,
1669  //   long int, unsigned long int, long long int, or unsigned long long int.
1670  //   If none of the types in that list can represent all the values of its
1671  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1672  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1673  //   type.
1674  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1675      ToType->isIntegerType()) {
1676    // Determine whether the type we're converting from is signed or
1677    // unsigned.
1678    bool FromIsSigned = FromType->isSignedIntegerType();
1679    uint64_t FromSize = Context.getTypeSize(FromType);
1680
1681    // The types we'll try to promote to, in the appropriate
1682    // order. Try each of these types.
1683    QualType PromoteTypes[6] = {
1684      Context.IntTy, Context.UnsignedIntTy,
1685      Context.LongTy, Context.UnsignedLongTy ,
1686      Context.LongLongTy, Context.UnsignedLongLongTy
1687    };
1688    for (int Idx = 0; Idx < 6; ++Idx) {
1689      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1690      if (FromSize < ToSize ||
1691          (FromSize == ToSize &&
1692           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1693        // We found the type that we can promote to. If this is the
1694        // type we wanted, we have a promotion. Otherwise, no
1695        // promotion.
1696        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1697      }
1698    }
1699  }
1700
1701  // An rvalue for an integral bit-field (9.6) can be converted to an
1702  // rvalue of type int if int can represent all the values of the
1703  // bit-field; otherwise, it can be converted to unsigned int if
1704  // unsigned int can represent all the values of the bit-field. If
1705  // the bit-field is larger yet, no integral promotion applies to
1706  // it. If the bit-field has an enumerated type, it is treated as any
1707  // other value of that type for promotion purposes (C++ 4.5p3).
1708  // FIXME: We should delay checking of bit-fields until we actually perform the
1709  // conversion.
1710  using llvm::APSInt;
1711  if (From)
1712    if (FieldDecl *MemberDecl = From->getBitField()) {
1713      APSInt BitWidth;
1714      if (FromType->isIntegralType(Context) &&
1715          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1716        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1717        ToSize = Context.getTypeSize(ToType);
1718
1719        // Are we promoting to an int from a bitfield that fits in an int?
1720        if (BitWidth < ToSize ||
1721            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1722          return To->getKind() == BuiltinType::Int;
1723        }
1724
1725        // Are we promoting to an unsigned int from an unsigned bitfield
1726        // that fits into an unsigned int?
1727        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1728          return To->getKind() == BuiltinType::UInt;
1729        }
1730
1731        return false;
1732      }
1733    }
1734
1735  // An rvalue of type bool can be converted to an rvalue of type int,
1736  // with false becoming zero and true becoming one (C++ 4.5p4).
1737  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1738    return true;
1739  }
1740
1741  return false;
1742}
1743
1744/// IsFloatingPointPromotion - Determines whether the conversion from
1745/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1746/// returns true and sets PromotedType to the promoted type.
1747bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1748  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1749    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1750      /// An rvalue of type float can be converted to an rvalue of type
1751      /// double. (C++ 4.6p1).
1752      if (FromBuiltin->getKind() == BuiltinType::Float &&
1753          ToBuiltin->getKind() == BuiltinType::Double)
1754        return true;
1755
1756      // C99 6.3.1.5p1:
1757      //   When a float is promoted to double or long double, or a
1758      //   double is promoted to long double [...].
1759      if (!getLangOpts().CPlusPlus &&
1760          (FromBuiltin->getKind() == BuiltinType::Float ||
1761           FromBuiltin->getKind() == BuiltinType::Double) &&
1762          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1763        return true;
1764
1765      // Half can be promoted to float.
1766      if (FromBuiltin->getKind() == BuiltinType::Half &&
1767          ToBuiltin->getKind() == BuiltinType::Float)
1768        return true;
1769    }
1770
1771  return false;
1772}
1773
1774/// \brief Determine if a conversion is a complex promotion.
1775///
1776/// A complex promotion is defined as a complex -> complex conversion
1777/// where the conversion between the underlying real types is a
1778/// floating-point or integral promotion.
1779bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1780  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1781  if (!FromComplex)
1782    return false;
1783
1784  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1785  if (!ToComplex)
1786    return false;
1787
1788  return IsFloatingPointPromotion(FromComplex->getElementType(),
1789                                  ToComplex->getElementType()) ||
1790    IsIntegralPromotion(0, FromComplex->getElementType(),
1791                        ToComplex->getElementType());
1792}
1793
1794/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1795/// the pointer type FromPtr to a pointer to type ToPointee, with the
1796/// same type qualifiers as FromPtr has on its pointee type. ToType,
1797/// if non-empty, will be a pointer to ToType that may or may not have
1798/// the right set of qualifiers on its pointee.
1799///
1800static QualType
1801BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1802                                   QualType ToPointee, QualType ToType,
1803                                   ASTContext &Context,
1804                                   bool StripObjCLifetime = false) {
1805  assert((FromPtr->getTypeClass() == Type::Pointer ||
1806          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1807         "Invalid similarly-qualified pointer type");
1808
1809  /// Conversions to 'id' subsume cv-qualifier conversions.
1810  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1811    return ToType.getUnqualifiedType();
1812
1813  QualType CanonFromPointee
1814    = Context.getCanonicalType(FromPtr->getPointeeType());
1815  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1816  Qualifiers Quals = CanonFromPointee.getQualifiers();
1817
1818  if (StripObjCLifetime)
1819    Quals.removeObjCLifetime();
1820
1821  // Exact qualifier match -> return the pointer type we're converting to.
1822  if (CanonToPointee.getLocalQualifiers() == Quals) {
1823    // ToType is exactly what we need. Return it.
1824    if (!ToType.isNull())
1825      return ToType.getUnqualifiedType();
1826
1827    // Build a pointer to ToPointee. It has the right qualifiers
1828    // already.
1829    if (isa<ObjCObjectPointerType>(ToType))
1830      return Context.getObjCObjectPointerType(ToPointee);
1831    return Context.getPointerType(ToPointee);
1832  }
1833
1834  // Just build a canonical type that has the right qualifiers.
1835  QualType QualifiedCanonToPointee
1836    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1837
1838  if (isa<ObjCObjectPointerType>(ToType))
1839    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1840  return Context.getPointerType(QualifiedCanonToPointee);
1841}
1842
1843static bool isNullPointerConstantForConversion(Expr *Expr,
1844                                               bool InOverloadResolution,
1845                                               ASTContext &Context) {
1846  // Handle value-dependent integral null pointer constants correctly.
1847  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1848  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1849      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1850    return !InOverloadResolution;
1851
1852  return Expr->isNullPointerConstant(Context,
1853                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1854                                        : Expr::NPC_ValueDependentIsNull);
1855}
1856
1857/// IsPointerConversion - Determines whether the conversion of the
1858/// expression From, which has the (possibly adjusted) type FromType,
1859/// can be converted to the type ToType via a pointer conversion (C++
1860/// 4.10). If so, returns true and places the converted type (that
1861/// might differ from ToType in its cv-qualifiers at some level) into
1862/// ConvertedType.
1863///
1864/// This routine also supports conversions to and from block pointers
1865/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1866/// pointers to interfaces. FIXME: Once we've determined the
1867/// appropriate overloading rules for Objective-C, we may want to
1868/// split the Objective-C checks into a different routine; however,
1869/// GCC seems to consider all of these conversions to be pointer
1870/// conversions, so for now they live here. IncompatibleObjC will be
1871/// set if the conversion is an allowed Objective-C conversion that
1872/// should result in a warning.
1873bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1874                               bool InOverloadResolution,
1875                               QualType& ConvertedType,
1876                               bool &IncompatibleObjC) {
1877  IncompatibleObjC = false;
1878  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1879                              IncompatibleObjC))
1880    return true;
1881
1882  // Conversion from a null pointer constant to any Objective-C pointer type.
1883  if (ToType->isObjCObjectPointerType() &&
1884      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1885    ConvertedType = ToType;
1886    return true;
1887  }
1888
1889  // Blocks: Block pointers can be converted to void*.
1890  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1891      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1892    ConvertedType = ToType;
1893    return true;
1894  }
1895  // Blocks: A null pointer constant can be converted to a block
1896  // pointer type.
1897  if (ToType->isBlockPointerType() &&
1898      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1899    ConvertedType = ToType;
1900    return true;
1901  }
1902
1903  // If the left-hand-side is nullptr_t, the right side can be a null
1904  // pointer constant.
1905  if (ToType->isNullPtrType() &&
1906      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1907    ConvertedType = ToType;
1908    return true;
1909  }
1910
1911  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1912  if (!ToTypePtr)
1913    return false;
1914
1915  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1916  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1917    ConvertedType = ToType;
1918    return true;
1919  }
1920
1921  // Beyond this point, both types need to be pointers
1922  // , including objective-c pointers.
1923  QualType ToPointeeType = ToTypePtr->getPointeeType();
1924  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1925      !getLangOpts().ObjCAutoRefCount) {
1926    ConvertedType = BuildSimilarlyQualifiedPointerType(
1927                                      FromType->getAs<ObjCObjectPointerType>(),
1928                                                       ToPointeeType,
1929                                                       ToType, Context);
1930    return true;
1931  }
1932  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1933  if (!FromTypePtr)
1934    return false;
1935
1936  QualType FromPointeeType = FromTypePtr->getPointeeType();
1937
1938  // If the unqualified pointee types are the same, this can't be a
1939  // pointer conversion, so don't do all of the work below.
1940  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1941    return false;
1942
1943  // An rvalue of type "pointer to cv T," where T is an object type,
1944  // can be converted to an rvalue of type "pointer to cv void" (C++
1945  // 4.10p2).
1946  if (FromPointeeType->isIncompleteOrObjectType() &&
1947      ToPointeeType->isVoidType()) {
1948    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1949                                                       ToPointeeType,
1950                                                       ToType, Context,
1951                                                   /*StripObjCLifetime=*/true);
1952    return true;
1953  }
1954
1955  // MSVC allows implicit function to void* type conversion.
1956  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
1957      ToPointeeType->isVoidType()) {
1958    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1959                                                       ToPointeeType,
1960                                                       ToType, Context);
1961    return true;
1962  }
1963
1964  // When we're overloading in C, we allow a special kind of pointer
1965  // conversion for compatible-but-not-identical pointee types.
1966  if (!getLangOpts().CPlusPlus &&
1967      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1969                                                       ToPointeeType,
1970                                                       ToType, Context);
1971    return true;
1972  }
1973
1974  // C++ [conv.ptr]p3:
1975  //
1976  //   An rvalue of type "pointer to cv D," where D is a class type,
1977  //   can be converted to an rvalue of type "pointer to cv B," where
1978  //   B is a base class (clause 10) of D. If B is an inaccessible
1979  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1980  //   necessitates this conversion is ill-formed. The result of the
1981  //   conversion is a pointer to the base class sub-object of the
1982  //   derived class object. The null pointer value is converted to
1983  //   the null pointer value of the destination type.
1984  //
1985  // Note that we do not check for ambiguity or inaccessibility
1986  // here. That is handled by CheckPointerConversion.
1987  if (getLangOpts().CPlusPlus &&
1988      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1989      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1990      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1991      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1992    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1993                                                       ToPointeeType,
1994                                                       ToType, Context);
1995    return true;
1996  }
1997
1998  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1999      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2000    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2001                                                       ToPointeeType,
2002                                                       ToType, Context);
2003    return true;
2004  }
2005
2006  return false;
2007}
2008
2009/// \brief Adopt the given qualifiers for the given type.
2010static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2011  Qualifiers TQs = T.getQualifiers();
2012
2013  // Check whether qualifiers already match.
2014  if (TQs == Qs)
2015    return T;
2016
2017  if (Qs.compatiblyIncludes(TQs))
2018    return Context.getQualifiedType(T, Qs);
2019
2020  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2021}
2022
2023/// isObjCPointerConversion - Determines whether this is an
2024/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2025/// with the same arguments and return values.
2026bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2027                                   QualType& ConvertedType,
2028                                   bool &IncompatibleObjC) {
2029  if (!getLangOpts().ObjC1)
2030    return false;
2031
2032  // The set of qualifiers on the type we're converting from.
2033  Qualifiers FromQualifiers = FromType.getQualifiers();
2034
2035  // First, we handle all conversions on ObjC object pointer types.
2036  const ObjCObjectPointerType* ToObjCPtr =
2037    ToType->getAs<ObjCObjectPointerType>();
2038  const ObjCObjectPointerType *FromObjCPtr =
2039    FromType->getAs<ObjCObjectPointerType>();
2040
2041  if (ToObjCPtr && FromObjCPtr) {
2042    // If the pointee types are the same (ignoring qualifications),
2043    // then this is not a pointer conversion.
2044    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2045                                       FromObjCPtr->getPointeeType()))
2046      return false;
2047
2048    // Check for compatible
2049    // Objective C++: We're able to convert between "id" or "Class" and a
2050    // pointer to any interface (in both directions).
2051    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2052      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2053      return true;
2054    }
2055    // Conversions with Objective-C's id<...>.
2056    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2057         ToObjCPtr->isObjCQualifiedIdType()) &&
2058        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2059                                                  /*compare=*/false)) {
2060      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2061      return true;
2062    }
2063    // Objective C++: We're able to convert from a pointer to an
2064    // interface to a pointer to a different interface.
2065    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2066      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2067      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2068      if (getLangOpts().CPlusPlus && LHS && RHS &&
2069          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2070                                                FromObjCPtr->getPointeeType()))
2071        return false;
2072      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2073                                                   ToObjCPtr->getPointeeType(),
2074                                                         ToType, Context);
2075      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2076      return true;
2077    }
2078
2079    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2080      // Okay: this is some kind of implicit downcast of Objective-C
2081      // interfaces, which is permitted. However, we're going to
2082      // complain about it.
2083      IncompatibleObjC = true;
2084      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2085                                                   ToObjCPtr->getPointeeType(),
2086                                                         ToType, Context);
2087      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2088      return true;
2089    }
2090  }
2091  // Beyond this point, both types need to be C pointers or block pointers.
2092  QualType ToPointeeType;
2093  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2094    ToPointeeType = ToCPtr->getPointeeType();
2095  else if (const BlockPointerType *ToBlockPtr =
2096            ToType->getAs<BlockPointerType>()) {
2097    // Objective C++: We're able to convert from a pointer to any object
2098    // to a block pointer type.
2099    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2100      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2101      return true;
2102    }
2103    ToPointeeType = ToBlockPtr->getPointeeType();
2104  }
2105  else if (FromType->getAs<BlockPointerType>() &&
2106           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2107    // Objective C++: We're able to convert from a block pointer type to a
2108    // pointer to any object.
2109    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2110    return true;
2111  }
2112  else
2113    return false;
2114
2115  QualType FromPointeeType;
2116  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2117    FromPointeeType = FromCPtr->getPointeeType();
2118  else if (const BlockPointerType *FromBlockPtr =
2119           FromType->getAs<BlockPointerType>())
2120    FromPointeeType = FromBlockPtr->getPointeeType();
2121  else
2122    return false;
2123
2124  // If we have pointers to pointers, recursively check whether this
2125  // is an Objective-C conversion.
2126  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2127      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2128                              IncompatibleObjC)) {
2129    // We always complain about this conversion.
2130    IncompatibleObjC = true;
2131    ConvertedType = Context.getPointerType(ConvertedType);
2132    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2133    return true;
2134  }
2135  // Allow conversion of pointee being objective-c pointer to another one;
2136  // as in I* to id.
2137  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2138      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2139      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2140                              IncompatibleObjC)) {
2141
2142    ConvertedType = Context.getPointerType(ConvertedType);
2143    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2144    return true;
2145  }
2146
2147  // If we have pointers to functions or blocks, check whether the only
2148  // differences in the argument and result types are in Objective-C
2149  // pointer conversions. If so, we permit the conversion (but
2150  // complain about it).
2151  const FunctionProtoType *FromFunctionType
2152    = FromPointeeType->getAs<FunctionProtoType>();
2153  const FunctionProtoType *ToFunctionType
2154    = ToPointeeType->getAs<FunctionProtoType>();
2155  if (FromFunctionType && ToFunctionType) {
2156    // If the function types are exactly the same, this isn't an
2157    // Objective-C pointer conversion.
2158    if (Context.getCanonicalType(FromPointeeType)
2159          == Context.getCanonicalType(ToPointeeType))
2160      return false;
2161
2162    // Perform the quick checks that will tell us whether these
2163    // function types are obviously different.
2164    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2165        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2166        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2167      return false;
2168
2169    bool HasObjCConversion = false;
2170    if (Context.getCanonicalType(FromFunctionType->getResultType())
2171          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2172      // Okay, the types match exactly. Nothing to do.
2173    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2174                                       ToFunctionType->getResultType(),
2175                                       ConvertedType, IncompatibleObjC)) {
2176      // Okay, we have an Objective-C pointer conversion.
2177      HasObjCConversion = true;
2178    } else {
2179      // Function types are too different. Abort.
2180      return false;
2181    }
2182
2183    // Check argument types.
2184    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2185         ArgIdx != NumArgs; ++ArgIdx) {
2186      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2187      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2188      if (Context.getCanonicalType(FromArgType)
2189            == Context.getCanonicalType(ToArgType)) {
2190        // Okay, the types match exactly. Nothing to do.
2191      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2192                                         ConvertedType, IncompatibleObjC)) {
2193        // Okay, we have an Objective-C pointer conversion.
2194        HasObjCConversion = true;
2195      } else {
2196        // Argument types are too different. Abort.
2197        return false;
2198      }
2199    }
2200
2201    if (HasObjCConversion) {
2202      // We had an Objective-C conversion. Allow this pointer
2203      // conversion, but complain about it.
2204      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2205      IncompatibleObjC = true;
2206      return true;
2207    }
2208  }
2209
2210  return false;
2211}
2212
2213/// \brief Determine whether this is an Objective-C writeback conversion,
2214/// used for parameter passing when performing automatic reference counting.
2215///
2216/// \param FromType The type we're converting form.
2217///
2218/// \param ToType The type we're converting to.
2219///
2220/// \param ConvertedType The type that will be produced after applying
2221/// this conversion.
2222bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2223                                     QualType &ConvertedType) {
2224  if (!getLangOpts().ObjCAutoRefCount ||
2225      Context.hasSameUnqualifiedType(FromType, ToType))
2226    return false;
2227
2228  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2229  QualType ToPointee;
2230  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2231    ToPointee = ToPointer->getPointeeType();
2232  else
2233    return false;
2234
2235  Qualifiers ToQuals = ToPointee.getQualifiers();
2236  if (!ToPointee->isObjCLifetimeType() ||
2237      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2238      !ToQuals.withoutObjCLifetime().empty())
2239    return false;
2240
2241  // Argument must be a pointer to __strong to __weak.
2242  QualType FromPointee;
2243  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2244    FromPointee = FromPointer->getPointeeType();
2245  else
2246    return false;
2247
2248  Qualifiers FromQuals = FromPointee.getQualifiers();
2249  if (!FromPointee->isObjCLifetimeType() ||
2250      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2251       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2252    return false;
2253
2254  // Make sure that we have compatible qualifiers.
2255  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2256  if (!ToQuals.compatiblyIncludes(FromQuals))
2257    return false;
2258
2259  // Remove qualifiers from the pointee type we're converting from; they
2260  // aren't used in the compatibility check belong, and we'll be adding back
2261  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2262  FromPointee = FromPointee.getUnqualifiedType();
2263
2264  // The unqualified form of the pointee types must be compatible.
2265  ToPointee = ToPointee.getUnqualifiedType();
2266  bool IncompatibleObjC;
2267  if (Context.typesAreCompatible(FromPointee, ToPointee))
2268    FromPointee = ToPointee;
2269  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2270                                    IncompatibleObjC))
2271    return false;
2272
2273  /// \brief Construct the type we're converting to, which is a pointer to
2274  /// __autoreleasing pointee.
2275  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2276  ConvertedType = Context.getPointerType(FromPointee);
2277  return true;
2278}
2279
2280bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2281                                    QualType& ConvertedType) {
2282  QualType ToPointeeType;
2283  if (const BlockPointerType *ToBlockPtr =
2284        ToType->getAs<BlockPointerType>())
2285    ToPointeeType = ToBlockPtr->getPointeeType();
2286  else
2287    return false;
2288
2289  QualType FromPointeeType;
2290  if (const BlockPointerType *FromBlockPtr =
2291      FromType->getAs<BlockPointerType>())
2292    FromPointeeType = FromBlockPtr->getPointeeType();
2293  else
2294    return false;
2295  // We have pointer to blocks, check whether the only
2296  // differences in the argument and result types are in Objective-C
2297  // pointer conversions. If so, we permit the conversion.
2298
2299  const FunctionProtoType *FromFunctionType
2300    = FromPointeeType->getAs<FunctionProtoType>();
2301  const FunctionProtoType *ToFunctionType
2302    = ToPointeeType->getAs<FunctionProtoType>();
2303
2304  if (!FromFunctionType || !ToFunctionType)
2305    return false;
2306
2307  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2308    return true;
2309
2310  // Perform the quick checks that will tell us whether these
2311  // function types are obviously different.
2312  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2313      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2314    return false;
2315
2316  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2317  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2318  if (FromEInfo != ToEInfo)
2319    return false;
2320
2321  bool IncompatibleObjC = false;
2322  if (Context.hasSameType(FromFunctionType->getResultType(),
2323                          ToFunctionType->getResultType())) {
2324    // Okay, the types match exactly. Nothing to do.
2325  } else {
2326    QualType RHS = FromFunctionType->getResultType();
2327    QualType LHS = ToFunctionType->getResultType();
2328    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2329        !RHS.hasQualifiers() && LHS.hasQualifiers())
2330       LHS = LHS.getUnqualifiedType();
2331
2332     if (Context.hasSameType(RHS,LHS)) {
2333       // OK exact match.
2334     } else if (isObjCPointerConversion(RHS, LHS,
2335                                        ConvertedType, IncompatibleObjC)) {
2336     if (IncompatibleObjC)
2337       return false;
2338     // Okay, we have an Objective-C pointer conversion.
2339     }
2340     else
2341       return false;
2342   }
2343
2344   // Check argument types.
2345   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2346        ArgIdx != NumArgs; ++ArgIdx) {
2347     IncompatibleObjC = false;
2348     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2349     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2350     if (Context.hasSameType(FromArgType, ToArgType)) {
2351       // Okay, the types match exactly. Nothing to do.
2352     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2353                                        ConvertedType, IncompatibleObjC)) {
2354       if (IncompatibleObjC)
2355         return false;
2356       // Okay, we have an Objective-C pointer conversion.
2357     } else
2358       // Argument types are too different. Abort.
2359       return false;
2360   }
2361   if (LangOpts.ObjCAutoRefCount &&
2362       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2363                                                    ToFunctionType))
2364     return false;
2365
2366   ConvertedType = ToType;
2367   return true;
2368}
2369
2370enum {
2371  ft_default,
2372  ft_different_class,
2373  ft_parameter_arity,
2374  ft_parameter_mismatch,
2375  ft_return_type,
2376  ft_qualifer_mismatch
2377};
2378
2379/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2380/// function types.  Catches different number of parameter, mismatch in
2381/// parameter types, and different return types.
2382void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2383                                      QualType FromType, QualType ToType) {
2384  // If either type is not valid, include no extra info.
2385  if (FromType.isNull() || ToType.isNull()) {
2386    PDiag << ft_default;
2387    return;
2388  }
2389
2390  // Get the function type from the pointers.
2391  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2392    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2393                            *ToMember = ToType->getAs<MemberPointerType>();
2394    if (FromMember->getClass() != ToMember->getClass()) {
2395      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2396            << QualType(FromMember->getClass(), 0);
2397      return;
2398    }
2399    FromType = FromMember->getPointeeType();
2400    ToType = ToMember->getPointeeType();
2401  }
2402
2403  if (FromType->isPointerType())
2404    FromType = FromType->getPointeeType();
2405  if (ToType->isPointerType())
2406    ToType = ToType->getPointeeType();
2407
2408  // Remove references.
2409  FromType = FromType.getNonReferenceType();
2410  ToType = ToType.getNonReferenceType();
2411
2412  // Don't print extra info for non-specialized template functions.
2413  if (FromType->isInstantiationDependentType() &&
2414      !FromType->getAs<TemplateSpecializationType>()) {
2415    PDiag << ft_default;
2416    return;
2417  }
2418
2419  // No extra info for same types.
2420  if (Context.hasSameType(FromType, ToType)) {
2421    PDiag << ft_default;
2422    return;
2423  }
2424
2425  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2426                          *ToFunction = ToType->getAs<FunctionProtoType>();
2427
2428  // Both types need to be function types.
2429  if (!FromFunction || !ToFunction) {
2430    PDiag << ft_default;
2431    return;
2432  }
2433
2434  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2435    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2436          << FromFunction->getNumArgs();
2437    return;
2438  }
2439
2440  // Handle different parameter types.
2441  unsigned ArgPos;
2442  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2443    PDiag << ft_parameter_mismatch << ArgPos + 1
2444          << ToFunction->getArgType(ArgPos)
2445          << FromFunction->getArgType(ArgPos);
2446    return;
2447  }
2448
2449  // Handle different return type.
2450  if (!Context.hasSameType(FromFunction->getResultType(),
2451                           ToFunction->getResultType())) {
2452    PDiag << ft_return_type << ToFunction->getResultType()
2453          << FromFunction->getResultType();
2454    return;
2455  }
2456
2457  unsigned FromQuals = FromFunction->getTypeQuals(),
2458           ToQuals = ToFunction->getTypeQuals();
2459  if (FromQuals != ToQuals) {
2460    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2461    return;
2462  }
2463
2464  // Unable to find a difference, so add no extra info.
2465  PDiag << ft_default;
2466}
2467
2468/// FunctionArgTypesAreEqual - This routine checks two function proto types
2469/// for equality of their argument types. Caller has already checked that
2470/// they have same number of arguments. This routine assumes that Objective-C
2471/// pointer types which only differ in their protocol qualifiers are equal.
2472/// If the parameters are different, ArgPos will have the the parameter index
2473/// of the first different parameter.
2474bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2475                                    const FunctionProtoType *NewType,
2476                                    unsigned *ArgPos) {
2477  if (!getLangOpts().ObjC1) {
2478    for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2479         N = NewType->arg_type_begin(),
2480         E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2481      if (!Context.hasSameType(*O, *N)) {
2482        if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2483        return false;
2484      }
2485    }
2486    return true;
2487  }
2488
2489  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2490       N = NewType->arg_type_begin(),
2491       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2492    QualType ToType = (*O);
2493    QualType FromType = (*N);
2494    if (!Context.hasSameType(ToType, FromType)) {
2495      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2496        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2497          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2498               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2499              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2500               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2501            continue;
2502      }
2503      else if (const ObjCObjectPointerType *PTTo =
2504                 ToType->getAs<ObjCObjectPointerType>()) {
2505        if (const ObjCObjectPointerType *PTFr =
2506              FromType->getAs<ObjCObjectPointerType>())
2507          if (Context.hasSameUnqualifiedType(
2508                PTTo->getObjectType()->getBaseType(),
2509                PTFr->getObjectType()->getBaseType()))
2510            continue;
2511      }
2512      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2513      return false;
2514    }
2515  }
2516  return true;
2517}
2518
2519/// CheckPointerConversion - Check the pointer conversion from the
2520/// expression From to the type ToType. This routine checks for
2521/// ambiguous or inaccessible derived-to-base pointer
2522/// conversions for which IsPointerConversion has already returned
2523/// true. It returns true and produces a diagnostic if there was an
2524/// error, or returns false otherwise.
2525bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2526                                  CastKind &Kind,
2527                                  CXXCastPath& BasePath,
2528                                  bool IgnoreBaseAccess) {
2529  QualType FromType = From->getType();
2530  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2531
2532  Kind = CK_BitCast;
2533
2534  if (!IsCStyleOrFunctionalCast &&
2535      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2536      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2537    DiagRuntimeBehavior(From->getExprLoc(), From,
2538                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2539                          << ToType << From->getSourceRange());
2540
2541  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2542    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2543      QualType FromPointeeType = FromPtrType->getPointeeType(),
2544               ToPointeeType   = ToPtrType->getPointeeType();
2545
2546      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2547          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2548        // We must have a derived-to-base conversion. Check an
2549        // ambiguous or inaccessible conversion.
2550        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2551                                         From->getExprLoc(),
2552                                         From->getSourceRange(), &BasePath,
2553                                         IgnoreBaseAccess))
2554          return true;
2555
2556        // The conversion was successful.
2557        Kind = CK_DerivedToBase;
2558      }
2559    }
2560  } else if (const ObjCObjectPointerType *ToPtrType =
2561               ToType->getAs<ObjCObjectPointerType>()) {
2562    if (const ObjCObjectPointerType *FromPtrType =
2563          FromType->getAs<ObjCObjectPointerType>()) {
2564      // Objective-C++ conversions are always okay.
2565      // FIXME: We should have a different class of conversions for the
2566      // Objective-C++ implicit conversions.
2567      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2568        return false;
2569    } else if (FromType->isBlockPointerType()) {
2570      Kind = CK_BlockPointerToObjCPointerCast;
2571    } else {
2572      Kind = CK_CPointerToObjCPointerCast;
2573    }
2574  } else if (ToType->isBlockPointerType()) {
2575    if (!FromType->isBlockPointerType())
2576      Kind = CK_AnyPointerToBlockPointerCast;
2577  }
2578
2579  // We shouldn't fall into this case unless it's valid for other
2580  // reasons.
2581  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2582    Kind = CK_NullToPointer;
2583
2584  return false;
2585}
2586
2587/// IsMemberPointerConversion - Determines whether the conversion of the
2588/// expression From, which has the (possibly adjusted) type FromType, can be
2589/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2590/// If so, returns true and places the converted type (that might differ from
2591/// ToType in its cv-qualifiers at some level) into ConvertedType.
2592bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2593                                     QualType ToType,
2594                                     bool InOverloadResolution,
2595                                     QualType &ConvertedType) {
2596  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2597  if (!ToTypePtr)
2598    return false;
2599
2600  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2601  if (From->isNullPointerConstant(Context,
2602                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2603                                        : Expr::NPC_ValueDependentIsNull)) {
2604    ConvertedType = ToType;
2605    return true;
2606  }
2607
2608  // Otherwise, both types have to be member pointers.
2609  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2610  if (!FromTypePtr)
2611    return false;
2612
2613  // A pointer to member of B can be converted to a pointer to member of D,
2614  // where D is derived from B (C++ 4.11p2).
2615  QualType FromClass(FromTypePtr->getClass(), 0);
2616  QualType ToClass(ToTypePtr->getClass(), 0);
2617
2618  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2619      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2620      IsDerivedFrom(ToClass, FromClass)) {
2621    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2622                                                 ToClass.getTypePtr());
2623    return true;
2624  }
2625
2626  return false;
2627}
2628
2629/// CheckMemberPointerConversion - Check the member pointer conversion from the
2630/// expression From to the type ToType. This routine checks for ambiguous or
2631/// virtual or inaccessible base-to-derived member pointer conversions
2632/// for which IsMemberPointerConversion has already returned true. It returns
2633/// true and produces a diagnostic if there was an error, or returns false
2634/// otherwise.
2635bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2636                                        CastKind &Kind,
2637                                        CXXCastPath &BasePath,
2638                                        bool IgnoreBaseAccess) {
2639  QualType FromType = From->getType();
2640  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2641  if (!FromPtrType) {
2642    // This must be a null pointer to member pointer conversion
2643    assert(From->isNullPointerConstant(Context,
2644                                       Expr::NPC_ValueDependentIsNull) &&
2645           "Expr must be null pointer constant!");
2646    Kind = CK_NullToMemberPointer;
2647    return false;
2648  }
2649
2650  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2651  assert(ToPtrType && "No member pointer cast has a target type "
2652                      "that is not a member pointer.");
2653
2654  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2655  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2656
2657  // FIXME: What about dependent types?
2658  assert(FromClass->isRecordType() && "Pointer into non-class.");
2659  assert(ToClass->isRecordType() && "Pointer into non-class.");
2660
2661  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2662                     /*DetectVirtual=*/true);
2663  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2664  assert(DerivationOkay &&
2665         "Should not have been called if derivation isn't OK.");
2666  (void)DerivationOkay;
2667
2668  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2669                                  getUnqualifiedType())) {
2670    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2671    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2672      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2673    return true;
2674  }
2675
2676  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2677    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2678      << FromClass << ToClass << QualType(VBase, 0)
2679      << From->getSourceRange();
2680    return true;
2681  }
2682
2683  if (!IgnoreBaseAccess)
2684    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2685                         Paths.front(),
2686                         diag::err_downcast_from_inaccessible_base);
2687
2688  // Must be a base to derived member conversion.
2689  BuildBasePathArray(Paths, BasePath);
2690  Kind = CK_BaseToDerivedMemberPointer;
2691  return false;
2692}
2693
2694/// IsQualificationConversion - Determines whether the conversion from
2695/// an rvalue of type FromType to ToType is a qualification conversion
2696/// (C++ 4.4).
2697///
2698/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2699/// when the qualification conversion involves a change in the Objective-C
2700/// object lifetime.
2701bool
2702Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2703                                bool CStyle, bool &ObjCLifetimeConversion) {
2704  FromType = Context.getCanonicalType(FromType);
2705  ToType = Context.getCanonicalType(ToType);
2706  ObjCLifetimeConversion = false;
2707
2708  // If FromType and ToType are the same type, this is not a
2709  // qualification conversion.
2710  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2711    return false;
2712
2713  // (C++ 4.4p4):
2714  //   A conversion can add cv-qualifiers at levels other than the first
2715  //   in multi-level pointers, subject to the following rules: [...]
2716  bool PreviousToQualsIncludeConst = true;
2717  bool UnwrappedAnyPointer = false;
2718  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2719    // Within each iteration of the loop, we check the qualifiers to
2720    // determine if this still looks like a qualification
2721    // conversion. Then, if all is well, we unwrap one more level of
2722    // pointers or pointers-to-members and do it all again
2723    // until there are no more pointers or pointers-to-members left to
2724    // unwrap.
2725    UnwrappedAnyPointer = true;
2726
2727    Qualifiers FromQuals = FromType.getQualifiers();
2728    Qualifiers ToQuals = ToType.getQualifiers();
2729
2730    // Objective-C ARC:
2731    //   Check Objective-C lifetime conversions.
2732    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2733        UnwrappedAnyPointer) {
2734      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2735        ObjCLifetimeConversion = true;
2736        FromQuals.removeObjCLifetime();
2737        ToQuals.removeObjCLifetime();
2738      } else {
2739        // Qualification conversions cannot cast between different
2740        // Objective-C lifetime qualifiers.
2741        return false;
2742      }
2743    }
2744
2745    // Allow addition/removal of GC attributes but not changing GC attributes.
2746    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2747        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2748      FromQuals.removeObjCGCAttr();
2749      ToQuals.removeObjCGCAttr();
2750    }
2751
2752    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2753    //      2,j, and similarly for volatile.
2754    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2755      return false;
2756
2757    //   -- if the cv 1,j and cv 2,j are different, then const is in
2758    //      every cv for 0 < k < j.
2759    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2760        && !PreviousToQualsIncludeConst)
2761      return false;
2762
2763    // Keep track of whether all prior cv-qualifiers in the "to" type
2764    // include const.
2765    PreviousToQualsIncludeConst
2766      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2767  }
2768
2769  // We are left with FromType and ToType being the pointee types
2770  // after unwrapping the original FromType and ToType the same number
2771  // of types. If we unwrapped any pointers, and if FromType and
2772  // ToType have the same unqualified type (since we checked
2773  // qualifiers above), then this is a qualification conversion.
2774  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2775}
2776
2777/// \brief - Determine whether this is a conversion from a scalar type to an
2778/// atomic type.
2779///
2780/// If successful, updates \c SCS's second and third steps in the conversion
2781/// sequence to finish the conversion.
2782static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2783                                bool InOverloadResolution,
2784                                StandardConversionSequence &SCS,
2785                                bool CStyle) {
2786  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2787  if (!ToAtomic)
2788    return false;
2789
2790  StandardConversionSequence InnerSCS;
2791  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2792                            InOverloadResolution, InnerSCS,
2793                            CStyle, /*AllowObjCWritebackConversion=*/false))
2794    return false;
2795
2796  SCS.Second = InnerSCS.Second;
2797  SCS.setToType(1, InnerSCS.getToType(1));
2798  SCS.Third = InnerSCS.Third;
2799  SCS.QualificationIncludesObjCLifetime
2800    = InnerSCS.QualificationIncludesObjCLifetime;
2801  SCS.setToType(2, InnerSCS.getToType(2));
2802  return true;
2803}
2804
2805static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2806                                              CXXConstructorDecl *Constructor,
2807                                              QualType Type) {
2808  const FunctionProtoType *CtorType =
2809      Constructor->getType()->getAs<FunctionProtoType>();
2810  if (CtorType->getNumArgs() > 0) {
2811    QualType FirstArg = CtorType->getArgType(0);
2812    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2813      return true;
2814  }
2815  return false;
2816}
2817
2818static OverloadingResult
2819IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2820                                       CXXRecordDecl *To,
2821                                       UserDefinedConversionSequence &User,
2822                                       OverloadCandidateSet &CandidateSet,
2823                                       bool AllowExplicit) {
2824  DeclContext::lookup_iterator Con, ConEnd;
2825  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
2826       Con != ConEnd; ++Con) {
2827    NamedDecl *D = *Con;
2828    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2829
2830    // Find the constructor (which may be a template).
2831    CXXConstructorDecl *Constructor = 0;
2832    FunctionTemplateDecl *ConstructorTmpl
2833      = dyn_cast<FunctionTemplateDecl>(D);
2834    if (ConstructorTmpl)
2835      Constructor
2836        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2837    else
2838      Constructor = cast<CXXConstructorDecl>(D);
2839
2840    bool Usable = !Constructor->isInvalidDecl() &&
2841                  S.isInitListConstructor(Constructor) &&
2842                  (AllowExplicit || !Constructor->isExplicit());
2843    if (Usable) {
2844      // If the first argument is (a reference to) the target type,
2845      // suppress conversions.
2846      bool SuppressUserConversions =
2847          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2848      if (ConstructorTmpl)
2849        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2850                                       /*ExplicitArgs*/ 0,
2851                                       From, CandidateSet,
2852                                       SuppressUserConversions);
2853      else
2854        S.AddOverloadCandidate(Constructor, FoundDecl,
2855                               From, CandidateSet,
2856                               SuppressUserConversions);
2857    }
2858  }
2859
2860  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2861
2862  OverloadCandidateSet::iterator Best;
2863  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2864  case OR_Success: {
2865    // Record the standard conversion we used and the conversion function.
2866    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2867    S.MarkFunctionReferenced(From->getLocStart(), Constructor);
2868
2869    QualType ThisType = Constructor->getThisType(S.Context);
2870    // Initializer lists don't have conversions as such.
2871    User.Before.setAsIdentityConversion();
2872    User.HadMultipleCandidates = HadMultipleCandidates;
2873    User.ConversionFunction = Constructor;
2874    User.FoundConversionFunction = Best->FoundDecl;
2875    User.After.setAsIdentityConversion();
2876    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2877    User.After.setAllToTypes(ToType);
2878    return OR_Success;
2879  }
2880
2881  case OR_No_Viable_Function:
2882    return OR_No_Viable_Function;
2883  case OR_Deleted:
2884    return OR_Deleted;
2885  case OR_Ambiguous:
2886    return OR_Ambiguous;
2887  }
2888
2889  llvm_unreachable("Invalid OverloadResult!");
2890}
2891
2892/// Determines whether there is a user-defined conversion sequence
2893/// (C++ [over.ics.user]) that converts expression From to the type
2894/// ToType. If such a conversion exists, User will contain the
2895/// user-defined conversion sequence that performs such a conversion
2896/// and this routine will return true. Otherwise, this routine returns
2897/// false and User is unspecified.
2898///
2899/// \param AllowExplicit  true if the conversion should consider C++0x
2900/// "explicit" conversion functions as well as non-explicit conversion
2901/// functions (C++0x [class.conv.fct]p2).
2902static OverloadingResult
2903IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2904                        UserDefinedConversionSequence &User,
2905                        OverloadCandidateSet &CandidateSet,
2906                        bool AllowExplicit) {
2907  // Whether we will only visit constructors.
2908  bool ConstructorsOnly = false;
2909
2910  // If the type we are conversion to is a class type, enumerate its
2911  // constructors.
2912  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2913    // C++ [over.match.ctor]p1:
2914    //   When objects of class type are direct-initialized (8.5), or
2915    //   copy-initialized from an expression of the same or a
2916    //   derived class type (8.5), overload resolution selects the
2917    //   constructor. [...] For copy-initialization, the candidate
2918    //   functions are all the converting constructors (12.3.1) of
2919    //   that class. The argument list is the expression-list within
2920    //   the parentheses of the initializer.
2921    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2922        (From->getType()->getAs<RecordType>() &&
2923         S.IsDerivedFrom(From->getType(), ToType)))
2924      ConstructorsOnly = true;
2925
2926    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2927    // RequireCompleteType may have returned true due to some invalid decl
2928    // during template instantiation, but ToType may be complete enough now
2929    // to try to recover.
2930    if (ToType->isIncompleteType()) {
2931      // We're not going to find any constructors.
2932    } else if (CXXRecordDecl *ToRecordDecl
2933                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2934
2935      Expr **Args = &From;
2936      unsigned NumArgs = 1;
2937      bool ListInitializing = false;
2938      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
2939        // But first, see if there is an init-list-contructor that will work.
2940        OverloadingResult Result = IsInitializerListConstructorConversion(
2941            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
2942        if (Result != OR_No_Viable_Function)
2943          return Result;
2944        // Never mind.
2945        CandidateSet.clear();
2946
2947        // If we're list-initializing, we pass the individual elements as
2948        // arguments, not the entire list.
2949        Args = InitList->getInits();
2950        NumArgs = InitList->getNumInits();
2951        ListInitializing = true;
2952      }
2953
2954      DeclContext::lookup_iterator Con, ConEnd;
2955      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2956           Con != ConEnd; ++Con) {
2957        NamedDecl *D = *Con;
2958        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2959
2960        // Find the constructor (which may be a template).
2961        CXXConstructorDecl *Constructor = 0;
2962        FunctionTemplateDecl *ConstructorTmpl
2963          = dyn_cast<FunctionTemplateDecl>(D);
2964        if (ConstructorTmpl)
2965          Constructor
2966            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2967        else
2968          Constructor = cast<CXXConstructorDecl>(D);
2969
2970        bool Usable = !Constructor->isInvalidDecl();
2971        if (ListInitializing)
2972          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
2973        else
2974          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
2975        if (Usable) {
2976          bool SuppressUserConversions = !ConstructorsOnly;
2977          if (SuppressUserConversions && ListInitializing) {
2978            SuppressUserConversions = false;
2979            if (NumArgs == 1) {
2980              // If the first argument is (a reference to) the target type,
2981              // suppress conversions.
2982              SuppressUserConversions = isFirstArgumentCompatibleWithType(
2983                                                S.Context, Constructor, ToType);
2984            }
2985          }
2986          if (ConstructorTmpl)
2987            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2988                                           /*ExplicitArgs*/ 0,
2989                                           llvm::makeArrayRef(Args, NumArgs),
2990                                           CandidateSet, SuppressUserConversions);
2991          else
2992            // Allow one user-defined conversion when user specifies a
2993            // From->ToType conversion via an static cast (c-style, etc).
2994            S.AddOverloadCandidate(Constructor, FoundDecl,
2995                                   llvm::makeArrayRef(Args, NumArgs),
2996                                   CandidateSet, SuppressUserConversions);
2997        }
2998      }
2999    }
3000  }
3001
3002  // Enumerate conversion functions, if we're allowed to.
3003  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3004  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
3005                                   S.PDiag(0) << From->getSourceRange())) {
3006    // No conversion functions from incomplete types.
3007  } else if (const RecordType *FromRecordType
3008                                   = From->getType()->getAs<RecordType>()) {
3009    if (CXXRecordDecl *FromRecordDecl
3010         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3011      // Add all of the conversion functions as candidates.
3012      const UnresolvedSetImpl *Conversions
3013        = FromRecordDecl->getVisibleConversionFunctions();
3014      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3015             E = Conversions->end(); I != E; ++I) {
3016        DeclAccessPair FoundDecl = I.getPair();
3017        NamedDecl *D = FoundDecl.getDecl();
3018        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3019        if (isa<UsingShadowDecl>(D))
3020          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3021
3022        CXXConversionDecl *Conv;
3023        FunctionTemplateDecl *ConvTemplate;
3024        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3025          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3026        else
3027          Conv = cast<CXXConversionDecl>(D);
3028
3029        if (AllowExplicit || !Conv->isExplicit()) {
3030          if (ConvTemplate)
3031            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3032                                             ActingContext, From, ToType,
3033                                             CandidateSet);
3034          else
3035            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3036                                     From, ToType, CandidateSet);
3037        }
3038      }
3039    }
3040  }
3041
3042  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3043
3044  OverloadCandidateSet::iterator Best;
3045  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3046  case OR_Success:
3047    // Record the standard conversion we used and the conversion function.
3048    if (CXXConstructorDecl *Constructor
3049          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3050      S.MarkFunctionReferenced(From->getLocStart(), Constructor);
3051
3052      // C++ [over.ics.user]p1:
3053      //   If the user-defined conversion is specified by a
3054      //   constructor (12.3.1), the initial standard conversion
3055      //   sequence converts the source type to the type required by
3056      //   the argument of the constructor.
3057      //
3058      QualType ThisType = Constructor->getThisType(S.Context);
3059      if (isa<InitListExpr>(From)) {
3060        // Initializer lists don't have conversions as such.
3061        User.Before.setAsIdentityConversion();
3062      } else {
3063        if (Best->Conversions[0].isEllipsis())
3064          User.EllipsisConversion = true;
3065        else {
3066          User.Before = Best->Conversions[0].Standard;
3067          User.EllipsisConversion = false;
3068        }
3069      }
3070      User.HadMultipleCandidates = HadMultipleCandidates;
3071      User.ConversionFunction = Constructor;
3072      User.FoundConversionFunction = Best->FoundDecl;
3073      User.After.setAsIdentityConversion();
3074      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3075      User.After.setAllToTypes(ToType);
3076      return OR_Success;
3077    }
3078    if (CXXConversionDecl *Conversion
3079                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3080      S.MarkFunctionReferenced(From->getLocStart(), Conversion);
3081
3082      // C++ [over.ics.user]p1:
3083      //
3084      //   [...] If the user-defined conversion is specified by a
3085      //   conversion function (12.3.2), the initial standard
3086      //   conversion sequence converts the source type to the
3087      //   implicit object parameter of the conversion function.
3088      User.Before = Best->Conversions[0].Standard;
3089      User.HadMultipleCandidates = HadMultipleCandidates;
3090      User.ConversionFunction = Conversion;
3091      User.FoundConversionFunction = Best->FoundDecl;
3092      User.EllipsisConversion = false;
3093
3094      // C++ [over.ics.user]p2:
3095      //   The second standard conversion sequence converts the
3096      //   result of the user-defined conversion to the target type
3097      //   for the sequence. Since an implicit conversion sequence
3098      //   is an initialization, the special rules for
3099      //   initialization by user-defined conversion apply when
3100      //   selecting the best user-defined conversion for a
3101      //   user-defined conversion sequence (see 13.3.3 and
3102      //   13.3.3.1).
3103      User.After = Best->FinalConversion;
3104      return OR_Success;
3105    }
3106    llvm_unreachable("Not a constructor or conversion function?");
3107
3108  case OR_No_Viable_Function:
3109    return OR_No_Viable_Function;
3110  case OR_Deleted:
3111    // No conversion here! We're done.
3112    return OR_Deleted;
3113
3114  case OR_Ambiguous:
3115    return OR_Ambiguous;
3116  }
3117
3118  llvm_unreachable("Invalid OverloadResult!");
3119}
3120
3121bool
3122Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3123  ImplicitConversionSequence ICS;
3124  OverloadCandidateSet CandidateSet(From->getExprLoc());
3125  OverloadingResult OvResult =
3126    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3127                            CandidateSet, false);
3128  if (OvResult == OR_Ambiguous)
3129    Diag(From->getLocStart(),
3130         diag::err_typecheck_ambiguous_condition)
3131          << From->getType() << ToType << From->getSourceRange();
3132  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
3133    Diag(From->getLocStart(),
3134         diag::err_typecheck_nonviable_condition)
3135    << From->getType() << ToType << From->getSourceRange();
3136  else
3137    return false;
3138  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3139  return true;
3140}
3141
3142/// \brief Compare the user-defined conversion functions or constructors
3143/// of two user-defined conversion sequences to determine whether any ordering
3144/// is possible.
3145static ImplicitConversionSequence::CompareKind
3146compareConversionFunctions(Sema &S,
3147                           FunctionDecl *Function1,
3148                           FunctionDecl *Function2) {
3149  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
3150    return ImplicitConversionSequence::Indistinguishable;
3151
3152  // Objective-C++:
3153  //   If both conversion functions are implicitly-declared conversions from
3154  //   a lambda closure type to a function pointer and a block pointer,
3155  //   respectively, always prefer the conversion to a function pointer,
3156  //   because the function pointer is more lightweight and is more likely
3157  //   to keep code working.
3158  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3159  if (!Conv1)
3160    return ImplicitConversionSequence::Indistinguishable;
3161
3162  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3163  if (!Conv2)
3164    return ImplicitConversionSequence::Indistinguishable;
3165
3166  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3167    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3168    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3169    if (Block1 != Block2)
3170      return Block1? ImplicitConversionSequence::Worse
3171                   : ImplicitConversionSequence::Better;
3172  }
3173
3174  return ImplicitConversionSequence::Indistinguishable;
3175}
3176
3177/// CompareImplicitConversionSequences - Compare two implicit
3178/// conversion sequences to determine whether one is better than the
3179/// other or if they are indistinguishable (C++ 13.3.3.2).
3180static ImplicitConversionSequence::CompareKind
3181CompareImplicitConversionSequences(Sema &S,
3182                                   const ImplicitConversionSequence& ICS1,
3183                                   const ImplicitConversionSequence& ICS2)
3184{
3185  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3186  // conversion sequences (as defined in 13.3.3.1)
3187  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3188  //      conversion sequence than a user-defined conversion sequence or
3189  //      an ellipsis conversion sequence, and
3190  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3191  //      conversion sequence than an ellipsis conversion sequence
3192  //      (13.3.3.1.3).
3193  //
3194  // C++0x [over.best.ics]p10:
3195  //   For the purpose of ranking implicit conversion sequences as
3196  //   described in 13.3.3.2, the ambiguous conversion sequence is
3197  //   treated as a user-defined sequence that is indistinguishable
3198  //   from any other user-defined conversion sequence.
3199  if (ICS1.getKindRank() < ICS2.getKindRank())
3200    return ImplicitConversionSequence::Better;
3201  if (ICS2.getKindRank() < ICS1.getKindRank())
3202    return ImplicitConversionSequence::Worse;
3203
3204  // The following checks require both conversion sequences to be of
3205  // the same kind.
3206  if (ICS1.getKind() != ICS2.getKind())
3207    return ImplicitConversionSequence::Indistinguishable;
3208
3209  ImplicitConversionSequence::CompareKind Result =
3210      ImplicitConversionSequence::Indistinguishable;
3211
3212  // Two implicit conversion sequences of the same form are
3213  // indistinguishable conversion sequences unless one of the
3214  // following rules apply: (C++ 13.3.3.2p3):
3215  if (ICS1.isStandard())
3216    Result = CompareStandardConversionSequences(S,
3217                                                ICS1.Standard, ICS2.Standard);
3218  else if (ICS1.isUserDefined()) {
3219    // User-defined conversion sequence U1 is a better conversion
3220    // sequence than another user-defined conversion sequence U2 if
3221    // they contain the same user-defined conversion function or
3222    // constructor and if the second standard conversion sequence of
3223    // U1 is better than the second standard conversion sequence of
3224    // U2 (C++ 13.3.3.2p3).
3225    if (ICS1.UserDefined.ConversionFunction ==
3226          ICS2.UserDefined.ConversionFunction)
3227      Result = CompareStandardConversionSequences(S,
3228                                                  ICS1.UserDefined.After,
3229                                                  ICS2.UserDefined.After);
3230    else
3231      Result = compareConversionFunctions(S,
3232                                          ICS1.UserDefined.ConversionFunction,
3233                                          ICS2.UserDefined.ConversionFunction);
3234  }
3235
3236  // List-initialization sequence L1 is a better conversion sequence than
3237  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3238  // for some X and L2 does not.
3239  if (Result == ImplicitConversionSequence::Indistinguishable &&
3240      !ICS1.isBad() &&
3241      ICS1.isListInitializationSequence() &&
3242      ICS2.isListInitializationSequence()) {
3243    if (ICS1.isStdInitializerListElement() &&
3244        !ICS2.isStdInitializerListElement())
3245      return ImplicitConversionSequence::Better;
3246    if (!ICS1.isStdInitializerListElement() &&
3247        ICS2.isStdInitializerListElement())
3248      return ImplicitConversionSequence::Worse;
3249  }
3250
3251  return Result;
3252}
3253
3254static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3255  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3256    Qualifiers Quals;
3257    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3258    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3259  }
3260
3261  return Context.hasSameUnqualifiedType(T1, T2);
3262}
3263
3264// Per 13.3.3.2p3, compare the given standard conversion sequences to
3265// determine if one is a proper subset of the other.
3266static ImplicitConversionSequence::CompareKind
3267compareStandardConversionSubsets(ASTContext &Context,
3268                                 const StandardConversionSequence& SCS1,
3269                                 const StandardConversionSequence& SCS2) {
3270  ImplicitConversionSequence::CompareKind Result
3271    = ImplicitConversionSequence::Indistinguishable;
3272
3273  // the identity conversion sequence is considered to be a subsequence of
3274  // any non-identity conversion sequence
3275  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3276    return ImplicitConversionSequence::Better;
3277  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3278    return ImplicitConversionSequence::Worse;
3279
3280  if (SCS1.Second != SCS2.Second) {
3281    if (SCS1.Second == ICK_Identity)
3282      Result = ImplicitConversionSequence::Better;
3283    else if (SCS2.Second == ICK_Identity)
3284      Result = ImplicitConversionSequence::Worse;
3285    else
3286      return ImplicitConversionSequence::Indistinguishable;
3287  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3288    return ImplicitConversionSequence::Indistinguishable;
3289
3290  if (SCS1.Third == SCS2.Third) {
3291    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3292                             : ImplicitConversionSequence::Indistinguishable;
3293  }
3294
3295  if (SCS1.Third == ICK_Identity)
3296    return Result == ImplicitConversionSequence::Worse
3297             ? ImplicitConversionSequence::Indistinguishable
3298             : ImplicitConversionSequence::Better;
3299
3300  if (SCS2.Third == ICK_Identity)
3301    return Result == ImplicitConversionSequence::Better
3302             ? ImplicitConversionSequence::Indistinguishable
3303             : ImplicitConversionSequence::Worse;
3304
3305  return ImplicitConversionSequence::Indistinguishable;
3306}
3307
3308/// \brief Determine whether one of the given reference bindings is better
3309/// than the other based on what kind of bindings they are.
3310static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3311                                       const StandardConversionSequence &SCS2) {
3312  // C++0x [over.ics.rank]p3b4:
3313  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3314  //      implicit object parameter of a non-static member function declared
3315  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3316  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3317  //      lvalue reference to a function lvalue and S2 binds an rvalue
3318  //      reference*.
3319  //
3320  // FIXME: Rvalue references. We're going rogue with the above edits,
3321  // because the semantics in the current C++0x working paper (N3225 at the
3322  // time of this writing) break the standard definition of std::forward
3323  // and std::reference_wrapper when dealing with references to functions.
3324  // Proposed wording changes submitted to CWG for consideration.
3325  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3326      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3327    return false;
3328
3329  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3330          SCS2.IsLvalueReference) ||
3331         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3332          !SCS2.IsLvalueReference);
3333}
3334
3335/// CompareStandardConversionSequences - Compare two standard
3336/// conversion sequences to determine whether one is better than the
3337/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3338static ImplicitConversionSequence::CompareKind
3339CompareStandardConversionSequences(Sema &S,
3340                                   const StandardConversionSequence& SCS1,
3341                                   const StandardConversionSequence& SCS2)
3342{
3343  // Standard conversion sequence S1 is a better conversion sequence
3344  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3345
3346  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3347  //     sequences in the canonical form defined by 13.3.3.1.1,
3348  //     excluding any Lvalue Transformation; the identity conversion
3349  //     sequence is considered to be a subsequence of any
3350  //     non-identity conversion sequence) or, if not that,
3351  if (ImplicitConversionSequence::CompareKind CK
3352        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3353    return CK;
3354
3355  //  -- the rank of S1 is better than the rank of S2 (by the rules
3356  //     defined below), or, if not that,
3357  ImplicitConversionRank Rank1 = SCS1.getRank();
3358  ImplicitConversionRank Rank2 = SCS2.getRank();
3359  if (Rank1 < Rank2)
3360    return ImplicitConversionSequence::Better;
3361  else if (Rank2 < Rank1)
3362    return ImplicitConversionSequence::Worse;
3363
3364  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3365  // are indistinguishable unless one of the following rules
3366  // applies:
3367
3368  //   A conversion that is not a conversion of a pointer, or
3369  //   pointer to member, to bool is better than another conversion
3370  //   that is such a conversion.
3371  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3372    return SCS2.isPointerConversionToBool()
3373             ? ImplicitConversionSequence::Better
3374             : ImplicitConversionSequence::Worse;
3375
3376  // C++ [over.ics.rank]p4b2:
3377  //
3378  //   If class B is derived directly or indirectly from class A,
3379  //   conversion of B* to A* is better than conversion of B* to
3380  //   void*, and conversion of A* to void* is better than conversion
3381  //   of B* to void*.
3382  bool SCS1ConvertsToVoid
3383    = SCS1.isPointerConversionToVoidPointer(S.Context);
3384  bool SCS2ConvertsToVoid
3385    = SCS2.isPointerConversionToVoidPointer(S.Context);
3386  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3387    // Exactly one of the conversion sequences is a conversion to
3388    // a void pointer; it's the worse conversion.
3389    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3390                              : ImplicitConversionSequence::Worse;
3391  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3392    // Neither conversion sequence converts to a void pointer; compare
3393    // their derived-to-base conversions.
3394    if (ImplicitConversionSequence::CompareKind DerivedCK
3395          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3396      return DerivedCK;
3397  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3398             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3399    // Both conversion sequences are conversions to void
3400    // pointers. Compare the source types to determine if there's an
3401    // inheritance relationship in their sources.
3402    QualType FromType1 = SCS1.getFromType();
3403    QualType FromType2 = SCS2.getFromType();
3404
3405    // Adjust the types we're converting from via the array-to-pointer
3406    // conversion, if we need to.
3407    if (SCS1.First == ICK_Array_To_Pointer)
3408      FromType1 = S.Context.getArrayDecayedType(FromType1);
3409    if (SCS2.First == ICK_Array_To_Pointer)
3410      FromType2 = S.Context.getArrayDecayedType(FromType2);
3411
3412    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3413    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3414
3415    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3416      return ImplicitConversionSequence::Better;
3417    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3418      return ImplicitConversionSequence::Worse;
3419
3420    // Objective-C++: If one interface is more specific than the
3421    // other, it is the better one.
3422    const ObjCObjectPointerType* FromObjCPtr1
3423      = FromType1->getAs<ObjCObjectPointerType>();
3424    const ObjCObjectPointerType* FromObjCPtr2
3425      = FromType2->getAs<ObjCObjectPointerType>();
3426    if (FromObjCPtr1 && FromObjCPtr2) {
3427      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3428                                                          FromObjCPtr2);
3429      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3430                                                           FromObjCPtr1);
3431      if (AssignLeft != AssignRight) {
3432        return AssignLeft? ImplicitConversionSequence::Better
3433                         : ImplicitConversionSequence::Worse;
3434      }
3435    }
3436  }
3437
3438  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3439  // bullet 3).
3440  if (ImplicitConversionSequence::CompareKind QualCK
3441        = CompareQualificationConversions(S, SCS1, SCS2))
3442    return QualCK;
3443
3444  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3445    // Check for a better reference binding based on the kind of bindings.
3446    if (isBetterReferenceBindingKind(SCS1, SCS2))
3447      return ImplicitConversionSequence::Better;
3448    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3449      return ImplicitConversionSequence::Worse;
3450
3451    // C++ [over.ics.rank]p3b4:
3452    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3453    //      which the references refer are the same type except for
3454    //      top-level cv-qualifiers, and the type to which the reference
3455    //      initialized by S2 refers is more cv-qualified than the type
3456    //      to which the reference initialized by S1 refers.
3457    QualType T1 = SCS1.getToType(2);
3458    QualType T2 = SCS2.getToType(2);
3459    T1 = S.Context.getCanonicalType(T1);
3460    T2 = S.Context.getCanonicalType(T2);
3461    Qualifiers T1Quals, T2Quals;
3462    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3463    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3464    if (UnqualT1 == UnqualT2) {
3465      // Objective-C++ ARC: If the references refer to objects with different
3466      // lifetimes, prefer bindings that don't change lifetime.
3467      if (SCS1.ObjCLifetimeConversionBinding !=
3468                                          SCS2.ObjCLifetimeConversionBinding) {
3469        return SCS1.ObjCLifetimeConversionBinding
3470                                           ? ImplicitConversionSequence::Worse
3471                                           : ImplicitConversionSequence::Better;
3472      }
3473
3474      // If the type is an array type, promote the element qualifiers to the
3475      // type for comparison.
3476      if (isa<ArrayType>(T1) && T1Quals)
3477        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3478      if (isa<ArrayType>(T2) && T2Quals)
3479        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3480      if (T2.isMoreQualifiedThan(T1))
3481        return ImplicitConversionSequence::Better;
3482      else if (T1.isMoreQualifiedThan(T2))
3483        return ImplicitConversionSequence::Worse;
3484    }
3485  }
3486
3487  // In Microsoft mode, prefer an integral conversion to a
3488  // floating-to-integral conversion if the integral conversion
3489  // is between types of the same size.
3490  // For example:
3491  // void f(float);
3492  // void f(int);
3493  // int main {
3494  //    long a;
3495  //    f(a);
3496  // }
3497  // Here, MSVC will call f(int) instead of generating a compile error
3498  // as clang will do in standard mode.
3499  if (S.getLangOpts().MicrosoftMode &&
3500      SCS1.Second == ICK_Integral_Conversion &&
3501      SCS2.Second == ICK_Floating_Integral &&
3502      S.Context.getTypeSize(SCS1.getFromType()) ==
3503      S.Context.getTypeSize(SCS1.getToType(2)))
3504    return ImplicitConversionSequence::Better;
3505
3506  return ImplicitConversionSequence::Indistinguishable;
3507}
3508
3509/// CompareQualificationConversions - Compares two standard conversion
3510/// sequences to determine whether they can be ranked based on their
3511/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3512ImplicitConversionSequence::CompareKind
3513CompareQualificationConversions(Sema &S,
3514                                const StandardConversionSequence& SCS1,
3515                                const StandardConversionSequence& SCS2) {
3516  // C++ 13.3.3.2p3:
3517  //  -- S1 and S2 differ only in their qualification conversion and
3518  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3519  //     cv-qualification signature of type T1 is a proper subset of
3520  //     the cv-qualification signature of type T2, and S1 is not the
3521  //     deprecated string literal array-to-pointer conversion (4.2).
3522  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3523      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3524    return ImplicitConversionSequence::Indistinguishable;
3525
3526  // FIXME: the example in the standard doesn't use a qualification
3527  // conversion (!)
3528  QualType T1 = SCS1.getToType(2);
3529  QualType T2 = SCS2.getToType(2);
3530  T1 = S.Context.getCanonicalType(T1);
3531  T2 = S.Context.getCanonicalType(T2);
3532  Qualifiers T1Quals, T2Quals;
3533  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3534  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3535
3536  // If the types are the same, we won't learn anything by unwrapped
3537  // them.
3538  if (UnqualT1 == UnqualT2)
3539    return ImplicitConversionSequence::Indistinguishable;
3540
3541  // If the type is an array type, promote the element qualifiers to the type
3542  // for comparison.
3543  if (isa<ArrayType>(T1) && T1Quals)
3544    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3545  if (isa<ArrayType>(T2) && T2Quals)
3546    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3547
3548  ImplicitConversionSequence::CompareKind Result
3549    = ImplicitConversionSequence::Indistinguishable;
3550
3551  // Objective-C++ ARC:
3552  //   Prefer qualification conversions not involving a change in lifetime
3553  //   to qualification conversions that do not change lifetime.
3554  if (SCS1.QualificationIncludesObjCLifetime !=
3555                                      SCS2.QualificationIncludesObjCLifetime) {
3556    Result = SCS1.QualificationIncludesObjCLifetime
3557               ? ImplicitConversionSequence::Worse
3558               : ImplicitConversionSequence::Better;
3559  }
3560
3561  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3562    // Within each iteration of the loop, we check the qualifiers to
3563    // determine if this still looks like a qualification
3564    // conversion. Then, if all is well, we unwrap one more level of
3565    // pointers or pointers-to-members and do it all again
3566    // until there are no more pointers or pointers-to-members left
3567    // to unwrap. This essentially mimics what
3568    // IsQualificationConversion does, but here we're checking for a
3569    // strict subset of qualifiers.
3570    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3571      // The qualifiers are the same, so this doesn't tell us anything
3572      // about how the sequences rank.
3573      ;
3574    else if (T2.isMoreQualifiedThan(T1)) {
3575      // T1 has fewer qualifiers, so it could be the better sequence.
3576      if (Result == ImplicitConversionSequence::Worse)
3577        // Neither has qualifiers that are a subset of the other's
3578        // qualifiers.
3579        return ImplicitConversionSequence::Indistinguishable;
3580
3581      Result = ImplicitConversionSequence::Better;
3582    } else if (T1.isMoreQualifiedThan(T2)) {
3583      // T2 has fewer qualifiers, so it could be the better sequence.
3584      if (Result == ImplicitConversionSequence::Better)
3585        // Neither has qualifiers that are a subset of the other's
3586        // qualifiers.
3587        return ImplicitConversionSequence::Indistinguishable;
3588
3589      Result = ImplicitConversionSequence::Worse;
3590    } else {
3591      // Qualifiers are disjoint.
3592      return ImplicitConversionSequence::Indistinguishable;
3593    }
3594
3595    // If the types after this point are equivalent, we're done.
3596    if (S.Context.hasSameUnqualifiedType(T1, T2))
3597      break;
3598  }
3599
3600  // Check that the winning standard conversion sequence isn't using
3601  // the deprecated string literal array to pointer conversion.
3602  switch (Result) {
3603  case ImplicitConversionSequence::Better:
3604    if (SCS1.DeprecatedStringLiteralToCharPtr)
3605      Result = ImplicitConversionSequence::Indistinguishable;
3606    break;
3607
3608  case ImplicitConversionSequence::Indistinguishable:
3609    break;
3610
3611  case ImplicitConversionSequence::Worse:
3612    if (SCS2.DeprecatedStringLiteralToCharPtr)
3613      Result = ImplicitConversionSequence::Indistinguishable;
3614    break;
3615  }
3616
3617  return Result;
3618}
3619
3620/// CompareDerivedToBaseConversions - Compares two standard conversion
3621/// sequences to determine whether they can be ranked based on their
3622/// various kinds of derived-to-base conversions (C++
3623/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3624/// conversions between Objective-C interface types.
3625ImplicitConversionSequence::CompareKind
3626CompareDerivedToBaseConversions(Sema &S,
3627                                const StandardConversionSequence& SCS1,
3628                                const StandardConversionSequence& SCS2) {
3629  QualType FromType1 = SCS1.getFromType();
3630  QualType ToType1 = SCS1.getToType(1);
3631  QualType FromType2 = SCS2.getFromType();
3632  QualType ToType2 = SCS2.getToType(1);
3633
3634  // Adjust the types we're converting from via the array-to-pointer
3635  // conversion, if we need to.
3636  if (SCS1.First == ICK_Array_To_Pointer)
3637    FromType1 = S.Context.getArrayDecayedType(FromType1);
3638  if (SCS2.First == ICK_Array_To_Pointer)
3639    FromType2 = S.Context.getArrayDecayedType(FromType2);
3640
3641  // Canonicalize all of the types.
3642  FromType1 = S.Context.getCanonicalType(FromType1);
3643  ToType1 = S.Context.getCanonicalType(ToType1);
3644  FromType2 = S.Context.getCanonicalType(FromType2);
3645  ToType2 = S.Context.getCanonicalType(ToType2);
3646
3647  // C++ [over.ics.rank]p4b3:
3648  //
3649  //   If class B is derived directly or indirectly from class A and
3650  //   class C is derived directly or indirectly from B,
3651  //
3652  // Compare based on pointer conversions.
3653  if (SCS1.Second == ICK_Pointer_Conversion &&
3654      SCS2.Second == ICK_Pointer_Conversion &&
3655      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3656      FromType1->isPointerType() && FromType2->isPointerType() &&
3657      ToType1->isPointerType() && ToType2->isPointerType()) {
3658    QualType FromPointee1
3659      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3660    QualType ToPointee1
3661      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3662    QualType FromPointee2
3663      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3664    QualType ToPointee2
3665      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3666
3667    //   -- conversion of C* to B* is better than conversion of C* to A*,
3668    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3669      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3670        return ImplicitConversionSequence::Better;
3671      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3672        return ImplicitConversionSequence::Worse;
3673    }
3674
3675    //   -- conversion of B* to A* is better than conversion of C* to A*,
3676    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3677      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3678        return ImplicitConversionSequence::Better;
3679      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3680        return ImplicitConversionSequence::Worse;
3681    }
3682  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3683             SCS2.Second == ICK_Pointer_Conversion) {
3684    const ObjCObjectPointerType *FromPtr1
3685      = FromType1->getAs<ObjCObjectPointerType>();
3686    const ObjCObjectPointerType *FromPtr2
3687      = FromType2->getAs<ObjCObjectPointerType>();
3688    const ObjCObjectPointerType *ToPtr1
3689      = ToType1->getAs<ObjCObjectPointerType>();
3690    const ObjCObjectPointerType *ToPtr2
3691      = ToType2->getAs<ObjCObjectPointerType>();
3692
3693    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3694      // Apply the same conversion ranking rules for Objective-C pointer types
3695      // that we do for C++ pointers to class types. However, we employ the
3696      // Objective-C pseudo-subtyping relationship used for assignment of
3697      // Objective-C pointer types.
3698      bool FromAssignLeft
3699        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3700      bool FromAssignRight
3701        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3702      bool ToAssignLeft
3703        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3704      bool ToAssignRight
3705        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3706
3707      // A conversion to an a non-id object pointer type or qualified 'id'
3708      // type is better than a conversion to 'id'.
3709      if (ToPtr1->isObjCIdType() &&
3710          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3711        return ImplicitConversionSequence::Worse;
3712      if (ToPtr2->isObjCIdType() &&
3713          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3714        return ImplicitConversionSequence::Better;
3715
3716      // A conversion to a non-id object pointer type is better than a
3717      // conversion to a qualified 'id' type
3718      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3719        return ImplicitConversionSequence::Worse;
3720      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3721        return ImplicitConversionSequence::Better;
3722
3723      // A conversion to an a non-Class object pointer type or qualified 'Class'
3724      // type is better than a conversion to 'Class'.
3725      if (ToPtr1->isObjCClassType() &&
3726          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3727        return ImplicitConversionSequence::Worse;
3728      if (ToPtr2->isObjCClassType() &&
3729          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3730        return ImplicitConversionSequence::Better;
3731
3732      // A conversion to a non-Class object pointer type is better than a
3733      // conversion to a qualified 'Class' type.
3734      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3735        return ImplicitConversionSequence::Worse;
3736      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3737        return ImplicitConversionSequence::Better;
3738
3739      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3740      if (S.Context.hasSameType(FromType1, FromType2) &&
3741          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3742          (ToAssignLeft != ToAssignRight))
3743        return ToAssignLeft? ImplicitConversionSequence::Worse
3744                           : ImplicitConversionSequence::Better;
3745
3746      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3747      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3748          (FromAssignLeft != FromAssignRight))
3749        return FromAssignLeft? ImplicitConversionSequence::Better
3750        : ImplicitConversionSequence::Worse;
3751    }
3752  }
3753
3754  // Ranking of member-pointer types.
3755  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3756      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3757      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3758    const MemberPointerType * FromMemPointer1 =
3759                                        FromType1->getAs<MemberPointerType>();
3760    const MemberPointerType * ToMemPointer1 =
3761                                          ToType1->getAs<MemberPointerType>();
3762    const MemberPointerType * FromMemPointer2 =
3763                                          FromType2->getAs<MemberPointerType>();
3764    const MemberPointerType * ToMemPointer2 =
3765                                          ToType2->getAs<MemberPointerType>();
3766    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3767    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3768    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3769    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3770    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3771    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3772    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3773    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3774    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3775    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3776      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3777        return ImplicitConversionSequence::Worse;
3778      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3779        return ImplicitConversionSequence::Better;
3780    }
3781    // conversion of B::* to C::* is better than conversion of A::* to C::*
3782    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3783      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3784        return ImplicitConversionSequence::Better;
3785      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3786        return ImplicitConversionSequence::Worse;
3787    }
3788  }
3789
3790  if (SCS1.Second == ICK_Derived_To_Base) {
3791    //   -- conversion of C to B is better than conversion of C to A,
3792    //   -- binding of an expression of type C to a reference of type
3793    //      B& is better than binding an expression of type C to a
3794    //      reference of type A&,
3795    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3796        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3797      if (S.IsDerivedFrom(ToType1, ToType2))
3798        return ImplicitConversionSequence::Better;
3799      else if (S.IsDerivedFrom(ToType2, ToType1))
3800        return ImplicitConversionSequence::Worse;
3801    }
3802
3803    //   -- conversion of B to A is better than conversion of C to A.
3804    //   -- binding of an expression of type B to a reference of type
3805    //      A& is better than binding an expression of type C to a
3806    //      reference of type A&,
3807    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3808        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3809      if (S.IsDerivedFrom(FromType2, FromType1))
3810        return ImplicitConversionSequence::Better;
3811      else if (S.IsDerivedFrom(FromType1, FromType2))
3812        return ImplicitConversionSequence::Worse;
3813    }
3814  }
3815
3816  return ImplicitConversionSequence::Indistinguishable;
3817}
3818
3819/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3820/// determine whether they are reference-related,
3821/// reference-compatible, reference-compatible with added
3822/// qualification, or incompatible, for use in C++ initialization by
3823/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3824/// type, and the first type (T1) is the pointee type of the reference
3825/// type being initialized.
3826Sema::ReferenceCompareResult
3827Sema::CompareReferenceRelationship(SourceLocation Loc,
3828                                   QualType OrigT1, QualType OrigT2,
3829                                   bool &DerivedToBase,
3830                                   bool &ObjCConversion,
3831                                   bool &ObjCLifetimeConversion) {
3832  assert(!OrigT1->isReferenceType() &&
3833    "T1 must be the pointee type of the reference type");
3834  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3835
3836  QualType T1 = Context.getCanonicalType(OrigT1);
3837  QualType T2 = Context.getCanonicalType(OrigT2);
3838  Qualifiers T1Quals, T2Quals;
3839  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3840  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3841
3842  // C++ [dcl.init.ref]p4:
3843  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3844  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3845  //   T1 is a base class of T2.
3846  DerivedToBase = false;
3847  ObjCConversion = false;
3848  ObjCLifetimeConversion = false;
3849  if (UnqualT1 == UnqualT2) {
3850    // Nothing to do.
3851  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3852           IsDerivedFrom(UnqualT2, UnqualT1))
3853    DerivedToBase = true;
3854  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3855           UnqualT2->isObjCObjectOrInterfaceType() &&
3856           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3857    ObjCConversion = true;
3858  else
3859    return Ref_Incompatible;
3860
3861  // At this point, we know that T1 and T2 are reference-related (at
3862  // least).
3863
3864  // If the type is an array type, promote the element qualifiers to the type
3865  // for comparison.
3866  if (isa<ArrayType>(T1) && T1Quals)
3867    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3868  if (isa<ArrayType>(T2) && T2Quals)
3869    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3870
3871  // C++ [dcl.init.ref]p4:
3872  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3873  //   reference-related to T2 and cv1 is the same cv-qualification
3874  //   as, or greater cv-qualification than, cv2. For purposes of
3875  //   overload resolution, cases for which cv1 is greater
3876  //   cv-qualification than cv2 are identified as
3877  //   reference-compatible with added qualification (see 13.3.3.2).
3878  //
3879  // Note that we also require equivalence of Objective-C GC and address-space
3880  // qualifiers when performing these computations, so that e.g., an int in
3881  // address space 1 is not reference-compatible with an int in address
3882  // space 2.
3883  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3884      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3885    T1Quals.removeObjCLifetime();
3886    T2Quals.removeObjCLifetime();
3887    ObjCLifetimeConversion = true;
3888  }
3889
3890  if (T1Quals == T2Quals)
3891    return Ref_Compatible;
3892  else if (T1Quals.compatiblyIncludes(T2Quals))
3893    return Ref_Compatible_With_Added_Qualification;
3894  else
3895    return Ref_Related;
3896}
3897
3898/// \brief Look for a user-defined conversion to an value reference-compatible
3899///        with DeclType. Return true if something definite is found.
3900static bool
3901FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3902                         QualType DeclType, SourceLocation DeclLoc,
3903                         Expr *Init, QualType T2, bool AllowRvalues,
3904                         bool AllowExplicit) {
3905  assert(T2->isRecordType() && "Can only find conversions of record types.");
3906  CXXRecordDecl *T2RecordDecl
3907    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3908
3909  OverloadCandidateSet CandidateSet(DeclLoc);
3910  const UnresolvedSetImpl *Conversions
3911    = T2RecordDecl->getVisibleConversionFunctions();
3912  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3913         E = Conversions->end(); I != E; ++I) {
3914    NamedDecl *D = *I;
3915    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3916    if (isa<UsingShadowDecl>(D))
3917      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3918
3919    FunctionTemplateDecl *ConvTemplate
3920      = dyn_cast<FunctionTemplateDecl>(D);
3921    CXXConversionDecl *Conv;
3922    if (ConvTemplate)
3923      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3924    else
3925      Conv = cast<CXXConversionDecl>(D);
3926
3927    // If this is an explicit conversion, and we're not allowed to consider
3928    // explicit conversions, skip it.
3929    if (!AllowExplicit && Conv->isExplicit())
3930      continue;
3931
3932    if (AllowRvalues) {
3933      bool DerivedToBase = false;
3934      bool ObjCConversion = false;
3935      bool ObjCLifetimeConversion = false;
3936
3937      // If we are initializing an rvalue reference, don't permit conversion
3938      // functions that return lvalues.
3939      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3940        const ReferenceType *RefType
3941          = Conv->getConversionType()->getAs<LValueReferenceType>();
3942        if (RefType && !RefType->getPointeeType()->isFunctionType())
3943          continue;
3944      }
3945
3946      if (!ConvTemplate &&
3947          S.CompareReferenceRelationship(
3948            DeclLoc,
3949            Conv->getConversionType().getNonReferenceType()
3950              .getUnqualifiedType(),
3951            DeclType.getNonReferenceType().getUnqualifiedType(),
3952            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3953          Sema::Ref_Incompatible)
3954        continue;
3955    } else {
3956      // If the conversion function doesn't return a reference type,
3957      // it can't be considered for this conversion. An rvalue reference
3958      // is only acceptable if its referencee is a function type.
3959
3960      const ReferenceType *RefType =
3961        Conv->getConversionType()->getAs<ReferenceType>();
3962      if (!RefType ||
3963          (!RefType->isLValueReferenceType() &&
3964           !RefType->getPointeeType()->isFunctionType()))
3965        continue;
3966    }
3967
3968    if (ConvTemplate)
3969      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3970                                       Init, DeclType, CandidateSet);
3971    else
3972      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3973                               DeclType, CandidateSet);
3974  }
3975
3976  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3977
3978  OverloadCandidateSet::iterator Best;
3979  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3980  case OR_Success:
3981    // C++ [over.ics.ref]p1:
3982    //
3983    //   [...] If the parameter binds directly to the result of
3984    //   applying a conversion function to the argument
3985    //   expression, the implicit conversion sequence is a
3986    //   user-defined conversion sequence (13.3.3.1.2), with the
3987    //   second standard conversion sequence either an identity
3988    //   conversion or, if the conversion function returns an
3989    //   entity of a type that is a derived class of the parameter
3990    //   type, a derived-to-base Conversion.
3991    if (!Best->FinalConversion.DirectBinding)
3992      return false;
3993
3994    if (Best->Function)
3995      S.MarkFunctionReferenced(DeclLoc, Best->Function);
3996    ICS.setUserDefined();
3997    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3998    ICS.UserDefined.After = Best->FinalConversion;
3999    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4000    ICS.UserDefined.ConversionFunction = Best->Function;
4001    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4002    ICS.UserDefined.EllipsisConversion = false;
4003    assert(ICS.UserDefined.After.ReferenceBinding &&
4004           ICS.UserDefined.After.DirectBinding &&
4005           "Expected a direct reference binding!");
4006    return true;
4007
4008  case OR_Ambiguous:
4009    ICS.setAmbiguous();
4010    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4011         Cand != CandidateSet.end(); ++Cand)
4012      if (Cand->Viable)
4013        ICS.Ambiguous.addConversion(Cand->Function);
4014    return true;
4015
4016  case OR_No_Viable_Function:
4017  case OR_Deleted:
4018    // There was no suitable conversion, or we found a deleted
4019    // conversion; continue with other checks.
4020    return false;
4021  }
4022
4023  llvm_unreachable("Invalid OverloadResult!");
4024}
4025
4026/// \brief Compute an implicit conversion sequence for reference
4027/// initialization.
4028static ImplicitConversionSequence
4029TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4030                 SourceLocation DeclLoc,
4031                 bool SuppressUserConversions,
4032                 bool AllowExplicit) {
4033  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4034
4035  // Most paths end in a failed conversion.
4036  ImplicitConversionSequence ICS;
4037  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4038
4039  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4040  QualType T2 = Init->getType();
4041
4042  // If the initializer is the address of an overloaded function, try
4043  // to resolve the overloaded function. If all goes well, T2 is the
4044  // type of the resulting function.
4045  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4046    DeclAccessPair Found;
4047    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4048                                                                false, Found))
4049      T2 = Fn->getType();
4050  }
4051
4052  // Compute some basic properties of the types and the initializer.
4053  bool isRValRef = DeclType->isRValueReferenceType();
4054  bool DerivedToBase = false;
4055  bool ObjCConversion = false;
4056  bool ObjCLifetimeConversion = false;
4057  Expr::Classification InitCategory = Init->Classify(S.Context);
4058  Sema::ReferenceCompareResult RefRelationship
4059    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4060                                     ObjCConversion, ObjCLifetimeConversion);
4061
4062
4063  // C++0x [dcl.init.ref]p5:
4064  //   A reference to type "cv1 T1" is initialized by an expression
4065  //   of type "cv2 T2" as follows:
4066
4067  //     -- If reference is an lvalue reference and the initializer expression
4068  if (!isRValRef) {
4069    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4070    //        reference-compatible with "cv2 T2," or
4071    //
4072    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4073    if (InitCategory.isLValue() &&
4074        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4075      // C++ [over.ics.ref]p1:
4076      //   When a parameter of reference type binds directly (8.5.3)
4077      //   to an argument expression, the implicit conversion sequence
4078      //   is the identity conversion, unless the argument expression
4079      //   has a type that is a derived class of the parameter type,
4080      //   in which case the implicit conversion sequence is a
4081      //   derived-to-base Conversion (13.3.3.1).
4082      ICS.setStandard();
4083      ICS.Standard.First = ICK_Identity;
4084      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4085                         : ObjCConversion? ICK_Compatible_Conversion
4086                         : ICK_Identity;
4087      ICS.Standard.Third = ICK_Identity;
4088      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4089      ICS.Standard.setToType(0, T2);
4090      ICS.Standard.setToType(1, T1);
4091      ICS.Standard.setToType(2, T1);
4092      ICS.Standard.ReferenceBinding = true;
4093      ICS.Standard.DirectBinding = true;
4094      ICS.Standard.IsLvalueReference = !isRValRef;
4095      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4096      ICS.Standard.BindsToRvalue = false;
4097      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4098      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4099      ICS.Standard.CopyConstructor = 0;
4100
4101      // Nothing more to do: the inaccessibility/ambiguity check for
4102      // derived-to-base conversions is suppressed when we're
4103      // computing the implicit conversion sequence (C++
4104      // [over.best.ics]p2).
4105      return ICS;
4106    }
4107
4108    //       -- has a class type (i.e., T2 is a class type), where T1 is
4109    //          not reference-related to T2, and can be implicitly
4110    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4111    //          is reference-compatible with "cv3 T3" 92) (this
4112    //          conversion is selected by enumerating the applicable
4113    //          conversion functions (13.3.1.6) and choosing the best
4114    //          one through overload resolution (13.3)),
4115    if (!SuppressUserConversions && T2->isRecordType() &&
4116        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4117        RefRelationship == Sema::Ref_Incompatible) {
4118      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4119                                   Init, T2, /*AllowRvalues=*/false,
4120                                   AllowExplicit))
4121        return ICS;
4122    }
4123  }
4124
4125  //     -- Otherwise, the reference shall be an lvalue reference to a
4126  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4127  //        shall be an rvalue reference.
4128  //
4129  // We actually handle one oddity of C++ [over.ics.ref] at this
4130  // point, which is that, due to p2 (which short-circuits reference
4131  // binding by only attempting a simple conversion for non-direct
4132  // bindings) and p3's strange wording, we allow a const volatile
4133  // reference to bind to an rvalue. Hence the check for the presence
4134  // of "const" rather than checking for "const" being the only
4135  // qualifier.
4136  // This is also the point where rvalue references and lvalue inits no longer
4137  // go together.
4138  if (!isRValRef && !T1.isConstQualified())
4139    return ICS;
4140
4141  //       -- If the initializer expression
4142  //
4143  //            -- is an xvalue, class prvalue, array prvalue or function
4144  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4145  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4146      (InitCategory.isXValue() ||
4147      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4148      (InitCategory.isLValue() && T2->isFunctionType()))) {
4149    ICS.setStandard();
4150    ICS.Standard.First = ICK_Identity;
4151    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4152                      : ObjCConversion? ICK_Compatible_Conversion
4153                      : ICK_Identity;
4154    ICS.Standard.Third = ICK_Identity;
4155    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4156    ICS.Standard.setToType(0, T2);
4157    ICS.Standard.setToType(1, T1);
4158    ICS.Standard.setToType(2, T1);
4159    ICS.Standard.ReferenceBinding = true;
4160    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4161    // binding unless we're binding to a class prvalue.
4162    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4163    // allow the use of rvalue references in C++98/03 for the benefit of
4164    // standard library implementors; therefore, we need the xvalue check here.
4165    ICS.Standard.DirectBinding =
4166      S.getLangOpts().CPlusPlus0x ||
4167      (InitCategory.isPRValue() && !T2->isRecordType());
4168    ICS.Standard.IsLvalueReference = !isRValRef;
4169    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4170    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4171    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4172    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4173    ICS.Standard.CopyConstructor = 0;
4174    return ICS;
4175  }
4176
4177  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4178  //               reference-related to T2, and can be implicitly converted to
4179  //               an xvalue, class prvalue, or function lvalue of type
4180  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4181  //               "cv3 T3",
4182  //
4183  //          then the reference is bound to the value of the initializer
4184  //          expression in the first case and to the result of the conversion
4185  //          in the second case (or, in either case, to an appropriate base
4186  //          class subobject).
4187  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4188      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4189      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4190                               Init, T2, /*AllowRvalues=*/true,
4191                               AllowExplicit)) {
4192    // In the second case, if the reference is an rvalue reference
4193    // and the second standard conversion sequence of the
4194    // user-defined conversion sequence includes an lvalue-to-rvalue
4195    // conversion, the program is ill-formed.
4196    if (ICS.isUserDefined() && isRValRef &&
4197        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4198      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4199
4200    return ICS;
4201  }
4202
4203  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4204  //          initialized from the initializer expression using the
4205  //          rules for a non-reference copy initialization (8.5). The
4206  //          reference is then bound to the temporary. If T1 is
4207  //          reference-related to T2, cv1 must be the same
4208  //          cv-qualification as, or greater cv-qualification than,
4209  //          cv2; otherwise, the program is ill-formed.
4210  if (RefRelationship == Sema::Ref_Related) {
4211    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4212    // we would be reference-compatible or reference-compatible with
4213    // added qualification. But that wasn't the case, so the reference
4214    // initialization fails.
4215    //
4216    // Note that we only want to check address spaces and cvr-qualifiers here.
4217    // ObjC GC and lifetime qualifiers aren't important.
4218    Qualifiers T1Quals = T1.getQualifiers();
4219    Qualifiers T2Quals = T2.getQualifiers();
4220    T1Quals.removeObjCGCAttr();
4221    T1Quals.removeObjCLifetime();
4222    T2Quals.removeObjCGCAttr();
4223    T2Quals.removeObjCLifetime();
4224    if (!T1Quals.compatiblyIncludes(T2Quals))
4225      return ICS;
4226  }
4227
4228  // If at least one of the types is a class type, the types are not
4229  // related, and we aren't allowed any user conversions, the
4230  // reference binding fails. This case is important for breaking
4231  // recursion, since TryImplicitConversion below will attempt to
4232  // create a temporary through the use of a copy constructor.
4233  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4234      (T1->isRecordType() || T2->isRecordType()))
4235    return ICS;
4236
4237  // If T1 is reference-related to T2 and the reference is an rvalue
4238  // reference, the initializer expression shall not be an lvalue.
4239  if (RefRelationship >= Sema::Ref_Related &&
4240      isRValRef && Init->Classify(S.Context).isLValue())
4241    return ICS;
4242
4243  // C++ [over.ics.ref]p2:
4244  //   When a parameter of reference type is not bound directly to
4245  //   an argument expression, the conversion sequence is the one
4246  //   required to convert the argument expression to the
4247  //   underlying type of the reference according to
4248  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4249  //   to copy-initializing a temporary of the underlying type with
4250  //   the argument expression. Any difference in top-level
4251  //   cv-qualification is subsumed by the initialization itself
4252  //   and does not constitute a conversion.
4253  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4254                              /*AllowExplicit=*/false,
4255                              /*InOverloadResolution=*/false,
4256                              /*CStyle=*/false,
4257                              /*AllowObjCWritebackConversion=*/false);
4258
4259  // Of course, that's still a reference binding.
4260  if (ICS.isStandard()) {
4261    ICS.Standard.ReferenceBinding = true;
4262    ICS.Standard.IsLvalueReference = !isRValRef;
4263    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4264    ICS.Standard.BindsToRvalue = true;
4265    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4266    ICS.Standard.ObjCLifetimeConversionBinding = false;
4267  } else if (ICS.isUserDefined()) {
4268    // Don't allow rvalue references to bind to lvalues.
4269    if (DeclType->isRValueReferenceType()) {
4270      if (const ReferenceType *RefType
4271            = ICS.UserDefined.ConversionFunction->getResultType()
4272                ->getAs<LValueReferenceType>()) {
4273        if (!RefType->getPointeeType()->isFunctionType()) {
4274          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4275                     DeclType);
4276          return ICS;
4277        }
4278      }
4279    }
4280
4281    ICS.UserDefined.After.ReferenceBinding = true;
4282    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4283    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4284    ICS.UserDefined.After.BindsToRvalue = true;
4285    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4286    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4287  }
4288
4289  return ICS;
4290}
4291
4292static ImplicitConversionSequence
4293TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4294                      bool SuppressUserConversions,
4295                      bool InOverloadResolution,
4296                      bool AllowObjCWritebackConversion,
4297                      bool AllowExplicit = false);
4298
4299/// TryListConversion - Try to copy-initialize a value of type ToType from the
4300/// initializer list From.
4301static ImplicitConversionSequence
4302TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4303                  bool SuppressUserConversions,
4304                  bool InOverloadResolution,
4305                  bool AllowObjCWritebackConversion) {
4306  // C++11 [over.ics.list]p1:
4307  //   When an argument is an initializer list, it is not an expression and
4308  //   special rules apply for converting it to a parameter type.
4309
4310  ImplicitConversionSequence Result;
4311  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4312  Result.setListInitializationSequence();
4313
4314  // We need a complete type for what follows. Incomplete types can never be
4315  // initialized from init lists.
4316  if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()))
4317    return Result;
4318
4319  // C++11 [over.ics.list]p2:
4320  //   If the parameter type is std::initializer_list<X> or "array of X" and
4321  //   all the elements can be implicitly converted to X, the implicit
4322  //   conversion sequence is the worst conversion necessary to convert an
4323  //   element of the list to X.
4324  bool toStdInitializerList = false;
4325  QualType X;
4326  if (ToType->isArrayType())
4327    X = S.Context.getBaseElementType(ToType);
4328  else
4329    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4330  if (!X.isNull()) {
4331    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4332      Expr *Init = From->getInit(i);
4333      ImplicitConversionSequence ICS =
4334          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4335                                InOverloadResolution,
4336                                AllowObjCWritebackConversion);
4337      // If a single element isn't convertible, fail.
4338      if (ICS.isBad()) {
4339        Result = ICS;
4340        break;
4341      }
4342      // Otherwise, look for the worst conversion.
4343      if (Result.isBad() ||
4344          CompareImplicitConversionSequences(S, ICS, Result) ==
4345              ImplicitConversionSequence::Worse)
4346        Result = ICS;
4347    }
4348
4349    // For an empty list, we won't have computed any conversion sequence.
4350    // Introduce the identity conversion sequence.
4351    if (From->getNumInits() == 0) {
4352      Result.setStandard();
4353      Result.Standard.setAsIdentityConversion();
4354      Result.Standard.setFromType(ToType);
4355      Result.Standard.setAllToTypes(ToType);
4356    }
4357
4358    Result.setListInitializationSequence();
4359    Result.setStdInitializerListElement(toStdInitializerList);
4360    return Result;
4361  }
4362
4363  // C++11 [over.ics.list]p3:
4364  //   Otherwise, if the parameter is a non-aggregate class X and overload
4365  //   resolution chooses a single best constructor [...] the implicit
4366  //   conversion sequence is a user-defined conversion sequence. If multiple
4367  //   constructors are viable but none is better than the others, the
4368  //   implicit conversion sequence is a user-defined conversion sequence.
4369  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4370    // This function can deal with initializer lists.
4371    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4372                                      /*AllowExplicit=*/false,
4373                                      InOverloadResolution, /*CStyle=*/false,
4374                                      AllowObjCWritebackConversion);
4375    Result.setListInitializationSequence();
4376    return Result;
4377  }
4378
4379  // C++11 [over.ics.list]p4:
4380  //   Otherwise, if the parameter has an aggregate type which can be
4381  //   initialized from the initializer list [...] the implicit conversion
4382  //   sequence is a user-defined conversion sequence.
4383  if (ToType->isAggregateType()) {
4384    // Type is an aggregate, argument is an init list. At this point it comes
4385    // down to checking whether the initialization works.
4386    // FIXME: Find out whether this parameter is consumed or not.
4387    InitializedEntity Entity =
4388        InitializedEntity::InitializeParameter(S.Context, ToType,
4389                                               /*Consumed=*/false);
4390    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4391      Result.setUserDefined();
4392      Result.UserDefined.Before.setAsIdentityConversion();
4393      // Initializer lists don't have a type.
4394      Result.UserDefined.Before.setFromType(QualType());
4395      Result.UserDefined.Before.setAllToTypes(QualType());
4396
4397      Result.UserDefined.After.setAsIdentityConversion();
4398      Result.UserDefined.After.setFromType(ToType);
4399      Result.UserDefined.After.setAllToTypes(ToType);
4400      Result.UserDefined.ConversionFunction = 0;
4401    }
4402    return Result;
4403  }
4404
4405  // C++11 [over.ics.list]p5:
4406  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4407  if (ToType->isReferenceType()) {
4408    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4409    // mention initializer lists in any way. So we go by what list-
4410    // initialization would do and try to extrapolate from that.
4411
4412    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4413
4414    // If the initializer list has a single element that is reference-related
4415    // to the parameter type, we initialize the reference from that.
4416    if (From->getNumInits() == 1) {
4417      Expr *Init = From->getInit(0);
4418
4419      QualType T2 = Init->getType();
4420
4421      // If the initializer is the address of an overloaded function, try
4422      // to resolve the overloaded function. If all goes well, T2 is the
4423      // type of the resulting function.
4424      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4425        DeclAccessPair Found;
4426        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4427                                   Init, ToType, false, Found))
4428          T2 = Fn->getType();
4429      }
4430
4431      // Compute some basic properties of the types and the initializer.
4432      bool dummy1 = false;
4433      bool dummy2 = false;
4434      bool dummy3 = false;
4435      Sema::ReferenceCompareResult RefRelationship
4436        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4437                                         dummy2, dummy3);
4438
4439      if (RefRelationship >= Sema::Ref_Related)
4440        return TryReferenceInit(S, Init, ToType,
4441                                /*FIXME:*/From->getLocStart(),
4442                                SuppressUserConversions,
4443                                /*AllowExplicit=*/false);
4444    }
4445
4446    // Otherwise, we bind the reference to a temporary created from the
4447    // initializer list.
4448    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4449                               InOverloadResolution,
4450                               AllowObjCWritebackConversion);
4451    if (Result.isFailure())
4452      return Result;
4453    assert(!Result.isEllipsis() &&
4454           "Sub-initialization cannot result in ellipsis conversion.");
4455
4456    // Can we even bind to a temporary?
4457    if (ToType->isRValueReferenceType() ||
4458        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4459      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4460                                            Result.UserDefined.After;
4461      SCS.ReferenceBinding = true;
4462      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4463      SCS.BindsToRvalue = true;
4464      SCS.BindsToFunctionLvalue = false;
4465      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4466      SCS.ObjCLifetimeConversionBinding = false;
4467    } else
4468      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4469                    From, ToType);
4470    return Result;
4471  }
4472
4473  // C++11 [over.ics.list]p6:
4474  //   Otherwise, if the parameter type is not a class:
4475  if (!ToType->isRecordType()) {
4476    //    - if the initializer list has one element, the implicit conversion
4477    //      sequence is the one required to convert the element to the
4478    //      parameter type.
4479    unsigned NumInits = From->getNumInits();
4480    if (NumInits == 1)
4481      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4482                                     SuppressUserConversions,
4483                                     InOverloadResolution,
4484                                     AllowObjCWritebackConversion);
4485    //    - if the initializer list has no elements, the implicit conversion
4486    //      sequence is the identity conversion.
4487    else if (NumInits == 0) {
4488      Result.setStandard();
4489      Result.Standard.setAsIdentityConversion();
4490      Result.Standard.setFromType(ToType);
4491      Result.Standard.setAllToTypes(ToType);
4492    }
4493    Result.setListInitializationSequence();
4494    return Result;
4495  }
4496
4497  // C++11 [over.ics.list]p7:
4498  //   In all cases other than those enumerated above, no conversion is possible
4499  return Result;
4500}
4501
4502/// TryCopyInitialization - Try to copy-initialize a value of type
4503/// ToType from the expression From. Return the implicit conversion
4504/// sequence required to pass this argument, which may be a bad
4505/// conversion sequence (meaning that the argument cannot be passed to
4506/// a parameter of this type). If @p SuppressUserConversions, then we
4507/// do not permit any user-defined conversion sequences.
4508static ImplicitConversionSequence
4509TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4510                      bool SuppressUserConversions,
4511                      bool InOverloadResolution,
4512                      bool AllowObjCWritebackConversion,
4513                      bool AllowExplicit) {
4514  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4515    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4516                             InOverloadResolution,AllowObjCWritebackConversion);
4517
4518  if (ToType->isReferenceType())
4519    return TryReferenceInit(S, From, ToType,
4520                            /*FIXME:*/From->getLocStart(),
4521                            SuppressUserConversions,
4522                            AllowExplicit);
4523
4524  return TryImplicitConversion(S, From, ToType,
4525                               SuppressUserConversions,
4526                               /*AllowExplicit=*/false,
4527                               InOverloadResolution,
4528                               /*CStyle=*/false,
4529                               AllowObjCWritebackConversion);
4530}
4531
4532static bool TryCopyInitialization(const CanQualType FromQTy,
4533                                  const CanQualType ToQTy,
4534                                  Sema &S,
4535                                  SourceLocation Loc,
4536                                  ExprValueKind FromVK) {
4537  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4538  ImplicitConversionSequence ICS =
4539    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4540
4541  return !ICS.isBad();
4542}
4543
4544/// TryObjectArgumentInitialization - Try to initialize the object
4545/// parameter of the given member function (@c Method) from the
4546/// expression @p From.
4547static ImplicitConversionSequence
4548TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
4549                                Expr::Classification FromClassification,
4550                                CXXMethodDecl *Method,
4551                                CXXRecordDecl *ActingContext) {
4552  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4553  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4554  //                 const volatile object.
4555  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4556    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4557  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4558
4559  // Set up the conversion sequence as a "bad" conversion, to allow us
4560  // to exit early.
4561  ImplicitConversionSequence ICS;
4562
4563  // We need to have an object of class type.
4564  QualType FromType = OrigFromType;
4565  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4566    FromType = PT->getPointeeType();
4567
4568    // When we had a pointer, it's implicitly dereferenced, so we
4569    // better have an lvalue.
4570    assert(FromClassification.isLValue());
4571  }
4572
4573  assert(FromType->isRecordType());
4574
4575  // C++0x [over.match.funcs]p4:
4576  //   For non-static member functions, the type of the implicit object
4577  //   parameter is
4578  //
4579  //     - "lvalue reference to cv X" for functions declared without a
4580  //        ref-qualifier or with the & ref-qualifier
4581  //     - "rvalue reference to cv X" for functions declared with the &&
4582  //        ref-qualifier
4583  //
4584  // where X is the class of which the function is a member and cv is the
4585  // cv-qualification on the member function declaration.
4586  //
4587  // However, when finding an implicit conversion sequence for the argument, we
4588  // are not allowed to create temporaries or perform user-defined conversions
4589  // (C++ [over.match.funcs]p5). We perform a simplified version of
4590  // reference binding here, that allows class rvalues to bind to
4591  // non-constant references.
4592
4593  // First check the qualifiers.
4594  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4595  if (ImplicitParamType.getCVRQualifiers()
4596                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4597      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4598    ICS.setBad(BadConversionSequence::bad_qualifiers,
4599               OrigFromType, ImplicitParamType);
4600    return ICS;
4601  }
4602
4603  // Check that we have either the same type or a derived type. It
4604  // affects the conversion rank.
4605  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4606  ImplicitConversionKind SecondKind;
4607  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4608    SecondKind = ICK_Identity;
4609  } else if (S.IsDerivedFrom(FromType, ClassType))
4610    SecondKind = ICK_Derived_To_Base;
4611  else {
4612    ICS.setBad(BadConversionSequence::unrelated_class,
4613               FromType, ImplicitParamType);
4614    return ICS;
4615  }
4616
4617  // Check the ref-qualifier.
4618  switch (Method->getRefQualifier()) {
4619  case RQ_None:
4620    // Do nothing; we don't care about lvalueness or rvalueness.
4621    break;
4622
4623  case RQ_LValue:
4624    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4625      // non-const lvalue reference cannot bind to an rvalue
4626      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4627                 ImplicitParamType);
4628      return ICS;
4629    }
4630    break;
4631
4632  case RQ_RValue:
4633    if (!FromClassification.isRValue()) {
4634      // rvalue reference cannot bind to an lvalue
4635      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4636                 ImplicitParamType);
4637      return ICS;
4638    }
4639    break;
4640  }
4641
4642  // Success. Mark this as a reference binding.
4643  ICS.setStandard();
4644  ICS.Standard.setAsIdentityConversion();
4645  ICS.Standard.Second = SecondKind;
4646  ICS.Standard.setFromType(FromType);
4647  ICS.Standard.setAllToTypes(ImplicitParamType);
4648  ICS.Standard.ReferenceBinding = true;
4649  ICS.Standard.DirectBinding = true;
4650  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4651  ICS.Standard.BindsToFunctionLvalue = false;
4652  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4653  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4654    = (Method->getRefQualifier() == RQ_None);
4655  return ICS;
4656}
4657
4658/// PerformObjectArgumentInitialization - Perform initialization of
4659/// the implicit object parameter for the given Method with the given
4660/// expression.
4661ExprResult
4662Sema::PerformObjectArgumentInitialization(Expr *From,
4663                                          NestedNameSpecifier *Qualifier,
4664                                          NamedDecl *FoundDecl,
4665                                          CXXMethodDecl *Method) {
4666  QualType FromRecordType, DestType;
4667  QualType ImplicitParamRecordType  =
4668    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4669
4670  Expr::Classification FromClassification;
4671  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4672    FromRecordType = PT->getPointeeType();
4673    DestType = Method->getThisType(Context);
4674    FromClassification = Expr::Classification::makeSimpleLValue();
4675  } else {
4676    FromRecordType = From->getType();
4677    DestType = ImplicitParamRecordType;
4678    FromClassification = From->Classify(Context);
4679  }
4680
4681  // Note that we always use the true parent context when performing
4682  // the actual argument initialization.
4683  ImplicitConversionSequence ICS
4684    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4685                                      Method, Method->getParent());
4686  if (ICS.isBad()) {
4687    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4688      Qualifiers FromQs = FromRecordType.getQualifiers();
4689      Qualifiers ToQs = DestType.getQualifiers();
4690      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4691      if (CVR) {
4692        Diag(From->getLocStart(),
4693             diag::err_member_function_call_bad_cvr)
4694          << Method->getDeclName() << FromRecordType << (CVR - 1)
4695          << From->getSourceRange();
4696        Diag(Method->getLocation(), diag::note_previous_decl)
4697          << Method->getDeclName();
4698        return ExprError();
4699      }
4700    }
4701
4702    return Diag(From->getLocStart(),
4703                diag::err_implicit_object_parameter_init)
4704       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4705  }
4706
4707  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4708    ExprResult FromRes =
4709      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4710    if (FromRes.isInvalid())
4711      return ExprError();
4712    From = FromRes.take();
4713  }
4714
4715  if (!Context.hasSameType(From->getType(), DestType))
4716    From = ImpCastExprToType(From, DestType, CK_NoOp,
4717                             From->getValueKind()).take();
4718  return Owned(From);
4719}
4720
4721/// TryContextuallyConvertToBool - Attempt to contextually convert the
4722/// expression From to bool (C++0x [conv]p3).
4723static ImplicitConversionSequence
4724TryContextuallyConvertToBool(Sema &S, Expr *From) {
4725  // FIXME: This is pretty broken.
4726  return TryImplicitConversion(S, From, S.Context.BoolTy,
4727                               // FIXME: Are these flags correct?
4728                               /*SuppressUserConversions=*/false,
4729                               /*AllowExplicit=*/true,
4730                               /*InOverloadResolution=*/false,
4731                               /*CStyle=*/false,
4732                               /*AllowObjCWritebackConversion=*/false);
4733}
4734
4735/// PerformContextuallyConvertToBool - Perform a contextual conversion
4736/// of the expression From to bool (C++0x [conv]p3).
4737ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4738  if (checkPlaceholderForOverload(*this, From))
4739    return ExprError();
4740
4741  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4742  if (!ICS.isBad())
4743    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4744
4745  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4746    return Diag(From->getLocStart(),
4747                diag::err_typecheck_bool_condition)
4748                  << From->getType() << From->getSourceRange();
4749  return ExprError();
4750}
4751
4752/// Check that the specified conversion is permitted in a converted constant
4753/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4754/// is acceptable.
4755static bool CheckConvertedConstantConversions(Sema &S,
4756                                              StandardConversionSequence &SCS) {
4757  // Since we know that the target type is an integral or unscoped enumeration
4758  // type, most conversion kinds are impossible. All possible First and Third
4759  // conversions are fine.
4760  switch (SCS.Second) {
4761  case ICK_Identity:
4762  case ICK_Integral_Promotion:
4763  case ICK_Integral_Conversion:
4764    return true;
4765
4766  case ICK_Boolean_Conversion:
4767    // Conversion from an integral or unscoped enumeration type to bool is
4768    // classified as ICK_Boolean_Conversion, but it's also an integral
4769    // conversion, so it's permitted in a converted constant expression.
4770    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4771           SCS.getToType(2)->isBooleanType();
4772
4773  case ICK_Floating_Integral:
4774  case ICK_Complex_Real:
4775    return false;
4776
4777  case ICK_Lvalue_To_Rvalue:
4778  case ICK_Array_To_Pointer:
4779  case ICK_Function_To_Pointer:
4780  case ICK_NoReturn_Adjustment:
4781  case ICK_Qualification:
4782  case ICK_Compatible_Conversion:
4783  case ICK_Vector_Conversion:
4784  case ICK_Vector_Splat:
4785  case ICK_Derived_To_Base:
4786  case ICK_Pointer_Conversion:
4787  case ICK_Pointer_Member:
4788  case ICK_Block_Pointer_Conversion:
4789  case ICK_Writeback_Conversion:
4790  case ICK_Floating_Promotion:
4791  case ICK_Complex_Promotion:
4792  case ICK_Complex_Conversion:
4793  case ICK_Floating_Conversion:
4794  case ICK_TransparentUnionConversion:
4795    llvm_unreachable("unexpected second conversion kind");
4796
4797  case ICK_Num_Conversion_Kinds:
4798    break;
4799  }
4800
4801  llvm_unreachable("unknown conversion kind");
4802}
4803
4804/// CheckConvertedConstantExpression - Check that the expression From is a
4805/// converted constant expression of type T, perform the conversion and produce
4806/// the converted expression, per C++11 [expr.const]p3.
4807ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4808                                                  llvm::APSInt &Value,
4809                                                  CCEKind CCE) {
4810  assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
4811  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4812
4813  if (checkPlaceholderForOverload(*this, From))
4814    return ExprError();
4815
4816  // C++11 [expr.const]p3 with proposed wording fixes:
4817  //  A converted constant expression of type T is a core constant expression,
4818  //  implicitly converted to a prvalue of type T, where the converted
4819  //  expression is a literal constant expression and the implicit conversion
4820  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4821  //  conversions, integral promotions, and integral conversions other than
4822  //  narrowing conversions.
4823  ImplicitConversionSequence ICS =
4824    TryImplicitConversion(From, T,
4825                          /*SuppressUserConversions=*/false,
4826                          /*AllowExplicit=*/false,
4827                          /*InOverloadResolution=*/false,
4828                          /*CStyle=*/false,
4829                          /*AllowObjcWritebackConversion=*/false);
4830  StandardConversionSequence *SCS = 0;
4831  switch (ICS.getKind()) {
4832  case ImplicitConversionSequence::StandardConversion:
4833    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4834      return Diag(From->getLocStart(),
4835                  diag::err_typecheck_converted_constant_expression_disallowed)
4836               << From->getType() << From->getSourceRange() << T;
4837    SCS = &ICS.Standard;
4838    break;
4839  case ImplicitConversionSequence::UserDefinedConversion:
4840    // We are converting from class type to an integral or enumeration type, so
4841    // the Before sequence must be trivial.
4842    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4843      return Diag(From->getLocStart(),
4844                  diag::err_typecheck_converted_constant_expression_disallowed)
4845               << From->getType() << From->getSourceRange() << T;
4846    SCS = &ICS.UserDefined.After;
4847    break;
4848  case ImplicitConversionSequence::AmbiguousConversion:
4849  case ImplicitConversionSequence::BadConversion:
4850    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4851      return Diag(From->getLocStart(),
4852                  diag::err_typecheck_converted_constant_expression)
4853                    << From->getType() << From->getSourceRange() << T;
4854    return ExprError();
4855
4856  case ImplicitConversionSequence::EllipsisConversion:
4857    llvm_unreachable("ellipsis conversion in converted constant expression");
4858  }
4859
4860  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4861  if (Result.isInvalid())
4862    return Result;
4863
4864  // Check for a narrowing implicit conversion.
4865  APValue PreNarrowingValue;
4866  QualType PreNarrowingType;
4867  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4868                                PreNarrowingType)) {
4869  case NK_Variable_Narrowing:
4870    // Implicit conversion to a narrower type, and the value is not a constant
4871    // expression. We'll diagnose this in a moment.
4872  case NK_Not_Narrowing:
4873    break;
4874
4875  case NK_Constant_Narrowing:
4876    Diag(From->getLocStart(),
4877         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4878                             diag::err_cce_narrowing)
4879      << CCE << /*Constant*/1
4880      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4881    break;
4882
4883  case NK_Type_Narrowing:
4884    Diag(From->getLocStart(),
4885         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4886                             diag::err_cce_narrowing)
4887      << CCE << /*Constant*/0 << From->getType() << T;
4888    break;
4889  }
4890
4891  // Check the expression is a constant expression.
4892  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
4893  Expr::EvalResult Eval;
4894  Eval.Diag = &Notes;
4895
4896  if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
4897    // The expression can't be folded, so we can't keep it at this position in
4898    // the AST.
4899    Result = ExprError();
4900  } else {
4901    Value = Eval.Val.getInt();
4902
4903    if (Notes.empty()) {
4904      // It's a constant expression.
4905      return Result;
4906    }
4907  }
4908
4909  // It's not a constant expression. Produce an appropriate diagnostic.
4910  if (Notes.size() == 1 &&
4911      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
4912    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
4913  else {
4914    Diag(From->getLocStart(), diag::err_expr_not_cce)
4915      << CCE << From->getSourceRange();
4916    for (unsigned I = 0; I < Notes.size(); ++I)
4917      Diag(Notes[I].first, Notes[I].second);
4918  }
4919  return Result;
4920}
4921
4922/// dropPointerConversions - If the given standard conversion sequence
4923/// involves any pointer conversions, remove them.  This may change
4924/// the result type of the conversion sequence.
4925static void dropPointerConversion(StandardConversionSequence &SCS) {
4926  if (SCS.Second == ICK_Pointer_Conversion) {
4927    SCS.Second = ICK_Identity;
4928    SCS.Third = ICK_Identity;
4929    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4930  }
4931}
4932
4933/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4934/// convert the expression From to an Objective-C pointer type.
4935static ImplicitConversionSequence
4936TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4937  // Do an implicit conversion to 'id'.
4938  QualType Ty = S.Context.getObjCIdType();
4939  ImplicitConversionSequence ICS
4940    = TryImplicitConversion(S, From, Ty,
4941                            // FIXME: Are these flags correct?
4942                            /*SuppressUserConversions=*/false,
4943                            /*AllowExplicit=*/true,
4944                            /*InOverloadResolution=*/false,
4945                            /*CStyle=*/false,
4946                            /*AllowObjCWritebackConversion=*/false);
4947
4948  // Strip off any final conversions to 'id'.
4949  switch (ICS.getKind()) {
4950  case ImplicitConversionSequence::BadConversion:
4951  case ImplicitConversionSequence::AmbiguousConversion:
4952  case ImplicitConversionSequence::EllipsisConversion:
4953    break;
4954
4955  case ImplicitConversionSequence::UserDefinedConversion:
4956    dropPointerConversion(ICS.UserDefined.After);
4957    break;
4958
4959  case ImplicitConversionSequence::StandardConversion:
4960    dropPointerConversion(ICS.Standard);
4961    break;
4962  }
4963
4964  return ICS;
4965}
4966
4967/// PerformContextuallyConvertToObjCPointer - Perform a contextual
4968/// conversion of the expression From to an Objective-C pointer type.
4969ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
4970  if (checkPlaceholderForOverload(*this, From))
4971    return ExprError();
4972
4973  QualType Ty = Context.getObjCIdType();
4974  ImplicitConversionSequence ICS =
4975    TryContextuallyConvertToObjCPointer(*this, From);
4976  if (!ICS.isBad())
4977    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
4978  return ExprError();
4979}
4980
4981/// Determine whether the provided type is an integral type, or an enumeration
4982/// type of a permitted flavor.
4983static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
4984  return AllowScopedEnum ? T->isIntegralOrEnumerationType()
4985                         : T->isIntegralOrUnscopedEnumerationType();
4986}
4987
4988/// \brief Attempt to convert the given expression to an integral or
4989/// enumeration type.
4990///
4991/// This routine will attempt to convert an expression of class type to an
4992/// integral or enumeration type, if that class type only has a single
4993/// conversion to an integral or enumeration type.
4994///
4995/// \param Loc The source location of the construct that requires the
4996/// conversion.
4997///
4998/// \param FromE The expression we're converting from.
4999///
5000/// \param NotIntDiag The diagnostic to be emitted if the expression does not
5001/// have integral or enumeration type.
5002///
5003/// \param IncompleteDiag The diagnostic to be emitted if the expression has
5004/// incomplete class type.
5005///
5006/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
5007/// explicit conversion function (because no implicit conversion functions
5008/// were available). This is a recovery mode.
5009///
5010/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
5011/// showing which conversion was picked.
5012///
5013/// \param AmbigDiag The diagnostic to be emitted if there is more than one
5014/// conversion function that could convert to integral or enumeration type.
5015///
5016/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
5017/// usable conversion function.
5018///
5019/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
5020/// function, which may be an extension in this case.
5021///
5022/// \param AllowScopedEnumerations Specifies whether conversions to scoped
5023/// enumerations should be considered.
5024///
5025/// \returns The expression, converted to an integral or enumeration type if
5026/// successful.
5027ExprResult
5028Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
5029                                         const PartialDiagnostic &NotIntDiag,
5030                                       const PartialDiagnostic &IncompleteDiag,
5031                                     const PartialDiagnostic &ExplicitConvDiag,
5032                                     const PartialDiagnostic &ExplicitConvNote,
5033                                         const PartialDiagnostic &AmbigDiag,
5034                                         const PartialDiagnostic &AmbigNote,
5035                                         const PartialDiagnostic &ConvDiag,
5036                                         bool AllowScopedEnumerations) {
5037  // We can't perform any more checking for type-dependent expressions.
5038  if (From->isTypeDependent())
5039    return Owned(From);
5040
5041  // Process placeholders immediately.
5042  if (From->hasPlaceholderType()) {
5043    ExprResult result = CheckPlaceholderExpr(From);
5044    if (result.isInvalid()) return result;
5045    From = result.take();
5046  }
5047
5048  // If the expression already has integral or enumeration type, we're golden.
5049  QualType T = From->getType();
5050  if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
5051    return DefaultLvalueConversion(From);
5052
5053  // FIXME: Check for missing '()' if T is a function type?
5054
5055  // If we don't have a class type in C++, there's no way we can get an
5056  // expression of integral or enumeration type.
5057  const RecordType *RecordTy = T->getAs<RecordType>();
5058  if (!RecordTy || !getLangOpts().CPlusPlus) {
5059    if (NotIntDiag.getDiagID())
5060      Diag(Loc, NotIntDiag) << T << From->getSourceRange();
5061    return Owned(From);
5062  }
5063
5064  // We must have a complete class type.
5065  if (RequireCompleteType(Loc, T, IncompleteDiag))
5066    return Owned(From);
5067
5068  // Look for a conversion to an integral or enumeration type.
5069  UnresolvedSet<4> ViableConversions;
5070  UnresolvedSet<4> ExplicitConversions;
5071  const UnresolvedSetImpl *Conversions
5072    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5073
5074  bool HadMultipleCandidates = (Conversions->size() > 1);
5075
5076  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5077                                   E = Conversions->end();
5078       I != E;
5079       ++I) {
5080    if (CXXConversionDecl *Conversion
5081          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
5082      if (isIntegralOrEnumerationType(
5083            Conversion->getConversionType().getNonReferenceType(),
5084            AllowScopedEnumerations)) {
5085        if (Conversion->isExplicit())
5086          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5087        else
5088          ViableConversions.addDecl(I.getDecl(), I.getAccess());
5089      }
5090    }
5091  }
5092
5093  switch (ViableConversions.size()) {
5094  case 0:
5095    if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) {
5096      DeclAccessPair Found = ExplicitConversions[0];
5097      CXXConversionDecl *Conversion
5098        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5099
5100      // The user probably meant to invoke the given explicit
5101      // conversion; use it.
5102      QualType ConvTy
5103        = Conversion->getConversionType().getNonReferenceType();
5104      std::string TypeStr;
5105      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
5106
5107      Diag(Loc, ExplicitConvDiag)
5108        << T << ConvTy
5109        << FixItHint::CreateInsertion(From->getLocStart(),
5110                                      "static_cast<" + TypeStr + ">(")
5111        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
5112                                      ")");
5113      Diag(Conversion->getLocation(), ExplicitConvNote)
5114        << ConvTy->isEnumeralType() << ConvTy;
5115
5116      // If we aren't in a SFINAE context, build a call to the
5117      // explicit conversion function.
5118      if (isSFINAEContext())
5119        return ExprError();
5120
5121      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5122      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5123                                                 HadMultipleCandidates);
5124      if (Result.isInvalid())
5125        return ExprError();
5126      // Record usage of conversion in an implicit cast.
5127      From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5128                                      CK_UserDefinedConversion,
5129                                      Result.get(), 0,
5130                                      Result.get()->getValueKind());
5131    }
5132
5133    // We'll complain below about a non-integral condition type.
5134    break;
5135
5136  case 1: {
5137    // Apply this conversion.
5138    DeclAccessPair Found = ViableConversions[0];
5139    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5140
5141    CXXConversionDecl *Conversion
5142      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5143    QualType ConvTy
5144      = Conversion->getConversionType().getNonReferenceType();
5145    if (ConvDiag.getDiagID()) {
5146      if (isSFINAEContext())
5147        return ExprError();
5148
5149      Diag(Loc, ConvDiag)
5150        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
5151    }
5152
5153    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
5154                                               HadMultipleCandidates);
5155    if (Result.isInvalid())
5156      return ExprError();
5157    // Record usage of conversion in an implicit cast.
5158    From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
5159                                    CK_UserDefinedConversion,
5160                                    Result.get(), 0,
5161                                    Result.get()->getValueKind());
5162    break;
5163  }
5164
5165  default:
5166    if (!AmbigDiag.getDiagID())
5167      return Owned(From);
5168
5169    Diag(Loc, AmbigDiag)
5170      << T << From->getSourceRange();
5171    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5172      CXXConversionDecl *Conv
5173        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5174      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5175      Diag(Conv->getLocation(), AmbigNote)
5176        << ConvTy->isEnumeralType() << ConvTy;
5177    }
5178    return Owned(From);
5179  }
5180
5181  if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
5182      NotIntDiag.getDiagID())
5183    Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange();
5184
5185  return DefaultLvalueConversion(From);
5186}
5187
5188/// AddOverloadCandidate - Adds the given function to the set of
5189/// candidate functions, using the given function call arguments.  If
5190/// @p SuppressUserConversions, then don't allow user-defined
5191/// conversions via constructors or conversion operators.
5192///
5193/// \para PartialOverloading true if we are performing "partial" overloading
5194/// based on an incomplete set of function arguments. This feature is used by
5195/// code completion.
5196void
5197Sema::AddOverloadCandidate(FunctionDecl *Function,
5198                           DeclAccessPair FoundDecl,
5199                           llvm::ArrayRef<Expr *> Args,
5200                           OverloadCandidateSet& CandidateSet,
5201                           bool SuppressUserConversions,
5202                           bool PartialOverloading,
5203                           bool AllowExplicit) {
5204  const FunctionProtoType* Proto
5205    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5206  assert(Proto && "Functions without a prototype cannot be overloaded");
5207  assert(!Function->getDescribedFunctionTemplate() &&
5208         "Use AddTemplateOverloadCandidate for function templates");
5209
5210  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5211    if (!isa<CXXConstructorDecl>(Method)) {
5212      // If we get here, it's because we're calling a member function
5213      // that is named without a member access expression (e.g.,
5214      // "this->f") that was either written explicitly or created
5215      // implicitly. This can happen with a qualified call to a member
5216      // function, e.g., X::f(). We use an empty type for the implied
5217      // object argument (C++ [over.call.func]p3), and the acting context
5218      // is irrelevant.
5219      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5220                         QualType(), Expr::Classification::makeSimpleLValue(),
5221                         Args, CandidateSet, SuppressUserConversions);
5222      return;
5223    }
5224    // We treat a constructor like a non-member function, since its object
5225    // argument doesn't participate in overload resolution.
5226  }
5227
5228  if (!CandidateSet.isNewCandidate(Function))
5229    return;
5230
5231  // Overload resolution is always an unevaluated context.
5232  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5233
5234  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5235    // C++ [class.copy]p3:
5236    //   A member function template is never instantiated to perform the copy
5237    //   of a class object to an object of its class type.
5238    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5239    if (Args.size() == 1 &&
5240        Constructor->isSpecializationCopyingObject() &&
5241        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5242         IsDerivedFrom(Args[0]->getType(), ClassType)))
5243      return;
5244  }
5245
5246  // Add this candidate
5247  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5248  Candidate.FoundDecl = FoundDecl;
5249  Candidate.Function = Function;
5250  Candidate.Viable = true;
5251  Candidate.IsSurrogate = false;
5252  Candidate.IgnoreObjectArgument = false;
5253  Candidate.ExplicitCallArguments = Args.size();
5254
5255  unsigned NumArgsInProto = Proto->getNumArgs();
5256
5257  // (C++ 13.3.2p2): A candidate function having fewer than m
5258  // parameters is viable only if it has an ellipsis in its parameter
5259  // list (8.3.5).
5260  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5261      !Proto->isVariadic()) {
5262    Candidate.Viable = false;
5263    Candidate.FailureKind = ovl_fail_too_many_arguments;
5264    return;
5265  }
5266
5267  // (C++ 13.3.2p2): A candidate function having more than m parameters
5268  // is viable only if the (m+1)st parameter has a default argument
5269  // (8.3.6). For the purposes of overload resolution, the
5270  // parameter list is truncated on the right, so that there are
5271  // exactly m parameters.
5272  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5273  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5274    // Not enough arguments.
5275    Candidate.Viable = false;
5276    Candidate.FailureKind = ovl_fail_too_few_arguments;
5277    return;
5278  }
5279
5280  // (CUDA B.1): Check for invalid calls between targets.
5281  if (getLangOpts().CUDA)
5282    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5283      if (CheckCUDATarget(Caller, Function)) {
5284        Candidate.Viable = false;
5285        Candidate.FailureKind = ovl_fail_bad_target;
5286        return;
5287      }
5288
5289  // Determine the implicit conversion sequences for each of the
5290  // arguments.
5291  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5292    if (ArgIdx < NumArgsInProto) {
5293      // (C++ 13.3.2p3): for F to be a viable function, there shall
5294      // exist for each argument an implicit conversion sequence
5295      // (13.3.3.1) that converts that argument to the corresponding
5296      // parameter of F.
5297      QualType ParamType = Proto->getArgType(ArgIdx);
5298      Candidate.Conversions[ArgIdx]
5299        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5300                                SuppressUserConversions,
5301                                /*InOverloadResolution=*/true,
5302                                /*AllowObjCWritebackConversion=*/
5303                                  getLangOpts().ObjCAutoRefCount,
5304                                AllowExplicit);
5305      if (Candidate.Conversions[ArgIdx].isBad()) {
5306        Candidate.Viable = false;
5307        Candidate.FailureKind = ovl_fail_bad_conversion;
5308        break;
5309      }
5310    } else {
5311      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5312      // argument for which there is no corresponding parameter is
5313      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5314      Candidate.Conversions[ArgIdx].setEllipsis();
5315    }
5316  }
5317}
5318
5319/// \brief Add all of the function declarations in the given function set to
5320/// the overload canddiate set.
5321void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5322                                 llvm::ArrayRef<Expr *> Args,
5323                                 OverloadCandidateSet& CandidateSet,
5324                                 bool SuppressUserConversions,
5325                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5326  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5327    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5328    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5329      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5330        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5331                           cast<CXXMethodDecl>(FD)->getParent(),
5332                           Args[0]->getType(), Args[0]->Classify(Context),
5333                           Args.slice(1), CandidateSet,
5334                           SuppressUserConversions);
5335      else
5336        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5337                             SuppressUserConversions);
5338    } else {
5339      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5340      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5341          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5342        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5343                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5344                                   ExplicitTemplateArgs,
5345                                   Args[0]->getType(),
5346                                   Args[0]->Classify(Context), Args.slice(1),
5347                                   CandidateSet, SuppressUserConversions);
5348      else
5349        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5350                                     ExplicitTemplateArgs, Args,
5351                                     CandidateSet, SuppressUserConversions);
5352    }
5353  }
5354}
5355
5356/// AddMethodCandidate - Adds a named decl (which is some kind of
5357/// method) as a method candidate to the given overload set.
5358void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5359                              QualType ObjectType,
5360                              Expr::Classification ObjectClassification,
5361                              Expr **Args, unsigned NumArgs,
5362                              OverloadCandidateSet& CandidateSet,
5363                              bool SuppressUserConversions) {
5364  NamedDecl *Decl = FoundDecl.getDecl();
5365  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5366
5367  if (isa<UsingShadowDecl>(Decl))
5368    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5369
5370  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5371    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5372           "Expected a member function template");
5373    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5374                               /*ExplicitArgs*/ 0,
5375                               ObjectType, ObjectClassification,
5376                               llvm::makeArrayRef(Args, NumArgs), CandidateSet,
5377                               SuppressUserConversions);
5378  } else {
5379    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5380                       ObjectType, ObjectClassification,
5381                       llvm::makeArrayRef(Args, NumArgs),
5382                       CandidateSet, SuppressUserConversions);
5383  }
5384}
5385
5386/// AddMethodCandidate - Adds the given C++ member function to the set
5387/// of candidate functions, using the given function call arguments
5388/// and the object argument (@c Object). For example, in a call
5389/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5390/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5391/// allow user-defined conversions via constructors or conversion
5392/// operators.
5393void
5394Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5395                         CXXRecordDecl *ActingContext, QualType ObjectType,
5396                         Expr::Classification ObjectClassification,
5397                         llvm::ArrayRef<Expr *> Args,
5398                         OverloadCandidateSet& CandidateSet,
5399                         bool SuppressUserConversions) {
5400  const FunctionProtoType* Proto
5401    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5402  assert(Proto && "Methods without a prototype cannot be overloaded");
5403  assert(!isa<CXXConstructorDecl>(Method) &&
5404         "Use AddOverloadCandidate for constructors");
5405
5406  if (!CandidateSet.isNewCandidate(Method))
5407    return;
5408
5409  // Overload resolution is always an unevaluated context.
5410  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5411
5412  // Add this candidate
5413  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5414  Candidate.FoundDecl = FoundDecl;
5415  Candidate.Function = Method;
5416  Candidate.IsSurrogate = false;
5417  Candidate.IgnoreObjectArgument = false;
5418  Candidate.ExplicitCallArguments = Args.size();
5419
5420  unsigned NumArgsInProto = Proto->getNumArgs();
5421
5422  // (C++ 13.3.2p2): A candidate function having fewer than m
5423  // parameters is viable only if it has an ellipsis in its parameter
5424  // list (8.3.5).
5425  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5426    Candidate.Viable = false;
5427    Candidate.FailureKind = ovl_fail_too_many_arguments;
5428    return;
5429  }
5430
5431  // (C++ 13.3.2p2): A candidate function having more than m parameters
5432  // is viable only if the (m+1)st parameter has a default argument
5433  // (8.3.6). For the purposes of overload resolution, the
5434  // parameter list is truncated on the right, so that there are
5435  // exactly m parameters.
5436  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5437  if (Args.size() < MinRequiredArgs) {
5438    // Not enough arguments.
5439    Candidate.Viable = false;
5440    Candidate.FailureKind = ovl_fail_too_few_arguments;
5441    return;
5442  }
5443
5444  Candidate.Viable = true;
5445
5446  if (Method->isStatic() || ObjectType.isNull())
5447    // The implicit object argument is ignored.
5448    Candidate.IgnoreObjectArgument = true;
5449  else {
5450    // Determine the implicit conversion sequence for the object
5451    // parameter.
5452    Candidate.Conversions[0]
5453      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5454                                        Method, ActingContext);
5455    if (Candidate.Conversions[0].isBad()) {
5456      Candidate.Viable = false;
5457      Candidate.FailureKind = ovl_fail_bad_conversion;
5458      return;
5459    }
5460  }
5461
5462  // Determine the implicit conversion sequences for each of the
5463  // arguments.
5464  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5465    if (ArgIdx < NumArgsInProto) {
5466      // (C++ 13.3.2p3): for F to be a viable function, there shall
5467      // exist for each argument an implicit conversion sequence
5468      // (13.3.3.1) that converts that argument to the corresponding
5469      // parameter of F.
5470      QualType ParamType = Proto->getArgType(ArgIdx);
5471      Candidate.Conversions[ArgIdx + 1]
5472        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5473                                SuppressUserConversions,
5474                                /*InOverloadResolution=*/true,
5475                                /*AllowObjCWritebackConversion=*/
5476                                  getLangOpts().ObjCAutoRefCount);
5477      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5478        Candidate.Viable = false;
5479        Candidate.FailureKind = ovl_fail_bad_conversion;
5480        break;
5481      }
5482    } else {
5483      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5484      // argument for which there is no corresponding parameter is
5485      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5486      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5487    }
5488  }
5489}
5490
5491/// \brief Add a C++ member function template as a candidate to the candidate
5492/// set, using template argument deduction to produce an appropriate member
5493/// function template specialization.
5494void
5495Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5496                                 DeclAccessPair FoundDecl,
5497                                 CXXRecordDecl *ActingContext,
5498                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5499                                 QualType ObjectType,
5500                                 Expr::Classification ObjectClassification,
5501                                 llvm::ArrayRef<Expr *> Args,
5502                                 OverloadCandidateSet& CandidateSet,
5503                                 bool SuppressUserConversions) {
5504  if (!CandidateSet.isNewCandidate(MethodTmpl))
5505    return;
5506
5507  // C++ [over.match.funcs]p7:
5508  //   In each case where a candidate is a function template, candidate
5509  //   function template specializations are generated using template argument
5510  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5511  //   candidate functions in the usual way.113) A given name can refer to one
5512  //   or more function templates and also to a set of overloaded non-template
5513  //   functions. In such a case, the candidate functions generated from each
5514  //   function template are combined with the set of non-template candidate
5515  //   functions.
5516  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5517  FunctionDecl *Specialization = 0;
5518  if (TemplateDeductionResult Result
5519      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5520                                Specialization, Info)) {
5521    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5522    Candidate.FoundDecl = FoundDecl;
5523    Candidate.Function = MethodTmpl->getTemplatedDecl();
5524    Candidate.Viable = false;
5525    Candidate.FailureKind = ovl_fail_bad_deduction;
5526    Candidate.IsSurrogate = false;
5527    Candidate.IgnoreObjectArgument = false;
5528    Candidate.ExplicitCallArguments = Args.size();
5529    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5530                                                          Info);
5531    return;
5532  }
5533
5534  // Add the function template specialization produced by template argument
5535  // deduction as a candidate.
5536  assert(Specialization && "Missing member function template specialization?");
5537  assert(isa<CXXMethodDecl>(Specialization) &&
5538         "Specialization is not a member function?");
5539  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5540                     ActingContext, ObjectType, ObjectClassification, Args,
5541                     CandidateSet, SuppressUserConversions);
5542}
5543
5544/// \brief Add a C++ function template specialization as a candidate
5545/// in the candidate set, using template argument deduction to produce
5546/// an appropriate function template specialization.
5547void
5548Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5549                                   DeclAccessPair FoundDecl,
5550                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5551                                   llvm::ArrayRef<Expr *> Args,
5552                                   OverloadCandidateSet& CandidateSet,
5553                                   bool SuppressUserConversions) {
5554  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5555    return;
5556
5557  // C++ [over.match.funcs]p7:
5558  //   In each case where a candidate is a function template, candidate
5559  //   function template specializations are generated using template argument
5560  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5561  //   candidate functions in the usual way.113) A given name can refer to one
5562  //   or more function templates and also to a set of overloaded non-template
5563  //   functions. In such a case, the candidate functions generated from each
5564  //   function template are combined with the set of non-template candidate
5565  //   functions.
5566  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5567  FunctionDecl *Specialization = 0;
5568  if (TemplateDeductionResult Result
5569        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5570                                  Specialization, Info)) {
5571    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5572    Candidate.FoundDecl = FoundDecl;
5573    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5574    Candidate.Viable = false;
5575    Candidate.FailureKind = ovl_fail_bad_deduction;
5576    Candidate.IsSurrogate = false;
5577    Candidate.IgnoreObjectArgument = false;
5578    Candidate.ExplicitCallArguments = Args.size();
5579    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5580                                                          Info);
5581    return;
5582  }
5583
5584  // Add the function template specialization produced by template argument
5585  // deduction as a candidate.
5586  assert(Specialization && "Missing function template specialization?");
5587  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5588                       SuppressUserConversions);
5589}
5590
5591/// AddConversionCandidate - Add a C++ conversion function as a
5592/// candidate in the candidate set (C++ [over.match.conv],
5593/// C++ [over.match.copy]). From is the expression we're converting from,
5594/// and ToType is the type that we're eventually trying to convert to
5595/// (which may or may not be the same type as the type that the
5596/// conversion function produces).
5597void
5598Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5599                             DeclAccessPair FoundDecl,
5600                             CXXRecordDecl *ActingContext,
5601                             Expr *From, QualType ToType,
5602                             OverloadCandidateSet& CandidateSet) {
5603  assert(!Conversion->getDescribedFunctionTemplate() &&
5604         "Conversion function templates use AddTemplateConversionCandidate");
5605  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5606  if (!CandidateSet.isNewCandidate(Conversion))
5607    return;
5608
5609  // Overload resolution is always an unevaluated context.
5610  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5611
5612  // Add this candidate
5613  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5614  Candidate.FoundDecl = FoundDecl;
5615  Candidate.Function = Conversion;
5616  Candidate.IsSurrogate = false;
5617  Candidate.IgnoreObjectArgument = false;
5618  Candidate.FinalConversion.setAsIdentityConversion();
5619  Candidate.FinalConversion.setFromType(ConvType);
5620  Candidate.FinalConversion.setAllToTypes(ToType);
5621  Candidate.Viable = true;
5622  Candidate.ExplicitCallArguments = 1;
5623
5624  // C++ [over.match.funcs]p4:
5625  //   For conversion functions, the function is considered to be a member of
5626  //   the class of the implicit implied object argument for the purpose of
5627  //   defining the type of the implicit object parameter.
5628  //
5629  // Determine the implicit conversion sequence for the implicit
5630  // object parameter.
5631  QualType ImplicitParamType = From->getType();
5632  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5633    ImplicitParamType = FromPtrType->getPointeeType();
5634  CXXRecordDecl *ConversionContext
5635    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5636
5637  Candidate.Conversions[0]
5638    = TryObjectArgumentInitialization(*this, From->getType(),
5639                                      From->Classify(Context),
5640                                      Conversion, ConversionContext);
5641
5642  if (Candidate.Conversions[0].isBad()) {
5643    Candidate.Viable = false;
5644    Candidate.FailureKind = ovl_fail_bad_conversion;
5645    return;
5646  }
5647
5648  // We won't go through a user-define type conversion function to convert a
5649  // derived to base as such conversions are given Conversion Rank. They only
5650  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5651  QualType FromCanon
5652    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5653  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5654  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5655    Candidate.Viable = false;
5656    Candidate.FailureKind = ovl_fail_trivial_conversion;
5657    return;
5658  }
5659
5660  // To determine what the conversion from the result of calling the
5661  // conversion function to the type we're eventually trying to
5662  // convert to (ToType), we need to synthesize a call to the
5663  // conversion function and attempt copy initialization from it. This
5664  // makes sure that we get the right semantics with respect to
5665  // lvalues/rvalues and the type. Fortunately, we can allocate this
5666  // call on the stack and we don't need its arguments to be
5667  // well-formed.
5668  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5669                            VK_LValue, From->getLocStart());
5670  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5671                                Context.getPointerType(Conversion->getType()),
5672                                CK_FunctionToPointerDecay,
5673                                &ConversionRef, VK_RValue);
5674
5675  QualType ConversionType = Conversion->getConversionType();
5676  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5677    Candidate.Viable = false;
5678    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5679    return;
5680  }
5681
5682  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5683
5684  // Note that it is safe to allocate CallExpr on the stack here because
5685  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5686  // allocator).
5687  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5688  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
5689                From->getLocStart());
5690  ImplicitConversionSequence ICS =
5691    TryCopyInitialization(*this, &Call, ToType,
5692                          /*SuppressUserConversions=*/true,
5693                          /*InOverloadResolution=*/false,
5694                          /*AllowObjCWritebackConversion=*/false);
5695
5696  switch (ICS.getKind()) {
5697  case ImplicitConversionSequence::StandardConversion:
5698    Candidate.FinalConversion = ICS.Standard;
5699
5700    // C++ [over.ics.user]p3:
5701    //   If the user-defined conversion is specified by a specialization of a
5702    //   conversion function template, the second standard conversion sequence
5703    //   shall have exact match rank.
5704    if (Conversion->getPrimaryTemplate() &&
5705        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5706      Candidate.Viable = false;
5707      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5708    }
5709
5710    // C++0x [dcl.init.ref]p5:
5711    //    In the second case, if the reference is an rvalue reference and
5712    //    the second standard conversion sequence of the user-defined
5713    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5714    //    program is ill-formed.
5715    if (ToType->isRValueReferenceType() &&
5716        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5717      Candidate.Viable = false;
5718      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5719    }
5720    break;
5721
5722  case ImplicitConversionSequence::BadConversion:
5723    Candidate.Viable = false;
5724    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5725    break;
5726
5727  default:
5728    llvm_unreachable(
5729           "Can only end up with a standard conversion sequence or failure");
5730  }
5731}
5732
5733/// \brief Adds a conversion function template specialization
5734/// candidate to the overload set, using template argument deduction
5735/// to deduce the template arguments of the conversion function
5736/// template from the type that we are converting to (C++
5737/// [temp.deduct.conv]).
5738void
5739Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5740                                     DeclAccessPair FoundDecl,
5741                                     CXXRecordDecl *ActingDC,
5742                                     Expr *From, QualType ToType,
5743                                     OverloadCandidateSet &CandidateSet) {
5744  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5745         "Only conversion function templates permitted here");
5746
5747  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5748    return;
5749
5750  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
5751  CXXConversionDecl *Specialization = 0;
5752  if (TemplateDeductionResult Result
5753        = DeduceTemplateArguments(FunctionTemplate, ToType,
5754                                  Specialization, Info)) {
5755    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5756    Candidate.FoundDecl = FoundDecl;
5757    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5758    Candidate.Viable = false;
5759    Candidate.FailureKind = ovl_fail_bad_deduction;
5760    Candidate.IsSurrogate = false;
5761    Candidate.IgnoreObjectArgument = false;
5762    Candidate.ExplicitCallArguments = 1;
5763    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5764                                                          Info);
5765    return;
5766  }
5767
5768  // Add the conversion function template specialization produced by
5769  // template argument deduction as a candidate.
5770  assert(Specialization && "Missing function template specialization?");
5771  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5772                         CandidateSet);
5773}
5774
5775/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5776/// converts the given @c Object to a function pointer via the
5777/// conversion function @c Conversion, and then attempts to call it
5778/// with the given arguments (C++ [over.call.object]p2-4). Proto is
5779/// the type of function that we'll eventually be calling.
5780void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
5781                                 DeclAccessPair FoundDecl,
5782                                 CXXRecordDecl *ActingContext,
5783                                 const FunctionProtoType *Proto,
5784                                 Expr *Object,
5785                                 llvm::ArrayRef<Expr *> Args,
5786                                 OverloadCandidateSet& CandidateSet) {
5787  if (!CandidateSet.isNewCandidate(Conversion))
5788    return;
5789
5790  // Overload resolution is always an unevaluated context.
5791  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5792
5793  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5794  Candidate.FoundDecl = FoundDecl;
5795  Candidate.Function = 0;
5796  Candidate.Surrogate = Conversion;
5797  Candidate.Viable = true;
5798  Candidate.IsSurrogate = true;
5799  Candidate.IgnoreObjectArgument = false;
5800  Candidate.ExplicitCallArguments = Args.size();
5801
5802  // Determine the implicit conversion sequence for the implicit
5803  // object parameter.
5804  ImplicitConversionSequence ObjectInit
5805    = TryObjectArgumentInitialization(*this, Object->getType(),
5806                                      Object->Classify(Context),
5807                                      Conversion, ActingContext);
5808  if (ObjectInit.isBad()) {
5809    Candidate.Viable = false;
5810    Candidate.FailureKind = ovl_fail_bad_conversion;
5811    Candidate.Conversions[0] = ObjectInit;
5812    return;
5813  }
5814
5815  // The first conversion is actually a user-defined conversion whose
5816  // first conversion is ObjectInit's standard conversion (which is
5817  // effectively a reference binding). Record it as such.
5818  Candidate.Conversions[0].setUserDefined();
5819  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5820  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5821  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5822  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5823  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5824  Candidate.Conversions[0].UserDefined.After
5825    = Candidate.Conversions[0].UserDefined.Before;
5826  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5827
5828  // Find the
5829  unsigned NumArgsInProto = Proto->getNumArgs();
5830
5831  // (C++ 13.3.2p2): A candidate function having fewer than m
5832  // parameters is viable only if it has an ellipsis in its parameter
5833  // list (8.3.5).
5834  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5835    Candidate.Viable = false;
5836    Candidate.FailureKind = ovl_fail_too_many_arguments;
5837    return;
5838  }
5839
5840  // Function types don't have any default arguments, so just check if
5841  // we have enough arguments.
5842  if (Args.size() < NumArgsInProto) {
5843    // Not enough arguments.
5844    Candidate.Viable = false;
5845    Candidate.FailureKind = ovl_fail_too_few_arguments;
5846    return;
5847  }
5848
5849  // Determine the implicit conversion sequences for each of the
5850  // arguments.
5851  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5852    if (ArgIdx < NumArgsInProto) {
5853      // (C++ 13.3.2p3): for F to be a viable function, there shall
5854      // exist for each argument an implicit conversion sequence
5855      // (13.3.3.1) that converts that argument to the corresponding
5856      // parameter of F.
5857      QualType ParamType = Proto->getArgType(ArgIdx);
5858      Candidate.Conversions[ArgIdx + 1]
5859        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5860                                /*SuppressUserConversions=*/false,
5861                                /*InOverloadResolution=*/false,
5862                                /*AllowObjCWritebackConversion=*/
5863                                  getLangOpts().ObjCAutoRefCount);
5864      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5865        Candidate.Viable = false;
5866        Candidate.FailureKind = ovl_fail_bad_conversion;
5867        break;
5868      }
5869    } else {
5870      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5871      // argument for which there is no corresponding parameter is
5872      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5873      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5874    }
5875  }
5876}
5877
5878/// \brief Add overload candidates for overloaded operators that are
5879/// member functions.
5880///
5881/// Add the overloaded operator candidates that are member functions
5882/// for the operator Op that was used in an operator expression such
5883/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5884/// CandidateSet will store the added overload candidates. (C++
5885/// [over.match.oper]).
5886void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5887                                       SourceLocation OpLoc,
5888                                       Expr **Args, unsigned NumArgs,
5889                                       OverloadCandidateSet& CandidateSet,
5890                                       SourceRange OpRange) {
5891  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5892
5893  // C++ [over.match.oper]p3:
5894  //   For a unary operator @ with an operand of a type whose
5895  //   cv-unqualified version is T1, and for a binary operator @ with
5896  //   a left operand of a type whose cv-unqualified version is T1 and
5897  //   a right operand of a type whose cv-unqualified version is T2,
5898  //   three sets of candidate functions, designated member
5899  //   candidates, non-member candidates and built-in candidates, are
5900  //   constructed as follows:
5901  QualType T1 = Args[0]->getType();
5902
5903  //     -- If T1 is a class type, the set of member candidates is the
5904  //        result of the qualified lookup of T1::operator@
5905  //        (13.3.1.1.1); otherwise, the set of member candidates is
5906  //        empty.
5907  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5908    // Complete the type if it can be completed. Otherwise, we're done.
5909    if (RequireCompleteType(OpLoc, T1, PDiag()))
5910      return;
5911
5912    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5913    LookupQualifiedName(Operators, T1Rec->getDecl());
5914    Operators.suppressDiagnostics();
5915
5916    for (LookupResult::iterator Oper = Operators.begin(),
5917                             OperEnd = Operators.end();
5918         Oper != OperEnd;
5919         ++Oper)
5920      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5921                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5922                         CandidateSet,
5923                         /* SuppressUserConversions = */ false);
5924  }
5925}
5926
5927/// AddBuiltinCandidate - Add a candidate for a built-in
5928/// operator. ResultTy and ParamTys are the result and parameter types
5929/// of the built-in candidate, respectively. Args and NumArgs are the
5930/// arguments being passed to the candidate. IsAssignmentOperator
5931/// should be true when this built-in candidate is an assignment
5932/// operator. NumContextualBoolArguments is the number of arguments
5933/// (at the beginning of the argument list) that will be contextually
5934/// converted to bool.
5935void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5936                               Expr **Args, unsigned NumArgs,
5937                               OverloadCandidateSet& CandidateSet,
5938                               bool IsAssignmentOperator,
5939                               unsigned NumContextualBoolArguments) {
5940  // Overload resolution is always an unevaluated context.
5941  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5942
5943  // Add this candidate
5944  OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
5945  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5946  Candidate.Function = 0;
5947  Candidate.IsSurrogate = false;
5948  Candidate.IgnoreObjectArgument = false;
5949  Candidate.BuiltinTypes.ResultTy = ResultTy;
5950  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5951    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5952
5953  // Determine the implicit conversion sequences for each of the
5954  // arguments.
5955  Candidate.Viable = true;
5956  Candidate.ExplicitCallArguments = NumArgs;
5957  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5958    // C++ [over.match.oper]p4:
5959    //   For the built-in assignment operators, conversions of the
5960    //   left operand are restricted as follows:
5961    //     -- no temporaries are introduced to hold the left operand, and
5962    //     -- no user-defined conversions are applied to the left
5963    //        operand to achieve a type match with the left-most
5964    //        parameter of a built-in candidate.
5965    //
5966    // We block these conversions by turning off user-defined
5967    // conversions, since that is the only way that initialization of
5968    // a reference to a non-class type can occur from something that
5969    // is not of the same type.
5970    if (ArgIdx < NumContextualBoolArguments) {
5971      assert(ParamTys[ArgIdx] == Context.BoolTy &&
5972             "Contextual conversion to bool requires bool type");
5973      Candidate.Conversions[ArgIdx]
5974        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
5975    } else {
5976      Candidate.Conversions[ArgIdx]
5977        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
5978                                ArgIdx == 0 && IsAssignmentOperator,
5979                                /*InOverloadResolution=*/false,
5980                                /*AllowObjCWritebackConversion=*/
5981                                  getLangOpts().ObjCAutoRefCount);
5982    }
5983    if (Candidate.Conversions[ArgIdx].isBad()) {
5984      Candidate.Viable = false;
5985      Candidate.FailureKind = ovl_fail_bad_conversion;
5986      break;
5987    }
5988  }
5989}
5990
5991/// BuiltinCandidateTypeSet - A set of types that will be used for the
5992/// candidate operator functions for built-in operators (C++
5993/// [over.built]). The types are separated into pointer types and
5994/// enumeration types.
5995class BuiltinCandidateTypeSet  {
5996  /// TypeSet - A set of types.
5997  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
5998
5999  /// PointerTypes - The set of pointer types that will be used in the
6000  /// built-in candidates.
6001  TypeSet PointerTypes;
6002
6003  /// MemberPointerTypes - The set of member pointer types that will be
6004  /// used in the built-in candidates.
6005  TypeSet MemberPointerTypes;
6006
6007  /// EnumerationTypes - The set of enumeration types that will be
6008  /// used in the built-in candidates.
6009  TypeSet EnumerationTypes;
6010
6011  /// \brief The set of vector types that will be used in the built-in
6012  /// candidates.
6013  TypeSet VectorTypes;
6014
6015  /// \brief A flag indicating non-record types are viable candidates
6016  bool HasNonRecordTypes;
6017
6018  /// \brief A flag indicating whether either arithmetic or enumeration types
6019  /// were present in the candidate set.
6020  bool HasArithmeticOrEnumeralTypes;
6021
6022  /// \brief A flag indicating whether the nullptr type was present in the
6023  /// candidate set.
6024  bool HasNullPtrType;
6025
6026  /// Sema - The semantic analysis instance where we are building the
6027  /// candidate type set.
6028  Sema &SemaRef;
6029
6030  /// Context - The AST context in which we will build the type sets.
6031  ASTContext &Context;
6032
6033  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6034                                               const Qualifiers &VisibleQuals);
6035  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6036
6037public:
6038  /// iterator - Iterates through the types that are part of the set.
6039  typedef TypeSet::iterator iterator;
6040
6041  BuiltinCandidateTypeSet(Sema &SemaRef)
6042    : HasNonRecordTypes(false),
6043      HasArithmeticOrEnumeralTypes(false),
6044      HasNullPtrType(false),
6045      SemaRef(SemaRef),
6046      Context(SemaRef.Context) { }
6047
6048  void AddTypesConvertedFrom(QualType Ty,
6049                             SourceLocation Loc,
6050                             bool AllowUserConversions,
6051                             bool AllowExplicitConversions,
6052                             const Qualifiers &VisibleTypeConversionsQuals);
6053
6054  /// pointer_begin - First pointer type found;
6055  iterator pointer_begin() { return PointerTypes.begin(); }
6056
6057  /// pointer_end - Past the last pointer type found;
6058  iterator pointer_end() { return PointerTypes.end(); }
6059
6060  /// member_pointer_begin - First member pointer type found;
6061  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6062
6063  /// member_pointer_end - Past the last member pointer type found;
6064  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6065
6066  /// enumeration_begin - First enumeration type found;
6067  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6068
6069  /// enumeration_end - Past the last enumeration type found;
6070  iterator enumeration_end() { return EnumerationTypes.end(); }
6071
6072  iterator vector_begin() { return VectorTypes.begin(); }
6073  iterator vector_end() { return VectorTypes.end(); }
6074
6075  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6076  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6077  bool hasNullPtrType() const { return HasNullPtrType; }
6078};
6079
6080/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6081/// the set of pointer types along with any more-qualified variants of
6082/// that type. For example, if @p Ty is "int const *", this routine
6083/// will add "int const *", "int const volatile *", "int const
6084/// restrict *", and "int const volatile restrict *" to the set of
6085/// pointer types. Returns true if the add of @p Ty itself succeeded,
6086/// false otherwise.
6087///
6088/// FIXME: what to do about extended qualifiers?
6089bool
6090BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6091                                             const Qualifiers &VisibleQuals) {
6092
6093  // Insert this type.
6094  if (!PointerTypes.insert(Ty))
6095    return false;
6096
6097  QualType PointeeTy;
6098  const PointerType *PointerTy = Ty->getAs<PointerType>();
6099  bool buildObjCPtr = false;
6100  if (!PointerTy) {
6101    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
6102      PointeeTy = PTy->getPointeeType();
6103      buildObjCPtr = true;
6104    }
6105    else
6106      llvm_unreachable("type was not a pointer type!");
6107  }
6108  else
6109    PointeeTy = PointerTy->getPointeeType();
6110
6111  // Don't add qualified variants of arrays. For one, they're not allowed
6112  // (the qualifier would sink to the element type), and for another, the
6113  // only overload situation where it matters is subscript or pointer +- int,
6114  // and those shouldn't have qualifier variants anyway.
6115  if (PointeeTy->isArrayType())
6116    return true;
6117  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6118  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
6119    BaseCVR = Array->getElementType().getCVRQualifiers();
6120  bool hasVolatile = VisibleQuals.hasVolatile();
6121  bool hasRestrict = VisibleQuals.hasRestrict();
6122
6123  // Iterate through all strict supersets of BaseCVR.
6124  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6125    if ((CVR | BaseCVR) != CVR) continue;
6126    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
6127    // in the types.
6128    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6129    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
6130    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6131    if (!buildObjCPtr)
6132      PointerTypes.insert(Context.getPointerType(QPointeeTy));
6133    else
6134      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
6135  }
6136
6137  return true;
6138}
6139
6140/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6141/// to the set of pointer types along with any more-qualified variants of
6142/// that type. For example, if @p Ty is "int const *", this routine
6143/// will add "int const *", "int const volatile *", "int const
6144/// restrict *", and "int const volatile restrict *" to the set of
6145/// pointer types. Returns true if the add of @p Ty itself succeeded,
6146/// false otherwise.
6147///
6148/// FIXME: what to do about extended qualifiers?
6149bool
6150BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6151    QualType Ty) {
6152  // Insert this type.
6153  if (!MemberPointerTypes.insert(Ty))
6154    return false;
6155
6156  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6157  assert(PointerTy && "type was not a member pointer type!");
6158
6159  QualType PointeeTy = PointerTy->getPointeeType();
6160  // Don't add qualified variants of arrays. For one, they're not allowed
6161  // (the qualifier would sink to the element type), and for another, the
6162  // only overload situation where it matters is subscript or pointer +- int,
6163  // and those shouldn't have qualifier variants anyway.
6164  if (PointeeTy->isArrayType())
6165    return true;
6166  const Type *ClassTy = PointerTy->getClass();
6167
6168  // Iterate through all strict supersets of the pointee type's CVR
6169  // qualifiers.
6170  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6171  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6172    if ((CVR | BaseCVR) != CVR) continue;
6173
6174    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6175    MemberPointerTypes.insert(
6176      Context.getMemberPointerType(QPointeeTy, ClassTy));
6177  }
6178
6179  return true;
6180}
6181
6182/// AddTypesConvertedFrom - Add each of the types to which the type @p
6183/// Ty can be implicit converted to the given set of @p Types. We're
6184/// primarily interested in pointer types and enumeration types. We also
6185/// take member pointer types, for the conditional operator.
6186/// AllowUserConversions is true if we should look at the conversion
6187/// functions of a class type, and AllowExplicitConversions if we
6188/// should also include the explicit conversion functions of a class
6189/// type.
6190void
6191BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6192                                               SourceLocation Loc,
6193                                               bool AllowUserConversions,
6194                                               bool AllowExplicitConversions,
6195                                               const Qualifiers &VisibleQuals) {
6196  // Only deal with canonical types.
6197  Ty = Context.getCanonicalType(Ty);
6198
6199  // Look through reference types; they aren't part of the type of an
6200  // expression for the purposes of conversions.
6201  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6202    Ty = RefTy->getPointeeType();
6203
6204  // If we're dealing with an array type, decay to the pointer.
6205  if (Ty->isArrayType())
6206    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6207
6208  // Otherwise, we don't care about qualifiers on the type.
6209  Ty = Ty.getLocalUnqualifiedType();
6210
6211  // Flag if we ever add a non-record type.
6212  const RecordType *TyRec = Ty->getAs<RecordType>();
6213  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6214
6215  // Flag if we encounter an arithmetic type.
6216  HasArithmeticOrEnumeralTypes =
6217    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6218
6219  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6220    PointerTypes.insert(Ty);
6221  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6222    // Insert our type, and its more-qualified variants, into the set
6223    // of types.
6224    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6225      return;
6226  } else if (Ty->isMemberPointerType()) {
6227    // Member pointers are far easier, since the pointee can't be converted.
6228    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6229      return;
6230  } else if (Ty->isEnumeralType()) {
6231    HasArithmeticOrEnumeralTypes = true;
6232    EnumerationTypes.insert(Ty);
6233  } else if (Ty->isVectorType()) {
6234    // We treat vector types as arithmetic types in many contexts as an
6235    // extension.
6236    HasArithmeticOrEnumeralTypes = true;
6237    VectorTypes.insert(Ty);
6238  } else if (Ty->isNullPtrType()) {
6239    HasNullPtrType = true;
6240  } else if (AllowUserConversions && TyRec) {
6241    // No conversion functions in incomplete types.
6242    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6243      return;
6244
6245    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6246    const UnresolvedSetImpl *Conversions
6247      = ClassDecl->getVisibleConversionFunctions();
6248    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6249           E = Conversions->end(); I != E; ++I) {
6250      NamedDecl *D = I.getDecl();
6251      if (isa<UsingShadowDecl>(D))
6252        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6253
6254      // Skip conversion function templates; they don't tell us anything
6255      // about which builtin types we can convert to.
6256      if (isa<FunctionTemplateDecl>(D))
6257        continue;
6258
6259      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6260      if (AllowExplicitConversions || !Conv->isExplicit()) {
6261        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6262                              VisibleQuals);
6263      }
6264    }
6265  }
6266}
6267
6268/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6269/// the volatile- and non-volatile-qualified assignment operators for the
6270/// given type to the candidate set.
6271static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6272                                                   QualType T,
6273                                                   Expr **Args,
6274                                                   unsigned NumArgs,
6275                                    OverloadCandidateSet &CandidateSet) {
6276  QualType ParamTypes[2];
6277
6278  // T& operator=(T&, T)
6279  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6280  ParamTypes[1] = T;
6281  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6282                        /*IsAssignmentOperator=*/true);
6283
6284  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6285    // volatile T& operator=(volatile T&, T)
6286    ParamTypes[0]
6287      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6288    ParamTypes[1] = T;
6289    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6290                          /*IsAssignmentOperator=*/true);
6291  }
6292}
6293
6294/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6295/// if any, found in visible type conversion functions found in ArgExpr's type.
6296static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6297    Qualifiers VRQuals;
6298    const RecordType *TyRec;
6299    if (const MemberPointerType *RHSMPType =
6300        ArgExpr->getType()->getAs<MemberPointerType>())
6301      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6302    else
6303      TyRec = ArgExpr->getType()->getAs<RecordType>();
6304    if (!TyRec) {
6305      // Just to be safe, assume the worst case.
6306      VRQuals.addVolatile();
6307      VRQuals.addRestrict();
6308      return VRQuals;
6309    }
6310
6311    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6312    if (!ClassDecl->hasDefinition())
6313      return VRQuals;
6314
6315    const UnresolvedSetImpl *Conversions =
6316      ClassDecl->getVisibleConversionFunctions();
6317
6318    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6319           E = Conversions->end(); I != E; ++I) {
6320      NamedDecl *D = I.getDecl();
6321      if (isa<UsingShadowDecl>(D))
6322        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6323      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6324        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6325        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6326          CanTy = ResTypeRef->getPointeeType();
6327        // Need to go down the pointer/mempointer chain and add qualifiers
6328        // as see them.
6329        bool done = false;
6330        while (!done) {
6331          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6332            CanTy = ResTypePtr->getPointeeType();
6333          else if (const MemberPointerType *ResTypeMPtr =
6334                CanTy->getAs<MemberPointerType>())
6335            CanTy = ResTypeMPtr->getPointeeType();
6336          else
6337            done = true;
6338          if (CanTy.isVolatileQualified())
6339            VRQuals.addVolatile();
6340          if (CanTy.isRestrictQualified())
6341            VRQuals.addRestrict();
6342          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6343            return VRQuals;
6344        }
6345      }
6346    }
6347    return VRQuals;
6348}
6349
6350namespace {
6351
6352/// \brief Helper class to manage the addition of builtin operator overload
6353/// candidates. It provides shared state and utility methods used throughout
6354/// the process, as well as a helper method to add each group of builtin
6355/// operator overloads from the standard to a candidate set.
6356class BuiltinOperatorOverloadBuilder {
6357  // Common instance state available to all overload candidate addition methods.
6358  Sema &S;
6359  Expr **Args;
6360  unsigned NumArgs;
6361  Qualifiers VisibleTypeConversionsQuals;
6362  bool HasArithmeticOrEnumeralCandidateType;
6363  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6364  OverloadCandidateSet &CandidateSet;
6365
6366  // Define some constants used to index and iterate over the arithemetic types
6367  // provided via the getArithmeticType() method below.
6368  // The "promoted arithmetic types" are the arithmetic
6369  // types are that preserved by promotion (C++ [over.built]p2).
6370  static const unsigned FirstIntegralType = 3;
6371  static const unsigned LastIntegralType = 18;
6372  static const unsigned FirstPromotedIntegralType = 3,
6373                        LastPromotedIntegralType = 9;
6374  static const unsigned FirstPromotedArithmeticType = 0,
6375                        LastPromotedArithmeticType = 9;
6376  static const unsigned NumArithmeticTypes = 18;
6377
6378  /// \brief Get the canonical type for a given arithmetic type index.
6379  CanQualType getArithmeticType(unsigned index) {
6380    assert(index < NumArithmeticTypes);
6381    static CanQualType ASTContext::* const
6382      ArithmeticTypes[NumArithmeticTypes] = {
6383      // Start of promoted types.
6384      &ASTContext::FloatTy,
6385      &ASTContext::DoubleTy,
6386      &ASTContext::LongDoubleTy,
6387
6388      // Start of integral types.
6389      &ASTContext::IntTy,
6390      &ASTContext::LongTy,
6391      &ASTContext::LongLongTy,
6392      &ASTContext::UnsignedIntTy,
6393      &ASTContext::UnsignedLongTy,
6394      &ASTContext::UnsignedLongLongTy,
6395      // End of promoted types.
6396
6397      &ASTContext::BoolTy,
6398      &ASTContext::CharTy,
6399      &ASTContext::WCharTy,
6400      &ASTContext::Char16Ty,
6401      &ASTContext::Char32Ty,
6402      &ASTContext::SignedCharTy,
6403      &ASTContext::ShortTy,
6404      &ASTContext::UnsignedCharTy,
6405      &ASTContext::UnsignedShortTy,
6406      // End of integral types.
6407      // FIXME: What about complex?
6408    };
6409    return S.Context.*ArithmeticTypes[index];
6410  }
6411
6412  /// \brief Gets the canonical type resulting from the usual arithemetic
6413  /// converions for the given arithmetic types.
6414  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6415    // Accelerator table for performing the usual arithmetic conversions.
6416    // The rules are basically:
6417    //   - if either is floating-point, use the wider floating-point
6418    //   - if same signedness, use the higher rank
6419    //   - if same size, use unsigned of the higher rank
6420    //   - use the larger type
6421    // These rules, together with the axiom that higher ranks are
6422    // never smaller, are sufficient to precompute all of these results
6423    // *except* when dealing with signed types of higher rank.
6424    // (we could precompute SLL x UI for all known platforms, but it's
6425    // better not to make any assumptions).
6426    enum PromotedType {
6427                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
6428    };
6429    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6430                                        [LastPromotedArithmeticType] = {
6431      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6432      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6433      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6434      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
6435      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
6436      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
6437      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
6438      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
6439      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
6440    };
6441
6442    assert(L < LastPromotedArithmeticType);
6443    assert(R < LastPromotedArithmeticType);
6444    int Idx = ConversionsTable[L][R];
6445
6446    // Fast path: the table gives us a concrete answer.
6447    if (Idx != Dep) return getArithmeticType(Idx);
6448
6449    // Slow path: we need to compare widths.
6450    // An invariant is that the signed type has higher rank.
6451    CanQualType LT = getArithmeticType(L),
6452                RT = getArithmeticType(R);
6453    unsigned LW = S.Context.getIntWidth(LT),
6454             RW = S.Context.getIntWidth(RT);
6455
6456    // If they're different widths, use the signed type.
6457    if (LW > RW) return LT;
6458    else if (LW < RW) return RT;
6459
6460    // Otherwise, use the unsigned type of the signed type's rank.
6461    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6462    assert(L == SLL || R == SLL);
6463    return S.Context.UnsignedLongLongTy;
6464  }
6465
6466  /// \brief Helper method to factor out the common pattern of adding overloads
6467  /// for '++' and '--' builtin operators.
6468  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6469                                           bool HasVolatile) {
6470    QualType ParamTypes[2] = {
6471      S.Context.getLValueReferenceType(CandidateTy),
6472      S.Context.IntTy
6473    };
6474
6475    // Non-volatile version.
6476    if (NumArgs == 1)
6477      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6478    else
6479      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6480
6481    // Use a heuristic to reduce number of builtin candidates in the set:
6482    // add volatile version only if there are conversions to a volatile type.
6483    if (HasVolatile) {
6484      ParamTypes[0] =
6485        S.Context.getLValueReferenceType(
6486          S.Context.getVolatileType(CandidateTy));
6487      if (NumArgs == 1)
6488        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
6489      else
6490        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
6491    }
6492  }
6493
6494public:
6495  BuiltinOperatorOverloadBuilder(
6496    Sema &S, Expr **Args, unsigned NumArgs,
6497    Qualifiers VisibleTypeConversionsQuals,
6498    bool HasArithmeticOrEnumeralCandidateType,
6499    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6500    OverloadCandidateSet &CandidateSet)
6501    : S(S), Args(Args), NumArgs(NumArgs),
6502      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6503      HasArithmeticOrEnumeralCandidateType(
6504        HasArithmeticOrEnumeralCandidateType),
6505      CandidateTypes(CandidateTypes),
6506      CandidateSet(CandidateSet) {
6507    // Validate some of our static helper constants in debug builds.
6508    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6509           "Invalid first promoted integral type");
6510    assert(getArithmeticType(LastPromotedIntegralType - 1)
6511             == S.Context.UnsignedLongLongTy &&
6512           "Invalid last promoted integral type");
6513    assert(getArithmeticType(FirstPromotedArithmeticType)
6514             == S.Context.FloatTy &&
6515           "Invalid first promoted arithmetic type");
6516    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6517             == S.Context.UnsignedLongLongTy &&
6518           "Invalid last promoted arithmetic type");
6519  }
6520
6521  // C++ [over.built]p3:
6522  //
6523  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6524  //   is either volatile or empty, there exist candidate operator
6525  //   functions of the form
6526  //
6527  //       VQ T&      operator++(VQ T&);
6528  //       T          operator++(VQ T&, int);
6529  //
6530  // C++ [over.built]p4:
6531  //
6532  //   For every pair (T, VQ), where T is an arithmetic type other
6533  //   than bool, and VQ is either volatile or empty, there exist
6534  //   candidate operator functions of the form
6535  //
6536  //       VQ T&      operator--(VQ T&);
6537  //       T          operator--(VQ T&, int);
6538  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6539    if (!HasArithmeticOrEnumeralCandidateType)
6540      return;
6541
6542    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6543         Arith < NumArithmeticTypes; ++Arith) {
6544      addPlusPlusMinusMinusStyleOverloads(
6545        getArithmeticType(Arith),
6546        VisibleTypeConversionsQuals.hasVolatile());
6547    }
6548  }
6549
6550  // C++ [over.built]p5:
6551  //
6552  //   For every pair (T, VQ), where T is a cv-qualified or
6553  //   cv-unqualified object type, and VQ is either volatile or
6554  //   empty, there exist candidate operator functions of the form
6555  //
6556  //       T*VQ&      operator++(T*VQ&);
6557  //       T*VQ&      operator--(T*VQ&);
6558  //       T*         operator++(T*VQ&, int);
6559  //       T*         operator--(T*VQ&, int);
6560  void addPlusPlusMinusMinusPointerOverloads() {
6561    for (BuiltinCandidateTypeSet::iterator
6562              Ptr = CandidateTypes[0].pointer_begin(),
6563           PtrEnd = CandidateTypes[0].pointer_end();
6564         Ptr != PtrEnd; ++Ptr) {
6565      // Skip pointer types that aren't pointers to object types.
6566      if (!(*Ptr)->getPointeeType()->isObjectType())
6567        continue;
6568
6569      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6570        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6571         VisibleTypeConversionsQuals.hasVolatile()));
6572    }
6573  }
6574
6575  // C++ [over.built]p6:
6576  //   For every cv-qualified or cv-unqualified object type T, there
6577  //   exist candidate operator functions of the form
6578  //
6579  //       T&         operator*(T*);
6580  //
6581  // C++ [over.built]p7:
6582  //   For every function type T that does not have cv-qualifiers or a
6583  //   ref-qualifier, there exist candidate operator functions of the form
6584  //       T&         operator*(T*);
6585  void addUnaryStarPointerOverloads() {
6586    for (BuiltinCandidateTypeSet::iterator
6587              Ptr = CandidateTypes[0].pointer_begin(),
6588           PtrEnd = CandidateTypes[0].pointer_end();
6589         Ptr != PtrEnd; ++Ptr) {
6590      QualType ParamTy = *Ptr;
6591      QualType PointeeTy = ParamTy->getPointeeType();
6592      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6593        continue;
6594
6595      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6596        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6597          continue;
6598
6599      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6600                            &ParamTy, Args, 1, CandidateSet);
6601    }
6602  }
6603
6604  // C++ [over.built]p9:
6605  //  For every promoted arithmetic type T, there exist candidate
6606  //  operator functions of the form
6607  //
6608  //       T         operator+(T);
6609  //       T         operator-(T);
6610  void addUnaryPlusOrMinusArithmeticOverloads() {
6611    if (!HasArithmeticOrEnumeralCandidateType)
6612      return;
6613
6614    for (unsigned Arith = FirstPromotedArithmeticType;
6615         Arith < LastPromotedArithmeticType; ++Arith) {
6616      QualType ArithTy = getArithmeticType(Arith);
6617      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
6618    }
6619
6620    // Extension: We also add these operators for vector types.
6621    for (BuiltinCandidateTypeSet::iterator
6622              Vec = CandidateTypes[0].vector_begin(),
6623           VecEnd = CandidateTypes[0].vector_end();
6624         Vec != VecEnd; ++Vec) {
6625      QualType VecTy = *Vec;
6626      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6627    }
6628  }
6629
6630  // C++ [over.built]p8:
6631  //   For every type T, there exist candidate operator functions of
6632  //   the form
6633  //
6634  //       T*         operator+(T*);
6635  void addUnaryPlusPointerOverloads() {
6636    for (BuiltinCandidateTypeSet::iterator
6637              Ptr = CandidateTypes[0].pointer_begin(),
6638           PtrEnd = CandidateTypes[0].pointer_end();
6639         Ptr != PtrEnd; ++Ptr) {
6640      QualType ParamTy = *Ptr;
6641      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
6642    }
6643  }
6644
6645  // C++ [over.built]p10:
6646  //   For every promoted integral type T, there exist candidate
6647  //   operator functions of the form
6648  //
6649  //        T         operator~(T);
6650  void addUnaryTildePromotedIntegralOverloads() {
6651    if (!HasArithmeticOrEnumeralCandidateType)
6652      return;
6653
6654    for (unsigned Int = FirstPromotedIntegralType;
6655         Int < LastPromotedIntegralType; ++Int) {
6656      QualType IntTy = getArithmeticType(Int);
6657      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
6658    }
6659
6660    // Extension: We also add this operator for vector types.
6661    for (BuiltinCandidateTypeSet::iterator
6662              Vec = CandidateTypes[0].vector_begin(),
6663           VecEnd = CandidateTypes[0].vector_end();
6664         Vec != VecEnd; ++Vec) {
6665      QualType VecTy = *Vec;
6666      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
6667    }
6668  }
6669
6670  // C++ [over.match.oper]p16:
6671  //   For every pointer to member type T, there exist candidate operator
6672  //   functions of the form
6673  //
6674  //        bool operator==(T,T);
6675  //        bool operator!=(T,T);
6676  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6677    /// Set of (canonical) types that we've already handled.
6678    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6679
6680    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6681      for (BuiltinCandidateTypeSet::iterator
6682                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6683             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6684           MemPtr != MemPtrEnd;
6685           ++MemPtr) {
6686        // Don't add the same builtin candidate twice.
6687        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6688          continue;
6689
6690        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6691        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6692                              CandidateSet);
6693      }
6694    }
6695  }
6696
6697  // C++ [over.built]p15:
6698  //
6699  //   For every T, where T is an enumeration type, a pointer type, or
6700  //   std::nullptr_t, there exist candidate operator functions of the form
6701  //
6702  //        bool       operator<(T, T);
6703  //        bool       operator>(T, T);
6704  //        bool       operator<=(T, T);
6705  //        bool       operator>=(T, T);
6706  //        bool       operator==(T, T);
6707  //        bool       operator!=(T, T);
6708  void addRelationalPointerOrEnumeralOverloads() {
6709    // C++ [over.built]p1:
6710    //   If there is a user-written candidate with the same name and parameter
6711    //   types as a built-in candidate operator function, the built-in operator
6712    //   function is hidden and is not included in the set of candidate
6713    //   functions.
6714    //
6715    // The text is actually in a note, but if we don't implement it then we end
6716    // up with ambiguities when the user provides an overloaded operator for
6717    // an enumeration type. Note that only enumeration types have this problem,
6718    // so we track which enumeration types we've seen operators for. Also, the
6719    // only other overloaded operator with enumeration argumenst, operator=,
6720    // cannot be overloaded for enumeration types, so this is the only place
6721    // where we must suppress candidates like this.
6722    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6723      UserDefinedBinaryOperators;
6724
6725    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6726      if (CandidateTypes[ArgIdx].enumeration_begin() !=
6727          CandidateTypes[ArgIdx].enumeration_end()) {
6728        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
6729                                         CEnd = CandidateSet.end();
6730             C != CEnd; ++C) {
6731          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
6732            continue;
6733
6734          QualType FirstParamType =
6735            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
6736          QualType SecondParamType =
6737            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
6738
6739          // Skip if either parameter isn't of enumeral type.
6740          if (!FirstParamType->isEnumeralType() ||
6741              !SecondParamType->isEnumeralType())
6742            continue;
6743
6744          // Add this operator to the set of known user-defined operators.
6745          UserDefinedBinaryOperators.insert(
6746            std::make_pair(S.Context.getCanonicalType(FirstParamType),
6747                           S.Context.getCanonicalType(SecondParamType)));
6748        }
6749      }
6750    }
6751
6752    /// Set of (canonical) types that we've already handled.
6753    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6754
6755    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6756      for (BuiltinCandidateTypeSet::iterator
6757                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6758             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6759           Ptr != PtrEnd; ++Ptr) {
6760        // Don't add the same builtin candidate twice.
6761        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6762          continue;
6763
6764        QualType ParamTypes[2] = { *Ptr, *Ptr };
6765        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6766                              CandidateSet);
6767      }
6768      for (BuiltinCandidateTypeSet::iterator
6769                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6770             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6771           Enum != EnumEnd; ++Enum) {
6772        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
6773
6774        // Don't add the same builtin candidate twice, or if a user defined
6775        // candidate exists.
6776        if (!AddedTypes.insert(CanonType) ||
6777            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
6778                                                            CanonType)))
6779          continue;
6780
6781        QualType ParamTypes[2] = { *Enum, *Enum };
6782        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6783                              CandidateSet);
6784      }
6785
6786      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
6787        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
6788        if (AddedTypes.insert(NullPtrTy) &&
6789            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
6790                                                             NullPtrTy))) {
6791          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
6792          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
6793                                CandidateSet);
6794        }
6795      }
6796    }
6797  }
6798
6799  // C++ [over.built]p13:
6800  //
6801  //   For every cv-qualified or cv-unqualified object type T
6802  //   there exist candidate operator functions of the form
6803  //
6804  //      T*         operator+(T*, ptrdiff_t);
6805  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
6806  //      T*         operator-(T*, ptrdiff_t);
6807  //      T*         operator+(ptrdiff_t, T*);
6808  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
6809  //
6810  // C++ [over.built]p14:
6811  //
6812  //   For every T, where T is a pointer to object type, there
6813  //   exist candidate operator functions of the form
6814  //
6815  //      ptrdiff_t  operator-(T, T);
6816  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6817    /// Set of (canonical) types that we've already handled.
6818    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6819
6820    for (int Arg = 0; Arg < 2; ++Arg) {
6821      QualType AsymetricParamTypes[2] = {
6822        S.Context.getPointerDiffType(),
6823        S.Context.getPointerDiffType(),
6824      };
6825      for (BuiltinCandidateTypeSet::iterator
6826                Ptr = CandidateTypes[Arg].pointer_begin(),
6827             PtrEnd = CandidateTypes[Arg].pointer_end();
6828           Ptr != PtrEnd; ++Ptr) {
6829        QualType PointeeTy = (*Ptr)->getPointeeType();
6830        if (!PointeeTy->isObjectType())
6831          continue;
6832
6833        AsymetricParamTypes[Arg] = *Ptr;
6834        if (Arg == 0 || Op == OO_Plus) {
6835          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6836          // T* operator+(ptrdiff_t, T*);
6837          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6838                                CandidateSet);
6839        }
6840        if (Op == OO_Minus) {
6841          // ptrdiff_t operator-(T, T);
6842          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6843            continue;
6844
6845          QualType ParamTypes[2] = { *Ptr, *Ptr };
6846          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6847                                Args, 2, CandidateSet);
6848        }
6849      }
6850    }
6851  }
6852
6853  // C++ [over.built]p12:
6854  //
6855  //   For every pair of promoted arithmetic types L and R, there
6856  //   exist candidate operator functions of the form
6857  //
6858  //        LR         operator*(L, R);
6859  //        LR         operator/(L, R);
6860  //        LR         operator+(L, R);
6861  //        LR         operator-(L, R);
6862  //        bool       operator<(L, R);
6863  //        bool       operator>(L, R);
6864  //        bool       operator<=(L, R);
6865  //        bool       operator>=(L, R);
6866  //        bool       operator==(L, R);
6867  //        bool       operator!=(L, R);
6868  //
6869  //   where LR is the result of the usual arithmetic conversions
6870  //   between types L and R.
6871  //
6872  // C++ [over.built]p24:
6873  //
6874  //   For every pair of promoted arithmetic types L and R, there exist
6875  //   candidate operator functions of the form
6876  //
6877  //        LR       operator?(bool, L, R);
6878  //
6879  //   where LR is the result of the usual arithmetic conversions
6880  //   between types L and R.
6881  // Our candidates ignore the first parameter.
6882  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6883    if (!HasArithmeticOrEnumeralCandidateType)
6884      return;
6885
6886    for (unsigned Left = FirstPromotedArithmeticType;
6887         Left < LastPromotedArithmeticType; ++Left) {
6888      for (unsigned Right = FirstPromotedArithmeticType;
6889           Right < LastPromotedArithmeticType; ++Right) {
6890        QualType LandR[2] = { getArithmeticType(Left),
6891                              getArithmeticType(Right) };
6892        QualType Result =
6893          isComparison ? S.Context.BoolTy
6894                       : getUsualArithmeticConversions(Left, Right);
6895        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6896      }
6897    }
6898
6899    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6900    // conditional operator for vector types.
6901    for (BuiltinCandidateTypeSet::iterator
6902              Vec1 = CandidateTypes[0].vector_begin(),
6903           Vec1End = CandidateTypes[0].vector_end();
6904         Vec1 != Vec1End; ++Vec1) {
6905      for (BuiltinCandidateTypeSet::iterator
6906                Vec2 = CandidateTypes[1].vector_begin(),
6907             Vec2End = CandidateTypes[1].vector_end();
6908           Vec2 != Vec2End; ++Vec2) {
6909        QualType LandR[2] = { *Vec1, *Vec2 };
6910        QualType Result = S.Context.BoolTy;
6911        if (!isComparison) {
6912          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6913            Result = *Vec1;
6914          else
6915            Result = *Vec2;
6916        }
6917
6918        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6919      }
6920    }
6921  }
6922
6923  // C++ [over.built]p17:
6924  //
6925  //   For every pair of promoted integral types L and R, there
6926  //   exist candidate operator functions of the form
6927  //
6928  //      LR         operator%(L, R);
6929  //      LR         operator&(L, R);
6930  //      LR         operator^(L, R);
6931  //      LR         operator|(L, R);
6932  //      L          operator<<(L, R);
6933  //      L          operator>>(L, R);
6934  //
6935  //   where LR is the result of the usual arithmetic conversions
6936  //   between types L and R.
6937  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
6938    if (!HasArithmeticOrEnumeralCandidateType)
6939      return;
6940
6941    for (unsigned Left = FirstPromotedIntegralType;
6942         Left < LastPromotedIntegralType; ++Left) {
6943      for (unsigned Right = FirstPromotedIntegralType;
6944           Right < LastPromotedIntegralType; ++Right) {
6945        QualType LandR[2] = { getArithmeticType(Left),
6946                              getArithmeticType(Right) };
6947        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
6948            ? LandR[0]
6949            : getUsualArithmeticConversions(Left, Right);
6950        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6951      }
6952    }
6953  }
6954
6955  // C++ [over.built]p20:
6956  //
6957  //   For every pair (T, VQ), where T is an enumeration or
6958  //   pointer to member type and VQ is either volatile or
6959  //   empty, there exist candidate operator functions of the form
6960  //
6961  //        VQ T&      operator=(VQ T&, T);
6962  void addAssignmentMemberPointerOrEnumeralOverloads() {
6963    /// Set of (canonical) types that we've already handled.
6964    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6965
6966    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6967      for (BuiltinCandidateTypeSet::iterator
6968                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6969             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6970           Enum != EnumEnd; ++Enum) {
6971        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6972          continue;
6973
6974        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
6975                                               CandidateSet);
6976      }
6977
6978      for (BuiltinCandidateTypeSet::iterator
6979                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6980             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6981           MemPtr != MemPtrEnd; ++MemPtr) {
6982        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6983          continue;
6984
6985        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
6986                                               CandidateSet);
6987      }
6988    }
6989  }
6990
6991  // C++ [over.built]p19:
6992  //
6993  //   For every pair (T, VQ), where T is any type and VQ is either
6994  //   volatile or empty, there exist candidate operator functions
6995  //   of the form
6996  //
6997  //        T*VQ&      operator=(T*VQ&, T*);
6998  //
6999  // C++ [over.built]p21:
7000  //
7001  //   For every pair (T, VQ), where T is a cv-qualified or
7002  //   cv-unqualified object type and VQ is either volatile or
7003  //   empty, there exist candidate operator functions of the form
7004  //
7005  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7006  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7007  void addAssignmentPointerOverloads(bool isEqualOp) {
7008    /// Set of (canonical) types that we've already handled.
7009    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7010
7011    for (BuiltinCandidateTypeSet::iterator
7012              Ptr = CandidateTypes[0].pointer_begin(),
7013           PtrEnd = CandidateTypes[0].pointer_end();
7014         Ptr != PtrEnd; ++Ptr) {
7015      // If this is operator=, keep track of the builtin candidates we added.
7016      if (isEqualOp)
7017        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7018      else if (!(*Ptr)->getPointeeType()->isObjectType())
7019        continue;
7020
7021      // non-volatile version
7022      QualType ParamTypes[2] = {
7023        S.Context.getLValueReferenceType(*Ptr),
7024        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7025      };
7026      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7027                            /*IsAssigmentOperator=*/ isEqualOp);
7028
7029      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
7030          VisibleTypeConversionsQuals.hasVolatile()) {
7031        // volatile version
7032        ParamTypes[0] =
7033          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7034        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7035                              /*IsAssigmentOperator=*/isEqualOp);
7036      }
7037    }
7038
7039    if (isEqualOp) {
7040      for (BuiltinCandidateTypeSet::iterator
7041                Ptr = CandidateTypes[1].pointer_begin(),
7042             PtrEnd = CandidateTypes[1].pointer_end();
7043           Ptr != PtrEnd; ++Ptr) {
7044        // Make sure we don't add the same candidate twice.
7045        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7046          continue;
7047
7048        QualType ParamTypes[2] = {
7049          S.Context.getLValueReferenceType(*Ptr),
7050          *Ptr,
7051        };
7052
7053        // non-volatile version
7054        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7055                              /*IsAssigmentOperator=*/true);
7056
7057        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
7058            VisibleTypeConversionsQuals.hasVolatile()) {
7059          // volatile version
7060          ParamTypes[0] =
7061            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7062          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7063                                CandidateSet, /*IsAssigmentOperator=*/true);
7064        }
7065      }
7066    }
7067  }
7068
7069  // C++ [over.built]p18:
7070  //
7071  //   For every triple (L, VQ, R), where L is an arithmetic type,
7072  //   VQ is either volatile or empty, and R is a promoted
7073  //   arithmetic type, there exist candidate operator functions of
7074  //   the form
7075  //
7076  //        VQ L&      operator=(VQ L&, R);
7077  //        VQ L&      operator*=(VQ L&, R);
7078  //        VQ L&      operator/=(VQ L&, R);
7079  //        VQ L&      operator+=(VQ L&, R);
7080  //        VQ L&      operator-=(VQ L&, R);
7081  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7082    if (!HasArithmeticOrEnumeralCandidateType)
7083      return;
7084
7085    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7086      for (unsigned Right = FirstPromotedArithmeticType;
7087           Right < LastPromotedArithmeticType; ++Right) {
7088        QualType ParamTypes[2];
7089        ParamTypes[1] = getArithmeticType(Right);
7090
7091        // Add this built-in operator as a candidate (VQ is empty).
7092        ParamTypes[0] =
7093          S.Context.getLValueReferenceType(getArithmeticType(Left));
7094        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7095                              /*IsAssigmentOperator=*/isEqualOp);
7096
7097        // Add this built-in operator as a candidate (VQ is 'volatile').
7098        if (VisibleTypeConversionsQuals.hasVolatile()) {
7099          ParamTypes[0] =
7100            S.Context.getVolatileType(getArithmeticType(Left));
7101          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7102          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7103                                CandidateSet,
7104                                /*IsAssigmentOperator=*/isEqualOp);
7105        }
7106      }
7107    }
7108
7109    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7110    for (BuiltinCandidateTypeSet::iterator
7111              Vec1 = CandidateTypes[0].vector_begin(),
7112           Vec1End = CandidateTypes[0].vector_end();
7113         Vec1 != Vec1End; ++Vec1) {
7114      for (BuiltinCandidateTypeSet::iterator
7115                Vec2 = CandidateTypes[1].vector_begin(),
7116             Vec2End = CandidateTypes[1].vector_end();
7117           Vec2 != Vec2End; ++Vec2) {
7118        QualType ParamTypes[2];
7119        ParamTypes[1] = *Vec2;
7120        // Add this built-in operator as a candidate (VQ is empty).
7121        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7122        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
7123                              /*IsAssigmentOperator=*/isEqualOp);
7124
7125        // Add this built-in operator as a candidate (VQ is 'volatile').
7126        if (VisibleTypeConversionsQuals.hasVolatile()) {
7127          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7128          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7129          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7130                                CandidateSet,
7131                                /*IsAssigmentOperator=*/isEqualOp);
7132        }
7133      }
7134    }
7135  }
7136
7137  // C++ [over.built]p22:
7138  //
7139  //   For every triple (L, VQ, R), where L is an integral type, VQ
7140  //   is either volatile or empty, and R is a promoted integral
7141  //   type, there exist candidate operator functions of the form
7142  //
7143  //        VQ L&       operator%=(VQ L&, R);
7144  //        VQ L&       operator<<=(VQ L&, R);
7145  //        VQ L&       operator>>=(VQ L&, R);
7146  //        VQ L&       operator&=(VQ L&, R);
7147  //        VQ L&       operator^=(VQ L&, R);
7148  //        VQ L&       operator|=(VQ L&, R);
7149  void addAssignmentIntegralOverloads() {
7150    if (!HasArithmeticOrEnumeralCandidateType)
7151      return;
7152
7153    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7154      for (unsigned Right = FirstPromotedIntegralType;
7155           Right < LastPromotedIntegralType; ++Right) {
7156        QualType ParamTypes[2];
7157        ParamTypes[1] = getArithmeticType(Right);
7158
7159        // Add this built-in operator as a candidate (VQ is empty).
7160        ParamTypes[0] =
7161          S.Context.getLValueReferenceType(getArithmeticType(Left));
7162        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
7163        if (VisibleTypeConversionsQuals.hasVolatile()) {
7164          // Add this built-in operator as a candidate (VQ is 'volatile').
7165          ParamTypes[0] = getArithmeticType(Left);
7166          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7167          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7168          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
7169                                CandidateSet);
7170        }
7171      }
7172    }
7173  }
7174
7175  // C++ [over.operator]p23:
7176  //
7177  //   There also exist candidate operator functions of the form
7178  //
7179  //        bool        operator!(bool);
7180  //        bool        operator&&(bool, bool);
7181  //        bool        operator||(bool, bool);
7182  void addExclaimOverload() {
7183    QualType ParamTy = S.Context.BoolTy;
7184    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
7185                          /*IsAssignmentOperator=*/false,
7186                          /*NumContextualBoolArguments=*/1);
7187  }
7188  void addAmpAmpOrPipePipeOverload() {
7189    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7190    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
7191                          /*IsAssignmentOperator=*/false,
7192                          /*NumContextualBoolArguments=*/2);
7193  }
7194
7195  // C++ [over.built]p13:
7196  //
7197  //   For every cv-qualified or cv-unqualified object type T there
7198  //   exist candidate operator functions of the form
7199  //
7200  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7201  //        T&         operator[](T*, ptrdiff_t);
7202  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7203  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7204  //        T&         operator[](ptrdiff_t, T*);
7205  void addSubscriptOverloads() {
7206    for (BuiltinCandidateTypeSet::iterator
7207              Ptr = CandidateTypes[0].pointer_begin(),
7208           PtrEnd = CandidateTypes[0].pointer_end();
7209         Ptr != PtrEnd; ++Ptr) {
7210      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7211      QualType PointeeType = (*Ptr)->getPointeeType();
7212      if (!PointeeType->isObjectType())
7213        continue;
7214
7215      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7216
7217      // T& operator[](T*, ptrdiff_t)
7218      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7219    }
7220
7221    for (BuiltinCandidateTypeSet::iterator
7222              Ptr = CandidateTypes[1].pointer_begin(),
7223           PtrEnd = CandidateTypes[1].pointer_end();
7224         Ptr != PtrEnd; ++Ptr) {
7225      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7226      QualType PointeeType = (*Ptr)->getPointeeType();
7227      if (!PointeeType->isObjectType())
7228        continue;
7229
7230      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7231
7232      // T& operator[](ptrdiff_t, T*)
7233      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7234    }
7235  }
7236
7237  // C++ [over.built]p11:
7238  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7239  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7240  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7241  //    there exist candidate operator functions of the form
7242  //
7243  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7244  //
7245  //    where CV12 is the union of CV1 and CV2.
7246  void addArrowStarOverloads() {
7247    for (BuiltinCandidateTypeSet::iterator
7248             Ptr = CandidateTypes[0].pointer_begin(),
7249           PtrEnd = CandidateTypes[0].pointer_end();
7250         Ptr != PtrEnd; ++Ptr) {
7251      QualType C1Ty = (*Ptr);
7252      QualType C1;
7253      QualifierCollector Q1;
7254      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7255      if (!isa<RecordType>(C1))
7256        continue;
7257      // heuristic to reduce number of builtin candidates in the set.
7258      // Add volatile/restrict version only if there are conversions to a
7259      // volatile/restrict type.
7260      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7261        continue;
7262      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7263        continue;
7264      for (BuiltinCandidateTypeSet::iterator
7265                MemPtr = CandidateTypes[1].member_pointer_begin(),
7266             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7267           MemPtr != MemPtrEnd; ++MemPtr) {
7268        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7269        QualType C2 = QualType(mptr->getClass(), 0);
7270        C2 = C2.getUnqualifiedType();
7271        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7272          break;
7273        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7274        // build CV12 T&
7275        QualType T = mptr->getPointeeType();
7276        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7277            T.isVolatileQualified())
7278          continue;
7279        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7280            T.isRestrictQualified())
7281          continue;
7282        T = Q1.apply(S.Context, T);
7283        QualType ResultTy = S.Context.getLValueReferenceType(T);
7284        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
7285      }
7286    }
7287  }
7288
7289  // Note that we don't consider the first argument, since it has been
7290  // contextually converted to bool long ago. The candidates below are
7291  // therefore added as binary.
7292  //
7293  // C++ [over.built]p25:
7294  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7295  //   enumeration type, there exist candidate operator functions of the form
7296  //
7297  //        T        operator?(bool, T, T);
7298  //
7299  void addConditionalOperatorOverloads() {
7300    /// Set of (canonical) types that we've already handled.
7301    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7302
7303    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7304      for (BuiltinCandidateTypeSet::iterator
7305                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7306             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7307           Ptr != PtrEnd; ++Ptr) {
7308        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7309          continue;
7310
7311        QualType ParamTypes[2] = { *Ptr, *Ptr };
7312        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
7313      }
7314
7315      for (BuiltinCandidateTypeSet::iterator
7316                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7317             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7318           MemPtr != MemPtrEnd; ++MemPtr) {
7319        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7320          continue;
7321
7322        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7323        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
7324      }
7325
7326      if (S.getLangOpts().CPlusPlus0x) {
7327        for (BuiltinCandidateTypeSet::iterator
7328                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7329               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7330             Enum != EnumEnd; ++Enum) {
7331          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7332            continue;
7333
7334          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7335            continue;
7336
7337          QualType ParamTypes[2] = { *Enum, *Enum };
7338          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
7339        }
7340      }
7341    }
7342  }
7343};
7344
7345} // end anonymous namespace
7346
7347/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7348/// operator overloads to the candidate set (C++ [over.built]), based
7349/// on the operator @p Op and the arguments given. For example, if the
7350/// operator is a binary '+', this routine might add "int
7351/// operator+(int, int)" to cover integer addition.
7352void
7353Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7354                                   SourceLocation OpLoc,
7355                                   Expr **Args, unsigned NumArgs,
7356                                   OverloadCandidateSet& CandidateSet) {
7357  // Find all of the types that the arguments can convert to, but only
7358  // if the operator we're looking at has built-in operator candidates
7359  // that make use of these types. Also record whether we encounter non-record
7360  // candidate types or either arithmetic or enumeral candidate types.
7361  Qualifiers VisibleTypeConversionsQuals;
7362  VisibleTypeConversionsQuals.addConst();
7363  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7364    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7365
7366  bool HasNonRecordCandidateType = false;
7367  bool HasArithmeticOrEnumeralCandidateType = false;
7368  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7369  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
7370    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7371    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7372                                                 OpLoc,
7373                                                 true,
7374                                                 (Op == OO_Exclaim ||
7375                                                  Op == OO_AmpAmp ||
7376                                                  Op == OO_PipePipe),
7377                                                 VisibleTypeConversionsQuals);
7378    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7379        CandidateTypes[ArgIdx].hasNonRecordTypes();
7380    HasArithmeticOrEnumeralCandidateType =
7381        HasArithmeticOrEnumeralCandidateType ||
7382        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7383  }
7384
7385  // Exit early when no non-record types have been added to the candidate set
7386  // for any of the arguments to the operator.
7387  //
7388  // We can't exit early for !, ||, or &&, since there we have always have
7389  // 'bool' overloads.
7390  if (!HasNonRecordCandidateType &&
7391      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7392    return;
7393
7394  // Setup an object to manage the common state for building overloads.
7395  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
7396                                           VisibleTypeConversionsQuals,
7397                                           HasArithmeticOrEnumeralCandidateType,
7398                                           CandidateTypes, CandidateSet);
7399
7400  // Dispatch over the operation to add in only those overloads which apply.
7401  switch (Op) {
7402  case OO_None:
7403  case NUM_OVERLOADED_OPERATORS:
7404    llvm_unreachable("Expected an overloaded operator");
7405
7406  case OO_New:
7407  case OO_Delete:
7408  case OO_Array_New:
7409  case OO_Array_Delete:
7410  case OO_Call:
7411    llvm_unreachable(
7412                    "Special operators don't use AddBuiltinOperatorCandidates");
7413
7414  case OO_Comma:
7415  case OO_Arrow:
7416    // C++ [over.match.oper]p3:
7417    //   -- For the operator ',', the unary operator '&', or the
7418    //      operator '->', the built-in candidates set is empty.
7419    break;
7420
7421  case OO_Plus: // '+' is either unary or binary
7422    if (NumArgs == 1)
7423      OpBuilder.addUnaryPlusPointerOverloads();
7424    // Fall through.
7425
7426  case OO_Minus: // '-' is either unary or binary
7427    if (NumArgs == 1) {
7428      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7429    } else {
7430      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7431      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7432    }
7433    break;
7434
7435  case OO_Star: // '*' is either unary or binary
7436    if (NumArgs == 1)
7437      OpBuilder.addUnaryStarPointerOverloads();
7438    else
7439      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7440    break;
7441
7442  case OO_Slash:
7443    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7444    break;
7445
7446  case OO_PlusPlus:
7447  case OO_MinusMinus:
7448    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7449    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7450    break;
7451
7452  case OO_EqualEqual:
7453  case OO_ExclaimEqual:
7454    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7455    // Fall through.
7456
7457  case OO_Less:
7458  case OO_Greater:
7459  case OO_LessEqual:
7460  case OO_GreaterEqual:
7461    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7462    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7463    break;
7464
7465  case OO_Percent:
7466  case OO_Caret:
7467  case OO_Pipe:
7468  case OO_LessLess:
7469  case OO_GreaterGreater:
7470    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7471    break;
7472
7473  case OO_Amp: // '&' is either unary or binary
7474    if (NumArgs == 1)
7475      // C++ [over.match.oper]p3:
7476      //   -- For the operator ',', the unary operator '&', or the
7477      //      operator '->', the built-in candidates set is empty.
7478      break;
7479
7480    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7481    break;
7482
7483  case OO_Tilde:
7484    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7485    break;
7486
7487  case OO_Equal:
7488    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7489    // Fall through.
7490
7491  case OO_PlusEqual:
7492  case OO_MinusEqual:
7493    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7494    // Fall through.
7495
7496  case OO_StarEqual:
7497  case OO_SlashEqual:
7498    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7499    break;
7500
7501  case OO_PercentEqual:
7502  case OO_LessLessEqual:
7503  case OO_GreaterGreaterEqual:
7504  case OO_AmpEqual:
7505  case OO_CaretEqual:
7506  case OO_PipeEqual:
7507    OpBuilder.addAssignmentIntegralOverloads();
7508    break;
7509
7510  case OO_Exclaim:
7511    OpBuilder.addExclaimOverload();
7512    break;
7513
7514  case OO_AmpAmp:
7515  case OO_PipePipe:
7516    OpBuilder.addAmpAmpOrPipePipeOverload();
7517    break;
7518
7519  case OO_Subscript:
7520    OpBuilder.addSubscriptOverloads();
7521    break;
7522
7523  case OO_ArrowStar:
7524    OpBuilder.addArrowStarOverloads();
7525    break;
7526
7527  case OO_Conditional:
7528    OpBuilder.addConditionalOperatorOverloads();
7529    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7530    break;
7531  }
7532}
7533
7534/// \brief Add function candidates found via argument-dependent lookup
7535/// to the set of overloading candidates.
7536///
7537/// This routine performs argument-dependent name lookup based on the
7538/// given function name (which may also be an operator name) and adds
7539/// all of the overload candidates found by ADL to the overload
7540/// candidate set (C++ [basic.lookup.argdep]).
7541void
7542Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7543                                           bool Operator, SourceLocation Loc,
7544                                           llvm::ArrayRef<Expr *> Args,
7545                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7546                                           OverloadCandidateSet& CandidateSet,
7547                                           bool PartialOverloading,
7548                                           bool StdNamespaceIsAssociated) {
7549  ADLResult Fns;
7550
7551  // FIXME: This approach for uniquing ADL results (and removing
7552  // redundant candidates from the set) relies on pointer-equality,
7553  // which means we need to key off the canonical decl.  However,
7554  // always going back to the canonical decl might not get us the
7555  // right set of default arguments.  What default arguments are
7556  // we supposed to consider on ADL candidates, anyway?
7557
7558  // FIXME: Pass in the explicit template arguments?
7559  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
7560                          StdNamespaceIsAssociated);
7561
7562  // Erase all of the candidates we already knew about.
7563  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7564                                   CandEnd = CandidateSet.end();
7565       Cand != CandEnd; ++Cand)
7566    if (Cand->Function) {
7567      Fns.erase(Cand->Function);
7568      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7569        Fns.erase(FunTmpl);
7570    }
7571
7572  // For each of the ADL candidates we found, add it to the overload
7573  // set.
7574  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7575    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7576    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7577      if (ExplicitTemplateArgs)
7578        continue;
7579
7580      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7581                           PartialOverloading);
7582    } else
7583      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7584                                   FoundDecl, ExplicitTemplateArgs,
7585                                   Args, CandidateSet);
7586  }
7587}
7588
7589/// isBetterOverloadCandidate - Determines whether the first overload
7590/// candidate is a better candidate than the second (C++ 13.3.3p1).
7591bool
7592isBetterOverloadCandidate(Sema &S,
7593                          const OverloadCandidate &Cand1,
7594                          const OverloadCandidate &Cand2,
7595                          SourceLocation Loc,
7596                          bool UserDefinedConversion) {
7597  // Define viable functions to be better candidates than non-viable
7598  // functions.
7599  if (!Cand2.Viable)
7600    return Cand1.Viable;
7601  else if (!Cand1.Viable)
7602    return false;
7603
7604  // C++ [over.match.best]p1:
7605  //
7606  //   -- if F is a static member function, ICS1(F) is defined such
7607  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7608  //      any function G, and, symmetrically, ICS1(G) is neither
7609  //      better nor worse than ICS1(F).
7610  unsigned StartArg = 0;
7611  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7612    StartArg = 1;
7613
7614  // C++ [over.match.best]p1:
7615  //   A viable function F1 is defined to be a better function than another
7616  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7617  //   conversion sequence than ICSi(F2), and then...
7618  unsigned NumArgs = Cand1.NumConversions;
7619  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7620  bool HasBetterConversion = false;
7621  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7622    switch (CompareImplicitConversionSequences(S,
7623                                               Cand1.Conversions[ArgIdx],
7624                                               Cand2.Conversions[ArgIdx])) {
7625    case ImplicitConversionSequence::Better:
7626      // Cand1 has a better conversion sequence.
7627      HasBetterConversion = true;
7628      break;
7629
7630    case ImplicitConversionSequence::Worse:
7631      // Cand1 can't be better than Cand2.
7632      return false;
7633
7634    case ImplicitConversionSequence::Indistinguishable:
7635      // Do nothing.
7636      break;
7637    }
7638  }
7639
7640  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7641  //       ICSj(F2), or, if not that,
7642  if (HasBetterConversion)
7643    return true;
7644
7645  //     - F1 is a non-template function and F2 is a function template
7646  //       specialization, or, if not that,
7647  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7648      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7649    return true;
7650
7651  //   -- F1 and F2 are function template specializations, and the function
7652  //      template for F1 is more specialized than the template for F2
7653  //      according to the partial ordering rules described in 14.5.5.2, or,
7654  //      if not that,
7655  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7656      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7657    if (FunctionTemplateDecl *BetterTemplate
7658          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7659                                         Cand2.Function->getPrimaryTemplate(),
7660                                         Loc,
7661                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7662                                                             : TPOC_Call,
7663                                         Cand1.ExplicitCallArguments))
7664      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7665  }
7666
7667  //   -- the context is an initialization by user-defined conversion
7668  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7669  //      from the return type of F1 to the destination type (i.e.,
7670  //      the type of the entity being initialized) is a better
7671  //      conversion sequence than the standard conversion sequence
7672  //      from the return type of F2 to the destination type.
7673  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7674      isa<CXXConversionDecl>(Cand1.Function) &&
7675      isa<CXXConversionDecl>(Cand2.Function)) {
7676    // First check whether we prefer one of the conversion functions over the
7677    // other. This only distinguishes the results in non-standard, extension
7678    // cases such as the conversion from a lambda closure type to a function
7679    // pointer or block.
7680    ImplicitConversionSequence::CompareKind FuncResult
7681      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7682    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7683      return FuncResult;
7684
7685    switch (CompareStandardConversionSequences(S,
7686                                               Cand1.FinalConversion,
7687                                               Cand2.FinalConversion)) {
7688    case ImplicitConversionSequence::Better:
7689      // Cand1 has a better conversion sequence.
7690      return true;
7691
7692    case ImplicitConversionSequence::Worse:
7693      // Cand1 can't be better than Cand2.
7694      return false;
7695
7696    case ImplicitConversionSequence::Indistinguishable:
7697      // Do nothing
7698      break;
7699    }
7700  }
7701
7702  return false;
7703}
7704
7705/// \brief Computes the best viable function (C++ 13.3.3)
7706/// within an overload candidate set.
7707///
7708/// \param CandidateSet the set of candidate functions.
7709///
7710/// \param Loc the location of the function name (or operator symbol) for
7711/// which overload resolution occurs.
7712///
7713/// \param Best f overload resolution was successful or found a deleted
7714/// function, Best points to the candidate function found.
7715///
7716/// \returns The result of overload resolution.
7717OverloadingResult
7718OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
7719                                         iterator &Best,
7720                                         bool UserDefinedConversion) {
7721  // Find the best viable function.
7722  Best = end();
7723  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7724    if (Cand->Viable)
7725      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
7726                                                     UserDefinedConversion))
7727        Best = Cand;
7728  }
7729
7730  // If we didn't find any viable functions, abort.
7731  if (Best == end())
7732    return OR_No_Viable_Function;
7733
7734  // Make sure that this function is better than every other viable
7735  // function. If not, we have an ambiguity.
7736  for (iterator Cand = begin(); Cand != end(); ++Cand) {
7737    if (Cand->Viable &&
7738        Cand != Best &&
7739        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
7740                                   UserDefinedConversion)) {
7741      Best = end();
7742      return OR_Ambiguous;
7743    }
7744  }
7745
7746  // Best is the best viable function.
7747  if (Best->Function &&
7748      (Best->Function->isDeleted() ||
7749       S.isFunctionConsideredUnavailable(Best->Function)))
7750    return OR_Deleted;
7751
7752  return OR_Success;
7753}
7754
7755namespace {
7756
7757enum OverloadCandidateKind {
7758  oc_function,
7759  oc_method,
7760  oc_constructor,
7761  oc_function_template,
7762  oc_method_template,
7763  oc_constructor_template,
7764  oc_implicit_default_constructor,
7765  oc_implicit_copy_constructor,
7766  oc_implicit_move_constructor,
7767  oc_implicit_copy_assignment,
7768  oc_implicit_move_assignment,
7769  oc_implicit_inherited_constructor
7770};
7771
7772OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
7773                                                FunctionDecl *Fn,
7774                                                std::string &Description) {
7775  bool isTemplate = false;
7776
7777  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
7778    isTemplate = true;
7779    Description = S.getTemplateArgumentBindingsText(
7780      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
7781  }
7782
7783  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
7784    if (!Ctor->isImplicit())
7785      return isTemplate ? oc_constructor_template : oc_constructor;
7786
7787    if (Ctor->getInheritedConstructor())
7788      return oc_implicit_inherited_constructor;
7789
7790    if (Ctor->isDefaultConstructor())
7791      return oc_implicit_default_constructor;
7792
7793    if (Ctor->isMoveConstructor())
7794      return oc_implicit_move_constructor;
7795
7796    assert(Ctor->isCopyConstructor() &&
7797           "unexpected sort of implicit constructor");
7798    return oc_implicit_copy_constructor;
7799  }
7800
7801  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
7802    // This actually gets spelled 'candidate function' for now, but
7803    // it doesn't hurt to split it out.
7804    if (!Meth->isImplicit())
7805      return isTemplate ? oc_method_template : oc_method;
7806
7807    if (Meth->isMoveAssignmentOperator())
7808      return oc_implicit_move_assignment;
7809
7810    if (Meth->isCopyAssignmentOperator())
7811      return oc_implicit_copy_assignment;
7812
7813    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
7814    return oc_method;
7815  }
7816
7817  return isTemplate ? oc_function_template : oc_function;
7818}
7819
7820void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7821  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7822  if (!Ctor) return;
7823
7824  Ctor = Ctor->getInheritedConstructor();
7825  if (!Ctor) return;
7826
7827  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7828}
7829
7830} // end anonymous namespace
7831
7832// Notes the location of an overload candidate.
7833void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
7834  std::string FnDesc;
7835  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7836  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
7837                             << (unsigned) K << FnDesc;
7838  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
7839  Diag(Fn->getLocation(), PD);
7840  MaybeEmitInheritedConstructorNote(*this, Fn);
7841}
7842
7843//Notes the location of all overload candidates designated through
7844// OverloadedExpr
7845void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
7846  assert(OverloadedExpr->getType() == Context.OverloadTy);
7847
7848  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7849  OverloadExpr *OvlExpr = Ovl.Expression;
7850
7851  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7852                            IEnd = OvlExpr->decls_end();
7853       I != IEnd; ++I) {
7854    if (FunctionTemplateDecl *FunTmpl =
7855                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7856      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
7857    } else if (FunctionDecl *Fun
7858                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7859      NoteOverloadCandidate(Fun, DestType);
7860    }
7861  }
7862}
7863
7864/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7865/// "lead" diagnostic; it will be given two arguments, the source and
7866/// target types of the conversion.
7867void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7868                                 Sema &S,
7869                                 SourceLocation CaretLoc,
7870                                 const PartialDiagnostic &PDiag) const {
7871  S.Diag(CaretLoc, PDiag)
7872    << Ambiguous.getFromType() << Ambiguous.getToType();
7873  for (AmbiguousConversionSequence::const_iterator
7874         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7875    S.NoteOverloadCandidate(*I);
7876  }
7877}
7878
7879namespace {
7880
7881void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
7882  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
7883  assert(Conv.isBad());
7884  assert(Cand->Function && "for now, candidate must be a function");
7885  FunctionDecl *Fn = Cand->Function;
7886
7887  // There's a conversion slot for the object argument if this is a
7888  // non-constructor method.  Note that 'I' corresponds the
7889  // conversion-slot index.
7890  bool isObjectArgument = false;
7891  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
7892    if (I == 0)
7893      isObjectArgument = true;
7894    else
7895      I--;
7896  }
7897
7898  std::string FnDesc;
7899  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7900
7901  Expr *FromExpr = Conv.Bad.FromExpr;
7902  QualType FromTy = Conv.Bad.getFromType();
7903  QualType ToTy = Conv.Bad.getToType();
7904
7905  if (FromTy == S.Context.OverloadTy) {
7906    assert(FromExpr && "overload set argument came from implicit argument?");
7907    Expr *E = FromExpr->IgnoreParens();
7908    if (isa<UnaryOperator>(E))
7909      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
7910    DeclarationName Name = cast<OverloadExpr>(E)->getName();
7911
7912    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
7913      << (unsigned) FnKind << FnDesc
7914      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7915      << ToTy << Name << I+1;
7916    MaybeEmitInheritedConstructorNote(S, Fn);
7917    return;
7918  }
7919
7920  // Do some hand-waving analysis to see if the non-viability is due
7921  // to a qualifier mismatch.
7922  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
7923  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
7924  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
7925    CToTy = RT->getPointeeType();
7926  else {
7927    // TODO: detect and diagnose the full richness of const mismatches.
7928    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
7929      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
7930        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
7931  }
7932
7933  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
7934      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
7935    Qualifiers FromQs = CFromTy.getQualifiers();
7936    Qualifiers ToQs = CToTy.getQualifiers();
7937
7938    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
7939      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
7940        << (unsigned) FnKind << FnDesc
7941        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7942        << FromTy
7943        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
7944        << (unsigned) isObjectArgument << I+1;
7945      MaybeEmitInheritedConstructorNote(S, Fn);
7946      return;
7947    }
7948
7949    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7950      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
7951        << (unsigned) FnKind << FnDesc
7952        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7953        << FromTy
7954        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
7955        << (unsigned) isObjectArgument << I+1;
7956      MaybeEmitInheritedConstructorNote(S, Fn);
7957      return;
7958    }
7959
7960    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
7961      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
7962      << (unsigned) FnKind << FnDesc
7963      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7964      << FromTy
7965      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
7966      << (unsigned) isObjectArgument << I+1;
7967      MaybeEmitInheritedConstructorNote(S, Fn);
7968      return;
7969    }
7970
7971    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
7972    assert(CVR && "unexpected qualifiers mismatch");
7973
7974    if (isObjectArgument) {
7975      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
7976        << (unsigned) FnKind << FnDesc
7977        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7978        << FromTy << (CVR - 1);
7979    } else {
7980      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
7981        << (unsigned) FnKind << FnDesc
7982        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7983        << FromTy << (CVR - 1) << I+1;
7984    }
7985    MaybeEmitInheritedConstructorNote(S, Fn);
7986    return;
7987  }
7988
7989  // Special diagnostic for failure to convert an initializer list, since
7990  // telling the user that it has type void is not useful.
7991  if (FromExpr && isa<InitListExpr>(FromExpr)) {
7992    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
7993      << (unsigned) FnKind << FnDesc
7994      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7995      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7996    MaybeEmitInheritedConstructorNote(S, Fn);
7997    return;
7998  }
7999
8000  // Diagnose references or pointers to incomplete types differently,
8001  // since it's far from impossible that the incompleteness triggered
8002  // the failure.
8003  QualType TempFromTy = FromTy.getNonReferenceType();
8004  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8005    TempFromTy = PTy->getPointeeType();
8006  if (TempFromTy->isIncompleteType()) {
8007    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8008      << (unsigned) FnKind << FnDesc
8009      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8010      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8011    MaybeEmitInheritedConstructorNote(S, Fn);
8012    return;
8013  }
8014
8015  // Diagnose base -> derived pointer conversions.
8016  unsigned BaseToDerivedConversion = 0;
8017  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8018    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8019      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8020                                               FromPtrTy->getPointeeType()) &&
8021          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8022          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8023          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8024                          FromPtrTy->getPointeeType()))
8025        BaseToDerivedConversion = 1;
8026    }
8027  } else if (const ObjCObjectPointerType *FromPtrTy
8028                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8029    if (const ObjCObjectPointerType *ToPtrTy
8030                                        = ToTy->getAs<ObjCObjectPointerType>())
8031      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8032        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8033          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8034                                                FromPtrTy->getPointeeType()) &&
8035              FromIface->isSuperClassOf(ToIface))
8036            BaseToDerivedConversion = 2;
8037  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8038      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8039          !FromTy->isIncompleteType() &&
8040          !ToRefTy->getPointeeType()->isIncompleteType() &&
8041          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
8042        BaseToDerivedConversion = 3;
8043    }
8044
8045  if (BaseToDerivedConversion) {
8046    S.Diag(Fn->getLocation(),
8047           diag::note_ovl_candidate_bad_base_to_derived_conv)
8048      << (unsigned) FnKind << FnDesc
8049      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8050      << (BaseToDerivedConversion - 1)
8051      << FromTy << ToTy << I+1;
8052    MaybeEmitInheritedConstructorNote(S, Fn);
8053    return;
8054  }
8055
8056  if (isa<ObjCObjectPointerType>(CFromTy) &&
8057      isa<PointerType>(CToTy)) {
8058      Qualifiers FromQs = CFromTy.getQualifiers();
8059      Qualifiers ToQs = CToTy.getQualifiers();
8060      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8061        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8062        << (unsigned) FnKind << FnDesc
8063        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8064        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8065        MaybeEmitInheritedConstructorNote(S, Fn);
8066        return;
8067      }
8068  }
8069
8070  // Emit the generic diagnostic and, optionally, add the hints to it.
8071  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8072  FDiag << (unsigned) FnKind << FnDesc
8073    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8074    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8075    << (unsigned) (Cand->Fix.Kind);
8076
8077  // If we can fix the conversion, suggest the FixIts.
8078  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8079       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8080    FDiag << *HI;
8081  S.Diag(Fn->getLocation(), FDiag);
8082
8083  MaybeEmitInheritedConstructorNote(S, Fn);
8084}
8085
8086void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8087                           unsigned NumFormalArgs) {
8088  // TODO: treat calls to a missing default constructor as a special case
8089
8090  FunctionDecl *Fn = Cand->Function;
8091  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8092
8093  unsigned MinParams = Fn->getMinRequiredArguments();
8094
8095  // With invalid overloaded operators, it's possible that we think we
8096  // have an arity mismatch when it fact it looks like we have the
8097  // right number of arguments, because only overloaded operators have
8098  // the weird behavior of overloading member and non-member functions.
8099  // Just don't report anything.
8100  if (Fn->isInvalidDecl() &&
8101      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8102    return;
8103
8104  // at least / at most / exactly
8105  unsigned mode, modeCount;
8106  if (NumFormalArgs < MinParams) {
8107    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8108           (Cand->FailureKind == ovl_fail_bad_deduction &&
8109            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8110    if (MinParams != FnTy->getNumArgs() ||
8111        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8112      mode = 0; // "at least"
8113    else
8114      mode = 2; // "exactly"
8115    modeCount = MinParams;
8116  } else {
8117    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8118           (Cand->FailureKind == ovl_fail_bad_deduction &&
8119            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8120    if (MinParams != FnTy->getNumArgs())
8121      mode = 1; // "at most"
8122    else
8123      mode = 2; // "exactly"
8124    modeCount = FnTy->getNumArgs();
8125  }
8126
8127  std::string Description;
8128  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8129
8130  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8131    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8132    << modeCount << NumFormalArgs;
8133  MaybeEmitInheritedConstructorNote(S, Fn);
8134}
8135
8136/// Diagnose a failed template-argument deduction.
8137void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
8138                          unsigned NumArgs) {
8139  FunctionDecl *Fn = Cand->Function; // pattern
8140
8141  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
8142  NamedDecl *ParamD;
8143  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8144  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8145  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8146  switch (Cand->DeductionFailure.Result) {
8147  case Sema::TDK_Success:
8148    llvm_unreachable("TDK_success while diagnosing bad deduction");
8149
8150  case Sema::TDK_Incomplete: {
8151    assert(ParamD && "no parameter found for incomplete deduction result");
8152    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
8153      << ParamD->getDeclName();
8154    MaybeEmitInheritedConstructorNote(S, Fn);
8155    return;
8156  }
8157
8158  case Sema::TDK_Underqualified: {
8159    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8160    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8161
8162    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
8163
8164    // Param will have been canonicalized, but it should just be a
8165    // qualified version of ParamD, so move the qualifiers to that.
8166    QualifierCollector Qs;
8167    Qs.strip(Param);
8168    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8169    assert(S.Context.hasSameType(Param, NonCanonParam));
8170
8171    // Arg has also been canonicalized, but there's nothing we can do
8172    // about that.  It also doesn't matter as much, because it won't
8173    // have any template parameters in it (because deduction isn't
8174    // done on dependent types).
8175    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
8176
8177    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
8178      << ParamD->getDeclName() << Arg << NonCanonParam;
8179    MaybeEmitInheritedConstructorNote(S, Fn);
8180    return;
8181  }
8182
8183  case Sema::TDK_Inconsistent: {
8184    assert(ParamD && "no parameter found for inconsistent deduction result");
8185    int which = 0;
8186    if (isa<TemplateTypeParmDecl>(ParamD))
8187      which = 0;
8188    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8189      which = 1;
8190    else {
8191      which = 2;
8192    }
8193
8194    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
8195      << which << ParamD->getDeclName()
8196      << *Cand->DeductionFailure.getFirstArg()
8197      << *Cand->DeductionFailure.getSecondArg();
8198    MaybeEmitInheritedConstructorNote(S, Fn);
8199    return;
8200  }
8201
8202  case Sema::TDK_InvalidExplicitArguments:
8203    assert(ParamD && "no parameter found for invalid explicit arguments");
8204    if (ParamD->getDeclName())
8205      S.Diag(Fn->getLocation(),
8206             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8207        << ParamD->getDeclName();
8208    else {
8209      int index = 0;
8210      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8211        index = TTP->getIndex();
8212      else if (NonTypeTemplateParmDecl *NTTP
8213                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8214        index = NTTP->getIndex();
8215      else
8216        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8217      S.Diag(Fn->getLocation(),
8218             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8219        << (index + 1);
8220    }
8221    MaybeEmitInheritedConstructorNote(S, Fn);
8222    return;
8223
8224  case Sema::TDK_TooManyArguments:
8225  case Sema::TDK_TooFewArguments:
8226    DiagnoseArityMismatch(S, Cand, NumArgs);
8227    return;
8228
8229  case Sema::TDK_InstantiationDepth:
8230    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
8231    MaybeEmitInheritedConstructorNote(S, Fn);
8232    return;
8233
8234  case Sema::TDK_SubstitutionFailure: {
8235    std::string ArgString;
8236    if (TemplateArgumentList *Args
8237                            = Cand->DeductionFailure.getTemplateArgumentList())
8238      ArgString = S.getTemplateArgumentBindingsText(
8239                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
8240                                                    *Args);
8241    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
8242      << ArgString;
8243    MaybeEmitInheritedConstructorNote(S, Fn);
8244    return;
8245  }
8246
8247  // TODO: diagnose these individually, then kill off
8248  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8249  case Sema::TDK_NonDeducedMismatch:
8250  case Sema::TDK_FailedOverloadResolution:
8251    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
8252    MaybeEmitInheritedConstructorNote(S, Fn);
8253    return;
8254  }
8255}
8256
8257/// CUDA: diagnose an invalid call across targets.
8258void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8259  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8260  FunctionDecl *Callee = Cand->Function;
8261
8262  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8263                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8264
8265  std::string FnDesc;
8266  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8267
8268  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8269      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8270}
8271
8272/// Generates a 'note' diagnostic for an overload candidate.  We've
8273/// already generated a primary error at the call site.
8274///
8275/// It really does need to be a single diagnostic with its caret
8276/// pointed at the candidate declaration.  Yes, this creates some
8277/// major challenges of technical writing.  Yes, this makes pointing
8278/// out problems with specific arguments quite awkward.  It's still
8279/// better than generating twenty screens of text for every failed
8280/// overload.
8281///
8282/// It would be great to be able to express per-candidate problems
8283/// more richly for those diagnostic clients that cared, but we'd
8284/// still have to be just as careful with the default diagnostics.
8285void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8286                           unsigned NumArgs) {
8287  FunctionDecl *Fn = Cand->Function;
8288
8289  // Note deleted candidates, but only if they're viable.
8290  if (Cand->Viable && (Fn->isDeleted() ||
8291      S.isFunctionConsideredUnavailable(Fn))) {
8292    std::string FnDesc;
8293    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8294
8295    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8296      << FnKind << FnDesc
8297      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8298    MaybeEmitInheritedConstructorNote(S, Fn);
8299    return;
8300  }
8301
8302  // We don't really have anything else to say about viable candidates.
8303  if (Cand->Viable) {
8304    S.NoteOverloadCandidate(Fn);
8305    return;
8306  }
8307
8308  switch (Cand->FailureKind) {
8309  case ovl_fail_too_many_arguments:
8310  case ovl_fail_too_few_arguments:
8311    return DiagnoseArityMismatch(S, Cand, NumArgs);
8312
8313  case ovl_fail_bad_deduction:
8314    return DiagnoseBadDeduction(S, Cand, NumArgs);
8315
8316  case ovl_fail_trivial_conversion:
8317  case ovl_fail_bad_final_conversion:
8318  case ovl_fail_final_conversion_not_exact:
8319    return S.NoteOverloadCandidate(Fn);
8320
8321  case ovl_fail_bad_conversion: {
8322    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8323    for (unsigned N = Cand->NumConversions; I != N; ++I)
8324      if (Cand->Conversions[I].isBad())
8325        return DiagnoseBadConversion(S, Cand, I);
8326
8327    // FIXME: this currently happens when we're called from SemaInit
8328    // when user-conversion overload fails.  Figure out how to handle
8329    // those conditions and diagnose them well.
8330    return S.NoteOverloadCandidate(Fn);
8331  }
8332
8333  case ovl_fail_bad_target:
8334    return DiagnoseBadTarget(S, Cand);
8335  }
8336}
8337
8338void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8339  // Desugar the type of the surrogate down to a function type,
8340  // retaining as many typedefs as possible while still showing
8341  // the function type (and, therefore, its parameter types).
8342  QualType FnType = Cand->Surrogate->getConversionType();
8343  bool isLValueReference = false;
8344  bool isRValueReference = false;
8345  bool isPointer = false;
8346  if (const LValueReferenceType *FnTypeRef =
8347        FnType->getAs<LValueReferenceType>()) {
8348    FnType = FnTypeRef->getPointeeType();
8349    isLValueReference = true;
8350  } else if (const RValueReferenceType *FnTypeRef =
8351               FnType->getAs<RValueReferenceType>()) {
8352    FnType = FnTypeRef->getPointeeType();
8353    isRValueReference = true;
8354  }
8355  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8356    FnType = FnTypePtr->getPointeeType();
8357    isPointer = true;
8358  }
8359  // Desugar down to a function type.
8360  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8361  // Reconstruct the pointer/reference as appropriate.
8362  if (isPointer) FnType = S.Context.getPointerType(FnType);
8363  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8364  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8365
8366  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8367    << FnType;
8368  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8369}
8370
8371void NoteBuiltinOperatorCandidate(Sema &S,
8372                                  const char *Opc,
8373                                  SourceLocation OpLoc,
8374                                  OverloadCandidate *Cand) {
8375  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8376  std::string TypeStr("operator");
8377  TypeStr += Opc;
8378  TypeStr += "(";
8379  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8380  if (Cand->NumConversions == 1) {
8381    TypeStr += ")";
8382    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8383  } else {
8384    TypeStr += ", ";
8385    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8386    TypeStr += ")";
8387    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8388  }
8389}
8390
8391void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8392                                  OverloadCandidate *Cand) {
8393  unsigned NoOperands = Cand->NumConversions;
8394  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8395    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8396    if (ICS.isBad()) break; // all meaningless after first invalid
8397    if (!ICS.isAmbiguous()) continue;
8398
8399    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8400                              S.PDiag(diag::note_ambiguous_type_conversion));
8401  }
8402}
8403
8404SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8405  if (Cand->Function)
8406    return Cand->Function->getLocation();
8407  if (Cand->IsSurrogate)
8408    return Cand->Surrogate->getLocation();
8409  return SourceLocation();
8410}
8411
8412static unsigned
8413RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
8414  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8415  case Sema::TDK_Success:
8416    llvm_unreachable("TDK_success while diagnosing bad deduction");
8417
8418  case Sema::TDK_Incomplete:
8419    return 1;
8420
8421  case Sema::TDK_Underqualified:
8422  case Sema::TDK_Inconsistent:
8423    return 2;
8424
8425  case Sema::TDK_SubstitutionFailure:
8426  case Sema::TDK_NonDeducedMismatch:
8427    return 3;
8428
8429  case Sema::TDK_InstantiationDepth:
8430  case Sema::TDK_FailedOverloadResolution:
8431    return 4;
8432
8433  case Sema::TDK_InvalidExplicitArguments:
8434    return 5;
8435
8436  case Sema::TDK_TooManyArguments:
8437  case Sema::TDK_TooFewArguments:
8438    return 6;
8439  }
8440  llvm_unreachable("Unhandled deduction result");
8441}
8442
8443struct CompareOverloadCandidatesForDisplay {
8444  Sema &S;
8445  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8446
8447  bool operator()(const OverloadCandidate *L,
8448                  const OverloadCandidate *R) {
8449    // Fast-path this check.
8450    if (L == R) return false;
8451
8452    // Order first by viability.
8453    if (L->Viable) {
8454      if (!R->Viable) return true;
8455
8456      // TODO: introduce a tri-valued comparison for overload
8457      // candidates.  Would be more worthwhile if we had a sort
8458      // that could exploit it.
8459      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8460      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8461    } else if (R->Viable)
8462      return false;
8463
8464    assert(L->Viable == R->Viable);
8465
8466    // Criteria by which we can sort non-viable candidates:
8467    if (!L->Viable) {
8468      // 1. Arity mismatches come after other candidates.
8469      if (L->FailureKind == ovl_fail_too_many_arguments ||
8470          L->FailureKind == ovl_fail_too_few_arguments)
8471        return false;
8472      if (R->FailureKind == ovl_fail_too_many_arguments ||
8473          R->FailureKind == ovl_fail_too_few_arguments)
8474        return true;
8475
8476      // 2. Bad conversions come first and are ordered by the number
8477      // of bad conversions and quality of good conversions.
8478      if (L->FailureKind == ovl_fail_bad_conversion) {
8479        if (R->FailureKind != ovl_fail_bad_conversion)
8480          return true;
8481
8482        // The conversion that can be fixed with a smaller number of changes,
8483        // comes first.
8484        unsigned numLFixes = L->Fix.NumConversionsFixed;
8485        unsigned numRFixes = R->Fix.NumConversionsFixed;
8486        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8487        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8488        if (numLFixes != numRFixes) {
8489          if (numLFixes < numRFixes)
8490            return true;
8491          else
8492            return false;
8493        }
8494
8495        // If there's any ordering between the defined conversions...
8496        // FIXME: this might not be transitive.
8497        assert(L->NumConversions == R->NumConversions);
8498
8499        int leftBetter = 0;
8500        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8501        for (unsigned E = L->NumConversions; I != E; ++I) {
8502          switch (CompareImplicitConversionSequences(S,
8503                                                     L->Conversions[I],
8504                                                     R->Conversions[I])) {
8505          case ImplicitConversionSequence::Better:
8506            leftBetter++;
8507            break;
8508
8509          case ImplicitConversionSequence::Worse:
8510            leftBetter--;
8511            break;
8512
8513          case ImplicitConversionSequence::Indistinguishable:
8514            break;
8515          }
8516        }
8517        if (leftBetter > 0) return true;
8518        if (leftBetter < 0) return false;
8519
8520      } else if (R->FailureKind == ovl_fail_bad_conversion)
8521        return false;
8522
8523      if (L->FailureKind == ovl_fail_bad_deduction) {
8524        if (R->FailureKind != ovl_fail_bad_deduction)
8525          return true;
8526
8527        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8528          return RankDeductionFailure(L->DeductionFailure)
8529               < RankDeductionFailure(R->DeductionFailure);
8530      } else if (R->FailureKind == ovl_fail_bad_deduction)
8531        return false;
8532
8533      // TODO: others?
8534    }
8535
8536    // Sort everything else by location.
8537    SourceLocation LLoc = GetLocationForCandidate(L);
8538    SourceLocation RLoc = GetLocationForCandidate(R);
8539
8540    // Put candidates without locations (e.g. builtins) at the end.
8541    if (LLoc.isInvalid()) return false;
8542    if (RLoc.isInvalid()) return true;
8543
8544    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8545  }
8546};
8547
8548/// CompleteNonViableCandidate - Normally, overload resolution only
8549/// computes up to the first. Produces the FixIt set if possible.
8550void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8551                                llvm::ArrayRef<Expr *> Args) {
8552  assert(!Cand->Viable);
8553
8554  // Don't do anything on failures other than bad conversion.
8555  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8556
8557  // We only want the FixIts if all the arguments can be corrected.
8558  bool Unfixable = false;
8559  // Use a implicit copy initialization to check conversion fixes.
8560  Cand->Fix.setConversionChecker(TryCopyInitialization);
8561
8562  // Skip forward to the first bad conversion.
8563  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
8564  unsigned ConvCount = Cand->NumConversions;
8565  while (true) {
8566    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
8567    ConvIdx++;
8568    if (Cand->Conversions[ConvIdx - 1].isBad()) {
8569      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
8570      break;
8571    }
8572  }
8573
8574  if (ConvIdx == ConvCount)
8575    return;
8576
8577  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
8578         "remaining conversion is initialized?");
8579
8580  // FIXME: this should probably be preserved from the overload
8581  // operation somehow.
8582  bool SuppressUserConversions = false;
8583
8584  const FunctionProtoType* Proto;
8585  unsigned ArgIdx = ConvIdx;
8586
8587  if (Cand->IsSurrogate) {
8588    QualType ConvType
8589      = Cand->Surrogate->getConversionType().getNonReferenceType();
8590    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8591      ConvType = ConvPtrType->getPointeeType();
8592    Proto = ConvType->getAs<FunctionProtoType>();
8593    ArgIdx--;
8594  } else if (Cand->Function) {
8595    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
8596    if (isa<CXXMethodDecl>(Cand->Function) &&
8597        !isa<CXXConstructorDecl>(Cand->Function))
8598      ArgIdx--;
8599  } else {
8600    // Builtin binary operator with a bad first conversion.
8601    assert(ConvCount <= 3);
8602    for (; ConvIdx != ConvCount; ++ConvIdx)
8603      Cand->Conversions[ConvIdx]
8604        = TryCopyInitialization(S, Args[ConvIdx],
8605                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
8606                                SuppressUserConversions,
8607                                /*InOverloadResolution*/ true,
8608                                /*AllowObjCWritebackConversion=*/
8609                                  S.getLangOpts().ObjCAutoRefCount);
8610    return;
8611  }
8612
8613  // Fill in the rest of the conversions.
8614  unsigned NumArgsInProto = Proto->getNumArgs();
8615  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
8616    if (ArgIdx < NumArgsInProto) {
8617      Cand->Conversions[ConvIdx]
8618        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
8619                                SuppressUserConversions,
8620                                /*InOverloadResolution=*/true,
8621                                /*AllowObjCWritebackConversion=*/
8622                                  S.getLangOpts().ObjCAutoRefCount);
8623      // Store the FixIt in the candidate if it exists.
8624      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
8625        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
8626    }
8627    else
8628      Cand->Conversions[ConvIdx].setEllipsis();
8629  }
8630}
8631
8632} // end anonymous namespace
8633
8634/// PrintOverloadCandidates - When overload resolution fails, prints
8635/// diagnostic messages containing the candidates in the candidate
8636/// set.
8637void OverloadCandidateSet::NoteCandidates(Sema &S,
8638                                          OverloadCandidateDisplayKind OCD,
8639                                          llvm::ArrayRef<Expr *> Args,
8640                                          const char *Opc,
8641                                          SourceLocation OpLoc) {
8642  // Sort the candidates by viability and position.  Sorting directly would
8643  // be prohibitive, so we make a set of pointers and sort those.
8644  SmallVector<OverloadCandidate*, 32> Cands;
8645  if (OCD == OCD_AllCandidates) Cands.reserve(size());
8646  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
8647    if (Cand->Viable)
8648      Cands.push_back(Cand);
8649    else if (OCD == OCD_AllCandidates) {
8650      CompleteNonViableCandidate(S, Cand, Args);
8651      if (Cand->Function || Cand->IsSurrogate)
8652        Cands.push_back(Cand);
8653      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
8654      // want to list every possible builtin candidate.
8655    }
8656  }
8657
8658  std::sort(Cands.begin(), Cands.end(),
8659            CompareOverloadCandidatesForDisplay(S));
8660
8661  bool ReportedAmbiguousConversions = false;
8662
8663  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
8664  const DiagnosticsEngine::OverloadsShown ShowOverloads =
8665      S.Diags.getShowOverloads();
8666  unsigned CandsShown = 0;
8667  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
8668    OverloadCandidate *Cand = *I;
8669
8670    // Set an arbitrary limit on the number of candidate functions we'll spam
8671    // the user with.  FIXME: This limit should depend on details of the
8672    // candidate list.
8673    if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
8674      break;
8675    }
8676    ++CandsShown;
8677
8678    if (Cand->Function)
8679      NoteFunctionCandidate(S, Cand, Args.size());
8680    else if (Cand->IsSurrogate)
8681      NoteSurrogateCandidate(S, Cand);
8682    else {
8683      assert(Cand->Viable &&
8684             "Non-viable built-in candidates are not added to Cands.");
8685      // Generally we only see ambiguities including viable builtin
8686      // operators if overload resolution got screwed up by an
8687      // ambiguous user-defined conversion.
8688      //
8689      // FIXME: It's quite possible for different conversions to see
8690      // different ambiguities, though.
8691      if (!ReportedAmbiguousConversions) {
8692        NoteAmbiguousUserConversions(S, OpLoc, Cand);
8693        ReportedAmbiguousConversions = true;
8694      }
8695
8696      // If this is a viable builtin, print it.
8697      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
8698    }
8699  }
8700
8701  if (I != E)
8702    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
8703}
8704
8705// [PossiblyAFunctionType]  -->   [Return]
8706// NonFunctionType --> NonFunctionType
8707// R (A) --> R(A)
8708// R (*)(A) --> R (A)
8709// R (&)(A) --> R (A)
8710// R (S::*)(A) --> R (A)
8711QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
8712  QualType Ret = PossiblyAFunctionType;
8713  if (const PointerType *ToTypePtr =
8714    PossiblyAFunctionType->getAs<PointerType>())
8715    Ret = ToTypePtr->getPointeeType();
8716  else if (const ReferenceType *ToTypeRef =
8717    PossiblyAFunctionType->getAs<ReferenceType>())
8718    Ret = ToTypeRef->getPointeeType();
8719  else if (const MemberPointerType *MemTypePtr =
8720    PossiblyAFunctionType->getAs<MemberPointerType>())
8721    Ret = MemTypePtr->getPointeeType();
8722  Ret =
8723    Context.getCanonicalType(Ret).getUnqualifiedType();
8724  return Ret;
8725}
8726
8727// A helper class to help with address of function resolution
8728// - allows us to avoid passing around all those ugly parameters
8729class AddressOfFunctionResolver
8730{
8731  Sema& S;
8732  Expr* SourceExpr;
8733  const QualType& TargetType;
8734  QualType TargetFunctionType; // Extracted function type from target type
8735
8736  bool Complain;
8737  //DeclAccessPair& ResultFunctionAccessPair;
8738  ASTContext& Context;
8739
8740  bool TargetTypeIsNonStaticMemberFunction;
8741  bool FoundNonTemplateFunction;
8742
8743  OverloadExpr::FindResult OvlExprInfo;
8744  OverloadExpr *OvlExpr;
8745  TemplateArgumentListInfo OvlExplicitTemplateArgs;
8746  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
8747
8748public:
8749  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
8750                            const QualType& TargetType, bool Complain)
8751    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
8752      Complain(Complain), Context(S.getASTContext()),
8753      TargetTypeIsNonStaticMemberFunction(
8754                                    !!TargetType->getAs<MemberPointerType>()),
8755      FoundNonTemplateFunction(false),
8756      OvlExprInfo(OverloadExpr::find(SourceExpr)),
8757      OvlExpr(OvlExprInfo.Expression)
8758  {
8759    ExtractUnqualifiedFunctionTypeFromTargetType();
8760
8761    if (!TargetFunctionType->isFunctionType()) {
8762      if (OvlExpr->hasExplicitTemplateArgs()) {
8763        DeclAccessPair dap;
8764        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
8765                                            OvlExpr, false, &dap) ) {
8766
8767          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8768            if (!Method->isStatic()) {
8769              // If the target type is a non-function type and the function
8770              // found is a non-static member function, pretend as if that was
8771              // the target, it's the only possible type to end up with.
8772              TargetTypeIsNonStaticMemberFunction = true;
8773
8774              // And skip adding the function if its not in the proper form.
8775              // We'll diagnose this due to an empty set of functions.
8776              if (!OvlExprInfo.HasFormOfMemberPointer)
8777                return;
8778            }
8779          }
8780
8781          Matches.push_back(std::make_pair(dap,Fn));
8782        }
8783      }
8784      return;
8785    }
8786
8787    if (OvlExpr->hasExplicitTemplateArgs())
8788      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
8789
8790    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
8791      // C++ [over.over]p4:
8792      //   If more than one function is selected, [...]
8793      if (Matches.size() > 1) {
8794        if (FoundNonTemplateFunction)
8795          EliminateAllTemplateMatches();
8796        else
8797          EliminateAllExceptMostSpecializedTemplate();
8798      }
8799    }
8800  }
8801
8802private:
8803  bool isTargetTypeAFunction() const {
8804    return TargetFunctionType->isFunctionType();
8805  }
8806
8807  // [ToType]     [Return]
8808
8809  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
8810  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
8811  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
8812  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
8813    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
8814  }
8815
8816  // return true if any matching specializations were found
8817  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8818                                   const DeclAccessPair& CurAccessFunPair) {
8819    if (CXXMethodDecl *Method
8820              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8821      // Skip non-static function templates when converting to pointer, and
8822      // static when converting to member pointer.
8823      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8824        return false;
8825    }
8826    else if (TargetTypeIsNonStaticMemberFunction)
8827      return false;
8828
8829    // C++ [over.over]p2:
8830    //   If the name is a function template, template argument deduction is
8831    //   done (14.8.2.2), and if the argument deduction succeeds, the
8832    //   resulting template argument list is used to generate a single
8833    //   function template specialization, which is added to the set of
8834    //   overloaded functions considered.
8835    FunctionDecl *Specialization = 0;
8836    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8837    if (Sema::TemplateDeductionResult Result
8838          = S.DeduceTemplateArguments(FunctionTemplate,
8839                                      &OvlExplicitTemplateArgs,
8840                                      TargetFunctionType, Specialization,
8841                                      Info)) {
8842      // FIXME: make a note of the failed deduction for diagnostics.
8843      (void)Result;
8844      return false;
8845    }
8846
8847    // Template argument deduction ensures that we have an exact match.
8848    // This function template specicalization works.
8849    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
8850    assert(TargetFunctionType
8851                      == Context.getCanonicalType(Specialization->getType()));
8852    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
8853    return true;
8854  }
8855
8856  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
8857                                      const DeclAccessPair& CurAccessFunPair) {
8858    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8859      // Skip non-static functions when converting to pointer, and static
8860      // when converting to member pointer.
8861      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8862        return false;
8863    }
8864    else if (TargetTypeIsNonStaticMemberFunction)
8865      return false;
8866
8867    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
8868      if (S.getLangOpts().CUDA)
8869        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
8870          if (S.CheckCUDATarget(Caller, FunDecl))
8871            return false;
8872
8873      QualType ResultTy;
8874      if (Context.hasSameUnqualifiedType(TargetFunctionType,
8875                                         FunDecl->getType()) ||
8876          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
8877                                 ResultTy)) {
8878        Matches.push_back(std::make_pair(CurAccessFunPair,
8879          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
8880        FoundNonTemplateFunction = true;
8881        return true;
8882      }
8883    }
8884
8885    return false;
8886  }
8887
8888  bool FindAllFunctionsThatMatchTargetTypeExactly() {
8889    bool Ret = false;
8890
8891    // If the overload expression doesn't have the form of a pointer to
8892    // member, don't try to convert it to a pointer-to-member type.
8893    if (IsInvalidFormOfPointerToMemberFunction())
8894      return false;
8895
8896    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8897                               E = OvlExpr->decls_end();
8898         I != E; ++I) {
8899      // Look through any using declarations to find the underlying function.
8900      NamedDecl *Fn = (*I)->getUnderlyingDecl();
8901
8902      // C++ [over.over]p3:
8903      //   Non-member functions and static member functions match
8904      //   targets of type "pointer-to-function" or "reference-to-function."
8905      //   Nonstatic member functions match targets of
8906      //   type "pointer-to-member-function."
8907      // Note that according to DR 247, the containing class does not matter.
8908      if (FunctionTemplateDecl *FunctionTemplate
8909                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
8910        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
8911          Ret = true;
8912      }
8913      // If we have explicit template arguments supplied, skip non-templates.
8914      else if (!OvlExpr->hasExplicitTemplateArgs() &&
8915               AddMatchingNonTemplateFunction(Fn, I.getPair()))
8916        Ret = true;
8917    }
8918    assert(Ret || Matches.empty());
8919    return Ret;
8920  }
8921
8922  void EliminateAllExceptMostSpecializedTemplate() {
8923    //   [...] and any given function template specialization F1 is
8924    //   eliminated if the set contains a second function template
8925    //   specialization whose function template is more specialized
8926    //   than the function template of F1 according to the partial
8927    //   ordering rules of 14.5.5.2.
8928
8929    // The algorithm specified above is quadratic. We instead use a
8930    // two-pass algorithm (similar to the one used to identify the
8931    // best viable function in an overload set) that identifies the
8932    // best function template (if it exists).
8933
8934    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
8935    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
8936      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
8937
8938    UnresolvedSetIterator Result =
8939      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
8940                           TPOC_Other, 0, SourceExpr->getLocStart(),
8941                           S.PDiag(),
8942                           S.PDiag(diag::err_addr_ovl_ambiguous)
8943                             << Matches[0].second->getDeclName(),
8944                           S.PDiag(diag::note_ovl_candidate)
8945                             << (unsigned) oc_function_template,
8946                           Complain, TargetFunctionType);
8947
8948    if (Result != MatchesCopy.end()) {
8949      // Make it the first and only element
8950      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
8951      Matches[0].second = cast<FunctionDecl>(*Result);
8952      Matches.resize(1);
8953    }
8954  }
8955
8956  void EliminateAllTemplateMatches() {
8957    //   [...] any function template specializations in the set are
8958    //   eliminated if the set also contains a non-template function, [...]
8959    for (unsigned I = 0, N = Matches.size(); I != N; ) {
8960      if (Matches[I].second->getPrimaryTemplate() == 0)
8961        ++I;
8962      else {
8963        Matches[I] = Matches[--N];
8964        Matches.set_size(N);
8965      }
8966    }
8967  }
8968
8969public:
8970  void ComplainNoMatchesFound() const {
8971    assert(Matches.empty());
8972    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
8973        << OvlExpr->getName() << TargetFunctionType
8974        << OvlExpr->getSourceRange();
8975    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
8976  }
8977
8978  bool IsInvalidFormOfPointerToMemberFunction() const {
8979    return TargetTypeIsNonStaticMemberFunction &&
8980      !OvlExprInfo.HasFormOfMemberPointer;
8981  }
8982
8983  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
8984      // TODO: Should we condition this on whether any functions might
8985      // have matched, or is it more appropriate to do that in callers?
8986      // TODO: a fixit wouldn't hurt.
8987      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
8988        << TargetType << OvlExpr->getSourceRange();
8989  }
8990
8991  void ComplainOfInvalidConversion() const {
8992    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
8993      << OvlExpr->getName() << TargetType;
8994  }
8995
8996  void ComplainMultipleMatchesFound() const {
8997    assert(Matches.size() > 1);
8998    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
8999      << OvlExpr->getName()
9000      << OvlExpr->getSourceRange();
9001    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9002  }
9003
9004  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9005
9006  int getNumMatches() const { return Matches.size(); }
9007
9008  FunctionDecl* getMatchingFunctionDecl() const {
9009    if (Matches.size() != 1) return 0;
9010    return Matches[0].second;
9011  }
9012
9013  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9014    if (Matches.size() != 1) return 0;
9015    return &Matches[0].first;
9016  }
9017};
9018
9019/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9020/// an overloaded function (C++ [over.over]), where @p From is an
9021/// expression with overloaded function type and @p ToType is the type
9022/// we're trying to resolve to. For example:
9023///
9024/// @code
9025/// int f(double);
9026/// int f(int);
9027///
9028/// int (*pfd)(double) = f; // selects f(double)
9029/// @endcode
9030///
9031/// This routine returns the resulting FunctionDecl if it could be
9032/// resolved, and NULL otherwise. When @p Complain is true, this
9033/// routine will emit diagnostics if there is an error.
9034FunctionDecl *
9035Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9036                                         QualType TargetType,
9037                                         bool Complain,
9038                                         DeclAccessPair &FoundResult,
9039                                         bool *pHadMultipleCandidates) {
9040  assert(AddressOfExpr->getType() == Context.OverloadTy);
9041
9042  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9043                                     Complain);
9044  int NumMatches = Resolver.getNumMatches();
9045  FunctionDecl* Fn = 0;
9046  if (NumMatches == 0 && Complain) {
9047    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9048      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9049    else
9050      Resolver.ComplainNoMatchesFound();
9051  }
9052  else if (NumMatches > 1 && Complain)
9053    Resolver.ComplainMultipleMatchesFound();
9054  else if (NumMatches == 1) {
9055    Fn = Resolver.getMatchingFunctionDecl();
9056    assert(Fn);
9057    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9058    MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
9059    if (Complain)
9060      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9061  }
9062
9063  if (pHadMultipleCandidates)
9064    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9065  return Fn;
9066}
9067
9068/// \brief Given an expression that refers to an overloaded function, try to
9069/// resolve that overloaded function expression down to a single function.
9070///
9071/// This routine can only resolve template-ids that refer to a single function
9072/// template, where that template-id refers to a single template whose template
9073/// arguments are either provided by the template-id or have defaults,
9074/// as described in C++0x [temp.arg.explicit]p3.
9075FunctionDecl *
9076Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9077                                                  bool Complain,
9078                                                  DeclAccessPair *FoundResult) {
9079  // C++ [over.over]p1:
9080  //   [...] [Note: any redundant set of parentheses surrounding the
9081  //   overloaded function name is ignored (5.1). ]
9082  // C++ [over.over]p1:
9083  //   [...] The overloaded function name can be preceded by the &
9084  //   operator.
9085
9086  // If we didn't actually find any template-ids, we're done.
9087  if (!ovl->hasExplicitTemplateArgs())
9088    return 0;
9089
9090  TemplateArgumentListInfo ExplicitTemplateArgs;
9091  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9092
9093  // Look through all of the overloaded functions, searching for one
9094  // whose type matches exactly.
9095  FunctionDecl *Matched = 0;
9096  for (UnresolvedSetIterator I = ovl->decls_begin(),
9097         E = ovl->decls_end(); I != E; ++I) {
9098    // C++0x [temp.arg.explicit]p3:
9099    //   [...] In contexts where deduction is done and fails, or in contexts
9100    //   where deduction is not done, if a template argument list is
9101    //   specified and it, along with any default template arguments,
9102    //   identifies a single function template specialization, then the
9103    //   template-id is an lvalue for the function template specialization.
9104    FunctionTemplateDecl *FunctionTemplate
9105      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9106
9107    // C++ [over.over]p2:
9108    //   If the name is a function template, template argument deduction is
9109    //   done (14.8.2.2), and if the argument deduction succeeds, the
9110    //   resulting template argument list is used to generate a single
9111    //   function template specialization, which is added to the set of
9112    //   overloaded functions considered.
9113    FunctionDecl *Specialization = 0;
9114    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
9115    if (TemplateDeductionResult Result
9116          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9117                                    Specialization, Info)) {
9118      // FIXME: make a note of the failed deduction for diagnostics.
9119      (void)Result;
9120      continue;
9121    }
9122
9123    assert(Specialization && "no specialization and no error?");
9124
9125    // Multiple matches; we can't resolve to a single declaration.
9126    if (Matched) {
9127      if (Complain) {
9128        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9129          << ovl->getName();
9130        NoteAllOverloadCandidates(ovl);
9131      }
9132      return 0;
9133    }
9134
9135    Matched = Specialization;
9136    if (FoundResult) *FoundResult = I.getPair();
9137  }
9138
9139  return Matched;
9140}
9141
9142
9143
9144
9145// Resolve and fix an overloaded expression that can be resolved
9146// because it identifies a single function template specialization.
9147//
9148// Last three arguments should only be supplied if Complain = true
9149//
9150// Return true if it was logically possible to so resolve the
9151// expression, regardless of whether or not it succeeded.  Always
9152// returns true if 'complain' is set.
9153bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9154                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9155                   bool complain, const SourceRange& OpRangeForComplaining,
9156                                           QualType DestTypeForComplaining,
9157                                            unsigned DiagIDForComplaining) {
9158  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9159
9160  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9161
9162  DeclAccessPair found;
9163  ExprResult SingleFunctionExpression;
9164  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9165                           ovl.Expression, /*complain*/ false, &found)) {
9166    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9167      SrcExpr = ExprError();
9168      return true;
9169    }
9170
9171    // It is only correct to resolve to an instance method if we're
9172    // resolving a form that's permitted to be a pointer to member.
9173    // Otherwise we'll end up making a bound member expression, which
9174    // is illegal in all the contexts we resolve like this.
9175    if (!ovl.HasFormOfMemberPointer &&
9176        isa<CXXMethodDecl>(fn) &&
9177        cast<CXXMethodDecl>(fn)->isInstance()) {
9178      if (!complain) return false;
9179
9180      Diag(ovl.Expression->getExprLoc(),
9181           diag::err_bound_member_function)
9182        << 0 << ovl.Expression->getSourceRange();
9183
9184      // TODO: I believe we only end up here if there's a mix of
9185      // static and non-static candidates (otherwise the expression
9186      // would have 'bound member' type, not 'overload' type).
9187      // Ideally we would note which candidate was chosen and why
9188      // the static candidates were rejected.
9189      SrcExpr = ExprError();
9190      return true;
9191    }
9192
9193    // Fix the expresion to refer to 'fn'.
9194    SingleFunctionExpression =
9195      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9196
9197    // If desired, do function-to-pointer decay.
9198    if (doFunctionPointerConverion) {
9199      SingleFunctionExpression =
9200        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9201      if (SingleFunctionExpression.isInvalid()) {
9202        SrcExpr = ExprError();
9203        return true;
9204      }
9205    }
9206  }
9207
9208  if (!SingleFunctionExpression.isUsable()) {
9209    if (complain) {
9210      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9211        << ovl.Expression->getName()
9212        << DestTypeForComplaining
9213        << OpRangeForComplaining
9214        << ovl.Expression->getQualifierLoc().getSourceRange();
9215      NoteAllOverloadCandidates(SrcExpr.get());
9216
9217      SrcExpr = ExprError();
9218      return true;
9219    }
9220
9221    return false;
9222  }
9223
9224  SrcExpr = SingleFunctionExpression;
9225  return true;
9226}
9227
9228/// \brief Add a single candidate to the overload set.
9229static void AddOverloadedCallCandidate(Sema &S,
9230                                       DeclAccessPair FoundDecl,
9231                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9232                                       llvm::ArrayRef<Expr *> Args,
9233                                       OverloadCandidateSet &CandidateSet,
9234                                       bool PartialOverloading,
9235                                       bool KnownValid) {
9236  NamedDecl *Callee = FoundDecl.getDecl();
9237  if (isa<UsingShadowDecl>(Callee))
9238    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9239
9240  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9241    if (ExplicitTemplateArgs) {
9242      assert(!KnownValid && "Explicit template arguments?");
9243      return;
9244    }
9245    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9246                           PartialOverloading);
9247    return;
9248  }
9249
9250  if (FunctionTemplateDecl *FuncTemplate
9251      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9252    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9253                                   ExplicitTemplateArgs, Args, CandidateSet);
9254    return;
9255  }
9256
9257  assert(!KnownValid && "unhandled case in overloaded call candidate");
9258}
9259
9260/// \brief Add the overload candidates named by callee and/or found by argument
9261/// dependent lookup to the given overload set.
9262void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9263                                       llvm::ArrayRef<Expr *> Args,
9264                                       OverloadCandidateSet &CandidateSet,
9265                                       bool PartialOverloading) {
9266
9267#ifndef NDEBUG
9268  // Verify that ArgumentDependentLookup is consistent with the rules
9269  // in C++0x [basic.lookup.argdep]p3:
9270  //
9271  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9272  //   and let Y be the lookup set produced by argument dependent
9273  //   lookup (defined as follows). If X contains
9274  //
9275  //     -- a declaration of a class member, or
9276  //
9277  //     -- a block-scope function declaration that is not a
9278  //        using-declaration, or
9279  //
9280  //     -- a declaration that is neither a function or a function
9281  //        template
9282  //
9283  //   then Y is empty.
9284
9285  if (ULE->requiresADL()) {
9286    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9287           E = ULE->decls_end(); I != E; ++I) {
9288      assert(!(*I)->getDeclContext()->isRecord());
9289      assert(isa<UsingShadowDecl>(*I) ||
9290             !(*I)->getDeclContext()->isFunctionOrMethod());
9291      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9292    }
9293  }
9294#endif
9295
9296  // It would be nice to avoid this copy.
9297  TemplateArgumentListInfo TABuffer;
9298  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9299  if (ULE->hasExplicitTemplateArgs()) {
9300    ULE->copyTemplateArgumentsInto(TABuffer);
9301    ExplicitTemplateArgs = &TABuffer;
9302  }
9303
9304  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9305         E = ULE->decls_end(); I != E; ++I)
9306    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9307                               CandidateSet, PartialOverloading,
9308                               /*KnownValid*/ true);
9309
9310  if (ULE->requiresADL())
9311    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9312                                         ULE->getExprLoc(),
9313                                         Args, ExplicitTemplateArgs,
9314                                         CandidateSet, PartialOverloading,
9315                                         ULE->isStdAssociatedNamespace());
9316}
9317
9318/// Attempt to recover from an ill-formed use of a non-dependent name in a
9319/// template, where the non-dependent name was declared after the template
9320/// was defined. This is common in code written for a compilers which do not
9321/// correctly implement two-stage name lookup.
9322///
9323/// Returns true if a viable candidate was found and a diagnostic was issued.
9324static bool
9325DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9326                       const CXXScopeSpec &SS, LookupResult &R,
9327                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9328                       llvm::ArrayRef<Expr *> Args) {
9329  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9330    return false;
9331
9332  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9333    if (DC->isTransparentContext())
9334      continue;
9335
9336    SemaRef.LookupQualifiedName(R, DC);
9337
9338    if (!R.empty()) {
9339      R.suppressDiagnostics();
9340
9341      if (isa<CXXRecordDecl>(DC)) {
9342        // Don't diagnose names we find in classes; we get much better
9343        // diagnostics for these from DiagnoseEmptyLookup.
9344        R.clear();
9345        return false;
9346      }
9347
9348      OverloadCandidateSet Candidates(FnLoc);
9349      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9350        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9351                                   ExplicitTemplateArgs, Args,
9352                                   Candidates, false, /*KnownValid*/ false);
9353
9354      OverloadCandidateSet::iterator Best;
9355      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9356        // No viable functions. Don't bother the user with notes for functions
9357        // which don't work and shouldn't be found anyway.
9358        R.clear();
9359        return false;
9360      }
9361
9362      // Find the namespaces where ADL would have looked, and suggest
9363      // declaring the function there instead.
9364      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9365      Sema::AssociatedClassSet AssociatedClasses;
9366      SemaRef.FindAssociatedClassesAndNamespaces(Args,
9367                                                 AssociatedNamespaces,
9368                                                 AssociatedClasses);
9369      // Never suggest declaring a function within namespace 'std'.
9370      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9371      if (DeclContext *Std = SemaRef.getStdNamespace()) {
9372        for (Sema::AssociatedNamespaceSet::iterator
9373               it = AssociatedNamespaces.begin(),
9374               end = AssociatedNamespaces.end(); it != end; ++it) {
9375          if (!Std->Encloses(*it))
9376            SuggestedNamespaces.insert(*it);
9377        }
9378      } else {
9379        // Lacking the 'std::' namespace, use all of the associated namespaces.
9380        SuggestedNamespaces = AssociatedNamespaces;
9381      }
9382
9383      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9384        << R.getLookupName();
9385      if (SuggestedNamespaces.empty()) {
9386        SemaRef.Diag(Best->Function->getLocation(),
9387                     diag::note_not_found_by_two_phase_lookup)
9388          << R.getLookupName() << 0;
9389      } else if (SuggestedNamespaces.size() == 1) {
9390        SemaRef.Diag(Best->Function->getLocation(),
9391                     diag::note_not_found_by_two_phase_lookup)
9392          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9393      } else {
9394        // FIXME: It would be useful to list the associated namespaces here,
9395        // but the diagnostics infrastructure doesn't provide a way to produce
9396        // a localized representation of a list of items.
9397        SemaRef.Diag(Best->Function->getLocation(),
9398                     diag::note_not_found_by_two_phase_lookup)
9399          << R.getLookupName() << 2;
9400      }
9401
9402      // Try to recover by calling this function.
9403      return true;
9404    }
9405
9406    R.clear();
9407  }
9408
9409  return false;
9410}
9411
9412/// Attempt to recover from ill-formed use of a non-dependent operator in a
9413/// template, where the non-dependent operator was declared after the template
9414/// was defined.
9415///
9416/// Returns true if a viable candidate was found and a diagnostic was issued.
9417static bool
9418DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
9419                               SourceLocation OpLoc,
9420                               llvm::ArrayRef<Expr *> Args) {
9421  DeclarationName OpName =
9422    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
9423  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
9424  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
9425                                /*ExplicitTemplateArgs=*/0, Args);
9426}
9427
9428namespace {
9429// Callback to limit the allowed keywords and to only accept typo corrections
9430// that are keywords or whose decls refer to functions (or template functions)
9431// that accept the given number of arguments.
9432class RecoveryCallCCC : public CorrectionCandidateCallback {
9433 public:
9434  RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
9435      : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
9436    WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
9437    WantRemainingKeywords = false;
9438  }
9439
9440  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9441    if (!candidate.getCorrectionDecl())
9442      return candidate.isKeyword();
9443
9444    for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
9445           DIEnd = candidate.end(); DI != DIEnd; ++DI) {
9446      FunctionDecl *FD = 0;
9447      NamedDecl *ND = (*DI)->getUnderlyingDecl();
9448      if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9449        FD = FTD->getTemplatedDecl();
9450      if (!HasExplicitTemplateArgs && !FD) {
9451        if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
9452          // If the Decl is neither a function nor a template function,
9453          // determine if it is a pointer or reference to a function. If so,
9454          // check against the number of arguments expected for the pointee.
9455          QualType ValType = cast<ValueDecl>(ND)->getType();
9456          if (ValType->isAnyPointerType() || ValType->isReferenceType())
9457            ValType = ValType->getPointeeType();
9458          if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
9459            if (FPT->getNumArgs() == NumArgs)
9460              return true;
9461        }
9462      }
9463      if (FD && FD->getNumParams() >= NumArgs &&
9464          FD->getMinRequiredArguments() <= NumArgs)
9465        return true;
9466    }
9467    return false;
9468  }
9469
9470 private:
9471  unsigned NumArgs;
9472  bool HasExplicitTemplateArgs;
9473};
9474
9475// Callback that effectively disabled typo correction
9476class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
9477 public:
9478  NoTypoCorrectionCCC() {
9479    WantTypeSpecifiers = false;
9480    WantExpressionKeywords = false;
9481    WantCXXNamedCasts = false;
9482    WantRemainingKeywords = false;
9483  }
9484
9485  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
9486    return false;
9487  }
9488};
9489}
9490
9491/// Attempts to recover from a call where no functions were found.
9492///
9493/// Returns true if new candidates were found.
9494static ExprResult
9495BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
9496                      UnresolvedLookupExpr *ULE,
9497                      SourceLocation LParenLoc,
9498                      llvm::MutableArrayRef<Expr *> Args,
9499                      SourceLocation RParenLoc,
9500                      bool EmptyLookup, bool AllowTypoCorrection) {
9501
9502  CXXScopeSpec SS;
9503  SS.Adopt(ULE->getQualifierLoc());
9504  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
9505
9506  TemplateArgumentListInfo TABuffer;
9507  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9508  if (ULE->hasExplicitTemplateArgs()) {
9509    ULE->copyTemplateArgumentsInto(TABuffer);
9510    ExplicitTemplateArgs = &TABuffer;
9511  }
9512
9513  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
9514                 Sema::LookupOrdinaryName);
9515  RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
9516  NoTypoCorrectionCCC RejectAll;
9517  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
9518      (CorrectionCandidateCallback*)&Validator :
9519      (CorrectionCandidateCallback*)&RejectAll;
9520  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
9521                              ExplicitTemplateArgs, Args) &&
9522      (!EmptyLookup ||
9523       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
9524                                   ExplicitTemplateArgs, Args)))
9525    return ExprError();
9526
9527  assert(!R.empty() && "lookup results empty despite recovery");
9528
9529  // Build an implicit member call if appropriate.  Just drop the
9530  // casts and such from the call, we don't really care.
9531  ExprResult NewFn = ExprError();
9532  if ((*R.begin())->isCXXClassMember())
9533    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
9534                                                    R, ExplicitTemplateArgs);
9535  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
9536    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
9537                                        ExplicitTemplateArgs);
9538  else
9539    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
9540
9541  if (NewFn.isInvalid())
9542    return ExprError();
9543
9544  // This shouldn't cause an infinite loop because we're giving it
9545  // an expression with viable lookup results, which should never
9546  // end up here.
9547  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
9548                               MultiExprArg(Args.data(), Args.size()),
9549                               RParenLoc);
9550}
9551
9552/// ResolveOverloadedCallFn - Given the call expression that calls Fn
9553/// (which eventually refers to the declaration Func) and the call
9554/// arguments Args/NumArgs, attempt to resolve the function call down
9555/// to a specific function. If overload resolution succeeds, returns
9556/// the function declaration produced by overload
9557/// resolution. Otherwise, emits diagnostics, deletes all of the
9558/// arguments and Fn, and returns NULL.
9559ExprResult
9560Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
9561                              SourceLocation LParenLoc,
9562                              Expr **Args, unsigned NumArgs,
9563                              SourceLocation RParenLoc,
9564                              Expr *ExecConfig,
9565                              bool AllowTypoCorrection) {
9566#ifndef NDEBUG
9567  if (ULE->requiresADL()) {
9568    // To do ADL, we must have found an unqualified name.
9569    assert(!ULE->getQualifier() && "qualified name with ADL");
9570
9571    // We don't perform ADL for implicit declarations of builtins.
9572    // Verify that this was correctly set up.
9573    FunctionDecl *F;
9574    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
9575        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
9576        F->getBuiltinID() && F->isImplicit())
9577      llvm_unreachable("performing ADL for builtin");
9578
9579    // We don't perform ADL in C.
9580    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
9581  } else
9582    assert(!ULE->isStdAssociatedNamespace() &&
9583           "std is associated namespace but not doing ADL");
9584#endif
9585
9586  UnbridgedCastsSet UnbridgedCasts;
9587  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9588    return ExprError();
9589
9590  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
9591
9592  // Add the functions denoted by the callee to the set of candidate
9593  // functions, including those from argument-dependent lookup.
9594  AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
9595                              CandidateSet);
9596
9597  // If we found nothing, try to recover.
9598  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
9599  // out if it fails.
9600  if (CandidateSet.empty()) {
9601    // In Microsoft mode, if we are inside a template class member function then
9602    // create a type dependent CallExpr. The goal is to postpone name lookup
9603    // to instantiation time to be able to search into type dependent base
9604    // classes.
9605    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
9606        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
9607      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
9608                                          Context.DependentTy, VK_RValue,
9609                                          RParenLoc);
9610      CE->setTypeDependent(true);
9611      return Owned(CE);
9612    }
9613    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9614                                 llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9615                                 RParenLoc, /*EmptyLookup=*/true,
9616                                 AllowTypoCorrection);
9617  }
9618
9619  UnbridgedCasts.restore();
9620
9621  OverloadCandidateSet::iterator Best;
9622  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
9623  case OR_Success: {
9624    FunctionDecl *FDecl = Best->Function;
9625    MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
9626    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
9627    DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
9628    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9629    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
9630                                 ExecConfig);
9631  }
9632
9633  case OR_No_Viable_Function: {
9634    // Try to recover by looking for viable functions which the user might
9635    // have meant to call.
9636    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
9637                                  llvm::MutableArrayRef<Expr *>(Args, NumArgs),
9638                                                RParenLoc,
9639                                                /*EmptyLookup=*/false,
9640                                                AllowTypoCorrection);
9641    if (!Recovery.isInvalid())
9642      return Recovery;
9643
9644    Diag(Fn->getLocStart(),
9645         diag::err_ovl_no_viable_function_in_call)
9646      << ULE->getName() << Fn->getSourceRange();
9647    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9648                                llvm::makeArrayRef(Args, NumArgs));
9649    break;
9650  }
9651
9652  case OR_Ambiguous:
9653    Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
9654      << ULE->getName() << Fn->getSourceRange();
9655    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
9656                                llvm::makeArrayRef(Args, NumArgs));
9657    break;
9658
9659  case OR_Deleted:
9660    {
9661      Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
9662        << Best->Function->isDeleted()
9663        << ULE->getName()
9664        << getDeletedOrUnavailableSuffix(Best->Function)
9665        << Fn->getSourceRange();
9666      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9667                                  llvm::makeArrayRef(Args, NumArgs));
9668
9669      // We emitted an error for the unvailable/deleted function call but keep
9670      // the call in the AST.
9671      FunctionDecl *FDecl = Best->Function;
9672      Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
9673      return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
9674                                   RParenLoc, ExecConfig);
9675    }
9676  }
9677
9678  // Overload resolution failed.
9679  return ExprError();
9680}
9681
9682static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
9683  return Functions.size() > 1 ||
9684    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
9685}
9686
9687/// \brief Create a unary operation that may resolve to an overloaded
9688/// operator.
9689///
9690/// \param OpLoc The location of the operator itself (e.g., '*').
9691///
9692/// \param OpcIn The UnaryOperator::Opcode that describes this
9693/// operator.
9694///
9695/// \param Functions The set of non-member functions that will be
9696/// considered by overload resolution. The caller needs to build this
9697/// set based on the context using, e.g.,
9698/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9699/// set should not contain any member functions; those will be added
9700/// by CreateOverloadedUnaryOp().
9701///
9702/// \param input The input argument.
9703ExprResult
9704Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
9705                              const UnresolvedSetImpl &Fns,
9706                              Expr *Input) {
9707  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
9708
9709  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
9710  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
9711  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9712  // TODO: provide better source location info.
9713  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9714
9715  if (checkPlaceholderForOverload(*this, Input))
9716    return ExprError();
9717
9718  Expr *Args[2] = { Input, 0 };
9719  unsigned NumArgs = 1;
9720
9721  // For post-increment and post-decrement, add the implicit '0' as
9722  // the second argument, so that we know this is a post-increment or
9723  // post-decrement.
9724  if (Opc == UO_PostInc || Opc == UO_PostDec) {
9725    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
9726    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
9727                                     SourceLocation());
9728    NumArgs = 2;
9729  }
9730
9731  if (Input->isTypeDependent()) {
9732    if (Fns.empty())
9733      return Owned(new (Context) UnaryOperator(Input,
9734                                               Opc,
9735                                               Context.DependentTy,
9736                                               VK_RValue, OK_Ordinary,
9737                                               OpLoc));
9738
9739    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9740    UnresolvedLookupExpr *Fn
9741      = UnresolvedLookupExpr::Create(Context, NamingClass,
9742                                     NestedNameSpecifierLoc(), OpNameInfo,
9743                                     /*ADL*/ true, IsOverloaded(Fns),
9744                                     Fns.begin(), Fns.end());
9745    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9746                                                  &Args[0], NumArgs,
9747                                                   Context.DependentTy,
9748                                                   VK_RValue,
9749                                                   OpLoc));
9750  }
9751
9752  // Build an empty overload set.
9753  OverloadCandidateSet CandidateSet(OpLoc);
9754
9755  // Add the candidates from the given function set.
9756  AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
9757                        false);
9758
9759  // Add operator candidates that are member functions.
9760  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9761
9762  // Add candidates from ADL.
9763  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9764                                       OpLoc, llvm::makeArrayRef(Args, NumArgs),
9765                                       /*ExplicitTemplateArgs*/ 0,
9766                                       CandidateSet);
9767
9768  // Add builtin operator candidates.
9769  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
9770
9771  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9772
9773  // Perform overload resolution.
9774  OverloadCandidateSet::iterator Best;
9775  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9776  case OR_Success: {
9777    // We found a built-in operator or an overloaded operator.
9778    FunctionDecl *FnDecl = Best->Function;
9779
9780    if (FnDecl) {
9781      // We matched an overloaded operator. Build a call to that
9782      // operator.
9783
9784      MarkFunctionReferenced(OpLoc, FnDecl);
9785
9786      // Convert the arguments.
9787      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9788        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
9789
9790        ExprResult InputRes =
9791          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
9792                                              Best->FoundDecl, Method);
9793        if (InputRes.isInvalid())
9794          return ExprError();
9795        Input = InputRes.take();
9796      } else {
9797        // Convert the arguments.
9798        ExprResult InputInit
9799          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9800                                                      Context,
9801                                                      FnDecl->getParamDecl(0)),
9802                                      SourceLocation(),
9803                                      Input);
9804        if (InputInit.isInvalid())
9805          return ExprError();
9806        Input = InputInit.take();
9807      }
9808
9809      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9810
9811      // Determine the result type.
9812      QualType ResultTy = FnDecl->getResultType();
9813      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9814      ResultTy = ResultTy.getNonLValueExprType(Context);
9815
9816      // Build the actual expression node.
9817      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9818                                                HadMultipleCandidates, OpLoc);
9819      if (FnExpr.isInvalid())
9820        return ExprError();
9821
9822      Args[0] = Input;
9823      CallExpr *TheCall =
9824        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9825                                          Args, NumArgs, ResultTy, VK, OpLoc);
9826
9827      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9828                              FnDecl))
9829        return ExprError();
9830
9831      return MaybeBindToTemporary(TheCall);
9832    } else {
9833      // We matched a built-in operator. Convert the arguments, then
9834      // break out so that we will build the appropriate built-in
9835      // operator node.
9836      ExprResult InputRes =
9837        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
9838                                  Best->Conversions[0], AA_Passing);
9839      if (InputRes.isInvalid())
9840        return ExprError();
9841      Input = InputRes.take();
9842      break;
9843    }
9844  }
9845
9846  case OR_No_Viable_Function:
9847    // This is an erroneous use of an operator which can be overloaded by
9848    // a non-member function. Check for non-member operators which were
9849    // defined too late to be candidates.
9850    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
9851                                       llvm::makeArrayRef(Args, NumArgs)))
9852      // FIXME: Recover by calling the found function.
9853      return ExprError();
9854
9855    // No viable function; fall through to handling this as a
9856    // built-in operator, which will produce an error message for us.
9857    break;
9858
9859  case OR_Ambiguous:
9860    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9861        << UnaryOperator::getOpcodeStr(Opc)
9862        << Input->getType()
9863        << Input->getSourceRange();
9864    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
9865                                llvm::makeArrayRef(Args, NumArgs),
9866                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
9867    return ExprError();
9868
9869  case OR_Deleted:
9870    Diag(OpLoc, diag::err_ovl_deleted_oper)
9871      << Best->Function->isDeleted()
9872      << UnaryOperator::getOpcodeStr(Opc)
9873      << getDeletedOrUnavailableSuffix(Best->Function)
9874      << Input->getSourceRange();
9875    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
9876                                llvm::makeArrayRef(Args, NumArgs),
9877                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
9878    return ExprError();
9879  }
9880
9881  // Either we found no viable overloaded operator or we matched a
9882  // built-in operator. In either case, fall through to trying to
9883  // build a built-in operation.
9884  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9885}
9886
9887/// \brief Create a binary operation that may resolve to an overloaded
9888/// operator.
9889///
9890/// \param OpLoc The location of the operator itself (e.g., '+').
9891///
9892/// \param OpcIn The BinaryOperator::Opcode that describes this
9893/// operator.
9894///
9895/// \param Functions The set of non-member functions that will be
9896/// considered by overload resolution. The caller needs to build this
9897/// set based on the context using, e.g.,
9898/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
9899/// set should not contain any member functions; those will be added
9900/// by CreateOverloadedBinOp().
9901///
9902/// \param LHS Left-hand argument.
9903/// \param RHS Right-hand argument.
9904ExprResult
9905Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
9906                            unsigned OpcIn,
9907                            const UnresolvedSetImpl &Fns,
9908                            Expr *LHS, Expr *RHS) {
9909  Expr *Args[2] = { LHS, RHS };
9910  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
9911
9912  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
9913  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
9914  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9915
9916  // If either side is type-dependent, create an appropriate dependent
9917  // expression.
9918  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9919    if (Fns.empty()) {
9920      // If there are no functions to store, just build a dependent
9921      // BinaryOperator or CompoundAssignment.
9922      if (Opc <= BO_Assign || Opc > BO_OrAssign)
9923        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
9924                                                  Context.DependentTy,
9925                                                  VK_RValue, OK_Ordinary,
9926                                                  OpLoc));
9927
9928      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
9929                                                        Context.DependentTy,
9930                                                        VK_LValue,
9931                                                        OK_Ordinary,
9932                                                        Context.DependentTy,
9933                                                        Context.DependentTy,
9934                                                        OpLoc));
9935    }
9936
9937    // FIXME: save results of ADL from here?
9938    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9939    // TODO: provide better source location info in DNLoc component.
9940    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9941    UnresolvedLookupExpr *Fn
9942      = UnresolvedLookupExpr::Create(Context, NamingClass,
9943                                     NestedNameSpecifierLoc(), OpNameInfo,
9944                                     /*ADL*/ true, IsOverloaded(Fns),
9945                                     Fns.begin(), Fns.end());
9946    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9947                                                   Args, 2,
9948                                                   Context.DependentTy,
9949                                                   VK_RValue,
9950                                                   OpLoc));
9951  }
9952
9953  // Always do placeholder-like conversions on the RHS.
9954  if (checkPlaceholderForOverload(*this, Args[1]))
9955    return ExprError();
9956
9957  // Do placeholder-like conversion on the LHS; note that we should
9958  // not get here with a PseudoObject LHS.
9959  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
9960  if (checkPlaceholderForOverload(*this, Args[0]))
9961    return ExprError();
9962
9963  // If this is the assignment operator, we only perform overload resolution
9964  // if the left-hand side is a class or enumeration type. This is actually
9965  // a hack. The standard requires that we do overload resolution between the
9966  // various built-in candidates, but as DR507 points out, this can lead to
9967  // problems. So we do it this way, which pretty much follows what GCC does.
9968  // Note that we go the traditional code path for compound assignment forms.
9969  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
9970    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9971
9972  // If this is the .* operator, which is not overloadable, just
9973  // create a built-in binary operator.
9974  if (Opc == BO_PtrMemD)
9975    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9976
9977  // Build an empty overload set.
9978  OverloadCandidateSet CandidateSet(OpLoc);
9979
9980  // Add the candidates from the given function set.
9981  AddFunctionCandidates(Fns, Args, CandidateSet, false);
9982
9983  // Add operator candidates that are member functions.
9984  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9985
9986  // Add candidates from ADL.
9987  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9988                                       OpLoc, Args,
9989                                       /*ExplicitTemplateArgs*/ 0,
9990                                       CandidateSet);
9991
9992  // Add builtin operator candidates.
9993  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9994
9995  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9996
9997  // Perform overload resolution.
9998  OverloadCandidateSet::iterator Best;
9999  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10000    case OR_Success: {
10001      // We found a built-in operator or an overloaded operator.
10002      FunctionDecl *FnDecl = Best->Function;
10003
10004      if (FnDecl) {
10005        // We matched an overloaded operator. Build a call to that
10006        // operator.
10007
10008        MarkFunctionReferenced(OpLoc, FnDecl);
10009
10010        // Convert the arguments.
10011        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10012          // Best->Access is only meaningful for class members.
10013          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10014
10015          ExprResult Arg1 =
10016            PerformCopyInitialization(
10017              InitializedEntity::InitializeParameter(Context,
10018                                                     FnDecl->getParamDecl(0)),
10019              SourceLocation(), Owned(Args[1]));
10020          if (Arg1.isInvalid())
10021            return ExprError();
10022
10023          ExprResult Arg0 =
10024            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10025                                                Best->FoundDecl, Method);
10026          if (Arg0.isInvalid())
10027            return ExprError();
10028          Args[0] = Arg0.takeAs<Expr>();
10029          Args[1] = RHS = Arg1.takeAs<Expr>();
10030        } else {
10031          // Convert the arguments.
10032          ExprResult Arg0 = PerformCopyInitialization(
10033            InitializedEntity::InitializeParameter(Context,
10034                                                   FnDecl->getParamDecl(0)),
10035            SourceLocation(), Owned(Args[0]));
10036          if (Arg0.isInvalid())
10037            return ExprError();
10038
10039          ExprResult Arg1 =
10040            PerformCopyInitialization(
10041              InitializedEntity::InitializeParameter(Context,
10042                                                     FnDecl->getParamDecl(1)),
10043              SourceLocation(), Owned(Args[1]));
10044          if (Arg1.isInvalid())
10045            return ExprError();
10046          Args[0] = LHS = Arg0.takeAs<Expr>();
10047          Args[1] = RHS = Arg1.takeAs<Expr>();
10048        }
10049
10050        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10051
10052        // Determine the result type.
10053        QualType ResultTy = FnDecl->getResultType();
10054        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10055        ResultTy = ResultTy.getNonLValueExprType(Context);
10056
10057        // Build the actual expression node.
10058        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10059                                                  HadMultipleCandidates, OpLoc);
10060        if (FnExpr.isInvalid())
10061          return ExprError();
10062
10063        CXXOperatorCallExpr *TheCall =
10064          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10065                                            Args, 2, ResultTy, VK, OpLoc);
10066
10067        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10068                                FnDecl))
10069          return ExprError();
10070
10071        return MaybeBindToTemporary(TheCall);
10072      } else {
10073        // We matched a built-in operator. Convert the arguments, then
10074        // break out so that we will build the appropriate built-in
10075        // operator node.
10076        ExprResult ArgsRes0 =
10077          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10078                                    Best->Conversions[0], AA_Passing);
10079        if (ArgsRes0.isInvalid())
10080          return ExprError();
10081        Args[0] = ArgsRes0.take();
10082
10083        ExprResult ArgsRes1 =
10084          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10085                                    Best->Conversions[1], AA_Passing);
10086        if (ArgsRes1.isInvalid())
10087          return ExprError();
10088        Args[1] = ArgsRes1.take();
10089        break;
10090      }
10091    }
10092
10093    case OR_No_Viable_Function: {
10094      // C++ [over.match.oper]p9:
10095      //   If the operator is the operator , [...] and there are no
10096      //   viable functions, then the operator is assumed to be the
10097      //   built-in operator and interpreted according to clause 5.
10098      if (Opc == BO_Comma)
10099        break;
10100
10101      // For class as left operand for assignment or compound assigment
10102      // operator do not fall through to handling in built-in, but report that
10103      // no overloaded assignment operator found
10104      ExprResult Result = ExprError();
10105      if (Args[0]->getType()->isRecordType() &&
10106          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10107        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10108             << BinaryOperator::getOpcodeStr(Opc)
10109             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10110      } else {
10111        // This is an erroneous use of an operator which can be overloaded by
10112        // a non-member function. Check for non-member operators which were
10113        // defined too late to be candidates.
10114        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10115          // FIXME: Recover by calling the found function.
10116          return ExprError();
10117
10118        // No viable function; try to create a built-in operation, which will
10119        // produce an error. Then, show the non-viable candidates.
10120        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10121      }
10122      assert(Result.isInvalid() &&
10123             "C++ binary operator overloading is missing candidates!");
10124      if (Result.isInvalid())
10125        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10126                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10127      return move(Result);
10128    }
10129
10130    case OR_Ambiguous:
10131      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10132          << BinaryOperator::getOpcodeStr(Opc)
10133          << Args[0]->getType() << Args[1]->getType()
10134          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10135      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10136                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10137      return ExprError();
10138
10139    case OR_Deleted:
10140      if (isImplicitlyDeleted(Best->Function)) {
10141        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10142        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10143          << getSpecialMember(Method)
10144          << BinaryOperator::getOpcodeStr(Opc)
10145          << getDeletedOrUnavailableSuffix(Best->Function);
10146
10147        if (getSpecialMember(Method) != CXXInvalid) {
10148          // The user probably meant to call this special member. Just
10149          // explain why it's deleted.
10150          NoteDeletedFunction(Method);
10151          return ExprError();
10152        }
10153      } else {
10154        Diag(OpLoc, diag::err_ovl_deleted_oper)
10155          << Best->Function->isDeleted()
10156          << BinaryOperator::getOpcodeStr(Opc)
10157          << getDeletedOrUnavailableSuffix(Best->Function)
10158          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10159      }
10160      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10161                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10162      return ExprError();
10163  }
10164
10165  // We matched a built-in operator; build it.
10166  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10167}
10168
10169ExprResult
10170Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10171                                         SourceLocation RLoc,
10172                                         Expr *Base, Expr *Idx) {
10173  Expr *Args[2] = { Base, Idx };
10174  DeclarationName OpName =
10175      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10176
10177  // If either side is type-dependent, create an appropriate dependent
10178  // expression.
10179  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10180
10181    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10182    // CHECKME: no 'operator' keyword?
10183    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10184    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10185    UnresolvedLookupExpr *Fn
10186      = UnresolvedLookupExpr::Create(Context, NamingClass,
10187                                     NestedNameSpecifierLoc(), OpNameInfo,
10188                                     /*ADL*/ true, /*Overloaded*/ false,
10189                                     UnresolvedSetIterator(),
10190                                     UnresolvedSetIterator());
10191    // Can't add any actual overloads yet
10192
10193    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10194                                                   Args, 2,
10195                                                   Context.DependentTy,
10196                                                   VK_RValue,
10197                                                   RLoc));
10198  }
10199
10200  // Handle placeholders on both operands.
10201  if (checkPlaceholderForOverload(*this, Args[0]))
10202    return ExprError();
10203  if (checkPlaceholderForOverload(*this, Args[1]))
10204    return ExprError();
10205
10206  // Build an empty overload set.
10207  OverloadCandidateSet CandidateSet(LLoc);
10208
10209  // Subscript can only be overloaded as a member function.
10210
10211  // Add operator candidates that are member functions.
10212  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10213
10214  // Add builtin operator candidates.
10215  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
10216
10217  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10218
10219  // Perform overload resolution.
10220  OverloadCandidateSet::iterator Best;
10221  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10222    case OR_Success: {
10223      // We found a built-in operator or an overloaded operator.
10224      FunctionDecl *FnDecl = Best->Function;
10225
10226      if (FnDecl) {
10227        // We matched an overloaded operator. Build a call to that
10228        // operator.
10229
10230        MarkFunctionReferenced(LLoc, FnDecl);
10231
10232        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10233        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
10234
10235        // Convert the arguments.
10236        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10237        ExprResult Arg0 =
10238          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10239                                              Best->FoundDecl, Method);
10240        if (Arg0.isInvalid())
10241          return ExprError();
10242        Args[0] = Arg0.take();
10243
10244        // Convert the arguments.
10245        ExprResult InputInit
10246          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10247                                                      Context,
10248                                                      FnDecl->getParamDecl(0)),
10249                                      SourceLocation(),
10250                                      Owned(Args[1]));
10251        if (InputInit.isInvalid())
10252          return ExprError();
10253
10254        Args[1] = InputInit.takeAs<Expr>();
10255
10256        // Determine the result type
10257        QualType ResultTy = FnDecl->getResultType();
10258        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10259        ResultTy = ResultTy.getNonLValueExprType(Context);
10260
10261        // Build the actual expression node.
10262        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10263        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10264        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10265                                                  HadMultipleCandidates,
10266                                                  OpLocInfo.getLoc(),
10267                                                  OpLocInfo.getInfo());
10268        if (FnExpr.isInvalid())
10269          return ExprError();
10270
10271        CXXOperatorCallExpr *TheCall =
10272          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10273                                            FnExpr.take(), Args, 2,
10274                                            ResultTy, VK, RLoc);
10275
10276        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10277                                FnDecl))
10278          return ExprError();
10279
10280        return MaybeBindToTemporary(TheCall);
10281      } else {
10282        // We matched a built-in operator. Convert the arguments, then
10283        // break out so that we will build the appropriate built-in
10284        // operator node.
10285        ExprResult ArgsRes0 =
10286          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10287                                    Best->Conversions[0], AA_Passing);
10288        if (ArgsRes0.isInvalid())
10289          return ExprError();
10290        Args[0] = ArgsRes0.take();
10291
10292        ExprResult ArgsRes1 =
10293          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10294                                    Best->Conversions[1], AA_Passing);
10295        if (ArgsRes1.isInvalid())
10296          return ExprError();
10297        Args[1] = ArgsRes1.take();
10298
10299        break;
10300      }
10301    }
10302
10303    case OR_No_Viable_Function: {
10304      if (CandidateSet.empty())
10305        Diag(LLoc, diag::err_ovl_no_oper)
10306          << Args[0]->getType() << /*subscript*/ 0
10307          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10308      else
10309        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10310          << Args[0]->getType()
10311          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10312      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10313                                  "[]", LLoc);
10314      return ExprError();
10315    }
10316
10317    case OR_Ambiguous:
10318      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10319          << "[]"
10320          << Args[0]->getType() << Args[1]->getType()
10321          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10322      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10323                                  "[]", LLoc);
10324      return ExprError();
10325
10326    case OR_Deleted:
10327      Diag(LLoc, diag::err_ovl_deleted_oper)
10328        << Best->Function->isDeleted() << "[]"
10329        << getDeletedOrUnavailableSuffix(Best->Function)
10330        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10331      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10332                                  "[]", LLoc);
10333      return ExprError();
10334    }
10335
10336  // We matched a built-in operator; build it.
10337  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10338}
10339
10340/// BuildCallToMemberFunction - Build a call to a member
10341/// function. MemExpr is the expression that refers to the member
10342/// function (and includes the object parameter), Args/NumArgs are the
10343/// arguments to the function call (not including the object
10344/// parameter). The caller needs to validate that the member
10345/// expression refers to a non-static member function or an overloaded
10346/// member function.
10347ExprResult
10348Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10349                                SourceLocation LParenLoc, Expr **Args,
10350                                unsigned NumArgs, SourceLocation RParenLoc) {
10351  assert(MemExprE->getType() == Context.BoundMemberTy ||
10352         MemExprE->getType() == Context.OverloadTy);
10353
10354  // Dig out the member expression. This holds both the object
10355  // argument and the member function we're referring to.
10356  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10357
10358  // Determine whether this is a call to a pointer-to-member function.
10359  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10360    assert(op->getType() == Context.BoundMemberTy);
10361    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10362
10363    QualType fnType =
10364      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10365
10366    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10367    QualType resultType = proto->getCallResultType(Context);
10368    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10369
10370    // Check that the object type isn't more qualified than the
10371    // member function we're calling.
10372    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10373
10374    QualType objectType = op->getLHS()->getType();
10375    if (op->getOpcode() == BO_PtrMemI)
10376      objectType = objectType->castAs<PointerType>()->getPointeeType();
10377    Qualifiers objectQuals = objectType.getQualifiers();
10378
10379    Qualifiers difference = objectQuals - funcQuals;
10380    difference.removeObjCGCAttr();
10381    difference.removeAddressSpace();
10382    if (difference) {
10383      std::string qualsString = difference.getAsString();
10384      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10385        << fnType.getUnqualifiedType()
10386        << qualsString
10387        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10388    }
10389
10390    CXXMemberCallExpr *call
10391      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10392                                        resultType, valueKind, RParenLoc);
10393
10394    if (CheckCallReturnType(proto->getResultType(),
10395                            op->getRHS()->getLocStart(),
10396                            call, 0))
10397      return ExprError();
10398
10399    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
10400      return ExprError();
10401
10402    return MaybeBindToTemporary(call);
10403  }
10404
10405  UnbridgedCastsSet UnbridgedCasts;
10406  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10407    return ExprError();
10408
10409  MemberExpr *MemExpr;
10410  CXXMethodDecl *Method = 0;
10411  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
10412  NestedNameSpecifier *Qualifier = 0;
10413  if (isa<MemberExpr>(NakedMemExpr)) {
10414    MemExpr = cast<MemberExpr>(NakedMemExpr);
10415    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
10416    FoundDecl = MemExpr->getFoundDecl();
10417    Qualifier = MemExpr->getQualifier();
10418    UnbridgedCasts.restore();
10419  } else {
10420    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
10421    Qualifier = UnresExpr->getQualifier();
10422
10423    QualType ObjectType = UnresExpr->getBaseType();
10424    Expr::Classification ObjectClassification
10425      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
10426                            : UnresExpr->getBase()->Classify(Context);
10427
10428    // Add overload candidates
10429    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
10430
10431    // FIXME: avoid copy.
10432    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10433    if (UnresExpr->hasExplicitTemplateArgs()) {
10434      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10435      TemplateArgs = &TemplateArgsBuffer;
10436    }
10437
10438    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
10439           E = UnresExpr->decls_end(); I != E; ++I) {
10440
10441      NamedDecl *Func = *I;
10442      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
10443      if (isa<UsingShadowDecl>(Func))
10444        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
10445
10446
10447      // Microsoft supports direct constructor calls.
10448      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
10449        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
10450                             llvm::makeArrayRef(Args, NumArgs), CandidateSet);
10451      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
10452        // If explicit template arguments were provided, we can't call a
10453        // non-template member function.
10454        if (TemplateArgs)
10455          continue;
10456
10457        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
10458                           ObjectClassification,
10459                           llvm::makeArrayRef(Args, NumArgs), CandidateSet,
10460                           /*SuppressUserConversions=*/false);
10461      } else {
10462        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
10463                                   I.getPair(), ActingDC, TemplateArgs,
10464                                   ObjectType,  ObjectClassification,
10465                                   llvm::makeArrayRef(Args, NumArgs),
10466                                   CandidateSet,
10467                                   /*SuppressUsedConversions=*/false);
10468      }
10469    }
10470
10471    DeclarationName DeclName = UnresExpr->getMemberName();
10472
10473    UnbridgedCasts.restore();
10474
10475    OverloadCandidateSet::iterator Best;
10476    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
10477                                            Best)) {
10478    case OR_Success:
10479      Method = cast<CXXMethodDecl>(Best->Function);
10480      MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
10481      FoundDecl = Best->FoundDecl;
10482      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
10483      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
10484      break;
10485
10486    case OR_No_Viable_Function:
10487      Diag(UnresExpr->getMemberLoc(),
10488           diag::err_ovl_no_viable_member_function_in_call)
10489        << DeclName << MemExprE->getSourceRange();
10490      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10491                                  llvm::makeArrayRef(Args, NumArgs));
10492      // FIXME: Leaking incoming expressions!
10493      return ExprError();
10494
10495    case OR_Ambiguous:
10496      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
10497        << DeclName << MemExprE->getSourceRange();
10498      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10499                                  llvm::makeArrayRef(Args, NumArgs));
10500      // FIXME: Leaking incoming expressions!
10501      return ExprError();
10502
10503    case OR_Deleted:
10504      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
10505        << Best->Function->isDeleted()
10506        << DeclName
10507        << getDeletedOrUnavailableSuffix(Best->Function)
10508        << MemExprE->getSourceRange();
10509      CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10510                                  llvm::makeArrayRef(Args, NumArgs));
10511      // FIXME: Leaking incoming expressions!
10512      return ExprError();
10513    }
10514
10515    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
10516
10517    // If overload resolution picked a static member, build a
10518    // non-member call based on that function.
10519    if (Method->isStatic()) {
10520      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
10521                                   Args, NumArgs, RParenLoc);
10522    }
10523
10524    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
10525  }
10526
10527  QualType ResultType = Method->getResultType();
10528  ExprValueKind VK = Expr::getValueKindForType(ResultType);
10529  ResultType = ResultType.getNonLValueExprType(Context);
10530
10531  assert(Method && "Member call to something that isn't a method?");
10532  CXXMemberCallExpr *TheCall =
10533    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
10534                                    ResultType, VK, RParenLoc);
10535
10536  // Check for a valid return type.
10537  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
10538                          TheCall, Method))
10539    return ExprError();
10540
10541  // Convert the object argument (for a non-static member function call).
10542  // We only need to do this if there was actually an overload; otherwise
10543  // it was done at lookup.
10544  if (!Method->isStatic()) {
10545    ExprResult ObjectArg =
10546      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
10547                                          FoundDecl, Method);
10548    if (ObjectArg.isInvalid())
10549      return ExprError();
10550    MemExpr->setBase(ObjectArg.take());
10551  }
10552
10553  // Convert the rest of the arguments
10554  const FunctionProtoType *Proto =
10555    Method->getType()->getAs<FunctionProtoType>();
10556  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
10557                              RParenLoc))
10558    return ExprError();
10559
10560  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10561
10562  if (CheckFunctionCall(Method, TheCall))
10563    return ExprError();
10564
10565  if ((isa<CXXConstructorDecl>(CurContext) ||
10566       isa<CXXDestructorDecl>(CurContext)) &&
10567      TheCall->getMethodDecl()->isPure()) {
10568    const CXXMethodDecl *MD = TheCall->getMethodDecl();
10569
10570    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
10571      Diag(MemExpr->getLocStart(),
10572           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
10573        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
10574        << MD->getParent()->getDeclName();
10575
10576      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
10577    }
10578  }
10579  return MaybeBindToTemporary(TheCall);
10580}
10581
10582/// BuildCallToObjectOfClassType - Build a call to an object of class
10583/// type (C++ [over.call.object]), which can end up invoking an
10584/// overloaded function call operator (@c operator()) or performing a
10585/// user-defined conversion on the object argument.
10586ExprResult
10587Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
10588                                   SourceLocation LParenLoc,
10589                                   Expr **Args, unsigned NumArgs,
10590                                   SourceLocation RParenLoc) {
10591  if (checkPlaceholderForOverload(*this, Obj))
10592    return ExprError();
10593  ExprResult Object = Owned(Obj);
10594
10595  UnbridgedCastsSet UnbridgedCasts;
10596  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
10597    return ExprError();
10598
10599  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
10600  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
10601
10602  // C++ [over.call.object]p1:
10603  //  If the primary-expression E in the function call syntax
10604  //  evaluates to a class object of type "cv T", then the set of
10605  //  candidate functions includes at least the function call
10606  //  operators of T. The function call operators of T are obtained by
10607  //  ordinary lookup of the name operator() in the context of
10608  //  (E).operator().
10609  OverloadCandidateSet CandidateSet(LParenLoc);
10610  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
10611
10612  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
10613                          PDiag(diag::err_incomplete_object_call)
10614                          << Object.get()->getSourceRange()))
10615    return true;
10616
10617  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
10618  LookupQualifiedName(R, Record->getDecl());
10619  R.suppressDiagnostics();
10620
10621  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10622       Oper != OperEnd; ++Oper) {
10623    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
10624                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
10625                       /*SuppressUserConversions=*/ false);
10626  }
10627
10628  // C++ [over.call.object]p2:
10629  //   In addition, for each (non-explicit in C++0x) conversion function
10630  //   declared in T of the form
10631  //
10632  //        operator conversion-type-id () cv-qualifier;
10633  //
10634  //   where cv-qualifier is the same cv-qualification as, or a
10635  //   greater cv-qualification than, cv, and where conversion-type-id
10636  //   denotes the type "pointer to function of (P1,...,Pn) returning
10637  //   R", or the type "reference to pointer to function of
10638  //   (P1,...,Pn) returning R", or the type "reference to function
10639  //   of (P1,...,Pn) returning R", a surrogate call function [...]
10640  //   is also considered as a candidate function. Similarly,
10641  //   surrogate call functions are added to the set of candidate
10642  //   functions for each conversion function declared in an
10643  //   accessible base class provided the function is not hidden
10644  //   within T by another intervening declaration.
10645  const UnresolvedSetImpl *Conversions
10646    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
10647  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
10648         E = Conversions->end(); I != E; ++I) {
10649    NamedDecl *D = *I;
10650    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
10651    if (isa<UsingShadowDecl>(D))
10652      D = cast<UsingShadowDecl>(D)->getTargetDecl();
10653
10654    // Skip over templated conversion functions; they aren't
10655    // surrogates.
10656    if (isa<FunctionTemplateDecl>(D))
10657      continue;
10658
10659    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
10660    if (!Conv->isExplicit()) {
10661      // Strip the reference type (if any) and then the pointer type (if
10662      // any) to get down to what might be a function type.
10663      QualType ConvType = Conv->getConversionType().getNonReferenceType();
10664      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10665        ConvType = ConvPtrType->getPointeeType();
10666
10667      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
10668      {
10669        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
10670                              Object.get(), llvm::makeArrayRef(Args, NumArgs),
10671                              CandidateSet);
10672      }
10673    }
10674  }
10675
10676  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10677
10678  // Perform overload resolution.
10679  OverloadCandidateSet::iterator Best;
10680  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
10681                             Best)) {
10682  case OR_Success:
10683    // Overload resolution succeeded; we'll build the appropriate call
10684    // below.
10685    break;
10686
10687  case OR_No_Viable_Function:
10688    if (CandidateSet.empty())
10689      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
10690        << Object.get()->getType() << /*call*/ 1
10691        << Object.get()->getSourceRange();
10692    else
10693      Diag(Object.get()->getLocStart(),
10694           diag::err_ovl_no_viable_object_call)
10695        << Object.get()->getType() << Object.get()->getSourceRange();
10696    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10697                                llvm::makeArrayRef(Args, NumArgs));
10698    break;
10699
10700  case OR_Ambiguous:
10701    Diag(Object.get()->getLocStart(),
10702         diag::err_ovl_ambiguous_object_call)
10703      << Object.get()->getType() << Object.get()->getSourceRange();
10704    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
10705                                llvm::makeArrayRef(Args, NumArgs));
10706    break;
10707
10708  case OR_Deleted:
10709    Diag(Object.get()->getLocStart(),
10710         diag::err_ovl_deleted_object_call)
10711      << Best->Function->isDeleted()
10712      << Object.get()->getType()
10713      << getDeletedOrUnavailableSuffix(Best->Function)
10714      << Object.get()->getSourceRange();
10715    CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
10716                                llvm::makeArrayRef(Args, NumArgs));
10717    break;
10718  }
10719
10720  if (Best == CandidateSet.end())
10721    return true;
10722
10723  UnbridgedCasts.restore();
10724
10725  if (Best->Function == 0) {
10726    // Since there is no function declaration, this is one of the
10727    // surrogate candidates. Dig out the conversion function.
10728    CXXConversionDecl *Conv
10729      = cast<CXXConversionDecl>(
10730                         Best->Conversions[0].UserDefined.ConversionFunction);
10731
10732    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10733    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10734
10735    // We selected one of the surrogate functions that converts the
10736    // object parameter to a function pointer. Perform the conversion
10737    // on the object argument, then let ActOnCallExpr finish the job.
10738
10739    // Create an implicit member expr to refer to the conversion operator.
10740    // and then call it.
10741    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
10742                                             Conv, HadMultipleCandidates);
10743    if (Call.isInvalid())
10744      return ExprError();
10745    // Record usage of conversion in an implicit cast.
10746    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
10747                                          CK_UserDefinedConversion,
10748                                          Call.get(), 0, VK_RValue));
10749
10750    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
10751                         RParenLoc);
10752  }
10753
10754  MarkFunctionReferenced(LParenLoc, Best->Function);
10755  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
10756  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
10757
10758  // We found an overloaded operator(). Build a CXXOperatorCallExpr
10759  // that calls this method, using Object for the implicit object
10760  // parameter and passing along the remaining arguments.
10761  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10762  const FunctionProtoType *Proto =
10763    Method->getType()->getAs<FunctionProtoType>();
10764
10765  unsigned NumArgsInProto = Proto->getNumArgs();
10766  unsigned NumArgsToCheck = NumArgs;
10767
10768  // Build the full argument list for the method call (the
10769  // implicit object parameter is placed at the beginning of the
10770  // list).
10771  Expr **MethodArgs;
10772  if (NumArgs < NumArgsInProto) {
10773    NumArgsToCheck = NumArgsInProto;
10774    MethodArgs = new Expr*[NumArgsInProto + 1];
10775  } else {
10776    MethodArgs = new Expr*[NumArgs + 1];
10777  }
10778  MethodArgs[0] = Object.get();
10779  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
10780    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
10781
10782  DeclarationNameInfo OpLocInfo(
10783               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
10784  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
10785  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
10786                                           HadMultipleCandidates,
10787                                           OpLocInfo.getLoc(),
10788                                           OpLocInfo.getInfo());
10789  if (NewFn.isInvalid())
10790    return true;
10791
10792  // Once we've built TheCall, all of the expressions are properly
10793  // owned.
10794  QualType ResultTy = Method->getResultType();
10795  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10796  ResultTy = ResultTy.getNonLValueExprType(Context);
10797
10798  CXXOperatorCallExpr *TheCall =
10799    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
10800                                      MethodArgs, NumArgs + 1,
10801                                      ResultTy, VK, RParenLoc);
10802  delete [] MethodArgs;
10803
10804  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
10805                          Method))
10806    return true;
10807
10808  // We may have default arguments. If so, we need to allocate more
10809  // slots in the call for them.
10810  if (NumArgs < NumArgsInProto)
10811    TheCall->setNumArgs(Context, NumArgsInProto + 1);
10812  else if (NumArgs > NumArgsInProto)
10813    NumArgsToCheck = NumArgsInProto;
10814
10815  bool IsError = false;
10816
10817  // Initialize the implicit object parameter.
10818  ExprResult ObjRes =
10819    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
10820                                        Best->FoundDecl, Method);
10821  if (ObjRes.isInvalid())
10822    IsError = true;
10823  else
10824    Object = move(ObjRes);
10825  TheCall->setArg(0, Object.take());
10826
10827  // Check the argument types.
10828  for (unsigned i = 0; i != NumArgsToCheck; i++) {
10829    Expr *Arg;
10830    if (i < NumArgs) {
10831      Arg = Args[i];
10832
10833      // Pass the argument.
10834
10835      ExprResult InputInit
10836        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10837                                                    Context,
10838                                                    Method->getParamDecl(i)),
10839                                    SourceLocation(), Arg);
10840
10841      IsError |= InputInit.isInvalid();
10842      Arg = InputInit.takeAs<Expr>();
10843    } else {
10844      ExprResult DefArg
10845        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
10846      if (DefArg.isInvalid()) {
10847        IsError = true;
10848        break;
10849      }
10850
10851      Arg = DefArg.takeAs<Expr>();
10852    }
10853
10854    TheCall->setArg(i + 1, Arg);
10855  }
10856
10857  // If this is a variadic call, handle args passed through "...".
10858  if (Proto->isVariadic()) {
10859    // Promote the arguments (C99 6.5.2.2p7).
10860    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
10861      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
10862      IsError |= Arg.isInvalid();
10863      TheCall->setArg(i + 1, Arg.take());
10864    }
10865  }
10866
10867  if (IsError) return true;
10868
10869  DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
10870
10871  if (CheckFunctionCall(Method, TheCall))
10872    return true;
10873
10874  return MaybeBindToTemporary(TheCall);
10875}
10876
10877/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
10878///  (if one exists), where @c Base is an expression of class type and
10879/// @c Member is the name of the member we're trying to find.
10880ExprResult
10881Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
10882  assert(Base->getType()->isRecordType() &&
10883         "left-hand side must have class type");
10884
10885  if (checkPlaceholderForOverload(*this, Base))
10886    return ExprError();
10887
10888  SourceLocation Loc = Base->getExprLoc();
10889
10890  // C++ [over.ref]p1:
10891  //
10892  //   [...] An expression x->m is interpreted as (x.operator->())->m
10893  //   for a class object x of type T if T::operator->() exists and if
10894  //   the operator is selected as the best match function by the
10895  //   overload resolution mechanism (13.3).
10896  DeclarationName OpName =
10897    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
10898  OverloadCandidateSet CandidateSet(Loc);
10899  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
10900
10901  if (RequireCompleteType(Loc, Base->getType(),
10902                          PDiag(diag::err_typecheck_incomplete_tag)
10903                            << Base->getSourceRange()))
10904    return ExprError();
10905
10906  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
10907  LookupQualifiedName(R, BaseRecord->getDecl());
10908  R.suppressDiagnostics();
10909
10910  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
10911       Oper != OperEnd; ++Oper) {
10912    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
10913                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
10914  }
10915
10916  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10917
10918  // Perform overload resolution.
10919  OverloadCandidateSet::iterator Best;
10920  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10921  case OR_Success:
10922    // Overload resolution succeeded; we'll build the call below.
10923    break;
10924
10925  case OR_No_Viable_Function:
10926    if (CandidateSet.empty())
10927      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
10928        << Base->getType() << Base->getSourceRange();
10929    else
10930      Diag(OpLoc, diag::err_ovl_no_viable_oper)
10931        << "operator->" << Base->getSourceRange();
10932    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
10933    return ExprError();
10934
10935  case OR_Ambiguous:
10936    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10937      << "->" << Base->getType() << Base->getSourceRange();
10938    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
10939    return ExprError();
10940
10941  case OR_Deleted:
10942    Diag(OpLoc,  diag::err_ovl_deleted_oper)
10943      << Best->Function->isDeleted()
10944      << "->"
10945      << getDeletedOrUnavailableSuffix(Best->Function)
10946      << Base->getSourceRange();
10947    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
10948    return ExprError();
10949  }
10950
10951  MarkFunctionReferenced(OpLoc, Best->Function);
10952  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
10953  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10954
10955  // Convert the object parameter.
10956  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10957  ExprResult BaseResult =
10958    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
10959                                        Best->FoundDecl, Method);
10960  if (BaseResult.isInvalid())
10961    return ExprError();
10962  Base = BaseResult.take();
10963
10964  // Build the operator call.
10965  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
10966                                            HadMultipleCandidates, OpLoc);
10967  if (FnExpr.isInvalid())
10968    return ExprError();
10969
10970  QualType ResultTy = Method->getResultType();
10971  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10972  ResultTy = ResultTy.getNonLValueExprType(Context);
10973  CXXOperatorCallExpr *TheCall =
10974    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
10975                                      &Base, 1, ResultTy, VK, OpLoc);
10976
10977  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
10978                          Method))
10979          return ExprError();
10980
10981  return MaybeBindToTemporary(TheCall);
10982}
10983
10984/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
10985/// a literal operator described by the provided lookup results.
10986ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
10987                                          DeclarationNameInfo &SuffixInfo,
10988                                          ArrayRef<Expr*> Args,
10989                                          SourceLocation LitEndLoc,
10990                                       TemplateArgumentListInfo *TemplateArgs) {
10991  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
10992
10993  OverloadCandidateSet CandidateSet(UDSuffixLoc);
10994  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
10995                        TemplateArgs);
10996
10997  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10998
10999  // Perform overload resolution. This will usually be trivial, but might need
11000  // to perform substitutions for a literal operator template.
11001  OverloadCandidateSet::iterator Best;
11002  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11003  case OR_Success:
11004  case OR_Deleted:
11005    break;
11006
11007  case OR_No_Viable_Function:
11008    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11009      << R.getLookupName();
11010    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11011    return ExprError();
11012
11013  case OR_Ambiguous:
11014    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11015    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11016    return ExprError();
11017  }
11018
11019  FunctionDecl *FD = Best->Function;
11020  MarkFunctionReferenced(UDSuffixLoc, FD);
11021  DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
11022
11023  ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
11024                                        SuffixInfo.getLoc(),
11025                                        SuffixInfo.getInfo());
11026  if (Fn.isInvalid())
11027    return true;
11028
11029  // Check the argument types. This should almost always be a no-op, except
11030  // that array-to-pointer decay is applied to string literals.
11031  Expr *ConvArgs[2];
11032  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
11033    ExprResult InputInit = PerformCopyInitialization(
11034      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11035      SourceLocation(), Args[ArgIdx]);
11036    if (InputInit.isInvalid())
11037      return true;
11038    ConvArgs[ArgIdx] = InputInit.take();
11039  }
11040
11041  QualType ResultTy = FD->getResultType();
11042  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11043  ResultTy = ResultTy.getNonLValueExprType(Context);
11044
11045  UserDefinedLiteral *UDL =
11046    new (Context) UserDefinedLiteral(Context, Fn.take(), ConvArgs, Args.size(),
11047                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11048
11049  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11050    return ExprError();
11051
11052  if (CheckFunctionCall(FD, UDL))
11053    return ExprError();
11054
11055  return MaybeBindToTemporary(UDL);
11056}
11057
11058/// FixOverloadedFunctionReference - E is an expression that refers to
11059/// a C++ overloaded function (possibly with some parentheses and
11060/// perhaps a '&' around it). We have resolved the overloaded function
11061/// to the function declaration Fn, so patch up the expression E to
11062/// refer (possibly indirectly) to Fn. Returns the new expr.
11063Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11064                                           FunctionDecl *Fn) {
11065  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11066    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11067                                                   Found, Fn);
11068    if (SubExpr == PE->getSubExpr())
11069      return PE;
11070
11071    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11072  }
11073
11074  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11075    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11076                                                   Found, Fn);
11077    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11078                               SubExpr->getType()) &&
11079           "Implicit cast type cannot be determined from overload");
11080    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11081    if (SubExpr == ICE->getSubExpr())
11082      return ICE;
11083
11084    return ImplicitCastExpr::Create(Context, ICE->getType(),
11085                                    ICE->getCastKind(),
11086                                    SubExpr, 0,
11087                                    ICE->getValueKind());
11088  }
11089
11090  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11091    assert(UnOp->getOpcode() == UO_AddrOf &&
11092           "Can only take the address of an overloaded function");
11093    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11094      if (Method->isStatic()) {
11095        // Do nothing: static member functions aren't any different
11096        // from non-member functions.
11097      } else {
11098        // Fix the sub expression, which really has to be an
11099        // UnresolvedLookupExpr holding an overloaded member function
11100        // or template.
11101        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11102                                                       Found, Fn);
11103        if (SubExpr == UnOp->getSubExpr())
11104          return UnOp;
11105
11106        assert(isa<DeclRefExpr>(SubExpr)
11107               && "fixed to something other than a decl ref");
11108        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11109               && "fixed to a member ref with no nested name qualifier");
11110
11111        // We have taken the address of a pointer to member
11112        // function. Perform the computation here so that we get the
11113        // appropriate pointer to member type.
11114        QualType ClassType
11115          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11116        QualType MemPtrType
11117          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11118
11119        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11120                                           VK_RValue, OK_Ordinary,
11121                                           UnOp->getOperatorLoc());
11122      }
11123    }
11124    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11125                                                   Found, Fn);
11126    if (SubExpr == UnOp->getSubExpr())
11127      return UnOp;
11128
11129    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11130                                     Context.getPointerType(SubExpr->getType()),
11131                                       VK_RValue, OK_Ordinary,
11132                                       UnOp->getOperatorLoc());
11133  }
11134
11135  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11136    // FIXME: avoid copy.
11137    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11138    if (ULE->hasExplicitTemplateArgs()) {
11139      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11140      TemplateArgs = &TemplateArgsBuffer;
11141    }
11142
11143    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11144                                           ULE->getQualifierLoc(),
11145                                           ULE->getTemplateKeywordLoc(),
11146                                           Fn,
11147                                           /*enclosing*/ false, // FIXME?
11148                                           ULE->getNameLoc(),
11149                                           Fn->getType(),
11150                                           VK_LValue,
11151                                           Found.getDecl(),
11152                                           TemplateArgs);
11153    MarkDeclRefReferenced(DRE);
11154    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11155    return DRE;
11156  }
11157
11158  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11159    // FIXME: avoid copy.
11160    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11161    if (MemExpr->hasExplicitTemplateArgs()) {
11162      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11163      TemplateArgs = &TemplateArgsBuffer;
11164    }
11165
11166    Expr *Base;
11167
11168    // If we're filling in a static method where we used to have an
11169    // implicit member access, rewrite to a simple decl ref.
11170    if (MemExpr->isImplicitAccess()) {
11171      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11172        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11173                                               MemExpr->getQualifierLoc(),
11174                                               MemExpr->getTemplateKeywordLoc(),
11175                                               Fn,
11176                                               /*enclosing*/ false,
11177                                               MemExpr->getMemberLoc(),
11178                                               Fn->getType(),
11179                                               VK_LValue,
11180                                               Found.getDecl(),
11181                                               TemplateArgs);
11182        MarkDeclRefReferenced(DRE);
11183        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11184        return DRE;
11185      } else {
11186        SourceLocation Loc = MemExpr->getMemberLoc();
11187        if (MemExpr->getQualifier())
11188          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11189        CheckCXXThisCapture(Loc);
11190        Base = new (Context) CXXThisExpr(Loc,
11191                                         MemExpr->getBaseType(),
11192                                         /*isImplicit=*/true);
11193      }
11194    } else
11195      Base = MemExpr->getBase();
11196
11197    ExprValueKind valueKind;
11198    QualType type;
11199    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11200      valueKind = VK_LValue;
11201      type = Fn->getType();
11202    } else {
11203      valueKind = VK_RValue;
11204      type = Context.BoundMemberTy;
11205    }
11206
11207    MemberExpr *ME = MemberExpr::Create(Context, Base,
11208                                        MemExpr->isArrow(),
11209                                        MemExpr->getQualifierLoc(),
11210                                        MemExpr->getTemplateKeywordLoc(),
11211                                        Fn,
11212                                        Found,
11213                                        MemExpr->getMemberNameInfo(),
11214                                        TemplateArgs,
11215                                        type, valueKind, OK_Ordinary);
11216    ME->setHadMultipleCandidates(true);
11217    return ME;
11218  }
11219
11220  llvm_unreachable("Invalid reference to overloaded function");
11221}
11222
11223ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11224                                                DeclAccessPair Found,
11225                                                FunctionDecl *Fn) {
11226  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11227}
11228
11229} // end namespace clang
11230