SemaOverload.cpp revision 7ea491cd10c4ea5bf54b9dc15a07ff49cc8a44c6
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Overload.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/SemaInternal.h"
28#include "clang/Sema/Template.h"
29#include "clang/Sema/TemplateDeduction.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include <algorithm>
35
36namespace clang {
37using namespace sema;
38
39/// A convenience routine for creating a decayed reference to a function.
40static ExprResult
41CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
42                      bool HadMultipleCandidates,
43                      SourceLocation Loc = SourceLocation(),
44                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
45  if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
46    return ExprError();
47  // If FoundDecl is different from Fn (such as if one is a template
48  // and the other a specialization), make sure DiagnoseUseOfDecl is
49  // called on both.
50  // FIXME: This would be more comprehensively addressed by modifying
51  // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
52  // being used.
53  if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
54    return ExprError();
55  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
56                                                 VK_LValue, Loc, LocInfo);
57  if (HadMultipleCandidates)
58    DRE->setHadMultipleCandidates(true);
59
60  S.MarkDeclRefReferenced(DRE);
61
62  ExprResult E = S.Owned(DRE);
63  E = S.DefaultFunctionArrayConversion(E.take());
64  if (E.isInvalid())
65    return ExprError();
66  return E;
67}
68
69static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
70                                 bool InOverloadResolution,
71                                 StandardConversionSequence &SCS,
72                                 bool CStyle,
73                                 bool AllowObjCWritebackConversion);
74
75static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
76                                                 QualType &ToType,
77                                                 bool InOverloadResolution,
78                                                 StandardConversionSequence &SCS,
79                                                 bool CStyle);
80static OverloadingResult
81IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
82                        UserDefinedConversionSequence& User,
83                        OverloadCandidateSet& Conversions,
84                        bool AllowExplicit);
85
86
87static ImplicitConversionSequence::CompareKind
88CompareStandardConversionSequences(Sema &S,
89                                   const StandardConversionSequence& SCS1,
90                                   const StandardConversionSequence& SCS2);
91
92static ImplicitConversionSequence::CompareKind
93CompareQualificationConversions(Sema &S,
94                                const StandardConversionSequence& SCS1,
95                                const StandardConversionSequence& SCS2);
96
97static ImplicitConversionSequence::CompareKind
98CompareDerivedToBaseConversions(Sema &S,
99                                const StandardConversionSequence& SCS1,
100                                const StandardConversionSequence& SCS2);
101
102
103
104/// GetConversionCategory - Retrieve the implicit conversion
105/// category corresponding to the given implicit conversion kind.
106ImplicitConversionCategory
107GetConversionCategory(ImplicitConversionKind Kind) {
108  static const ImplicitConversionCategory
109    Category[(int)ICK_Num_Conversion_Kinds] = {
110    ICC_Identity,
111    ICC_Lvalue_Transformation,
112    ICC_Lvalue_Transformation,
113    ICC_Lvalue_Transformation,
114    ICC_Identity,
115    ICC_Qualification_Adjustment,
116    ICC_Promotion,
117    ICC_Promotion,
118    ICC_Promotion,
119    ICC_Conversion,
120    ICC_Conversion,
121    ICC_Conversion,
122    ICC_Conversion,
123    ICC_Conversion,
124    ICC_Conversion,
125    ICC_Conversion,
126    ICC_Conversion,
127    ICC_Conversion,
128    ICC_Conversion,
129    ICC_Conversion,
130    ICC_Conversion,
131    ICC_Conversion
132  };
133  return Category[(int)Kind];
134}
135
136/// GetConversionRank - Retrieve the implicit conversion rank
137/// corresponding to the given implicit conversion kind.
138ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
139  static const ImplicitConversionRank
140    Rank[(int)ICK_Num_Conversion_Kinds] = {
141    ICR_Exact_Match,
142    ICR_Exact_Match,
143    ICR_Exact_Match,
144    ICR_Exact_Match,
145    ICR_Exact_Match,
146    ICR_Exact_Match,
147    ICR_Promotion,
148    ICR_Promotion,
149    ICR_Promotion,
150    ICR_Conversion,
151    ICR_Conversion,
152    ICR_Conversion,
153    ICR_Conversion,
154    ICR_Conversion,
155    ICR_Conversion,
156    ICR_Conversion,
157    ICR_Conversion,
158    ICR_Conversion,
159    ICR_Conversion,
160    ICR_Conversion,
161    ICR_Complex_Real_Conversion,
162    ICR_Conversion,
163    ICR_Conversion,
164    ICR_Writeback_Conversion
165  };
166  return Rank[(int)Kind];
167}
168
169/// GetImplicitConversionName - Return the name of this kind of
170/// implicit conversion.
171const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
172  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
173    "No conversion",
174    "Lvalue-to-rvalue",
175    "Array-to-pointer",
176    "Function-to-pointer",
177    "Noreturn adjustment",
178    "Qualification",
179    "Integral promotion",
180    "Floating point promotion",
181    "Complex promotion",
182    "Integral conversion",
183    "Floating conversion",
184    "Complex conversion",
185    "Floating-integral conversion",
186    "Pointer conversion",
187    "Pointer-to-member conversion",
188    "Boolean conversion",
189    "Compatible-types conversion",
190    "Derived-to-base conversion",
191    "Vector conversion",
192    "Vector splat",
193    "Complex-real conversion",
194    "Block Pointer conversion",
195    "Transparent Union Conversion"
196    "Writeback conversion"
197  };
198  return Name[Kind];
199}
200
201/// StandardConversionSequence - Set the standard conversion
202/// sequence to the identity conversion.
203void StandardConversionSequence::setAsIdentityConversion() {
204  First = ICK_Identity;
205  Second = ICK_Identity;
206  Third = ICK_Identity;
207  DeprecatedStringLiteralToCharPtr = false;
208  QualificationIncludesObjCLifetime = false;
209  ReferenceBinding = false;
210  DirectBinding = false;
211  IsLvalueReference = true;
212  BindsToFunctionLvalue = false;
213  BindsToRvalue = false;
214  BindsImplicitObjectArgumentWithoutRefQualifier = false;
215  ObjCLifetimeConversionBinding = false;
216  CopyConstructor = 0;
217}
218
219/// getRank - Retrieve the rank of this standard conversion sequence
220/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
221/// implicit conversions.
222ImplicitConversionRank StandardConversionSequence::getRank() const {
223  ImplicitConversionRank Rank = ICR_Exact_Match;
224  if  (GetConversionRank(First) > Rank)
225    Rank = GetConversionRank(First);
226  if  (GetConversionRank(Second) > Rank)
227    Rank = GetConversionRank(Second);
228  if  (GetConversionRank(Third) > Rank)
229    Rank = GetConversionRank(Third);
230  return Rank;
231}
232
233/// isPointerConversionToBool - Determines whether this conversion is
234/// a conversion of a pointer or pointer-to-member to bool. This is
235/// used as part of the ranking of standard conversion sequences
236/// (C++ 13.3.3.2p4).
237bool StandardConversionSequence::isPointerConversionToBool() const {
238  // Note that FromType has not necessarily been transformed by the
239  // array-to-pointer or function-to-pointer implicit conversions, so
240  // check for their presence as well as checking whether FromType is
241  // a pointer.
242  if (getToType(1)->isBooleanType() &&
243      (getFromType()->isPointerType() ||
244       getFromType()->isObjCObjectPointerType() ||
245       getFromType()->isBlockPointerType() ||
246       getFromType()->isNullPtrType() ||
247       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
248    return true;
249
250  return false;
251}
252
253/// isPointerConversionToVoidPointer - Determines whether this
254/// conversion is a conversion of a pointer to a void pointer. This is
255/// used as part of the ranking of standard conversion sequences (C++
256/// 13.3.3.2p4).
257bool
258StandardConversionSequence::
259isPointerConversionToVoidPointer(ASTContext& Context) const {
260  QualType FromType = getFromType();
261  QualType ToType = getToType(1);
262
263  // Note that FromType has not necessarily been transformed by the
264  // array-to-pointer implicit conversion, so check for its presence
265  // and redo the conversion to get a pointer.
266  if (First == ICK_Array_To_Pointer)
267    FromType = Context.getArrayDecayedType(FromType);
268
269  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
270    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
271      return ToPtrType->getPointeeType()->isVoidType();
272
273  return false;
274}
275
276/// Skip any implicit casts which could be either part of a narrowing conversion
277/// or after one in an implicit conversion.
278static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
279  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280    switch (ICE->getCastKind()) {
281    case CK_NoOp:
282    case CK_IntegralCast:
283    case CK_IntegralToBoolean:
284    case CK_IntegralToFloating:
285    case CK_FloatingToIntegral:
286    case CK_FloatingToBoolean:
287    case CK_FloatingCast:
288      Converted = ICE->getSubExpr();
289      continue;
290
291    default:
292      return Converted;
293    }
294  }
295
296  return Converted;
297}
298
299/// Check if this standard conversion sequence represents a narrowing
300/// conversion, according to C++11 [dcl.init.list]p7.
301///
302/// \param Ctx  The AST context.
303/// \param Converted  The result of applying this standard conversion sequence.
304/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
305///        value of the expression prior to the narrowing conversion.
306/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
307///        type of the expression prior to the narrowing conversion.
308NarrowingKind
309StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
310                                             const Expr *Converted,
311                                             APValue &ConstantValue,
312                                             QualType &ConstantType) const {
313  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
314
315  // C++11 [dcl.init.list]p7:
316  //   A narrowing conversion is an implicit conversion ...
317  QualType FromType = getToType(0);
318  QualType ToType = getToType(1);
319  switch (Second) {
320  // -- from a floating-point type to an integer type, or
321  //
322  // -- from an integer type or unscoped enumeration type to a floating-point
323  //    type, except where the source is a constant expression and the actual
324  //    value after conversion will fit into the target type and will produce
325  //    the original value when converted back to the original type, or
326  case ICK_Floating_Integral:
327    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
328      return NK_Type_Narrowing;
329    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
330      llvm::APSInt IntConstantValue;
331      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
332      if (Initializer &&
333          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
334        // Convert the integer to the floating type.
335        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
336        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
337                                llvm::APFloat::rmNearestTiesToEven);
338        // And back.
339        llvm::APSInt ConvertedValue = IntConstantValue;
340        bool ignored;
341        Result.convertToInteger(ConvertedValue,
342                                llvm::APFloat::rmTowardZero, &ignored);
343        // If the resulting value is different, this was a narrowing conversion.
344        if (IntConstantValue != ConvertedValue) {
345          ConstantValue = APValue(IntConstantValue);
346          ConstantType = Initializer->getType();
347          return NK_Constant_Narrowing;
348        }
349      } else {
350        // Variables are always narrowings.
351        return NK_Variable_Narrowing;
352      }
353    }
354    return NK_Not_Narrowing;
355
356  // -- from long double to double or float, or from double to float, except
357  //    where the source is a constant expression and the actual value after
358  //    conversion is within the range of values that can be represented (even
359  //    if it cannot be represented exactly), or
360  case ICK_Floating_Conversion:
361    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
362        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
363      // FromType is larger than ToType.
364      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
365      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
366        // Constant!
367        assert(ConstantValue.isFloat());
368        llvm::APFloat FloatVal = ConstantValue.getFloat();
369        // Convert the source value into the target type.
370        bool ignored;
371        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
372          Ctx.getFloatTypeSemantics(ToType),
373          llvm::APFloat::rmNearestTiesToEven, &ignored);
374        // If there was no overflow, the source value is within the range of
375        // values that can be represented.
376        if (ConvertStatus & llvm::APFloat::opOverflow) {
377          ConstantType = Initializer->getType();
378          return NK_Constant_Narrowing;
379        }
380      } else {
381        return NK_Variable_Narrowing;
382      }
383    }
384    return NK_Not_Narrowing;
385
386  // -- from an integer type or unscoped enumeration type to an integer type
387  //    that cannot represent all the values of the original type, except where
388  //    the source is a constant expression and the actual value after
389  //    conversion will fit into the target type and will produce the original
390  //    value when converted back to the original type.
391  case ICK_Boolean_Conversion:  // Bools are integers too.
392    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
393      // Boolean conversions can be from pointers and pointers to members
394      // [conv.bool], and those aren't considered narrowing conversions.
395      return NK_Not_Narrowing;
396    }  // Otherwise, fall through to the integral case.
397  case ICK_Integral_Conversion: {
398    assert(FromType->isIntegralOrUnscopedEnumerationType());
399    assert(ToType->isIntegralOrUnscopedEnumerationType());
400    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
401    const unsigned FromWidth = Ctx.getIntWidth(FromType);
402    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
403    const unsigned ToWidth = Ctx.getIntWidth(ToType);
404
405    if (FromWidth > ToWidth ||
406        (FromWidth == ToWidth && FromSigned != ToSigned) ||
407        (FromSigned && !ToSigned)) {
408      // Not all values of FromType can be represented in ToType.
409      llvm::APSInt InitializerValue;
410      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
411      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
412        // Such conversions on variables are always narrowing.
413        return NK_Variable_Narrowing;
414      }
415      bool Narrowing = false;
416      if (FromWidth < ToWidth) {
417        // Negative -> unsigned is narrowing. Otherwise, more bits is never
418        // narrowing.
419        if (InitializerValue.isSigned() && InitializerValue.isNegative())
420          Narrowing = true;
421      } else {
422        // Add a bit to the InitializerValue so we don't have to worry about
423        // signed vs. unsigned comparisons.
424        InitializerValue = InitializerValue.extend(
425          InitializerValue.getBitWidth() + 1);
426        // Convert the initializer to and from the target width and signed-ness.
427        llvm::APSInt ConvertedValue = InitializerValue;
428        ConvertedValue = ConvertedValue.trunc(ToWidth);
429        ConvertedValue.setIsSigned(ToSigned);
430        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
431        ConvertedValue.setIsSigned(InitializerValue.isSigned());
432        // If the result is different, this was a narrowing conversion.
433        if (ConvertedValue != InitializerValue)
434          Narrowing = true;
435      }
436      if (Narrowing) {
437        ConstantType = Initializer->getType();
438        ConstantValue = APValue(InitializerValue);
439        return NK_Constant_Narrowing;
440      }
441    }
442    return NK_Not_Narrowing;
443  }
444
445  default:
446    // Other kinds of conversions are not narrowings.
447    return NK_Not_Narrowing;
448  }
449}
450
451/// DebugPrint - Print this standard conversion sequence to standard
452/// error. Useful for debugging overloading issues.
453void StandardConversionSequence::DebugPrint() const {
454  raw_ostream &OS = llvm::errs();
455  bool PrintedSomething = false;
456  if (First != ICK_Identity) {
457    OS << GetImplicitConversionName(First);
458    PrintedSomething = true;
459  }
460
461  if (Second != ICK_Identity) {
462    if (PrintedSomething) {
463      OS << " -> ";
464    }
465    OS << GetImplicitConversionName(Second);
466
467    if (CopyConstructor) {
468      OS << " (by copy constructor)";
469    } else if (DirectBinding) {
470      OS << " (direct reference binding)";
471    } else if (ReferenceBinding) {
472      OS << " (reference binding)";
473    }
474    PrintedSomething = true;
475  }
476
477  if (Third != ICK_Identity) {
478    if (PrintedSomething) {
479      OS << " -> ";
480    }
481    OS << GetImplicitConversionName(Third);
482    PrintedSomething = true;
483  }
484
485  if (!PrintedSomething) {
486    OS << "No conversions required";
487  }
488}
489
490/// DebugPrint - Print this user-defined conversion sequence to standard
491/// error. Useful for debugging overloading issues.
492void UserDefinedConversionSequence::DebugPrint() const {
493  raw_ostream &OS = llvm::errs();
494  if (Before.First || Before.Second || Before.Third) {
495    Before.DebugPrint();
496    OS << " -> ";
497  }
498  if (ConversionFunction)
499    OS << '\'' << *ConversionFunction << '\'';
500  else
501    OS << "aggregate initialization";
502  if (After.First || After.Second || After.Third) {
503    OS << " -> ";
504    After.DebugPrint();
505  }
506}
507
508/// DebugPrint - Print this implicit conversion sequence to standard
509/// error. Useful for debugging overloading issues.
510void ImplicitConversionSequence::DebugPrint() const {
511  raw_ostream &OS = llvm::errs();
512  switch (ConversionKind) {
513  case StandardConversion:
514    OS << "Standard conversion: ";
515    Standard.DebugPrint();
516    break;
517  case UserDefinedConversion:
518    OS << "User-defined conversion: ";
519    UserDefined.DebugPrint();
520    break;
521  case EllipsisConversion:
522    OS << "Ellipsis conversion";
523    break;
524  case AmbiguousConversion:
525    OS << "Ambiguous conversion";
526    break;
527  case BadConversion:
528    OS << "Bad conversion";
529    break;
530  }
531
532  OS << "\n";
533}
534
535void AmbiguousConversionSequence::construct() {
536  new (&conversions()) ConversionSet();
537}
538
539void AmbiguousConversionSequence::destruct() {
540  conversions().~ConversionSet();
541}
542
543void
544AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
545  FromTypePtr = O.FromTypePtr;
546  ToTypePtr = O.ToTypePtr;
547  new (&conversions()) ConversionSet(O.conversions());
548}
549
550namespace {
551  // Structure used by DeductionFailureInfo to store
552  // template argument information.
553  struct DFIArguments {
554    TemplateArgument FirstArg;
555    TemplateArgument SecondArg;
556  };
557  // Structure used by DeductionFailureInfo to store
558  // template parameter and template argument information.
559  struct DFIParamWithArguments : DFIArguments {
560    TemplateParameter Param;
561  };
562}
563
564/// \brief Convert from Sema's representation of template deduction information
565/// to the form used in overload-candidate information.
566DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context,
567                                              Sema::TemplateDeductionResult TDK,
568                                              TemplateDeductionInfo &Info) {
569  DeductionFailureInfo Result;
570  Result.Result = static_cast<unsigned>(TDK);
571  Result.HasDiagnostic = false;
572  Result.Data = 0;
573  switch (TDK) {
574  case Sema::TDK_Success:
575  case Sema::TDK_Invalid:
576  case Sema::TDK_InstantiationDepth:
577  case Sema::TDK_TooManyArguments:
578  case Sema::TDK_TooFewArguments:
579    break;
580
581  case Sema::TDK_Incomplete:
582  case Sema::TDK_InvalidExplicitArguments:
583    Result.Data = Info.Param.getOpaqueValue();
584    break;
585
586  case Sema::TDK_NonDeducedMismatch: {
587    // FIXME: Should allocate from normal heap so that we can free this later.
588    DFIArguments *Saved = new (Context) DFIArguments;
589    Saved->FirstArg = Info.FirstArg;
590    Saved->SecondArg = Info.SecondArg;
591    Result.Data = Saved;
592    break;
593  }
594
595  case Sema::TDK_Inconsistent:
596  case Sema::TDK_Underqualified: {
597    // FIXME: Should allocate from normal heap so that we can free this later.
598    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
599    Saved->Param = Info.Param;
600    Saved->FirstArg = Info.FirstArg;
601    Saved->SecondArg = Info.SecondArg;
602    Result.Data = Saved;
603    break;
604  }
605
606  case Sema::TDK_SubstitutionFailure:
607    Result.Data = Info.take();
608    if (Info.hasSFINAEDiagnostic()) {
609      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
610          SourceLocation(), PartialDiagnostic::NullDiagnostic());
611      Info.takeSFINAEDiagnostic(*Diag);
612      Result.HasDiagnostic = true;
613    }
614    break;
615
616  case Sema::TDK_FailedOverloadResolution:
617    Result.Data = Info.Expression;
618    break;
619
620  case Sema::TDK_MiscellaneousDeductionFailure:
621    break;
622  }
623
624  return Result;
625}
626
627void DeductionFailureInfo::Destroy() {
628  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
629  case Sema::TDK_Success:
630  case Sema::TDK_Invalid:
631  case Sema::TDK_InstantiationDepth:
632  case Sema::TDK_Incomplete:
633  case Sema::TDK_TooManyArguments:
634  case Sema::TDK_TooFewArguments:
635  case Sema::TDK_InvalidExplicitArguments:
636  case Sema::TDK_FailedOverloadResolution:
637    break;
638
639  case Sema::TDK_Inconsistent:
640  case Sema::TDK_Underqualified:
641  case Sema::TDK_NonDeducedMismatch:
642    // FIXME: Destroy the data?
643    Data = 0;
644    break;
645
646  case Sema::TDK_SubstitutionFailure:
647    // FIXME: Destroy the template argument list?
648    Data = 0;
649    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
650      Diag->~PartialDiagnosticAt();
651      HasDiagnostic = false;
652    }
653    break;
654
655  // Unhandled
656  case Sema::TDK_MiscellaneousDeductionFailure:
657    break;
658  }
659}
660
661PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
662  if (HasDiagnostic)
663    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
664  return 0;
665}
666
667TemplateParameter DeductionFailureInfo::getTemplateParameter() {
668  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
669  case Sema::TDK_Success:
670  case Sema::TDK_Invalid:
671  case Sema::TDK_InstantiationDepth:
672  case Sema::TDK_TooManyArguments:
673  case Sema::TDK_TooFewArguments:
674  case Sema::TDK_SubstitutionFailure:
675  case Sema::TDK_NonDeducedMismatch:
676  case Sema::TDK_FailedOverloadResolution:
677    return TemplateParameter();
678
679  case Sema::TDK_Incomplete:
680  case Sema::TDK_InvalidExplicitArguments:
681    return TemplateParameter::getFromOpaqueValue(Data);
682
683  case Sema::TDK_Inconsistent:
684  case Sema::TDK_Underqualified:
685    return static_cast<DFIParamWithArguments*>(Data)->Param;
686
687  // Unhandled
688  case Sema::TDK_MiscellaneousDeductionFailure:
689    break;
690  }
691
692  return TemplateParameter();
693}
694
695TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
696  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
697  case Sema::TDK_Success:
698  case Sema::TDK_Invalid:
699  case Sema::TDK_InstantiationDepth:
700  case Sema::TDK_TooManyArguments:
701  case Sema::TDK_TooFewArguments:
702  case Sema::TDK_Incomplete:
703  case Sema::TDK_InvalidExplicitArguments:
704  case Sema::TDK_Inconsistent:
705  case Sema::TDK_Underqualified:
706  case Sema::TDK_NonDeducedMismatch:
707  case Sema::TDK_FailedOverloadResolution:
708    return 0;
709
710  case Sema::TDK_SubstitutionFailure:
711    return static_cast<TemplateArgumentList*>(Data);
712
713  // Unhandled
714  case Sema::TDK_MiscellaneousDeductionFailure:
715    break;
716  }
717
718  return 0;
719}
720
721const TemplateArgument *DeductionFailureInfo::getFirstArg() {
722  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
723  case Sema::TDK_Success:
724  case Sema::TDK_Invalid:
725  case Sema::TDK_InstantiationDepth:
726  case Sema::TDK_Incomplete:
727  case Sema::TDK_TooManyArguments:
728  case Sema::TDK_TooFewArguments:
729  case Sema::TDK_InvalidExplicitArguments:
730  case Sema::TDK_SubstitutionFailure:
731  case Sema::TDK_FailedOverloadResolution:
732    return 0;
733
734  case Sema::TDK_Inconsistent:
735  case Sema::TDK_Underqualified:
736  case Sema::TDK_NonDeducedMismatch:
737    return &static_cast<DFIArguments*>(Data)->FirstArg;
738
739  // Unhandled
740  case Sema::TDK_MiscellaneousDeductionFailure:
741    break;
742  }
743
744  return 0;
745}
746
747const TemplateArgument *DeductionFailureInfo::getSecondArg() {
748  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749  case Sema::TDK_Success:
750  case Sema::TDK_Invalid:
751  case Sema::TDK_InstantiationDepth:
752  case Sema::TDK_Incomplete:
753  case Sema::TDK_TooManyArguments:
754  case Sema::TDK_TooFewArguments:
755  case Sema::TDK_InvalidExplicitArguments:
756  case Sema::TDK_SubstitutionFailure:
757  case Sema::TDK_FailedOverloadResolution:
758    return 0;
759
760  case Sema::TDK_Inconsistent:
761  case Sema::TDK_Underqualified:
762  case Sema::TDK_NonDeducedMismatch:
763    return &static_cast<DFIArguments*>(Data)->SecondArg;
764
765  // Unhandled
766  case Sema::TDK_MiscellaneousDeductionFailure:
767    break;
768  }
769
770  return 0;
771}
772
773Expr *DeductionFailureInfo::getExpr() {
774  if (static_cast<Sema::TemplateDeductionResult>(Result) ==
775        Sema::TDK_FailedOverloadResolution)
776    return static_cast<Expr*>(Data);
777
778  return 0;
779}
780
781void OverloadCandidateSet::destroyCandidates() {
782  for (iterator i = begin(), e = end(); i != e; ++i) {
783    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
784      i->Conversions[ii].~ImplicitConversionSequence();
785    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
786      i->DeductionFailure.Destroy();
787  }
788}
789
790void OverloadCandidateSet::clear() {
791  destroyCandidates();
792  NumInlineSequences = 0;
793  Candidates.clear();
794  Functions.clear();
795}
796
797namespace {
798  class UnbridgedCastsSet {
799    struct Entry {
800      Expr **Addr;
801      Expr *Saved;
802    };
803    SmallVector<Entry, 2> Entries;
804
805  public:
806    void save(Sema &S, Expr *&E) {
807      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
808      Entry entry = { &E, E };
809      Entries.push_back(entry);
810      E = S.stripARCUnbridgedCast(E);
811    }
812
813    void restore() {
814      for (SmallVectorImpl<Entry>::iterator
815             i = Entries.begin(), e = Entries.end(); i != e; ++i)
816        *i->Addr = i->Saved;
817    }
818  };
819}
820
821/// checkPlaceholderForOverload - Do any interesting placeholder-like
822/// preprocessing on the given expression.
823///
824/// \param unbridgedCasts a collection to which to add unbridged casts;
825///   without this, they will be immediately diagnosed as errors
826///
827/// Return true on unrecoverable error.
828static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
829                                        UnbridgedCastsSet *unbridgedCasts = 0) {
830  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
831    // We can't handle overloaded expressions here because overload
832    // resolution might reasonably tweak them.
833    if (placeholder->getKind() == BuiltinType::Overload) return false;
834
835    // If the context potentially accepts unbridged ARC casts, strip
836    // the unbridged cast and add it to the collection for later restoration.
837    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
838        unbridgedCasts) {
839      unbridgedCasts->save(S, E);
840      return false;
841    }
842
843    // Go ahead and check everything else.
844    ExprResult result = S.CheckPlaceholderExpr(E);
845    if (result.isInvalid())
846      return true;
847
848    E = result.take();
849    return false;
850  }
851
852  // Nothing to do.
853  return false;
854}
855
856/// checkArgPlaceholdersForOverload - Check a set of call operands for
857/// placeholders.
858static bool checkArgPlaceholdersForOverload(Sema &S,
859                                            MultiExprArg Args,
860                                            UnbridgedCastsSet &unbridged) {
861  for (unsigned i = 0, e = Args.size(); i != e; ++i)
862    if (checkPlaceholderForOverload(S, Args[i], &unbridged))
863      return true;
864
865  return false;
866}
867
868// IsOverload - Determine whether the given New declaration is an
869// overload of the declarations in Old. This routine returns false if
870// New and Old cannot be overloaded, e.g., if New has the same
871// signature as some function in Old (C++ 1.3.10) or if the Old
872// declarations aren't functions (or function templates) at all. When
873// it does return false, MatchedDecl will point to the decl that New
874// cannot be overloaded with.  This decl may be a UsingShadowDecl on
875// top of the underlying declaration.
876//
877// Example: Given the following input:
878//
879//   void f(int, float); // #1
880//   void f(int, int); // #2
881//   int f(int, int); // #3
882//
883// When we process #1, there is no previous declaration of "f",
884// so IsOverload will not be used.
885//
886// When we process #2, Old contains only the FunctionDecl for #1.  By
887// comparing the parameter types, we see that #1 and #2 are overloaded
888// (since they have different signatures), so this routine returns
889// false; MatchedDecl is unchanged.
890//
891// When we process #3, Old is an overload set containing #1 and #2. We
892// compare the signatures of #3 to #1 (they're overloaded, so we do
893// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
894// identical (return types of functions are not part of the
895// signature), IsOverload returns false and MatchedDecl will be set to
896// point to the FunctionDecl for #2.
897//
898// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
899// into a class by a using declaration.  The rules for whether to hide
900// shadow declarations ignore some properties which otherwise figure
901// into a function template's signature.
902Sema::OverloadKind
903Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
904                    NamedDecl *&Match, bool NewIsUsingDecl) {
905  for (LookupResult::iterator I = Old.begin(), E = Old.end();
906         I != E; ++I) {
907    NamedDecl *OldD = *I;
908
909    bool OldIsUsingDecl = false;
910    if (isa<UsingShadowDecl>(OldD)) {
911      OldIsUsingDecl = true;
912
913      // We can always introduce two using declarations into the same
914      // context, even if they have identical signatures.
915      if (NewIsUsingDecl) continue;
916
917      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
918    }
919
920    // If either declaration was introduced by a using declaration,
921    // we'll need to use slightly different rules for matching.
922    // Essentially, these rules are the normal rules, except that
923    // function templates hide function templates with different
924    // return types or template parameter lists.
925    bool UseMemberUsingDeclRules =
926      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
927      !New->getFriendObjectKind();
928
929    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
930      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
931        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
932          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
933          continue;
934        }
935
936        Match = *I;
937        return Ovl_Match;
938      }
939    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
940      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
941        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
942          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
943          continue;
944        }
945
946        if (!shouldLinkPossiblyHiddenDecl(*I, New))
947          continue;
948
949        Match = *I;
950        return Ovl_Match;
951      }
952    } else if (isa<UsingDecl>(OldD)) {
953      // We can overload with these, which can show up when doing
954      // redeclaration checks for UsingDecls.
955      assert(Old.getLookupKind() == LookupUsingDeclName);
956    } else if (isa<TagDecl>(OldD)) {
957      // We can always overload with tags by hiding them.
958    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
959      // Optimistically assume that an unresolved using decl will
960      // overload; if it doesn't, we'll have to diagnose during
961      // template instantiation.
962    } else {
963      // (C++ 13p1):
964      //   Only function declarations can be overloaded; object and type
965      //   declarations cannot be overloaded.
966      Match = *I;
967      return Ovl_NonFunction;
968    }
969  }
970
971  return Ovl_Overload;
972}
973
974bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
975                      bool UseUsingDeclRules) {
976  // C++ [basic.start.main]p2: This function shall not be overloaded.
977  if (New->isMain())
978    return false;
979
980  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
981  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
982
983  // C++ [temp.fct]p2:
984  //   A function template can be overloaded with other function templates
985  //   and with normal (non-template) functions.
986  if ((OldTemplate == 0) != (NewTemplate == 0))
987    return true;
988
989  // Is the function New an overload of the function Old?
990  QualType OldQType = Context.getCanonicalType(Old->getType());
991  QualType NewQType = Context.getCanonicalType(New->getType());
992
993  // Compare the signatures (C++ 1.3.10) of the two functions to
994  // determine whether they are overloads. If we find any mismatch
995  // in the signature, they are overloads.
996
997  // If either of these functions is a K&R-style function (no
998  // prototype), then we consider them to have matching signatures.
999  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1000      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1001    return false;
1002
1003  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
1004  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
1005
1006  // The signature of a function includes the types of its
1007  // parameters (C++ 1.3.10), which includes the presence or absence
1008  // of the ellipsis; see C++ DR 357).
1009  if (OldQType != NewQType &&
1010      (OldType->getNumArgs() != NewType->getNumArgs() ||
1011       OldType->isVariadic() != NewType->isVariadic() ||
1012       !FunctionArgTypesAreEqual(OldType, NewType)))
1013    return true;
1014
1015  // C++ [temp.over.link]p4:
1016  //   The signature of a function template consists of its function
1017  //   signature, its return type and its template parameter list. The names
1018  //   of the template parameters are significant only for establishing the
1019  //   relationship between the template parameters and the rest of the
1020  //   signature.
1021  //
1022  // We check the return type and template parameter lists for function
1023  // templates first; the remaining checks follow.
1024  //
1025  // However, we don't consider either of these when deciding whether
1026  // a member introduced by a shadow declaration is hidden.
1027  if (!UseUsingDeclRules && NewTemplate &&
1028      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1029                                       OldTemplate->getTemplateParameters(),
1030                                       false, TPL_TemplateMatch) ||
1031       OldType->getResultType() != NewType->getResultType()))
1032    return true;
1033
1034  // If the function is a class member, its signature includes the
1035  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1036  //
1037  // As part of this, also check whether one of the member functions
1038  // is static, in which case they are not overloads (C++
1039  // 13.1p2). While not part of the definition of the signature,
1040  // this check is important to determine whether these functions
1041  // can be overloaded.
1042  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1043  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1044  if (OldMethod && NewMethod &&
1045      !OldMethod->isStatic() && !NewMethod->isStatic()) {
1046    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1047      if (!UseUsingDeclRules &&
1048          (OldMethod->getRefQualifier() == RQ_None ||
1049           NewMethod->getRefQualifier() == RQ_None)) {
1050        // C++0x [over.load]p2:
1051        //   - Member function declarations with the same name and the same
1052        //     parameter-type-list as well as member function template
1053        //     declarations with the same name, the same parameter-type-list, and
1054        //     the same template parameter lists cannot be overloaded if any of
1055        //     them, but not all, have a ref-qualifier (8.3.5).
1056        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1057          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1058        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1059      }
1060      return true;
1061    }
1062
1063    // We may not have applied the implicit const for a constexpr member
1064    // function yet (because we haven't yet resolved whether this is a static
1065    // or non-static member function). Add it now, on the assumption that this
1066    // is a redeclaration of OldMethod.
1067    unsigned NewQuals = NewMethod->getTypeQualifiers();
1068    if (!getLangOpts().CPlusPlus1y && NewMethod->isConstexpr() &&
1069        !isa<CXXConstructorDecl>(NewMethod))
1070      NewQuals |= Qualifiers::Const;
1071    if (OldMethod->getTypeQualifiers() != NewQuals)
1072      return true;
1073  }
1074
1075  // The signatures match; this is not an overload.
1076  return false;
1077}
1078
1079/// \brief Checks availability of the function depending on the current
1080/// function context. Inside an unavailable function, unavailability is ignored.
1081///
1082/// \returns true if \arg FD is unavailable and current context is inside
1083/// an available function, false otherwise.
1084bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1085  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1086}
1087
1088/// \brief Tries a user-defined conversion from From to ToType.
1089///
1090/// Produces an implicit conversion sequence for when a standard conversion
1091/// is not an option. See TryImplicitConversion for more information.
1092static ImplicitConversionSequence
1093TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1094                         bool SuppressUserConversions,
1095                         bool AllowExplicit,
1096                         bool InOverloadResolution,
1097                         bool CStyle,
1098                         bool AllowObjCWritebackConversion) {
1099  ImplicitConversionSequence ICS;
1100
1101  if (SuppressUserConversions) {
1102    // We're not in the case above, so there is no conversion that
1103    // we can perform.
1104    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1105    return ICS;
1106  }
1107
1108  // Attempt user-defined conversion.
1109  OverloadCandidateSet Conversions(From->getExprLoc());
1110  OverloadingResult UserDefResult
1111    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1112                              AllowExplicit);
1113
1114  if (UserDefResult == OR_Success) {
1115    ICS.setUserDefined();
1116    // C++ [over.ics.user]p4:
1117    //   A conversion of an expression of class type to the same class
1118    //   type is given Exact Match rank, and a conversion of an
1119    //   expression of class type to a base class of that type is
1120    //   given Conversion rank, in spite of the fact that a copy
1121    //   constructor (i.e., a user-defined conversion function) is
1122    //   called for those cases.
1123    if (CXXConstructorDecl *Constructor
1124          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1125      QualType FromCanon
1126        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1127      QualType ToCanon
1128        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1129      if (Constructor->isCopyConstructor() &&
1130          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1131        // Turn this into a "standard" conversion sequence, so that it
1132        // gets ranked with standard conversion sequences.
1133        ICS.setStandard();
1134        ICS.Standard.setAsIdentityConversion();
1135        ICS.Standard.setFromType(From->getType());
1136        ICS.Standard.setAllToTypes(ToType);
1137        ICS.Standard.CopyConstructor = Constructor;
1138        if (ToCanon != FromCanon)
1139          ICS.Standard.Second = ICK_Derived_To_Base;
1140      }
1141    }
1142
1143    // C++ [over.best.ics]p4:
1144    //   However, when considering the argument of a user-defined
1145    //   conversion function that is a candidate by 13.3.1.3 when
1146    //   invoked for the copying of the temporary in the second step
1147    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1148    //   13.3.1.6 in all cases, only standard conversion sequences and
1149    //   ellipsis conversion sequences are allowed.
1150    if (SuppressUserConversions && ICS.isUserDefined()) {
1151      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1152    }
1153  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1154    ICS.setAmbiguous();
1155    ICS.Ambiguous.setFromType(From->getType());
1156    ICS.Ambiguous.setToType(ToType);
1157    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1158         Cand != Conversions.end(); ++Cand)
1159      if (Cand->Viable)
1160        ICS.Ambiguous.addConversion(Cand->Function);
1161  } else {
1162    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1163  }
1164
1165  return ICS;
1166}
1167
1168/// TryImplicitConversion - Attempt to perform an implicit conversion
1169/// from the given expression (Expr) to the given type (ToType). This
1170/// function returns an implicit conversion sequence that can be used
1171/// to perform the initialization. Given
1172///
1173///   void f(float f);
1174///   void g(int i) { f(i); }
1175///
1176/// this routine would produce an implicit conversion sequence to
1177/// describe the initialization of f from i, which will be a standard
1178/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1179/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1180//
1181/// Note that this routine only determines how the conversion can be
1182/// performed; it does not actually perform the conversion. As such,
1183/// it will not produce any diagnostics if no conversion is available,
1184/// but will instead return an implicit conversion sequence of kind
1185/// "BadConversion".
1186///
1187/// If @p SuppressUserConversions, then user-defined conversions are
1188/// not permitted.
1189/// If @p AllowExplicit, then explicit user-defined conversions are
1190/// permitted.
1191///
1192/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1193/// writeback conversion, which allows __autoreleasing id* parameters to
1194/// be initialized with __strong id* or __weak id* arguments.
1195static ImplicitConversionSequence
1196TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1197                      bool SuppressUserConversions,
1198                      bool AllowExplicit,
1199                      bool InOverloadResolution,
1200                      bool CStyle,
1201                      bool AllowObjCWritebackConversion) {
1202  ImplicitConversionSequence ICS;
1203  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1204                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1205    ICS.setStandard();
1206    return ICS;
1207  }
1208
1209  if (!S.getLangOpts().CPlusPlus) {
1210    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1211    return ICS;
1212  }
1213
1214  // C++ [over.ics.user]p4:
1215  //   A conversion of an expression of class type to the same class
1216  //   type is given Exact Match rank, and a conversion of an
1217  //   expression of class type to a base class of that type is
1218  //   given Conversion rank, in spite of the fact that a copy/move
1219  //   constructor (i.e., a user-defined conversion function) is
1220  //   called for those cases.
1221  QualType FromType = From->getType();
1222  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1223      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1224       S.IsDerivedFrom(FromType, ToType))) {
1225    ICS.setStandard();
1226    ICS.Standard.setAsIdentityConversion();
1227    ICS.Standard.setFromType(FromType);
1228    ICS.Standard.setAllToTypes(ToType);
1229
1230    // We don't actually check at this point whether there is a valid
1231    // copy/move constructor, since overloading just assumes that it
1232    // exists. When we actually perform initialization, we'll find the
1233    // appropriate constructor to copy the returned object, if needed.
1234    ICS.Standard.CopyConstructor = 0;
1235
1236    // Determine whether this is considered a derived-to-base conversion.
1237    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1238      ICS.Standard.Second = ICK_Derived_To_Base;
1239
1240    return ICS;
1241  }
1242
1243  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1244                                  AllowExplicit, InOverloadResolution, CStyle,
1245                                  AllowObjCWritebackConversion);
1246}
1247
1248ImplicitConversionSequence
1249Sema::TryImplicitConversion(Expr *From, QualType ToType,
1250                            bool SuppressUserConversions,
1251                            bool AllowExplicit,
1252                            bool InOverloadResolution,
1253                            bool CStyle,
1254                            bool AllowObjCWritebackConversion) {
1255  return clang::TryImplicitConversion(*this, From, ToType,
1256                                      SuppressUserConversions, AllowExplicit,
1257                                      InOverloadResolution, CStyle,
1258                                      AllowObjCWritebackConversion);
1259}
1260
1261/// PerformImplicitConversion - Perform an implicit conversion of the
1262/// expression From to the type ToType. Returns the
1263/// converted expression. Flavor is the kind of conversion we're
1264/// performing, used in the error message. If @p AllowExplicit,
1265/// explicit user-defined conversions are permitted.
1266ExprResult
1267Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1268                                AssignmentAction Action, bool AllowExplicit) {
1269  ImplicitConversionSequence ICS;
1270  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1271}
1272
1273ExprResult
1274Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1275                                AssignmentAction Action, bool AllowExplicit,
1276                                ImplicitConversionSequence& ICS) {
1277  if (checkPlaceholderForOverload(*this, From))
1278    return ExprError();
1279
1280  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1281  bool AllowObjCWritebackConversion
1282    = getLangOpts().ObjCAutoRefCount &&
1283      (Action == AA_Passing || Action == AA_Sending);
1284
1285  ICS = clang::TryImplicitConversion(*this, From, ToType,
1286                                     /*SuppressUserConversions=*/false,
1287                                     AllowExplicit,
1288                                     /*InOverloadResolution=*/false,
1289                                     /*CStyle=*/false,
1290                                     AllowObjCWritebackConversion);
1291  return PerformImplicitConversion(From, ToType, ICS, Action);
1292}
1293
1294/// \brief Determine whether the conversion from FromType to ToType is a valid
1295/// conversion that strips "noreturn" off the nested function type.
1296bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1297                                QualType &ResultTy) {
1298  if (Context.hasSameUnqualifiedType(FromType, ToType))
1299    return false;
1300
1301  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1302  // where F adds one of the following at most once:
1303  //   - a pointer
1304  //   - a member pointer
1305  //   - a block pointer
1306  CanQualType CanTo = Context.getCanonicalType(ToType);
1307  CanQualType CanFrom = Context.getCanonicalType(FromType);
1308  Type::TypeClass TyClass = CanTo->getTypeClass();
1309  if (TyClass != CanFrom->getTypeClass()) return false;
1310  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1311    if (TyClass == Type::Pointer) {
1312      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1313      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1314    } else if (TyClass == Type::BlockPointer) {
1315      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1316      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1317    } else if (TyClass == Type::MemberPointer) {
1318      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1319      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1320    } else {
1321      return false;
1322    }
1323
1324    TyClass = CanTo->getTypeClass();
1325    if (TyClass != CanFrom->getTypeClass()) return false;
1326    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1327      return false;
1328  }
1329
1330  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1331  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1332  if (!EInfo.getNoReturn()) return false;
1333
1334  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1335  assert(QualType(FromFn, 0).isCanonical());
1336  if (QualType(FromFn, 0) != CanTo) return false;
1337
1338  ResultTy = ToType;
1339  return true;
1340}
1341
1342/// \brief Determine whether the conversion from FromType to ToType is a valid
1343/// vector conversion.
1344///
1345/// \param ICK Will be set to the vector conversion kind, if this is a vector
1346/// conversion.
1347static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1348                               QualType ToType, ImplicitConversionKind &ICK) {
1349  // We need at least one of these types to be a vector type to have a vector
1350  // conversion.
1351  if (!ToType->isVectorType() && !FromType->isVectorType())
1352    return false;
1353
1354  // Identical types require no conversions.
1355  if (Context.hasSameUnqualifiedType(FromType, ToType))
1356    return false;
1357
1358  // There are no conversions between extended vector types, only identity.
1359  if (ToType->isExtVectorType()) {
1360    // There are no conversions between extended vector types other than the
1361    // identity conversion.
1362    if (FromType->isExtVectorType())
1363      return false;
1364
1365    // Vector splat from any arithmetic type to a vector.
1366    if (FromType->isArithmeticType()) {
1367      ICK = ICK_Vector_Splat;
1368      return true;
1369    }
1370  }
1371
1372  // We can perform the conversion between vector types in the following cases:
1373  // 1)vector types are equivalent AltiVec and GCC vector types
1374  // 2)lax vector conversions are permitted and the vector types are of the
1375  //   same size
1376  if (ToType->isVectorType() && FromType->isVectorType()) {
1377    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1378        (Context.getLangOpts().LaxVectorConversions &&
1379         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1380      ICK = ICK_Vector_Conversion;
1381      return true;
1382    }
1383  }
1384
1385  return false;
1386}
1387
1388static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1389                                bool InOverloadResolution,
1390                                StandardConversionSequence &SCS,
1391                                bool CStyle);
1392
1393/// IsStandardConversion - Determines whether there is a standard
1394/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1395/// expression From to the type ToType. Standard conversion sequences
1396/// only consider non-class types; for conversions that involve class
1397/// types, use TryImplicitConversion. If a conversion exists, SCS will
1398/// contain the standard conversion sequence required to perform this
1399/// conversion and this routine will return true. Otherwise, this
1400/// routine will return false and the value of SCS is unspecified.
1401static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1402                                 bool InOverloadResolution,
1403                                 StandardConversionSequence &SCS,
1404                                 bool CStyle,
1405                                 bool AllowObjCWritebackConversion) {
1406  QualType FromType = From->getType();
1407
1408  // Standard conversions (C++ [conv])
1409  SCS.setAsIdentityConversion();
1410  SCS.DeprecatedStringLiteralToCharPtr = false;
1411  SCS.IncompatibleObjC = false;
1412  SCS.setFromType(FromType);
1413  SCS.CopyConstructor = 0;
1414
1415  // There are no standard conversions for class types in C++, so
1416  // abort early. When overloading in C, however, we do permit
1417  if (FromType->isRecordType() || ToType->isRecordType()) {
1418    if (S.getLangOpts().CPlusPlus)
1419      return false;
1420
1421    // When we're overloading in C, we allow, as standard conversions,
1422  }
1423
1424  // The first conversion can be an lvalue-to-rvalue conversion,
1425  // array-to-pointer conversion, or function-to-pointer conversion
1426  // (C++ 4p1).
1427
1428  if (FromType == S.Context.OverloadTy) {
1429    DeclAccessPair AccessPair;
1430    if (FunctionDecl *Fn
1431          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1432                                                 AccessPair)) {
1433      // We were able to resolve the address of the overloaded function,
1434      // so we can convert to the type of that function.
1435      FromType = Fn->getType();
1436
1437      // we can sometimes resolve &foo<int> regardless of ToType, so check
1438      // if the type matches (identity) or we are converting to bool
1439      if (!S.Context.hasSameUnqualifiedType(
1440                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1441        QualType resultTy;
1442        // if the function type matches except for [[noreturn]], it's ok
1443        if (!S.IsNoReturnConversion(FromType,
1444              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1445          // otherwise, only a boolean conversion is standard
1446          if (!ToType->isBooleanType())
1447            return false;
1448      }
1449
1450      // Check if the "from" expression is taking the address of an overloaded
1451      // function and recompute the FromType accordingly. Take advantage of the
1452      // fact that non-static member functions *must* have such an address-of
1453      // expression.
1454      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1455      if (Method && !Method->isStatic()) {
1456        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1457               "Non-unary operator on non-static member address");
1458        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1459               == UO_AddrOf &&
1460               "Non-address-of operator on non-static member address");
1461        const Type *ClassType
1462          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1463        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1464      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1465        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1466               UO_AddrOf &&
1467               "Non-address-of operator for overloaded function expression");
1468        FromType = S.Context.getPointerType(FromType);
1469      }
1470
1471      // Check that we've computed the proper type after overload resolution.
1472      assert(S.Context.hasSameType(
1473        FromType,
1474        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1475    } else {
1476      return false;
1477    }
1478  }
1479  // Lvalue-to-rvalue conversion (C++11 4.1):
1480  //   A glvalue (3.10) of a non-function, non-array type T can
1481  //   be converted to a prvalue.
1482  bool argIsLValue = From->isGLValue();
1483  if (argIsLValue &&
1484      !FromType->isFunctionType() && !FromType->isArrayType() &&
1485      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1486    SCS.First = ICK_Lvalue_To_Rvalue;
1487
1488    // C11 6.3.2.1p2:
1489    //   ... if the lvalue has atomic type, the value has the non-atomic version
1490    //   of the type of the lvalue ...
1491    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1492      FromType = Atomic->getValueType();
1493
1494    // If T is a non-class type, the type of the rvalue is the
1495    // cv-unqualified version of T. Otherwise, the type of the rvalue
1496    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1497    // just strip the qualifiers because they don't matter.
1498    FromType = FromType.getUnqualifiedType();
1499  } else if (FromType->isArrayType()) {
1500    // Array-to-pointer conversion (C++ 4.2)
1501    SCS.First = ICK_Array_To_Pointer;
1502
1503    // An lvalue or rvalue of type "array of N T" or "array of unknown
1504    // bound of T" can be converted to an rvalue of type "pointer to
1505    // T" (C++ 4.2p1).
1506    FromType = S.Context.getArrayDecayedType(FromType);
1507
1508    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1509      // This conversion is deprecated. (C++ D.4).
1510      SCS.DeprecatedStringLiteralToCharPtr = true;
1511
1512      // For the purpose of ranking in overload resolution
1513      // (13.3.3.1.1), this conversion is considered an
1514      // array-to-pointer conversion followed by a qualification
1515      // conversion (4.4). (C++ 4.2p2)
1516      SCS.Second = ICK_Identity;
1517      SCS.Third = ICK_Qualification;
1518      SCS.QualificationIncludesObjCLifetime = false;
1519      SCS.setAllToTypes(FromType);
1520      return true;
1521    }
1522  } else if (FromType->isFunctionType() && argIsLValue) {
1523    // Function-to-pointer conversion (C++ 4.3).
1524    SCS.First = ICK_Function_To_Pointer;
1525
1526    // An lvalue of function type T can be converted to an rvalue of
1527    // type "pointer to T." The result is a pointer to the
1528    // function. (C++ 4.3p1).
1529    FromType = S.Context.getPointerType(FromType);
1530  } else {
1531    // We don't require any conversions for the first step.
1532    SCS.First = ICK_Identity;
1533  }
1534  SCS.setToType(0, FromType);
1535
1536  // The second conversion can be an integral promotion, floating
1537  // point promotion, integral conversion, floating point conversion,
1538  // floating-integral conversion, pointer conversion,
1539  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1540  // For overloading in C, this can also be a "compatible-type"
1541  // conversion.
1542  bool IncompatibleObjC = false;
1543  ImplicitConversionKind SecondICK = ICK_Identity;
1544  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1545    // The unqualified versions of the types are the same: there's no
1546    // conversion to do.
1547    SCS.Second = ICK_Identity;
1548  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1549    // Integral promotion (C++ 4.5).
1550    SCS.Second = ICK_Integral_Promotion;
1551    FromType = ToType.getUnqualifiedType();
1552  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1553    // Floating point promotion (C++ 4.6).
1554    SCS.Second = ICK_Floating_Promotion;
1555    FromType = ToType.getUnqualifiedType();
1556  } else if (S.IsComplexPromotion(FromType, ToType)) {
1557    // Complex promotion (Clang extension)
1558    SCS.Second = ICK_Complex_Promotion;
1559    FromType = ToType.getUnqualifiedType();
1560  } else if (ToType->isBooleanType() &&
1561             (FromType->isArithmeticType() ||
1562              FromType->isAnyPointerType() ||
1563              FromType->isBlockPointerType() ||
1564              FromType->isMemberPointerType() ||
1565              FromType->isNullPtrType())) {
1566    // Boolean conversions (C++ 4.12).
1567    SCS.Second = ICK_Boolean_Conversion;
1568    FromType = S.Context.BoolTy;
1569  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1570             ToType->isIntegralType(S.Context)) {
1571    // Integral conversions (C++ 4.7).
1572    SCS.Second = ICK_Integral_Conversion;
1573    FromType = ToType.getUnqualifiedType();
1574  } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1575    // Complex conversions (C99 6.3.1.6)
1576    SCS.Second = ICK_Complex_Conversion;
1577    FromType = ToType.getUnqualifiedType();
1578  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1579             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1580    // Complex-real conversions (C99 6.3.1.7)
1581    SCS.Second = ICK_Complex_Real;
1582    FromType = ToType.getUnqualifiedType();
1583  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1584    // Floating point conversions (C++ 4.8).
1585    SCS.Second = ICK_Floating_Conversion;
1586    FromType = ToType.getUnqualifiedType();
1587  } else if ((FromType->isRealFloatingType() &&
1588              ToType->isIntegralType(S.Context)) ||
1589             (FromType->isIntegralOrUnscopedEnumerationType() &&
1590              ToType->isRealFloatingType())) {
1591    // Floating-integral conversions (C++ 4.9).
1592    SCS.Second = ICK_Floating_Integral;
1593    FromType = ToType.getUnqualifiedType();
1594  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1595    SCS.Second = ICK_Block_Pointer_Conversion;
1596  } else if (AllowObjCWritebackConversion &&
1597             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1598    SCS.Second = ICK_Writeback_Conversion;
1599  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1600                                   FromType, IncompatibleObjC)) {
1601    // Pointer conversions (C++ 4.10).
1602    SCS.Second = ICK_Pointer_Conversion;
1603    SCS.IncompatibleObjC = IncompatibleObjC;
1604    FromType = FromType.getUnqualifiedType();
1605  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1606                                         InOverloadResolution, FromType)) {
1607    // Pointer to member conversions (4.11).
1608    SCS.Second = ICK_Pointer_Member;
1609  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1610    SCS.Second = SecondICK;
1611    FromType = ToType.getUnqualifiedType();
1612  } else if (!S.getLangOpts().CPlusPlus &&
1613             S.Context.typesAreCompatible(ToType, FromType)) {
1614    // Compatible conversions (Clang extension for C function overloading)
1615    SCS.Second = ICK_Compatible_Conversion;
1616    FromType = ToType.getUnqualifiedType();
1617  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1618    // Treat a conversion that strips "noreturn" as an identity conversion.
1619    SCS.Second = ICK_NoReturn_Adjustment;
1620  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1621                                             InOverloadResolution,
1622                                             SCS, CStyle)) {
1623    SCS.Second = ICK_TransparentUnionConversion;
1624    FromType = ToType;
1625  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1626                                 CStyle)) {
1627    // tryAtomicConversion has updated the standard conversion sequence
1628    // appropriately.
1629    return true;
1630  } else if (ToType->isEventT() &&
1631             From->isIntegerConstantExpr(S.getASTContext()) &&
1632             (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1633    SCS.Second = ICK_Zero_Event_Conversion;
1634    FromType = ToType;
1635  } else {
1636    // No second conversion required.
1637    SCS.Second = ICK_Identity;
1638  }
1639  SCS.setToType(1, FromType);
1640
1641  QualType CanonFrom;
1642  QualType CanonTo;
1643  // The third conversion can be a qualification conversion (C++ 4p1).
1644  bool ObjCLifetimeConversion;
1645  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1646                                  ObjCLifetimeConversion)) {
1647    SCS.Third = ICK_Qualification;
1648    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1649    FromType = ToType;
1650    CanonFrom = S.Context.getCanonicalType(FromType);
1651    CanonTo = S.Context.getCanonicalType(ToType);
1652  } else {
1653    // No conversion required
1654    SCS.Third = ICK_Identity;
1655
1656    // C++ [over.best.ics]p6:
1657    //   [...] Any difference in top-level cv-qualification is
1658    //   subsumed by the initialization itself and does not constitute
1659    //   a conversion. [...]
1660    CanonFrom = S.Context.getCanonicalType(FromType);
1661    CanonTo = S.Context.getCanonicalType(ToType);
1662    if (CanonFrom.getLocalUnqualifiedType()
1663                                       == CanonTo.getLocalUnqualifiedType() &&
1664        CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1665      FromType = ToType;
1666      CanonFrom = CanonTo;
1667    }
1668  }
1669  SCS.setToType(2, FromType);
1670
1671  // If we have not converted the argument type to the parameter type,
1672  // this is a bad conversion sequence.
1673  if (CanonFrom != CanonTo)
1674    return false;
1675
1676  return true;
1677}
1678
1679static bool
1680IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1681                                     QualType &ToType,
1682                                     bool InOverloadResolution,
1683                                     StandardConversionSequence &SCS,
1684                                     bool CStyle) {
1685
1686  const RecordType *UT = ToType->getAsUnionType();
1687  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1688    return false;
1689  // The field to initialize within the transparent union.
1690  RecordDecl *UD = UT->getDecl();
1691  // It's compatible if the expression matches any of the fields.
1692  for (RecordDecl::field_iterator it = UD->field_begin(),
1693       itend = UD->field_end();
1694       it != itend; ++it) {
1695    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1696                             CStyle, /*ObjCWritebackConversion=*/false)) {
1697      ToType = it->getType();
1698      return true;
1699    }
1700  }
1701  return false;
1702}
1703
1704/// IsIntegralPromotion - Determines whether the conversion from the
1705/// expression From (whose potentially-adjusted type is FromType) to
1706/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1707/// sets PromotedType to the promoted type.
1708bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1709  const BuiltinType *To = ToType->getAs<BuiltinType>();
1710  // All integers are built-in.
1711  if (!To) {
1712    return false;
1713  }
1714
1715  // An rvalue of type char, signed char, unsigned char, short int, or
1716  // unsigned short int can be converted to an rvalue of type int if
1717  // int can represent all the values of the source type; otherwise,
1718  // the source rvalue can be converted to an rvalue of type unsigned
1719  // int (C++ 4.5p1).
1720  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1721      !FromType->isEnumeralType()) {
1722    if (// We can promote any signed, promotable integer type to an int
1723        (FromType->isSignedIntegerType() ||
1724         // We can promote any unsigned integer type whose size is
1725         // less than int to an int.
1726         (!FromType->isSignedIntegerType() &&
1727          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1728      return To->getKind() == BuiltinType::Int;
1729    }
1730
1731    return To->getKind() == BuiltinType::UInt;
1732  }
1733
1734  // C++11 [conv.prom]p3:
1735  //   A prvalue of an unscoped enumeration type whose underlying type is not
1736  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1737  //   following types that can represent all the values of the enumeration
1738  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1739  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1740  //   long long int. If none of the types in that list can represent all the
1741  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1742  //   type can be converted to an rvalue a prvalue of the extended integer type
1743  //   with lowest integer conversion rank (4.13) greater than the rank of long
1744  //   long in which all the values of the enumeration can be represented. If
1745  //   there are two such extended types, the signed one is chosen.
1746  // C++11 [conv.prom]p4:
1747  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1748  //   can be converted to a prvalue of its underlying type. Moreover, if
1749  //   integral promotion can be applied to its underlying type, a prvalue of an
1750  //   unscoped enumeration type whose underlying type is fixed can also be
1751  //   converted to a prvalue of the promoted underlying type.
1752  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1753    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1754    // provided for a scoped enumeration.
1755    if (FromEnumType->getDecl()->isScoped())
1756      return false;
1757
1758    // We can perform an integral promotion to the underlying type of the enum,
1759    // even if that's not the promoted type.
1760    if (FromEnumType->getDecl()->isFixed()) {
1761      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1762      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1763             IsIntegralPromotion(From, Underlying, ToType);
1764    }
1765
1766    // We have already pre-calculated the promotion type, so this is trivial.
1767    if (ToType->isIntegerType() &&
1768        !RequireCompleteType(From->getLocStart(), FromType, 0))
1769      return Context.hasSameUnqualifiedType(ToType,
1770                                FromEnumType->getDecl()->getPromotionType());
1771  }
1772
1773  // C++0x [conv.prom]p2:
1774  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1775  //   to an rvalue a prvalue of the first of the following types that can
1776  //   represent all the values of its underlying type: int, unsigned int,
1777  //   long int, unsigned long int, long long int, or unsigned long long int.
1778  //   If none of the types in that list can represent all the values of its
1779  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1780  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1781  //   type.
1782  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1783      ToType->isIntegerType()) {
1784    // Determine whether the type we're converting from is signed or
1785    // unsigned.
1786    bool FromIsSigned = FromType->isSignedIntegerType();
1787    uint64_t FromSize = Context.getTypeSize(FromType);
1788
1789    // The types we'll try to promote to, in the appropriate
1790    // order. Try each of these types.
1791    QualType PromoteTypes[6] = {
1792      Context.IntTy, Context.UnsignedIntTy,
1793      Context.LongTy, Context.UnsignedLongTy ,
1794      Context.LongLongTy, Context.UnsignedLongLongTy
1795    };
1796    for (int Idx = 0; Idx < 6; ++Idx) {
1797      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1798      if (FromSize < ToSize ||
1799          (FromSize == ToSize &&
1800           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1801        // We found the type that we can promote to. If this is the
1802        // type we wanted, we have a promotion. Otherwise, no
1803        // promotion.
1804        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1805      }
1806    }
1807  }
1808
1809  // An rvalue for an integral bit-field (9.6) can be converted to an
1810  // rvalue of type int if int can represent all the values of the
1811  // bit-field; otherwise, it can be converted to unsigned int if
1812  // unsigned int can represent all the values of the bit-field. If
1813  // the bit-field is larger yet, no integral promotion applies to
1814  // it. If the bit-field has an enumerated type, it is treated as any
1815  // other value of that type for promotion purposes (C++ 4.5p3).
1816  // FIXME: We should delay checking of bit-fields until we actually perform the
1817  // conversion.
1818  using llvm::APSInt;
1819  if (From)
1820    if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1821      APSInt BitWidth;
1822      if (FromType->isIntegralType(Context) &&
1823          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1824        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1825        ToSize = Context.getTypeSize(ToType);
1826
1827        // Are we promoting to an int from a bitfield that fits in an int?
1828        if (BitWidth < ToSize ||
1829            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1830          return To->getKind() == BuiltinType::Int;
1831        }
1832
1833        // Are we promoting to an unsigned int from an unsigned bitfield
1834        // that fits into an unsigned int?
1835        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1836          return To->getKind() == BuiltinType::UInt;
1837        }
1838
1839        return false;
1840      }
1841    }
1842
1843  // An rvalue of type bool can be converted to an rvalue of type int,
1844  // with false becoming zero and true becoming one (C++ 4.5p4).
1845  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1846    return true;
1847  }
1848
1849  return false;
1850}
1851
1852/// IsFloatingPointPromotion - Determines whether the conversion from
1853/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1854/// returns true and sets PromotedType to the promoted type.
1855bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1856  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1857    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1858      /// An rvalue of type float can be converted to an rvalue of type
1859      /// double. (C++ 4.6p1).
1860      if (FromBuiltin->getKind() == BuiltinType::Float &&
1861          ToBuiltin->getKind() == BuiltinType::Double)
1862        return true;
1863
1864      // C99 6.3.1.5p1:
1865      //   When a float is promoted to double or long double, or a
1866      //   double is promoted to long double [...].
1867      if (!getLangOpts().CPlusPlus &&
1868          (FromBuiltin->getKind() == BuiltinType::Float ||
1869           FromBuiltin->getKind() == BuiltinType::Double) &&
1870          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1871        return true;
1872
1873      // Half can be promoted to float.
1874      if (!getLangOpts().NativeHalfType &&
1875           FromBuiltin->getKind() == BuiltinType::Half &&
1876          ToBuiltin->getKind() == BuiltinType::Float)
1877        return true;
1878    }
1879
1880  return false;
1881}
1882
1883/// \brief Determine if a conversion is a complex promotion.
1884///
1885/// A complex promotion is defined as a complex -> complex conversion
1886/// where the conversion between the underlying real types is a
1887/// floating-point or integral promotion.
1888bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1889  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1890  if (!FromComplex)
1891    return false;
1892
1893  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1894  if (!ToComplex)
1895    return false;
1896
1897  return IsFloatingPointPromotion(FromComplex->getElementType(),
1898                                  ToComplex->getElementType()) ||
1899    IsIntegralPromotion(0, FromComplex->getElementType(),
1900                        ToComplex->getElementType());
1901}
1902
1903/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1904/// the pointer type FromPtr to a pointer to type ToPointee, with the
1905/// same type qualifiers as FromPtr has on its pointee type. ToType,
1906/// if non-empty, will be a pointer to ToType that may or may not have
1907/// the right set of qualifiers on its pointee.
1908///
1909static QualType
1910BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1911                                   QualType ToPointee, QualType ToType,
1912                                   ASTContext &Context,
1913                                   bool StripObjCLifetime = false) {
1914  assert((FromPtr->getTypeClass() == Type::Pointer ||
1915          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1916         "Invalid similarly-qualified pointer type");
1917
1918  /// Conversions to 'id' subsume cv-qualifier conversions.
1919  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1920    return ToType.getUnqualifiedType();
1921
1922  QualType CanonFromPointee
1923    = Context.getCanonicalType(FromPtr->getPointeeType());
1924  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1925  Qualifiers Quals = CanonFromPointee.getQualifiers();
1926
1927  if (StripObjCLifetime)
1928    Quals.removeObjCLifetime();
1929
1930  // Exact qualifier match -> return the pointer type we're converting to.
1931  if (CanonToPointee.getLocalQualifiers() == Quals) {
1932    // ToType is exactly what we need. Return it.
1933    if (!ToType.isNull())
1934      return ToType.getUnqualifiedType();
1935
1936    // Build a pointer to ToPointee. It has the right qualifiers
1937    // already.
1938    if (isa<ObjCObjectPointerType>(ToType))
1939      return Context.getObjCObjectPointerType(ToPointee);
1940    return Context.getPointerType(ToPointee);
1941  }
1942
1943  // Just build a canonical type that has the right qualifiers.
1944  QualType QualifiedCanonToPointee
1945    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1946
1947  if (isa<ObjCObjectPointerType>(ToType))
1948    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1949  return Context.getPointerType(QualifiedCanonToPointee);
1950}
1951
1952static bool isNullPointerConstantForConversion(Expr *Expr,
1953                                               bool InOverloadResolution,
1954                                               ASTContext &Context) {
1955  // Handle value-dependent integral null pointer constants correctly.
1956  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1957  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1958      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1959    return !InOverloadResolution;
1960
1961  return Expr->isNullPointerConstant(Context,
1962                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1963                                        : Expr::NPC_ValueDependentIsNull);
1964}
1965
1966/// IsPointerConversion - Determines whether the conversion of the
1967/// expression From, which has the (possibly adjusted) type FromType,
1968/// can be converted to the type ToType via a pointer conversion (C++
1969/// 4.10). If so, returns true and places the converted type (that
1970/// might differ from ToType in its cv-qualifiers at some level) into
1971/// ConvertedType.
1972///
1973/// This routine also supports conversions to and from block pointers
1974/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1975/// pointers to interfaces. FIXME: Once we've determined the
1976/// appropriate overloading rules for Objective-C, we may want to
1977/// split the Objective-C checks into a different routine; however,
1978/// GCC seems to consider all of these conversions to be pointer
1979/// conversions, so for now they live here. IncompatibleObjC will be
1980/// set if the conversion is an allowed Objective-C conversion that
1981/// should result in a warning.
1982bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1983                               bool InOverloadResolution,
1984                               QualType& ConvertedType,
1985                               bool &IncompatibleObjC) {
1986  IncompatibleObjC = false;
1987  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1988                              IncompatibleObjC))
1989    return true;
1990
1991  // Conversion from a null pointer constant to any Objective-C pointer type.
1992  if (ToType->isObjCObjectPointerType() &&
1993      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1994    ConvertedType = ToType;
1995    return true;
1996  }
1997
1998  // Blocks: Block pointers can be converted to void*.
1999  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2000      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2001    ConvertedType = ToType;
2002    return true;
2003  }
2004  // Blocks: A null pointer constant can be converted to a block
2005  // pointer type.
2006  if (ToType->isBlockPointerType() &&
2007      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2008    ConvertedType = ToType;
2009    return true;
2010  }
2011
2012  // If the left-hand-side is nullptr_t, the right side can be a null
2013  // pointer constant.
2014  if (ToType->isNullPtrType() &&
2015      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2016    ConvertedType = ToType;
2017    return true;
2018  }
2019
2020  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2021  if (!ToTypePtr)
2022    return false;
2023
2024  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2025  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2026    ConvertedType = ToType;
2027    return true;
2028  }
2029
2030  // Beyond this point, both types need to be pointers
2031  // , including objective-c pointers.
2032  QualType ToPointeeType = ToTypePtr->getPointeeType();
2033  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2034      !getLangOpts().ObjCAutoRefCount) {
2035    ConvertedType = BuildSimilarlyQualifiedPointerType(
2036                                      FromType->getAs<ObjCObjectPointerType>(),
2037                                                       ToPointeeType,
2038                                                       ToType, Context);
2039    return true;
2040  }
2041  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2042  if (!FromTypePtr)
2043    return false;
2044
2045  QualType FromPointeeType = FromTypePtr->getPointeeType();
2046
2047  // If the unqualified pointee types are the same, this can't be a
2048  // pointer conversion, so don't do all of the work below.
2049  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2050    return false;
2051
2052  // An rvalue of type "pointer to cv T," where T is an object type,
2053  // can be converted to an rvalue of type "pointer to cv void" (C++
2054  // 4.10p2).
2055  if (FromPointeeType->isIncompleteOrObjectType() &&
2056      ToPointeeType->isVoidType()) {
2057    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2058                                                       ToPointeeType,
2059                                                       ToType, Context,
2060                                                   /*StripObjCLifetime=*/true);
2061    return true;
2062  }
2063
2064  // MSVC allows implicit function to void* type conversion.
2065  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2066      ToPointeeType->isVoidType()) {
2067    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2068                                                       ToPointeeType,
2069                                                       ToType, Context);
2070    return true;
2071  }
2072
2073  // When we're overloading in C, we allow a special kind of pointer
2074  // conversion for compatible-but-not-identical pointee types.
2075  if (!getLangOpts().CPlusPlus &&
2076      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2077    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2078                                                       ToPointeeType,
2079                                                       ToType, Context);
2080    return true;
2081  }
2082
2083  // C++ [conv.ptr]p3:
2084  //
2085  //   An rvalue of type "pointer to cv D," where D is a class type,
2086  //   can be converted to an rvalue of type "pointer to cv B," where
2087  //   B is a base class (clause 10) of D. If B is an inaccessible
2088  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2089  //   necessitates this conversion is ill-formed. The result of the
2090  //   conversion is a pointer to the base class sub-object of the
2091  //   derived class object. The null pointer value is converted to
2092  //   the null pointer value of the destination type.
2093  //
2094  // Note that we do not check for ambiguity or inaccessibility
2095  // here. That is handled by CheckPointerConversion.
2096  if (getLangOpts().CPlusPlus &&
2097      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2098      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2099      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2100      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2101    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2102                                                       ToPointeeType,
2103                                                       ToType, Context);
2104    return true;
2105  }
2106
2107  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2108      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2109    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2110                                                       ToPointeeType,
2111                                                       ToType, Context);
2112    return true;
2113  }
2114
2115  return false;
2116}
2117
2118/// \brief Adopt the given qualifiers for the given type.
2119static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2120  Qualifiers TQs = T.getQualifiers();
2121
2122  // Check whether qualifiers already match.
2123  if (TQs == Qs)
2124    return T;
2125
2126  if (Qs.compatiblyIncludes(TQs))
2127    return Context.getQualifiedType(T, Qs);
2128
2129  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2130}
2131
2132/// isObjCPointerConversion - Determines whether this is an
2133/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2134/// with the same arguments and return values.
2135bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2136                                   QualType& ConvertedType,
2137                                   bool &IncompatibleObjC) {
2138  if (!getLangOpts().ObjC1)
2139    return false;
2140
2141  // The set of qualifiers on the type we're converting from.
2142  Qualifiers FromQualifiers = FromType.getQualifiers();
2143
2144  // First, we handle all conversions on ObjC object pointer types.
2145  const ObjCObjectPointerType* ToObjCPtr =
2146    ToType->getAs<ObjCObjectPointerType>();
2147  const ObjCObjectPointerType *FromObjCPtr =
2148    FromType->getAs<ObjCObjectPointerType>();
2149
2150  if (ToObjCPtr && FromObjCPtr) {
2151    // If the pointee types are the same (ignoring qualifications),
2152    // then this is not a pointer conversion.
2153    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2154                                       FromObjCPtr->getPointeeType()))
2155      return false;
2156
2157    // Check for compatible
2158    // Objective C++: We're able to convert between "id" or "Class" and a
2159    // pointer to any interface (in both directions).
2160    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2161      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2162      return true;
2163    }
2164    // Conversions with Objective-C's id<...>.
2165    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2166         ToObjCPtr->isObjCQualifiedIdType()) &&
2167        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2168                                                  /*compare=*/false)) {
2169      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2170      return true;
2171    }
2172    // Objective C++: We're able to convert from a pointer to an
2173    // interface to a pointer to a different interface.
2174    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2175      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2176      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2177      if (getLangOpts().CPlusPlus && LHS && RHS &&
2178          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2179                                                FromObjCPtr->getPointeeType()))
2180        return false;
2181      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2182                                                   ToObjCPtr->getPointeeType(),
2183                                                         ToType, Context);
2184      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2185      return true;
2186    }
2187
2188    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2189      // Okay: this is some kind of implicit downcast of Objective-C
2190      // interfaces, which is permitted. However, we're going to
2191      // complain about it.
2192      IncompatibleObjC = true;
2193      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2194                                                   ToObjCPtr->getPointeeType(),
2195                                                         ToType, Context);
2196      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2197      return true;
2198    }
2199  }
2200  // Beyond this point, both types need to be C pointers or block pointers.
2201  QualType ToPointeeType;
2202  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2203    ToPointeeType = ToCPtr->getPointeeType();
2204  else if (const BlockPointerType *ToBlockPtr =
2205            ToType->getAs<BlockPointerType>()) {
2206    // Objective C++: We're able to convert from a pointer to any object
2207    // to a block pointer type.
2208    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2209      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2210      return true;
2211    }
2212    ToPointeeType = ToBlockPtr->getPointeeType();
2213  }
2214  else if (FromType->getAs<BlockPointerType>() &&
2215           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2216    // Objective C++: We're able to convert from a block pointer type to a
2217    // pointer to any object.
2218    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2219    return true;
2220  }
2221  else
2222    return false;
2223
2224  QualType FromPointeeType;
2225  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2226    FromPointeeType = FromCPtr->getPointeeType();
2227  else if (const BlockPointerType *FromBlockPtr =
2228           FromType->getAs<BlockPointerType>())
2229    FromPointeeType = FromBlockPtr->getPointeeType();
2230  else
2231    return false;
2232
2233  // If we have pointers to pointers, recursively check whether this
2234  // is an Objective-C conversion.
2235  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2236      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2237                              IncompatibleObjC)) {
2238    // We always complain about this conversion.
2239    IncompatibleObjC = true;
2240    ConvertedType = Context.getPointerType(ConvertedType);
2241    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2242    return true;
2243  }
2244  // Allow conversion of pointee being objective-c pointer to another one;
2245  // as in I* to id.
2246  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2247      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2248      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2249                              IncompatibleObjC)) {
2250
2251    ConvertedType = Context.getPointerType(ConvertedType);
2252    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2253    return true;
2254  }
2255
2256  // If we have pointers to functions or blocks, check whether the only
2257  // differences in the argument and result types are in Objective-C
2258  // pointer conversions. If so, we permit the conversion (but
2259  // complain about it).
2260  const FunctionProtoType *FromFunctionType
2261    = FromPointeeType->getAs<FunctionProtoType>();
2262  const FunctionProtoType *ToFunctionType
2263    = ToPointeeType->getAs<FunctionProtoType>();
2264  if (FromFunctionType && ToFunctionType) {
2265    // If the function types are exactly the same, this isn't an
2266    // Objective-C pointer conversion.
2267    if (Context.getCanonicalType(FromPointeeType)
2268          == Context.getCanonicalType(ToPointeeType))
2269      return false;
2270
2271    // Perform the quick checks that will tell us whether these
2272    // function types are obviously different.
2273    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2274        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2275        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2276      return false;
2277
2278    bool HasObjCConversion = false;
2279    if (Context.getCanonicalType(FromFunctionType->getResultType())
2280          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2281      // Okay, the types match exactly. Nothing to do.
2282    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2283                                       ToFunctionType->getResultType(),
2284                                       ConvertedType, IncompatibleObjC)) {
2285      // Okay, we have an Objective-C pointer conversion.
2286      HasObjCConversion = true;
2287    } else {
2288      // Function types are too different. Abort.
2289      return false;
2290    }
2291
2292    // Check argument types.
2293    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2294         ArgIdx != NumArgs; ++ArgIdx) {
2295      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2296      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2297      if (Context.getCanonicalType(FromArgType)
2298            == Context.getCanonicalType(ToArgType)) {
2299        // Okay, the types match exactly. Nothing to do.
2300      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2301                                         ConvertedType, IncompatibleObjC)) {
2302        // Okay, we have an Objective-C pointer conversion.
2303        HasObjCConversion = true;
2304      } else {
2305        // Argument types are too different. Abort.
2306        return false;
2307      }
2308    }
2309
2310    if (HasObjCConversion) {
2311      // We had an Objective-C conversion. Allow this pointer
2312      // conversion, but complain about it.
2313      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2314      IncompatibleObjC = true;
2315      return true;
2316    }
2317  }
2318
2319  return false;
2320}
2321
2322/// \brief Determine whether this is an Objective-C writeback conversion,
2323/// used for parameter passing when performing automatic reference counting.
2324///
2325/// \param FromType The type we're converting form.
2326///
2327/// \param ToType The type we're converting to.
2328///
2329/// \param ConvertedType The type that will be produced after applying
2330/// this conversion.
2331bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2332                                     QualType &ConvertedType) {
2333  if (!getLangOpts().ObjCAutoRefCount ||
2334      Context.hasSameUnqualifiedType(FromType, ToType))
2335    return false;
2336
2337  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2338  QualType ToPointee;
2339  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2340    ToPointee = ToPointer->getPointeeType();
2341  else
2342    return false;
2343
2344  Qualifiers ToQuals = ToPointee.getQualifiers();
2345  if (!ToPointee->isObjCLifetimeType() ||
2346      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2347      !ToQuals.withoutObjCLifetime().empty())
2348    return false;
2349
2350  // Argument must be a pointer to __strong to __weak.
2351  QualType FromPointee;
2352  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2353    FromPointee = FromPointer->getPointeeType();
2354  else
2355    return false;
2356
2357  Qualifiers FromQuals = FromPointee.getQualifiers();
2358  if (!FromPointee->isObjCLifetimeType() ||
2359      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2360       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2361    return false;
2362
2363  // Make sure that we have compatible qualifiers.
2364  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2365  if (!ToQuals.compatiblyIncludes(FromQuals))
2366    return false;
2367
2368  // Remove qualifiers from the pointee type we're converting from; they
2369  // aren't used in the compatibility check belong, and we'll be adding back
2370  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2371  FromPointee = FromPointee.getUnqualifiedType();
2372
2373  // The unqualified form of the pointee types must be compatible.
2374  ToPointee = ToPointee.getUnqualifiedType();
2375  bool IncompatibleObjC;
2376  if (Context.typesAreCompatible(FromPointee, ToPointee))
2377    FromPointee = ToPointee;
2378  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2379                                    IncompatibleObjC))
2380    return false;
2381
2382  /// \brief Construct the type we're converting to, which is a pointer to
2383  /// __autoreleasing pointee.
2384  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2385  ConvertedType = Context.getPointerType(FromPointee);
2386  return true;
2387}
2388
2389bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2390                                    QualType& ConvertedType) {
2391  QualType ToPointeeType;
2392  if (const BlockPointerType *ToBlockPtr =
2393        ToType->getAs<BlockPointerType>())
2394    ToPointeeType = ToBlockPtr->getPointeeType();
2395  else
2396    return false;
2397
2398  QualType FromPointeeType;
2399  if (const BlockPointerType *FromBlockPtr =
2400      FromType->getAs<BlockPointerType>())
2401    FromPointeeType = FromBlockPtr->getPointeeType();
2402  else
2403    return false;
2404  // We have pointer to blocks, check whether the only
2405  // differences in the argument and result types are in Objective-C
2406  // pointer conversions. If so, we permit the conversion.
2407
2408  const FunctionProtoType *FromFunctionType
2409    = FromPointeeType->getAs<FunctionProtoType>();
2410  const FunctionProtoType *ToFunctionType
2411    = ToPointeeType->getAs<FunctionProtoType>();
2412
2413  if (!FromFunctionType || !ToFunctionType)
2414    return false;
2415
2416  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2417    return true;
2418
2419  // Perform the quick checks that will tell us whether these
2420  // function types are obviously different.
2421  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2422      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2423    return false;
2424
2425  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2426  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2427  if (FromEInfo != ToEInfo)
2428    return false;
2429
2430  bool IncompatibleObjC = false;
2431  if (Context.hasSameType(FromFunctionType->getResultType(),
2432                          ToFunctionType->getResultType())) {
2433    // Okay, the types match exactly. Nothing to do.
2434  } else {
2435    QualType RHS = FromFunctionType->getResultType();
2436    QualType LHS = ToFunctionType->getResultType();
2437    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2438        !RHS.hasQualifiers() && LHS.hasQualifiers())
2439       LHS = LHS.getUnqualifiedType();
2440
2441     if (Context.hasSameType(RHS,LHS)) {
2442       // OK exact match.
2443     } else if (isObjCPointerConversion(RHS, LHS,
2444                                        ConvertedType, IncompatibleObjC)) {
2445     if (IncompatibleObjC)
2446       return false;
2447     // Okay, we have an Objective-C pointer conversion.
2448     }
2449     else
2450       return false;
2451   }
2452
2453   // Check argument types.
2454   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2455        ArgIdx != NumArgs; ++ArgIdx) {
2456     IncompatibleObjC = false;
2457     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2458     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2459     if (Context.hasSameType(FromArgType, ToArgType)) {
2460       // Okay, the types match exactly. Nothing to do.
2461     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2462                                        ConvertedType, IncompatibleObjC)) {
2463       if (IncompatibleObjC)
2464         return false;
2465       // Okay, we have an Objective-C pointer conversion.
2466     } else
2467       // Argument types are too different. Abort.
2468       return false;
2469   }
2470   if (LangOpts.ObjCAutoRefCount &&
2471       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2472                                                    ToFunctionType))
2473     return false;
2474
2475   ConvertedType = ToType;
2476   return true;
2477}
2478
2479enum {
2480  ft_default,
2481  ft_different_class,
2482  ft_parameter_arity,
2483  ft_parameter_mismatch,
2484  ft_return_type,
2485  ft_qualifer_mismatch
2486};
2487
2488/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2489/// function types.  Catches different number of parameter, mismatch in
2490/// parameter types, and different return types.
2491void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2492                                      QualType FromType, QualType ToType) {
2493  // If either type is not valid, include no extra info.
2494  if (FromType.isNull() || ToType.isNull()) {
2495    PDiag << ft_default;
2496    return;
2497  }
2498
2499  // Get the function type from the pointers.
2500  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2501    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2502                            *ToMember = ToType->getAs<MemberPointerType>();
2503    if (FromMember->getClass() != ToMember->getClass()) {
2504      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2505            << QualType(FromMember->getClass(), 0);
2506      return;
2507    }
2508    FromType = FromMember->getPointeeType();
2509    ToType = ToMember->getPointeeType();
2510  }
2511
2512  if (FromType->isPointerType())
2513    FromType = FromType->getPointeeType();
2514  if (ToType->isPointerType())
2515    ToType = ToType->getPointeeType();
2516
2517  // Remove references.
2518  FromType = FromType.getNonReferenceType();
2519  ToType = ToType.getNonReferenceType();
2520
2521  // Don't print extra info for non-specialized template functions.
2522  if (FromType->isInstantiationDependentType() &&
2523      !FromType->getAs<TemplateSpecializationType>()) {
2524    PDiag << ft_default;
2525    return;
2526  }
2527
2528  // No extra info for same types.
2529  if (Context.hasSameType(FromType, ToType)) {
2530    PDiag << ft_default;
2531    return;
2532  }
2533
2534  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2535                          *ToFunction = ToType->getAs<FunctionProtoType>();
2536
2537  // Both types need to be function types.
2538  if (!FromFunction || !ToFunction) {
2539    PDiag << ft_default;
2540    return;
2541  }
2542
2543  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2544    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2545          << FromFunction->getNumArgs();
2546    return;
2547  }
2548
2549  // Handle different parameter types.
2550  unsigned ArgPos;
2551  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2552    PDiag << ft_parameter_mismatch << ArgPos + 1
2553          << ToFunction->getArgType(ArgPos)
2554          << FromFunction->getArgType(ArgPos);
2555    return;
2556  }
2557
2558  // Handle different return type.
2559  if (!Context.hasSameType(FromFunction->getResultType(),
2560                           ToFunction->getResultType())) {
2561    PDiag << ft_return_type << ToFunction->getResultType()
2562          << FromFunction->getResultType();
2563    return;
2564  }
2565
2566  unsigned FromQuals = FromFunction->getTypeQuals(),
2567           ToQuals = ToFunction->getTypeQuals();
2568  if (FromQuals != ToQuals) {
2569    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2570    return;
2571  }
2572
2573  // Unable to find a difference, so add no extra info.
2574  PDiag << ft_default;
2575}
2576
2577/// FunctionArgTypesAreEqual - This routine checks two function proto types
2578/// for equality of their argument types. Caller has already checked that
2579/// they have same number of arguments.  If the parameters are different,
2580/// ArgPos will have the parameter index of the first different parameter.
2581bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2582                                    const FunctionProtoType *NewType,
2583                                    unsigned *ArgPos) {
2584  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2585       N = NewType->arg_type_begin(),
2586       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2587    if (!Context.hasSameType(O->getUnqualifiedType(),
2588                             N->getUnqualifiedType())) {
2589      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2590      return false;
2591    }
2592  }
2593  return true;
2594}
2595
2596/// CheckPointerConversion - Check the pointer conversion from the
2597/// expression From to the type ToType. This routine checks for
2598/// ambiguous or inaccessible derived-to-base pointer
2599/// conversions for which IsPointerConversion has already returned
2600/// true. It returns true and produces a diagnostic if there was an
2601/// error, or returns false otherwise.
2602bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2603                                  CastKind &Kind,
2604                                  CXXCastPath& BasePath,
2605                                  bool IgnoreBaseAccess) {
2606  QualType FromType = From->getType();
2607  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2608
2609  Kind = CK_BitCast;
2610
2611  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2612      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2613      Expr::NPCK_ZeroExpression) {
2614    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2615      DiagRuntimeBehavior(From->getExprLoc(), From,
2616                          PDiag(diag::warn_impcast_bool_to_null_pointer)
2617                            << ToType << From->getSourceRange());
2618    else if (!isUnevaluatedContext())
2619      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2620        << ToType << From->getSourceRange();
2621  }
2622  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2623    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2624      QualType FromPointeeType = FromPtrType->getPointeeType(),
2625               ToPointeeType   = ToPtrType->getPointeeType();
2626
2627      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2628          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2629        // We must have a derived-to-base conversion. Check an
2630        // ambiguous or inaccessible conversion.
2631        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2632                                         From->getExprLoc(),
2633                                         From->getSourceRange(), &BasePath,
2634                                         IgnoreBaseAccess))
2635          return true;
2636
2637        // The conversion was successful.
2638        Kind = CK_DerivedToBase;
2639      }
2640    }
2641  } else if (const ObjCObjectPointerType *ToPtrType =
2642               ToType->getAs<ObjCObjectPointerType>()) {
2643    if (const ObjCObjectPointerType *FromPtrType =
2644          FromType->getAs<ObjCObjectPointerType>()) {
2645      // Objective-C++ conversions are always okay.
2646      // FIXME: We should have a different class of conversions for the
2647      // Objective-C++ implicit conversions.
2648      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2649        return false;
2650    } else if (FromType->isBlockPointerType()) {
2651      Kind = CK_BlockPointerToObjCPointerCast;
2652    } else {
2653      Kind = CK_CPointerToObjCPointerCast;
2654    }
2655  } else if (ToType->isBlockPointerType()) {
2656    if (!FromType->isBlockPointerType())
2657      Kind = CK_AnyPointerToBlockPointerCast;
2658  }
2659
2660  // We shouldn't fall into this case unless it's valid for other
2661  // reasons.
2662  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2663    Kind = CK_NullToPointer;
2664
2665  return false;
2666}
2667
2668/// IsMemberPointerConversion - Determines whether the conversion of the
2669/// expression From, which has the (possibly adjusted) type FromType, can be
2670/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2671/// If so, returns true and places the converted type (that might differ from
2672/// ToType in its cv-qualifiers at some level) into ConvertedType.
2673bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2674                                     QualType ToType,
2675                                     bool InOverloadResolution,
2676                                     QualType &ConvertedType) {
2677  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2678  if (!ToTypePtr)
2679    return false;
2680
2681  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2682  if (From->isNullPointerConstant(Context,
2683                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2684                                        : Expr::NPC_ValueDependentIsNull)) {
2685    ConvertedType = ToType;
2686    return true;
2687  }
2688
2689  // Otherwise, both types have to be member pointers.
2690  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2691  if (!FromTypePtr)
2692    return false;
2693
2694  // A pointer to member of B can be converted to a pointer to member of D,
2695  // where D is derived from B (C++ 4.11p2).
2696  QualType FromClass(FromTypePtr->getClass(), 0);
2697  QualType ToClass(ToTypePtr->getClass(), 0);
2698
2699  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2700      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2701      IsDerivedFrom(ToClass, FromClass)) {
2702    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2703                                                 ToClass.getTypePtr());
2704    return true;
2705  }
2706
2707  return false;
2708}
2709
2710/// CheckMemberPointerConversion - Check the member pointer conversion from the
2711/// expression From to the type ToType. This routine checks for ambiguous or
2712/// virtual or inaccessible base-to-derived member pointer conversions
2713/// for which IsMemberPointerConversion has already returned true. It returns
2714/// true and produces a diagnostic if there was an error, or returns false
2715/// otherwise.
2716bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2717                                        CastKind &Kind,
2718                                        CXXCastPath &BasePath,
2719                                        bool IgnoreBaseAccess) {
2720  QualType FromType = From->getType();
2721  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2722  if (!FromPtrType) {
2723    // This must be a null pointer to member pointer conversion
2724    assert(From->isNullPointerConstant(Context,
2725                                       Expr::NPC_ValueDependentIsNull) &&
2726           "Expr must be null pointer constant!");
2727    Kind = CK_NullToMemberPointer;
2728    return false;
2729  }
2730
2731  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2732  assert(ToPtrType && "No member pointer cast has a target type "
2733                      "that is not a member pointer.");
2734
2735  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2736  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2737
2738  // FIXME: What about dependent types?
2739  assert(FromClass->isRecordType() && "Pointer into non-class.");
2740  assert(ToClass->isRecordType() && "Pointer into non-class.");
2741
2742  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2743                     /*DetectVirtual=*/true);
2744  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2745  assert(DerivationOkay &&
2746         "Should not have been called if derivation isn't OK.");
2747  (void)DerivationOkay;
2748
2749  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2750                                  getUnqualifiedType())) {
2751    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2752    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2753      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2754    return true;
2755  }
2756
2757  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2758    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2759      << FromClass << ToClass << QualType(VBase, 0)
2760      << From->getSourceRange();
2761    return true;
2762  }
2763
2764  if (!IgnoreBaseAccess)
2765    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2766                         Paths.front(),
2767                         diag::err_downcast_from_inaccessible_base);
2768
2769  // Must be a base to derived member conversion.
2770  BuildBasePathArray(Paths, BasePath);
2771  Kind = CK_BaseToDerivedMemberPointer;
2772  return false;
2773}
2774
2775/// IsQualificationConversion - Determines whether the conversion from
2776/// an rvalue of type FromType to ToType is a qualification conversion
2777/// (C++ 4.4).
2778///
2779/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2780/// when the qualification conversion involves a change in the Objective-C
2781/// object lifetime.
2782bool
2783Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2784                                bool CStyle, bool &ObjCLifetimeConversion) {
2785  FromType = Context.getCanonicalType(FromType);
2786  ToType = Context.getCanonicalType(ToType);
2787  ObjCLifetimeConversion = false;
2788
2789  // If FromType and ToType are the same type, this is not a
2790  // qualification conversion.
2791  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2792    return false;
2793
2794  // (C++ 4.4p4):
2795  //   A conversion can add cv-qualifiers at levels other than the first
2796  //   in multi-level pointers, subject to the following rules: [...]
2797  bool PreviousToQualsIncludeConst = true;
2798  bool UnwrappedAnyPointer = false;
2799  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2800    // Within each iteration of the loop, we check the qualifiers to
2801    // determine if this still looks like a qualification
2802    // conversion. Then, if all is well, we unwrap one more level of
2803    // pointers or pointers-to-members and do it all again
2804    // until there are no more pointers or pointers-to-members left to
2805    // unwrap.
2806    UnwrappedAnyPointer = true;
2807
2808    Qualifiers FromQuals = FromType.getQualifiers();
2809    Qualifiers ToQuals = ToType.getQualifiers();
2810
2811    // Objective-C ARC:
2812    //   Check Objective-C lifetime conversions.
2813    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2814        UnwrappedAnyPointer) {
2815      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2816        ObjCLifetimeConversion = true;
2817        FromQuals.removeObjCLifetime();
2818        ToQuals.removeObjCLifetime();
2819      } else {
2820        // Qualification conversions cannot cast between different
2821        // Objective-C lifetime qualifiers.
2822        return false;
2823      }
2824    }
2825
2826    // Allow addition/removal of GC attributes but not changing GC attributes.
2827    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2828        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2829      FromQuals.removeObjCGCAttr();
2830      ToQuals.removeObjCGCAttr();
2831    }
2832
2833    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2834    //      2,j, and similarly for volatile.
2835    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2836      return false;
2837
2838    //   -- if the cv 1,j and cv 2,j are different, then const is in
2839    //      every cv for 0 < k < j.
2840    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2841        && !PreviousToQualsIncludeConst)
2842      return false;
2843
2844    // Keep track of whether all prior cv-qualifiers in the "to" type
2845    // include const.
2846    PreviousToQualsIncludeConst
2847      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2848  }
2849
2850  // We are left with FromType and ToType being the pointee types
2851  // after unwrapping the original FromType and ToType the same number
2852  // of types. If we unwrapped any pointers, and if FromType and
2853  // ToType have the same unqualified type (since we checked
2854  // qualifiers above), then this is a qualification conversion.
2855  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2856}
2857
2858/// \brief - Determine whether this is a conversion from a scalar type to an
2859/// atomic type.
2860///
2861/// If successful, updates \c SCS's second and third steps in the conversion
2862/// sequence to finish the conversion.
2863static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2864                                bool InOverloadResolution,
2865                                StandardConversionSequence &SCS,
2866                                bool CStyle) {
2867  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2868  if (!ToAtomic)
2869    return false;
2870
2871  StandardConversionSequence InnerSCS;
2872  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2873                            InOverloadResolution, InnerSCS,
2874                            CStyle, /*AllowObjCWritebackConversion=*/false))
2875    return false;
2876
2877  SCS.Second = InnerSCS.Second;
2878  SCS.setToType(1, InnerSCS.getToType(1));
2879  SCS.Third = InnerSCS.Third;
2880  SCS.QualificationIncludesObjCLifetime
2881    = InnerSCS.QualificationIncludesObjCLifetime;
2882  SCS.setToType(2, InnerSCS.getToType(2));
2883  return true;
2884}
2885
2886static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2887                                              CXXConstructorDecl *Constructor,
2888                                              QualType Type) {
2889  const FunctionProtoType *CtorType =
2890      Constructor->getType()->getAs<FunctionProtoType>();
2891  if (CtorType->getNumArgs() > 0) {
2892    QualType FirstArg = CtorType->getArgType(0);
2893    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2894      return true;
2895  }
2896  return false;
2897}
2898
2899static OverloadingResult
2900IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2901                                       CXXRecordDecl *To,
2902                                       UserDefinedConversionSequence &User,
2903                                       OverloadCandidateSet &CandidateSet,
2904                                       bool AllowExplicit) {
2905  DeclContext::lookup_result R = S.LookupConstructors(To);
2906  for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2907       Con != ConEnd; ++Con) {
2908    NamedDecl *D = *Con;
2909    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2910
2911    // Find the constructor (which may be a template).
2912    CXXConstructorDecl *Constructor = 0;
2913    FunctionTemplateDecl *ConstructorTmpl
2914      = dyn_cast<FunctionTemplateDecl>(D);
2915    if (ConstructorTmpl)
2916      Constructor
2917        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2918    else
2919      Constructor = cast<CXXConstructorDecl>(D);
2920
2921    bool Usable = !Constructor->isInvalidDecl() &&
2922                  S.isInitListConstructor(Constructor) &&
2923                  (AllowExplicit || !Constructor->isExplicit());
2924    if (Usable) {
2925      // If the first argument is (a reference to) the target type,
2926      // suppress conversions.
2927      bool SuppressUserConversions =
2928          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2929      if (ConstructorTmpl)
2930        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2931                                       /*ExplicitArgs*/ 0,
2932                                       From, CandidateSet,
2933                                       SuppressUserConversions);
2934      else
2935        S.AddOverloadCandidate(Constructor, FoundDecl,
2936                               From, CandidateSet,
2937                               SuppressUserConversions);
2938    }
2939  }
2940
2941  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2942
2943  OverloadCandidateSet::iterator Best;
2944  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2945  case OR_Success: {
2946    // Record the standard conversion we used and the conversion function.
2947    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2948    QualType ThisType = Constructor->getThisType(S.Context);
2949    // Initializer lists don't have conversions as such.
2950    User.Before.setAsIdentityConversion();
2951    User.HadMultipleCandidates = HadMultipleCandidates;
2952    User.ConversionFunction = Constructor;
2953    User.FoundConversionFunction = Best->FoundDecl;
2954    User.After.setAsIdentityConversion();
2955    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2956    User.After.setAllToTypes(ToType);
2957    return OR_Success;
2958  }
2959
2960  case OR_No_Viable_Function:
2961    return OR_No_Viable_Function;
2962  case OR_Deleted:
2963    return OR_Deleted;
2964  case OR_Ambiguous:
2965    return OR_Ambiguous;
2966  }
2967
2968  llvm_unreachable("Invalid OverloadResult!");
2969}
2970
2971/// Determines whether there is a user-defined conversion sequence
2972/// (C++ [over.ics.user]) that converts expression From to the type
2973/// ToType. If such a conversion exists, User will contain the
2974/// user-defined conversion sequence that performs such a conversion
2975/// and this routine will return true. Otherwise, this routine returns
2976/// false and User is unspecified.
2977///
2978/// \param AllowExplicit  true if the conversion should consider C++0x
2979/// "explicit" conversion functions as well as non-explicit conversion
2980/// functions (C++0x [class.conv.fct]p2).
2981static OverloadingResult
2982IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2983                        UserDefinedConversionSequence &User,
2984                        OverloadCandidateSet &CandidateSet,
2985                        bool AllowExplicit) {
2986  // Whether we will only visit constructors.
2987  bool ConstructorsOnly = false;
2988
2989  // If the type we are conversion to is a class type, enumerate its
2990  // constructors.
2991  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2992    // C++ [over.match.ctor]p1:
2993    //   When objects of class type are direct-initialized (8.5), or
2994    //   copy-initialized from an expression of the same or a
2995    //   derived class type (8.5), overload resolution selects the
2996    //   constructor. [...] For copy-initialization, the candidate
2997    //   functions are all the converting constructors (12.3.1) of
2998    //   that class. The argument list is the expression-list within
2999    //   the parentheses of the initializer.
3000    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3001        (From->getType()->getAs<RecordType>() &&
3002         S.IsDerivedFrom(From->getType(), ToType)))
3003      ConstructorsOnly = true;
3004
3005    S.RequireCompleteType(From->getExprLoc(), ToType, 0);
3006    // RequireCompleteType may have returned true due to some invalid decl
3007    // during template instantiation, but ToType may be complete enough now
3008    // to try to recover.
3009    if (ToType->isIncompleteType()) {
3010      // We're not going to find any constructors.
3011    } else if (CXXRecordDecl *ToRecordDecl
3012                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3013
3014      Expr **Args = &From;
3015      unsigned NumArgs = 1;
3016      bool ListInitializing = false;
3017      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3018        // But first, see if there is an init-list-contructor that will work.
3019        OverloadingResult Result = IsInitializerListConstructorConversion(
3020            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3021        if (Result != OR_No_Viable_Function)
3022          return Result;
3023        // Never mind.
3024        CandidateSet.clear();
3025
3026        // If we're list-initializing, we pass the individual elements as
3027        // arguments, not the entire list.
3028        Args = InitList->getInits();
3029        NumArgs = InitList->getNumInits();
3030        ListInitializing = true;
3031      }
3032
3033      DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3034      for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3035           Con != ConEnd; ++Con) {
3036        NamedDecl *D = *Con;
3037        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3038
3039        // Find the constructor (which may be a template).
3040        CXXConstructorDecl *Constructor = 0;
3041        FunctionTemplateDecl *ConstructorTmpl
3042          = dyn_cast<FunctionTemplateDecl>(D);
3043        if (ConstructorTmpl)
3044          Constructor
3045            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3046        else
3047          Constructor = cast<CXXConstructorDecl>(D);
3048
3049        bool Usable = !Constructor->isInvalidDecl();
3050        if (ListInitializing)
3051          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3052        else
3053          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3054        if (Usable) {
3055          bool SuppressUserConversions = !ConstructorsOnly;
3056          if (SuppressUserConversions && ListInitializing) {
3057            SuppressUserConversions = false;
3058            if (NumArgs == 1) {
3059              // If the first argument is (a reference to) the target type,
3060              // suppress conversions.
3061              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3062                                                S.Context, Constructor, ToType);
3063            }
3064          }
3065          if (ConstructorTmpl)
3066            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3067                                           /*ExplicitArgs*/ 0,
3068                                           llvm::makeArrayRef(Args, NumArgs),
3069                                           CandidateSet, SuppressUserConversions);
3070          else
3071            // Allow one user-defined conversion when user specifies a
3072            // From->ToType conversion via an static cast (c-style, etc).
3073            S.AddOverloadCandidate(Constructor, FoundDecl,
3074                                   llvm::makeArrayRef(Args, NumArgs),
3075                                   CandidateSet, SuppressUserConversions);
3076        }
3077      }
3078    }
3079  }
3080
3081  // Enumerate conversion functions, if we're allowed to.
3082  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3083  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3084    // No conversion functions from incomplete types.
3085  } else if (const RecordType *FromRecordType
3086                                   = From->getType()->getAs<RecordType>()) {
3087    if (CXXRecordDecl *FromRecordDecl
3088         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3089      // Add all of the conversion functions as candidates.
3090      std::pair<CXXRecordDecl::conversion_iterator,
3091                CXXRecordDecl::conversion_iterator>
3092        Conversions = FromRecordDecl->getVisibleConversionFunctions();
3093      for (CXXRecordDecl::conversion_iterator
3094             I = Conversions.first, E = Conversions.second; I != E; ++I) {
3095        DeclAccessPair FoundDecl = I.getPair();
3096        NamedDecl *D = FoundDecl.getDecl();
3097        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3098        if (isa<UsingShadowDecl>(D))
3099          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3100
3101        CXXConversionDecl *Conv;
3102        FunctionTemplateDecl *ConvTemplate;
3103        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3104          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3105        else
3106          Conv = cast<CXXConversionDecl>(D);
3107
3108        if (AllowExplicit || !Conv->isExplicit()) {
3109          if (ConvTemplate)
3110            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3111                                             ActingContext, From, ToType,
3112                                             CandidateSet);
3113          else
3114            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3115                                     From, ToType, CandidateSet);
3116        }
3117      }
3118    }
3119  }
3120
3121  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3122
3123  OverloadCandidateSet::iterator Best;
3124  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3125  case OR_Success:
3126    // Record the standard conversion we used and the conversion function.
3127    if (CXXConstructorDecl *Constructor
3128          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3129      // C++ [over.ics.user]p1:
3130      //   If the user-defined conversion is specified by a
3131      //   constructor (12.3.1), the initial standard conversion
3132      //   sequence converts the source type to the type required by
3133      //   the argument of the constructor.
3134      //
3135      QualType ThisType = Constructor->getThisType(S.Context);
3136      if (isa<InitListExpr>(From)) {
3137        // Initializer lists don't have conversions as such.
3138        User.Before.setAsIdentityConversion();
3139      } else {
3140        if (Best->Conversions[0].isEllipsis())
3141          User.EllipsisConversion = true;
3142        else {
3143          User.Before = Best->Conversions[0].Standard;
3144          User.EllipsisConversion = false;
3145        }
3146      }
3147      User.HadMultipleCandidates = HadMultipleCandidates;
3148      User.ConversionFunction = Constructor;
3149      User.FoundConversionFunction = Best->FoundDecl;
3150      User.After.setAsIdentityConversion();
3151      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3152      User.After.setAllToTypes(ToType);
3153      return OR_Success;
3154    }
3155    if (CXXConversionDecl *Conversion
3156                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3157      // C++ [over.ics.user]p1:
3158      //
3159      //   [...] If the user-defined conversion is specified by a
3160      //   conversion function (12.3.2), the initial standard
3161      //   conversion sequence converts the source type to the
3162      //   implicit object parameter of the conversion function.
3163      User.Before = Best->Conversions[0].Standard;
3164      User.HadMultipleCandidates = HadMultipleCandidates;
3165      User.ConversionFunction = Conversion;
3166      User.FoundConversionFunction = Best->FoundDecl;
3167      User.EllipsisConversion = false;
3168
3169      // C++ [over.ics.user]p2:
3170      //   The second standard conversion sequence converts the
3171      //   result of the user-defined conversion to the target type
3172      //   for the sequence. Since an implicit conversion sequence
3173      //   is an initialization, the special rules for
3174      //   initialization by user-defined conversion apply when
3175      //   selecting the best user-defined conversion for a
3176      //   user-defined conversion sequence (see 13.3.3 and
3177      //   13.3.3.1).
3178      User.After = Best->FinalConversion;
3179      return OR_Success;
3180    }
3181    llvm_unreachable("Not a constructor or conversion function?");
3182
3183  case OR_No_Viable_Function:
3184    return OR_No_Viable_Function;
3185  case OR_Deleted:
3186    // No conversion here! We're done.
3187    return OR_Deleted;
3188
3189  case OR_Ambiguous:
3190    return OR_Ambiguous;
3191  }
3192
3193  llvm_unreachable("Invalid OverloadResult!");
3194}
3195
3196bool
3197Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3198  ImplicitConversionSequence ICS;
3199  OverloadCandidateSet CandidateSet(From->getExprLoc());
3200  OverloadingResult OvResult =
3201    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3202                            CandidateSet, false);
3203  if (OvResult == OR_Ambiguous)
3204    Diag(From->getLocStart(),
3205         diag::err_typecheck_ambiguous_condition)
3206          << From->getType() << ToType << From->getSourceRange();
3207  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3208    if (!RequireCompleteType(From->getLocStart(), ToType,
3209                          diag::err_typecheck_nonviable_condition_incomplete,
3210                             From->getType(), From->getSourceRange()))
3211      Diag(From->getLocStart(),
3212           diag::err_typecheck_nonviable_condition)
3213           << From->getType() << From->getSourceRange() << ToType;
3214  }
3215  else
3216    return false;
3217  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3218  return true;
3219}
3220
3221/// \brief Compare the user-defined conversion functions or constructors
3222/// of two user-defined conversion sequences to determine whether any ordering
3223/// is possible.
3224static ImplicitConversionSequence::CompareKind
3225compareConversionFunctions(Sema &S,
3226                           FunctionDecl *Function1,
3227                           FunctionDecl *Function2) {
3228  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3229    return ImplicitConversionSequence::Indistinguishable;
3230
3231  // Objective-C++:
3232  //   If both conversion functions are implicitly-declared conversions from
3233  //   a lambda closure type to a function pointer and a block pointer,
3234  //   respectively, always prefer the conversion to a function pointer,
3235  //   because the function pointer is more lightweight and is more likely
3236  //   to keep code working.
3237  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3238  if (!Conv1)
3239    return ImplicitConversionSequence::Indistinguishable;
3240
3241  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3242  if (!Conv2)
3243    return ImplicitConversionSequence::Indistinguishable;
3244
3245  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3246    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3247    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3248    if (Block1 != Block2)
3249      return Block1? ImplicitConversionSequence::Worse
3250                   : ImplicitConversionSequence::Better;
3251  }
3252
3253  return ImplicitConversionSequence::Indistinguishable;
3254}
3255
3256/// CompareImplicitConversionSequences - Compare two implicit
3257/// conversion sequences to determine whether one is better than the
3258/// other or if they are indistinguishable (C++ 13.3.3.2).
3259static ImplicitConversionSequence::CompareKind
3260CompareImplicitConversionSequences(Sema &S,
3261                                   const ImplicitConversionSequence& ICS1,
3262                                   const ImplicitConversionSequence& ICS2)
3263{
3264  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3265  // conversion sequences (as defined in 13.3.3.1)
3266  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3267  //      conversion sequence than a user-defined conversion sequence or
3268  //      an ellipsis conversion sequence, and
3269  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3270  //      conversion sequence than an ellipsis conversion sequence
3271  //      (13.3.3.1.3).
3272  //
3273  // C++0x [over.best.ics]p10:
3274  //   For the purpose of ranking implicit conversion sequences as
3275  //   described in 13.3.3.2, the ambiguous conversion sequence is
3276  //   treated as a user-defined sequence that is indistinguishable
3277  //   from any other user-defined conversion sequence.
3278  if (ICS1.getKindRank() < ICS2.getKindRank())
3279    return ImplicitConversionSequence::Better;
3280  if (ICS2.getKindRank() < ICS1.getKindRank())
3281    return ImplicitConversionSequence::Worse;
3282
3283  // The following checks require both conversion sequences to be of
3284  // the same kind.
3285  if (ICS1.getKind() != ICS2.getKind())
3286    return ImplicitConversionSequence::Indistinguishable;
3287
3288  ImplicitConversionSequence::CompareKind Result =
3289      ImplicitConversionSequence::Indistinguishable;
3290
3291  // Two implicit conversion sequences of the same form are
3292  // indistinguishable conversion sequences unless one of the
3293  // following rules apply: (C++ 13.3.3.2p3):
3294  if (ICS1.isStandard())
3295    Result = CompareStandardConversionSequences(S,
3296                                                ICS1.Standard, ICS2.Standard);
3297  else if (ICS1.isUserDefined()) {
3298    // User-defined conversion sequence U1 is a better conversion
3299    // sequence than another user-defined conversion sequence U2 if
3300    // they contain the same user-defined conversion function or
3301    // constructor and if the second standard conversion sequence of
3302    // U1 is better than the second standard conversion sequence of
3303    // U2 (C++ 13.3.3.2p3).
3304    if (ICS1.UserDefined.ConversionFunction ==
3305          ICS2.UserDefined.ConversionFunction)
3306      Result = CompareStandardConversionSequences(S,
3307                                                  ICS1.UserDefined.After,
3308                                                  ICS2.UserDefined.After);
3309    else
3310      Result = compareConversionFunctions(S,
3311                                          ICS1.UserDefined.ConversionFunction,
3312                                          ICS2.UserDefined.ConversionFunction);
3313  }
3314
3315  // List-initialization sequence L1 is a better conversion sequence than
3316  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3317  // for some X and L2 does not.
3318  if (Result == ImplicitConversionSequence::Indistinguishable &&
3319      !ICS1.isBad() &&
3320      ICS1.isListInitializationSequence() &&
3321      ICS2.isListInitializationSequence()) {
3322    if (ICS1.isStdInitializerListElement() &&
3323        !ICS2.isStdInitializerListElement())
3324      return ImplicitConversionSequence::Better;
3325    if (!ICS1.isStdInitializerListElement() &&
3326        ICS2.isStdInitializerListElement())
3327      return ImplicitConversionSequence::Worse;
3328  }
3329
3330  return Result;
3331}
3332
3333static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3334  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3335    Qualifiers Quals;
3336    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3337    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3338  }
3339
3340  return Context.hasSameUnqualifiedType(T1, T2);
3341}
3342
3343// Per 13.3.3.2p3, compare the given standard conversion sequences to
3344// determine if one is a proper subset of the other.
3345static ImplicitConversionSequence::CompareKind
3346compareStandardConversionSubsets(ASTContext &Context,
3347                                 const StandardConversionSequence& SCS1,
3348                                 const StandardConversionSequence& SCS2) {
3349  ImplicitConversionSequence::CompareKind Result
3350    = ImplicitConversionSequence::Indistinguishable;
3351
3352  // the identity conversion sequence is considered to be a subsequence of
3353  // any non-identity conversion sequence
3354  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3355    return ImplicitConversionSequence::Better;
3356  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3357    return ImplicitConversionSequence::Worse;
3358
3359  if (SCS1.Second != SCS2.Second) {
3360    if (SCS1.Second == ICK_Identity)
3361      Result = ImplicitConversionSequence::Better;
3362    else if (SCS2.Second == ICK_Identity)
3363      Result = ImplicitConversionSequence::Worse;
3364    else
3365      return ImplicitConversionSequence::Indistinguishable;
3366  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3367    return ImplicitConversionSequence::Indistinguishable;
3368
3369  if (SCS1.Third == SCS2.Third) {
3370    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3371                             : ImplicitConversionSequence::Indistinguishable;
3372  }
3373
3374  if (SCS1.Third == ICK_Identity)
3375    return Result == ImplicitConversionSequence::Worse
3376             ? ImplicitConversionSequence::Indistinguishable
3377             : ImplicitConversionSequence::Better;
3378
3379  if (SCS2.Third == ICK_Identity)
3380    return Result == ImplicitConversionSequence::Better
3381             ? ImplicitConversionSequence::Indistinguishable
3382             : ImplicitConversionSequence::Worse;
3383
3384  return ImplicitConversionSequence::Indistinguishable;
3385}
3386
3387/// \brief Determine whether one of the given reference bindings is better
3388/// than the other based on what kind of bindings they are.
3389static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3390                                       const StandardConversionSequence &SCS2) {
3391  // C++0x [over.ics.rank]p3b4:
3392  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3393  //      implicit object parameter of a non-static member function declared
3394  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3395  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3396  //      lvalue reference to a function lvalue and S2 binds an rvalue
3397  //      reference*.
3398  //
3399  // FIXME: Rvalue references. We're going rogue with the above edits,
3400  // because the semantics in the current C++0x working paper (N3225 at the
3401  // time of this writing) break the standard definition of std::forward
3402  // and std::reference_wrapper when dealing with references to functions.
3403  // Proposed wording changes submitted to CWG for consideration.
3404  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3405      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3406    return false;
3407
3408  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3409          SCS2.IsLvalueReference) ||
3410         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3411          !SCS2.IsLvalueReference);
3412}
3413
3414/// CompareStandardConversionSequences - Compare two standard
3415/// conversion sequences to determine whether one is better than the
3416/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3417static ImplicitConversionSequence::CompareKind
3418CompareStandardConversionSequences(Sema &S,
3419                                   const StandardConversionSequence& SCS1,
3420                                   const StandardConversionSequence& SCS2)
3421{
3422  // Standard conversion sequence S1 is a better conversion sequence
3423  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3424
3425  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3426  //     sequences in the canonical form defined by 13.3.3.1.1,
3427  //     excluding any Lvalue Transformation; the identity conversion
3428  //     sequence is considered to be a subsequence of any
3429  //     non-identity conversion sequence) or, if not that,
3430  if (ImplicitConversionSequence::CompareKind CK
3431        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3432    return CK;
3433
3434  //  -- the rank of S1 is better than the rank of S2 (by the rules
3435  //     defined below), or, if not that,
3436  ImplicitConversionRank Rank1 = SCS1.getRank();
3437  ImplicitConversionRank Rank2 = SCS2.getRank();
3438  if (Rank1 < Rank2)
3439    return ImplicitConversionSequence::Better;
3440  else if (Rank2 < Rank1)
3441    return ImplicitConversionSequence::Worse;
3442
3443  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3444  // are indistinguishable unless one of the following rules
3445  // applies:
3446
3447  //   A conversion that is not a conversion of a pointer, or
3448  //   pointer to member, to bool is better than another conversion
3449  //   that is such a conversion.
3450  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3451    return SCS2.isPointerConversionToBool()
3452             ? ImplicitConversionSequence::Better
3453             : ImplicitConversionSequence::Worse;
3454
3455  // C++ [over.ics.rank]p4b2:
3456  //
3457  //   If class B is derived directly or indirectly from class A,
3458  //   conversion of B* to A* is better than conversion of B* to
3459  //   void*, and conversion of A* to void* is better than conversion
3460  //   of B* to void*.
3461  bool SCS1ConvertsToVoid
3462    = SCS1.isPointerConversionToVoidPointer(S.Context);
3463  bool SCS2ConvertsToVoid
3464    = SCS2.isPointerConversionToVoidPointer(S.Context);
3465  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3466    // Exactly one of the conversion sequences is a conversion to
3467    // a void pointer; it's the worse conversion.
3468    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3469                              : ImplicitConversionSequence::Worse;
3470  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3471    // Neither conversion sequence converts to a void pointer; compare
3472    // their derived-to-base conversions.
3473    if (ImplicitConversionSequence::CompareKind DerivedCK
3474          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3475      return DerivedCK;
3476  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3477             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3478    // Both conversion sequences are conversions to void
3479    // pointers. Compare the source types to determine if there's an
3480    // inheritance relationship in their sources.
3481    QualType FromType1 = SCS1.getFromType();
3482    QualType FromType2 = SCS2.getFromType();
3483
3484    // Adjust the types we're converting from via the array-to-pointer
3485    // conversion, if we need to.
3486    if (SCS1.First == ICK_Array_To_Pointer)
3487      FromType1 = S.Context.getArrayDecayedType(FromType1);
3488    if (SCS2.First == ICK_Array_To_Pointer)
3489      FromType2 = S.Context.getArrayDecayedType(FromType2);
3490
3491    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3492    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3493
3494    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3495      return ImplicitConversionSequence::Better;
3496    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3497      return ImplicitConversionSequence::Worse;
3498
3499    // Objective-C++: If one interface is more specific than the
3500    // other, it is the better one.
3501    const ObjCObjectPointerType* FromObjCPtr1
3502      = FromType1->getAs<ObjCObjectPointerType>();
3503    const ObjCObjectPointerType* FromObjCPtr2
3504      = FromType2->getAs<ObjCObjectPointerType>();
3505    if (FromObjCPtr1 && FromObjCPtr2) {
3506      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3507                                                          FromObjCPtr2);
3508      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3509                                                           FromObjCPtr1);
3510      if (AssignLeft != AssignRight) {
3511        return AssignLeft? ImplicitConversionSequence::Better
3512                         : ImplicitConversionSequence::Worse;
3513      }
3514    }
3515  }
3516
3517  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3518  // bullet 3).
3519  if (ImplicitConversionSequence::CompareKind QualCK
3520        = CompareQualificationConversions(S, SCS1, SCS2))
3521    return QualCK;
3522
3523  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3524    // Check for a better reference binding based on the kind of bindings.
3525    if (isBetterReferenceBindingKind(SCS1, SCS2))
3526      return ImplicitConversionSequence::Better;
3527    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3528      return ImplicitConversionSequence::Worse;
3529
3530    // C++ [over.ics.rank]p3b4:
3531    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3532    //      which the references refer are the same type except for
3533    //      top-level cv-qualifiers, and the type to which the reference
3534    //      initialized by S2 refers is more cv-qualified than the type
3535    //      to which the reference initialized by S1 refers.
3536    QualType T1 = SCS1.getToType(2);
3537    QualType T2 = SCS2.getToType(2);
3538    T1 = S.Context.getCanonicalType(T1);
3539    T2 = S.Context.getCanonicalType(T2);
3540    Qualifiers T1Quals, T2Quals;
3541    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3542    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3543    if (UnqualT1 == UnqualT2) {
3544      // Objective-C++ ARC: If the references refer to objects with different
3545      // lifetimes, prefer bindings that don't change lifetime.
3546      if (SCS1.ObjCLifetimeConversionBinding !=
3547                                          SCS2.ObjCLifetimeConversionBinding) {
3548        return SCS1.ObjCLifetimeConversionBinding
3549                                           ? ImplicitConversionSequence::Worse
3550                                           : ImplicitConversionSequence::Better;
3551      }
3552
3553      // If the type is an array type, promote the element qualifiers to the
3554      // type for comparison.
3555      if (isa<ArrayType>(T1) && T1Quals)
3556        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3557      if (isa<ArrayType>(T2) && T2Quals)
3558        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3559      if (T2.isMoreQualifiedThan(T1))
3560        return ImplicitConversionSequence::Better;
3561      else if (T1.isMoreQualifiedThan(T2))
3562        return ImplicitConversionSequence::Worse;
3563    }
3564  }
3565
3566  // In Microsoft mode, prefer an integral conversion to a
3567  // floating-to-integral conversion if the integral conversion
3568  // is between types of the same size.
3569  // For example:
3570  // void f(float);
3571  // void f(int);
3572  // int main {
3573  //    long a;
3574  //    f(a);
3575  // }
3576  // Here, MSVC will call f(int) instead of generating a compile error
3577  // as clang will do in standard mode.
3578  if (S.getLangOpts().MicrosoftMode &&
3579      SCS1.Second == ICK_Integral_Conversion &&
3580      SCS2.Second == ICK_Floating_Integral &&
3581      S.Context.getTypeSize(SCS1.getFromType()) ==
3582      S.Context.getTypeSize(SCS1.getToType(2)))
3583    return ImplicitConversionSequence::Better;
3584
3585  return ImplicitConversionSequence::Indistinguishable;
3586}
3587
3588/// CompareQualificationConversions - Compares two standard conversion
3589/// sequences to determine whether they can be ranked based on their
3590/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3591ImplicitConversionSequence::CompareKind
3592CompareQualificationConversions(Sema &S,
3593                                const StandardConversionSequence& SCS1,
3594                                const StandardConversionSequence& SCS2) {
3595  // C++ 13.3.3.2p3:
3596  //  -- S1 and S2 differ only in their qualification conversion and
3597  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3598  //     cv-qualification signature of type T1 is a proper subset of
3599  //     the cv-qualification signature of type T2, and S1 is not the
3600  //     deprecated string literal array-to-pointer conversion (4.2).
3601  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3602      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3603    return ImplicitConversionSequence::Indistinguishable;
3604
3605  // FIXME: the example in the standard doesn't use a qualification
3606  // conversion (!)
3607  QualType T1 = SCS1.getToType(2);
3608  QualType T2 = SCS2.getToType(2);
3609  T1 = S.Context.getCanonicalType(T1);
3610  T2 = S.Context.getCanonicalType(T2);
3611  Qualifiers T1Quals, T2Quals;
3612  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3613  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3614
3615  // If the types are the same, we won't learn anything by unwrapped
3616  // them.
3617  if (UnqualT1 == UnqualT2)
3618    return ImplicitConversionSequence::Indistinguishable;
3619
3620  // If the type is an array type, promote the element qualifiers to the type
3621  // for comparison.
3622  if (isa<ArrayType>(T1) && T1Quals)
3623    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3624  if (isa<ArrayType>(T2) && T2Quals)
3625    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3626
3627  ImplicitConversionSequence::CompareKind Result
3628    = ImplicitConversionSequence::Indistinguishable;
3629
3630  // Objective-C++ ARC:
3631  //   Prefer qualification conversions not involving a change in lifetime
3632  //   to qualification conversions that do not change lifetime.
3633  if (SCS1.QualificationIncludesObjCLifetime !=
3634                                      SCS2.QualificationIncludesObjCLifetime) {
3635    Result = SCS1.QualificationIncludesObjCLifetime
3636               ? ImplicitConversionSequence::Worse
3637               : ImplicitConversionSequence::Better;
3638  }
3639
3640  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3641    // Within each iteration of the loop, we check the qualifiers to
3642    // determine if this still looks like a qualification
3643    // conversion. Then, if all is well, we unwrap one more level of
3644    // pointers or pointers-to-members and do it all again
3645    // until there are no more pointers or pointers-to-members left
3646    // to unwrap. This essentially mimics what
3647    // IsQualificationConversion does, but here we're checking for a
3648    // strict subset of qualifiers.
3649    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3650      // The qualifiers are the same, so this doesn't tell us anything
3651      // about how the sequences rank.
3652      ;
3653    else if (T2.isMoreQualifiedThan(T1)) {
3654      // T1 has fewer qualifiers, so it could be the better sequence.
3655      if (Result == ImplicitConversionSequence::Worse)
3656        // Neither has qualifiers that are a subset of the other's
3657        // qualifiers.
3658        return ImplicitConversionSequence::Indistinguishable;
3659
3660      Result = ImplicitConversionSequence::Better;
3661    } else if (T1.isMoreQualifiedThan(T2)) {
3662      // T2 has fewer qualifiers, so it could be the better sequence.
3663      if (Result == ImplicitConversionSequence::Better)
3664        // Neither has qualifiers that are a subset of the other's
3665        // qualifiers.
3666        return ImplicitConversionSequence::Indistinguishable;
3667
3668      Result = ImplicitConversionSequence::Worse;
3669    } else {
3670      // Qualifiers are disjoint.
3671      return ImplicitConversionSequence::Indistinguishable;
3672    }
3673
3674    // If the types after this point are equivalent, we're done.
3675    if (S.Context.hasSameUnqualifiedType(T1, T2))
3676      break;
3677  }
3678
3679  // Check that the winning standard conversion sequence isn't using
3680  // the deprecated string literal array to pointer conversion.
3681  switch (Result) {
3682  case ImplicitConversionSequence::Better:
3683    if (SCS1.DeprecatedStringLiteralToCharPtr)
3684      Result = ImplicitConversionSequence::Indistinguishable;
3685    break;
3686
3687  case ImplicitConversionSequence::Indistinguishable:
3688    break;
3689
3690  case ImplicitConversionSequence::Worse:
3691    if (SCS2.DeprecatedStringLiteralToCharPtr)
3692      Result = ImplicitConversionSequence::Indistinguishable;
3693    break;
3694  }
3695
3696  return Result;
3697}
3698
3699/// CompareDerivedToBaseConversions - Compares two standard conversion
3700/// sequences to determine whether they can be ranked based on their
3701/// various kinds of derived-to-base conversions (C++
3702/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3703/// conversions between Objective-C interface types.
3704ImplicitConversionSequence::CompareKind
3705CompareDerivedToBaseConversions(Sema &S,
3706                                const StandardConversionSequence& SCS1,
3707                                const StandardConversionSequence& SCS2) {
3708  QualType FromType1 = SCS1.getFromType();
3709  QualType ToType1 = SCS1.getToType(1);
3710  QualType FromType2 = SCS2.getFromType();
3711  QualType ToType2 = SCS2.getToType(1);
3712
3713  // Adjust the types we're converting from via the array-to-pointer
3714  // conversion, if we need to.
3715  if (SCS1.First == ICK_Array_To_Pointer)
3716    FromType1 = S.Context.getArrayDecayedType(FromType1);
3717  if (SCS2.First == ICK_Array_To_Pointer)
3718    FromType2 = S.Context.getArrayDecayedType(FromType2);
3719
3720  // Canonicalize all of the types.
3721  FromType1 = S.Context.getCanonicalType(FromType1);
3722  ToType1 = S.Context.getCanonicalType(ToType1);
3723  FromType2 = S.Context.getCanonicalType(FromType2);
3724  ToType2 = S.Context.getCanonicalType(ToType2);
3725
3726  // C++ [over.ics.rank]p4b3:
3727  //
3728  //   If class B is derived directly or indirectly from class A and
3729  //   class C is derived directly or indirectly from B,
3730  //
3731  // Compare based on pointer conversions.
3732  if (SCS1.Second == ICK_Pointer_Conversion &&
3733      SCS2.Second == ICK_Pointer_Conversion &&
3734      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3735      FromType1->isPointerType() && FromType2->isPointerType() &&
3736      ToType1->isPointerType() && ToType2->isPointerType()) {
3737    QualType FromPointee1
3738      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3739    QualType ToPointee1
3740      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3741    QualType FromPointee2
3742      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3743    QualType ToPointee2
3744      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3745
3746    //   -- conversion of C* to B* is better than conversion of C* to A*,
3747    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3748      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3749        return ImplicitConversionSequence::Better;
3750      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3751        return ImplicitConversionSequence::Worse;
3752    }
3753
3754    //   -- conversion of B* to A* is better than conversion of C* to A*,
3755    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3756      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3757        return ImplicitConversionSequence::Better;
3758      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3759        return ImplicitConversionSequence::Worse;
3760    }
3761  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3762             SCS2.Second == ICK_Pointer_Conversion) {
3763    const ObjCObjectPointerType *FromPtr1
3764      = FromType1->getAs<ObjCObjectPointerType>();
3765    const ObjCObjectPointerType *FromPtr2
3766      = FromType2->getAs<ObjCObjectPointerType>();
3767    const ObjCObjectPointerType *ToPtr1
3768      = ToType1->getAs<ObjCObjectPointerType>();
3769    const ObjCObjectPointerType *ToPtr2
3770      = ToType2->getAs<ObjCObjectPointerType>();
3771
3772    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3773      // Apply the same conversion ranking rules for Objective-C pointer types
3774      // that we do for C++ pointers to class types. However, we employ the
3775      // Objective-C pseudo-subtyping relationship used for assignment of
3776      // Objective-C pointer types.
3777      bool FromAssignLeft
3778        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3779      bool FromAssignRight
3780        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3781      bool ToAssignLeft
3782        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3783      bool ToAssignRight
3784        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3785
3786      // A conversion to an a non-id object pointer type or qualified 'id'
3787      // type is better than a conversion to 'id'.
3788      if (ToPtr1->isObjCIdType() &&
3789          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3790        return ImplicitConversionSequence::Worse;
3791      if (ToPtr2->isObjCIdType() &&
3792          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3793        return ImplicitConversionSequence::Better;
3794
3795      // A conversion to a non-id object pointer type is better than a
3796      // conversion to a qualified 'id' type
3797      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3798        return ImplicitConversionSequence::Worse;
3799      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3800        return ImplicitConversionSequence::Better;
3801
3802      // A conversion to an a non-Class object pointer type or qualified 'Class'
3803      // type is better than a conversion to 'Class'.
3804      if (ToPtr1->isObjCClassType() &&
3805          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3806        return ImplicitConversionSequence::Worse;
3807      if (ToPtr2->isObjCClassType() &&
3808          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3809        return ImplicitConversionSequence::Better;
3810
3811      // A conversion to a non-Class object pointer type is better than a
3812      // conversion to a qualified 'Class' type.
3813      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3814        return ImplicitConversionSequence::Worse;
3815      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3816        return ImplicitConversionSequence::Better;
3817
3818      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3819      if (S.Context.hasSameType(FromType1, FromType2) &&
3820          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3821          (ToAssignLeft != ToAssignRight))
3822        return ToAssignLeft? ImplicitConversionSequence::Worse
3823                           : ImplicitConversionSequence::Better;
3824
3825      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3826      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3827          (FromAssignLeft != FromAssignRight))
3828        return FromAssignLeft? ImplicitConversionSequence::Better
3829        : ImplicitConversionSequence::Worse;
3830    }
3831  }
3832
3833  // Ranking of member-pointer types.
3834  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3835      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3836      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3837    const MemberPointerType * FromMemPointer1 =
3838                                        FromType1->getAs<MemberPointerType>();
3839    const MemberPointerType * ToMemPointer1 =
3840                                          ToType1->getAs<MemberPointerType>();
3841    const MemberPointerType * FromMemPointer2 =
3842                                          FromType2->getAs<MemberPointerType>();
3843    const MemberPointerType * ToMemPointer2 =
3844                                          ToType2->getAs<MemberPointerType>();
3845    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3846    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3847    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3848    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3849    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3850    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3851    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3852    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3853    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3854    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3855      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3856        return ImplicitConversionSequence::Worse;
3857      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3858        return ImplicitConversionSequence::Better;
3859    }
3860    // conversion of B::* to C::* is better than conversion of A::* to C::*
3861    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3862      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3863        return ImplicitConversionSequence::Better;
3864      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3865        return ImplicitConversionSequence::Worse;
3866    }
3867  }
3868
3869  if (SCS1.Second == ICK_Derived_To_Base) {
3870    //   -- conversion of C to B is better than conversion of C to A,
3871    //   -- binding of an expression of type C to a reference of type
3872    //      B& is better than binding an expression of type C to a
3873    //      reference of type A&,
3874    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3875        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3876      if (S.IsDerivedFrom(ToType1, ToType2))
3877        return ImplicitConversionSequence::Better;
3878      else if (S.IsDerivedFrom(ToType2, ToType1))
3879        return ImplicitConversionSequence::Worse;
3880    }
3881
3882    //   -- conversion of B to A is better than conversion of C to A.
3883    //   -- binding of an expression of type B to a reference of type
3884    //      A& is better than binding an expression of type C to a
3885    //      reference of type A&,
3886    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3887        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3888      if (S.IsDerivedFrom(FromType2, FromType1))
3889        return ImplicitConversionSequence::Better;
3890      else if (S.IsDerivedFrom(FromType1, FromType2))
3891        return ImplicitConversionSequence::Worse;
3892    }
3893  }
3894
3895  return ImplicitConversionSequence::Indistinguishable;
3896}
3897
3898/// \brief Determine whether the given type is valid, e.g., it is not an invalid
3899/// C++ class.
3900static bool isTypeValid(QualType T) {
3901  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3902    return !Record->isInvalidDecl();
3903
3904  return true;
3905}
3906
3907/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3908/// determine whether they are reference-related,
3909/// reference-compatible, reference-compatible with added
3910/// qualification, or incompatible, for use in C++ initialization by
3911/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3912/// type, and the first type (T1) is the pointee type of the reference
3913/// type being initialized.
3914Sema::ReferenceCompareResult
3915Sema::CompareReferenceRelationship(SourceLocation Loc,
3916                                   QualType OrigT1, QualType OrigT2,
3917                                   bool &DerivedToBase,
3918                                   bool &ObjCConversion,
3919                                   bool &ObjCLifetimeConversion) {
3920  assert(!OrigT1->isReferenceType() &&
3921    "T1 must be the pointee type of the reference type");
3922  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3923
3924  QualType T1 = Context.getCanonicalType(OrigT1);
3925  QualType T2 = Context.getCanonicalType(OrigT2);
3926  Qualifiers T1Quals, T2Quals;
3927  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3928  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3929
3930  // C++ [dcl.init.ref]p4:
3931  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3932  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3933  //   T1 is a base class of T2.
3934  DerivedToBase = false;
3935  ObjCConversion = false;
3936  ObjCLifetimeConversion = false;
3937  if (UnqualT1 == UnqualT2) {
3938    // Nothing to do.
3939  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3940             isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
3941             IsDerivedFrom(UnqualT2, UnqualT1))
3942    DerivedToBase = true;
3943  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3944           UnqualT2->isObjCObjectOrInterfaceType() &&
3945           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3946    ObjCConversion = true;
3947  else
3948    return Ref_Incompatible;
3949
3950  // At this point, we know that T1 and T2 are reference-related (at
3951  // least).
3952
3953  // If the type is an array type, promote the element qualifiers to the type
3954  // for comparison.
3955  if (isa<ArrayType>(T1) && T1Quals)
3956    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3957  if (isa<ArrayType>(T2) && T2Quals)
3958    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3959
3960  // C++ [dcl.init.ref]p4:
3961  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3962  //   reference-related to T2 and cv1 is the same cv-qualification
3963  //   as, or greater cv-qualification than, cv2. For purposes of
3964  //   overload resolution, cases for which cv1 is greater
3965  //   cv-qualification than cv2 are identified as
3966  //   reference-compatible with added qualification (see 13.3.3.2).
3967  //
3968  // Note that we also require equivalence of Objective-C GC and address-space
3969  // qualifiers when performing these computations, so that e.g., an int in
3970  // address space 1 is not reference-compatible with an int in address
3971  // space 2.
3972  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3973      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3974    T1Quals.removeObjCLifetime();
3975    T2Quals.removeObjCLifetime();
3976    ObjCLifetimeConversion = true;
3977  }
3978
3979  if (T1Quals == T2Quals)
3980    return Ref_Compatible;
3981  else if (T1Quals.compatiblyIncludes(T2Quals))
3982    return Ref_Compatible_With_Added_Qualification;
3983  else
3984    return Ref_Related;
3985}
3986
3987/// \brief Look for a user-defined conversion to an value reference-compatible
3988///        with DeclType. Return true if something definite is found.
3989static bool
3990FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3991                         QualType DeclType, SourceLocation DeclLoc,
3992                         Expr *Init, QualType T2, bool AllowRvalues,
3993                         bool AllowExplicit) {
3994  assert(T2->isRecordType() && "Can only find conversions of record types.");
3995  CXXRecordDecl *T2RecordDecl
3996    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3997
3998  OverloadCandidateSet CandidateSet(DeclLoc);
3999  std::pair<CXXRecordDecl::conversion_iterator,
4000            CXXRecordDecl::conversion_iterator>
4001    Conversions = T2RecordDecl->getVisibleConversionFunctions();
4002  for (CXXRecordDecl::conversion_iterator
4003         I = Conversions.first, E = Conversions.second; I != E; ++I) {
4004    NamedDecl *D = *I;
4005    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4006    if (isa<UsingShadowDecl>(D))
4007      D = cast<UsingShadowDecl>(D)->getTargetDecl();
4008
4009    FunctionTemplateDecl *ConvTemplate
4010      = dyn_cast<FunctionTemplateDecl>(D);
4011    CXXConversionDecl *Conv;
4012    if (ConvTemplate)
4013      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4014    else
4015      Conv = cast<CXXConversionDecl>(D);
4016
4017    // If this is an explicit conversion, and we're not allowed to consider
4018    // explicit conversions, skip it.
4019    if (!AllowExplicit && Conv->isExplicit())
4020      continue;
4021
4022    if (AllowRvalues) {
4023      bool DerivedToBase = false;
4024      bool ObjCConversion = false;
4025      bool ObjCLifetimeConversion = false;
4026
4027      // If we are initializing an rvalue reference, don't permit conversion
4028      // functions that return lvalues.
4029      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4030        const ReferenceType *RefType
4031          = Conv->getConversionType()->getAs<LValueReferenceType>();
4032        if (RefType && !RefType->getPointeeType()->isFunctionType())
4033          continue;
4034      }
4035
4036      if (!ConvTemplate &&
4037          S.CompareReferenceRelationship(
4038            DeclLoc,
4039            Conv->getConversionType().getNonReferenceType()
4040              .getUnqualifiedType(),
4041            DeclType.getNonReferenceType().getUnqualifiedType(),
4042            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4043          Sema::Ref_Incompatible)
4044        continue;
4045    } else {
4046      // If the conversion function doesn't return a reference type,
4047      // it can't be considered for this conversion. An rvalue reference
4048      // is only acceptable if its referencee is a function type.
4049
4050      const ReferenceType *RefType =
4051        Conv->getConversionType()->getAs<ReferenceType>();
4052      if (!RefType ||
4053          (!RefType->isLValueReferenceType() &&
4054           !RefType->getPointeeType()->isFunctionType()))
4055        continue;
4056    }
4057
4058    if (ConvTemplate)
4059      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4060                                       Init, DeclType, CandidateSet);
4061    else
4062      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4063                               DeclType, CandidateSet);
4064  }
4065
4066  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4067
4068  OverloadCandidateSet::iterator Best;
4069  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4070  case OR_Success:
4071    // C++ [over.ics.ref]p1:
4072    //
4073    //   [...] If the parameter binds directly to the result of
4074    //   applying a conversion function to the argument
4075    //   expression, the implicit conversion sequence is a
4076    //   user-defined conversion sequence (13.3.3.1.2), with the
4077    //   second standard conversion sequence either an identity
4078    //   conversion or, if the conversion function returns an
4079    //   entity of a type that is a derived class of the parameter
4080    //   type, a derived-to-base Conversion.
4081    if (!Best->FinalConversion.DirectBinding)
4082      return false;
4083
4084    ICS.setUserDefined();
4085    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4086    ICS.UserDefined.After = Best->FinalConversion;
4087    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4088    ICS.UserDefined.ConversionFunction = Best->Function;
4089    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4090    ICS.UserDefined.EllipsisConversion = false;
4091    assert(ICS.UserDefined.After.ReferenceBinding &&
4092           ICS.UserDefined.After.DirectBinding &&
4093           "Expected a direct reference binding!");
4094    return true;
4095
4096  case OR_Ambiguous:
4097    ICS.setAmbiguous();
4098    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4099         Cand != CandidateSet.end(); ++Cand)
4100      if (Cand->Viable)
4101        ICS.Ambiguous.addConversion(Cand->Function);
4102    return true;
4103
4104  case OR_No_Viable_Function:
4105  case OR_Deleted:
4106    // There was no suitable conversion, or we found a deleted
4107    // conversion; continue with other checks.
4108    return false;
4109  }
4110
4111  llvm_unreachable("Invalid OverloadResult!");
4112}
4113
4114/// \brief Compute an implicit conversion sequence for reference
4115/// initialization.
4116static ImplicitConversionSequence
4117TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4118                 SourceLocation DeclLoc,
4119                 bool SuppressUserConversions,
4120                 bool AllowExplicit) {
4121  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4122
4123  // Most paths end in a failed conversion.
4124  ImplicitConversionSequence ICS;
4125  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4126
4127  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4128  QualType T2 = Init->getType();
4129
4130  // If the initializer is the address of an overloaded function, try
4131  // to resolve the overloaded function. If all goes well, T2 is the
4132  // type of the resulting function.
4133  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4134    DeclAccessPair Found;
4135    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4136                                                                false, Found))
4137      T2 = Fn->getType();
4138  }
4139
4140  // Compute some basic properties of the types and the initializer.
4141  bool isRValRef = DeclType->isRValueReferenceType();
4142  bool DerivedToBase = false;
4143  bool ObjCConversion = false;
4144  bool ObjCLifetimeConversion = false;
4145  Expr::Classification InitCategory = Init->Classify(S.Context);
4146  Sema::ReferenceCompareResult RefRelationship
4147    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4148                                     ObjCConversion, ObjCLifetimeConversion);
4149
4150
4151  // C++0x [dcl.init.ref]p5:
4152  //   A reference to type "cv1 T1" is initialized by an expression
4153  //   of type "cv2 T2" as follows:
4154
4155  //     -- If reference is an lvalue reference and the initializer expression
4156  if (!isRValRef) {
4157    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4158    //        reference-compatible with "cv2 T2," or
4159    //
4160    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4161    if (InitCategory.isLValue() &&
4162        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4163      // C++ [over.ics.ref]p1:
4164      //   When a parameter of reference type binds directly (8.5.3)
4165      //   to an argument expression, the implicit conversion sequence
4166      //   is the identity conversion, unless the argument expression
4167      //   has a type that is a derived class of the parameter type,
4168      //   in which case the implicit conversion sequence is a
4169      //   derived-to-base Conversion (13.3.3.1).
4170      ICS.setStandard();
4171      ICS.Standard.First = ICK_Identity;
4172      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4173                         : ObjCConversion? ICK_Compatible_Conversion
4174                         : ICK_Identity;
4175      ICS.Standard.Third = ICK_Identity;
4176      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4177      ICS.Standard.setToType(0, T2);
4178      ICS.Standard.setToType(1, T1);
4179      ICS.Standard.setToType(2, T1);
4180      ICS.Standard.ReferenceBinding = true;
4181      ICS.Standard.DirectBinding = true;
4182      ICS.Standard.IsLvalueReference = !isRValRef;
4183      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4184      ICS.Standard.BindsToRvalue = false;
4185      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4186      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4187      ICS.Standard.CopyConstructor = 0;
4188
4189      // Nothing more to do: the inaccessibility/ambiguity check for
4190      // derived-to-base conversions is suppressed when we're
4191      // computing the implicit conversion sequence (C++
4192      // [over.best.ics]p2).
4193      return ICS;
4194    }
4195
4196    //       -- has a class type (i.e., T2 is a class type), where T1 is
4197    //          not reference-related to T2, and can be implicitly
4198    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4199    //          is reference-compatible with "cv3 T3" 92) (this
4200    //          conversion is selected by enumerating the applicable
4201    //          conversion functions (13.3.1.6) and choosing the best
4202    //          one through overload resolution (13.3)),
4203    if (!SuppressUserConversions && T2->isRecordType() &&
4204        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4205        RefRelationship == Sema::Ref_Incompatible) {
4206      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4207                                   Init, T2, /*AllowRvalues=*/false,
4208                                   AllowExplicit))
4209        return ICS;
4210    }
4211  }
4212
4213  //     -- Otherwise, the reference shall be an lvalue reference to a
4214  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4215  //        shall be an rvalue reference.
4216  //
4217  // We actually handle one oddity of C++ [over.ics.ref] at this
4218  // point, which is that, due to p2 (which short-circuits reference
4219  // binding by only attempting a simple conversion for non-direct
4220  // bindings) and p3's strange wording, we allow a const volatile
4221  // reference to bind to an rvalue. Hence the check for the presence
4222  // of "const" rather than checking for "const" being the only
4223  // qualifier.
4224  // This is also the point where rvalue references and lvalue inits no longer
4225  // go together.
4226  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4227    return ICS;
4228
4229  //       -- If the initializer expression
4230  //
4231  //            -- is an xvalue, class prvalue, array prvalue or function
4232  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4233  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4234      (InitCategory.isXValue() ||
4235      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4236      (InitCategory.isLValue() && T2->isFunctionType()))) {
4237    ICS.setStandard();
4238    ICS.Standard.First = ICK_Identity;
4239    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4240                      : ObjCConversion? ICK_Compatible_Conversion
4241                      : ICK_Identity;
4242    ICS.Standard.Third = ICK_Identity;
4243    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4244    ICS.Standard.setToType(0, T2);
4245    ICS.Standard.setToType(1, T1);
4246    ICS.Standard.setToType(2, T1);
4247    ICS.Standard.ReferenceBinding = true;
4248    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4249    // binding unless we're binding to a class prvalue.
4250    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4251    // allow the use of rvalue references in C++98/03 for the benefit of
4252    // standard library implementors; therefore, we need the xvalue check here.
4253    ICS.Standard.DirectBinding =
4254      S.getLangOpts().CPlusPlus11 ||
4255      (InitCategory.isPRValue() && !T2->isRecordType());
4256    ICS.Standard.IsLvalueReference = !isRValRef;
4257    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4258    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4259    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4260    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4261    ICS.Standard.CopyConstructor = 0;
4262    return ICS;
4263  }
4264
4265  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4266  //               reference-related to T2, and can be implicitly converted to
4267  //               an xvalue, class prvalue, or function lvalue of type
4268  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4269  //               "cv3 T3",
4270  //
4271  //          then the reference is bound to the value of the initializer
4272  //          expression in the first case and to the result of the conversion
4273  //          in the second case (or, in either case, to an appropriate base
4274  //          class subobject).
4275  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4276      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4277      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4278                               Init, T2, /*AllowRvalues=*/true,
4279                               AllowExplicit)) {
4280    // In the second case, if the reference is an rvalue reference
4281    // and the second standard conversion sequence of the
4282    // user-defined conversion sequence includes an lvalue-to-rvalue
4283    // conversion, the program is ill-formed.
4284    if (ICS.isUserDefined() && isRValRef &&
4285        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4286      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4287
4288    return ICS;
4289  }
4290
4291  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4292  //          initialized from the initializer expression using the
4293  //          rules for a non-reference copy initialization (8.5). The
4294  //          reference is then bound to the temporary. If T1 is
4295  //          reference-related to T2, cv1 must be the same
4296  //          cv-qualification as, or greater cv-qualification than,
4297  //          cv2; otherwise, the program is ill-formed.
4298  if (RefRelationship == Sema::Ref_Related) {
4299    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4300    // we would be reference-compatible or reference-compatible with
4301    // added qualification. But that wasn't the case, so the reference
4302    // initialization fails.
4303    //
4304    // Note that we only want to check address spaces and cvr-qualifiers here.
4305    // ObjC GC and lifetime qualifiers aren't important.
4306    Qualifiers T1Quals = T1.getQualifiers();
4307    Qualifiers T2Quals = T2.getQualifiers();
4308    T1Quals.removeObjCGCAttr();
4309    T1Quals.removeObjCLifetime();
4310    T2Quals.removeObjCGCAttr();
4311    T2Quals.removeObjCLifetime();
4312    if (!T1Quals.compatiblyIncludes(T2Quals))
4313      return ICS;
4314  }
4315
4316  // If at least one of the types is a class type, the types are not
4317  // related, and we aren't allowed any user conversions, the
4318  // reference binding fails. This case is important for breaking
4319  // recursion, since TryImplicitConversion below will attempt to
4320  // create a temporary through the use of a copy constructor.
4321  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4322      (T1->isRecordType() || T2->isRecordType()))
4323    return ICS;
4324
4325  // If T1 is reference-related to T2 and the reference is an rvalue
4326  // reference, the initializer expression shall not be an lvalue.
4327  if (RefRelationship >= Sema::Ref_Related &&
4328      isRValRef && Init->Classify(S.Context).isLValue())
4329    return ICS;
4330
4331  // C++ [over.ics.ref]p2:
4332  //   When a parameter of reference type is not bound directly to
4333  //   an argument expression, the conversion sequence is the one
4334  //   required to convert the argument expression to the
4335  //   underlying type of the reference according to
4336  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4337  //   to copy-initializing a temporary of the underlying type with
4338  //   the argument expression. Any difference in top-level
4339  //   cv-qualification is subsumed by the initialization itself
4340  //   and does not constitute a conversion.
4341  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4342                              /*AllowExplicit=*/false,
4343                              /*InOverloadResolution=*/false,
4344                              /*CStyle=*/false,
4345                              /*AllowObjCWritebackConversion=*/false);
4346
4347  // Of course, that's still a reference binding.
4348  if (ICS.isStandard()) {
4349    ICS.Standard.ReferenceBinding = true;
4350    ICS.Standard.IsLvalueReference = !isRValRef;
4351    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4352    ICS.Standard.BindsToRvalue = true;
4353    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4354    ICS.Standard.ObjCLifetimeConversionBinding = false;
4355  } else if (ICS.isUserDefined()) {
4356    // Don't allow rvalue references to bind to lvalues.
4357    if (DeclType->isRValueReferenceType()) {
4358      if (const ReferenceType *RefType
4359            = ICS.UserDefined.ConversionFunction->getResultType()
4360                ->getAs<LValueReferenceType>()) {
4361        if (!RefType->getPointeeType()->isFunctionType()) {
4362          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4363                     DeclType);
4364          return ICS;
4365        }
4366      }
4367    }
4368
4369    ICS.UserDefined.After.ReferenceBinding = true;
4370    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4371    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4372    ICS.UserDefined.After.BindsToRvalue = true;
4373    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4374    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4375  }
4376
4377  return ICS;
4378}
4379
4380static ImplicitConversionSequence
4381TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4382                      bool SuppressUserConversions,
4383                      bool InOverloadResolution,
4384                      bool AllowObjCWritebackConversion,
4385                      bool AllowExplicit = false);
4386
4387/// TryListConversion - Try to copy-initialize a value of type ToType from the
4388/// initializer list From.
4389static ImplicitConversionSequence
4390TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4391                  bool SuppressUserConversions,
4392                  bool InOverloadResolution,
4393                  bool AllowObjCWritebackConversion) {
4394  // C++11 [over.ics.list]p1:
4395  //   When an argument is an initializer list, it is not an expression and
4396  //   special rules apply for converting it to a parameter type.
4397
4398  ImplicitConversionSequence Result;
4399  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4400  Result.setListInitializationSequence();
4401
4402  // We need a complete type for what follows. Incomplete types can never be
4403  // initialized from init lists.
4404  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4405    return Result;
4406
4407  // C++11 [over.ics.list]p2:
4408  //   If the parameter type is std::initializer_list<X> or "array of X" and
4409  //   all the elements can be implicitly converted to X, the implicit
4410  //   conversion sequence is the worst conversion necessary to convert an
4411  //   element of the list to X.
4412  bool toStdInitializerList = false;
4413  QualType X;
4414  if (ToType->isArrayType())
4415    X = S.Context.getAsArrayType(ToType)->getElementType();
4416  else
4417    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4418  if (!X.isNull()) {
4419    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4420      Expr *Init = From->getInit(i);
4421      ImplicitConversionSequence ICS =
4422          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4423                                InOverloadResolution,
4424                                AllowObjCWritebackConversion);
4425      // If a single element isn't convertible, fail.
4426      if (ICS.isBad()) {
4427        Result = ICS;
4428        break;
4429      }
4430      // Otherwise, look for the worst conversion.
4431      if (Result.isBad() ||
4432          CompareImplicitConversionSequences(S, ICS, Result) ==
4433              ImplicitConversionSequence::Worse)
4434        Result = ICS;
4435    }
4436
4437    // For an empty list, we won't have computed any conversion sequence.
4438    // Introduce the identity conversion sequence.
4439    if (From->getNumInits() == 0) {
4440      Result.setStandard();
4441      Result.Standard.setAsIdentityConversion();
4442      Result.Standard.setFromType(ToType);
4443      Result.Standard.setAllToTypes(ToType);
4444    }
4445
4446    Result.setListInitializationSequence();
4447    Result.setStdInitializerListElement(toStdInitializerList);
4448    return Result;
4449  }
4450
4451  // C++11 [over.ics.list]p3:
4452  //   Otherwise, if the parameter is a non-aggregate class X and overload
4453  //   resolution chooses a single best constructor [...] the implicit
4454  //   conversion sequence is a user-defined conversion sequence. If multiple
4455  //   constructors are viable but none is better than the others, the
4456  //   implicit conversion sequence is a user-defined conversion sequence.
4457  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4458    // This function can deal with initializer lists.
4459    Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4460                                      /*AllowExplicit=*/false,
4461                                      InOverloadResolution, /*CStyle=*/false,
4462                                      AllowObjCWritebackConversion);
4463    Result.setListInitializationSequence();
4464    return Result;
4465  }
4466
4467  // C++11 [over.ics.list]p4:
4468  //   Otherwise, if the parameter has an aggregate type which can be
4469  //   initialized from the initializer list [...] the implicit conversion
4470  //   sequence is a user-defined conversion sequence.
4471  if (ToType->isAggregateType()) {
4472    // Type is an aggregate, argument is an init list. At this point it comes
4473    // down to checking whether the initialization works.
4474    // FIXME: Find out whether this parameter is consumed or not.
4475    InitializedEntity Entity =
4476        InitializedEntity::InitializeParameter(S.Context, ToType,
4477                                               /*Consumed=*/false);
4478    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4479      Result.setUserDefined();
4480      Result.UserDefined.Before.setAsIdentityConversion();
4481      // Initializer lists don't have a type.
4482      Result.UserDefined.Before.setFromType(QualType());
4483      Result.UserDefined.Before.setAllToTypes(QualType());
4484
4485      Result.UserDefined.After.setAsIdentityConversion();
4486      Result.UserDefined.After.setFromType(ToType);
4487      Result.UserDefined.After.setAllToTypes(ToType);
4488      Result.UserDefined.ConversionFunction = 0;
4489    }
4490    return Result;
4491  }
4492
4493  // C++11 [over.ics.list]p5:
4494  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4495  if (ToType->isReferenceType()) {
4496    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4497    // mention initializer lists in any way. So we go by what list-
4498    // initialization would do and try to extrapolate from that.
4499
4500    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4501
4502    // If the initializer list has a single element that is reference-related
4503    // to the parameter type, we initialize the reference from that.
4504    if (From->getNumInits() == 1) {
4505      Expr *Init = From->getInit(0);
4506
4507      QualType T2 = Init->getType();
4508
4509      // If the initializer is the address of an overloaded function, try
4510      // to resolve the overloaded function. If all goes well, T2 is the
4511      // type of the resulting function.
4512      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4513        DeclAccessPair Found;
4514        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4515                                   Init, ToType, false, Found))
4516          T2 = Fn->getType();
4517      }
4518
4519      // Compute some basic properties of the types and the initializer.
4520      bool dummy1 = false;
4521      bool dummy2 = false;
4522      bool dummy3 = false;
4523      Sema::ReferenceCompareResult RefRelationship
4524        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4525                                         dummy2, dummy3);
4526
4527      if (RefRelationship >= Sema::Ref_Related)
4528        return TryReferenceInit(S, Init, ToType,
4529                                /*FIXME:*/From->getLocStart(),
4530                                SuppressUserConversions,
4531                                /*AllowExplicit=*/false);
4532    }
4533
4534    // Otherwise, we bind the reference to a temporary created from the
4535    // initializer list.
4536    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4537                               InOverloadResolution,
4538                               AllowObjCWritebackConversion);
4539    if (Result.isFailure())
4540      return Result;
4541    assert(!Result.isEllipsis() &&
4542           "Sub-initialization cannot result in ellipsis conversion.");
4543
4544    // Can we even bind to a temporary?
4545    if (ToType->isRValueReferenceType() ||
4546        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4547      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4548                                            Result.UserDefined.After;
4549      SCS.ReferenceBinding = true;
4550      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4551      SCS.BindsToRvalue = true;
4552      SCS.BindsToFunctionLvalue = false;
4553      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4554      SCS.ObjCLifetimeConversionBinding = false;
4555    } else
4556      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4557                    From, ToType);
4558    return Result;
4559  }
4560
4561  // C++11 [over.ics.list]p6:
4562  //   Otherwise, if the parameter type is not a class:
4563  if (!ToType->isRecordType()) {
4564    //    - if the initializer list has one element, the implicit conversion
4565    //      sequence is the one required to convert the element to the
4566    //      parameter type.
4567    unsigned NumInits = From->getNumInits();
4568    if (NumInits == 1)
4569      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4570                                     SuppressUserConversions,
4571                                     InOverloadResolution,
4572                                     AllowObjCWritebackConversion);
4573    //    - if the initializer list has no elements, the implicit conversion
4574    //      sequence is the identity conversion.
4575    else if (NumInits == 0) {
4576      Result.setStandard();
4577      Result.Standard.setAsIdentityConversion();
4578      Result.Standard.setFromType(ToType);
4579      Result.Standard.setAllToTypes(ToType);
4580    }
4581    Result.setListInitializationSequence();
4582    return Result;
4583  }
4584
4585  // C++11 [over.ics.list]p7:
4586  //   In all cases other than those enumerated above, no conversion is possible
4587  return Result;
4588}
4589
4590/// TryCopyInitialization - Try to copy-initialize a value of type
4591/// ToType from the expression From. Return the implicit conversion
4592/// sequence required to pass this argument, which may be a bad
4593/// conversion sequence (meaning that the argument cannot be passed to
4594/// a parameter of this type). If @p SuppressUserConversions, then we
4595/// do not permit any user-defined conversion sequences.
4596static ImplicitConversionSequence
4597TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4598                      bool SuppressUserConversions,
4599                      bool InOverloadResolution,
4600                      bool AllowObjCWritebackConversion,
4601                      bool AllowExplicit) {
4602  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4603    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4604                             InOverloadResolution,AllowObjCWritebackConversion);
4605
4606  if (ToType->isReferenceType())
4607    return TryReferenceInit(S, From, ToType,
4608                            /*FIXME:*/From->getLocStart(),
4609                            SuppressUserConversions,
4610                            AllowExplicit);
4611
4612  return TryImplicitConversion(S, From, ToType,
4613                               SuppressUserConversions,
4614                               /*AllowExplicit=*/false,
4615                               InOverloadResolution,
4616                               /*CStyle=*/false,
4617                               AllowObjCWritebackConversion);
4618}
4619
4620static bool TryCopyInitialization(const CanQualType FromQTy,
4621                                  const CanQualType ToQTy,
4622                                  Sema &S,
4623                                  SourceLocation Loc,
4624                                  ExprValueKind FromVK) {
4625  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4626  ImplicitConversionSequence ICS =
4627    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4628
4629  return !ICS.isBad();
4630}
4631
4632/// TryObjectArgumentInitialization - Try to initialize the object
4633/// parameter of the given member function (@c Method) from the
4634/// expression @p From.
4635static ImplicitConversionSequence
4636TryObjectArgumentInitialization(Sema &S, QualType FromType,
4637                                Expr::Classification FromClassification,
4638                                CXXMethodDecl *Method,
4639                                CXXRecordDecl *ActingContext) {
4640  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4641  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4642  //                 const volatile object.
4643  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4644    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4645  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4646
4647  // Set up the conversion sequence as a "bad" conversion, to allow us
4648  // to exit early.
4649  ImplicitConversionSequence ICS;
4650
4651  // We need to have an object of class type.
4652  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4653    FromType = PT->getPointeeType();
4654
4655    // When we had a pointer, it's implicitly dereferenced, so we
4656    // better have an lvalue.
4657    assert(FromClassification.isLValue());
4658  }
4659
4660  assert(FromType->isRecordType());
4661
4662  // C++0x [over.match.funcs]p4:
4663  //   For non-static member functions, the type of the implicit object
4664  //   parameter is
4665  //
4666  //     - "lvalue reference to cv X" for functions declared without a
4667  //        ref-qualifier or with the & ref-qualifier
4668  //     - "rvalue reference to cv X" for functions declared with the &&
4669  //        ref-qualifier
4670  //
4671  // where X is the class of which the function is a member and cv is the
4672  // cv-qualification on the member function declaration.
4673  //
4674  // However, when finding an implicit conversion sequence for the argument, we
4675  // are not allowed to create temporaries or perform user-defined conversions
4676  // (C++ [over.match.funcs]p5). We perform a simplified version of
4677  // reference binding here, that allows class rvalues to bind to
4678  // non-constant references.
4679
4680  // First check the qualifiers.
4681  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4682  if (ImplicitParamType.getCVRQualifiers()
4683                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4684      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4685    ICS.setBad(BadConversionSequence::bad_qualifiers,
4686               FromType, ImplicitParamType);
4687    return ICS;
4688  }
4689
4690  // Check that we have either the same type or a derived type. It
4691  // affects the conversion rank.
4692  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4693  ImplicitConversionKind SecondKind;
4694  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4695    SecondKind = ICK_Identity;
4696  } else if (S.IsDerivedFrom(FromType, ClassType))
4697    SecondKind = ICK_Derived_To_Base;
4698  else {
4699    ICS.setBad(BadConversionSequence::unrelated_class,
4700               FromType, ImplicitParamType);
4701    return ICS;
4702  }
4703
4704  // Check the ref-qualifier.
4705  switch (Method->getRefQualifier()) {
4706  case RQ_None:
4707    // Do nothing; we don't care about lvalueness or rvalueness.
4708    break;
4709
4710  case RQ_LValue:
4711    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4712      // non-const lvalue reference cannot bind to an rvalue
4713      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4714                 ImplicitParamType);
4715      return ICS;
4716    }
4717    break;
4718
4719  case RQ_RValue:
4720    if (!FromClassification.isRValue()) {
4721      // rvalue reference cannot bind to an lvalue
4722      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4723                 ImplicitParamType);
4724      return ICS;
4725    }
4726    break;
4727  }
4728
4729  // Success. Mark this as a reference binding.
4730  ICS.setStandard();
4731  ICS.Standard.setAsIdentityConversion();
4732  ICS.Standard.Second = SecondKind;
4733  ICS.Standard.setFromType(FromType);
4734  ICS.Standard.setAllToTypes(ImplicitParamType);
4735  ICS.Standard.ReferenceBinding = true;
4736  ICS.Standard.DirectBinding = true;
4737  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4738  ICS.Standard.BindsToFunctionLvalue = false;
4739  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4740  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4741    = (Method->getRefQualifier() == RQ_None);
4742  return ICS;
4743}
4744
4745/// PerformObjectArgumentInitialization - Perform initialization of
4746/// the implicit object parameter for the given Method with the given
4747/// expression.
4748ExprResult
4749Sema::PerformObjectArgumentInitialization(Expr *From,
4750                                          NestedNameSpecifier *Qualifier,
4751                                          NamedDecl *FoundDecl,
4752                                          CXXMethodDecl *Method) {
4753  QualType FromRecordType, DestType;
4754  QualType ImplicitParamRecordType  =
4755    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4756
4757  Expr::Classification FromClassification;
4758  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4759    FromRecordType = PT->getPointeeType();
4760    DestType = Method->getThisType(Context);
4761    FromClassification = Expr::Classification::makeSimpleLValue();
4762  } else {
4763    FromRecordType = From->getType();
4764    DestType = ImplicitParamRecordType;
4765    FromClassification = From->Classify(Context);
4766  }
4767
4768  // Note that we always use the true parent context when performing
4769  // the actual argument initialization.
4770  ImplicitConversionSequence ICS
4771    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4772                                      Method, Method->getParent());
4773  if (ICS.isBad()) {
4774    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4775      Qualifiers FromQs = FromRecordType.getQualifiers();
4776      Qualifiers ToQs = DestType.getQualifiers();
4777      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4778      if (CVR) {
4779        Diag(From->getLocStart(),
4780             diag::err_member_function_call_bad_cvr)
4781          << Method->getDeclName() << FromRecordType << (CVR - 1)
4782          << From->getSourceRange();
4783        Diag(Method->getLocation(), diag::note_previous_decl)
4784          << Method->getDeclName();
4785        return ExprError();
4786      }
4787    }
4788
4789    return Diag(From->getLocStart(),
4790                diag::err_implicit_object_parameter_init)
4791       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4792  }
4793
4794  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4795    ExprResult FromRes =
4796      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4797    if (FromRes.isInvalid())
4798      return ExprError();
4799    From = FromRes.take();
4800  }
4801
4802  if (!Context.hasSameType(From->getType(), DestType))
4803    From = ImpCastExprToType(From, DestType, CK_NoOp,
4804                             From->getValueKind()).take();
4805  return Owned(From);
4806}
4807
4808/// TryContextuallyConvertToBool - Attempt to contextually convert the
4809/// expression From to bool (C++0x [conv]p3).
4810static ImplicitConversionSequence
4811TryContextuallyConvertToBool(Sema &S, Expr *From) {
4812  // FIXME: This is pretty broken.
4813  return TryImplicitConversion(S, From, S.Context.BoolTy,
4814                               // FIXME: Are these flags correct?
4815                               /*SuppressUserConversions=*/false,
4816                               /*AllowExplicit=*/true,
4817                               /*InOverloadResolution=*/false,
4818                               /*CStyle=*/false,
4819                               /*AllowObjCWritebackConversion=*/false);
4820}
4821
4822/// PerformContextuallyConvertToBool - Perform a contextual conversion
4823/// of the expression From to bool (C++0x [conv]p3).
4824ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4825  if (checkPlaceholderForOverload(*this, From))
4826    return ExprError();
4827
4828  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4829  if (!ICS.isBad())
4830    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4831
4832  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4833    return Diag(From->getLocStart(),
4834                diag::err_typecheck_bool_condition)
4835                  << From->getType() << From->getSourceRange();
4836  return ExprError();
4837}
4838
4839/// Check that the specified conversion is permitted in a converted constant
4840/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4841/// is acceptable.
4842static bool CheckConvertedConstantConversions(Sema &S,
4843                                              StandardConversionSequence &SCS) {
4844  // Since we know that the target type is an integral or unscoped enumeration
4845  // type, most conversion kinds are impossible. All possible First and Third
4846  // conversions are fine.
4847  switch (SCS.Second) {
4848  case ICK_Identity:
4849  case ICK_Integral_Promotion:
4850  case ICK_Integral_Conversion:
4851  case ICK_Zero_Event_Conversion:
4852    return true;
4853
4854  case ICK_Boolean_Conversion:
4855    // Conversion from an integral or unscoped enumeration type to bool is
4856    // classified as ICK_Boolean_Conversion, but it's also an integral
4857    // conversion, so it's permitted in a converted constant expression.
4858    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4859           SCS.getToType(2)->isBooleanType();
4860
4861  case ICK_Floating_Integral:
4862  case ICK_Complex_Real:
4863    return false;
4864
4865  case ICK_Lvalue_To_Rvalue:
4866  case ICK_Array_To_Pointer:
4867  case ICK_Function_To_Pointer:
4868  case ICK_NoReturn_Adjustment:
4869  case ICK_Qualification:
4870  case ICK_Compatible_Conversion:
4871  case ICK_Vector_Conversion:
4872  case ICK_Vector_Splat:
4873  case ICK_Derived_To_Base:
4874  case ICK_Pointer_Conversion:
4875  case ICK_Pointer_Member:
4876  case ICK_Block_Pointer_Conversion:
4877  case ICK_Writeback_Conversion:
4878  case ICK_Floating_Promotion:
4879  case ICK_Complex_Promotion:
4880  case ICK_Complex_Conversion:
4881  case ICK_Floating_Conversion:
4882  case ICK_TransparentUnionConversion:
4883    llvm_unreachable("unexpected second conversion kind");
4884
4885  case ICK_Num_Conversion_Kinds:
4886    break;
4887  }
4888
4889  llvm_unreachable("unknown conversion kind");
4890}
4891
4892/// CheckConvertedConstantExpression - Check that the expression From is a
4893/// converted constant expression of type T, perform the conversion and produce
4894/// the converted expression, per C++11 [expr.const]p3.
4895ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4896                                                  llvm::APSInt &Value,
4897                                                  CCEKind CCE) {
4898  assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
4899  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4900
4901  if (checkPlaceholderForOverload(*this, From))
4902    return ExprError();
4903
4904  // C++11 [expr.const]p3 with proposed wording fixes:
4905  //  A converted constant expression of type T is a core constant expression,
4906  //  implicitly converted to a prvalue of type T, where the converted
4907  //  expression is a literal constant expression and the implicit conversion
4908  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4909  //  conversions, integral promotions, and integral conversions other than
4910  //  narrowing conversions.
4911  ImplicitConversionSequence ICS =
4912    TryImplicitConversion(From, T,
4913                          /*SuppressUserConversions=*/false,
4914                          /*AllowExplicit=*/false,
4915                          /*InOverloadResolution=*/false,
4916                          /*CStyle=*/false,
4917                          /*AllowObjcWritebackConversion=*/false);
4918  StandardConversionSequence *SCS = 0;
4919  switch (ICS.getKind()) {
4920  case ImplicitConversionSequence::StandardConversion:
4921    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4922      return Diag(From->getLocStart(),
4923                  diag::err_typecheck_converted_constant_expression_disallowed)
4924               << From->getType() << From->getSourceRange() << T;
4925    SCS = &ICS.Standard;
4926    break;
4927  case ImplicitConversionSequence::UserDefinedConversion:
4928    // We are converting from class type to an integral or enumeration type, so
4929    // the Before sequence must be trivial.
4930    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4931      return Diag(From->getLocStart(),
4932                  diag::err_typecheck_converted_constant_expression_disallowed)
4933               << From->getType() << From->getSourceRange() << T;
4934    SCS = &ICS.UserDefined.After;
4935    break;
4936  case ImplicitConversionSequence::AmbiguousConversion:
4937  case ImplicitConversionSequence::BadConversion:
4938    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4939      return Diag(From->getLocStart(),
4940                  diag::err_typecheck_converted_constant_expression)
4941                    << From->getType() << From->getSourceRange() << T;
4942    return ExprError();
4943
4944  case ImplicitConversionSequence::EllipsisConversion:
4945    llvm_unreachable("ellipsis conversion in converted constant expression");
4946  }
4947
4948  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4949  if (Result.isInvalid())
4950    return Result;
4951
4952  // Check for a narrowing implicit conversion.
4953  APValue PreNarrowingValue;
4954  QualType PreNarrowingType;
4955  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4956                                PreNarrowingType)) {
4957  case NK_Variable_Narrowing:
4958    // Implicit conversion to a narrower type, and the value is not a constant
4959    // expression. We'll diagnose this in a moment.
4960  case NK_Not_Narrowing:
4961    break;
4962
4963  case NK_Constant_Narrowing:
4964    Diag(From->getLocStart(),
4965         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4966                             diag::err_cce_narrowing)
4967      << CCE << /*Constant*/1
4968      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4969    break;
4970
4971  case NK_Type_Narrowing:
4972    Diag(From->getLocStart(),
4973         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4974                             diag::err_cce_narrowing)
4975      << CCE << /*Constant*/0 << From->getType() << T;
4976    break;
4977  }
4978
4979  // Check the expression is a constant expression.
4980  SmallVector<PartialDiagnosticAt, 8> Notes;
4981  Expr::EvalResult Eval;
4982  Eval.Diag = &Notes;
4983
4984  if (!Result.get()->EvaluateAsRValue(Eval, Context) || !Eval.Val.isInt()) {
4985    // The expression can't be folded, so we can't keep it at this position in
4986    // the AST.
4987    Result = ExprError();
4988  } else {
4989    Value = Eval.Val.getInt();
4990
4991    if (Notes.empty()) {
4992      // It's a constant expression.
4993      return Result;
4994    }
4995  }
4996
4997  // It's not a constant expression. Produce an appropriate diagnostic.
4998  if (Notes.size() == 1 &&
4999      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5000    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5001  else {
5002    Diag(From->getLocStart(), diag::err_expr_not_cce)
5003      << CCE << From->getSourceRange();
5004    for (unsigned I = 0; I < Notes.size(); ++I)
5005      Diag(Notes[I].first, Notes[I].second);
5006  }
5007  return Result;
5008}
5009
5010/// dropPointerConversions - If the given standard conversion sequence
5011/// involves any pointer conversions, remove them.  This may change
5012/// the result type of the conversion sequence.
5013static void dropPointerConversion(StandardConversionSequence &SCS) {
5014  if (SCS.Second == ICK_Pointer_Conversion) {
5015    SCS.Second = ICK_Identity;
5016    SCS.Third = ICK_Identity;
5017    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5018  }
5019}
5020
5021/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5022/// convert the expression From to an Objective-C pointer type.
5023static ImplicitConversionSequence
5024TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5025  // Do an implicit conversion to 'id'.
5026  QualType Ty = S.Context.getObjCIdType();
5027  ImplicitConversionSequence ICS
5028    = TryImplicitConversion(S, From, Ty,
5029                            // FIXME: Are these flags correct?
5030                            /*SuppressUserConversions=*/false,
5031                            /*AllowExplicit=*/true,
5032                            /*InOverloadResolution=*/false,
5033                            /*CStyle=*/false,
5034                            /*AllowObjCWritebackConversion=*/false);
5035
5036  // Strip off any final conversions to 'id'.
5037  switch (ICS.getKind()) {
5038  case ImplicitConversionSequence::BadConversion:
5039  case ImplicitConversionSequence::AmbiguousConversion:
5040  case ImplicitConversionSequence::EllipsisConversion:
5041    break;
5042
5043  case ImplicitConversionSequence::UserDefinedConversion:
5044    dropPointerConversion(ICS.UserDefined.After);
5045    break;
5046
5047  case ImplicitConversionSequence::StandardConversion:
5048    dropPointerConversion(ICS.Standard);
5049    break;
5050  }
5051
5052  return ICS;
5053}
5054
5055/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5056/// conversion of the expression From to an Objective-C pointer type.
5057ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5058  if (checkPlaceholderForOverload(*this, From))
5059    return ExprError();
5060
5061  QualType Ty = Context.getObjCIdType();
5062  ImplicitConversionSequence ICS =
5063    TryContextuallyConvertToObjCPointer(*this, From);
5064  if (!ICS.isBad())
5065    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5066  return ExprError();
5067}
5068
5069/// Determine whether the provided type is an integral type, or an enumeration
5070/// type of a permitted flavor.
5071bool Sema::ICEConvertDiagnoser::match(QualType T) {
5072  return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5073                                 : T->isIntegralOrUnscopedEnumerationType();
5074}
5075
5076static ExprResult
5077diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5078                            Sema::ContextualImplicitConverter &Converter,
5079                            QualType T, UnresolvedSetImpl &ViableConversions) {
5080
5081  if (Converter.Suppress)
5082    return ExprError();
5083
5084  Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5085  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5086    CXXConversionDecl *Conv =
5087        cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5088    QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5089    Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5090  }
5091  return SemaRef.Owned(From);
5092}
5093
5094static bool
5095diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5096                           Sema::ContextualImplicitConverter &Converter,
5097                           QualType T, bool HadMultipleCandidates,
5098                           UnresolvedSetImpl &ExplicitConversions) {
5099  if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5100    DeclAccessPair Found = ExplicitConversions[0];
5101    CXXConversionDecl *Conversion =
5102        cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5103
5104    // The user probably meant to invoke the given explicit
5105    // conversion; use it.
5106    QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5107    std::string TypeStr;
5108    ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5109
5110    Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5111        << FixItHint::CreateInsertion(From->getLocStart(),
5112                                      "static_cast<" + TypeStr + ">(")
5113        << FixItHint::CreateInsertion(
5114               SemaRef.PP.getLocForEndOfToken(From->getLocEnd()), ")");
5115    Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5116
5117    // If we aren't in a SFINAE context, build a call to the
5118    // explicit conversion function.
5119    if (SemaRef.isSFINAEContext())
5120      return true;
5121
5122    SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5123    ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5124                                                       HadMultipleCandidates);
5125    if (Result.isInvalid())
5126      return true;
5127    // Record usage of conversion in an implicit cast.
5128    From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5129                                    CK_UserDefinedConversion, Result.get(), 0,
5130                                    Result.get()->getValueKind());
5131  }
5132  return false;
5133}
5134
5135static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5136                             Sema::ContextualImplicitConverter &Converter,
5137                             QualType T, bool HadMultipleCandidates,
5138                             DeclAccessPair &Found) {
5139  CXXConversionDecl *Conversion =
5140      cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5141  SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5142
5143  QualType ToType = Conversion->getConversionType().getNonReferenceType();
5144  if (!Converter.SuppressConversion) {
5145    if (SemaRef.isSFINAEContext())
5146      return true;
5147
5148    Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5149        << From->getSourceRange();
5150  }
5151
5152  ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5153                                                     HadMultipleCandidates);
5154  if (Result.isInvalid())
5155    return true;
5156  // Record usage of conversion in an implicit cast.
5157  From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5158                                  CK_UserDefinedConversion, Result.get(), 0,
5159                                  Result.get()->getValueKind());
5160  return false;
5161}
5162
5163static ExprResult finishContextualImplicitConversion(
5164    Sema &SemaRef, SourceLocation Loc, Expr *From,
5165    Sema::ContextualImplicitConverter &Converter) {
5166  if (!Converter.match(From->getType()) && !Converter.Suppress)
5167    Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5168        << From->getSourceRange();
5169
5170  return SemaRef.DefaultLvalueConversion(From);
5171}
5172
5173static void
5174collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5175                                  UnresolvedSetImpl &ViableConversions,
5176                                  OverloadCandidateSet &CandidateSet) {
5177  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5178    DeclAccessPair FoundDecl = ViableConversions[I];
5179    NamedDecl *D = FoundDecl.getDecl();
5180    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5181    if (isa<UsingShadowDecl>(D))
5182      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5183
5184    CXXConversionDecl *Conv;
5185    FunctionTemplateDecl *ConvTemplate;
5186    if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5187      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5188    else
5189      Conv = cast<CXXConversionDecl>(D);
5190
5191    if (ConvTemplate)
5192      SemaRef.AddTemplateConversionCandidate(
5193          ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet);
5194    else
5195      SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5196                                     ToType, CandidateSet);
5197  }
5198}
5199
5200/// \brief Attempt to convert the given expression to a type which is accepted
5201/// by the given converter.
5202///
5203/// This routine will attempt to convert an expression of class type to a
5204/// type accepted by the specified converter. In C++11 and before, the class
5205/// must have a single non-explicit conversion function converting to a matching
5206/// type. In C++1y, there can be multiple such conversion functions, but only
5207/// one target type.
5208///
5209/// \param Loc The source location of the construct that requires the
5210/// conversion.
5211///
5212/// \param From The expression we're converting from.
5213///
5214/// \param Converter Used to control and diagnose the conversion process.
5215///
5216/// \returns The expression, converted to an integral or enumeration type if
5217/// successful.
5218ExprResult Sema::PerformContextualImplicitConversion(
5219    SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5220  // We can't perform any more checking for type-dependent expressions.
5221  if (From->isTypeDependent())
5222    return Owned(From);
5223
5224  // Process placeholders immediately.
5225  if (From->hasPlaceholderType()) {
5226    ExprResult result = CheckPlaceholderExpr(From);
5227    if (result.isInvalid())
5228      return result;
5229    From = result.take();
5230  }
5231
5232  // If the expression already has a matching type, we're golden.
5233  QualType T = From->getType();
5234  if (Converter.match(T))
5235    return DefaultLvalueConversion(From);
5236
5237  // FIXME: Check for missing '()' if T is a function type?
5238
5239  // We can only perform contextual implicit conversions on objects of class
5240  // type.
5241  const RecordType *RecordTy = T->getAs<RecordType>();
5242  if (!RecordTy || !getLangOpts().CPlusPlus) {
5243    if (!Converter.Suppress)
5244      Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5245    return Owned(From);
5246  }
5247
5248  // We must have a complete class type.
5249  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5250    ContextualImplicitConverter &Converter;
5251    Expr *From;
5252
5253    TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5254        : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
5255
5256    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5257      Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5258    }
5259  } IncompleteDiagnoser(Converter, From);
5260
5261  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5262    return Owned(From);
5263
5264  // Look for a conversion to an integral or enumeration type.
5265  UnresolvedSet<4>
5266      ViableConversions; // These are *potentially* viable in C++1y.
5267  UnresolvedSet<4> ExplicitConversions;
5268  std::pair<CXXRecordDecl::conversion_iterator,
5269            CXXRecordDecl::conversion_iterator> Conversions =
5270      cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5271
5272  bool HadMultipleCandidates =
5273      (std::distance(Conversions.first, Conversions.second) > 1);
5274
5275  // To check that there is only one target type, in C++1y:
5276  QualType ToType;
5277  bool HasUniqueTargetType = true;
5278
5279  // Collect explicit or viable (potentially in C++1y) conversions.
5280  for (CXXRecordDecl::conversion_iterator I = Conversions.first,
5281                                          E = Conversions.second;
5282       I != E; ++I) {
5283    NamedDecl *D = (*I)->getUnderlyingDecl();
5284    CXXConversionDecl *Conversion;
5285    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5286    if (ConvTemplate) {
5287      if (getLangOpts().CPlusPlus1y)
5288        Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5289      else
5290        continue; // C++11 does not consider conversion operator templates(?).
5291    } else
5292      Conversion = cast<CXXConversionDecl>(D);
5293
5294    assert((!ConvTemplate || getLangOpts().CPlusPlus1y) &&
5295           "Conversion operator templates are considered potentially "
5296           "viable in C++1y");
5297
5298    QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5299    if (Converter.match(CurToType) || ConvTemplate) {
5300
5301      if (Conversion->isExplicit()) {
5302        // FIXME: For C++1y, do we need this restriction?
5303        // cf. diagnoseNoViableConversion()
5304        if (!ConvTemplate)
5305          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5306      } else {
5307        if (!ConvTemplate && getLangOpts().CPlusPlus1y) {
5308          if (ToType.isNull())
5309            ToType = CurToType.getUnqualifiedType();
5310          else if (HasUniqueTargetType &&
5311                   (CurToType.getUnqualifiedType() != ToType))
5312            HasUniqueTargetType = false;
5313        }
5314        ViableConversions.addDecl(I.getDecl(), I.getAccess());
5315      }
5316    }
5317  }
5318
5319  if (getLangOpts().CPlusPlus1y) {
5320    // C++1y [conv]p6:
5321    // ... An expression e of class type E appearing in such a context
5322    // is said to be contextually implicitly converted to a specified
5323    // type T and is well-formed if and only if e can be implicitly
5324    // converted to a type T that is determined as follows: E is searched
5325    // for conversion functions whose return type is cv T or reference to
5326    // cv T such that T is allowed by the context. There shall be
5327    // exactly one such T.
5328
5329    // If no unique T is found:
5330    if (ToType.isNull()) {
5331      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5332                                     HadMultipleCandidates,
5333                                     ExplicitConversions))
5334        return ExprError();
5335      return finishContextualImplicitConversion(*this, Loc, From, Converter);
5336    }
5337
5338    // If more than one unique Ts are found:
5339    if (!HasUniqueTargetType)
5340      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5341                                         ViableConversions);
5342
5343    // If one unique T is found:
5344    // First, build a candidate set from the previously recorded
5345    // potentially viable conversions.
5346    OverloadCandidateSet CandidateSet(Loc);
5347    collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5348                                      CandidateSet);
5349
5350    // Then, perform overload resolution over the candidate set.
5351    OverloadCandidateSet::iterator Best;
5352    switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5353    case OR_Success: {
5354      // Apply this conversion.
5355      DeclAccessPair Found =
5356          DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5357      if (recordConversion(*this, Loc, From, Converter, T,
5358                           HadMultipleCandidates, Found))
5359        return ExprError();
5360      break;
5361    }
5362    case OR_Ambiguous:
5363      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5364                                         ViableConversions);
5365    case OR_No_Viable_Function:
5366      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5367                                     HadMultipleCandidates,
5368                                     ExplicitConversions))
5369        return ExprError();
5370    // fall through 'OR_Deleted' case.
5371    case OR_Deleted:
5372      // We'll complain below about a non-integral condition type.
5373      break;
5374    }
5375  } else {
5376    switch (ViableConversions.size()) {
5377    case 0: {
5378      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5379                                     HadMultipleCandidates,
5380                                     ExplicitConversions))
5381        return ExprError();
5382
5383      // We'll complain below about a non-integral condition type.
5384      break;
5385    }
5386    case 1: {
5387      // Apply this conversion.
5388      DeclAccessPair Found = ViableConversions[0];
5389      if (recordConversion(*this, Loc, From, Converter, T,
5390                           HadMultipleCandidates, Found))
5391        return ExprError();
5392      break;
5393    }
5394    default:
5395      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5396                                         ViableConversions);
5397    }
5398  }
5399
5400  return finishContextualImplicitConversion(*this, Loc, From, Converter);
5401}
5402
5403/// AddOverloadCandidate - Adds the given function to the set of
5404/// candidate functions, using the given function call arguments.  If
5405/// @p SuppressUserConversions, then don't allow user-defined
5406/// conversions via constructors or conversion operators.
5407///
5408/// \param PartialOverloading true if we are performing "partial" overloading
5409/// based on an incomplete set of function arguments. This feature is used by
5410/// code completion.
5411void
5412Sema::AddOverloadCandidate(FunctionDecl *Function,
5413                           DeclAccessPair FoundDecl,
5414                           ArrayRef<Expr *> Args,
5415                           OverloadCandidateSet& CandidateSet,
5416                           bool SuppressUserConversions,
5417                           bool PartialOverloading,
5418                           bool AllowExplicit) {
5419  const FunctionProtoType* Proto
5420    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5421  assert(Proto && "Functions without a prototype cannot be overloaded");
5422  assert(!Function->getDescribedFunctionTemplate() &&
5423         "Use AddTemplateOverloadCandidate for function templates");
5424
5425  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5426    if (!isa<CXXConstructorDecl>(Method)) {
5427      // If we get here, it's because we're calling a member function
5428      // that is named without a member access expression (e.g.,
5429      // "this->f") that was either written explicitly or created
5430      // implicitly. This can happen with a qualified call to a member
5431      // function, e.g., X::f(). We use an empty type for the implied
5432      // object argument (C++ [over.call.func]p3), and the acting context
5433      // is irrelevant.
5434      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5435                         QualType(), Expr::Classification::makeSimpleLValue(),
5436                         Args, CandidateSet, SuppressUserConversions);
5437      return;
5438    }
5439    // We treat a constructor like a non-member function, since its object
5440    // argument doesn't participate in overload resolution.
5441  }
5442
5443  if (!CandidateSet.isNewCandidate(Function))
5444    return;
5445
5446  // Overload resolution is always an unevaluated context.
5447  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5448
5449  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
5450    // C++ [class.copy]p3:
5451    //   A member function template is never instantiated to perform the copy
5452    //   of a class object to an object of its class type.
5453    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5454    if (Args.size() == 1 &&
5455        Constructor->isSpecializationCopyingObject() &&
5456        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5457         IsDerivedFrom(Args[0]->getType(), ClassType)))
5458      return;
5459  }
5460
5461  // Add this candidate
5462  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5463  Candidate.FoundDecl = FoundDecl;
5464  Candidate.Function = Function;
5465  Candidate.Viable = true;
5466  Candidate.IsSurrogate = false;
5467  Candidate.IgnoreObjectArgument = false;
5468  Candidate.ExplicitCallArguments = Args.size();
5469
5470  unsigned NumArgsInProto = Proto->getNumArgs();
5471
5472  // (C++ 13.3.2p2): A candidate function having fewer than m
5473  // parameters is viable only if it has an ellipsis in its parameter
5474  // list (8.3.5).
5475  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5476      !Proto->isVariadic()) {
5477    Candidate.Viable = false;
5478    Candidate.FailureKind = ovl_fail_too_many_arguments;
5479    return;
5480  }
5481
5482  // (C++ 13.3.2p2): A candidate function having more than m parameters
5483  // is viable only if the (m+1)st parameter has a default argument
5484  // (8.3.6). For the purposes of overload resolution, the
5485  // parameter list is truncated on the right, so that there are
5486  // exactly m parameters.
5487  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5488  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5489    // Not enough arguments.
5490    Candidate.Viable = false;
5491    Candidate.FailureKind = ovl_fail_too_few_arguments;
5492    return;
5493  }
5494
5495  // (CUDA B.1): Check for invalid calls between targets.
5496  if (getLangOpts().CUDA)
5497    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5498      if (CheckCUDATarget(Caller, Function)) {
5499        Candidate.Viable = false;
5500        Candidate.FailureKind = ovl_fail_bad_target;
5501        return;
5502      }
5503
5504  // Determine the implicit conversion sequences for each of the
5505  // arguments.
5506  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5507    if (ArgIdx < NumArgsInProto) {
5508      // (C++ 13.3.2p3): for F to be a viable function, there shall
5509      // exist for each argument an implicit conversion sequence
5510      // (13.3.3.1) that converts that argument to the corresponding
5511      // parameter of F.
5512      QualType ParamType = Proto->getArgType(ArgIdx);
5513      Candidate.Conversions[ArgIdx]
5514        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5515                                SuppressUserConversions,
5516                                /*InOverloadResolution=*/true,
5517                                /*AllowObjCWritebackConversion=*/
5518                                  getLangOpts().ObjCAutoRefCount,
5519                                AllowExplicit);
5520      if (Candidate.Conversions[ArgIdx].isBad()) {
5521        Candidate.Viable = false;
5522        Candidate.FailureKind = ovl_fail_bad_conversion;
5523        break;
5524      }
5525    } else {
5526      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5527      // argument for which there is no corresponding parameter is
5528      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5529      Candidate.Conversions[ArgIdx].setEllipsis();
5530    }
5531  }
5532}
5533
5534/// \brief Add all of the function declarations in the given function set to
5535/// the overload canddiate set.
5536void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5537                                 ArrayRef<Expr *> Args,
5538                                 OverloadCandidateSet& CandidateSet,
5539                                 bool SuppressUserConversions,
5540                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5541  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5542    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5543    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5544      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5545        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5546                           cast<CXXMethodDecl>(FD)->getParent(),
5547                           Args[0]->getType(), Args[0]->Classify(Context),
5548                           Args.slice(1), CandidateSet,
5549                           SuppressUserConversions);
5550      else
5551        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5552                             SuppressUserConversions);
5553    } else {
5554      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5555      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5556          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5557        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5558                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5559                                   ExplicitTemplateArgs,
5560                                   Args[0]->getType(),
5561                                   Args[0]->Classify(Context), Args.slice(1),
5562                                   CandidateSet, SuppressUserConversions);
5563      else
5564        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5565                                     ExplicitTemplateArgs, Args,
5566                                     CandidateSet, SuppressUserConversions);
5567    }
5568  }
5569}
5570
5571/// AddMethodCandidate - Adds a named decl (which is some kind of
5572/// method) as a method candidate to the given overload set.
5573void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5574                              QualType ObjectType,
5575                              Expr::Classification ObjectClassification,
5576                              ArrayRef<Expr *> Args,
5577                              OverloadCandidateSet& CandidateSet,
5578                              bool SuppressUserConversions) {
5579  NamedDecl *Decl = FoundDecl.getDecl();
5580  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5581
5582  if (isa<UsingShadowDecl>(Decl))
5583    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5584
5585  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5586    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5587           "Expected a member function template");
5588    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5589                               /*ExplicitArgs*/ 0,
5590                               ObjectType, ObjectClassification,
5591                               Args, CandidateSet,
5592                               SuppressUserConversions);
5593  } else {
5594    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5595                       ObjectType, ObjectClassification,
5596                       Args,
5597                       CandidateSet, SuppressUserConversions);
5598  }
5599}
5600
5601/// AddMethodCandidate - Adds the given C++ member function to the set
5602/// of candidate functions, using the given function call arguments
5603/// and the object argument (@c Object). For example, in a call
5604/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5605/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5606/// allow user-defined conversions via constructors or conversion
5607/// operators.
5608void
5609Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5610                         CXXRecordDecl *ActingContext, QualType ObjectType,
5611                         Expr::Classification ObjectClassification,
5612                         ArrayRef<Expr *> Args,
5613                         OverloadCandidateSet& CandidateSet,
5614                         bool SuppressUserConversions) {
5615  const FunctionProtoType* Proto
5616    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5617  assert(Proto && "Methods without a prototype cannot be overloaded");
5618  assert(!isa<CXXConstructorDecl>(Method) &&
5619         "Use AddOverloadCandidate for constructors");
5620
5621  if (!CandidateSet.isNewCandidate(Method))
5622    return;
5623
5624  // Overload resolution is always an unevaluated context.
5625  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5626
5627  // Add this candidate
5628  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5629  Candidate.FoundDecl = FoundDecl;
5630  Candidate.Function = Method;
5631  Candidate.IsSurrogate = false;
5632  Candidate.IgnoreObjectArgument = false;
5633  Candidate.ExplicitCallArguments = Args.size();
5634
5635  unsigned NumArgsInProto = Proto->getNumArgs();
5636
5637  // (C++ 13.3.2p2): A candidate function having fewer than m
5638  // parameters is viable only if it has an ellipsis in its parameter
5639  // list (8.3.5).
5640  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5641    Candidate.Viable = false;
5642    Candidate.FailureKind = ovl_fail_too_many_arguments;
5643    return;
5644  }
5645
5646  // (C++ 13.3.2p2): A candidate function having more than m parameters
5647  // is viable only if the (m+1)st parameter has a default argument
5648  // (8.3.6). For the purposes of overload resolution, the
5649  // parameter list is truncated on the right, so that there are
5650  // exactly m parameters.
5651  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5652  if (Args.size() < MinRequiredArgs) {
5653    // Not enough arguments.
5654    Candidate.Viable = false;
5655    Candidate.FailureKind = ovl_fail_too_few_arguments;
5656    return;
5657  }
5658
5659  Candidate.Viable = true;
5660
5661  if (Method->isStatic() || ObjectType.isNull())
5662    // The implicit object argument is ignored.
5663    Candidate.IgnoreObjectArgument = true;
5664  else {
5665    // Determine the implicit conversion sequence for the object
5666    // parameter.
5667    Candidate.Conversions[0]
5668      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5669                                        Method, ActingContext);
5670    if (Candidate.Conversions[0].isBad()) {
5671      Candidate.Viable = false;
5672      Candidate.FailureKind = ovl_fail_bad_conversion;
5673      return;
5674    }
5675  }
5676
5677  // Determine the implicit conversion sequences for each of the
5678  // arguments.
5679  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5680    if (ArgIdx < NumArgsInProto) {
5681      // (C++ 13.3.2p3): for F to be a viable function, there shall
5682      // exist for each argument an implicit conversion sequence
5683      // (13.3.3.1) that converts that argument to the corresponding
5684      // parameter of F.
5685      QualType ParamType = Proto->getArgType(ArgIdx);
5686      Candidate.Conversions[ArgIdx + 1]
5687        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5688                                SuppressUserConversions,
5689                                /*InOverloadResolution=*/true,
5690                                /*AllowObjCWritebackConversion=*/
5691                                  getLangOpts().ObjCAutoRefCount);
5692      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5693        Candidate.Viable = false;
5694        Candidate.FailureKind = ovl_fail_bad_conversion;
5695        break;
5696      }
5697    } else {
5698      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5699      // argument for which there is no corresponding parameter is
5700      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5701      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5702    }
5703  }
5704}
5705
5706/// \brief Add a C++ member function template as a candidate to the candidate
5707/// set, using template argument deduction to produce an appropriate member
5708/// function template specialization.
5709void
5710Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5711                                 DeclAccessPair FoundDecl,
5712                                 CXXRecordDecl *ActingContext,
5713                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5714                                 QualType ObjectType,
5715                                 Expr::Classification ObjectClassification,
5716                                 ArrayRef<Expr *> Args,
5717                                 OverloadCandidateSet& CandidateSet,
5718                                 bool SuppressUserConversions) {
5719  if (!CandidateSet.isNewCandidate(MethodTmpl))
5720    return;
5721
5722  // C++ [over.match.funcs]p7:
5723  //   In each case where a candidate is a function template, candidate
5724  //   function template specializations are generated using template argument
5725  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5726  //   candidate functions in the usual way.113) A given name can refer to one
5727  //   or more function templates and also to a set of overloaded non-template
5728  //   functions. In such a case, the candidate functions generated from each
5729  //   function template are combined with the set of non-template candidate
5730  //   functions.
5731  TemplateDeductionInfo Info(CandidateSet.getLocation());
5732  FunctionDecl *Specialization = 0;
5733  if (TemplateDeductionResult Result
5734      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5735                                Specialization, Info)) {
5736    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5737    Candidate.FoundDecl = FoundDecl;
5738    Candidate.Function = MethodTmpl->getTemplatedDecl();
5739    Candidate.Viable = false;
5740    Candidate.FailureKind = ovl_fail_bad_deduction;
5741    Candidate.IsSurrogate = false;
5742    Candidate.IgnoreObjectArgument = false;
5743    Candidate.ExplicitCallArguments = Args.size();
5744    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5745                                                          Info);
5746    return;
5747  }
5748
5749  // Add the function template specialization produced by template argument
5750  // deduction as a candidate.
5751  assert(Specialization && "Missing member function template specialization?");
5752  assert(isa<CXXMethodDecl>(Specialization) &&
5753         "Specialization is not a member function?");
5754  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5755                     ActingContext, ObjectType, ObjectClassification, Args,
5756                     CandidateSet, SuppressUserConversions);
5757}
5758
5759/// \brief Add a C++ function template specialization as a candidate
5760/// in the candidate set, using template argument deduction to produce
5761/// an appropriate function template specialization.
5762void
5763Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5764                                   DeclAccessPair FoundDecl,
5765                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5766                                   ArrayRef<Expr *> Args,
5767                                   OverloadCandidateSet& CandidateSet,
5768                                   bool SuppressUserConversions) {
5769  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5770    return;
5771
5772  // C++ [over.match.funcs]p7:
5773  //   In each case where a candidate is a function template, candidate
5774  //   function template specializations are generated using template argument
5775  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5776  //   candidate functions in the usual way.113) A given name can refer to one
5777  //   or more function templates and also to a set of overloaded non-template
5778  //   functions. In such a case, the candidate functions generated from each
5779  //   function template are combined with the set of non-template candidate
5780  //   functions.
5781  TemplateDeductionInfo Info(CandidateSet.getLocation());
5782  FunctionDecl *Specialization = 0;
5783  if (TemplateDeductionResult Result
5784        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5785                                  Specialization, Info)) {
5786    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5787    Candidate.FoundDecl = FoundDecl;
5788    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5789    Candidate.Viable = false;
5790    Candidate.FailureKind = ovl_fail_bad_deduction;
5791    Candidate.IsSurrogate = false;
5792    Candidate.IgnoreObjectArgument = false;
5793    Candidate.ExplicitCallArguments = Args.size();
5794    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5795                                                          Info);
5796    return;
5797  }
5798
5799  // Add the function template specialization produced by template argument
5800  // deduction as a candidate.
5801  assert(Specialization && "Missing function template specialization?");
5802  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5803                       SuppressUserConversions);
5804}
5805
5806/// AddConversionCandidate - Add a C++ conversion function as a
5807/// candidate in the candidate set (C++ [over.match.conv],
5808/// C++ [over.match.copy]). From is the expression we're converting from,
5809/// and ToType is the type that we're eventually trying to convert to
5810/// (which may or may not be the same type as the type that the
5811/// conversion function produces).
5812void
5813Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5814                             DeclAccessPair FoundDecl,
5815                             CXXRecordDecl *ActingContext,
5816                             Expr *From, QualType ToType,
5817                             OverloadCandidateSet& CandidateSet) {
5818  assert(!Conversion->getDescribedFunctionTemplate() &&
5819         "Conversion function templates use AddTemplateConversionCandidate");
5820  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5821  if (!CandidateSet.isNewCandidate(Conversion))
5822    return;
5823
5824  // If the conversion function has an undeduced return type, trigger its
5825  // deduction now.
5826  if (getLangOpts().CPlusPlus1y && ConvType->isUndeducedType()) {
5827    if (DeduceReturnType(Conversion, From->getExprLoc()))
5828      return;
5829    ConvType = Conversion->getConversionType().getNonReferenceType();
5830  }
5831
5832  // Overload resolution is always an unevaluated context.
5833  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5834
5835  // Add this candidate
5836  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5837  Candidate.FoundDecl = FoundDecl;
5838  Candidate.Function = Conversion;
5839  Candidate.IsSurrogate = false;
5840  Candidate.IgnoreObjectArgument = false;
5841  Candidate.FinalConversion.setAsIdentityConversion();
5842  Candidate.FinalConversion.setFromType(ConvType);
5843  Candidate.FinalConversion.setAllToTypes(ToType);
5844  Candidate.Viable = true;
5845  Candidate.ExplicitCallArguments = 1;
5846
5847  // C++ [over.match.funcs]p4:
5848  //   For conversion functions, the function is considered to be a member of
5849  //   the class of the implicit implied object argument for the purpose of
5850  //   defining the type of the implicit object parameter.
5851  //
5852  // Determine the implicit conversion sequence for the implicit
5853  // object parameter.
5854  QualType ImplicitParamType = From->getType();
5855  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5856    ImplicitParamType = FromPtrType->getPointeeType();
5857  CXXRecordDecl *ConversionContext
5858    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5859
5860  Candidate.Conversions[0]
5861    = TryObjectArgumentInitialization(*this, From->getType(),
5862                                      From->Classify(Context),
5863                                      Conversion, ConversionContext);
5864
5865  if (Candidate.Conversions[0].isBad()) {
5866    Candidate.Viable = false;
5867    Candidate.FailureKind = ovl_fail_bad_conversion;
5868    return;
5869  }
5870
5871  // We won't go through a user-define type conversion function to convert a
5872  // derived to base as such conversions are given Conversion Rank. They only
5873  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5874  QualType FromCanon
5875    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5876  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5877  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5878    Candidate.Viable = false;
5879    Candidate.FailureKind = ovl_fail_trivial_conversion;
5880    return;
5881  }
5882
5883  // To determine what the conversion from the result of calling the
5884  // conversion function to the type we're eventually trying to
5885  // convert to (ToType), we need to synthesize a call to the
5886  // conversion function and attempt copy initialization from it. This
5887  // makes sure that we get the right semantics with respect to
5888  // lvalues/rvalues and the type. Fortunately, we can allocate this
5889  // call on the stack and we don't need its arguments to be
5890  // well-formed.
5891  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5892                            VK_LValue, From->getLocStart());
5893  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5894                                Context.getPointerType(Conversion->getType()),
5895                                CK_FunctionToPointerDecay,
5896                                &ConversionRef, VK_RValue);
5897
5898  QualType ConversionType = Conversion->getConversionType();
5899  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5900    Candidate.Viable = false;
5901    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5902    return;
5903  }
5904
5905  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5906
5907  // Note that it is safe to allocate CallExpr on the stack here because
5908  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5909  // allocator).
5910  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
5911  CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
5912                From->getLocStart());
5913  ImplicitConversionSequence ICS =
5914    TryCopyInitialization(*this, &Call, ToType,
5915                          /*SuppressUserConversions=*/true,
5916                          /*InOverloadResolution=*/false,
5917                          /*AllowObjCWritebackConversion=*/false);
5918
5919  switch (ICS.getKind()) {
5920  case ImplicitConversionSequence::StandardConversion:
5921    Candidate.FinalConversion = ICS.Standard;
5922
5923    // C++ [over.ics.user]p3:
5924    //   If the user-defined conversion is specified by a specialization of a
5925    //   conversion function template, the second standard conversion sequence
5926    //   shall have exact match rank.
5927    if (Conversion->getPrimaryTemplate() &&
5928        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
5929      Candidate.Viable = false;
5930      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
5931    }
5932
5933    // C++0x [dcl.init.ref]p5:
5934    //    In the second case, if the reference is an rvalue reference and
5935    //    the second standard conversion sequence of the user-defined
5936    //    conversion sequence includes an lvalue-to-rvalue conversion, the
5937    //    program is ill-formed.
5938    if (ToType->isRValueReferenceType() &&
5939        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5940      Candidate.Viable = false;
5941      Candidate.FailureKind = ovl_fail_bad_final_conversion;
5942    }
5943    break;
5944
5945  case ImplicitConversionSequence::BadConversion:
5946    Candidate.Viable = false;
5947    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5948    break;
5949
5950  default:
5951    llvm_unreachable(
5952           "Can only end up with a standard conversion sequence or failure");
5953  }
5954}
5955
5956/// \brief Adds a conversion function template specialization
5957/// candidate to the overload set, using template argument deduction
5958/// to deduce the template arguments of the conversion function
5959/// template from the type that we are converting to (C++
5960/// [temp.deduct.conv]).
5961void
5962Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
5963                                     DeclAccessPair FoundDecl,
5964                                     CXXRecordDecl *ActingDC,
5965                                     Expr *From, QualType ToType,
5966                                     OverloadCandidateSet &CandidateSet) {
5967  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
5968         "Only conversion function templates permitted here");
5969
5970  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5971    return;
5972
5973  TemplateDeductionInfo Info(CandidateSet.getLocation());
5974  CXXConversionDecl *Specialization = 0;
5975  if (TemplateDeductionResult Result
5976        = DeduceTemplateArguments(FunctionTemplate, ToType,
5977                                  Specialization, Info)) {
5978    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5979    Candidate.FoundDecl = FoundDecl;
5980    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5981    Candidate.Viable = false;
5982    Candidate.FailureKind = ovl_fail_bad_deduction;
5983    Candidate.IsSurrogate = false;
5984    Candidate.IgnoreObjectArgument = false;
5985    Candidate.ExplicitCallArguments = 1;
5986    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5987                                                          Info);
5988    return;
5989  }
5990
5991  // Add the conversion function template specialization produced by
5992  // template argument deduction as a candidate.
5993  assert(Specialization && "Missing function template specialization?");
5994  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
5995                         CandidateSet);
5996}
5997
5998/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
5999/// converts the given @c Object to a function pointer via the
6000/// conversion function @c Conversion, and then attempts to call it
6001/// with the given arguments (C++ [over.call.object]p2-4). Proto is
6002/// the type of function that we'll eventually be calling.
6003void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6004                                 DeclAccessPair FoundDecl,
6005                                 CXXRecordDecl *ActingContext,
6006                                 const FunctionProtoType *Proto,
6007                                 Expr *Object,
6008                                 ArrayRef<Expr *> Args,
6009                                 OverloadCandidateSet& CandidateSet) {
6010  if (!CandidateSet.isNewCandidate(Conversion))
6011    return;
6012
6013  // Overload resolution is always an unevaluated context.
6014  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6015
6016  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6017  Candidate.FoundDecl = FoundDecl;
6018  Candidate.Function = 0;
6019  Candidate.Surrogate = Conversion;
6020  Candidate.Viable = true;
6021  Candidate.IsSurrogate = true;
6022  Candidate.IgnoreObjectArgument = false;
6023  Candidate.ExplicitCallArguments = Args.size();
6024
6025  // Determine the implicit conversion sequence for the implicit
6026  // object parameter.
6027  ImplicitConversionSequence ObjectInit
6028    = TryObjectArgumentInitialization(*this, Object->getType(),
6029                                      Object->Classify(Context),
6030                                      Conversion, ActingContext);
6031  if (ObjectInit.isBad()) {
6032    Candidate.Viable = false;
6033    Candidate.FailureKind = ovl_fail_bad_conversion;
6034    Candidate.Conversions[0] = ObjectInit;
6035    return;
6036  }
6037
6038  // The first conversion is actually a user-defined conversion whose
6039  // first conversion is ObjectInit's standard conversion (which is
6040  // effectively a reference binding). Record it as such.
6041  Candidate.Conversions[0].setUserDefined();
6042  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6043  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6044  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6045  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6046  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6047  Candidate.Conversions[0].UserDefined.After
6048    = Candidate.Conversions[0].UserDefined.Before;
6049  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6050
6051  // Find the
6052  unsigned NumArgsInProto = Proto->getNumArgs();
6053
6054  // (C++ 13.3.2p2): A candidate function having fewer than m
6055  // parameters is viable only if it has an ellipsis in its parameter
6056  // list (8.3.5).
6057  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
6058    Candidate.Viable = false;
6059    Candidate.FailureKind = ovl_fail_too_many_arguments;
6060    return;
6061  }
6062
6063  // Function types don't have any default arguments, so just check if
6064  // we have enough arguments.
6065  if (Args.size() < NumArgsInProto) {
6066    // Not enough arguments.
6067    Candidate.Viable = false;
6068    Candidate.FailureKind = ovl_fail_too_few_arguments;
6069    return;
6070  }
6071
6072  // Determine the implicit conversion sequences for each of the
6073  // arguments.
6074  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6075    if (ArgIdx < NumArgsInProto) {
6076      // (C++ 13.3.2p3): for F to be a viable function, there shall
6077      // exist for each argument an implicit conversion sequence
6078      // (13.3.3.1) that converts that argument to the corresponding
6079      // parameter of F.
6080      QualType ParamType = Proto->getArgType(ArgIdx);
6081      Candidate.Conversions[ArgIdx + 1]
6082        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6083                                /*SuppressUserConversions=*/false,
6084                                /*InOverloadResolution=*/false,
6085                                /*AllowObjCWritebackConversion=*/
6086                                  getLangOpts().ObjCAutoRefCount);
6087      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6088        Candidate.Viable = false;
6089        Candidate.FailureKind = ovl_fail_bad_conversion;
6090        break;
6091      }
6092    } else {
6093      // (C++ 13.3.2p2): For the purposes of overload resolution, any
6094      // argument for which there is no corresponding parameter is
6095      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6096      Candidate.Conversions[ArgIdx + 1].setEllipsis();
6097    }
6098  }
6099}
6100
6101/// \brief Add overload candidates for overloaded operators that are
6102/// member functions.
6103///
6104/// Add the overloaded operator candidates that are member functions
6105/// for the operator Op that was used in an operator expression such
6106/// as "x Op y". , Args/NumArgs provides the operator arguments, and
6107/// CandidateSet will store the added overload candidates. (C++
6108/// [over.match.oper]).
6109void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6110                                       SourceLocation OpLoc,
6111                                       ArrayRef<Expr *> Args,
6112                                       OverloadCandidateSet& CandidateSet,
6113                                       SourceRange OpRange) {
6114  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6115
6116  // C++ [over.match.oper]p3:
6117  //   For a unary operator @ with an operand of a type whose
6118  //   cv-unqualified version is T1, and for a binary operator @ with
6119  //   a left operand of a type whose cv-unqualified version is T1 and
6120  //   a right operand of a type whose cv-unqualified version is T2,
6121  //   three sets of candidate functions, designated member
6122  //   candidates, non-member candidates and built-in candidates, are
6123  //   constructed as follows:
6124  QualType T1 = Args[0]->getType();
6125
6126  //     -- If T1 is a complete class type or a class currently being
6127  //        defined, the set of member candidates is the result of the
6128  //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6129  //        the set of member candidates is empty.
6130  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6131    // Complete the type if it can be completed.
6132    RequireCompleteType(OpLoc, T1, 0);
6133    // If the type is neither complete nor being defined, bail out now.
6134    if (!T1Rec->getDecl()->getDefinition())
6135      return;
6136
6137    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6138    LookupQualifiedName(Operators, T1Rec->getDecl());
6139    Operators.suppressDiagnostics();
6140
6141    for (LookupResult::iterator Oper = Operators.begin(),
6142                             OperEnd = Operators.end();
6143         Oper != OperEnd;
6144         ++Oper)
6145      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6146                         Args[0]->Classify(Context),
6147                         Args.slice(1),
6148                         CandidateSet,
6149                         /* SuppressUserConversions = */ false);
6150  }
6151}
6152
6153/// AddBuiltinCandidate - Add a candidate for a built-in
6154/// operator. ResultTy and ParamTys are the result and parameter types
6155/// of the built-in candidate, respectively. Args and NumArgs are the
6156/// arguments being passed to the candidate. IsAssignmentOperator
6157/// should be true when this built-in candidate is an assignment
6158/// operator. NumContextualBoolArguments is the number of arguments
6159/// (at the beginning of the argument list) that will be contextually
6160/// converted to bool.
6161void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6162                               ArrayRef<Expr *> Args,
6163                               OverloadCandidateSet& CandidateSet,
6164                               bool IsAssignmentOperator,
6165                               unsigned NumContextualBoolArguments) {
6166  // Overload resolution is always an unevaluated context.
6167  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6168
6169  // Add this candidate
6170  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6171  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
6172  Candidate.Function = 0;
6173  Candidate.IsSurrogate = false;
6174  Candidate.IgnoreObjectArgument = false;
6175  Candidate.BuiltinTypes.ResultTy = ResultTy;
6176  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6177    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6178
6179  // Determine the implicit conversion sequences for each of the
6180  // arguments.
6181  Candidate.Viable = true;
6182  Candidate.ExplicitCallArguments = Args.size();
6183  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6184    // C++ [over.match.oper]p4:
6185    //   For the built-in assignment operators, conversions of the
6186    //   left operand are restricted as follows:
6187    //     -- no temporaries are introduced to hold the left operand, and
6188    //     -- no user-defined conversions are applied to the left
6189    //        operand to achieve a type match with the left-most
6190    //        parameter of a built-in candidate.
6191    //
6192    // We block these conversions by turning off user-defined
6193    // conversions, since that is the only way that initialization of
6194    // a reference to a non-class type can occur from something that
6195    // is not of the same type.
6196    if (ArgIdx < NumContextualBoolArguments) {
6197      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6198             "Contextual conversion to bool requires bool type");
6199      Candidate.Conversions[ArgIdx]
6200        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6201    } else {
6202      Candidate.Conversions[ArgIdx]
6203        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6204                                ArgIdx == 0 && IsAssignmentOperator,
6205                                /*InOverloadResolution=*/false,
6206                                /*AllowObjCWritebackConversion=*/
6207                                  getLangOpts().ObjCAutoRefCount);
6208    }
6209    if (Candidate.Conversions[ArgIdx].isBad()) {
6210      Candidate.Viable = false;
6211      Candidate.FailureKind = ovl_fail_bad_conversion;
6212      break;
6213    }
6214  }
6215}
6216
6217namespace {
6218
6219/// BuiltinCandidateTypeSet - A set of types that will be used for the
6220/// candidate operator functions for built-in operators (C++
6221/// [over.built]). The types are separated into pointer types and
6222/// enumeration types.
6223class BuiltinCandidateTypeSet  {
6224  /// TypeSet - A set of types.
6225  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6226
6227  /// PointerTypes - The set of pointer types that will be used in the
6228  /// built-in candidates.
6229  TypeSet PointerTypes;
6230
6231  /// MemberPointerTypes - The set of member pointer types that will be
6232  /// used in the built-in candidates.
6233  TypeSet MemberPointerTypes;
6234
6235  /// EnumerationTypes - The set of enumeration types that will be
6236  /// used in the built-in candidates.
6237  TypeSet EnumerationTypes;
6238
6239  /// \brief The set of vector types that will be used in the built-in
6240  /// candidates.
6241  TypeSet VectorTypes;
6242
6243  /// \brief A flag indicating non-record types are viable candidates
6244  bool HasNonRecordTypes;
6245
6246  /// \brief A flag indicating whether either arithmetic or enumeration types
6247  /// were present in the candidate set.
6248  bool HasArithmeticOrEnumeralTypes;
6249
6250  /// \brief A flag indicating whether the nullptr type was present in the
6251  /// candidate set.
6252  bool HasNullPtrType;
6253
6254  /// Sema - The semantic analysis instance where we are building the
6255  /// candidate type set.
6256  Sema &SemaRef;
6257
6258  /// Context - The AST context in which we will build the type sets.
6259  ASTContext &Context;
6260
6261  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6262                                               const Qualifiers &VisibleQuals);
6263  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6264
6265public:
6266  /// iterator - Iterates through the types that are part of the set.
6267  typedef TypeSet::iterator iterator;
6268
6269  BuiltinCandidateTypeSet(Sema &SemaRef)
6270    : HasNonRecordTypes(false),
6271      HasArithmeticOrEnumeralTypes(false),
6272      HasNullPtrType(false),
6273      SemaRef(SemaRef),
6274      Context(SemaRef.Context) { }
6275
6276  void AddTypesConvertedFrom(QualType Ty,
6277                             SourceLocation Loc,
6278                             bool AllowUserConversions,
6279                             bool AllowExplicitConversions,
6280                             const Qualifiers &VisibleTypeConversionsQuals);
6281
6282  /// pointer_begin - First pointer type found;
6283  iterator pointer_begin() { return PointerTypes.begin(); }
6284
6285  /// pointer_end - Past the last pointer type found;
6286  iterator pointer_end() { return PointerTypes.end(); }
6287
6288  /// member_pointer_begin - First member pointer type found;
6289  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6290
6291  /// member_pointer_end - Past the last member pointer type found;
6292  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6293
6294  /// enumeration_begin - First enumeration type found;
6295  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6296
6297  /// enumeration_end - Past the last enumeration type found;
6298  iterator enumeration_end() { return EnumerationTypes.end(); }
6299
6300  iterator vector_begin() { return VectorTypes.begin(); }
6301  iterator vector_end() { return VectorTypes.end(); }
6302
6303  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6304  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6305  bool hasNullPtrType() const { return HasNullPtrType; }
6306};
6307
6308} // end anonymous namespace
6309
6310/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6311/// the set of pointer types along with any more-qualified variants of
6312/// that type. For example, if @p Ty is "int const *", this routine
6313/// will add "int const *", "int const volatile *", "int const
6314/// restrict *", and "int const volatile restrict *" to the set of
6315/// pointer types. Returns true if the add of @p Ty itself succeeded,
6316/// false otherwise.
6317///
6318/// FIXME: what to do about extended qualifiers?
6319bool
6320BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6321                                             const Qualifiers &VisibleQuals) {
6322
6323  // Insert this type.
6324  if (!PointerTypes.insert(Ty))
6325    return false;
6326
6327  QualType PointeeTy;
6328  const PointerType *PointerTy = Ty->getAs<PointerType>();
6329  bool buildObjCPtr = false;
6330  if (!PointerTy) {
6331    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6332    PointeeTy = PTy->getPointeeType();
6333    buildObjCPtr = true;
6334  } else {
6335    PointeeTy = PointerTy->getPointeeType();
6336  }
6337
6338  // Don't add qualified variants of arrays. For one, they're not allowed
6339  // (the qualifier would sink to the element type), and for another, the
6340  // only overload situation where it matters is subscript or pointer +- int,
6341  // and those shouldn't have qualifier variants anyway.
6342  if (PointeeTy->isArrayType())
6343    return true;
6344
6345  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6346  bool hasVolatile = VisibleQuals.hasVolatile();
6347  bool hasRestrict = VisibleQuals.hasRestrict();
6348
6349  // Iterate through all strict supersets of BaseCVR.
6350  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6351    if ((CVR | BaseCVR) != CVR) continue;
6352    // Skip over volatile if no volatile found anywhere in the types.
6353    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6354
6355    // Skip over restrict if no restrict found anywhere in the types, or if
6356    // the type cannot be restrict-qualified.
6357    if ((CVR & Qualifiers::Restrict) &&
6358        (!hasRestrict ||
6359         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6360      continue;
6361
6362    // Build qualified pointee type.
6363    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6364
6365    // Build qualified pointer type.
6366    QualType QPointerTy;
6367    if (!buildObjCPtr)
6368      QPointerTy = Context.getPointerType(QPointeeTy);
6369    else
6370      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6371
6372    // Insert qualified pointer type.
6373    PointerTypes.insert(QPointerTy);
6374  }
6375
6376  return true;
6377}
6378
6379/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6380/// to the set of pointer types along with any more-qualified variants of
6381/// that type. For example, if @p Ty is "int const *", this routine
6382/// will add "int const *", "int const volatile *", "int const
6383/// restrict *", and "int const volatile restrict *" to the set of
6384/// pointer types. Returns true if the add of @p Ty itself succeeded,
6385/// false otherwise.
6386///
6387/// FIXME: what to do about extended qualifiers?
6388bool
6389BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6390    QualType Ty) {
6391  // Insert this type.
6392  if (!MemberPointerTypes.insert(Ty))
6393    return false;
6394
6395  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6396  assert(PointerTy && "type was not a member pointer type!");
6397
6398  QualType PointeeTy = PointerTy->getPointeeType();
6399  // Don't add qualified variants of arrays. For one, they're not allowed
6400  // (the qualifier would sink to the element type), and for another, the
6401  // only overload situation where it matters is subscript or pointer +- int,
6402  // and those shouldn't have qualifier variants anyway.
6403  if (PointeeTy->isArrayType())
6404    return true;
6405  const Type *ClassTy = PointerTy->getClass();
6406
6407  // Iterate through all strict supersets of the pointee type's CVR
6408  // qualifiers.
6409  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6410  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6411    if ((CVR | BaseCVR) != CVR) continue;
6412
6413    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6414    MemberPointerTypes.insert(
6415      Context.getMemberPointerType(QPointeeTy, ClassTy));
6416  }
6417
6418  return true;
6419}
6420
6421/// AddTypesConvertedFrom - Add each of the types to which the type @p
6422/// Ty can be implicit converted to the given set of @p Types. We're
6423/// primarily interested in pointer types and enumeration types. We also
6424/// take member pointer types, for the conditional operator.
6425/// AllowUserConversions is true if we should look at the conversion
6426/// functions of a class type, and AllowExplicitConversions if we
6427/// should also include the explicit conversion functions of a class
6428/// type.
6429void
6430BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6431                                               SourceLocation Loc,
6432                                               bool AllowUserConversions,
6433                                               bool AllowExplicitConversions,
6434                                               const Qualifiers &VisibleQuals) {
6435  // Only deal with canonical types.
6436  Ty = Context.getCanonicalType(Ty);
6437
6438  // Look through reference types; they aren't part of the type of an
6439  // expression for the purposes of conversions.
6440  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6441    Ty = RefTy->getPointeeType();
6442
6443  // If we're dealing with an array type, decay to the pointer.
6444  if (Ty->isArrayType())
6445    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6446
6447  // Otherwise, we don't care about qualifiers on the type.
6448  Ty = Ty.getLocalUnqualifiedType();
6449
6450  // Flag if we ever add a non-record type.
6451  const RecordType *TyRec = Ty->getAs<RecordType>();
6452  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6453
6454  // Flag if we encounter an arithmetic type.
6455  HasArithmeticOrEnumeralTypes =
6456    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6457
6458  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6459    PointerTypes.insert(Ty);
6460  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6461    // Insert our type, and its more-qualified variants, into the set
6462    // of types.
6463    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6464      return;
6465  } else if (Ty->isMemberPointerType()) {
6466    // Member pointers are far easier, since the pointee can't be converted.
6467    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6468      return;
6469  } else if (Ty->isEnumeralType()) {
6470    HasArithmeticOrEnumeralTypes = true;
6471    EnumerationTypes.insert(Ty);
6472  } else if (Ty->isVectorType()) {
6473    // We treat vector types as arithmetic types in many contexts as an
6474    // extension.
6475    HasArithmeticOrEnumeralTypes = true;
6476    VectorTypes.insert(Ty);
6477  } else if (Ty->isNullPtrType()) {
6478    HasNullPtrType = true;
6479  } else if (AllowUserConversions && TyRec) {
6480    // No conversion functions in incomplete types.
6481    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6482      return;
6483
6484    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6485    std::pair<CXXRecordDecl::conversion_iterator,
6486              CXXRecordDecl::conversion_iterator>
6487      Conversions = ClassDecl->getVisibleConversionFunctions();
6488    for (CXXRecordDecl::conversion_iterator
6489           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6490      NamedDecl *D = I.getDecl();
6491      if (isa<UsingShadowDecl>(D))
6492        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6493
6494      // Skip conversion function templates; they don't tell us anything
6495      // about which builtin types we can convert to.
6496      if (isa<FunctionTemplateDecl>(D))
6497        continue;
6498
6499      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6500      if (AllowExplicitConversions || !Conv->isExplicit()) {
6501        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6502                              VisibleQuals);
6503      }
6504    }
6505  }
6506}
6507
6508/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6509/// the volatile- and non-volatile-qualified assignment operators for the
6510/// given type to the candidate set.
6511static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6512                                                   QualType T,
6513                                                   ArrayRef<Expr *> Args,
6514                                    OverloadCandidateSet &CandidateSet) {
6515  QualType ParamTypes[2];
6516
6517  // T& operator=(T&, T)
6518  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6519  ParamTypes[1] = T;
6520  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6521                        /*IsAssignmentOperator=*/true);
6522
6523  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6524    // volatile T& operator=(volatile T&, T)
6525    ParamTypes[0]
6526      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6527    ParamTypes[1] = T;
6528    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6529                          /*IsAssignmentOperator=*/true);
6530  }
6531}
6532
6533/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6534/// if any, found in visible type conversion functions found in ArgExpr's type.
6535static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6536    Qualifiers VRQuals;
6537    const RecordType *TyRec;
6538    if (const MemberPointerType *RHSMPType =
6539        ArgExpr->getType()->getAs<MemberPointerType>())
6540      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6541    else
6542      TyRec = ArgExpr->getType()->getAs<RecordType>();
6543    if (!TyRec) {
6544      // Just to be safe, assume the worst case.
6545      VRQuals.addVolatile();
6546      VRQuals.addRestrict();
6547      return VRQuals;
6548    }
6549
6550    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6551    if (!ClassDecl->hasDefinition())
6552      return VRQuals;
6553
6554    std::pair<CXXRecordDecl::conversion_iterator,
6555              CXXRecordDecl::conversion_iterator>
6556      Conversions = ClassDecl->getVisibleConversionFunctions();
6557
6558    for (CXXRecordDecl::conversion_iterator
6559           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6560      NamedDecl *D = I.getDecl();
6561      if (isa<UsingShadowDecl>(D))
6562        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6563      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6564        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6565        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6566          CanTy = ResTypeRef->getPointeeType();
6567        // Need to go down the pointer/mempointer chain and add qualifiers
6568        // as see them.
6569        bool done = false;
6570        while (!done) {
6571          if (CanTy.isRestrictQualified())
6572            VRQuals.addRestrict();
6573          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6574            CanTy = ResTypePtr->getPointeeType();
6575          else if (const MemberPointerType *ResTypeMPtr =
6576                CanTy->getAs<MemberPointerType>())
6577            CanTy = ResTypeMPtr->getPointeeType();
6578          else
6579            done = true;
6580          if (CanTy.isVolatileQualified())
6581            VRQuals.addVolatile();
6582          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6583            return VRQuals;
6584        }
6585      }
6586    }
6587    return VRQuals;
6588}
6589
6590namespace {
6591
6592/// \brief Helper class to manage the addition of builtin operator overload
6593/// candidates. It provides shared state and utility methods used throughout
6594/// the process, as well as a helper method to add each group of builtin
6595/// operator overloads from the standard to a candidate set.
6596class BuiltinOperatorOverloadBuilder {
6597  // Common instance state available to all overload candidate addition methods.
6598  Sema &S;
6599  ArrayRef<Expr *> Args;
6600  Qualifiers VisibleTypeConversionsQuals;
6601  bool HasArithmeticOrEnumeralCandidateType;
6602  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6603  OverloadCandidateSet &CandidateSet;
6604
6605  // Define some constants used to index and iterate over the arithemetic types
6606  // provided via the getArithmeticType() method below.
6607  // The "promoted arithmetic types" are the arithmetic
6608  // types are that preserved by promotion (C++ [over.built]p2).
6609  static const unsigned FirstIntegralType = 3;
6610  static const unsigned LastIntegralType = 20;
6611  static const unsigned FirstPromotedIntegralType = 3,
6612                        LastPromotedIntegralType = 11;
6613  static const unsigned FirstPromotedArithmeticType = 0,
6614                        LastPromotedArithmeticType = 11;
6615  static const unsigned NumArithmeticTypes = 20;
6616
6617  /// \brief Get the canonical type for a given arithmetic type index.
6618  CanQualType getArithmeticType(unsigned index) {
6619    assert(index < NumArithmeticTypes);
6620    static CanQualType ASTContext::* const
6621      ArithmeticTypes[NumArithmeticTypes] = {
6622      // Start of promoted types.
6623      &ASTContext::FloatTy,
6624      &ASTContext::DoubleTy,
6625      &ASTContext::LongDoubleTy,
6626
6627      // Start of integral types.
6628      &ASTContext::IntTy,
6629      &ASTContext::LongTy,
6630      &ASTContext::LongLongTy,
6631      &ASTContext::Int128Ty,
6632      &ASTContext::UnsignedIntTy,
6633      &ASTContext::UnsignedLongTy,
6634      &ASTContext::UnsignedLongLongTy,
6635      &ASTContext::UnsignedInt128Ty,
6636      // End of promoted types.
6637
6638      &ASTContext::BoolTy,
6639      &ASTContext::CharTy,
6640      &ASTContext::WCharTy,
6641      &ASTContext::Char16Ty,
6642      &ASTContext::Char32Ty,
6643      &ASTContext::SignedCharTy,
6644      &ASTContext::ShortTy,
6645      &ASTContext::UnsignedCharTy,
6646      &ASTContext::UnsignedShortTy,
6647      // End of integral types.
6648      // FIXME: What about complex? What about half?
6649    };
6650    return S.Context.*ArithmeticTypes[index];
6651  }
6652
6653  /// \brief Gets the canonical type resulting from the usual arithemetic
6654  /// converions for the given arithmetic types.
6655  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6656    // Accelerator table for performing the usual arithmetic conversions.
6657    // The rules are basically:
6658    //   - if either is floating-point, use the wider floating-point
6659    //   - if same signedness, use the higher rank
6660    //   - if same size, use unsigned of the higher rank
6661    //   - use the larger type
6662    // These rules, together with the axiom that higher ranks are
6663    // never smaller, are sufficient to precompute all of these results
6664    // *except* when dealing with signed types of higher rank.
6665    // (we could precompute SLL x UI for all known platforms, but it's
6666    // better not to make any assumptions).
6667    // We assume that int128 has a higher rank than long long on all platforms.
6668    enum PromotedType {
6669            Dep=-1,
6670            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6671    };
6672    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6673                                        [LastPromotedArithmeticType] = {
6674/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6675/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6676/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6677/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6678/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6679/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6680/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6681/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6682/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6683/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6684/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6685    };
6686
6687    assert(L < LastPromotedArithmeticType);
6688    assert(R < LastPromotedArithmeticType);
6689    int Idx = ConversionsTable[L][R];
6690
6691    // Fast path: the table gives us a concrete answer.
6692    if (Idx != Dep) return getArithmeticType(Idx);
6693
6694    // Slow path: we need to compare widths.
6695    // An invariant is that the signed type has higher rank.
6696    CanQualType LT = getArithmeticType(L),
6697                RT = getArithmeticType(R);
6698    unsigned LW = S.Context.getIntWidth(LT),
6699             RW = S.Context.getIntWidth(RT);
6700
6701    // If they're different widths, use the signed type.
6702    if (LW > RW) return LT;
6703    else if (LW < RW) return RT;
6704
6705    // Otherwise, use the unsigned type of the signed type's rank.
6706    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6707    assert(L == SLL || R == SLL);
6708    return S.Context.UnsignedLongLongTy;
6709  }
6710
6711  /// \brief Helper method to factor out the common pattern of adding overloads
6712  /// for '++' and '--' builtin operators.
6713  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6714                                           bool HasVolatile,
6715                                           bool HasRestrict) {
6716    QualType ParamTypes[2] = {
6717      S.Context.getLValueReferenceType(CandidateTy),
6718      S.Context.IntTy
6719    };
6720
6721    // Non-volatile version.
6722    if (Args.size() == 1)
6723      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6724    else
6725      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6726
6727    // Use a heuristic to reduce number of builtin candidates in the set:
6728    // add volatile version only if there are conversions to a volatile type.
6729    if (HasVolatile) {
6730      ParamTypes[0] =
6731        S.Context.getLValueReferenceType(
6732          S.Context.getVolatileType(CandidateTy));
6733      if (Args.size() == 1)
6734        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6735      else
6736        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6737    }
6738
6739    // Add restrict version only if there are conversions to a restrict type
6740    // and our candidate type is a non-restrict-qualified pointer.
6741    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6742        !CandidateTy.isRestrictQualified()) {
6743      ParamTypes[0]
6744        = S.Context.getLValueReferenceType(
6745            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6746      if (Args.size() == 1)
6747        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6748      else
6749        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6750
6751      if (HasVolatile) {
6752        ParamTypes[0]
6753          = S.Context.getLValueReferenceType(
6754              S.Context.getCVRQualifiedType(CandidateTy,
6755                                            (Qualifiers::Volatile |
6756                                             Qualifiers::Restrict)));
6757        if (Args.size() == 1)
6758          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6759        else
6760          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6761      }
6762    }
6763
6764  }
6765
6766public:
6767  BuiltinOperatorOverloadBuilder(
6768    Sema &S, ArrayRef<Expr *> Args,
6769    Qualifiers VisibleTypeConversionsQuals,
6770    bool HasArithmeticOrEnumeralCandidateType,
6771    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6772    OverloadCandidateSet &CandidateSet)
6773    : S(S), Args(Args),
6774      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6775      HasArithmeticOrEnumeralCandidateType(
6776        HasArithmeticOrEnumeralCandidateType),
6777      CandidateTypes(CandidateTypes),
6778      CandidateSet(CandidateSet) {
6779    // Validate some of our static helper constants in debug builds.
6780    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6781           "Invalid first promoted integral type");
6782    assert(getArithmeticType(LastPromotedIntegralType - 1)
6783             == S.Context.UnsignedInt128Ty &&
6784           "Invalid last promoted integral type");
6785    assert(getArithmeticType(FirstPromotedArithmeticType)
6786             == S.Context.FloatTy &&
6787           "Invalid first promoted arithmetic type");
6788    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6789             == S.Context.UnsignedInt128Ty &&
6790           "Invalid last promoted arithmetic type");
6791  }
6792
6793  // C++ [over.built]p3:
6794  //
6795  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6796  //   is either volatile or empty, there exist candidate operator
6797  //   functions of the form
6798  //
6799  //       VQ T&      operator++(VQ T&);
6800  //       T          operator++(VQ T&, int);
6801  //
6802  // C++ [over.built]p4:
6803  //
6804  //   For every pair (T, VQ), where T is an arithmetic type other
6805  //   than bool, and VQ is either volatile or empty, there exist
6806  //   candidate operator functions of the form
6807  //
6808  //       VQ T&      operator--(VQ T&);
6809  //       T          operator--(VQ T&, int);
6810  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6811    if (!HasArithmeticOrEnumeralCandidateType)
6812      return;
6813
6814    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6815         Arith < NumArithmeticTypes; ++Arith) {
6816      addPlusPlusMinusMinusStyleOverloads(
6817        getArithmeticType(Arith),
6818        VisibleTypeConversionsQuals.hasVolatile(),
6819        VisibleTypeConversionsQuals.hasRestrict());
6820    }
6821  }
6822
6823  // C++ [over.built]p5:
6824  //
6825  //   For every pair (T, VQ), where T is a cv-qualified or
6826  //   cv-unqualified object type, and VQ is either volatile or
6827  //   empty, there exist candidate operator functions of the form
6828  //
6829  //       T*VQ&      operator++(T*VQ&);
6830  //       T*VQ&      operator--(T*VQ&);
6831  //       T*         operator++(T*VQ&, int);
6832  //       T*         operator--(T*VQ&, int);
6833  void addPlusPlusMinusMinusPointerOverloads() {
6834    for (BuiltinCandidateTypeSet::iterator
6835              Ptr = CandidateTypes[0].pointer_begin(),
6836           PtrEnd = CandidateTypes[0].pointer_end();
6837         Ptr != PtrEnd; ++Ptr) {
6838      // Skip pointer types that aren't pointers to object types.
6839      if (!(*Ptr)->getPointeeType()->isObjectType())
6840        continue;
6841
6842      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6843        (!(*Ptr).isVolatileQualified() &&
6844         VisibleTypeConversionsQuals.hasVolatile()),
6845        (!(*Ptr).isRestrictQualified() &&
6846         VisibleTypeConversionsQuals.hasRestrict()));
6847    }
6848  }
6849
6850  // C++ [over.built]p6:
6851  //   For every cv-qualified or cv-unqualified object type T, there
6852  //   exist candidate operator functions of the form
6853  //
6854  //       T&         operator*(T*);
6855  //
6856  // C++ [over.built]p7:
6857  //   For every function type T that does not have cv-qualifiers or a
6858  //   ref-qualifier, there exist candidate operator functions of the form
6859  //       T&         operator*(T*);
6860  void addUnaryStarPointerOverloads() {
6861    for (BuiltinCandidateTypeSet::iterator
6862              Ptr = CandidateTypes[0].pointer_begin(),
6863           PtrEnd = CandidateTypes[0].pointer_end();
6864         Ptr != PtrEnd; ++Ptr) {
6865      QualType ParamTy = *Ptr;
6866      QualType PointeeTy = ParamTy->getPointeeType();
6867      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6868        continue;
6869
6870      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6871        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6872          continue;
6873
6874      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6875                            &ParamTy, Args, CandidateSet);
6876    }
6877  }
6878
6879  // C++ [over.built]p9:
6880  //  For every promoted arithmetic type T, there exist candidate
6881  //  operator functions of the form
6882  //
6883  //       T         operator+(T);
6884  //       T         operator-(T);
6885  void addUnaryPlusOrMinusArithmeticOverloads() {
6886    if (!HasArithmeticOrEnumeralCandidateType)
6887      return;
6888
6889    for (unsigned Arith = FirstPromotedArithmeticType;
6890         Arith < LastPromotedArithmeticType; ++Arith) {
6891      QualType ArithTy = getArithmeticType(Arith);
6892      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
6893    }
6894
6895    // Extension: We also add these operators for vector types.
6896    for (BuiltinCandidateTypeSet::iterator
6897              Vec = CandidateTypes[0].vector_begin(),
6898           VecEnd = CandidateTypes[0].vector_end();
6899         Vec != VecEnd; ++Vec) {
6900      QualType VecTy = *Vec;
6901      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6902    }
6903  }
6904
6905  // C++ [over.built]p8:
6906  //   For every type T, there exist candidate operator functions of
6907  //   the form
6908  //
6909  //       T*         operator+(T*);
6910  void addUnaryPlusPointerOverloads() {
6911    for (BuiltinCandidateTypeSet::iterator
6912              Ptr = CandidateTypes[0].pointer_begin(),
6913           PtrEnd = CandidateTypes[0].pointer_end();
6914         Ptr != PtrEnd; ++Ptr) {
6915      QualType ParamTy = *Ptr;
6916      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
6917    }
6918  }
6919
6920  // C++ [over.built]p10:
6921  //   For every promoted integral type T, there exist candidate
6922  //   operator functions of the form
6923  //
6924  //        T         operator~(T);
6925  void addUnaryTildePromotedIntegralOverloads() {
6926    if (!HasArithmeticOrEnumeralCandidateType)
6927      return;
6928
6929    for (unsigned Int = FirstPromotedIntegralType;
6930         Int < LastPromotedIntegralType; ++Int) {
6931      QualType IntTy = getArithmeticType(Int);
6932      S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
6933    }
6934
6935    // Extension: We also add this operator for vector types.
6936    for (BuiltinCandidateTypeSet::iterator
6937              Vec = CandidateTypes[0].vector_begin(),
6938           VecEnd = CandidateTypes[0].vector_end();
6939         Vec != VecEnd; ++Vec) {
6940      QualType VecTy = *Vec;
6941      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6942    }
6943  }
6944
6945  // C++ [over.match.oper]p16:
6946  //   For every pointer to member type T, there exist candidate operator
6947  //   functions of the form
6948  //
6949  //        bool operator==(T,T);
6950  //        bool operator!=(T,T);
6951  void addEqualEqualOrNotEqualMemberPointerOverloads() {
6952    /// Set of (canonical) types that we've already handled.
6953    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6954
6955    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6956      for (BuiltinCandidateTypeSet::iterator
6957                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6958             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6959           MemPtr != MemPtrEnd;
6960           ++MemPtr) {
6961        // Don't add the same builtin candidate twice.
6962        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6963          continue;
6964
6965        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6966        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
6967      }
6968    }
6969  }
6970
6971  // C++ [over.built]p15:
6972  //
6973  //   For every T, where T is an enumeration type, a pointer type, or
6974  //   std::nullptr_t, there exist candidate operator functions of the form
6975  //
6976  //        bool       operator<(T, T);
6977  //        bool       operator>(T, T);
6978  //        bool       operator<=(T, T);
6979  //        bool       operator>=(T, T);
6980  //        bool       operator==(T, T);
6981  //        bool       operator!=(T, T);
6982  void addRelationalPointerOrEnumeralOverloads() {
6983    // C++ [over.match.oper]p3:
6984    //   [...]the built-in candidates include all of the candidate operator
6985    //   functions defined in 13.6 that, compared to the given operator, [...]
6986    //   do not have the same parameter-type-list as any non-template non-member
6987    //   candidate.
6988    //
6989    // Note that in practice, this only affects enumeration types because there
6990    // aren't any built-in candidates of record type, and a user-defined operator
6991    // must have an operand of record or enumeration type. Also, the only other
6992    // overloaded operator with enumeration arguments, operator=,
6993    // cannot be overloaded for enumeration types, so this is the only place
6994    // where we must suppress candidates like this.
6995    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
6996      UserDefinedBinaryOperators;
6997
6998    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6999      if (CandidateTypes[ArgIdx].enumeration_begin() !=
7000          CandidateTypes[ArgIdx].enumeration_end()) {
7001        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7002                                         CEnd = CandidateSet.end();
7003             C != CEnd; ++C) {
7004          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7005            continue;
7006
7007          if (C->Function->isFunctionTemplateSpecialization())
7008            continue;
7009
7010          QualType FirstParamType =
7011            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7012          QualType SecondParamType =
7013            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7014
7015          // Skip if either parameter isn't of enumeral type.
7016          if (!FirstParamType->isEnumeralType() ||
7017              !SecondParamType->isEnumeralType())
7018            continue;
7019
7020          // Add this operator to the set of known user-defined operators.
7021          UserDefinedBinaryOperators.insert(
7022            std::make_pair(S.Context.getCanonicalType(FirstParamType),
7023                           S.Context.getCanonicalType(SecondParamType)));
7024        }
7025      }
7026    }
7027
7028    /// Set of (canonical) types that we've already handled.
7029    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7030
7031    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7032      for (BuiltinCandidateTypeSet::iterator
7033                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7034             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7035           Ptr != PtrEnd; ++Ptr) {
7036        // Don't add the same builtin candidate twice.
7037        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7038          continue;
7039
7040        QualType ParamTypes[2] = { *Ptr, *Ptr };
7041        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7042      }
7043      for (BuiltinCandidateTypeSet::iterator
7044                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7045             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7046           Enum != EnumEnd; ++Enum) {
7047        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7048
7049        // Don't add the same builtin candidate twice, or if a user defined
7050        // candidate exists.
7051        if (!AddedTypes.insert(CanonType) ||
7052            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7053                                                            CanonType)))
7054          continue;
7055
7056        QualType ParamTypes[2] = { *Enum, *Enum };
7057        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7058      }
7059
7060      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7061        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7062        if (AddedTypes.insert(NullPtrTy) &&
7063            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7064                                                             NullPtrTy))) {
7065          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7066          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7067                                CandidateSet);
7068        }
7069      }
7070    }
7071  }
7072
7073  // C++ [over.built]p13:
7074  //
7075  //   For every cv-qualified or cv-unqualified object type T
7076  //   there exist candidate operator functions of the form
7077  //
7078  //      T*         operator+(T*, ptrdiff_t);
7079  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7080  //      T*         operator-(T*, ptrdiff_t);
7081  //      T*         operator+(ptrdiff_t, T*);
7082  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7083  //
7084  // C++ [over.built]p14:
7085  //
7086  //   For every T, where T is a pointer to object type, there
7087  //   exist candidate operator functions of the form
7088  //
7089  //      ptrdiff_t  operator-(T, T);
7090  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7091    /// Set of (canonical) types that we've already handled.
7092    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7093
7094    for (int Arg = 0; Arg < 2; ++Arg) {
7095      QualType AsymetricParamTypes[2] = {
7096        S.Context.getPointerDiffType(),
7097        S.Context.getPointerDiffType(),
7098      };
7099      for (BuiltinCandidateTypeSet::iterator
7100                Ptr = CandidateTypes[Arg].pointer_begin(),
7101             PtrEnd = CandidateTypes[Arg].pointer_end();
7102           Ptr != PtrEnd; ++Ptr) {
7103        QualType PointeeTy = (*Ptr)->getPointeeType();
7104        if (!PointeeTy->isObjectType())
7105          continue;
7106
7107        AsymetricParamTypes[Arg] = *Ptr;
7108        if (Arg == 0 || Op == OO_Plus) {
7109          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7110          // T* operator+(ptrdiff_t, T*);
7111          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
7112        }
7113        if (Op == OO_Minus) {
7114          // ptrdiff_t operator-(T, T);
7115          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7116            continue;
7117
7118          QualType ParamTypes[2] = { *Ptr, *Ptr };
7119          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7120                                Args, CandidateSet);
7121        }
7122      }
7123    }
7124  }
7125
7126  // C++ [over.built]p12:
7127  //
7128  //   For every pair of promoted arithmetic types L and R, there
7129  //   exist candidate operator functions of the form
7130  //
7131  //        LR         operator*(L, R);
7132  //        LR         operator/(L, R);
7133  //        LR         operator+(L, R);
7134  //        LR         operator-(L, R);
7135  //        bool       operator<(L, R);
7136  //        bool       operator>(L, R);
7137  //        bool       operator<=(L, R);
7138  //        bool       operator>=(L, R);
7139  //        bool       operator==(L, R);
7140  //        bool       operator!=(L, R);
7141  //
7142  //   where LR is the result of the usual arithmetic conversions
7143  //   between types L and R.
7144  //
7145  // C++ [over.built]p24:
7146  //
7147  //   For every pair of promoted arithmetic types L and R, there exist
7148  //   candidate operator functions of the form
7149  //
7150  //        LR       operator?(bool, L, R);
7151  //
7152  //   where LR is the result of the usual arithmetic conversions
7153  //   between types L and R.
7154  // Our candidates ignore the first parameter.
7155  void addGenericBinaryArithmeticOverloads(bool isComparison) {
7156    if (!HasArithmeticOrEnumeralCandidateType)
7157      return;
7158
7159    for (unsigned Left = FirstPromotedArithmeticType;
7160         Left < LastPromotedArithmeticType; ++Left) {
7161      for (unsigned Right = FirstPromotedArithmeticType;
7162           Right < LastPromotedArithmeticType; ++Right) {
7163        QualType LandR[2] = { getArithmeticType(Left),
7164                              getArithmeticType(Right) };
7165        QualType Result =
7166          isComparison ? S.Context.BoolTy
7167                       : getUsualArithmeticConversions(Left, Right);
7168        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7169      }
7170    }
7171
7172    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7173    // conditional operator for vector types.
7174    for (BuiltinCandidateTypeSet::iterator
7175              Vec1 = CandidateTypes[0].vector_begin(),
7176           Vec1End = CandidateTypes[0].vector_end();
7177         Vec1 != Vec1End; ++Vec1) {
7178      for (BuiltinCandidateTypeSet::iterator
7179                Vec2 = CandidateTypes[1].vector_begin(),
7180             Vec2End = CandidateTypes[1].vector_end();
7181           Vec2 != Vec2End; ++Vec2) {
7182        QualType LandR[2] = { *Vec1, *Vec2 };
7183        QualType Result = S.Context.BoolTy;
7184        if (!isComparison) {
7185          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7186            Result = *Vec1;
7187          else
7188            Result = *Vec2;
7189        }
7190
7191        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7192      }
7193    }
7194  }
7195
7196  // C++ [over.built]p17:
7197  //
7198  //   For every pair of promoted integral types L and R, there
7199  //   exist candidate operator functions of the form
7200  //
7201  //      LR         operator%(L, R);
7202  //      LR         operator&(L, R);
7203  //      LR         operator^(L, R);
7204  //      LR         operator|(L, R);
7205  //      L          operator<<(L, R);
7206  //      L          operator>>(L, R);
7207  //
7208  //   where LR is the result of the usual arithmetic conversions
7209  //   between types L and R.
7210  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7211    if (!HasArithmeticOrEnumeralCandidateType)
7212      return;
7213
7214    for (unsigned Left = FirstPromotedIntegralType;
7215         Left < LastPromotedIntegralType; ++Left) {
7216      for (unsigned Right = FirstPromotedIntegralType;
7217           Right < LastPromotedIntegralType; ++Right) {
7218        QualType LandR[2] = { getArithmeticType(Left),
7219                              getArithmeticType(Right) };
7220        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7221            ? LandR[0]
7222            : getUsualArithmeticConversions(Left, Right);
7223        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7224      }
7225    }
7226  }
7227
7228  // C++ [over.built]p20:
7229  //
7230  //   For every pair (T, VQ), where T is an enumeration or
7231  //   pointer to member type and VQ is either volatile or
7232  //   empty, there exist candidate operator functions of the form
7233  //
7234  //        VQ T&      operator=(VQ T&, T);
7235  void addAssignmentMemberPointerOrEnumeralOverloads() {
7236    /// Set of (canonical) types that we've already handled.
7237    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7238
7239    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7240      for (BuiltinCandidateTypeSet::iterator
7241                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7242             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7243           Enum != EnumEnd; ++Enum) {
7244        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7245          continue;
7246
7247        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7248      }
7249
7250      for (BuiltinCandidateTypeSet::iterator
7251                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7252             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7253           MemPtr != MemPtrEnd; ++MemPtr) {
7254        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7255          continue;
7256
7257        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7258      }
7259    }
7260  }
7261
7262  // C++ [over.built]p19:
7263  //
7264  //   For every pair (T, VQ), where T is any type and VQ is either
7265  //   volatile or empty, there exist candidate operator functions
7266  //   of the form
7267  //
7268  //        T*VQ&      operator=(T*VQ&, T*);
7269  //
7270  // C++ [over.built]p21:
7271  //
7272  //   For every pair (T, VQ), where T is a cv-qualified or
7273  //   cv-unqualified object type and VQ is either volatile or
7274  //   empty, there exist candidate operator functions of the form
7275  //
7276  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7277  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7278  void addAssignmentPointerOverloads(bool isEqualOp) {
7279    /// Set of (canonical) types that we've already handled.
7280    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7281
7282    for (BuiltinCandidateTypeSet::iterator
7283              Ptr = CandidateTypes[0].pointer_begin(),
7284           PtrEnd = CandidateTypes[0].pointer_end();
7285         Ptr != PtrEnd; ++Ptr) {
7286      // If this is operator=, keep track of the builtin candidates we added.
7287      if (isEqualOp)
7288        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7289      else if (!(*Ptr)->getPointeeType()->isObjectType())
7290        continue;
7291
7292      // non-volatile version
7293      QualType ParamTypes[2] = {
7294        S.Context.getLValueReferenceType(*Ptr),
7295        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7296      };
7297      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7298                            /*IsAssigmentOperator=*/ isEqualOp);
7299
7300      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7301                          VisibleTypeConversionsQuals.hasVolatile();
7302      if (NeedVolatile) {
7303        // volatile version
7304        ParamTypes[0] =
7305          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7306        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7307                              /*IsAssigmentOperator=*/isEqualOp);
7308      }
7309
7310      if (!(*Ptr).isRestrictQualified() &&
7311          VisibleTypeConversionsQuals.hasRestrict()) {
7312        // restrict version
7313        ParamTypes[0]
7314          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7315        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7316                              /*IsAssigmentOperator=*/isEqualOp);
7317
7318        if (NeedVolatile) {
7319          // volatile restrict version
7320          ParamTypes[0]
7321            = S.Context.getLValueReferenceType(
7322                S.Context.getCVRQualifiedType(*Ptr,
7323                                              (Qualifiers::Volatile |
7324                                               Qualifiers::Restrict)));
7325          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7326                                /*IsAssigmentOperator=*/isEqualOp);
7327        }
7328      }
7329    }
7330
7331    if (isEqualOp) {
7332      for (BuiltinCandidateTypeSet::iterator
7333                Ptr = CandidateTypes[1].pointer_begin(),
7334             PtrEnd = CandidateTypes[1].pointer_end();
7335           Ptr != PtrEnd; ++Ptr) {
7336        // Make sure we don't add the same candidate twice.
7337        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7338          continue;
7339
7340        QualType ParamTypes[2] = {
7341          S.Context.getLValueReferenceType(*Ptr),
7342          *Ptr,
7343        };
7344
7345        // non-volatile version
7346        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7347                              /*IsAssigmentOperator=*/true);
7348
7349        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7350                           VisibleTypeConversionsQuals.hasVolatile();
7351        if (NeedVolatile) {
7352          // volatile version
7353          ParamTypes[0] =
7354            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7355          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7356                                /*IsAssigmentOperator=*/true);
7357        }
7358
7359        if (!(*Ptr).isRestrictQualified() &&
7360            VisibleTypeConversionsQuals.hasRestrict()) {
7361          // restrict version
7362          ParamTypes[0]
7363            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7364          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7365                                /*IsAssigmentOperator=*/true);
7366
7367          if (NeedVolatile) {
7368            // volatile restrict version
7369            ParamTypes[0]
7370              = S.Context.getLValueReferenceType(
7371                  S.Context.getCVRQualifiedType(*Ptr,
7372                                                (Qualifiers::Volatile |
7373                                                 Qualifiers::Restrict)));
7374            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7375                                  /*IsAssigmentOperator=*/true);
7376          }
7377        }
7378      }
7379    }
7380  }
7381
7382  // C++ [over.built]p18:
7383  //
7384  //   For every triple (L, VQ, R), where L is an arithmetic type,
7385  //   VQ is either volatile or empty, and R is a promoted
7386  //   arithmetic type, there exist candidate operator functions of
7387  //   the form
7388  //
7389  //        VQ L&      operator=(VQ L&, R);
7390  //        VQ L&      operator*=(VQ L&, R);
7391  //        VQ L&      operator/=(VQ L&, R);
7392  //        VQ L&      operator+=(VQ L&, R);
7393  //        VQ L&      operator-=(VQ L&, R);
7394  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7395    if (!HasArithmeticOrEnumeralCandidateType)
7396      return;
7397
7398    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7399      for (unsigned Right = FirstPromotedArithmeticType;
7400           Right < LastPromotedArithmeticType; ++Right) {
7401        QualType ParamTypes[2];
7402        ParamTypes[1] = getArithmeticType(Right);
7403
7404        // Add this built-in operator as a candidate (VQ is empty).
7405        ParamTypes[0] =
7406          S.Context.getLValueReferenceType(getArithmeticType(Left));
7407        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7408                              /*IsAssigmentOperator=*/isEqualOp);
7409
7410        // Add this built-in operator as a candidate (VQ is 'volatile').
7411        if (VisibleTypeConversionsQuals.hasVolatile()) {
7412          ParamTypes[0] =
7413            S.Context.getVolatileType(getArithmeticType(Left));
7414          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7415          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7416                                /*IsAssigmentOperator=*/isEqualOp);
7417        }
7418      }
7419    }
7420
7421    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7422    for (BuiltinCandidateTypeSet::iterator
7423              Vec1 = CandidateTypes[0].vector_begin(),
7424           Vec1End = CandidateTypes[0].vector_end();
7425         Vec1 != Vec1End; ++Vec1) {
7426      for (BuiltinCandidateTypeSet::iterator
7427                Vec2 = CandidateTypes[1].vector_begin(),
7428             Vec2End = CandidateTypes[1].vector_end();
7429           Vec2 != Vec2End; ++Vec2) {
7430        QualType ParamTypes[2];
7431        ParamTypes[1] = *Vec2;
7432        // Add this built-in operator as a candidate (VQ is empty).
7433        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7434        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7435                              /*IsAssigmentOperator=*/isEqualOp);
7436
7437        // Add this built-in operator as a candidate (VQ is 'volatile').
7438        if (VisibleTypeConversionsQuals.hasVolatile()) {
7439          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7440          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7441          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7442                                /*IsAssigmentOperator=*/isEqualOp);
7443        }
7444      }
7445    }
7446  }
7447
7448  // C++ [over.built]p22:
7449  //
7450  //   For every triple (L, VQ, R), where L is an integral type, VQ
7451  //   is either volatile or empty, and R is a promoted integral
7452  //   type, there exist candidate operator functions of the form
7453  //
7454  //        VQ L&       operator%=(VQ L&, R);
7455  //        VQ L&       operator<<=(VQ L&, R);
7456  //        VQ L&       operator>>=(VQ L&, R);
7457  //        VQ L&       operator&=(VQ L&, R);
7458  //        VQ L&       operator^=(VQ L&, R);
7459  //        VQ L&       operator|=(VQ L&, R);
7460  void addAssignmentIntegralOverloads() {
7461    if (!HasArithmeticOrEnumeralCandidateType)
7462      return;
7463
7464    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7465      for (unsigned Right = FirstPromotedIntegralType;
7466           Right < LastPromotedIntegralType; ++Right) {
7467        QualType ParamTypes[2];
7468        ParamTypes[1] = getArithmeticType(Right);
7469
7470        // Add this built-in operator as a candidate (VQ is empty).
7471        ParamTypes[0] =
7472          S.Context.getLValueReferenceType(getArithmeticType(Left));
7473        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7474        if (VisibleTypeConversionsQuals.hasVolatile()) {
7475          // Add this built-in operator as a candidate (VQ is 'volatile').
7476          ParamTypes[0] = getArithmeticType(Left);
7477          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7478          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7479          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7480        }
7481      }
7482    }
7483  }
7484
7485  // C++ [over.operator]p23:
7486  //
7487  //   There also exist candidate operator functions of the form
7488  //
7489  //        bool        operator!(bool);
7490  //        bool        operator&&(bool, bool);
7491  //        bool        operator||(bool, bool);
7492  void addExclaimOverload() {
7493    QualType ParamTy = S.Context.BoolTy;
7494    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
7495                          /*IsAssignmentOperator=*/false,
7496                          /*NumContextualBoolArguments=*/1);
7497  }
7498  void addAmpAmpOrPipePipeOverload() {
7499    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7500    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
7501                          /*IsAssignmentOperator=*/false,
7502                          /*NumContextualBoolArguments=*/2);
7503  }
7504
7505  // C++ [over.built]p13:
7506  //
7507  //   For every cv-qualified or cv-unqualified object type T there
7508  //   exist candidate operator functions of the form
7509  //
7510  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7511  //        T&         operator[](T*, ptrdiff_t);
7512  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7513  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7514  //        T&         operator[](ptrdiff_t, T*);
7515  void addSubscriptOverloads() {
7516    for (BuiltinCandidateTypeSet::iterator
7517              Ptr = CandidateTypes[0].pointer_begin(),
7518           PtrEnd = CandidateTypes[0].pointer_end();
7519         Ptr != PtrEnd; ++Ptr) {
7520      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7521      QualType PointeeType = (*Ptr)->getPointeeType();
7522      if (!PointeeType->isObjectType())
7523        continue;
7524
7525      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7526
7527      // T& operator[](T*, ptrdiff_t)
7528      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7529    }
7530
7531    for (BuiltinCandidateTypeSet::iterator
7532              Ptr = CandidateTypes[1].pointer_begin(),
7533           PtrEnd = CandidateTypes[1].pointer_end();
7534         Ptr != PtrEnd; ++Ptr) {
7535      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7536      QualType PointeeType = (*Ptr)->getPointeeType();
7537      if (!PointeeType->isObjectType())
7538        continue;
7539
7540      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7541
7542      // T& operator[](ptrdiff_t, T*)
7543      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7544    }
7545  }
7546
7547  // C++ [over.built]p11:
7548  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7549  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7550  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7551  //    there exist candidate operator functions of the form
7552  //
7553  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7554  //
7555  //    where CV12 is the union of CV1 and CV2.
7556  void addArrowStarOverloads() {
7557    for (BuiltinCandidateTypeSet::iterator
7558             Ptr = CandidateTypes[0].pointer_begin(),
7559           PtrEnd = CandidateTypes[0].pointer_end();
7560         Ptr != PtrEnd; ++Ptr) {
7561      QualType C1Ty = (*Ptr);
7562      QualType C1;
7563      QualifierCollector Q1;
7564      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7565      if (!isa<RecordType>(C1))
7566        continue;
7567      // heuristic to reduce number of builtin candidates in the set.
7568      // Add volatile/restrict version only if there are conversions to a
7569      // volatile/restrict type.
7570      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7571        continue;
7572      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7573        continue;
7574      for (BuiltinCandidateTypeSet::iterator
7575                MemPtr = CandidateTypes[1].member_pointer_begin(),
7576             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7577           MemPtr != MemPtrEnd; ++MemPtr) {
7578        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7579        QualType C2 = QualType(mptr->getClass(), 0);
7580        C2 = C2.getUnqualifiedType();
7581        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7582          break;
7583        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7584        // build CV12 T&
7585        QualType T = mptr->getPointeeType();
7586        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7587            T.isVolatileQualified())
7588          continue;
7589        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7590            T.isRestrictQualified())
7591          continue;
7592        T = Q1.apply(S.Context, T);
7593        QualType ResultTy = S.Context.getLValueReferenceType(T);
7594        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7595      }
7596    }
7597  }
7598
7599  // Note that we don't consider the first argument, since it has been
7600  // contextually converted to bool long ago. The candidates below are
7601  // therefore added as binary.
7602  //
7603  // C++ [over.built]p25:
7604  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7605  //   enumeration type, there exist candidate operator functions of the form
7606  //
7607  //        T        operator?(bool, T, T);
7608  //
7609  void addConditionalOperatorOverloads() {
7610    /// Set of (canonical) types that we've already handled.
7611    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7612
7613    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7614      for (BuiltinCandidateTypeSet::iterator
7615                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7616             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7617           Ptr != PtrEnd; ++Ptr) {
7618        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7619          continue;
7620
7621        QualType ParamTypes[2] = { *Ptr, *Ptr };
7622        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
7623      }
7624
7625      for (BuiltinCandidateTypeSet::iterator
7626                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7627             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7628           MemPtr != MemPtrEnd; ++MemPtr) {
7629        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7630          continue;
7631
7632        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7633        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
7634      }
7635
7636      if (S.getLangOpts().CPlusPlus11) {
7637        for (BuiltinCandidateTypeSet::iterator
7638                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7639               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7640             Enum != EnumEnd; ++Enum) {
7641          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7642            continue;
7643
7644          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7645            continue;
7646
7647          QualType ParamTypes[2] = { *Enum, *Enum };
7648          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
7649        }
7650      }
7651    }
7652  }
7653};
7654
7655} // end anonymous namespace
7656
7657/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7658/// operator overloads to the candidate set (C++ [over.built]), based
7659/// on the operator @p Op and the arguments given. For example, if the
7660/// operator is a binary '+', this routine might add "int
7661/// operator+(int, int)" to cover integer addition.
7662void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7663                                        SourceLocation OpLoc,
7664                                        ArrayRef<Expr *> Args,
7665                                        OverloadCandidateSet &CandidateSet) {
7666  // Find all of the types that the arguments can convert to, but only
7667  // if the operator we're looking at has built-in operator candidates
7668  // that make use of these types. Also record whether we encounter non-record
7669  // candidate types or either arithmetic or enumeral candidate types.
7670  Qualifiers VisibleTypeConversionsQuals;
7671  VisibleTypeConversionsQuals.addConst();
7672  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
7673    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7674
7675  bool HasNonRecordCandidateType = false;
7676  bool HasArithmeticOrEnumeralCandidateType = false;
7677  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7678  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7679    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7680    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7681                                                 OpLoc,
7682                                                 true,
7683                                                 (Op == OO_Exclaim ||
7684                                                  Op == OO_AmpAmp ||
7685                                                  Op == OO_PipePipe),
7686                                                 VisibleTypeConversionsQuals);
7687    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7688        CandidateTypes[ArgIdx].hasNonRecordTypes();
7689    HasArithmeticOrEnumeralCandidateType =
7690        HasArithmeticOrEnumeralCandidateType ||
7691        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7692  }
7693
7694  // Exit early when no non-record types have been added to the candidate set
7695  // for any of the arguments to the operator.
7696  //
7697  // We can't exit early for !, ||, or &&, since there we have always have
7698  // 'bool' overloads.
7699  if (!HasNonRecordCandidateType &&
7700      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7701    return;
7702
7703  // Setup an object to manage the common state for building overloads.
7704  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
7705                                           VisibleTypeConversionsQuals,
7706                                           HasArithmeticOrEnumeralCandidateType,
7707                                           CandidateTypes, CandidateSet);
7708
7709  // Dispatch over the operation to add in only those overloads which apply.
7710  switch (Op) {
7711  case OO_None:
7712  case NUM_OVERLOADED_OPERATORS:
7713    llvm_unreachable("Expected an overloaded operator");
7714
7715  case OO_New:
7716  case OO_Delete:
7717  case OO_Array_New:
7718  case OO_Array_Delete:
7719  case OO_Call:
7720    llvm_unreachable(
7721                    "Special operators don't use AddBuiltinOperatorCandidates");
7722
7723  case OO_Comma:
7724  case OO_Arrow:
7725    // C++ [over.match.oper]p3:
7726    //   -- For the operator ',', the unary operator '&', or the
7727    //      operator '->', the built-in candidates set is empty.
7728    break;
7729
7730  case OO_Plus: // '+' is either unary or binary
7731    if (Args.size() == 1)
7732      OpBuilder.addUnaryPlusPointerOverloads();
7733    // Fall through.
7734
7735  case OO_Minus: // '-' is either unary or binary
7736    if (Args.size() == 1) {
7737      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7738    } else {
7739      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7740      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7741    }
7742    break;
7743
7744  case OO_Star: // '*' is either unary or binary
7745    if (Args.size() == 1)
7746      OpBuilder.addUnaryStarPointerOverloads();
7747    else
7748      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7749    break;
7750
7751  case OO_Slash:
7752    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7753    break;
7754
7755  case OO_PlusPlus:
7756  case OO_MinusMinus:
7757    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7758    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7759    break;
7760
7761  case OO_EqualEqual:
7762  case OO_ExclaimEqual:
7763    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7764    // Fall through.
7765
7766  case OO_Less:
7767  case OO_Greater:
7768  case OO_LessEqual:
7769  case OO_GreaterEqual:
7770    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7771    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7772    break;
7773
7774  case OO_Percent:
7775  case OO_Caret:
7776  case OO_Pipe:
7777  case OO_LessLess:
7778  case OO_GreaterGreater:
7779    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7780    break;
7781
7782  case OO_Amp: // '&' is either unary or binary
7783    if (Args.size() == 1)
7784      // C++ [over.match.oper]p3:
7785      //   -- For the operator ',', the unary operator '&', or the
7786      //      operator '->', the built-in candidates set is empty.
7787      break;
7788
7789    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7790    break;
7791
7792  case OO_Tilde:
7793    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7794    break;
7795
7796  case OO_Equal:
7797    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7798    // Fall through.
7799
7800  case OO_PlusEqual:
7801  case OO_MinusEqual:
7802    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7803    // Fall through.
7804
7805  case OO_StarEqual:
7806  case OO_SlashEqual:
7807    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7808    break;
7809
7810  case OO_PercentEqual:
7811  case OO_LessLessEqual:
7812  case OO_GreaterGreaterEqual:
7813  case OO_AmpEqual:
7814  case OO_CaretEqual:
7815  case OO_PipeEqual:
7816    OpBuilder.addAssignmentIntegralOverloads();
7817    break;
7818
7819  case OO_Exclaim:
7820    OpBuilder.addExclaimOverload();
7821    break;
7822
7823  case OO_AmpAmp:
7824  case OO_PipePipe:
7825    OpBuilder.addAmpAmpOrPipePipeOverload();
7826    break;
7827
7828  case OO_Subscript:
7829    OpBuilder.addSubscriptOverloads();
7830    break;
7831
7832  case OO_ArrowStar:
7833    OpBuilder.addArrowStarOverloads();
7834    break;
7835
7836  case OO_Conditional:
7837    OpBuilder.addConditionalOperatorOverloads();
7838    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7839    break;
7840  }
7841}
7842
7843/// \brief Add function candidates found via argument-dependent lookup
7844/// to the set of overloading candidates.
7845///
7846/// This routine performs argument-dependent name lookup based on the
7847/// given function name (which may also be an operator name) and adds
7848/// all of the overload candidates found by ADL to the overload
7849/// candidate set (C++ [basic.lookup.argdep]).
7850void
7851Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7852                                           bool Operator, SourceLocation Loc,
7853                                           ArrayRef<Expr *> Args,
7854                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7855                                           OverloadCandidateSet& CandidateSet,
7856                                           bool PartialOverloading) {
7857  ADLResult Fns;
7858
7859  // FIXME: This approach for uniquing ADL results (and removing
7860  // redundant candidates from the set) relies on pointer-equality,
7861  // which means we need to key off the canonical decl.  However,
7862  // always going back to the canonical decl might not get us the
7863  // right set of default arguments.  What default arguments are
7864  // we supposed to consider on ADL candidates, anyway?
7865
7866  // FIXME: Pass in the explicit template arguments?
7867  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
7868
7869  // Erase all of the candidates we already knew about.
7870  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7871                                   CandEnd = CandidateSet.end();
7872       Cand != CandEnd; ++Cand)
7873    if (Cand->Function) {
7874      Fns.erase(Cand->Function);
7875      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7876        Fns.erase(FunTmpl);
7877    }
7878
7879  // For each of the ADL candidates we found, add it to the overload
7880  // set.
7881  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7882    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7883    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7884      if (ExplicitTemplateArgs)
7885        continue;
7886
7887      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7888                           PartialOverloading);
7889    } else
7890      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7891                                   FoundDecl, ExplicitTemplateArgs,
7892                                   Args, CandidateSet);
7893  }
7894}
7895
7896/// isBetterOverloadCandidate - Determines whether the first overload
7897/// candidate is a better candidate than the second (C++ 13.3.3p1).
7898bool
7899isBetterOverloadCandidate(Sema &S,
7900                          const OverloadCandidate &Cand1,
7901                          const OverloadCandidate &Cand2,
7902                          SourceLocation Loc,
7903                          bool UserDefinedConversion) {
7904  // Define viable functions to be better candidates than non-viable
7905  // functions.
7906  if (!Cand2.Viable)
7907    return Cand1.Viable;
7908  else if (!Cand1.Viable)
7909    return false;
7910
7911  // C++ [over.match.best]p1:
7912  //
7913  //   -- if F is a static member function, ICS1(F) is defined such
7914  //      that ICS1(F) is neither better nor worse than ICS1(G) for
7915  //      any function G, and, symmetrically, ICS1(G) is neither
7916  //      better nor worse than ICS1(F).
7917  unsigned StartArg = 0;
7918  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
7919    StartArg = 1;
7920
7921  // C++ [over.match.best]p1:
7922  //   A viable function F1 is defined to be a better function than another
7923  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
7924  //   conversion sequence than ICSi(F2), and then...
7925  unsigned NumArgs = Cand1.NumConversions;
7926  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
7927  bool HasBetterConversion = false;
7928  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
7929    switch (CompareImplicitConversionSequences(S,
7930                                               Cand1.Conversions[ArgIdx],
7931                                               Cand2.Conversions[ArgIdx])) {
7932    case ImplicitConversionSequence::Better:
7933      // Cand1 has a better conversion sequence.
7934      HasBetterConversion = true;
7935      break;
7936
7937    case ImplicitConversionSequence::Worse:
7938      // Cand1 can't be better than Cand2.
7939      return false;
7940
7941    case ImplicitConversionSequence::Indistinguishable:
7942      // Do nothing.
7943      break;
7944    }
7945  }
7946
7947  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
7948  //       ICSj(F2), or, if not that,
7949  if (HasBetterConversion)
7950    return true;
7951
7952  //     - F1 is a non-template function and F2 is a function template
7953  //       specialization, or, if not that,
7954  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
7955      Cand2.Function && Cand2.Function->getPrimaryTemplate())
7956    return true;
7957
7958  //   -- F1 and F2 are function template specializations, and the function
7959  //      template for F1 is more specialized than the template for F2
7960  //      according to the partial ordering rules described in 14.5.5.2, or,
7961  //      if not that,
7962  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
7963      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
7964    if (FunctionTemplateDecl *BetterTemplate
7965          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
7966                                         Cand2.Function->getPrimaryTemplate(),
7967                                         Loc,
7968                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
7969                                                             : TPOC_Call,
7970                                         Cand1.ExplicitCallArguments))
7971      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
7972  }
7973
7974  //   -- the context is an initialization by user-defined conversion
7975  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
7976  //      from the return type of F1 to the destination type (i.e.,
7977  //      the type of the entity being initialized) is a better
7978  //      conversion sequence than the standard conversion sequence
7979  //      from the return type of F2 to the destination type.
7980  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
7981      isa<CXXConversionDecl>(Cand1.Function) &&
7982      isa<CXXConversionDecl>(Cand2.Function)) {
7983    // First check whether we prefer one of the conversion functions over the
7984    // other. This only distinguishes the results in non-standard, extension
7985    // cases such as the conversion from a lambda closure type to a function
7986    // pointer or block.
7987    ImplicitConversionSequence::CompareKind FuncResult
7988      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
7989    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
7990      return FuncResult;
7991
7992    switch (CompareStandardConversionSequences(S,
7993                                               Cand1.FinalConversion,
7994                                               Cand2.FinalConversion)) {
7995    case ImplicitConversionSequence::Better:
7996      // Cand1 has a better conversion sequence.
7997      return true;
7998
7999    case ImplicitConversionSequence::Worse:
8000      // Cand1 can't be better than Cand2.
8001      return false;
8002
8003    case ImplicitConversionSequence::Indistinguishable:
8004      // Do nothing
8005      break;
8006    }
8007  }
8008
8009  return false;
8010}
8011
8012/// \brief Computes the best viable function (C++ 13.3.3)
8013/// within an overload candidate set.
8014///
8015/// \param Loc The location of the function name (or operator symbol) for
8016/// which overload resolution occurs.
8017///
8018/// \param Best If overload resolution was successful or found a deleted
8019/// function, \p Best points to the candidate function found.
8020///
8021/// \returns The result of overload resolution.
8022OverloadingResult
8023OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8024                                         iterator &Best,
8025                                         bool UserDefinedConversion) {
8026  // Find the best viable function.
8027  Best = end();
8028  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8029    if (Cand->Viable)
8030      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8031                                                     UserDefinedConversion))
8032        Best = Cand;
8033  }
8034
8035  // If we didn't find any viable functions, abort.
8036  if (Best == end())
8037    return OR_No_Viable_Function;
8038
8039  // Make sure that this function is better than every other viable
8040  // function. If not, we have an ambiguity.
8041  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8042    if (Cand->Viable &&
8043        Cand != Best &&
8044        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8045                                   UserDefinedConversion)) {
8046      Best = end();
8047      return OR_Ambiguous;
8048    }
8049  }
8050
8051  // Best is the best viable function.
8052  if (Best->Function &&
8053      (Best->Function->isDeleted() ||
8054       S.isFunctionConsideredUnavailable(Best->Function)))
8055    return OR_Deleted;
8056
8057  return OR_Success;
8058}
8059
8060namespace {
8061
8062enum OverloadCandidateKind {
8063  oc_function,
8064  oc_method,
8065  oc_constructor,
8066  oc_function_template,
8067  oc_method_template,
8068  oc_constructor_template,
8069  oc_implicit_default_constructor,
8070  oc_implicit_copy_constructor,
8071  oc_implicit_move_constructor,
8072  oc_implicit_copy_assignment,
8073  oc_implicit_move_assignment,
8074  oc_implicit_inherited_constructor
8075};
8076
8077OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8078                                                FunctionDecl *Fn,
8079                                                std::string &Description) {
8080  bool isTemplate = false;
8081
8082  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8083    isTemplate = true;
8084    Description = S.getTemplateArgumentBindingsText(
8085      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8086  }
8087
8088  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8089    if (!Ctor->isImplicit())
8090      return isTemplate ? oc_constructor_template : oc_constructor;
8091
8092    if (Ctor->getInheritedConstructor())
8093      return oc_implicit_inherited_constructor;
8094
8095    if (Ctor->isDefaultConstructor())
8096      return oc_implicit_default_constructor;
8097
8098    if (Ctor->isMoveConstructor())
8099      return oc_implicit_move_constructor;
8100
8101    assert(Ctor->isCopyConstructor() &&
8102           "unexpected sort of implicit constructor");
8103    return oc_implicit_copy_constructor;
8104  }
8105
8106  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8107    // This actually gets spelled 'candidate function' for now, but
8108    // it doesn't hurt to split it out.
8109    if (!Meth->isImplicit())
8110      return isTemplate ? oc_method_template : oc_method;
8111
8112    if (Meth->isMoveAssignmentOperator())
8113      return oc_implicit_move_assignment;
8114
8115    if (Meth->isCopyAssignmentOperator())
8116      return oc_implicit_copy_assignment;
8117
8118    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8119    return oc_method;
8120  }
8121
8122  return isTemplate ? oc_function_template : oc_function;
8123}
8124
8125void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
8126  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8127  if (!Ctor) return;
8128
8129  Ctor = Ctor->getInheritedConstructor();
8130  if (!Ctor) return;
8131
8132  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8133}
8134
8135} // end anonymous namespace
8136
8137// Notes the location of an overload candidate.
8138void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
8139  std::string FnDesc;
8140  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8141  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8142                             << (unsigned) K << FnDesc;
8143  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8144  Diag(Fn->getLocation(), PD);
8145  MaybeEmitInheritedConstructorNote(*this, Fn);
8146}
8147
8148//Notes the location of all overload candidates designated through
8149// OverloadedExpr
8150void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
8151  assert(OverloadedExpr->getType() == Context.OverloadTy);
8152
8153  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8154  OverloadExpr *OvlExpr = Ovl.Expression;
8155
8156  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8157                            IEnd = OvlExpr->decls_end();
8158       I != IEnd; ++I) {
8159    if (FunctionTemplateDecl *FunTmpl =
8160                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8161      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
8162    } else if (FunctionDecl *Fun
8163                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8164      NoteOverloadCandidate(Fun, DestType);
8165    }
8166  }
8167}
8168
8169/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
8170/// "lead" diagnostic; it will be given two arguments, the source and
8171/// target types of the conversion.
8172void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8173                                 Sema &S,
8174                                 SourceLocation CaretLoc,
8175                                 const PartialDiagnostic &PDiag) const {
8176  S.Diag(CaretLoc, PDiag)
8177    << Ambiguous.getFromType() << Ambiguous.getToType();
8178  // FIXME: The note limiting machinery is borrowed from
8179  // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8180  // refactoring here.
8181  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8182  unsigned CandsShown = 0;
8183  AmbiguousConversionSequence::const_iterator I, E;
8184  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8185    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8186      break;
8187    ++CandsShown;
8188    S.NoteOverloadCandidate(*I);
8189  }
8190  if (I != E)
8191    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8192}
8193
8194namespace {
8195
8196void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8197  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8198  assert(Conv.isBad());
8199  assert(Cand->Function && "for now, candidate must be a function");
8200  FunctionDecl *Fn = Cand->Function;
8201
8202  // There's a conversion slot for the object argument if this is a
8203  // non-constructor method.  Note that 'I' corresponds the
8204  // conversion-slot index.
8205  bool isObjectArgument = false;
8206  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8207    if (I == 0)
8208      isObjectArgument = true;
8209    else
8210      I--;
8211  }
8212
8213  std::string FnDesc;
8214  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8215
8216  Expr *FromExpr = Conv.Bad.FromExpr;
8217  QualType FromTy = Conv.Bad.getFromType();
8218  QualType ToTy = Conv.Bad.getToType();
8219
8220  if (FromTy == S.Context.OverloadTy) {
8221    assert(FromExpr && "overload set argument came from implicit argument?");
8222    Expr *E = FromExpr->IgnoreParens();
8223    if (isa<UnaryOperator>(E))
8224      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8225    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8226
8227    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8228      << (unsigned) FnKind << FnDesc
8229      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8230      << ToTy << Name << I+1;
8231    MaybeEmitInheritedConstructorNote(S, Fn);
8232    return;
8233  }
8234
8235  // Do some hand-waving analysis to see if the non-viability is due
8236  // to a qualifier mismatch.
8237  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8238  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8239  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8240    CToTy = RT->getPointeeType();
8241  else {
8242    // TODO: detect and diagnose the full richness of const mismatches.
8243    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8244      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8245        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8246  }
8247
8248  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8249      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8250    Qualifiers FromQs = CFromTy.getQualifiers();
8251    Qualifiers ToQs = CToTy.getQualifiers();
8252
8253    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8254      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8255        << (unsigned) FnKind << FnDesc
8256        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8257        << FromTy
8258        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8259        << (unsigned) isObjectArgument << I+1;
8260      MaybeEmitInheritedConstructorNote(S, Fn);
8261      return;
8262    }
8263
8264    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8265      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8266        << (unsigned) FnKind << FnDesc
8267        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8268        << FromTy
8269        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8270        << (unsigned) isObjectArgument << I+1;
8271      MaybeEmitInheritedConstructorNote(S, Fn);
8272      return;
8273    }
8274
8275    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8276      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8277      << (unsigned) FnKind << FnDesc
8278      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8279      << FromTy
8280      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8281      << (unsigned) isObjectArgument << I+1;
8282      MaybeEmitInheritedConstructorNote(S, Fn);
8283      return;
8284    }
8285
8286    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8287    assert(CVR && "unexpected qualifiers mismatch");
8288
8289    if (isObjectArgument) {
8290      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8291        << (unsigned) FnKind << FnDesc
8292        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8293        << FromTy << (CVR - 1);
8294    } else {
8295      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8296        << (unsigned) FnKind << FnDesc
8297        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8298        << FromTy << (CVR - 1) << I+1;
8299    }
8300    MaybeEmitInheritedConstructorNote(S, Fn);
8301    return;
8302  }
8303
8304  // Special diagnostic for failure to convert an initializer list, since
8305  // telling the user that it has type void is not useful.
8306  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8307    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8308      << (unsigned) FnKind << FnDesc
8309      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8310      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8311    MaybeEmitInheritedConstructorNote(S, Fn);
8312    return;
8313  }
8314
8315  // Diagnose references or pointers to incomplete types differently,
8316  // since it's far from impossible that the incompleteness triggered
8317  // the failure.
8318  QualType TempFromTy = FromTy.getNonReferenceType();
8319  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8320    TempFromTy = PTy->getPointeeType();
8321  if (TempFromTy->isIncompleteType()) {
8322    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8323      << (unsigned) FnKind << FnDesc
8324      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8325      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8326    MaybeEmitInheritedConstructorNote(S, Fn);
8327    return;
8328  }
8329
8330  // Diagnose base -> derived pointer conversions.
8331  unsigned BaseToDerivedConversion = 0;
8332  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8333    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8334      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8335                                               FromPtrTy->getPointeeType()) &&
8336          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8337          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8338          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8339                          FromPtrTy->getPointeeType()))
8340        BaseToDerivedConversion = 1;
8341    }
8342  } else if (const ObjCObjectPointerType *FromPtrTy
8343                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8344    if (const ObjCObjectPointerType *ToPtrTy
8345                                        = ToTy->getAs<ObjCObjectPointerType>())
8346      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8347        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8348          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8349                                                FromPtrTy->getPointeeType()) &&
8350              FromIface->isSuperClassOf(ToIface))
8351            BaseToDerivedConversion = 2;
8352  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8353    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8354        !FromTy->isIncompleteType() &&
8355        !ToRefTy->getPointeeType()->isIncompleteType() &&
8356        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8357      BaseToDerivedConversion = 3;
8358    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8359               ToTy.getNonReferenceType().getCanonicalType() ==
8360               FromTy.getNonReferenceType().getCanonicalType()) {
8361      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8362        << (unsigned) FnKind << FnDesc
8363        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8364        << (unsigned) isObjectArgument << I + 1;
8365      MaybeEmitInheritedConstructorNote(S, Fn);
8366      return;
8367    }
8368  }
8369
8370  if (BaseToDerivedConversion) {
8371    S.Diag(Fn->getLocation(),
8372           diag::note_ovl_candidate_bad_base_to_derived_conv)
8373      << (unsigned) FnKind << FnDesc
8374      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8375      << (BaseToDerivedConversion - 1)
8376      << FromTy << ToTy << I+1;
8377    MaybeEmitInheritedConstructorNote(S, Fn);
8378    return;
8379  }
8380
8381  if (isa<ObjCObjectPointerType>(CFromTy) &&
8382      isa<PointerType>(CToTy)) {
8383      Qualifiers FromQs = CFromTy.getQualifiers();
8384      Qualifiers ToQs = CToTy.getQualifiers();
8385      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8386        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8387        << (unsigned) FnKind << FnDesc
8388        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8389        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8390        MaybeEmitInheritedConstructorNote(S, Fn);
8391        return;
8392      }
8393  }
8394
8395  // Emit the generic diagnostic and, optionally, add the hints to it.
8396  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8397  FDiag << (unsigned) FnKind << FnDesc
8398    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8399    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8400    << (unsigned) (Cand->Fix.Kind);
8401
8402  // If we can fix the conversion, suggest the FixIts.
8403  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8404       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8405    FDiag << *HI;
8406  S.Diag(Fn->getLocation(), FDiag);
8407
8408  MaybeEmitInheritedConstructorNote(S, Fn);
8409}
8410
8411/// Additional arity mismatch diagnosis specific to a function overload
8412/// candidates. This is not covered by the more general DiagnoseArityMismatch()
8413/// over a candidate in any candidate set.
8414bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
8415                        unsigned NumArgs) {
8416  FunctionDecl *Fn = Cand->Function;
8417  unsigned MinParams = Fn->getMinRequiredArguments();
8418
8419  // With invalid overloaded operators, it's possible that we think we
8420  // have an arity mismatch when in fact it looks like we have the
8421  // right number of arguments, because only overloaded operators have
8422  // the weird behavior of overloading member and non-member functions.
8423  // Just don't report anything.
8424  if (Fn->isInvalidDecl() &&
8425      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8426    return true;
8427
8428  if (NumArgs < MinParams) {
8429    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8430           (Cand->FailureKind == ovl_fail_bad_deduction &&
8431            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8432  } else {
8433    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8434           (Cand->FailureKind == ovl_fail_bad_deduction &&
8435            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8436  }
8437
8438  return false;
8439}
8440
8441/// General arity mismatch diagnosis over a candidate in a candidate set.
8442void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
8443  assert(isa<FunctionDecl>(D) &&
8444      "The templated declaration should at least be a function"
8445      " when diagnosing bad template argument deduction due to too many"
8446      " or too few arguments");
8447
8448  FunctionDecl *Fn = cast<FunctionDecl>(D);
8449
8450  // TODO: treat calls to a missing default constructor as a special case
8451  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8452  unsigned MinParams = Fn->getMinRequiredArguments();
8453
8454  // at least / at most / exactly
8455  unsigned mode, modeCount;
8456  if (NumFormalArgs < MinParams) {
8457    if (MinParams != FnTy->getNumArgs() ||
8458        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8459      mode = 0; // "at least"
8460    else
8461      mode = 2; // "exactly"
8462    modeCount = MinParams;
8463  } else {
8464    if (MinParams != FnTy->getNumArgs())
8465      mode = 1; // "at most"
8466    else
8467      mode = 2; // "exactly"
8468    modeCount = FnTy->getNumArgs();
8469  }
8470
8471  std::string Description;
8472  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8473
8474  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8475    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8476      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8477      << Fn->getParamDecl(0) << NumFormalArgs;
8478  else
8479    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8480      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8481      << modeCount << NumFormalArgs;
8482  MaybeEmitInheritedConstructorNote(S, Fn);
8483}
8484
8485/// Arity mismatch diagnosis specific to a function overload candidate.
8486void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8487                           unsigned NumFormalArgs) {
8488  if (!CheckArityMismatch(S, Cand, NumFormalArgs))
8489    DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
8490}
8491
8492TemplateDecl *getDescribedTemplate(Decl *Templated) {
8493  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
8494    return FD->getDescribedFunctionTemplate();
8495  else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
8496    return RD->getDescribedClassTemplate();
8497
8498  llvm_unreachable("Unsupported: Getting the described template declaration"
8499                   " for bad deduction diagnosis");
8500}
8501
8502/// Diagnose a failed template-argument deduction.
8503void DiagnoseBadDeduction(Sema &S, Decl *Templated,
8504                          DeductionFailureInfo &DeductionFailure,
8505                          unsigned NumArgs) {
8506  TemplateParameter Param = DeductionFailure.getTemplateParameter();
8507  NamedDecl *ParamD;
8508  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8509  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8510  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8511  switch (DeductionFailure.Result) {
8512  case Sema::TDK_Success:
8513    llvm_unreachable("TDK_success while diagnosing bad deduction");
8514
8515  case Sema::TDK_Incomplete: {
8516    assert(ParamD && "no parameter found for incomplete deduction result");
8517    S.Diag(Templated->getLocation(),
8518           diag::note_ovl_candidate_incomplete_deduction)
8519        << ParamD->getDeclName();
8520    MaybeEmitInheritedConstructorNote(S, Templated);
8521    return;
8522  }
8523
8524  case Sema::TDK_Underqualified: {
8525    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8526    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8527
8528    QualType Param = DeductionFailure.getFirstArg()->getAsType();
8529
8530    // Param will have been canonicalized, but it should just be a
8531    // qualified version of ParamD, so move the qualifiers to that.
8532    QualifierCollector Qs;
8533    Qs.strip(Param);
8534    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8535    assert(S.Context.hasSameType(Param, NonCanonParam));
8536
8537    // Arg has also been canonicalized, but there's nothing we can do
8538    // about that.  It also doesn't matter as much, because it won't
8539    // have any template parameters in it (because deduction isn't
8540    // done on dependent types).
8541    QualType Arg = DeductionFailure.getSecondArg()->getAsType();
8542
8543    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
8544        << ParamD->getDeclName() << Arg << NonCanonParam;
8545    MaybeEmitInheritedConstructorNote(S, Templated);
8546    return;
8547  }
8548
8549  case Sema::TDK_Inconsistent: {
8550    assert(ParamD && "no parameter found for inconsistent deduction result");
8551    int which = 0;
8552    if (isa<TemplateTypeParmDecl>(ParamD))
8553      which = 0;
8554    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8555      which = 1;
8556    else {
8557      which = 2;
8558    }
8559
8560    S.Diag(Templated->getLocation(),
8561           diag::note_ovl_candidate_inconsistent_deduction)
8562        << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
8563        << *DeductionFailure.getSecondArg();
8564    MaybeEmitInheritedConstructorNote(S, Templated);
8565    return;
8566  }
8567
8568  case Sema::TDK_InvalidExplicitArguments:
8569    assert(ParamD && "no parameter found for invalid explicit arguments");
8570    if (ParamD->getDeclName())
8571      S.Diag(Templated->getLocation(),
8572             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8573          << ParamD->getDeclName();
8574    else {
8575      int index = 0;
8576      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8577        index = TTP->getIndex();
8578      else if (NonTypeTemplateParmDecl *NTTP
8579                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8580        index = NTTP->getIndex();
8581      else
8582        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8583      S.Diag(Templated->getLocation(),
8584             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8585          << (index + 1);
8586    }
8587    MaybeEmitInheritedConstructorNote(S, Templated);
8588    return;
8589
8590  case Sema::TDK_TooManyArguments:
8591  case Sema::TDK_TooFewArguments:
8592    DiagnoseArityMismatch(S, Templated, NumArgs);
8593    return;
8594
8595  case Sema::TDK_InstantiationDepth:
8596    S.Diag(Templated->getLocation(),
8597           diag::note_ovl_candidate_instantiation_depth);
8598    MaybeEmitInheritedConstructorNote(S, Templated);
8599    return;
8600
8601  case Sema::TDK_SubstitutionFailure: {
8602    // Format the template argument list into the argument string.
8603    SmallString<128> TemplateArgString;
8604    if (TemplateArgumentList *Args =
8605            DeductionFailure.getTemplateArgumentList()) {
8606      TemplateArgString = " ";
8607      TemplateArgString += S.getTemplateArgumentBindingsText(
8608          getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
8609    }
8610
8611    // If this candidate was disabled by enable_if, say so.
8612    PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
8613    if (PDiag && PDiag->second.getDiagID() ==
8614          diag::err_typename_nested_not_found_enable_if) {
8615      // FIXME: Use the source range of the condition, and the fully-qualified
8616      //        name of the enable_if template. These are both present in PDiag.
8617      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8618        << "'enable_if'" << TemplateArgString;
8619      return;
8620    }
8621
8622    // Format the SFINAE diagnostic into the argument string.
8623    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8624    //        formatted message in another diagnostic.
8625    SmallString<128> SFINAEArgString;
8626    SourceRange R;
8627    if (PDiag) {
8628      SFINAEArgString = ": ";
8629      R = SourceRange(PDiag->first, PDiag->first);
8630      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8631    }
8632
8633    S.Diag(Templated->getLocation(),
8634           diag::note_ovl_candidate_substitution_failure)
8635        << TemplateArgString << SFINAEArgString << R;
8636    MaybeEmitInheritedConstructorNote(S, Templated);
8637    return;
8638  }
8639
8640  case Sema::TDK_FailedOverloadResolution: {
8641    OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
8642    S.Diag(Templated->getLocation(),
8643           diag::note_ovl_candidate_failed_overload_resolution)
8644        << R.Expression->getName();
8645    return;
8646  }
8647
8648  case Sema::TDK_NonDeducedMismatch: {
8649    // FIXME: Provide a source location to indicate what we couldn't match.
8650    TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
8651    TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
8652    if (FirstTA.getKind() == TemplateArgument::Template &&
8653        SecondTA.getKind() == TemplateArgument::Template) {
8654      TemplateName FirstTN = FirstTA.getAsTemplate();
8655      TemplateName SecondTN = SecondTA.getAsTemplate();
8656      if (FirstTN.getKind() == TemplateName::Template &&
8657          SecondTN.getKind() == TemplateName::Template) {
8658        if (FirstTN.getAsTemplateDecl()->getName() ==
8659            SecondTN.getAsTemplateDecl()->getName()) {
8660          // FIXME: This fixes a bad diagnostic where both templates are named
8661          // the same.  This particular case is a bit difficult since:
8662          // 1) It is passed as a string to the diagnostic printer.
8663          // 2) The diagnostic printer only attempts to find a better
8664          //    name for types, not decls.
8665          // Ideally, this should folded into the diagnostic printer.
8666          S.Diag(Templated->getLocation(),
8667                 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
8668              << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
8669          return;
8670        }
8671      }
8672    }
8673    S.Diag(Templated->getLocation(),
8674           diag::note_ovl_candidate_non_deduced_mismatch)
8675        << FirstTA << SecondTA;
8676    return;
8677  }
8678  // TODO: diagnose these individually, then kill off
8679  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8680  case Sema::TDK_MiscellaneousDeductionFailure:
8681    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
8682    MaybeEmitInheritedConstructorNote(S, Templated);
8683    return;
8684  }
8685}
8686
8687/// Diagnose a failed template-argument deduction, for function calls.
8688void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, unsigned NumArgs) {
8689  unsigned TDK = Cand->DeductionFailure.Result;
8690  if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
8691    if (CheckArityMismatch(S, Cand, NumArgs))
8692      return;
8693  }
8694  DiagnoseBadDeduction(S, Cand->Function, // pattern
8695                       Cand->DeductionFailure, NumArgs);
8696}
8697
8698/// CUDA: diagnose an invalid call across targets.
8699void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8700  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8701  FunctionDecl *Callee = Cand->Function;
8702
8703  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8704                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8705
8706  std::string FnDesc;
8707  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8708
8709  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8710      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8711}
8712
8713/// Generates a 'note' diagnostic for an overload candidate.  We've
8714/// already generated a primary error at the call site.
8715///
8716/// It really does need to be a single diagnostic with its caret
8717/// pointed at the candidate declaration.  Yes, this creates some
8718/// major challenges of technical writing.  Yes, this makes pointing
8719/// out problems with specific arguments quite awkward.  It's still
8720/// better than generating twenty screens of text for every failed
8721/// overload.
8722///
8723/// It would be great to be able to express per-candidate problems
8724/// more richly for those diagnostic clients that cared, but we'd
8725/// still have to be just as careful with the default diagnostics.
8726void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8727                           unsigned NumArgs) {
8728  FunctionDecl *Fn = Cand->Function;
8729
8730  // Note deleted candidates, but only if they're viable.
8731  if (Cand->Viable && (Fn->isDeleted() ||
8732      S.isFunctionConsideredUnavailable(Fn))) {
8733    std::string FnDesc;
8734    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8735
8736    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8737      << FnKind << FnDesc
8738      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8739    MaybeEmitInheritedConstructorNote(S, Fn);
8740    return;
8741  }
8742
8743  // We don't really have anything else to say about viable candidates.
8744  if (Cand->Viable) {
8745    S.NoteOverloadCandidate(Fn);
8746    return;
8747  }
8748
8749  switch (Cand->FailureKind) {
8750  case ovl_fail_too_many_arguments:
8751  case ovl_fail_too_few_arguments:
8752    return DiagnoseArityMismatch(S, Cand, NumArgs);
8753
8754  case ovl_fail_bad_deduction:
8755    return DiagnoseBadDeduction(S, Cand, NumArgs);
8756
8757  case ovl_fail_trivial_conversion:
8758  case ovl_fail_bad_final_conversion:
8759  case ovl_fail_final_conversion_not_exact:
8760    return S.NoteOverloadCandidate(Fn);
8761
8762  case ovl_fail_bad_conversion: {
8763    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8764    for (unsigned N = Cand->NumConversions; I != N; ++I)
8765      if (Cand->Conversions[I].isBad())
8766        return DiagnoseBadConversion(S, Cand, I);
8767
8768    // FIXME: this currently happens when we're called from SemaInit
8769    // when user-conversion overload fails.  Figure out how to handle
8770    // those conditions and diagnose them well.
8771    return S.NoteOverloadCandidate(Fn);
8772  }
8773
8774  case ovl_fail_bad_target:
8775    return DiagnoseBadTarget(S, Cand);
8776  }
8777}
8778
8779void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8780  // Desugar the type of the surrogate down to a function type,
8781  // retaining as many typedefs as possible while still showing
8782  // the function type (and, therefore, its parameter types).
8783  QualType FnType = Cand->Surrogate->getConversionType();
8784  bool isLValueReference = false;
8785  bool isRValueReference = false;
8786  bool isPointer = false;
8787  if (const LValueReferenceType *FnTypeRef =
8788        FnType->getAs<LValueReferenceType>()) {
8789    FnType = FnTypeRef->getPointeeType();
8790    isLValueReference = true;
8791  } else if (const RValueReferenceType *FnTypeRef =
8792               FnType->getAs<RValueReferenceType>()) {
8793    FnType = FnTypeRef->getPointeeType();
8794    isRValueReference = true;
8795  }
8796  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8797    FnType = FnTypePtr->getPointeeType();
8798    isPointer = true;
8799  }
8800  // Desugar down to a function type.
8801  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8802  // Reconstruct the pointer/reference as appropriate.
8803  if (isPointer) FnType = S.Context.getPointerType(FnType);
8804  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8805  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8806
8807  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8808    << FnType;
8809  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8810}
8811
8812void NoteBuiltinOperatorCandidate(Sema &S,
8813                                  StringRef Opc,
8814                                  SourceLocation OpLoc,
8815                                  OverloadCandidate *Cand) {
8816  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8817  std::string TypeStr("operator");
8818  TypeStr += Opc;
8819  TypeStr += "(";
8820  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8821  if (Cand->NumConversions == 1) {
8822    TypeStr += ")";
8823    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8824  } else {
8825    TypeStr += ", ";
8826    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8827    TypeStr += ")";
8828    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8829  }
8830}
8831
8832void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8833                                  OverloadCandidate *Cand) {
8834  unsigned NoOperands = Cand->NumConversions;
8835  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8836    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8837    if (ICS.isBad()) break; // all meaningless after first invalid
8838    if (!ICS.isAmbiguous()) continue;
8839
8840    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8841                              S.PDiag(diag::note_ambiguous_type_conversion));
8842  }
8843}
8844
8845static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8846  if (Cand->Function)
8847    return Cand->Function->getLocation();
8848  if (Cand->IsSurrogate)
8849    return Cand->Surrogate->getLocation();
8850  return SourceLocation();
8851}
8852
8853static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
8854  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8855  case Sema::TDK_Success:
8856    llvm_unreachable("TDK_success while diagnosing bad deduction");
8857
8858  case Sema::TDK_Invalid:
8859  case Sema::TDK_Incomplete:
8860    return 1;
8861
8862  case Sema::TDK_Underqualified:
8863  case Sema::TDK_Inconsistent:
8864    return 2;
8865
8866  case Sema::TDK_SubstitutionFailure:
8867  case Sema::TDK_NonDeducedMismatch:
8868  case Sema::TDK_MiscellaneousDeductionFailure:
8869    return 3;
8870
8871  case Sema::TDK_InstantiationDepth:
8872  case Sema::TDK_FailedOverloadResolution:
8873    return 4;
8874
8875  case Sema::TDK_InvalidExplicitArguments:
8876    return 5;
8877
8878  case Sema::TDK_TooManyArguments:
8879  case Sema::TDK_TooFewArguments:
8880    return 6;
8881  }
8882  llvm_unreachable("Unhandled deduction result");
8883}
8884
8885struct CompareOverloadCandidatesForDisplay {
8886  Sema &S;
8887  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8888
8889  bool operator()(const OverloadCandidate *L,
8890                  const OverloadCandidate *R) {
8891    // Fast-path this check.
8892    if (L == R) return false;
8893
8894    // Order first by viability.
8895    if (L->Viable) {
8896      if (!R->Viable) return true;
8897
8898      // TODO: introduce a tri-valued comparison for overload
8899      // candidates.  Would be more worthwhile if we had a sort
8900      // that could exploit it.
8901      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8902      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8903    } else if (R->Viable)
8904      return false;
8905
8906    assert(L->Viable == R->Viable);
8907
8908    // Criteria by which we can sort non-viable candidates:
8909    if (!L->Viable) {
8910      // 1. Arity mismatches come after other candidates.
8911      if (L->FailureKind == ovl_fail_too_many_arguments ||
8912          L->FailureKind == ovl_fail_too_few_arguments)
8913        return false;
8914      if (R->FailureKind == ovl_fail_too_many_arguments ||
8915          R->FailureKind == ovl_fail_too_few_arguments)
8916        return true;
8917
8918      // 2. Bad conversions come first and are ordered by the number
8919      // of bad conversions and quality of good conversions.
8920      if (L->FailureKind == ovl_fail_bad_conversion) {
8921        if (R->FailureKind != ovl_fail_bad_conversion)
8922          return true;
8923
8924        // The conversion that can be fixed with a smaller number of changes,
8925        // comes first.
8926        unsigned numLFixes = L->Fix.NumConversionsFixed;
8927        unsigned numRFixes = R->Fix.NumConversionsFixed;
8928        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
8929        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
8930        if (numLFixes != numRFixes) {
8931          if (numLFixes < numRFixes)
8932            return true;
8933          else
8934            return false;
8935        }
8936
8937        // If there's any ordering between the defined conversions...
8938        // FIXME: this might not be transitive.
8939        assert(L->NumConversions == R->NumConversions);
8940
8941        int leftBetter = 0;
8942        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
8943        for (unsigned E = L->NumConversions; I != E; ++I) {
8944          switch (CompareImplicitConversionSequences(S,
8945                                                     L->Conversions[I],
8946                                                     R->Conversions[I])) {
8947          case ImplicitConversionSequence::Better:
8948            leftBetter++;
8949            break;
8950
8951          case ImplicitConversionSequence::Worse:
8952            leftBetter--;
8953            break;
8954
8955          case ImplicitConversionSequence::Indistinguishable:
8956            break;
8957          }
8958        }
8959        if (leftBetter > 0) return true;
8960        if (leftBetter < 0) return false;
8961
8962      } else if (R->FailureKind == ovl_fail_bad_conversion)
8963        return false;
8964
8965      if (L->FailureKind == ovl_fail_bad_deduction) {
8966        if (R->FailureKind != ovl_fail_bad_deduction)
8967          return true;
8968
8969        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
8970          return RankDeductionFailure(L->DeductionFailure)
8971               < RankDeductionFailure(R->DeductionFailure);
8972      } else if (R->FailureKind == ovl_fail_bad_deduction)
8973        return false;
8974
8975      // TODO: others?
8976    }
8977
8978    // Sort everything else by location.
8979    SourceLocation LLoc = GetLocationForCandidate(L);
8980    SourceLocation RLoc = GetLocationForCandidate(R);
8981
8982    // Put candidates without locations (e.g. builtins) at the end.
8983    if (LLoc.isInvalid()) return false;
8984    if (RLoc.isInvalid()) return true;
8985
8986    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
8987  }
8988};
8989
8990/// CompleteNonViableCandidate - Normally, overload resolution only
8991/// computes up to the first. Produces the FixIt set if possible.
8992void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
8993                                ArrayRef<Expr *> Args) {
8994  assert(!Cand->Viable);
8995
8996  // Don't do anything on failures other than bad conversion.
8997  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
8998
8999  // We only want the FixIts if all the arguments can be corrected.
9000  bool Unfixable = false;
9001  // Use a implicit copy initialization to check conversion fixes.
9002  Cand->Fix.setConversionChecker(TryCopyInitialization);
9003
9004  // Skip forward to the first bad conversion.
9005  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
9006  unsigned ConvCount = Cand->NumConversions;
9007  while (true) {
9008    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
9009    ConvIdx++;
9010    if (Cand->Conversions[ConvIdx - 1].isBad()) {
9011      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
9012      break;
9013    }
9014  }
9015
9016  if (ConvIdx == ConvCount)
9017    return;
9018
9019  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
9020         "remaining conversion is initialized?");
9021
9022  // FIXME: this should probably be preserved from the overload
9023  // operation somehow.
9024  bool SuppressUserConversions = false;
9025
9026  const FunctionProtoType* Proto;
9027  unsigned ArgIdx = ConvIdx;
9028
9029  if (Cand->IsSurrogate) {
9030    QualType ConvType
9031      = Cand->Surrogate->getConversionType().getNonReferenceType();
9032    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9033      ConvType = ConvPtrType->getPointeeType();
9034    Proto = ConvType->getAs<FunctionProtoType>();
9035    ArgIdx--;
9036  } else if (Cand->Function) {
9037    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
9038    if (isa<CXXMethodDecl>(Cand->Function) &&
9039        !isa<CXXConstructorDecl>(Cand->Function))
9040      ArgIdx--;
9041  } else {
9042    // Builtin binary operator with a bad first conversion.
9043    assert(ConvCount <= 3);
9044    for (; ConvIdx != ConvCount; ++ConvIdx)
9045      Cand->Conversions[ConvIdx]
9046        = TryCopyInitialization(S, Args[ConvIdx],
9047                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
9048                                SuppressUserConversions,
9049                                /*InOverloadResolution*/ true,
9050                                /*AllowObjCWritebackConversion=*/
9051                                  S.getLangOpts().ObjCAutoRefCount);
9052    return;
9053  }
9054
9055  // Fill in the rest of the conversions.
9056  unsigned NumArgsInProto = Proto->getNumArgs();
9057  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9058    if (ArgIdx < NumArgsInProto) {
9059      Cand->Conversions[ConvIdx]
9060        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
9061                                SuppressUserConversions,
9062                                /*InOverloadResolution=*/true,
9063                                /*AllowObjCWritebackConversion=*/
9064                                  S.getLangOpts().ObjCAutoRefCount);
9065      // Store the FixIt in the candidate if it exists.
9066      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9067        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9068    }
9069    else
9070      Cand->Conversions[ConvIdx].setEllipsis();
9071  }
9072}
9073
9074} // end anonymous namespace
9075
9076/// PrintOverloadCandidates - When overload resolution fails, prints
9077/// diagnostic messages containing the candidates in the candidate
9078/// set.
9079void OverloadCandidateSet::NoteCandidates(Sema &S,
9080                                          OverloadCandidateDisplayKind OCD,
9081                                          ArrayRef<Expr *> Args,
9082                                          StringRef Opc,
9083                                          SourceLocation OpLoc) {
9084  // Sort the candidates by viability and position.  Sorting directly would
9085  // be prohibitive, so we make a set of pointers and sort those.
9086  SmallVector<OverloadCandidate*, 32> Cands;
9087  if (OCD == OCD_AllCandidates) Cands.reserve(size());
9088  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9089    if (Cand->Viable)
9090      Cands.push_back(Cand);
9091    else if (OCD == OCD_AllCandidates) {
9092      CompleteNonViableCandidate(S, Cand, Args);
9093      if (Cand->Function || Cand->IsSurrogate)
9094        Cands.push_back(Cand);
9095      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
9096      // want to list every possible builtin candidate.
9097    }
9098  }
9099
9100  std::sort(Cands.begin(), Cands.end(),
9101            CompareOverloadCandidatesForDisplay(S));
9102
9103  bool ReportedAmbiguousConversions = false;
9104
9105  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9106  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9107  unsigned CandsShown = 0;
9108  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9109    OverloadCandidate *Cand = *I;
9110
9111    // Set an arbitrary limit on the number of candidate functions we'll spam
9112    // the user with.  FIXME: This limit should depend on details of the
9113    // candidate list.
9114    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9115      break;
9116    }
9117    ++CandsShown;
9118
9119    if (Cand->Function)
9120      NoteFunctionCandidate(S, Cand, Args.size());
9121    else if (Cand->IsSurrogate)
9122      NoteSurrogateCandidate(S, Cand);
9123    else {
9124      assert(Cand->Viable &&
9125             "Non-viable built-in candidates are not added to Cands.");
9126      // Generally we only see ambiguities including viable builtin
9127      // operators if overload resolution got screwed up by an
9128      // ambiguous user-defined conversion.
9129      //
9130      // FIXME: It's quite possible for different conversions to see
9131      // different ambiguities, though.
9132      if (!ReportedAmbiguousConversions) {
9133        NoteAmbiguousUserConversions(S, OpLoc, Cand);
9134        ReportedAmbiguousConversions = true;
9135      }
9136
9137      // If this is a viable builtin, print it.
9138      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9139    }
9140  }
9141
9142  if (I != E)
9143    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9144}
9145
9146static SourceLocation
9147GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
9148  return Cand->Specialization ? Cand->Specialization->getLocation()
9149                              : SourceLocation();
9150}
9151
9152struct CompareTemplateSpecCandidatesForDisplay {
9153  Sema &S;
9154  CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
9155
9156  bool operator()(const TemplateSpecCandidate *L,
9157                  const TemplateSpecCandidate *R) {
9158    // Fast-path this check.
9159    if (L == R)
9160      return false;
9161
9162    // Assuming that both candidates are not matches...
9163
9164    // Sort by the ranking of deduction failures.
9165    if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9166      return RankDeductionFailure(L->DeductionFailure) <
9167             RankDeductionFailure(R->DeductionFailure);
9168
9169    // Sort everything else by location.
9170    SourceLocation LLoc = GetLocationForCandidate(L);
9171    SourceLocation RLoc = GetLocationForCandidate(R);
9172
9173    // Put candidates without locations (e.g. builtins) at the end.
9174    if (LLoc.isInvalid())
9175      return false;
9176    if (RLoc.isInvalid())
9177      return true;
9178
9179    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9180  }
9181};
9182
9183/// Diagnose a template argument deduction failure.
9184/// We are treating these failures as overload failures due to bad
9185/// deductions.
9186void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
9187  DiagnoseBadDeduction(S, Specialization, // pattern
9188                       DeductionFailure, /*NumArgs=*/0);
9189}
9190
9191void TemplateSpecCandidateSet::destroyCandidates() {
9192  for (iterator i = begin(), e = end(); i != e; ++i) {
9193    i->DeductionFailure.Destroy();
9194  }
9195}
9196
9197void TemplateSpecCandidateSet::clear() {
9198  destroyCandidates();
9199  Candidates.clear();
9200}
9201
9202/// NoteCandidates - When no template specialization match is found, prints
9203/// diagnostic messages containing the non-matching specializations that form
9204/// the candidate set.
9205/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
9206/// OCD == OCD_AllCandidates and Cand->Viable == false.
9207void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
9208  // Sort the candidates by position (assuming no candidate is a match).
9209  // Sorting directly would be prohibitive, so we make a set of pointers
9210  // and sort those.
9211  SmallVector<TemplateSpecCandidate *, 32> Cands;
9212  Cands.reserve(size());
9213  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9214    if (Cand->Specialization)
9215      Cands.push_back(Cand);
9216    // Otherwise, this is a non matching builtin candidate.  We do not,
9217    // in general, want to list every possible builtin candidate.
9218  }
9219
9220  std::sort(Cands.begin(), Cands.end(),
9221            CompareTemplateSpecCandidatesForDisplay(S));
9222
9223  // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
9224  // for generalization purposes (?).
9225  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9226
9227  SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
9228  unsigned CandsShown = 0;
9229  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9230    TemplateSpecCandidate *Cand = *I;
9231
9232    // Set an arbitrary limit on the number of candidates we'll spam
9233    // the user with.  FIXME: This limit should depend on details of the
9234    // candidate list.
9235    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9236      break;
9237    ++CandsShown;
9238
9239    assert(Cand->Specialization &&
9240           "Non-matching built-in candidates are not added to Cands.");
9241    Cand->NoteDeductionFailure(S);
9242  }
9243
9244  if (I != E)
9245    S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
9246}
9247
9248// [PossiblyAFunctionType]  -->   [Return]
9249// NonFunctionType --> NonFunctionType
9250// R (A) --> R(A)
9251// R (*)(A) --> R (A)
9252// R (&)(A) --> R (A)
9253// R (S::*)(A) --> R (A)
9254QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
9255  QualType Ret = PossiblyAFunctionType;
9256  if (const PointerType *ToTypePtr =
9257    PossiblyAFunctionType->getAs<PointerType>())
9258    Ret = ToTypePtr->getPointeeType();
9259  else if (const ReferenceType *ToTypeRef =
9260    PossiblyAFunctionType->getAs<ReferenceType>())
9261    Ret = ToTypeRef->getPointeeType();
9262  else if (const MemberPointerType *MemTypePtr =
9263    PossiblyAFunctionType->getAs<MemberPointerType>())
9264    Ret = MemTypePtr->getPointeeType();
9265  Ret =
9266    Context.getCanonicalType(Ret).getUnqualifiedType();
9267  return Ret;
9268}
9269
9270// A helper class to help with address of function resolution
9271// - allows us to avoid passing around all those ugly parameters
9272class AddressOfFunctionResolver
9273{
9274  Sema& S;
9275  Expr* SourceExpr;
9276  const QualType& TargetType;
9277  QualType TargetFunctionType; // Extracted function type from target type
9278
9279  bool Complain;
9280  //DeclAccessPair& ResultFunctionAccessPair;
9281  ASTContext& Context;
9282
9283  bool TargetTypeIsNonStaticMemberFunction;
9284  bool FoundNonTemplateFunction;
9285  bool StaticMemberFunctionFromBoundPointer;
9286
9287  OverloadExpr::FindResult OvlExprInfo;
9288  OverloadExpr *OvlExpr;
9289  TemplateArgumentListInfo OvlExplicitTemplateArgs;
9290  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
9291  TemplateSpecCandidateSet FailedCandidates;
9292
9293public:
9294  AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
9295                            const QualType &TargetType, bool Complain)
9296      : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
9297        Complain(Complain), Context(S.getASTContext()),
9298        TargetTypeIsNonStaticMemberFunction(
9299            !!TargetType->getAs<MemberPointerType>()),
9300        FoundNonTemplateFunction(false),
9301        StaticMemberFunctionFromBoundPointer(false),
9302        OvlExprInfo(OverloadExpr::find(SourceExpr)),
9303        OvlExpr(OvlExprInfo.Expression),
9304        FailedCandidates(OvlExpr->getNameLoc()) {
9305    ExtractUnqualifiedFunctionTypeFromTargetType();
9306
9307    if (TargetFunctionType->isFunctionType()) {
9308      if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
9309        if (!UME->isImplicitAccess() &&
9310            !S.ResolveSingleFunctionTemplateSpecialization(UME))
9311          StaticMemberFunctionFromBoundPointer = true;
9312    } else if (OvlExpr->hasExplicitTemplateArgs()) {
9313      DeclAccessPair dap;
9314      if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
9315              OvlExpr, false, &dap)) {
9316        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
9317          if (!Method->isStatic()) {
9318            // If the target type is a non-function type and the function found
9319            // is a non-static member function, pretend as if that was the
9320            // target, it's the only possible type to end up with.
9321            TargetTypeIsNonStaticMemberFunction = true;
9322
9323            // And skip adding the function if its not in the proper form.
9324            // We'll diagnose this due to an empty set of functions.
9325            if (!OvlExprInfo.HasFormOfMemberPointer)
9326              return;
9327          }
9328
9329        Matches.push_back(std::make_pair(dap, Fn));
9330      }
9331      return;
9332    }
9333
9334    if (OvlExpr->hasExplicitTemplateArgs())
9335      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
9336
9337    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
9338      // C++ [over.over]p4:
9339      //   If more than one function is selected, [...]
9340      if (Matches.size() > 1) {
9341        if (FoundNonTemplateFunction)
9342          EliminateAllTemplateMatches();
9343        else
9344          EliminateAllExceptMostSpecializedTemplate();
9345      }
9346    }
9347  }
9348
9349private:
9350  bool isTargetTypeAFunction() const {
9351    return TargetFunctionType->isFunctionType();
9352  }
9353
9354  // [ToType]     [Return]
9355
9356  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
9357  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
9358  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
9359  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
9360    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
9361  }
9362
9363  // return true if any matching specializations were found
9364  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
9365                                   const DeclAccessPair& CurAccessFunPair) {
9366    if (CXXMethodDecl *Method
9367              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
9368      // Skip non-static function templates when converting to pointer, and
9369      // static when converting to member pointer.
9370      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9371        return false;
9372    }
9373    else if (TargetTypeIsNonStaticMemberFunction)
9374      return false;
9375
9376    // C++ [over.over]p2:
9377    //   If the name is a function template, template argument deduction is
9378    //   done (14.8.2.2), and if the argument deduction succeeds, the
9379    //   resulting template argument list is used to generate a single
9380    //   function template specialization, which is added to the set of
9381    //   overloaded functions considered.
9382    FunctionDecl *Specialization = 0;
9383    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9384    if (Sema::TemplateDeductionResult Result
9385          = S.DeduceTemplateArguments(FunctionTemplate,
9386                                      &OvlExplicitTemplateArgs,
9387                                      TargetFunctionType, Specialization,
9388                                      Info, /*InOverloadResolution=*/true)) {
9389      // Make a note of the failed deduction for diagnostics.
9390      FailedCandidates.addCandidate()
9391          .set(FunctionTemplate->getTemplatedDecl(),
9392               MakeDeductionFailureInfo(Context, Result, Info));
9393      (void)Result;
9394      return false;
9395    }
9396
9397    // Template argument deduction ensures that we have an exact match or
9398    // compatible pointer-to-function arguments that would be adjusted by ICS.
9399    // This function template specicalization works.
9400    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9401    assert(S.isSameOrCompatibleFunctionType(
9402              Context.getCanonicalType(Specialization->getType()),
9403              Context.getCanonicalType(TargetFunctionType)));
9404    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9405    return true;
9406  }
9407
9408  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9409                                      const DeclAccessPair& CurAccessFunPair) {
9410    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9411      // Skip non-static functions when converting to pointer, and static
9412      // when converting to member pointer.
9413      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9414        return false;
9415    }
9416    else if (TargetTypeIsNonStaticMemberFunction)
9417      return false;
9418
9419    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9420      if (S.getLangOpts().CUDA)
9421        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9422          if (S.CheckCUDATarget(Caller, FunDecl))
9423            return false;
9424
9425      // If any candidate has a placeholder return type, trigger its deduction
9426      // now.
9427      if (S.getLangOpts().CPlusPlus1y &&
9428          FunDecl->getResultType()->isUndeducedType() &&
9429          S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
9430        return false;
9431
9432      QualType ResultTy;
9433      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9434                                         FunDecl->getType()) ||
9435          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9436                                 ResultTy)) {
9437        Matches.push_back(std::make_pair(CurAccessFunPair,
9438          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9439        FoundNonTemplateFunction = true;
9440        return true;
9441      }
9442    }
9443
9444    return false;
9445  }
9446
9447  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9448    bool Ret = false;
9449
9450    // If the overload expression doesn't have the form of a pointer to
9451    // member, don't try to convert it to a pointer-to-member type.
9452    if (IsInvalidFormOfPointerToMemberFunction())
9453      return false;
9454
9455    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9456                               E = OvlExpr->decls_end();
9457         I != E; ++I) {
9458      // Look through any using declarations to find the underlying function.
9459      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9460
9461      // C++ [over.over]p3:
9462      //   Non-member functions and static member functions match
9463      //   targets of type "pointer-to-function" or "reference-to-function."
9464      //   Nonstatic member functions match targets of
9465      //   type "pointer-to-member-function."
9466      // Note that according to DR 247, the containing class does not matter.
9467      if (FunctionTemplateDecl *FunctionTemplate
9468                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9469        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9470          Ret = true;
9471      }
9472      // If we have explicit template arguments supplied, skip non-templates.
9473      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9474               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9475        Ret = true;
9476    }
9477    assert(Ret || Matches.empty());
9478    return Ret;
9479  }
9480
9481  void EliminateAllExceptMostSpecializedTemplate() {
9482    //   [...] and any given function template specialization F1 is
9483    //   eliminated if the set contains a second function template
9484    //   specialization whose function template is more specialized
9485    //   than the function template of F1 according to the partial
9486    //   ordering rules of 14.5.5.2.
9487
9488    // The algorithm specified above is quadratic. We instead use a
9489    // two-pass algorithm (similar to the one used to identify the
9490    // best viable function in an overload set) that identifies the
9491    // best function template (if it exists).
9492
9493    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9494    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9495      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9496
9497    // TODO: It looks like FailedCandidates does not serve much purpose
9498    // here, since the no_viable diagnostic has index 0.
9499    UnresolvedSetIterator Result = S.getMostSpecialized(
9500        MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, TPOC_Other, 0,
9501        SourceExpr->getLocStart(), S.PDiag(),
9502        S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
9503                                                     .second->getDeclName(),
9504        S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
9505        Complain, TargetFunctionType);
9506
9507    if (Result != MatchesCopy.end()) {
9508      // Make it the first and only element
9509      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9510      Matches[0].second = cast<FunctionDecl>(*Result);
9511      Matches.resize(1);
9512    }
9513  }
9514
9515  void EliminateAllTemplateMatches() {
9516    //   [...] any function template specializations in the set are
9517    //   eliminated if the set also contains a non-template function, [...]
9518    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9519      if (Matches[I].second->getPrimaryTemplate() == 0)
9520        ++I;
9521      else {
9522        Matches[I] = Matches[--N];
9523        Matches.set_size(N);
9524      }
9525    }
9526  }
9527
9528public:
9529  void ComplainNoMatchesFound() const {
9530    assert(Matches.empty());
9531    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9532        << OvlExpr->getName() << TargetFunctionType
9533        << OvlExpr->getSourceRange();
9534    FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
9535    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9536  }
9537
9538  bool IsInvalidFormOfPointerToMemberFunction() const {
9539    return TargetTypeIsNonStaticMemberFunction &&
9540      !OvlExprInfo.HasFormOfMemberPointer;
9541  }
9542
9543  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9544      // TODO: Should we condition this on whether any functions might
9545      // have matched, or is it more appropriate to do that in callers?
9546      // TODO: a fixit wouldn't hurt.
9547      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9548        << TargetType << OvlExpr->getSourceRange();
9549  }
9550
9551  bool IsStaticMemberFunctionFromBoundPointer() const {
9552    return StaticMemberFunctionFromBoundPointer;
9553  }
9554
9555  void ComplainIsStaticMemberFunctionFromBoundPointer() const {
9556    S.Diag(OvlExpr->getLocStart(),
9557           diag::err_invalid_form_pointer_member_function)
9558      << OvlExpr->getSourceRange();
9559  }
9560
9561  void ComplainOfInvalidConversion() const {
9562    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9563      << OvlExpr->getName() << TargetType;
9564  }
9565
9566  void ComplainMultipleMatchesFound() const {
9567    assert(Matches.size() > 1);
9568    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9569      << OvlExpr->getName()
9570      << OvlExpr->getSourceRange();
9571    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9572  }
9573
9574  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9575
9576  int getNumMatches() const { return Matches.size(); }
9577
9578  FunctionDecl* getMatchingFunctionDecl() const {
9579    if (Matches.size() != 1) return 0;
9580    return Matches[0].second;
9581  }
9582
9583  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9584    if (Matches.size() != 1) return 0;
9585    return &Matches[0].first;
9586  }
9587};
9588
9589/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9590/// an overloaded function (C++ [over.over]), where @p From is an
9591/// expression with overloaded function type and @p ToType is the type
9592/// we're trying to resolve to. For example:
9593///
9594/// @code
9595/// int f(double);
9596/// int f(int);
9597///
9598/// int (*pfd)(double) = f; // selects f(double)
9599/// @endcode
9600///
9601/// This routine returns the resulting FunctionDecl if it could be
9602/// resolved, and NULL otherwise. When @p Complain is true, this
9603/// routine will emit diagnostics if there is an error.
9604FunctionDecl *
9605Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9606                                         QualType TargetType,
9607                                         bool Complain,
9608                                         DeclAccessPair &FoundResult,
9609                                         bool *pHadMultipleCandidates) {
9610  assert(AddressOfExpr->getType() == Context.OverloadTy);
9611
9612  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9613                                     Complain);
9614  int NumMatches = Resolver.getNumMatches();
9615  FunctionDecl* Fn = 0;
9616  if (NumMatches == 0 && Complain) {
9617    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9618      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9619    else
9620      Resolver.ComplainNoMatchesFound();
9621  }
9622  else if (NumMatches > 1 && Complain)
9623    Resolver.ComplainMultipleMatchesFound();
9624  else if (NumMatches == 1) {
9625    Fn = Resolver.getMatchingFunctionDecl();
9626    assert(Fn);
9627    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9628    if (Complain) {
9629      if (Resolver.IsStaticMemberFunctionFromBoundPointer())
9630        Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
9631      else
9632        CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9633    }
9634  }
9635
9636  if (pHadMultipleCandidates)
9637    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9638  return Fn;
9639}
9640
9641/// \brief Given an expression that refers to an overloaded function, try to
9642/// resolve that overloaded function expression down to a single function.
9643///
9644/// This routine can only resolve template-ids that refer to a single function
9645/// template, where that template-id refers to a single template whose template
9646/// arguments are either provided by the template-id or have defaults,
9647/// as described in C++0x [temp.arg.explicit]p3.
9648FunctionDecl *
9649Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9650                                                  bool Complain,
9651                                                  DeclAccessPair *FoundResult) {
9652  // C++ [over.over]p1:
9653  //   [...] [Note: any redundant set of parentheses surrounding the
9654  //   overloaded function name is ignored (5.1). ]
9655  // C++ [over.over]p1:
9656  //   [...] The overloaded function name can be preceded by the &
9657  //   operator.
9658
9659  // If we didn't actually find any template-ids, we're done.
9660  if (!ovl->hasExplicitTemplateArgs())
9661    return 0;
9662
9663  TemplateArgumentListInfo ExplicitTemplateArgs;
9664  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9665  TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
9666
9667  // Look through all of the overloaded functions, searching for one
9668  // whose type matches exactly.
9669  FunctionDecl *Matched = 0;
9670  for (UnresolvedSetIterator I = ovl->decls_begin(),
9671         E = ovl->decls_end(); I != E; ++I) {
9672    // C++0x [temp.arg.explicit]p3:
9673    //   [...] In contexts where deduction is done and fails, or in contexts
9674    //   where deduction is not done, if a template argument list is
9675    //   specified and it, along with any default template arguments,
9676    //   identifies a single function template specialization, then the
9677    //   template-id is an lvalue for the function template specialization.
9678    FunctionTemplateDecl *FunctionTemplate
9679      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9680
9681    // C++ [over.over]p2:
9682    //   If the name is a function template, template argument deduction is
9683    //   done (14.8.2.2), and if the argument deduction succeeds, the
9684    //   resulting template argument list is used to generate a single
9685    //   function template specialization, which is added to the set of
9686    //   overloaded functions considered.
9687    FunctionDecl *Specialization = 0;
9688    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9689    if (TemplateDeductionResult Result
9690          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9691                                    Specialization, Info,
9692                                    /*InOverloadResolution=*/true)) {
9693      // Make a note of the failed deduction for diagnostics.
9694      // TODO: Actually use the failed-deduction info?
9695      FailedCandidates.addCandidate()
9696          .set(FunctionTemplate->getTemplatedDecl(),
9697               MakeDeductionFailureInfo(Context, Result, Info));
9698      (void)Result;
9699      continue;
9700    }
9701
9702    assert(Specialization && "no specialization and no error?");
9703
9704    // Multiple matches; we can't resolve to a single declaration.
9705    if (Matched) {
9706      if (Complain) {
9707        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9708          << ovl->getName();
9709        NoteAllOverloadCandidates(ovl);
9710      }
9711      return 0;
9712    }
9713
9714    Matched = Specialization;
9715    if (FoundResult) *FoundResult = I.getPair();
9716  }
9717
9718  if (Matched && getLangOpts().CPlusPlus1y &&
9719      Matched->getResultType()->isUndeducedType() &&
9720      DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
9721    return 0;
9722
9723  return Matched;
9724}
9725
9726
9727
9728
9729// Resolve and fix an overloaded expression that can be resolved
9730// because it identifies a single function template specialization.
9731//
9732// Last three arguments should only be supplied if Complain = true
9733//
9734// Return true if it was logically possible to so resolve the
9735// expression, regardless of whether or not it succeeded.  Always
9736// returns true if 'complain' is set.
9737bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9738                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9739                   bool complain, const SourceRange& OpRangeForComplaining,
9740                                           QualType DestTypeForComplaining,
9741                                            unsigned DiagIDForComplaining) {
9742  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9743
9744  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9745
9746  DeclAccessPair found;
9747  ExprResult SingleFunctionExpression;
9748  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9749                           ovl.Expression, /*complain*/ false, &found)) {
9750    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9751      SrcExpr = ExprError();
9752      return true;
9753    }
9754
9755    // It is only correct to resolve to an instance method if we're
9756    // resolving a form that's permitted to be a pointer to member.
9757    // Otherwise we'll end up making a bound member expression, which
9758    // is illegal in all the contexts we resolve like this.
9759    if (!ovl.HasFormOfMemberPointer &&
9760        isa<CXXMethodDecl>(fn) &&
9761        cast<CXXMethodDecl>(fn)->isInstance()) {
9762      if (!complain) return false;
9763
9764      Diag(ovl.Expression->getExprLoc(),
9765           diag::err_bound_member_function)
9766        << 0 << ovl.Expression->getSourceRange();
9767
9768      // TODO: I believe we only end up here if there's a mix of
9769      // static and non-static candidates (otherwise the expression
9770      // would have 'bound member' type, not 'overload' type).
9771      // Ideally we would note which candidate was chosen and why
9772      // the static candidates were rejected.
9773      SrcExpr = ExprError();
9774      return true;
9775    }
9776
9777    // Fix the expression to refer to 'fn'.
9778    SingleFunctionExpression =
9779      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9780
9781    // If desired, do function-to-pointer decay.
9782    if (doFunctionPointerConverion) {
9783      SingleFunctionExpression =
9784        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9785      if (SingleFunctionExpression.isInvalid()) {
9786        SrcExpr = ExprError();
9787        return true;
9788      }
9789    }
9790  }
9791
9792  if (!SingleFunctionExpression.isUsable()) {
9793    if (complain) {
9794      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9795        << ovl.Expression->getName()
9796        << DestTypeForComplaining
9797        << OpRangeForComplaining
9798        << ovl.Expression->getQualifierLoc().getSourceRange();
9799      NoteAllOverloadCandidates(SrcExpr.get());
9800
9801      SrcExpr = ExprError();
9802      return true;
9803    }
9804
9805    return false;
9806  }
9807
9808  SrcExpr = SingleFunctionExpression;
9809  return true;
9810}
9811
9812/// \brief Add a single candidate to the overload set.
9813static void AddOverloadedCallCandidate(Sema &S,
9814                                       DeclAccessPair FoundDecl,
9815                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9816                                       ArrayRef<Expr *> Args,
9817                                       OverloadCandidateSet &CandidateSet,
9818                                       bool PartialOverloading,
9819                                       bool KnownValid) {
9820  NamedDecl *Callee = FoundDecl.getDecl();
9821  if (isa<UsingShadowDecl>(Callee))
9822    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9823
9824  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9825    if (ExplicitTemplateArgs) {
9826      assert(!KnownValid && "Explicit template arguments?");
9827      return;
9828    }
9829    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9830                           PartialOverloading);
9831    return;
9832  }
9833
9834  if (FunctionTemplateDecl *FuncTemplate
9835      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9836    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9837                                   ExplicitTemplateArgs, Args, CandidateSet);
9838    return;
9839  }
9840
9841  assert(!KnownValid && "unhandled case in overloaded call candidate");
9842}
9843
9844/// \brief Add the overload candidates named by callee and/or found by argument
9845/// dependent lookup to the given overload set.
9846void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9847                                       ArrayRef<Expr *> Args,
9848                                       OverloadCandidateSet &CandidateSet,
9849                                       bool PartialOverloading) {
9850
9851#ifndef NDEBUG
9852  // Verify that ArgumentDependentLookup is consistent with the rules
9853  // in C++0x [basic.lookup.argdep]p3:
9854  //
9855  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9856  //   and let Y be the lookup set produced by argument dependent
9857  //   lookup (defined as follows). If X contains
9858  //
9859  //     -- a declaration of a class member, or
9860  //
9861  //     -- a block-scope function declaration that is not a
9862  //        using-declaration, or
9863  //
9864  //     -- a declaration that is neither a function or a function
9865  //        template
9866  //
9867  //   then Y is empty.
9868
9869  if (ULE->requiresADL()) {
9870    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9871           E = ULE->decls_end(); I != E; ++I) {
9872      assert(!(*I)->getDeclContext()->isRecord());
9873      assert(isa<UsingShadowDecl>(*I) ||
9874             !(*I)->getDeclContext()->isFunctionOrMethod());
9875      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9876    }
9877  }
9878#endif
9879
9880  // It would be nice to avoid this copy.
9881  TemplateArgumentListInfo TABuffer;
9882  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9883  if (ULE->hasExplicitTemplateArgs()) {
9884    ULE->copyTemplateArgumentsInto(TABuffer);
9885    ExplicitTemplateArgs = &TABuffer;
9886  }
9887
9888  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9889         E = ULE->decls_end(); I != E; ++I)
9890    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
9891                               CandidateSet, PartialOverloading,
9892                               /*KnownValid*/ true);
9893
9894  if (ULE->requiresADL())
9895    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
9896                                         ULE->getExprLoc(),
9897                                         Args, ExplicitTemplateArgs,
9898                                         CandidateSet, PartialOverloading);
9899}
9900
9901/// Determine whether a declaration with the specified name could be moved into
9902/// a different namespace.
9903static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
9904  switch (Name.getCXXOverloadedOperator()) {
9905  case OO_New: case OO_Array_New:
9906  case OO_Delete: case OO_Array_Delete:
9907    return false;
9908
9909  default:
9910    return true;
9911  }
9912}
9913
9914/// Attempt to recover from an ill-formed use of a non-dependent name in a
9915/// template, where the non-dependent name was declared after the template
9916/// was defined. This is common in code written for a compilers which do not
9917/// correctly implement two-stage name lookup.
9918///
9919/// Returns true if a viable candidate was found and a diagnostic was issued.
9920static bool
9921DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
9922                       const CXXScopeSpec &SS, LookupResult &R,
9923                       TemplateArgumentListInfo *ExplicitTemplateArgs,
9924                       ArrayRef<Expr *> Args) {
9925  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
9926    return false;
9927
9928  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
9929    if (DC->isTransparentContext())
9930      continue;
9931
9932    SemaRef.LookupQualifiedName(R, DC);
9933
9934    if (!R.empty()) {
9935      R.suppressDiagnostics();
9936
9937      if (isa<CXXRecordDecl>(DC)) {
9938        // Don't diagnose names we find in classes; we get much better
9939        // diagnostics for these from DiagnoseEmptyLookup.
9940        R.clear();
9941        return false;
9942      }
9943
9944      OverloadCandidateSet Candidates(FnLoc);
9945      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
9946        AddOverloadedCallCandidate(SemaRef, I.getPair(),
9947                                   ExplicitTemplateArgs, Args,
9948                                   Candidates, false, /*KnownValid*/ false);
9949
9950      OverloadCandidateSet::iterator Best;
9951      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
9952        // No viable functions. Don't bother the user with notes for functions
9953        // which don't work and shouldn't be found anyway.
9954        R.clear();
9955        return false;
9956      }
9957
9958      // Find the namespaces where ADL would have looked, and suggest
9959      // declaring the function there instead.
9960      Sema::AssociatedNamespaceSet AssociatedNamespaces;
9961      Sema::AssociatedClassSet AssociatedClasses;
9962      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
9963                                                 AssociatedNamespaces,
9964                                                 AssociatedClasses);
9965      Sema::AssociatedNamespaceSet SuggestedNamespaces;
9966      if (canBeDeclaredInNamespace(R.getLookupName())) {
9967        DeclContext *Std = SemaRef.getStdNamespace();
9968        for (Sema::AssociatedNamespaceSet::iterator
9969               it = AssociatedNamespaces.begin(),
9970               end = AssociatedNamespaces.end(); it != end; ++it) {
9971          // Never suggest declaring a function within namespace 'std'.
9972          if (Std && Std->Encloses(*it))
9973            continue;
9974
9975          // Never suggest declaring a function within a namespace with a
9976          // reserved name, like __gnu_cxx.
9977          NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
9978          if (NS &&
9979              NS->getQualifiedNameAsString().find("__") != std::string::npos)
9980            continue;
9981
9982          SuggestedNamespaces.insert(*it);
9983        }
9984      }
9985
9986      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
9987        << R.getLookupName();
9988      if (SuggestedNamespaces.empty()) {
9989        SemaRef.Diag(Best->Function->getLocation(),
9990                     diag::note_not_found_by_two_phase_lookup)
9991          << R.getLookupName() << 0;
9992      } else if (SuggestedNamespaces.size() == 1) {
9993        SemaRef.Diag(Best->Function->getLocation(),
9994                     diag::note_not_found_by_two_phase_lookup)
9995          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
9996      } else {
9997        // FIXME: It would be useful to list the associated namespaces here,
9998        // but the diagnostics infrastructure doesn't provide a way to produce
9999        // a localized representation of a list of items.
10000        SemaRef.Diag(Best->Function->getLocation(),
10001                     diag::note_not_found_by_two_phase_lookup)
10002          << R.getLookupName() << 2;
10003      }
10004
10005      // Try to recover by calling this function.
10006      return true;
10007    }
10008
10009    R.clear();
10010  }
10011
10012  return false;
10013}
10014
10015/// Attempt to recover from ill-formed use of a non-dependent operator in a
10016/// template, where the non-dependent operator was declared after the template
10017/// was defined.
10018///
10019/// Returns true if a viable candidate was found and a diagnostic was issued.
10020static bool
10021DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
10022                               SourceLocation OpLoc,
10023                               ArrayRef<Expr *> Args) {
10024  DeclarationName OpName =
10025    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
10026  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
10027  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
10028                                /*ExplicitTemplateArgs=*/0, Args);
10029}
10030
10031namespace {
10032class BuildRecoveryCallExprRAII {
10033  Sema &SemaRef;
10034public:
10035  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
10036    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
10037    SemaRef.IsBuildingRecoveryCallExpr = true;
10038  }
10039
10040  ~BuildRecoveryCallExprRAII() {
10041    SemaRef.IsBuildingRecoveryCallExpr = false;
10042  }
10043};
10044
10045}
10046
10047/// Attempts to recover from a call where no functions were found.
10048///
10049/// Returns true if new candidates were found.
10050static ExprResult
10051BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10052                      UnresolvedLookupExpr *ULE,
10053                      SourceLocation LParenLoc,
10054                      llvm::MutableArrayRef<Expr *> Args,
10055                      SourceLocation RParenLoc,
10056                      bool EmptyLookup, bool AllowTypoCorrection) {
10057  // Do not try to recover if it is already building a recovery call.
10058  // This stops infinite loops for template instantiations like
10059  //
10060  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
10061  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
10062  //
10063  if (SemaRef.IsBuildingRecoveryCallExpr)
10064    return ExprError();
10065  BuildRecoveryCallExprRAII RCE(SemaRef);
10066
10067  CXXScopeSpec SS;
10068  SS.Adopt(ULE->getQualifierLoc());
10069  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
10070
10071  TemplateArgumentListInfo TABuffer;
10072  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
10073  if (ULE->hasExplicitTemplateArgs()) {
10074    ULE->copyTemplateArgumentsInto(TABuffer);
10075    ExplicitTemplateArgs = &TABuffer;
10076  }
10077
10078  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
10079                 Sema::LookupOrdinaryName);
10080  FunctionCallFilterCCC Validator(SemaRef, Args.size(),
10081                                  ExplicitTemplateArgs != 0);
10082  NoTypoCorrectionCCC RejectAll;
10083  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
10084      (CorrectionCandidateCallback*)&Validator :
10085      (CorrectionCandidateCallback*)&RejectAll;
10086  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
10087                              ExplicitTemplateArgs, Args) &&
10088      (!EmptyLookup ||
10089       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
10090                                   ExplicitTemplateArgs, Args)))
10091    return ExprError();
10092
10093  assert(!R.empty() && "lookup results empty despite recovery");
10094
10095  // Build an implicit member call if appropriate.  Just drop the
10096  // casts and such from the call, we don't really care.
10097  ExprResult NewFn = ExprError();
10098  if ((*R.begin())->isCXXClassMember())
10099    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
10100                                                    R, ExplicitTemplateArgs);
10101  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
10102    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
10103                                        ExplicitTemplateArgs);
10104  else
10105    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
10106
10107  if (NewFn.isInvalid())
10108    return ExprError();
10109
10110  // This shouldn't cause an infinite loop because we're giving it
10111  // an expression with viable lookup results, which should never
10112  // end up here.
10113  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
10114                               MultiExprArg(Args.data(), Args.size()),
10115                               RParenLoc);
10116}
10117
10118/// \brief Constructs and populates an OverloadedCandidateSet from
10119/// the given function.
10120/// \returns true when an the ExprResult output parameter has been set.
10121bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
10122                                  UnresolvedLookupExpr *ULE,
10123                                  MultiExprArg Args,
10124                                  SourceLocation RParenLoc,
10125                                  OverloadCandidateSet *CandidateSet,
10126                                  ExprResult *Result) {
10127#ifndef NDEBUG
10128  if (ULE->requiresADL()) {
10129    // To do ADL, we must have found an unqualified name.
10130    assert(!ULE->getQualifier() && "qualified name with ADL");
10131
10132    // We don't perform ADL for implicit declarations of builtins.
10133    // Verify that this was correctly set up.
10134    FunctionDecl *F;
10135    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
10136        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
10137        F->getBuiltinID() && F->isImplicit())
10138      llvm_unreachable("performing ADL for builtin");
10139
10140    // We don't perform ADL in C.
10141    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
10142  }
10143#endif
10144
10145  UnbridgedCastsSet UnbridgedCasts;
10146  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
10147    *Result = ExprError();
10148    return true;
10149  }
10150
10151  // Add the functions denoted by the callee to the set of candidate
10152  // functions, including those from argument-dependent lookup.
10153  AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
10154
10155  // If we found nothing, try to recover.
10156  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
10157  // out if it fails.
10158  if (CandidateSet->empty()) {
10159    // In Microsoft mode, if we are inside a template class member function then
10160    // create a type dependent CallExpr. The goal is to postpone name lookup
10161    // to instantiation time to be able to search into type dependent base
10162    // classes.
10163    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
10164        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
10165      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
10166                                            Context.DependentTy, VK_RValue,
10167                                            RParenLoc);
10168      CE->setTypeDependent(true);
10169      *Result = Owned(CE);
10170      return true;
10171    }
10172    return false;
10173  }
10174
10175  UnbridgedCasts.restore();
10176  return false;
10177}
10178
10179/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
10180/// the completed call expression. If overload resolution fails, emits
10181/// diagnostics and returns ExprError()
10182static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10183                                           UnresolvedLookupExpr *ULE,
10184                                           SourceLocation LParenLoc,
10185                                           MultiExprArg Args,
10186                                           SourceLocation RParenLoc,
10187                                           Expr *ExecConfig,
10188                                           OverloadCandidateSet *CandidateSet,
10189                                           OverloadCandidateSet::iterator *Best,
10190                                           OverloadingResult OverloadResult,
10191                                           bool AllowTypoCorrection) {
10192  if (CandidateSet->empty())
10193    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
10194                                 RParenLoc, /*EmptyLookup=*/true,
10195                                 AllowTypoCorrection);
10196
10197  switch (OverloadResult) {
10198  case OR_Success: {
10199    FunctionDecl *FDecl = (*Best)->Function;
10200    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
10201    if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
10202      return ExprError();
10203    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10204    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10205                                         ExecConfig);
10206  }
10207
10208  case OR_No_Viable_Function: {
10209    // Try to recover by looking for viable functions which the user might
10210    // have meant to call.
10211    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
10212                                                Args, RParenLoc,
10213                                                /*EmptyLookup=*/false,
10214                                                AllowTypoCorrection);
10215    if (!Recovery.isInvalid())
10216      return Recovery;
10217
10218    SemaRef.Diag(Fn->getLocStart(),
10219         diag::err_ovl_no_viable_function_in_call)
10220      << ULE->getName() << Fn->getSourceRange();
10221    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10222    break;
10223  }
10224
10225  case OR_Ambiguous:
10226    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
10227      << ULE->getName() << Fn->getSourceRange();
10228    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
10229    break;
10230
10231  case OR_Deleted: {
10232    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
10233      << (*Best)->Function->isDeleted()
10234      << ULE->getName()
10235      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
10236      << Fn->getSourceRange();
10237    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10238
10239    // We emitted an error for the unvailable/deleted function call but keep
10240    // the call in the AST.
10241    FunctionDecl *FDecl = (*Best)->Function;
10242    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10243    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10244                                         ExecConfig);
10245  }
10246  }
10247
10248  // Overload resolution failed.
10249  return ExprError();
10250}
10251
10252/// BuildOverloadedCallExpr - Given the call expression that calls Fn
10253/// (which eventually refers to the declaration Func) and the call
10254/// arguments Args/NumArgs, attempt to resolve the function call down
10255/// to a specific function. If overload resolution succeeds, returns
10256/// the call expression produced by overload resolution.
10257/// Otherwise, emits diagnostics and returns ExprError.
10258ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
10259                                         UnresolvedLookupExpr *ULE,
10260                                         SourceLocation LParenLoc,
10261                                         MultiExprArg Args,
10262                                         SourceLocation RParenLoc,
10263                                         Expr *ExecConfig,
10264                                         bool AllowTypoCorrection) {
10265  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
10266  ExprResult result;
10267
10268  if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
10269                             &result))
10270    return result;
10271
10272  OverloadCandidateSet::iterator Best;
10273  OverloadingResult OverloadResult =
10274      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
10275
10276  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
10277                                  RParenLoc, ExecConfig, &CandidateSet,
10278                                  &Best, OverloadResult,
10279                                  AllowTypoCorrection);
10280}
10281
10282static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
10283  return Functions.size() > 1 ||
10284    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
10285}
10286
10287/// \brief Create a unary operation that may resolve to an overloaded
10288/// operator.
10289///
10290/// \param OpLoc The location of the operator itself (e.g., '*').
10291///
10292/// \param OpcIn The UnaryOperator::Opcode that describes this
10293/// operator.
10294///
10295/// \param Fns The set of non-member functions that will be
10296/// considered by overload resolution. The caller needs to build this
10297/// set based on the context using, e.g.,
10298/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10299/// set should not contain any member functions; those will be added
10300/// by CreateOverloadedUnaryOp().
10301///
10302/// \param Input The input argument.
10303ExprResult
10304Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
10305                              const UnresolvedSetImpl &Fns,
10306                              Expr *Input) {
10307  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
10308
10309  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
10310  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
10311  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10312  // TODO: provide better source location info.
10313  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10314
10315  if (checkPlaceholderForOverload(*this, Input))
10316    return ExprError();
10317
10318  Expr *Args[2] = { Input, 0 };
10319  unsigned NumArgs = 1;
10320
10321  // For post-increment and post-decrement, add the implicit '0' as
10322  // the second argument, so that we know this is a post-increment or
10323  // post-decrement.
10324  if (Opc == UO_PostInc || Opc == UO_PostDec) {
10325    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
10326    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
10327                                     SourceLocation());
10328    NumArgs = 2;
10329  }
10330
10331  ArrayRef<Expr *> ArgsArray(Args, NumArgs);
10332
10333  if (Input->isTypeDependent()) {
10334    if (Fns.empty())
10335      return Owned(new (Context) UnaryOperator(Input,
10336                                               Opc,
10337                                               Context.DependentTy,
10338                                               VK_RValue, OK_Ordinary,
10339                                               OpLoc));
10340
10341    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10342    UnresolvedLookupExpr *Fn
10343      = UnresolvedLookupExpr::Create(Context, NamingClass,
10344                                     NestedNameSpecifierLoc(), OpNameInfo,
10345                                     /*ADL*/ true, IsOverloaded(Fns),
10346                                     Fns.begin(), Fns.end());
10347    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, ArgsArray,
10348                                                   Context.DependentTy,
10349                                                   VK_RValue,
10350                                                   OpLoc, false));
10351  }
10352
10353  // Build an empty overload set.
10354  OverloadCandidateSet CandidateSet(OpLoc);
10355
10356  // Add the candidates from the given function set.
10357  AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
10358
10359  // Add operator candidates that are member functions.
10360  AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10361
10362  // Add candidates from ADL.
10363  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, OpLoc,
10364                                       ArgsArray, /*ExplicitTemplateArgs*/ 0,
10365                                       CandidateSet);
10366
10367  // Add builtin operator candidates.
10368  AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10369
10370  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10371
10372  // Perform overload resolution.
10373  OverloadCandidateSet::iterator Best;
10374  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10375  case OR_Success: {
10376    // We found a built-in operator or an overloaded operator.
10377    FunctionDecl *FnDecl = Best->Function;
10378
10379    if (FnDecl) {
10380      // We matched an overloaded operator. Build a call to that
10381      // operator.
10382
10383      // Convert the arguments.
10384      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10385        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
10386
10387        ExprResult InputRes =
10388          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
10389                                              Best->FoundDecl, Method);
10390        if (InputRes.isInvalid())
10391          return ExprError();
10392        Input = InputRes.take();
10393      } else {
10394        // Convert the arguments.
10395        ExprResult InputInit
10396          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10397                                                      Context,
10398                                                      FnDecl->getParamDecl(0)),
10399                                      SourceLocation(),
10400                                      Input);
10401        if (InputInit.isInvalid())
10402          return ExprError();
10403        Input = InputInit.take();
10404      }
10405
10406      // Determine the result type.
10407      QualType ResultTy = FnDecl->getResultType();
10408      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10409      ResultTy = ResultTy.getNonLValueExprType(Context);
10410
10411      // Build the actual expression node.
10412      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
10413                                                HadMultipleCandidates, OpLoc);
10414      if (FnExpr.isInvalid())
10415        return ExprError();
10416
10417      Args[0] = Input;
10418      CallExpr *TheCall =
10419        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), ArgsArray,
10420                                          ResultTy, VK, OpLoc, false);
10421
10422      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10423                              FnDecl))
10424        return ExprError();
10425
10426      return MaybeBindToTemporary(TheCall);
10427    } else {
10428      // We matched a built-in operator. Convert the arguments, then
10429      // break out so that we will build the appropriate built-in
10430      // operator node.
10431      ExprResult InputRes =
10432        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10433                                  Best->Conversions[0], AA_Passing);
10434      if (InputRes.isInvalid())
10435        return ExprError();
10436      Input = InputRes.take();
10437      break;
10438    }
10439  }
10440
10441  case OR_No_Viable_Function:
10442    // This is an erroneous use of an operator which can be overloaded by
10443    // a non-member function. Check for non-member operators which were
10444    // defined too late to be candidates.
10445    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
10446      // FIXME: Recover by calling the found function.
10447      return ExprError();
10448
10449    // No viable function; fall through to handling this as a
10450    // built-in operator, which will produce an error message for us.
10451    break;
10452
10453  case OR_Ambiguous:
10454    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10455        << UnaryOperator::getOpcodeStr(Opc)
10456        << Input->getType()
10457        << Input->getSourceRange();
10458    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
10459                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10460    return ExprError();
10461
10462  case OR_Deleted:
10463    Diag(OpLoc, diag::err_ovl_deleted_oper)
10464      << Best->Function->isDeleted()
10465      << UnaryOperator::getOpcodeStr(Opc)
10466      << getDeletedOrUnavailableSuffix(Best->Function)
10467      << Input->getSourceRange();
10468    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
10469                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10470    return ExprError();
10471  }
10472
10473  // Either we found no viable overloaded operator or we matched a
10474  // built-in operator. In either case, fall through to trying to
10475  // build a built-in operation.
10476  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10477}
10478
10479/// \brief Create a binary operation that may resolve to an overloaded
10480/// operator.
10481///
10482/// \param OpLoc The location of the operator itself (e.g., '+').
10483///
10484/// \param OpcIn The BinaryOperator::Opcode that describes this
10485/// operator.
10486///
10487/// \param Fns The set of non-member functions that will be
10488/// considered by overload resolution. The caller needs to build this
10489/// set based on the context using, e.g.,
10490/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10491/// set should not contain any member functions; those will be added
10492/// by CreateOverloadedBinOp().
10493///
10494/// \param LHS Left-hand argument.
10495/// \param RHS Right-hand argument.
10496ExprResult
10497Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10498                            unsigned OpcIn,
10499                            const UnresolvedSetImpl &Fns,
10500                            Expr *LHS, Expr *RHS) {
10501  Expr *Args[2] = { LHS, RHS };
10502  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10503
10504  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10505  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10506  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10507
10508  // If either side is type-dependent, create an appropriate dependent
10509  // expression.
10510  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10511    if (Fns.empty()) {
10512      // If there are no functions to store, just build a dependent
10513      // BinaryOperator or CompoundAssignment.
10514      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10515        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10516                                                  Context.DependentTy,
10517                                                  VK_RValue, OK_Ordinary,
10518                                                  OpLoc,
10519                                                  FPFeatures.fp_contract));
10520
10521      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10522                                                        Context.DependentTy,
10523                                                        VK_LValue,
10524                                                        OK_Ordinary,
10525                                                        Context.DependentTy,
10526                                                        Context.DependentTy,
10527                                                        OpLoc,
10528                                                        FPFeatures.fp_contract));
10529    }
10530
10531    // FIXME: save results of ADL from here?
10532    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10533    // TODO: provide better source location info in DNLoc component.
10534    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10535    UnresolvedLookupExpr *Fn
10536      = UnresolvedLookupExpr::Create(Context, NamingClass,
10537                                     NestedNameSpecifierLoc(), OpNameInfo,
10538                                     /*ADL*/ true, IsOverloaded(Fns),
10539                                     Fns.begin(), Fns.end());
10540    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
10541                                                Context.DependentTy, VK_RValue,
10542                                                OpLoc, FPFeatures.fp_contract));
10543  }
10544
10545  // Always do placeholder-like conversions on the RHS.
10546  if (checkPlaceholderForOverload(*this, Args[1]))
10547    return ExprError();
10548
10549  // Do placeholder-like conversion on the LHS; note that we should
10550  // not get here with a PseudoObject LHS.
10551  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10552  if (checkPlaceholderForOverload(*this, Args[0]))
10553    return ExprError();
10554
10555  // If this is the assignment operator, we only perform overload resolution
10556  // if the left-hand side is a class or enumeration type. This is actually
10557  // a hack. The standard requires that we do overload resolution between the
10558  // various built-in candidates, but as DR507 points out, this can lead to
10559  // problems. So we do it this way, which pretty much follows what GCC does.
10560  // Note that we go the traditional code path for compound assignment forms.
10561  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10562    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10563
10564  // If this is the .* operator, which is not overloadable, just
10565  // create a built-in binary operator.
10566  if (Opc == BO_PtrMemD)
10567    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10568
10569  // Build an empty overload set.
10570  OverloadCandidateSet CandidateSet(OpLoc);
10571
10572  // Add the candidates from the given function set.
10573  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10574
10575  // Add operator candidates that are member functions.
10576  AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10577
10578  // Add candidates from ADL.
10579  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10580                                       OpLoc, Args,
10581                                       /*ExplicitTemplateArgs*/ 0,
10582                                       CandidateSet);
10583
10584  // Add builtin operator candidates.
10585  AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10586
10587  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10588
10589  // Perform overload resolution.
10590  OverloadCandidateSet::iterator Best;
10591  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10592    case OR_Success: {
10593      // We found a built-in operator or an overloaded operator.
10594      FunctionDecl *FnDecl = Best->Function;
10595
10596      if (FnDecl) {
10597        // We matched an overloaded operator. Build a call to that
10598        // operator.
10599
10600        // Convert the arguments.
10601        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10602          // Best->Access is only meaningful for class members.
10603          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10604
10605          ExprResult Arg1 =
10606            PerformCopyInitialization(
10607              InitializedEntity::InitializeParameter(Context,
10608                                                     FnDecl->getParamDecl(0)),
10609              SourceLocation(), Owned(Args[1]));
10610          if (Arg1.isInvalid())
10611            return ExprError();
10612
10613          ExprResult Arg0 =
10614            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10615                                                Best->FoundDecl, Method);
10616          if (Arg0.isInvalid())
10617            return ExprError();
10618          Args[0] = Arg0.takeAs<Expr>();
10619          Args[1] = RHS = Arg1.takeAs<Expr>();
10620        } else {
10621          // Convert the arguments.
10622          ExprResult Arg0 = PerformCopyInitialization(
10623            InitializedEntity::InitializeParameter(Context,
10624                                                   FnDecl->getParamDecl(0)),
10625            SourceLocation(), Owned(Args[0]));
10626          if (Arg0.isInvalid())
10627            return ExprError();
10628
10629          ExprResult Arg1 =
10630            PerformCopyInitialization(
10631              InitializedEntity::InitializeParameter(Context,
10632                                                     FnDecl->getParamDecl(1)),
10633              SourceLocation(), Owned(Args[1]));
10634          if (Arg1.isInvalid())
10635            return ExprError();
10636          Args[0] = LHS = Arg0.takeAs<Expr>();
10637          Args[1] = RHS = Arg1.takeAs<Expr>();
10638        }
10639
10640        // Determine the result type.
10641        QualType ResultTy = FnDecl->getResultType();
10642        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10643        ResultTy = ResultTy.getNonLValueExprType(Context);
10644
10645        // Build the actual expression node.
10646        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10647                                                  Best->FoundDecl,
10648                                                  HadMultipleCandidates, OpLoc);
10649        if (FnExpr.isInvalid())
10650          return ExprError();
10651
10652        CXXOperatorCallExpr *TheCall =
10653          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10654                                            Args, ResultTy, VK, OpLoc,
10655                                            FPFeatures.fp_contract);
10656
10657        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10658                                FnDecl))
10659          return ExprError();
10660
10661        ArrayRef<const Expr *> ArgsArray(Args, 2);
10662        // Cut off the implicit 'this'.
10663        if (isa<CXXMethodDecl>(FnDecl))
10664          ArgsArray = ArgsArray.slice(1);
10665        checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
10666                  TheCall->getSourceRange(), VariadicDoesNotApply);
10667
10668        return MaybeBindToTemporary(TheCall);
10669      } else {
10670        // We matched a built-in operator. Convert the arguments, then
10671        // break out so that we will build the appropriate built-in
10672        // operator node.
10673        ExprResult ArgsRes0 =
10674          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10675                                    Best->Conversions[0], AA_Passing);
10676        if (ArgsRes0.isInvalid())
10677          return ExprError();
10678        Args[0] = ArgsRes0.take();
10679
10680        ExprResult ArgsRes1 =
10681          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10682                                    Best->Conversions[1], AA_Passing);
10683        if (ArgsRes1.isInvalid())
10684          return ExprError();
10685        Args[1] = ArgsRes1.take();
10686        break;
10687      }
10688    }
10689
10690    case OR_No_Viable_Function: {
10691      // C++ [over.match.oper]p9:
10692      //   If the operator is the operator , [...] and there are no
10693      //   viable functions, then the operator is assumed to be the
10694      //   built-in operator and interpreted according to clause 5.
10695      if (Opc == BO_Comma)
10696        break;
10697
10698      // For class as left operand for assignment or compound assigment
10699      // operator do not fall through to handling in built-in, but report that
10700      // no overloaded assignment operator found
10701      ExprResult Result = ExprError();
10702      if (Args[0]->getType()->isRecordType() &&
10703          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10704        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10705             << BinaryOperator::getOpcodeStr(Opc)
10706             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10707      } else {
10708        // This is an erroneous use of an operator which can be overloaded by
10709        // a non-member function. Check for non-member operators which were
10710        // defined too late to be candidates.
10711        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10712          // FIXME: Recover by calling the found function.
10713          return ExprError();
10714
10715        // No viable function; try to create a built-in operation, which will
10716        // produce an error. Then, show the non-viable candidates.
10717        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10718      }
10719      assert(Result.isInvalid() &&
10720             "C++ binary operator overloading is missing candidates!");
10721      if (Result.isInvalid())
10722        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10723                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10724      return Result;
10725    }
10726
10727    case OR_Ambiguous:
10728      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10729          << BinaryOperator::getOpcodeStr(Opc)
10730          << Args[0]->getType() << Args[1]->getType()
10731          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10732      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10733                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10734      return ExprError();
10735
10736    case OR_Deleted:
10737      if (isImplicitlyDeleted(Best->Function)) {
10738        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10739        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10740          << Context.getRecordType(Method->getParent())
10741          << getSpecialMember(Method);
10742
10743        // The user probably meant to call this special member. Just
10744        // explain why it's deleted.
10745        NoteDeletedFunction(Method);
10746        return ExprError();
10747      } else {
10748        Diag(OpLoc, diag::err_ovl_deleted_oper)
10749          << Best->Function->isDeleted()
10750          << BinaryOperator::getOpcodeStr(Opc)
10751          << getDeletedOrUnavailableSuffix(Best->Function)
10752          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10753      }
10754      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10755                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10756      return ExprError();
10757  }
10758
10759  // We matched a built-in operator; build it.
10760  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10761}
10762
10763ExprResult
10764Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10765                                         SourceLocation RLoc,
10766                                         Expr *Base, Expr *Idx) {
10767  Expr *Args[2] = { Base, Idx };
10768  DeclarationName OpName =
10769      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10770
10771  // If either side is type-dependent, create an appropriate dependent
10772  // expression.
10773  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10774
10775    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10776    // CHECKME: no 'operator' keyword?
10777    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10778    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10779    UnresolvedLookupExpr *Fn
10780      = UnresolvedLookupExpr::Create(Context, NamingClass,
10781                                     NestedNameSpecifierLoc(), OpNameInfo,
10782                                     /*ADL*/ true, /*Overloaded*/ false,
10783                                     UnresolvedSetIterator(),
10784                                     UnresolvedSetIterator());
10785    // Can't add any actual overloads yet
10786
10787    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10788                                                   Args,
10789                                                   Context.DependentTy,
10790                                                   VK_RValue,
10791                                                   RLoc, false));
10792  }
10793
10794  // Handle placeholders on both operands.
10795  if (checkPlaceholderForOverload(*this, Args[0]))
10796    return ExprError();
10797  if (checkPlaceholderForOverload(*this, Args[1]))
10798    return ExprError();
10799
10800  // Build an empty overload set.
10801  OverloadCandidateSet CandidateSet(LLoc);
10802
10803  // Subscript can only be overloaded as a member function.
10804
10805  // Add operator candidates that are member functions.
10806  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10807
10808  // Add builtin operator candidates.
10809  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10810
10811  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10812
10813  // Perform overload resolution.
10814  OverloadCandidateSet::iterator Best;
10815  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10816    case OR_Success: {
10817      // We found a built-in operator or an overloaded operator.
10818      FunctionDecl *FnDecl = Best->Function;
10819
10820      if (FnDecl) {
10821        // We matched an overloaded operator. Build a call to that
10822        // operator.
10823
10824        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10825
10826        // Convert the arguments.
10827        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10828        ExprResult Arg0 =
10829          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10830                                              Best->FoundDecl, Method);
10831        if (Arg0.isInvalid())
10832          return ExprError();
10833        Args[0] = Arg0.take();
10834
10835        // Convert the arguments.
10836        ExprResult InputInit
10837          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10838                                                      Context,
10839                                                      FnDecl->getParamDecl(0)),
10840                                      SourceLocation(),
10841                                      Owned(Args[1]));
10842        if (InputInit.isInvalid())
10843          return ExprError();
10844
10845        Args[1] = InputInit.takeAs<Expr>();
10846
10847        // Determine the result type
10848        QualType ResultTy = FnDecl->getResultType();
10849        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10850        ResultTy = ResultTy.getNonLValueExprType(Context);
10851
10852        // Build the actual expression node.
10853        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10854        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10855        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10856                                                  Best->FoundDecl,
10857                                                  HadMultipleCandidates,
10858                                                  OpLocInfo.getLoc(),
10859                                                  OpLocInfo.getInfo());
10860        if (FnExpr.isInvalid())
10861          return ExprError();
10862
10863        CXXOperatorCallExpr *TheCall =
10864          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10865                                            FnExpr.take(), Args,
10866                                            ResultTy, VK, RLoc,
10867                                            false);
10868
10869        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10870                                FnDecl))
10871          return ExprError();
10872
10873        return MaybeBindToTemporary(TheCall);
10874      } else {
10875        // We matched a built-in operator. Convert the arguments, then
10876        // break out so that we will build the appropriate built-in
10877        // operator node.
10878        ExprResult ArgsRes0 =
10879          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10880                                    Best->Conversions[0], AA_Passing);
10881        if (ArgsRes0.isInvalid())
10882          return ExprError();
10883        Args[0] = ArgsRes0.take();
10884
10885        ExprResult ArgsRes1 =
10886          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10887                                    Best->Conversions[1], AA_Passing);
10888        if (ArgsRes1.isInvalid())
10889          return ExprError();
10890        Args[1] = ArgsRes1.take();
10891
10892        break;
10893      }
10894    }
10895
10896    case OR_No_Viable_Function: {
10897      if (CandidateSet.empty())
10898        Diag(LLoc, diag::err_ovl_no_oper)
10899          << Args[0]->getType() << /*subscript*/ 0
10900          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10901      else
10902        Diag(LLoc, diag::err_ovl_no_viable_subscript)
10903          << Args[0]->getType()
10904          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10905      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10906                                  "[]", LLoc);
10907      return ExprError();
10908    }
10909
10910    case OR_Ambiguous:
10911      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
10912          << "[]"
10913          << Args[0]->getType() << Args[1]->getType()
10914          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10915      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10916                                  "[]", LLoc);
10917      return ExprError();
10918
10919    case OR_Deleted:
10920      Diag(LLoc, diag::err_ovl_deleted_oper)
10921        << Best->Function->isDeleted() << "[]"
10922        << getDeletedOrUnavailableSuffix(Best->Function)
10923        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10924      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10925                                  "[]", LLoc);
10926      return ExprError();
10927    }
10928
10929  // We matched a built-in operator; build it.
10930  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
10931}
10932
10933/// BuildCallToMemberFunction - Build a call to a member
10934/// function. MemExpr is the expression that refers to the member
10935/// function (and includes the object parameter), Args/NumArgs are the
10936/// arguments to the function call (not including the object
10937/// parameter). The caller needs to validate that the member
10938/// expression refers to a non-static member function or an overloaded
10939/// member function.
10940ExprResult
10941Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
10942                                SourceLocation LParenLoc,
10943                                MultiExprArg Args,
10944                                SourceLocation RParenLoc) {
10945  assert(MemExprE->getType() == Context.BoundMemberTy ||
10946         MemExprE->getType() == Context.OverloadTy);
10947
10948  // Dig out the member expression. This holds both the object
10949  // argument and the member function we're referring to.
10950  Expr *NakedMemExpr = MemExprE->IgnoreParens();
10951
10952  // Determine whether this is a call to a pointer-to-member function.
10953  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
10954    assert(op->getType() == Context.BoundMemberTy);
10955    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
10956
10957    QualType fnType =
10958      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
10959
10960    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
10961    QualType resultType = proto->getCallResultType(Context);
10962    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
10963
10964    // Check that the object type isn't more qualified than the
10965    // member function we're calling.
10966    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
10967
10968    QualType objectType = op->getLHS()->getType();
10969    if (op->getOpcode() == BO_PtrMemI)
10970      objectType = objectType->castAs<PointerType>()->getPointeeType();
10971    Qualifiers objectQuals = objectType.getQualifiers();
10972
10973    Qualifiers difference = objectQuals - funcQuals;
10974    difference.removeObjCGCAttr();
10975    difference.removeAddressSpace();
10976    if (difference) {
10977      std::string qualsString = difference.getAsString();
10978      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
10979        << fnType.getUnqualifiedType()
10980        << qualsString
10981        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
10982    }
10983
10984    CXXMemberCallExpr *call
10985      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
10986                                        resultType, valueKind, RParenLoc);
10987
10988    if (CheckCallReturnType(proto->getResultType(),
10989                            op->getRHS()->getLocStart(),
10990                            call, 0))
10991      return ExprError();
10992
10993    if (ConvertArgumentsForCall(call, op, 0, proto, Args, RParenLoc))
10994      return ExprError();
10995
10996    if (CheckOtherCall(call, proto))
10997      return ExprError();
10998
10999    return MaybeBindToTemporary(call);
11000  }
11001
11002  UnbridgedCastsSet UnbridgedCasts;
11003  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11004    return ExprError();
11005
11006  MemberExpr *MemExpr;
11007  CXXMethodDecl *Method = 0;
11008  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
11009  NestedNameSpecifier *Qualifier = 0;
11010  if (isa<MemberExpr>(NakedMemExpr)) {
11011    MemExpr = cast<MemberExpr>(NakedMemExpr);
11012    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
11013    FoundDecl = MemExpr->getFoundDecl();
11014    Qualifier = MemExpr->getQualifier();
11015    UnbridgedCasts.restore();
11016  } else {
11017    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
11018    Qualifier = UnresExpr->getQualifier();
11019
11020    QualType ObjectType = UnresExpr->getBaseType();
11021    Expr::Classification ObjectClassification
11022      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
11023                            : UnresExpr->getBase()->Classify(Context);
11024
11025    // Add overload candidates
11026    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
11027
11028    // FIXME: avoid copy.
11029    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11030    if (UnresExpr->hasExplicitTemplateArgs()) {
11031      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11032      TemplateArgs = &TemplateArgsBuffer;
11033    }
11034
11035    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
11036           E = UnresExpr->decls_end(); I != E; ++I) {
11037
11038      NamedDecl *Func = *I;
11039      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
11040      if (isa<UsingShadowDecl>(Func))
11041        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
11042
11043
11044      // Microsoft supports direct constructor calls.
11045      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
11046        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
11047                             Args, CandidateSet);
11048      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
11049        // If explicit template arguments were provided, we can't call a
11050        // non-template member function.
11051        if (TemplateArgs)
11052          continue;
11053
11054        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
11055                           ObjectClassification, Args, CandidateSet,
11056                           /*SuppressUserConversions=*/false);
11057      } else {
11058        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
11059                                   I.getPair(), ActingDC, TemplateArgs,
11060                                   ObjectType,  ObjectClassification,
11061                                   Args, CandidateSet,
11062                                   /*SuppressUsedConversions=*/false);
11063      }
11064    }
11065
11066    DeclarationName DeclName = UnresExpr->getMemberName();
11067
11068    UnbridgedCasts.restore();
11069
11070    OverloadCandidateSet::iterator Best;
11071    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
11072                                            Best)) {
11073    case OR_Success:
11074      Method = cast<CXXMethodDecl>(Best->Function);
11075      FoundDecl = Best->FoundDecl;
11076      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
11077      if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
11078        return ExprError();
11079      // If FoundDecl is different from Method (such as if one is a template
11080      // and the other a specialization), make sure DiagnoseUseOfDecl is
11081      // called on both.
11082      // FIXME: This would be more comprehensively addressed by modifying
11083      // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
11084      // being used.
11085      if (Method != FoundDecl.getDecl() &&
11086                      DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
11087        return ExprError();
11088      break;
11089
11090    case OR_No_Viable_Function:
11091      Diag(UnresExpr->getMemberLoc(),
11092           diag::err_ovl_no_viable_member_function_in_call)
11093        << DeclName << MemExprE->getSourceRange();
11094      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11095      // FIXME: Leaking incoming expressions!
11096      return ExprError();
11097
11098    case OR_Ambiguous:
11099      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
11100        << DeclName << MemExprE->getSourceRange();
11101      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11102      // FIXME: Leaking incoming expressions!
11103      return ExprError();
11104
11105    case OR_Deleted:
11106      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
11107        << Best->Function->isDeleted()
11108        << DeclName
11109        << getDeletedOrUnavailableSuffix(Best->Function)
11110        << MemExprE->getSourceRange();
11111      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11112      // FIXME: Leaking incoming expressions!
11113      return ExprError();
11114    }
11115
11116    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
11117
11118    // If overload resolution picked a static member, build a
11119    // non-member call based on that function.
11120    if (Method->isStatic()) {
11121      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
11122                                   RParenLoc);
11123    }
11124
11125    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
11126  }
11127
11128  QualType ResultType = Method->getResultType();
11129  ExprValueKind VK = Expr::getValueKindForType(ResultType);
11130  ResultType = ResultType.getNonLValueExprType(Context);
11131
11132  assert(Method && "Member call to something that isn't a method?");
11133  CXXMemberCallExpr *TheCall =
11134    new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11135                                    ResultType, VK, RParenLoc);
11136
11137  // Check for a valid return type.
11138  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
11139                          TheCall, Method))
11140    return ExprError();
11141
11142  // Convert the object argument (for a non-static member function call).
11143  // We only need to do this if there was actually an overload; otherwise
11144  // it was done at lookup.
11145  if (!Method->isStatic()) {
11146    ExprResult ObjectArg =
11147      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
11148                                          FoundDecl, Method);
11149    if (ObjectArg.isInvalid())
11150      return ExprError();
11151    MemExpr->setBase(ObjectArg.take());
11152  }
11153
11154  // Convert the rest of the arguments
11155  const FunctionProtoType *Proto =
11156    Method->getType()->getAs<FunctionProtoType>();
11157  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
11158                              RParenLoc))
11159    return ExprError();
11160
11161  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11162
11163  if (CheckFunctionCall(Method, TheCall, Proto))
11164    return ExprError();
11165
11166  if ((isa<CXXConstructorDecl>(CurContext) ||
11167       isa<CXXDestructorDecl>(CurContext)) &&
11168      TheCall->getMethodDecl()->isPure()) {
11169    const CXXMethodDecl *MD = TheCall->getMethodDecl();
11170
11171    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
11172      Diag(MemExpr->getLocStart(),
11173           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
11174        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
11175        << MD->getParent()->getDeclName();
11176
11177      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
11178    }
11179  }
11180  return MaybeBindToTemporary(TheCall);
11181}
11182
11183/// BuildCallToObjectOfClassType - Build a call to an object of class
11184/// type (C++ [over.call.object]), which can end up invoking an
11185/// overloaded function call operator (@c operator()) or performing a
11186/// user-defined conversion on the object argument.
11187ExprResult
11188Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
11189                                   SourceLocation LParenLoc,
11190                                   MultiExprArg Args,
11191                                   SourceLocation RParenLoc) {
11192  if (checkPlaceholderForOverload(*this, Obj))
11193    return ExprError();
11194  ExprResult Object = Owned(Obj);
11195
11196  UnbridgedCastsSet UnbridgedCasts;
11197  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11198    return ExprError();
11199
11200  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
11201  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
11202
11203  // C++ [over.call.object]p1:
11204  //  If the primary-expression E in the function call syntax
11205  //  evaluates to a class object of type "cv T", then the set of
11206  //  candidate functions includes at least the function call
11207  //  operators of T. The function call operators of T are obtained by
11208  //  ordinary lookup of the name operator() in the context of
11209  //  (E).operator().
11210  OverloadCandidateSet CandidateSet(LParenLoc);
11211  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
11212
11213  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
11214                          diag::err_incomplete_object_call, Object.get()))
11215    return true;
11216
11217  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
11218  LookupQualifiedName(R, Record->getDecl());
11219  R.suppressDiagnostics();
11220
11221  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11222       Oper != OperEnd; ++Oper) {
11223    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
11224                       Object.get()->Classify(Context),
11225                       Args, CandidateSet,
11226                       /*SuppressUserConversions=*/ false);
11227  }
11228
11229  // C++ [over.call.object]p2:
11230  //   In addition, for each (non-explicit in C++0x) conversion function
11231  //   declared in T of the form
11232  //
11233  //        operator conversion-type-id () cv-qualifier;
11234  //
11235  //   where cv-qualifier is the same cv-qualification as, or a
11236  //   greater cv-qualification than, cv, and where conversion-type-id
11237  //   denotes the type "pointer to function of (P1,...,Pn) returning
11238  //   R", or the type "reference to pointer to function of
11239  //   (P1,...,Pn) returning R", or the type "reference to function
11240  //   of (P1,...,Pn) returning R", a surrogate call function [...]
11241  //   is also considered as a candidate function. Similarly,
11242  //   surrogate call functions are added to the set of candidate
11243  //   functions for each conversion function declared in an
11244  //   accessible base class provided the function is not hidden
11245  //   within T by another intervening declaration.
11246  std::pair<CXXRecordDecl::conversion_iterator,
11247            CXXRecordDecl::conversion_iterator> Conversions
11248    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
11249  for (CXXRecordDecl::conversion_iterator
11250         I = Conversions.first, E = Conversions.second; I != E; ++I) {
11251    NamedDecl *D = *I;
11252    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
11253    if (isa<UsingShadowDecl>(D))
11254      D = cast<UsingShadowDecl>(D)->getTargetDecl();
11255
11256    // Skip over templated conversion functions; they aren't
11257    // surrogates.
11258    if (isa<FunctionTemplateDecl>(D))
11259      continue;
11260
11261    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
11262    if (!Conv->isExplicit()) {
11263      // Strip the reference type (if any) and then the pointer type (if
11264      // any) to get down to what might be a function type.
11265      QualType ConvType = Conv->getConversionType().getNonReferenceType();
11266      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11267        ConvType = ConvPtrType->getPointeeType();
11268
11269      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
11270      {
11271        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
11272                              Object.get(), Args, CandidateSet);
11273      }
11274    }
11275  }
11276
11277  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11278
11279  // Perform overload resolution.
11280  OverloadCandidateSet::iterator Best;
11281  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
11282                             Best)) {
11283  case OR_Success:
11284    // Overload resolution succeeded; we'll build the appropriate call
11285    // below.
11286    break;
11287
11288  case OR_No_Viable_Function:
11289    if (CandidateSet.empty())
11290      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
11291        << Object.get()->getType() << /*call*/ 1
11292        << Object.get()->getSourceRange();
11293    else
11294      Diag(Object.get()->getLocStart(),
11295           diag::err_ovl_no_viable_object_call)
11296        << Object.get()->getType() << Object.get()->getSourceRange();
11297    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11298    break;
11299
11300  case OR_Ambiguous:
11301    Diag(Object.get()->getLocStart(),
11302         diag::err_ovl_ambiguous_object_call)
11303      << Object.get()->getType() << Object.get()->getSourceRange();
11304    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11305    break;
11306
11307  case OR_Deleted:
11308    Diag(Object.get()->getLocStart(),
11309         diag::err_ovl_deleted_object_call)
11310      << Best->Function->isDeleted()
11311      << Object.get()->getType()
11312      << getDeletedOrUnavailableSuffix(Best->Function)
11313      << Object.get()->getSourceRange();
11314    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11315    break;
11316  }
11317
11318  if (Best == CandidateSet.end())
11319    return true;
11320
11321  UnbridgedCasts.restore();
11322
11323  if (Best->Function == 0) {
11324    // Since there is no function declaration, this is one of the
11325    // surrogate candidates. Dig out the conversion function.
11326    CXXConversionDecl *Conv
11327      = cast<CXXConversionDecl>(
11328                         Best->Conversions[0].UserDefined.ConversionFunction);
11329
11330    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11331    if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
11332      return ExprError();
11333    assert(Conv == Best->FoundDecl.getDecl() &&
11334             "Found Decl & conversion-to-functionptr should be same, right?!");
11335    // We selected one of the surrogate functions that converts the
11336    // object parameter to a function pointer. Perform the conversion
11337    // on the object argument, then let ActOnCallExpr finish the job.
11338
11339    // Create an implicit member expr to refer to the conversion operator.
11340    // and then call it.
11341    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
11342                                             Conv, HadMultipleCandidates);
11343    if (Call.isInvalid())
11344      return ExprError();
11345    // Record usage of conversion in an implicit cast.
11346    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
11347                                          CK_UserDefinedConversion,
11348                                          Call.get(), 0, VK_RValue));
11349
11350    return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
11351  }
11352
11353  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11354
11355  // We found an overloaded operator(). Build a CXXOperatorCallExpr
11356  // that calls this method, using Object for the implicit object
11357  // parameter and passing along the remaining arguments.
11358  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11359
11360  // An error diagnostic has already been printed when parsing the declaration.
11361  if (Method->isInvalidDecl())
11362    return ExprError();
11363
11364  const FunctionProtoType *Proto =
11365    Method->getType()->getAs<FunctionProtoType>();
11366
11367  unsigned NumArgsInProto = Proto->getNumArgs();
11368  unsigned NumArgsToCheck = Args.size();
11369
11370  // Build the full argument list for the method call (the
11371  // implicit object parameter is placed at the beginning of the
11372  // list).
11373  Expr **MethodArgs;
11374  if (Args.size() < NumArgsInProto) {
11375    NumArgsToCheck = NumArgsInProto;
11376    MethodArgs = new Expr*[NumArgsInProto + 1];
11377  } else {
11378    MethodArgs = new Expr*[Args.size() + 1];
11379  }
11380  MethodArgs[0] = Object.get();
11381  for (unsigned ArgIdx = 0, e = Args.size(); ArgIdx != e; ++ArgIdx)
11382    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
11383
11384  DeclarationNameInfo OpLocInfo(
11385               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11386  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11387  ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11388                                           HadMultipleCandidates,
11389                                           OpLocInfo.getLoc(),
11390                                           OpLocInfo.getInfo());
11391  if (NewFn.isInvalid())
11392    return true;
11393
11394  // Once we've built TheCall, all of the expressions are properly
11395  // owned.
11396  QualType ResultTy = Method->getResultType();
11397  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11398  ResultTy = ResultTy.getNonLValueExprType(Context);
11399
11400  CXXOperatorCallExpr *TheCall =
11401    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
11402                                      llvm::makeArrayRef(MethodArgs, Args.size()+1),
11403                                      ResultTy, VK, RParenLoc, false);
11404  delete [] MethodArgs;
11405
11406  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
11407                          Method))
11408    return true;
11409
11410  // We may have default arguments. If so, we need to allocate more
11411  // slots in the call for them.
11412  if (Args.size() < NumArgsInProto)
11413    TheCall->setNumArgs(Context, NumArgsInProto + 1);
11414  else if (Args.size() > NumArgsInProto)
11415    NumArgsToCheck = NumArgsInProto;
11416
11417  bool IsError = false;
11418
11419  // Initialize the implicit object parameter.
11420  ExprResult ObjRes =
11421    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11422                                        Best->FoundDecl, Method);
11423  if (ObjRes.isInvalid())
11424    IsError = true;
11425  else
11426    Object = ObjRes;
11427  TheCall->setArg(0, Object.take());
11428
11429  // Check the argument types.
11430  for (unsigned i = 0; i != NumArgsToCheck; i++) {
11431    Expr *Arg;
11432    if (i < Args.size()) {
11433      Arg = Args[i];
11434
11435      // Pass the argument.
11436
11437      ExprResult InputInit
11438        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11439                                                    Context,
11440                                                    Method->getParamDecl(i)),
11441                                    SourceLocation(), Arg);
11442
11443      IsError |= InputInit.isInvalid();
11444      Arg = InputInit.takeAs<Expr>();
11445    } else {
11446      ExprResult DefArg
11447        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11448      if (DefArg.isInvalid()) {
11449        IsError = true;
11450        break;
11451      }
11452
11453      Arg = DefArg.takeAs<Expr>();
11454    }
11455
11456    TheCall->setArg(i + 1, Arg);
11457  }
11458
11459  // If this is a variadic call, handle args passed through "...".
11460  if (Proto->isVariadic()) {
11461    // Promote the arguments (C99 6.5.2.2p7).
11462    for (unsigned i = NumArgsInProto, e = Args.size(); i < e; i++) {
11463      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11464      IsError |= Arg.isInvalid();
11465      TheCall->setArg(i + 1, Arg.take());
11466    }
11467  }
11468
11469  if (IsError) return true;
11470
11471  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11472
11473  if (CheckFunctionCall(Method, TheCall, Proto))
11474    return true;
11475
11476  return MaybeBindToTemporary(TheCall);
11477}
11478
11479/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11480///  (if one exists), where @c Base is an expression of class type and
11481/// @c Member is the name of the member we're trying to find.
11482ExprResult
11483Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
11484                               bool *NoArrowOperatorFound) {
11485  assert(Base->getType()->isRecordType() &&
11486         "left-hand side must have class type");
11487
11488  if (checkPlaceholderForOverload(*this, Base))
11489    return ExprError();
11490
11491  SourceLocation Loc = Base->getExprLoc();
11492
11493  // C++ [over.ref]p1:
11494  //
11495  //   [...] An expression x->m is interpreted as (x.operator->())->m
11496  //   for a class object x of type T if T::operator->() exists and if
11497  //   the operator is selected as the best match function by the
11498  //   overload resolution mechanism (13.3).
11499  DeclarationName OpName =
11500    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11501  OverloadCandidateSet CandidateSet(Loc);
11502  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11503
11504  if (RequireCompleteType(Loc, Base->getType(),
11505                          diag::err_typecheck_incomplete_tag, Base))
11506    return ExprError();
11507
11508  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11509  LookupQualifiedName(R, BaseRecord->getDecl());
11510  R.suppressDiagnostics();
11511
11512  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11513       Oper != OperEnd; ++Oper) {
11514    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11515                       None, CandidateSet, /*SuppressUserConversions=*/false);
11516  }
11517
11518  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11519
11520  // Perform overload resolution.
11521  OverloadCandidateSet::iterator Best;
11522  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11523  case OR_Success:
11524    // Overload resolution succeeded; we'll build the call below.
11525    break;
11526
11527  case OR_No_Viable_Function:
11528    if (CandidateSet.empty()) {
11529      QualType BaseType = Base->getType();
11530      if (NoArrowOperatorFound) {
11531        // Report this specific error to the caller instead of emitting a
11532        // diagnostic, as requested.
11533        *NoArrowOperatorFound = true;
11534        return ExprError();
11535      }
11536      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11537        << BaseType << Base->getSourceRange();
11538      if (BaseType->isRecordType() && !BaseType->isPointerType()) {
11539        Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
11540          << FixItHint::CreateReplacement(OpLoc, ".");
11541      }
11542    } else
11543      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11544        << "operator->" << Base->getSourceRange();
11545    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11546    return ExprError();
11547
11548  case OR_Ambiguous:
11549    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11550      << "->" << Base->getType() << Base->getSourceRange();
11551    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11552    return ExprError();
11553
11554  case OR_Deleted:
11555    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11556      << Best->Function->isDeleted()
11557      << "->"
11558      << getDeletedOrUnavailableSuffix(Best->Function)
11559      << Base->getSourceRange();
11560    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11561    return ExprError();
11562  }
11563
11564  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11565
11566  // Convert the object parameter.
11567  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11568  ExprResult BaseResult =
11569    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11570                                        Best->FoundDecl, Method);
11571  if (BaseResult.isInvalid())
11572    return ExprError();
11573  Base = BaseResult.take();
11574
11575  // Build the operator call.
11576  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11577                                            HadMultipleCandidates, OpLoc);
11578  if (FnExpr.isInvalid())
11579    return ExprError();
11580
11581  QualType ResultTy = Method->getResultType();
11582  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11583  ResultTy = ResultTy.getNonLValueExprType(Context);
11584  CXXOperatorCallExpr *TheCall =
11585    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11586                                      Base, ResultTy, VK, OpLoc, false);
11587
11588  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11589                          Method))
11590          return ExprError();
11591
11592  return MaybeBindToTemporary(TheCall);
11593}
11594
11595/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11596/// a literal operator described by the provided lookup results.
11597ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11598                                          DeclarationNameInfo &SuffixInfo,
11599                                          ArrayRef<Expr*> Args,
11600                                          SourceLocation LitEndLoc,
11601                                       TemplateArgumentListInfo *TemplateArgs) {
11602  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11603
11604  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11605  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11606                        TemplateArgs);
11607
11608  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11609
11610  // Perform overload resolution. This will usually be trivial, but might need
11611  // to perform substitutions for a literal operator template.
11612  OverloadCandidateSet::iterator Best;
11613  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11614  case OR_Success:
11615  case OR_Deleted:
11616    break;
11617
11618  case OR_No_Viable_Function:
11619    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11620      << R.getLookupName();
11621    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11622    return ExprError();
11623
11624  case OR_Ambiguous:
11625    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11626    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11627    return ExprError();
11628  }
11629
11630  FunctionDecl *FD = Best->Function;
11631  ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
11632                                        HadMultipleCandidates,
11633                                        SuffixInfo.getLoc(),
11634                                        SuffixInfo.getInfo());
11635  if (Fn.isInvalid())
11636    return true;
11637
11638  // Check the argument types. This should almost always be a no-op, except
11639  // that array-to-pointer decay is applied to string literals.
11640  Expr *ConvArgs[2];
11641  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
11642    ExprResult InputInit = PerformCopyInitialization(
11643      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11644      SourceLocation(), Args[ArgIdx]);
11645    if (InputInit.isInvalid())
11646      return true;
11647    ConvArgs[ArgIdx] = InputInit.take();
11648  }
11649
11650  QualType ResultTy = FD->getResultType();
11651  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11652  ResultTy = ResultTy.getNonLValueExprType(Context);
11653
11654  UserDefinedLiteral *UDL =
11655    new (Context) UserDefinedLiteral(Context, Fn.take(),
11656                                     llvm::makeArrayRef(ConvArgs, Args.size()),
11657                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11658
11659  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11660    return ExprError();
11661
11662  if (CheckFunctionCall(FD, UDL, NULL))
11663    return ExprError();
11664
11665  return MaybeBindToTemporary(UDL);
11666}
11667
11668/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11669/// given LookupResult is non-empty, it is assumed to describe a member which
11670/// will be invoked. Otherwise, the function will be found via argument
11671/// dependent lookup.
11672/// CallExpr is set to a valid expression and FRS_Success returned on success,
11673/// otherwise CallExpr is set to ExprError() and some non-success value
11674/// is returned.
11675Sema::ForRangeStatus
11676Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11677                                SourceLocation RangeLoc, VarDecl *Decl,
11678                                BeginEndFunction BEF,
11679                                const DeclarationNameInfo &NameInfo,
11680                                LookupResult &MemberLookup,
11681                                OverloadCandidateSet *CandidateSet,
11682                                Expr *Range, ExprResult *CallExpr) {
11683  CandidateSet->clear();
11684  if (!MemberLookup.empty()) {
11685    ExprResult MemberRef =
11686        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11687                                 /*IsPtr=*/false, CXXScopeSpec(),
11688                                 /*TemplateKWLoc=*/SourceLocation(),
11689                                 /*FirstQualifierInScope=*/0,
11690                                 MemberLookup,
11691                                 /*TemplateArgs=*/0);
11692    if (MemberRef.isInvalid()) {
11693      *CallExpr = ExprError();
11694      Diag(Range->getLocStart(), diag::note_in_for_range)
11695          << RangeLoc << BEF << Range->getType();
11696      return FRS_DiagnosticIssued;
11697    }
11698    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, 0);
11699    if (CallExpr->isInvalid()) {
11700      *CallExpr = ExprError();
11701      Diag(Range->getLocStart(), diag::note_in_for_range)
11702          << RangeLoc << BEF << Range->getType();
11703      return FRS_DiagnosticIssued;
11704    }
11705  } else {
11706    UnresolvedSet<0> FoundNames;
11707    UnresolvedLookupExpr *Fn =
11708      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11709                                   NestedNameSpecifierLoc(), NameInfo,
11710                                   /*NeedsADL=*/true, /*Overloaded=*/false,
11711                                   FoundNames.begin(), FoundNames.end());
11712
11713    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
11714                                                    CandidateSet, CallExpr);
11715    if (CandidateSet->empty() || CandidateSetError) {
11716      *CallExpr = ExprError();
11717      return FRS_NoViableFunction;
11718    }
11719    OverloadCandidateSet::iterator Best;
11720    OverloadingResult OverloadResult =
11721        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11722
11723    if (OverloadResult == OR_No_Viable_Function) {
11724      *CallExpr = ExprError();
11725      return FRS_NoViableFunction;
11726    }
11727    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
11728                                         Loc, 0, CandidateSet, &Best,
11729                                         OverloadResult,
11730                                         /*AllowTypoCorrection=*/false);
11731    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11732      *CallExpr = ExprError();
11733      Diag(Range->getLocStart(), diag::note_in_for_range)
11734          << RangeLoc << BEF << Range->getType();
11735      return FRS_DiagnosticIssued;
11736    }
11737  }
11738  return FRS_Success;
11739}
11740
11741
11742/// FixOverloadedFunctionReference - E is an expression that refers to
11743/// a C++ overloaded function (possibly with some parentheses and
11744/// perhaps a '&' around it). We have resolved the overloaded function
11745/// to the function declaration Fn, so patch up the expression E to
11746/// refer (possibly indirectly) to Fn. Returns the new expr.
11747Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11748                                           FunctionDecl *Fn) {
11749  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11750    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11751                                                   Found, Fn);
11752    if (SubExpr == PE->getSubExpr())
11753      return PE;
11754
11755    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11756  }
11757
11758  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11759    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11760                                                   Found, Fn);
11761    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11762                               SubExpr->getType()) &&
11763           "Implicit cast type cannot be determined from overload");
11764    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11765    if (SubExpr == ICE->getSubExpr())
11766      return ICE;
11767
11768    return ImplicitCastExpr::Create(Context, ICE->getType(),
11769                                    ICE->getCastKind(),
11770                                    SubExpr, 0,
11771                                    ICE->getValueKind());
11772  }
11773
11774  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11775    assert(UnOp->getOpcode() == UO_AddrOf &&
11776           "Can only take the address of an overloaded function");
11777    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11778      if (Method->isStatic()) {
11779        // Do nothing: static member functions aren't any different
11780        // from non-member functions.
11781      } else {
11782        // Fix the sub expression, which really has to be an
11783        // UnresolvedLookupExpr holding an overloaded member function
11784        // or template.
11785        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11786                                                       Found, Fn);
11787        if (SubExpr == UnOp->getSubExpr())
11788          return UnOp;
11789
11790        assert(isa<DeclRefExpr>(SubExpr)
11791               && "fixed to something other than a decl ref");
11792        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11793               && "fixed to a member ref with no nested name qualifier");
11794
11795        // We have taken the address of a pointer to member
11796        // function. Perform the computation here so that we get the
11797        // appropriate pointer to member type.
11798        QualType ClassType
11799          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11800        QualType MemPtrType
11801          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11802
11803        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11804                                           VK_RValue, OK_Ordinary,
11805                                           UnOp->getOperatorLoc());
11806      }
11807    }
11808    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11809                                                   Found, Fn);
11810    if (SubExpr == UnOp->getSubExpr())
11811      return UnOp;
11812
11813    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11814                                     Context.getPointerType(SubExpr->getType()),
11815                                       VK_RValue, OK_Ordinary,
11816                                       UnOp->getOperatorLoc());
11817  }
11818
11819  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11820    // FIXME: avoid copy.
11821    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11822    if (ULE->hasExplicitTemplateArgs()) {
11823      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11824      TemplateArgs = &TemplateArgsBuffer;
11825    }
11826
11827    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11828                                           ULE->getQualifierLoc(),
11829                                           ULE->getTemplateKeywordLoc(),
11830                                           Fn,
11831                                           /*enclosing*/ false, // FIXME?
11832                                           ULE->getNameLoc(),
11833                                           Fn->getType(),
11834                                           VK_LValue,
11835                                           Found.getDecl(),
11836                                           TemplateArgs);
11837    MarkDeclRefReferenced(DRE);
11838    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11839    return DRE;
11840  }
11841
11842  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11843    // FIXME: avoid copy.
11844    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11845    if (MemExpr->hasExplicitTemplateArgs()) {
11846      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11847      TemplateArgs = &TemplateArgsBuffer;
11848    }
11849
11850    Expr *Base;
11851
11852    // If we're filling in a static method where we used to have an
11853    // implicit member access, rewrite to a simple decl ref.
11854    if (MemExpr->isImplicitAccess()) {
11855      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11856        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11857                                               MemExpr->getQualifierLoc(),
11858                                               MemExpr->getTemplateKeywordLoc(),
11859                                               Fn,
11860                                               /*enclosing*/ false,
11861                                               MemExpr->getMemberLoc(),
11862                                               Fn->getType(),
11863                                               VK_LValue,
11864                                               Found.getDecl(),
11865                                               TemplateArgs);
11866        MarkDeclRefReferenced(DRE);
11867        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11868        return DRE;
11869      } else {
11870        SourceLocation Loc = MemExpr->getMemberLoc();
11871        if (MemExpr->getQualifier())
11872          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11873        CheckCXXThisCapture(Loc);
11874        Base = new (Context) CXXThisExpr(Loc,
11875                                         MemExpr->getBaseType(),
11876                                         /*isImplicit=*/true);
11877      }
11878    } else
11879      Base = MemExpr->getBase();
11880
11881    ExprValueKind valueKind;
11882    QualType type;
11883    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11884      valueKind = VK_LValue;
11885      type = Fn->getType();
11886    } else {
11887      valueKind = VK_RValue;
11888      type = Context.BoundMemberTy;
11889    }
11890
11891    MemberExpr *ME = MemberExpr::Create(Context, Base,
11892                                        MemExpr->isArrow(),
11893                                        MemExpr->getQualifierLoc(),
11894                                        MemExpr->getTemplateKeywordLoc(),
11895                                        Fn,
11896                                        Found,
11897                                        MemExpr->getMemberNameInfo(),
11898                                        TemplateArgs,
11899                                        type, valueKind, OK_Ordinary);
11900    ME->setHadMultipleCandidates(true);
11901    MarkMemberReferenced(ME);
11902    return ME;
11903  }
11904
11905  llvm_unreachable("Invalid reference to overloaded function");
11906}
11907
11908ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
11909                                                DeclAccessPair Found,
11910                                                FunctionDecl *Fn) {
11911  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
11912}
11913
11914} // end namespace clang
11915