SemaOverload.cpp revision 890f18a7faddc345128f3e081f1d08283f3ab58c
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (From->getType() == Context.OverloadTy) {
617    if (FunctionDecl *Fn
618          = ResolveAddressOfOverloadedFunction(From, ToType, false,
619                                               AccessPair)) {
620      // Address of overloaded function (C++ [over.over]).
621      SCS.First = ICK_Function_To_Pointer;
622
623      // We were able to resolve the address of the overloaded function,
624      // so we can convert to the type of that function.
625      FromType = Fn->getType();
626      if (ToType->isLValueReferenceType())
627        FromType = Context.getLValueReferenceType(FromType);
628      else if (ToType->isRValueReferenceType())
629        FromType = Context.getRValueReferenceType(FromType);
630      else if (ToType->isMemberPointerType()) {
631        // Resolve address only succeeds if both sides are member pointers,
632        // but it doesn't have to be the same class. See DR 247.
633        // Note that this means that the type of &Derived::fn can be
634        // Ret (Base::*)(Args) if the fn overload actually found is from the
635        // base class, even if it was brought into the derived class via a
636        // using declaration. The standard isn't clear on this issue at all.
637        CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
638        FromType = Context.getMemberPointerType(FromType,
639                      Context.getTypeDeclType(M->getParent()).getTypePtr());
640      } else {
641        FromType = Context.getPointerType(FromType);
642      }
643    } else {
644      return false;
645    }
646  } else {
647    // We don't require any conversions for the first step.
648    SCS.First = ICK_Identity;
649  }
650  SCS.setToType(0, FromType);
651
652  // The second conversion can be an integral promotion, floating
653  // point promotion, integral conversion, floating point conversion,
654  // floating-integral conversion, pointer conversion,
655  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
656  // For overloading in C, this can also be a "compatible-type"
657  // conversion.
658  bool IncompatibleObjC = false;
659  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
660    // The unqualified versions of the types are the same: there's no
661    // conversion to do.
662    SCS.Second = ICK_Identity;
663  } else if (IsIntegralPromotion(From, FromType, ToType)) {
664    // Integral promotion (C++ 4.5).
665    SCS.Second = ICK_Integral_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if (IsFloatingPointPromotion(FromType, ToType)) {
668    // Floating point promotion (C++ 4.6).
669    SCS.Second = ICK_Floating_Promotion;
670    FromType = ToType.getUnqualifiedType();
671  } else if (IsComplexPromotion(FromType, ToType)) {
672    // Complex promotion (Clang extension)
673    SCS.Second = ICK_Complex_Promotion;
674    FromType = ToType.getUnqualifiedType();
675  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
676           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
677    // Integral conversions (C++ 4.7).
678    SCS.Second = ICK_Integral_Conversion;
679    FromType = ToType.getUnqualifiedType();
680  } else if (FromType->isComplexType() && ToType->isComplexType()) {
681    // Complex conversions (C99 6.3.1.6)
682    SCS.Second = ICK_Complex_Conversion;
683    FromType = ToType.getUnqualifiedType();
684  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
685             (ToType->isComplexType() && FromType->isArithmeticType())) {
686    // Complex-real conversions (C99 6.3.1.7)
687    SCS.Second = ICK_Complex_Real;
688    FromType = ToType.getUnqualifiedType();
689  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
690    // Floating point conversions (C++ 4.8).
691    SCS.Second = ICK_Floating_Conversion;
692    FromType = ToType.getUnqualifiedType();
693  } else if ((FromType->isFloatingType() &&
694              ToType->isIntegralType() && (!ToType->isBooleanType() &&
695                                           !ToType->isEnumeralType())) ||
696             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
697              ToType->isFloatingType())) {
698    // Floating-integral conversions (C++ 4.9).
699    SCS.Second = ICK_Floating_Integral;
700    FromType = ToType.getUnqualifiedType();
701  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
702                                 FromType, IncompatibleObjC)) {
703    // Pointer conversions (C++ 4.10).
704    SCS.Second = ICK_Pointer_Conversion;
705    SCS.IncompatibleObjC = IncompatibleObjC;
706  } else if (IsMemberPointerConversion(From, FromType, ToType,
707                                       InOverloadResolution, FromType)) {
708    // Pointer to member conversions (4.11).
709    SCS.Second = ICK_Pointer_Member;
710  } else if (ToType->isBooleanType() &&
711             (FromType->isArithmeticType() ||
712              FromType->isEnumeralType() ||
713              FromType->isAnyPointerType() ||
714              FromType->isBlockPointerType() ||
715              FromType->isMemberPointerType() ||
716              FromType->isNullPtrType())) {
717    // Boolean conversions (C++ 4.12).
718    SCS.Second = ICK_Boolean_Conversion;
719    FromType = Context.BoolTy;
720  } else if (!getLangOptions().CPlusPlus &&
721             Context.typesAreCompatible(ToType, FromType)) {
722    // Compatible conversions (Clang extension for C function overloading)
723    SCS.Second = ICK_Compatible_Conversion;
724  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
725    // Treat a conversion that strips "noreturn" as an identity conversion.
726    SCS.Second = ICK_NoReturn_Adjustment;
727  } else {
728    // No second conversion required.
729    SCS.Second = ICK_Identity;
730  }
731  SCS.setToType(1, FromType);
732
733  QualType CanonFrom;
734  QualType CanonTo;
735  // The third conversion can be a qualification conversion (C++ 4p1).
736  if (IsQualificationConversion(FromType, ToType)) {
737    SCS.Third = ICK_Qualification;
738    FromType = ToType;
739    CanonFrom = Context.getCanonicalType(FromType);
740    CanonTo = Context.getCanonicalType(ToType);
741  } else {
742    // No conversion required
743    SCS.Third = ICK_Identity;
744
745    // C++ [over.best.ics]p6:
746    //   [...] Any difference in top-level cv-qualification is
747    //   subsumed by the initialization itself and does not constitute
748    //   a conversion. [...]
749    CanonFrom = Context.getCanonicalType(FromType);
750    CanonTo = Context.getCanonicalType(ToType);
751    if (CanonFrom.getLocalUnqualifiedType()
752                                       == CanonTo.getLocalUnqualifiedType() &&
753        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
754      FromType = ToType;
755      CanonFrom = CanonTo;
756    }
757  }
758  SCS.setToType(2, FromType);
759
760  // If we have not converted the argument type to the parameter type,
761  // this is a bad conversion sequence.
762  if (CanonFrom != CanonTo)
763    return false;
764
765  return true;
766}
767
768/// IsIntegralPromotion - Determines whether the conversion from the
769/// expression From (whose potentially-adjusted type is FromType) to
770/// ToType is an integral promotion (C++ 4.5). If so, returns true and
771/// sets PromotedType to the promoted type.
772bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
773  const BuiltinType *To = ToType->getAs<BuiltinType>();
774  // All integers are built-in.
775  if (!To) {
776    return false;
777  }
778
779  // An rvalue of type char, signed char, unsigned char, short int, or
780  // unsigned short int can be converted to an rvalue of type int if
781  // int can represent all the values of the source type; otherwise,
782  // the source rvalue can be converted to an rvalue of type unsigned
783  // int (C++ 4.5p1).
784  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
785      !FromType->isEnumeralType()) {
786    if (// We can promote any signed, promotable integer type to an int
787        (FromType->isSignedIntegerType() ||
788         // We can promote any unsigned integer type whose size is
789         // less than int to an int.
790         (!FromType->isSignedIntegerType() &&
791          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
792      return To->getKind() == BuiltinType::Int;
793    }
794
795    return To->getKind() == BuiltinType::UInt;
796  }
797
798  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
799  // can be converted to an rvalue of the first of the following types
800  // that can represent all the values of its underlying type: int,
801  // unsigned int, long, or unsigned long (C++ 4.5p2).
802
803  // We pre-calculate the promotion type for enum types.
804  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
805    if (ToType->isIntegerType())
806      return Context.hasSameUnqualifiedType(ToType,
807                                FromEnumType->getDecl()->getPromotionType());
808
809  if (FromType->isWideCharType() && ToType->isIntegerType()) {
810    // Determine whether the type we're converting from is signed or
811    // unsigned.
812    bool FromIsSigned;
813    uint64_t FromSize = Context.getTypeSize(FromType);
814
815    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
816    FromIsSigned = true;
817
818    // The types we'll try to promote to, in the appropriate
819    // order. Try each of these types.
820    QualType PromoteTypes[6] = {
821      Context.IntTy, Context.UnsignedIntTy,
822      Context.LongTy, Context.UnsignedLongTy ,
823      Context.LongLongTy, Context.UnsignedLongLongTy
824    };
825    for (int Idx = 0; Idx < 6; ++Idx) {
826      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
827      if (FromSize < ToSize ||
828          (FromSize == ToSize &&
829           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
830        // We found the type that we can promote to. If this is the
831        // type we wanted, we have a promotion. Otherwise, no
832        // promotion.
833        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
834      }
835    }
836  }
837
838  // An rvalue for an integral bit-field (9.6) can be converted to an
839  // rvalue of type int if int can represent all the values of the
840  // bit-field; otherwise, it can be converted to unsigned int if
841  // unsigned int can represent all the values of the bit-field. If
842  // the bit-field is larger yet, no integral promotion applies to
843  // it. If the bit-field has an enumerated type, it is treated as any
844  // other value of that type for promotion purposes (C++ 4.5p3).
845  // FIXME: We should delay checking of bit-fields until we actually perform the
846  // conversion.
847  using llvm::APSInt;
848  if (From)
849    if (FieldDecl *MemberDecl = From->getBitField()) {
850      APSInt BitWidth;
851      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
852          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
853        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
854        ToSize = Context.getTypeSize(ToType);
855
856        // Are we promoting to an int from a bitfield that fits in an int?
857        if (BitWidth < ToSize ||
858            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
859          return To->getKind() == BuiltinType::Int;
860        }
861
862        // Are we promoting to an unsigned int from an unsigned bitfield
863        // that fits into an unsigned int?
864        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
865          return To->getKind() == BuiltinType::UInt;
866        }
867
868        return false;
869      }
870    }
871
872  // An rvalue of type bool can be converted to an rvalue of type int,
873  // with false becoming zero and true becoming one (C++ 4.5p4).
874  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
875    return true;
876  }
877
878  return false;
879}
880
881/// IsFloatingPointPromotion - Determines whether the conversion from
882/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
883/// returns true and sets PromotedType to the promoted type.
884bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
885  /// An rvalue of type float can be converted to an rvalue of type
886  /// double. (C++ 4.6p1).
887  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
888    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
889      if (FromBuiltin->getKind() == BuiltinType::Float &&
890          ToBuiltin->getKind() == BuiltinType::Double)
891        return true;
892
893      // C99 6.3.1.5p1:
894      //   When a float is promoted to double or long double, or a
895      //   double is promoted to long double [...].
896      if (!getLangOptions().CPlusPlus &&
897          (FromBuiltin->getKind() == BuiltinType::Float ||
898           FromBuiltin->getKind() == BuiltinType::Double) &&
899          (ToBuiltin->getKind() == BuiltinType::LongDouble))
900        return true;
901    }
902
903  return false;
904}
905
906/// \brief Determine if a conversion is a complex promotion.
907///
908/// A complex promotion is defined as a complex -> complex conversion
909/// where the conversion between the underlying real types is a
910/// floating-point or integral promotion.
911bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
912  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
913  if (!FromComplex)
914    return false;
915
916  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
917  if (!ToComplex)
918    return false;
919
920  return IsFloatingPointPromotion(FromComplex->getElementType(),
921                                  ToComplex->getElementType()) ||
922    IsIntegralPromotion(0, FromComplex->getElementType(),
923                        ToComplex->getElementType());
924}
925
926/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
927/// the pointer type FromPtr to a pointer to type ToPointee, with the
928/// same type qualifiers as FromPtr has on its pointee type. ToType,
929/// if non-empty, will be a pointer to ToType that may or may not have
930/// the right set of qualifiers on its pointee.
931static QualType
932BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
933                                   QualType ToPointee, QualType ToType,
934                                   ASTContext &Context) {
935  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
936  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
937  Qualifiers Quals = CanonFromPointee.getQualifiers();
938
939  // Exact qualifier match -> return the pointer type we're converting to.
940  if (CanonToPointee.getLocalQualifiers() == Quals) {
941    // ToType is exactly what we need. Return it.
942    if (!ToType.isNull())
943      return ToType;
944
945    // Build a pointer to ToPointee. It has the right qualifiers
946    // already.
947    return Context.getPointerType(ToPointee);
948  }
949
950  // Just build a canonical type that has the right qualifiers.
951  return Context.getPointerType(
952         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
953                                  Quals));
954}
955
956/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
957/// the FromType, which is an objective-c pointer, to ToType, which may or may
958/// not have the right set of qualifiers.
959static QualType
960BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
961                                             QualType ToType,
962                                             ASTContext &Context) {
963  QualType CanonFromType = Context.getCanonicalType(FromType);
964  QualType CanonToType = Context.getCanonicalType(ToType);
965  Qualifiers Quals = CanonFromType.getQualifiers();
966
967  // Exact qualifier match -> return the pointer type we're converting to.
968  if (CanonToType.getLocalQualifiers() == Quals)
969    return ToType;
970
971  // Just build a canonical type that has the right qualifiers.
972  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
973}
974
975static bool isNullPointerConstantForConversion(Expr *Expr,
976                                               bool InOverloadResolution,
977                                               ASTContext &Context) {
978  // Handle value-dependent integral null pointer constants correctly.
979  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
980  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
981      Expr->getType()->isIntegralType())
982    return !InOverloadResolution;
983
984  return Expr->isNullPointerConstant(Context,
985                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
986                                        : Expr::NPC_ValueDependentIsNull);
987}
988
989/// IsPointerConversion - Determines whether the conversion of the
990/// expression From, which has the (possibly adjusted) type FromType,
991/// can be converted to the type ToType via a pointer conversion (C++
992/// 4.10). If so, returns true and places the converted type (that
993/// might differ from ToType in its cv-qualifiers at some level) into
994/// ConvertedType.
995///
996/// This routine also supports conversions to and from block pointers
997/// and conversions with Objective-C's 'id', 'id<protocols...>', and
998/// pointers to interfaces. FIXME: Once we've determined the
999/// appropriate overloading rules for Objective-C, we may want to
1000/// split the Objective-C checks into a different routine; however,
1001/// GCC seems to consider all of these conversions to be pointer
1002/// conversions, so for now they live here. IncompatibleObjC will be
1003/// set if the conversion is an allowed Objective-C conversion that
1004/// should result in a warning.
1005bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1006                               bool InOverloadResolution,
1007                               QualType& ConvertedType,
1008                               bool &IncompatibleObjC) {
1009  IncompatibleObjC = false;
1010  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1011    return true;
1012
1013  // Conversion from a null pointer constant to any Objective-C pointer type.
1014  if (ToType->isObjCObjectPointerType() &&
1015      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1016    ConvertedType = ToType;
1017    return true;
1018  }
1019
1020  // Blocks: Block pointers can be converted to void*.
1021  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1022      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1023    ConvertedType = ToType;
1024    return true;
1025  }
1026  // Blocks: A null pointer constant can be converted to a block
1027  // pointer type.
1028  if (ToType->isBlockPointerType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  // If the left-hand-side is nullptr_t, the right side can be a null
1035  // pointer constant.
1036  if (ToType->isNullPtrType() &&
1037      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1038    ConvertedType = ToType;
1039    return true;
1040  }
1041
1042  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1043  if (!ToTypePtr)
1044    return false;
1045
1046  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1047  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1048    ConvertedType = ToType;
1049    return true;
1050  }
1051
1052  // Beyond this point, both types need to be pointers
1053  // , including objective-c pointers.
1054  QualType ToPointeeType = ToTypePtr->getPointeeType();
1055  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1056    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1057                                                       ToType, Context);
1058    return true;
1059
1060  }
1061  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1062  if (!FromTypePtr)
1063    return false;
1064
1065  QualType FromPointeeType = FromTypePtr->getPointeeType();
1066
1067  // An rvalue of type "pointer to cv T," where T is an object type,
1068  // can be converted to an rvalue of type "pointer to cv void" (C++
1069  // 4.10p2).
1070  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1071    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1072                                                       ToPointeeType,
1073                                                       ToType, Context);
1074    return true;
1075  }
1076
1077  // When we're overloading in C, we allow a special kind of pointer
1078  // conversion for compatible-but-not-identical pointee types.
1079  if (!getLangOptions().CPlusPlus &&
1080      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1081    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1082                                                       ToPointeeType,
1083                                                       ToType, Context);
1084    return true;
1085  }
1086
1087  // C++ [conv.ptr]p3:
1088  //
1089  //   An rvalue of type "pointer to cv D," where D is a class type,
1090  //   can be converted to an rvalue of type "pointer to cv B," where
1091  //   B is a base class (clause 10) of D. If B is an inaccessible
1092  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1093  //   necessitates this conversion is ill-formed. The result of the
1094  //   conversion is a pointer to the base class sub-object of the
1095  //   derived class object. The null pointer value is converted to
1096  //   the null pointer value of the destination type.
1097  //
1098  // Note that we do not check for ambiguity or inaccessibility
1099  // here. That is handled by CheckPointerConversion.
1100  if (getLangOptions().CPlusPlus &&
1101      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1102      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1103      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1104      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1105    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1106                                                       ToPointeeType,
1107                                                       ToType, Context);
1108    return true;
1109  }
1110
1111  return false;
1112}
1113
1114/// isObjCPointerConversion - Determines whether this is an
1115/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1116/// with the same arguments and return values.
1117bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1118                                   QualType& ConvertedType,
1119                                   bool &IncompatibleObjC) {
1120  if (!getLangOptions().ObjC1)
1121    return false;
1122
1123  // First, we handle all conversions on ObjC object pointer types.
1124  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1125  const ObjCObjectPointerType *FromObjCPtr =
1126    FromType->getAs<ObjCObjectPointerType>();
1127
1128  if (ToObjCPtr && FromObjCPtr) {
1129    // Objective C++: We're able to convert between "id" or "Class" and a
1130    // pointer to any interface (in both directions).
1131    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Conversions with Objective-C's id<...>.
1136    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1137         ToObjCPtr->isObjCQualifiedIdType()) &&
1138        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1139                                                  /*compare=*/false)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143    // Objective C++: We're able to convert from a pointer to an
1144    // interface to a pointer to a different interface.
1145    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1146      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1147      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1148      if (getLangOptions().CPlusPlus && LHS && RHS &&
1149          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1150                                                FromObjCPtr->getPointeeType()))
1151        return false;
1152      ConvertedType = ToType;
1153      return true;
1154    }
1155
1156    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1157      // Okay: this is some kind of implicit downcast of Objective-C
1158      // interfaces, which is permitted. However, we're going to
1159      // complain about it.
1160      IncompatibleObjC = true;
1161      ConvertedType = FromType;
1162      return true;
1163    }
1164  }
1165  // Beyond this point, both types need to be C pointers or block pointers.
1166  QualType ToPointeeType;
1167  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1168    ToPointeeType = ToCPtr->getPointeeType();
1169  else if (const BlockPointerType *ToBlockPtr =
1170            ToType->getAs<BlockPointerType>()) {
1171    // Objective C++: We're able to convert from a pointer to any object
1172    // to a block pointer type.
1173    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1174      ConvertedType = ToType;
1175      return true;
1176    }
1177    ToPointeeType = ToBlockPtr->getPointeeType();
1178  }
1179  else if (FromType->getAs<BlockPointerType>() &&
1180           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1181    // Objective C++: We're able to convert from a block pointer type to a
1182    // pointer to any object.
1183    ConvertedType = ToType;
1184    return true;
1185  }
1186  else
1187    return false;
1188
1189  QualType FromPointeeType;
1190  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1191    FromPointeeType = FromCPtr->getPointeeType();
1192  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1193    FromPointeeType = FromBlockPtr->getPointeeType();
1194  else
1195    return false;
1196
1197  // If we have pointers to pointers, recursively check whether this
1198  // is an Objective-C conversion.
1199  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1200      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1201                              IncompatibleObjC)) {
1202    // We always complain about this conversion.
1203    IncompatibleObjC = true;
1204    ConvertedType = ToType;
1205    return true;
1206  }
1207  // Allow conversion of pointee being objective-c pointer to another one;
1208  // as in I* to id.
1209  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1210      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1211      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1212                              IncompatibleObjC)) {
1213    ConvertedType = ToType;
1214    return true;
1215  }
1216
1217  // If we have pointers to functions or blocks, check whether the only
1218  // differences in the argument and result types are in Objective-C
1219  // pointer conversions. If so, we permit the conversion (but
1220  // complain about it).
1221  const FunctionProtoType *FromFunctionType
1222    = FromPointeeType->getAs<FunctionProtoType>();
1223  const FunctionProtoType *ToFunctionType
1224    = ToPointeeType->getAs<FunctionProtoType>();
1225  if (FromFunctionType && ToFunctionType) {
1226    // If the function types are exactly the same, this isn't an
1227    // Objective-C pointer conversion.
1228    if (Context.getCanonicalType(FromPointeeType)
1229          == Context.getCanonicalType(ToPointeeType))
1230      return false;
1231
1232    // Perform the quick checks that will tell us whether these
1233    // function types are obviously different.
1234    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1235        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1236        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1237      return false;
1238
1239    bool HasObjCConversion = false;
1240    if (Context.getCanonicalType(FromFunctionType->getResultType())
1241          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1242      // Okay, the types match exactly. Nothing to do.
1243    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1244                                       ToFunctionType->getResultType(),
1245                                       ConvertedType, IncompatibleObjC)) {
1246      // Okay, we have an Objective-C pointer conversion.
1247      HasObjCConversion = true;
1248    } else {
1249      // Function types are too different. Abort.
1250      return false;
1251    }
1252
1253    // Check argument types.
1254    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1255         ArgIdx != NumArgs; ++ArgIdx) {
1256      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1257      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1258      if (Context.getCanonicalType(FromArgType)
1259            == Context.getCanonicalType(ToArgType)) {
1260        // Okay, the types match exactly. Nothing to do.
1261      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1262                                         ConvertedType, IncompatibleObjC)) {
1263        // Okay, we have an Objective-C pointer conversion.
1264        HasObjCConversion = true;
1265      } else {
1266        // Argument types are too different. Abort.
1267        return false;
1268      }
1269    }
1270
1271    if (HasObjCConversion) {
1272      // We had an Objective-C conversion. Allow this pointer
1273      // conversion, but complain about it.
1274      ConvertedType = ToType;
1275      IncompatibleObjC = true;
1276      return true;
1277    }
1278  }
1279
1280  return false;
1281}
1282
1283/// CheckPointerConversion - Check the pointer conversion from the
1284/// expression From to the type ToType. This routine checks for
1285/// ambiguous or inaccessible derived-to-base pointer
1286/// conversions for which IsPointerConversion has already returned
1287/// true. It returns true and produces a diagnostic if there was an
1288/// error, or returns false otherwise.
1289bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1290                                  CastExpr::CastKind &Kind,
1291                                  bool IgnoreBaseAccess) {
1292  QualType FromType = From->getType();
1293
1294  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1295    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1296      QualType FromPointeeType = FromPtrType->getPointeeType(),
1297               ToPointeeType   = ToPtrType->getPointeeType();
1298
1299      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1300          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1301        // We must have a derived-to-base conversion. Check an
1302        // ambiguous or inaccessible conversion.
1303        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1304                                         From->getExprLoc(),
1305                                         From->getSourceRange(),
1306                                         IgnoreBaseAccess))
1307          return true;
1308
1309        // The conversion was successful.
1310        Kind = CastExpr::CK_DerivedToBase;
1311      }
1312    }
1313  if (const ObjCObjectPointerType *FromPtrType =
1314        FromType->getAs<ObjCObjectPointerType>())
1315    if (const ObjCObjectPointerType *ToPtrType =
1316          ToType->getAs<ObjCObjectPointerType>()) {
1317      // Objective-C++ conversions are always okay.
1318      // FIXME: We should have a different class of conversions for the
1319      // Objective-C++ implicit conversions.
1320      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1321        return false;
1322
1323  }
1324  return false;
1325}
1326
1327/// IsMemberPointerConversion - Determines whether the conversion of the
1328/// expression From, which has the (possibly adjusted) type FromType, can be
1329/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1330/// If so, returns true and places the converted type (that might differ from
1331/// ToType in its cv-qualifiers at some level) into ConvertedType.
1332bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1333                                     QualType ToType,
1334                                     bool InOverloadResolution,
1335                                     QualType &ConvertedType) {
1336  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1337  if (!ToTypePtr)
1338    return false;
1339
1340  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1341  if (From->isNullPointerConstant(Context,
1342                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1343                                        : Expr::NPC_ValueDependentIsNull)) {
1344    ConvertedType = ToType;
1345    return true;
1346  }
1347
1348  // Otherwise, both types have to be member pointers.
1349  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1350  if (!FromTypePtr)
1351    return false;
1352
1353  // A pointer to member of B can be converted to a pointer to member of D,
1354  // where D is derived from B (C++ 4.11p2).
1355  QualType FromClass(FromTypePtr->getClass(), 0);
1356  QualType ToClass(ToTypePtr->getClass(), 0);
1357  // FIXME: What happens when these are dependent? Is this function even called?
1358
1359  if (IsDerivedFrom(ToClass, FromClass)) {
1360    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1361                                                 ToClass.getTypePtr());
1362    return true;
1363  }
1364
1365  return false;
1366}
1367
1368/// CheckMemberPointerConversion - Check the member pointer conversion from the
1369/// expression From to the type ToType. This routine checks for ambiguous or
1370/// virtual or inaccessible base-to-derived member pointer conversions
1371/// for which IsMemberPointerConversion has already returned true. It returns
1372/// true and produces a diagnostic if there was an error, or returns false
1373/// otherwise.
1374bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1375                                        CastExpr::CastKind &Kind,
1376                                        bool IgnoreBaseAccess) {
1377  QualType FromType = From->getType();
1378  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1379  if (!FromPtrType) {
1380    // This must be a null pointer to member pointer conversion
1381    assert(From->isNullPointerConstant(Context,
1382                                       Expr::NPC_ValueDependentIsNull) &&
1383           "Expr must be null pointer constant!");
1384    Kind = CastExpr::CK_NullToMemberPointer;
1385    return false;
1386  }
1387
1388  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1389  assert(ToPtrType && "No member pointer cast has a target type "
1390                      "that is not a member pointer.");
1391
1392  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1393  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1394
1395  // FIXME: What about dependent types?
1396  assert(FromClass->isRecordType() && "Pointer into non-class.");
1397  assert(ToClass->isRecordType() && "Pointer into non-class.");
1398
1399  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1400                     /*DetectVirtual=*/true);
1401  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1402  assert(DerivationOkay &&
1403         "Should not have been called if derivation isn't OK.");
1404  (void)DerivationOkay;
1405
1406  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1407                                  getUnqualifiedType())) {
1408    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1409    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1410      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1411    return true;
1412  }
1413
1414  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1415    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1416      << FromClass << ToClass << QualType(VBase, 0)
1417      << From->getSourceRange();
1418    return true;
1419  }
1420
1421  if (!IgnoreBaseAccess)
1422    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1423                         Paths.front(),
1424                         diag::err_downcast_from_inaccessible_base);
1425
1426  // Must be a base to derived member conversion.
1427  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1428  return false;
1429}
1430
1431/// IsQualificationConversion - Determines whether the conversion from
1432/// an rvalue of type FromType to ToType is a qualification conversion
1433/// (C++ 4.4).
1434bool
1435Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1436  FromType = Context.getCanonicalType(FromType);
1437  ToType = Context.getCanonicalType(ToType);
1438
1439  // If FromType and ToType are the same type, this is not a
1440  // qualification conversion.
1441  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1442    return false;
1443
1444  // (C++ 4.4p4):
1445  //   A conversion can add cv-qualifiers at levels other than the first
1446  //   in multi-level pointers, subject to the following rules: [...]
1447  bool PreviousToQualsIncludeConst = true;
1448  bool UnwrappedAnyPointer = false;
1449  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1450    // Within each iteration of the loop, we check the qualifiers to
1451    // determine if this still looks like a qualification
1452    // conversion. Then, if all is well, we unwrap one more level of
1453    // pointers or pointers-to-members and do it all again
1454    // until there are no more pointers or pointers-to-members left to
1455    // unwrap.
1456    UnwrappedAnyPointer = true;
1457
1458    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1459    //      2,j, and similarly for volatile.
1460    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1461      return false;
1462
1463    //   -- if the cv 1,j and cv 2,j are different, then const is in
1464    //      every cv for 0 < k < j.
1465    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1466        && !PreviousToQualsIncludeConst)
1467      return false;
1468
1469    // Keep track of whether all prior cv-qualifiers in the "to" type
1470    // include const.
1471    PreviousToQualsIncludeConst
1472      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1473  }
1474
1475  // We are left with FromType and ToType being the pointee types
1476  // after unwrapping the original FromType and ToType the same number
1477  // of types. If we unwrapped any pointers, and if FromType and
1478  // ToType have the same unqualified type (since we checked
1479  // qualifiers above), then this is a qualification conversion.
1480  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1481}
1482
1483/// Determines whether there is a user-defined conversion sequence
1484/// (C++ [over.ics.user]) that converts expression From to the type
1485/// ToType. If such a conversion exists, User will contain the
1486/// user-defined conversion sequence that performs such a conversion
1487/// and this routine will return true. Otherwise, this routine returns
1488/// false and User is unspecified.
1489///
1490/// \param AllowConversionFunctions true if the conversion should
1491/// consider conversion functions at all. If false, only constructors
1492/// will be considered.
1493///
1494/// \param AllowExplicit  true if the conversion should consider C++0x
1495/// "explicit" conversion functions as well as non-explicit conversion
1496/// functions (C++0x [class.conv.fct]p2).
1497///
1498/// \param UserCast true if looking for user defined conversion for a static
1499/// cast.
1500OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1501                                          UserDefinedConversionSequence& User,
1502                                            OverloadCandidateSet& CandidateSet,
1503                                                bool AllowConversionFunctions,
1504                                                bool AllowExplicit,
1505                                                bool UserCast) {
1506  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1507    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1508      // We're not going to find any constructors.
1509    } else if (CXXRecordDecl *ToRecordDecl
1510                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1511      // C++ [over.match.ctor]p1:
1512      //   When objects of class type are direct-initialized (8.5), or
1513      //   copy-initialized from an expression of the same or a
1514      //   derived class type (8.5), overload resolution selects the
1515      //   constructor. [...] For copy-initialization, the candidate
1516      //   functions are all the converting constructors (12.3.1) of
1517      //   that class. The argument list is the expression-list within
1518      //   the parentheses of the initializer.
1519      bool SuppressUserConversions = !UserCast;
1520      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1521          IsDerivedFrom(From->getType(), ToType)) {
1522        SuppressUserConversions = false;
1523        AllowConversionFunctions = false;
1524      }
1525
1526      DeclarationName ConstructorName
1527        = Context.DeclarationNames.getCXXConstructorName(
1528                          Context.getCanonicalType(ToType).getUnqualifiedType());
1529      DeclContext::lookup_iterator Con, ConEnd;
1530      for (llvm::tie(Con, ConEnd)
1531             = ToRecordDecl->lookup(ConstructorName);
1532           Con != ConEnd; ++Con) {
1533        NamedDecl *D = *Con;
1534        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1535
1536        // Find the constructor (which may be a template).
1537        CXXConstructorDecl *Constructor = 0;
1538        FunctionTemplateDecl *ConstructorTmpl
1539          = dyn_cast<FunctionTemplateDecl>(D);
1540        if (ConstructorTmpl)
1541          Constructor
1542            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1543        else
1544          Constructor = cast<CXXConstructorDecl>(D);
1545
1546        if (!Constructor->isInvalidDecl() &&
1547            Constructor->isConvertingConstructor(AllowExplicit)) {
1548          if (ConstructorTmpl)
1549            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1550                                         /*ExplicitArgs*/ 0,
1551                                         &From, 1, CandidateSet,
1552                                         SuppressUserConversions);
1553          else
1554            // Allow one user-defined conversion when user specifies a
1555            // From->ToType conversion via an static cast (c-style, etc).
1556            AddOverloadCandidate(Constructor, FoundDecl,
1557                                 &From, 1, CandidateSet,
1558                                 SuppressUserConversions, false);
1559        }
1560      }
1561    }
1562  }
1563
1564  if (!AllowConversionFunctions) {
1565    // Don't allow any conversion functions to enter the overload set.
1566  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1567                                 PDiag(0)
1568                                   << From->getSourceRange())) {
1569    // No conversion functions from incomplete types.
1570  } else if (const RecordType *FromRecordType
1571               = From->getType()->getAs<RecordType>()) {
1572    if (CXXRecordDecl *FromRecordDecl
1573         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1574      // Add all of the conversion functions as candidates.
1575      const UnresolvedSetImpl *Conversions
1576        = FromRecordDecl->getVisibleConversionFunctions();
1577      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1578             E = Conversions->end(); I != E; ++I) {
1579        DeclAccessPair FoundDecl = I.getPair();
1580        NamedDecl *D = FoundDecl.getDecl();
1581        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1582        if (isa<UsingShadowDecl>(D))
1583          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1584
1585        CXXConversionDecl *Conv;
1586        FunctionTemplateDecl *ConvTemplate;
1587        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1588          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1589        else
1590          Conv = cast<CXXConversionDecl>(D);
1591
1592        if (AllowExplicit || !Conv->isExplicit()) {
1593          if (ConvTemplate)
1594            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1595                                           ActingContext, From, ToType,
1596                                           CandidateSet);
1597          else
1598            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1599                                   From, ToType, CandidateSet);
1600        }
1601      }
1602    }
1603  }
1604
1605  OverloadCandidateSet::iterator Best;
1606  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1607    case OR_Success:
1608      // Record the standard conversion we used and the conversion function.
1609      if (CXXConstructorDecl *Constructor
1610            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1611        // C++ [over.ics.user]p1:
1612        //   If the user-defined conversion is specified by a
1613        //   constructor (12.3.1), the initial standard conversion
1614        //   sequence converts the source type to the type required by
1615        //   the argument of the constructor.
1616        //
1617        QualType ThisType = Constructor->getThisType(Context);
1618        if (Best->Conversions[0].isEllipsis())
1619          User.EllipsisConversion = true;
1620        else {
1621          User.Before = Best->Conversions[0].Standard;
1622          User.EllipsisConversion = false;
1623        }
1624        User.ConversionFunction = Constructor;
1625        User.After.setAsIdentityConversion();
1626        User.After.setFromType(
1627          ThisType->getAs<PointerType>()->getPointeeType());
1628        User.After.setAllToTypes(ToType);
1629        return OR_Success;
1630      } else if (CXXConversionDecl *Conversion
1631                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1632        // C++ [over.ics.user]p1:
1633        //
1634        //   [...] If the user-defined conversion is specified by a
1635        //   conversion function (12.3.2), the initial standard
1636        //   conversion sequence converts the source type to the
1637        //   implicit object parameter of the conversion function.
1638        User.Before = Best->Conversions[0].Standard;
1639        User.ConversionFunction = Conversion;
1640        User.EllipsisConversion = false;
1641
1642        // C++ [over.ics.user]p2:
1643        //   The second standard conversion sequence converts the
1644        //   result of the user-defined conversion to the target type
1645        //   for the sequence. Since an implicit conversion sequence
1646        //   is an initialization, the special rules for
1647        //   initialization by user-defined conversion apply when
1648        //   selecting the best user-defined conversion for a
1649        //   user-defined conversion sequence (see 13.3.3 and
1650        //   13.3.3.1).
1651        User.After = Best->FinalConversion;
1652        return OR_Success;
1653      } else {
1654        assert(false && "Not a constructor or conversion function?");
1655        return OR_No_Viable_Function;
1656      }
1657
1658    case OR_No_Viable_Function:
1659      return OR_No_Viable_Function;
1660    case OR_Deleted:
1661      // No conversion here! We're done.
1662      return OR_Deleted;
1663
1664    case OR_Ambiguous:
1665      return OR_Ambiguous;
1666    }
1667
1668  return OR_No_Viable_Function;
1669}
1670
1671bool
1672Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1673  ImplicitConversionSequence ICS;
1674  OverloadCandidateSet CandidateSet(From->getExprLoc());
1675  OverloadingResult OvResult =
1676    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1677                            CandidateSet, true, false, false);
1678  if (OvResult == OR_Ambiguous)
1679    Diag(From->getSourceRange().getBegin(),
1680         diag::err_typecheck_ambiguous_condition)
1681          << From->getType() << ToType << From->getSourceRange();
1682  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1683    Diag(From->getSourceRange().getBegin(),
1684         diag::err_typecheck_nonviable_condition)
1685    << From->getType() << ToType << From->getSourceRange();
1686  else
1687    return false;
1688  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1689  return true;
1690}
1691
1692/// CompareImplicitConversionSequences - Compare two implicit
1693/// conversion sequences to determine whether one is better than the
1694/// other or if they are indistinguishable (C++ 13.3.3.2).
1695ImplicitConversionSequence::CompareKind
1696Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1697                                         const ImplicitConversionSequence& ICS2)
1698{
1699  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1700  // conversion sequences (as defined in 13.3.3.1)
1701  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1702  //      conversion sequence than a user-defined conversion sequence or
1703  //      an ellipsis conversion sequence, and
1704  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1705  //      conversion sequence than an ellipsis conversion sequence
1706  //      (13.3.3.1.3).
1707  //
1708  // C++0x [over.best.ics]p10:
1709  //   For the purpose of ranking implicit conversion sequences as
1710  //   described in 13.3.3.2, the ambiguous conversion sequence is
1711  //   treated as a user-defined sequence that is indistinguishable
1712  //   from any other user-defined conversion sequence.
1713  if (ICS1.getKind() < ICS2.getKind()) {
1714    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1715      return ImplicitConversionSequence::Better;
1716  } else if (ICS2.getKind() < ICS1.getKind()) {
1717    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1718      return ImplicitConversionSequence::Worse;
1719  }
1720
1721  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1722    return ImplicitConversionSequence::Indistinguishable;
1723
1724  // Two implicit conversion sequences of the same form are
1725  // indistinguishable conversion sequences unless one of the
1726  // following rules apply: (C++ 13.3.3.2p3):
1727  if (ICS1.isStandard())
1728    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1729  else if (ICS1.isUserDefined()) {
1730    // User-defined conversion sequence U1 is a better conversion
1731    // sequence than another user-defined conversion sequence U2 if
1732    // they contain the same user-defined conversion function or
1733    // constructor and if the second standard conversion sequence of
1734    // U1 is better than the second standard conversion sequence of
1735    // U2 (C++ 13.3.3.2p3).
1736    if (ICS1.UserDefined.ConversionFunction ==
1737          ICS2.UserDefined.ConversionFunction)
1738      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1739                                                ICS2.UserDefined.After);
1740  }
1741
1742  return ImplicitConversionSequence::Indistinguishable;
1743}
1744
1745// Per 13.3.3.2p3, compare the given standard conversion sequences to
1746// determine if one is a proper subset of the other.
1747static ImplicitConversionSequence::CompareKind
1748compareStandardConversionSubsets(ASTContext &Context,
1749                                 const StandardConversionSequence& SCS1,
1750                                 const StandardConversionSequence& SCS2) {
1751  ImplicitConversionSequence::CompareKind Result
1752    = ImplicitConversionSequence::Indistinguishable;
1753
1754  if (SCS1.Second != SCS2.Second) {
1755    if (SCS1.Second == ICK_Identity)
1756      Result = ImplicitConversionSequence::Better;
1757    else if (SCS2.Second == ICK_Identity)
1758      Result = ImplicitConversionSequence::Worse;
1759    else
1760      return ImplicitConversionSequence::Indistinguishable;
1761  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1762    return ImplicitConversionSequence::Indistinguishable;
1763
1764  if (SCS1.Third == SCS2.Third) {
1765    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1766                             : ImplicitConversionSequence::Indistinguishable;
1767  }
1768
1769  if (SCS1.Third == ICK_Identity)
1770    return Result == ImplicitConversionSequence::Worse
1771             ? ImplicitConversionSequence::Indistinguishable
1772             : ImplicitConversionSequence::Better;
1773
1774  if (SCS2.Third == ICK_Identity)
1775    return Result == ImplicitConversionSequence::Better
1776             ? ImplicitConversionSequence::Indistinguishable
1777             : ImplicitConversionSequence::Worse;
1778
1779  return ImplicitConversionSequence::Indistinguishable;
1780}
1781
1782/// CompareStandardConversionSequences - Compare two standard
1783/// conversion sequences to determine whether one is better than the
1784/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1785ImplicitConversionSequence::CompareKind
1786Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1787                                         const StandardConversionSequence& SCS2)
1788{
1789  // Standard conversion sequence S1 is a better conversion sequence
1790  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1791
1792  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1793  //     sequences in the canonical form defined by 13.3.3.1.1,
1794  //     excluding any Lvalue Transformation; the identity conversion
1795  //     sequence is considered to be a subsequence of any
1796  //     non-identity conversion sequence) or, if not that,
1797  if (ImplicitConversionSequence::CompareKind CK
1798        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1799    return CK;
1800
1801  //  -- the rank of S1 is better than the rank of S2 (by the rules
1802  //     defined below), or, if not that,
1803  ImplicitConversionRank Rank1 = SCS1.getRank();
1804  ImplicitConversionRank Rank2 = SCS2.getRank();
1805  if (Rank1 < Rank2)
1806    return ImplicitConversionSequence::Better;
1807  else if (Rank2 < Rank1)
1808    return ImplicitConversionSequence::Worse;
1809
1810  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1811  // are indistinguishable unless one of the following rules
1812  // applies:
1813
1814  //   A conversion that is not a conversion of a pointer, or
1815  //   pointer to member, to bool is better than another conversion
1816  //   that is such a conversion.
1817  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1818    return SCS2.isPointerConversionToBool()
1819             ? ImplicitConversionSequence::Better
1820             : ImplicitConversionSequence::Worse;
1821
1822  // C++ [over.ics.rank]p4b2:
1823  //
1824  //   If class B is derived directly or indirectly from class A,
1825  //   conversion of B* to A* is better than conversion of B* to
1826  //   void*, and conversion of A* to void* is better than conversion
1827  //   of B* to void*.
1828  bool SCS1ConvertsToVoid
1829    = SCS1.isPointerConversionToVoidPointer(Context);
1830  bool SCS2ConvertsToVoid
1831    = SCS2.isPointerConversionToVoidPointer(Context);
1832  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1833    // Exactly one of the conversion sequences is a conversion to
1834    // a void pointer; it's the worse conversion.
1835    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1836                              : ImplicitConversionSequence::Worse;
1837  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1838    // Neither conversion sequence converts to a void pointer; compare
1839    // their derived-to-base conversions.
1840    if (ImplicitConversionSequence::CompareKind DerivedCK
1841          = CompareDerivedToBaseConversions(SCS1, SCS2))
1842      return DerivedCK;
1843  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1844    // Both conversion sequences are conversions to void
1845    // pointers. Compare the source types to determine if there's an
1846    // inheritance relationship in their sources.
1847    QualType FromType1 = SCS1.getFromType();
1848    QualType FromType2 = SCS2.getFromType();
1849
1850    // Adjust the types we're converting from via the array-to-pointer
1851    // conversion, if we need to.
1852    if (SCS1.First == ICK_Array_To_Pointer)
1853      FromType1 = Context.getArrayDecayedType(FromType1);
1854    if (SCS2.First == ICK_Array_To_Pointer)
1855      FromType2 = Context.getArrayDecayedType(FromType2);
1856
1857    QualType FromPointee1
1858      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1859    QualType FromPointee2
1860      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1861
1862    if (IsDerivedFrom(FromPointee2, FromPointee1))
1863      return ImplicitConversionSequence::Better;
1864    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1865      return ImplicitConversionSequence::Worse;
1866
1867    // Objective-C++: If one interface is more specific than the
1868    // other, it is the better one.
1869    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1870    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1871    if (FromIface1 && FromIface1) {
1872      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1873        return ImplicitConversionSequence::Better;
1874      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1875        return ImplicitConversionSequence::Worse;
1876    }
1877  }
1878
1879  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1880  // bullet 3).
1881  if (ImplicitConversionSequence::CompareKind QualCK
1882        = CompareQualificationConversions(SCS1, SCS2))
1883    return QualCK;
1884
1885  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1886    // C++0x [over.ics.rank]p3b4:
1887    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1888    //      implicit object parameter of a non-static member function declared
1889    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1890    //      rvalue and S2 binds an lvalue reference.
1891    // FIXME: We don't know if we're dealing with the implicit object parameter,
1892    // or if the member function in this case has a ref qualifier.
1893    // (Of course, we don't have ref qualifiers yet.)
1894    if (SCS1.RRefBinding != SCS2.RRefBinding)
1895      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1896                              : ImplicitConversionSequence::Worse;
1897
1898    // C++ [over.ics.rank]p3b4:
1899    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1900    //      which the references refer are the same type except for
1901    //      top-level cv-qualifiers, and the type to which the reference
1902    //      initialized by S2 refers is more cv-qualified than the type
1903    //      to which the reference initialized by S1 refers.
1904    QualType T1 = SCS1.getToType(2);
1905    QualType T2 = SCS2.getToType(2);
1906    T1 = Context.getCanonicalType(T1);
1907    T2 = Context.getCanonicalType(T2);
1908    Qualifiers T1Quals, T2Quals;
1909    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1910    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1911    if (UnqualT1 == UnqualT2) {
1912      // If the type is an array type, promote the element qualifiers to the type
1913      // for comparison.
1914      if (isa<ArrayType>(T1) && T1Quals)
1915        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1916      if (isa<ArrayType>(T2) && T2Quals)
1917        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1918      if (T2.isMoreQualifiedThan(T1))
1919        return ImplicitConversionSequence::Better;
1920      else if (T1.isMoreQualifiedThan(T2))
1921        return ImplicitConversionSequence::Worse;
1922    }
1923  }
1924
1925  return ImplicitConversionSequence::Indistinguishable;
1926}
1927
1928/// CompareQualificationConversions - Compares two standard conversion
1929/// sequences to determine whether they can be ranked based on their
1930/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1931ImplicitConversionSequence::CompareKind
1932Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1933                                      const StandardConversionSequence& SCS2) {
1934  // C++ 13.3.3.2p3:
1935  //  -- S1 and S2 differ only in their qualification conversion and
1936  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1937  //     cv-qualification signature of type T1 is a proper subset of
1938  //     the cv-qualification signature of type T2, and S1 is not the
1939  //     deprecated string literal array-to-pointer conversion (4.2).
1940  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1941      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1942    return ImplicitConversionSequence::Indistinguishable;
1943
1944  // FIXME: the example in the standard doesn't use a qualification
1945  // conversion (!)
1946  QualType T1 = SCS1.getToType(2);
1947  QualType T2 = SCS2.getToType(2);
1948  T1 = Context.getCanonicalType(T1);
1949  T2 = Context.getCanonicalType(T2);
1950  Qualifiers T1Quals, T2Quals;
1951  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1952  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1953
1954  // If the types are the same, we won't learn anything by unwrapped
1955  // them.
1956  if (UnqualT1 == UnqualT2)
1957    return ImplicitConversionSequence::Indistinguishable;
1958
1959  // If the type is an array type, promote the element qualifiers to the type
1960  // for comparison.
1961  if (isa<ArrayType>(T1) && T1Quals)
1962    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1963  if (isa<ArrayType>(T2) && T2Quals)
1964    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1965
1966  ImplicitConversionSequence::CompareKind Result
1967    = ImplicitConversionSequence::Indistinguishable;
1968  while (UnwrapSimilarPointerTypes(T1, T2)) {
1969    // Within each iteration of the loop, we check the qualifiers to
1970    // determine if this still looks like a qualification
1971    // conversion. Then, if all is well, we unwrap one more level of
1972    // pointers or pointers-to-members and do it all again
1973    // until there are no more pointers or pointers-to-members left
1974    // to unwrap. This essentially mimics what
1975    // IsQualificationConversion does, but here we're checking for a
1976    // strict subset of qualifiers.
1977    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1978      // The qualifiers are the same, so this doesn't tell us anything
1979      // about how the sequences rank.
1980      ;
1981    else if (T2.isMoreQualifiedThan(T1)) {
1982      // T1 has fewer qualifiers, so it could be the better sequence.
1983      if (Result == ImplicitConversionSequence::Worse)
1984        // Neither has qualifiers that are a subset of the other's
1985        // qualifiers.
1986        return ImplicitConversionSequence::Indistinguishable;
1987
1988      Result = ImplicitConversionSequence::Better;
1989    } else if (T1.isMoreQualifiedThan(T2)) {
1990      // T2 has fewer qualifiers, so it could be the better sequence.
1991      if (Result == ImplicitConversionSequence::Better)
1992        // Neither has qualifiers that are a subset of the other's
1993        // qualifiers.
1994        return ImplicitConversionSequence::Indistinguishable;
1995
1996      Result = ImplicitConversionSequence::Worse;
1997    } else {
1998      // Qualifiers are disjoint.
1999      return ImplicitConversionSequence::Indistinguishable;
2000    }
2001
2002    // If the types after this point are equivalent, we're done.
2003    if (Context.hasSameUnqualifiedType(T1, T2))
2004      break;
2005  }
2006
2007  // Check that the winning standard conversion sequence isn't using
2008  // the deprecated string literal array to pointer conversion.
2009  switch (Result) {
2010  case ImplicitConversionSequence::Better:
2011    if (SCS1.DeprecatedStringLiteralToCharPtr)
2012      Result = ImplicitConversionSequence::Indistinguishable;
2013    break;
2014
2015  case ImplicitConversionSequence::Indistinguishable:
2016    break;
2017
2018  case ImplicitConversionSequence::Worse:
2019    if (SCS2.DeprecatedStringLiteralToCharPtr)
2020      Result = ImplicitConversionSequence::Indistinguishable;
2021    break;
2022  }
2023
2024  return Result;
2025}
2026
2027/// CompareDerivedToBaseConversions - Compares two standard conversion
2028/// sequences to determine whether they can be ranked based on their
2029/// various kinds of derived-to-base conversions (C++
2030/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2031/// conversions between Objective-C interface types.
2032ImplicitConversionSequence::CompareKind
2033Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2034                                      const StandardConversionSequence& SCS2) {
2035  QualType FromType1 = SCS1.getFromType();
2036  QualType ToType1 = SCS1.getToType(1);
2037  QualType FromType2 = SCS2.getFromType();
2038  QualType ToType2 = SCS2.getToType(1);
2039
2040  // Adjust the types we're converting from via the array-to-pointer
2041  // conversion, if we need to.
2042  if (SCS1.First == ICK_Array_To_Pointer)
2043    FromType1 = Context.getArrayDecayedType(FromType1);
2044  if (SCS2.First == ICK_Array_To_Pointer)
2045    FromType2 = Context.getArrayDecayedType(FromType2);
2046
2047  // Canonicalize all of the types.
2048  FromType1 = Context.getCanonicalType(FromType1);
2049  ToType1 = Context.getCanonicalType(ToType1);
2050  FromType2 = Context.getCanonicalType(FromType2);
2051  ToType2 = Context.getCanonicalType(ToType2);
2052
2053  // C++ [over.ics.rank]p4b3:
2054  //
2055  //   If class B is derived directly or indirectly from class A and
2056  //   class C is derived directly or indirectly from B,
2057  //
2058  // For Objective-C, we let A, B, and C also be Objective-C
2059  // interfaces.
2060
2061  // Compare based on pointer conversions.
2062  if (SCS1.Second == ICK_Pointer_Conversion &&
2063      SCS2.Second == ICK_Pointer_Conversion &&
2064      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2065      FromType1->isPointerType() && FromType2->isPointerType() &&
2066      ToType1->isPointerType() && ToType2->isPointerType()) {
2067    QualType FromPointee1
2068      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2069    QualType ToPointee1
2070      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2071    QualType FromPointee2
2072      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2073    QualType ToPointee2
2074      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2075
2076    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2077    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2078    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2079    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2080
2081    //   -- conversion of C* to B* is better than conversion of C* to A*,
2082    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2083      if (IsDerivedFrom(ToPointee1, ToPointee2))
2084        return ImplicitConversionSequence::Better;
2085      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2086        return ImplicitConversionSequence::Worse;
2087
2088      if (ToIface1 && ToIface2) {
2089        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2090          return ImplicitConversionSequence::Better;
2091        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2092          return ImplicitConversionSequence::Worse;
2093      }
2094    }
2095
2096    //   -- conversion of B* to A* is better than conversion of C* to A*,
2097    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2098      if (IsDerivedFrom(FromPointee2, FromPointee1))
2099        return ImplicitConversionSequence::Better;
2100      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2101        return ImplicitConversionSequence::Worse;
2102
2103      if (FromIface1 && FromIface2) {
2104        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2105          return ImplicitConversionSequence::Better;
2106        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2107          return ImplicitConversionSequence::Worse;
2108      }
2109    }
2110  }
2111
2112  // Ranking of member-pointer types.
2113  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2114      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2115      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2116    const MemberPointerType * FromMemPointer1 =
2117                                        FromType1->getAs<MemberPointerType>();
2118    const MemberPointerType * ToMemPointer1 =
2119                                          ToType1->getAs<MemberPointerType>();
2120    const MemberPointerType * FromMemPointer2 =
2121                                          FromType2->getAs<MemberPointerType>();
2122    const MemberPointerType * ToMemPointer2 =
2123                                          ToType2->getAs<MemberPointerType>();
2124    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2125    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2126    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2127    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2128    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2129    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2130    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2131    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2132    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2133    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2134      if (IsDerivedFrom(ToPointee1, ToPointee2))
2135        return ImplicitConversionSequence::Worse;
2136      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2137        return ImplicitConversionSequence::Better;
2138    }
2139    // conversion of B::* to C::* is better than conversion of A::* to C::*
2140    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2141      if (IsDerivedFrom(FromPointee1, FromPointee2))
2142        return ImplicitConversionSequence::Better;
2143      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2144        return ImplicitConversionSequence::Worse;
2145    }
2146  }
2147
2148  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2149      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2150      SCS1.Second == ICK_Derived_To_Base) {
2151    //   -- conversion of C to B is better than conversion of C to A,
2152    //   -- binding of an expression of type C to a reference of type
2153    //      B& is better than binding an expression of type C to a
2154    //      reference of type A&,
2155    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2156        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2157      if (IsDerivedFrom(ToType1, ToType2))
2158        return ImplicitConversionSequence::Better;
2159      else if (IsDerivedFrom(ToType2, ToType1))
2160        return ImplicitConversionSequence::Worse;
2161    }
2162
2163    //   -- conversion of B to A is better than conversion of C to A.
2164    //   -- binding of an expression of type B to a reference of type
2165    //      A& is better than binding an expression of type C to a
2166    //      reference of type A&,
2167    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2168        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2169      if (IsDerivedFrom(FromType2, FromType1))
2170        return ImplicitConversionSequence::Better;
2171      else if (IsDerivedFrom(FromType1, FromType2))
2172        return ImplicitConversionSequence::Worse;
2173    }
2174  }
2175
2176  return ImplicitConversionSequence::Indistinguishable;
2177}
2178
2179/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2180/// determine whether they are reference-related,
2181/// reference-compatible, reference-compatible with added
2182/// qualification, or incompatible, for use in C++ initialization by
2183/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2184/// type, and the first type (T1) is the pointee type of the reference
2185/// type being initialized.
2186Sema::ReferenceCompareResult
2187Sema::CompareReferenceRelationship(SourceLocation Loc,
2188                                   QualType OrigT1, QualType OrigT2,
2189                                   bool& DerivedToBase) {
2190  assert(!OrigT1->isReferenceType() &&
2191    "T1 must be the pointee type of the reference type");
2192  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2193
2194  QualType T1 = Context.getCanonicalType(OrigT1);
2195  QualType T2 = Context.getCanonicalType(OrigT2);
2196  Qualifiers T1Quals, T2Quals;
2197  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2198  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2199
2200  // C++ [dcl.init.ref]p4:
2201  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2202  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2203  //   T1 is a base class of T2.
2204  if (UnqualT1 == UnqualT2)
2205    DerivedToBase = false;
2206  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2207           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2208           IsDerivedFrom(UnqualT2, UnqualT1))
2209    DerivedToBase = true;
2210  else
2211    return Ref_Incompatible;
2212
2213  // At this point, we know that T1 and T2 are reference-related (at
2214  // least).
2215
2216  // If the type is an array type, promote the element qualifiers to the type
2217  // for comparison.
2218  if (isa<ArrayType>(T1) && T1Quals)
2219    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2220  if (isa<ArrayType>(T2) && T2Quals)
2221    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2222
2223  // C++ [dcl.init.ref]p4:
2224  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2225  //   reference-related to T2 and cv1 is the same cv-qualification
2226  //   as, or greater cv-qualification than, cv2. For purposes of
2227  //   overload resolution, cases for which cv1 is greater
2228  //   cv-qualification than cv2 are identified as
2229  //   reference-compatible with added qualification (see 13.3.3.2).
2230  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2231    return Ref_Compatible;
2232  else if (T1.isMoreQualifiedThan(T2))
2233    return Ref_Compatible_With_Added_Qualification;
2234  else
2235    return Ref_Related;
2236}
2237
2238/// \brief Compute an implicit conversion sequence for reference
2239/// initialization.
2240static ImplicitConversionSequence
2241TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2242                 SourceLocation DeclLoc,
2243                 bool SuppressUserConversions,
2244                 bool AllowExplicit, bool ForceRValue) {
2245  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2246
2247  // Most paths end in a failed conversion.
2248  ImplicitConversionSequence ICS;
2249  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2250
2251  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2252  QualType T2 = Init->getType();
2253
2254  // If the initializer is the address of an overloaded function, try
2255  // to resolve the overloaded function. If all goes well, T2 is the
2256  // type of the resulting function.
2257  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2258    DeclAccessPair Found;
2259    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2260                                                                false, Found))
2261      T2 = Fn->getType();
2262  }
2263
2264  // Compute some basic properties of the types and the initializer.
2265  bool isRValRef = DeclType->isRValueReferenceType();
2266  bool DerivedToBase = false;
2267  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2268                                                  Init->isLvalue(S.Context);
2269  Sema::ReferenceCompareResult RefRelationship
2270    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2271
2272  // C++ [dcl.init.ref]p5:
2273  //   A reference to type "cv1 T1" is initialized by an expression
2274  //   of type "cv2 T2" as follows:
2275
2276  //     -- If the initializer expression
2277
2278  // C++ [over.ics.ref]p3:
2279  //   Except for an implicit object parameter, for which see 13.3.1,
2280  //   a standard conversion sequence cannot be formed if it requires
2281  //   binding an lvalue reference to non-const to an rvalue or
2282  //   binding an rvalue reference to an lvalue.
2283  if (isRValRef && InitLvalue == Expr::LV_Valid)
2284    return ICS;
2285
2286  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2287  //          reference-compatible with "cv2 T2," or
2288  //
2289  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2290  if (InitLvalue == Expr::LV_Valid &&
2291      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2292    // C++ [over.ics.ref]p1:
2293    //   When a parameter of reference type binds directly (8.5.3)
2294    //   to an argument expression, the implicit conversion sequence
2295    //   is the identity conversion, unless the argument expression
2296    //   has a type that is a derived class of the parameter type,
2297    //   in which case the implicit conversion sequence is a
2298    //   derived-to-base Conversion (13.3.3.1).
2299    ICS.setStandard();
2300    ICS.Standard.First = ICK_Identity;
2301    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2302    ICS.Standard.Third = ICK_Identity;
2303    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2304    ICS.Standard.setToType(0, T2);
2305    ICS.Standard.setToType(1, T1);
2306    ICS.Standard.setToType(2, T1);
2307    ICS.Standard.ReferenceBinding = true;
2308    ICS.Standard.DirectBinding = true;
2309    ICS.Standard.RRefBinding = false;
2310    ICS.Standard.CopyConstructor = 0;
2311
2312    // Nothing more to do: the inaccessibility/ambiguity check for
2313    // derived-to-base conversions is suppressed when we're
2314    // computing the implicit conversion sequence (C++
2315    // [over.best.ics]p2).
2316    return ICS;
2317  }
2318
2319  //       -- has a class type (i.e., T2 is a class type), where T1 is
2320  //          not reference-related to T2, and can be implicitly
2321  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2322  //          is reference-compatible with "cv3 T3" 92) (this
2323  //          conversion is selected by enumerating the applicable
2324  //          conversion functions (13.3.1.6) and choosing the best
2325  //          one through overload resolution (13.3)),
2326  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2327      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2328      RefRelationship == Sema::Ref_Incompatible) {
2329    CXXRecordDecl *T2RecordDecl
2330      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2331
2332    OverloadCandidateSet CandidateSet(DeclLoc);
2333    const UnresolvedSetImpl *Conversions
2334      = T2RecordDecl->getVisibleConversionFunctions();
2335    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2336           E = Conversions->end(); I != E; ++I) {
2337      NamedDecl *D = *I;
2338      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2339      if (isa<UsingShadowDecl>(D))
2340        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2341
2342      FunctionTemplateDecl *ConvTemplate
2343        = dyn_cast<FunctionTemplateDecl>(D);
2344      CXXConversionDecl *Conv;
2345      if (ConvTemplate)
2346        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2347      else
2348        Conv = cast<CXXConversionDecl>(D);
2349
2350      // If the conversion function doesn't return a reference type,
2351      // it can't be considered for this conversion.
2352      if (Conv->getConversionType()->isLValueReferenceType() &&
2353          (AllowExplicit || !Conv->isExplicit())) {
2354        if (ConvTemplate)
2355          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2356                                         Init, DeclType, CandidateSet);
2357        else
2358          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2359                                 DeclType, CandidateSet);
2360      }
2361    }
2362
2363    OverloadCandidateSet::iterator Best;
2364    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2365    case OR_Success:
2366      // C++ [over.ics.ref]p1:
2367      //
2368      //   [...] If the parameter binds directly to the result of
2369      //   applying a conversion function to the argument
2370      //   expression, the implicit conversion sequence is a
2371      //   user-defined conversion sequence (13.3.3.1.2), with the
2372      //   second standard conversion sequence either an identity
2373      //   conversion or, if the conversion function returns an
2374      //   entity of a type that is a derived class of the parameter
2375      //   type, a derived-to-base Conversion.
2376      if (!Best->FinalConversion.DirectBinding)
2377        break;
2378
2379      ICS.setUserDefined();
2380      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2381      ICS.UserDefined.After = Best->FinalConversion;
2382      ICS.UserDefined.ConversionFunction = Best->Function;
2383      ICS.UserDefined.EllipsisConversion = false;
2384      assert(ICS.UserDefined.After.ReferenceBinding &&
2385             ICS.UserDefined.After.DirectBinding &&
2386             "Expected a direct reference binding!");
2387      return ICS;
2388
2389    case OR_Ambiguous:
2390      ICS.setAmbiguous();
2391      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2392           Cand != CandidateSet.end(); ++Cand)
2393        if (Cand->Viable)
2394          ICS.Ambiguous.addConversion(Cand->Function);
2395      return ICS;
2396
2397    case OR_No_Viable_Function:
2398    case OR_Deleted:
2399      // There was no suitable conversion, or we found a deleted
2400      // conversion; continue with other checks.
2401      break;
2402    }
2403  }
2404
2405  //     -- Otherwise, the reference shall be to a non-volatile const
2406  //        type (i.e., cv1 shall be const), or the reference shall be an
2407  //        rvalue reference and the initializer expression shall be an rvalue.
2408  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const)
2409    return ICS;
2410
2411  //       -- If the initializer expression is an rvalue, with T2 a
2412  //          class type, and "cv1 T1" is reference-compatible with
2413  //          "cv2 T2," the reference is bound in one of the
2414  //          following ways (the choice is implementation-defined):
2415  //
2416  //          -- The reference is bound to the object represented by
2417  //             the rvalue (see 3.10) or to a sub-object within that
2418  //             object.
2419  //
2420  //          -- A temporary of type "cv1 T2" [sic] is created, and
2421  //             a constructor is called to copy the entire rvalue
2422  //             object into the temporary. The reference is bound to
2423  //             the temporary or to a sub-object within the
2424  //             temporary.
2425  //
2426  //          The constructor that would be used to make the copy
2427  //          shall be callable whether or not the copy is actually
2428  //          done.
2429  //
2430  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2431  // freedom, so we will always take the first option and never build
2432  // a temporary in this case.
2433  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2434      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2435    ICS.setStandard();
2436    ICS.Standard.First = ICK_Identity;
2437    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2438    ICS.Standard.Third = ICK_Identity;
2439    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2440    ICS.Standard.setToType(0, T2);
2441    ICS.Standard.setToType(1, T1);
2442    ICS.Standard.setToType(2, T1);
2443    ICS.Standard.ReferenceBinding = true;
2444    ICS.Standard.DirectBinding = false;
2445    ICS.Standard.RRefBinding = isRValRef;
2446    ICS.Standard.CopyConstructor = 0;
2447    return ICS;
2448  }
2449
2450  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2451  //          initialized from the initializer expression using the
2452  //          rules for a non-reference copy initialization (8.5). The
2453  //          reference is then bound to the temporary. If T1 is
2454  //          reference-related to T2, cv1 must be the same
2455  //          cv-qualification as, or greater cv-qualification than,
2456  //          cv2; otherwise, the program is ill-formed.
2457  if (RefRelationship == Sema::Ref_Related) {
2458    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2459    // we would be reference-compatible or reference-compatible with
2460    // added qualification. But that wasn't the case, so the reference
2461    // initialization fails.
2462    return ICS;
2463  }
2464
2465  // If at least one of the types is a class type, the types are not
2466  // related, and we aren't allowed any user conversions, the
2467  // reference binding fails. This case is important for breaking
2468  // recursion, since TryImplicitConversion below will attempt to
2469  // create a temporary through the use of a copy constructor.
2470  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2471      (T1->isRecordType() || T2->isRecordType()))
2472    return ICS;
2473
2474  // C++ [over.ics.ref]p2:
2475  //
2476  //   When a parameter of reference type is not bound directly to
2477  //   an argument expression, the conversion sequence is the one
2478  //   required to convert the argument expression to the
2479  //   underlying type of the reference according to
2480  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2481  //   to copy-initializing a temporary of the underlying type with
2482  //   the argument expression. Any difference in top-level
2483  //   cv-qualification is subsumed by the initialization itself
2484  //   and does not constitute a conversion.
2485  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2486                                /*AllowExplicit=*/false,
2487                                /*ForceRValue=*/false,
2488                                /*InOverloadResolution=*/false);
2489
2490  // Of course, that's still a reference binding.
2491  if (ICS.isStandard()) {
2492    ICS.Standard.ReferenceBinding = true;
2493    ICS.Standard.RRefBinding = isRValRef;
2494  } else if (ICS.isUserDefined()) {
2495    ICS.UserDefined.After.ReferenceBinding = true;
2496    ICS.UserDefined.After.RRefBinding = isRValRef;
2497  }
2498  return ICS;
2499}
2500
2501/// TryCopyInitialization - Try to copy-initialize a value of type
2502/// ToType from the expression From. Return the implicit conversion
2503/// sequence required to pass this argument, which may be a bad
2504/// conversion sequence (meaning that the argument cannot be passed to
2505/// a parameter of this type). If @p SuppressUserConversions, then we
2506/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2507/// then we treat @p From as an rvalue, even if it is an lvalue.
2508ImplicitConversionSequence
2509Sema::TryCopyInitialization(Expr *From, QualType ToType,
2510                            bool SuppressUserConversions, bool ForceRValue,
2511                            bool InOverloadResolution) {
2512  if (ToType->isReferenceType())
2513    return TryReferenceInit(*this, From, ToType,
2514                            /*FIXME:*/From->getLocStart(),
2515                            SuppressUserConversions,
2516                            /*AllowExplicit=*/false,
2517                            ForceRValue);
2518
2519  return TryImplicitConversion(From, ToType,
2520                               SuppressUserConversions,
2521                               /*AllowExplicit=*/false,
2522                               ForceRValue,
2523                               InOverloadResolution);
2524}
2525
2526/// TryObjectArgumentInitialization - Try to initialize the object
2527/// parameter of the given member function (@c Method) from the
2528/// expression @p From.
2529ImplicitConversionSequence
2530Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2531                                      CXXMethodDecl *Method,
2532                                      CXXRecordDecl *ActingContext) {
2533  QualType ClassType = Context.getTypeDeclType(ActingContext);
2534  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2535  //                 const volatile object.
2536  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2537    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2538  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2539
2540  // Set up the conversion sequence as a "bad" conversion, to allow us
2541  // to exit early.
2542  ImplicitConversionSequence ICS;
2543
2544  // We need to have an object of class type.
2545  QualType FromType = OrigFromType;
2546  if (const PointerType *PT = FromType->getAs<PointerType>())
2547    FromType = PT->getPointeeType();
2548
2549  assert(FromType->isRecordType());
2550
2551  // The implicit object parameter is has the type "reference to cv X",
2552  // where X is the class of which the function is a member
2553  // (C++ [over.match.funcs]p4). However, when finding an implicit
2554  // conversion sequence for the argument, we are not allowed to
2555  // create temporaries or perform user-defined conversions
2556  // (C++ [over.match.funcs]p5). We perform a simplified version of
2557  // reference binding here, that allows class rvalues to bind to
2558  // non-constant references.
2559
2560  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2561  // with the implicit object parameter (C++ [over.match.funcs]p5).
2562  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2563  if (ImplicitParamType.getCVRQualifiers()
2564                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2565      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2566    ICS.setBad(BadConversionSequence::bad_qualifiers,
2567               OrigFromType, ImplicitParamType);
2568    return ICS;
2569  }
2570
2571  // Check that we have either the same type or a derived type. It
2572  // affects the conversion rank.
2573  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2574  ImplicitConversionKind SecondKind;
2575  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2576    SecondKind = ICK_Identity;
2577  } else if (IsDerivedFrom(FromType, ClassType))
2578    SecondKind = ICK_Derived_To_Base;
2579  else {
2580    ICS.setBad(BadConversionSequence::unrelated_class,
2581               FromType, ImplicitParamType);
2582    return ICS;
2583  }
2584
2585  // Success. Mark this as a reference binding.
2586  ICS.setStandard();
2587  ICS.Standard.setAsIdentityConversion();
2588  ICS.Standard.Second = SecondKind;
2589  ICS.Standard.setFromType(FromType);
2590  ICS.Standard.setAllToTypes(ImplicitParamType);
2591  ICS.Standard.ReferenceBinding = true;
2592  ICS.Standard.DirectBinding = true;
2593  ICS.Standard.RRefBinding = false;
2594  return ICS;
2595}
2596
2597/// PerformObjectArgumentInitialization - Perform initialization of
2598/// the implicit object parameter for the given Method with the given
2599/// expression.
2600bool
2601Sema::PerformObjectArgumentInitialization(Expr *&From,
2602                                          NestedNameSpecifier *Qualifier,
2603                                          NamedDecl *FoundDecl,
2604                                          CXXMethodDecl *Method) {
2605  QualType FromRecordType, DestType;
2606  QualType ImplicitParamRecordType  =
2607    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2608
2609  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2610    FromRecordType = PT->getPointeeType();
2611    DestType = Method->getThisType(Context);
2612  } else {
2613    FromRecordType = From->getType();
2614    DestType = ImplicitParamRecordType;
2615  }
2616
2617  // Note that we always use the true parent context when performing
2618  // the actual argument initialization.
2619  ImplicitConversionSequence ICS
2620    = TryObjectArgumentInitialization(From->getType(), Method,
2621                                      Method->getParent());
2622  if (ICS.isBad())
2623    return Diag(From->getSourceRange().getBegin(),
2624                diag::err_implicit_object_parameter_init)
2625       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2626
2627  if (ICS.Standard.Second == ICK_Derived_To_Base)
2628    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2629
2630  if (!Context.hasSameType(From->getType(), DestType))
2631    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2632                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2633  return false;
2634}
2635
2636/// TryContextuallyConvertToBool - Attempt to contextually convert the
2637/// expression From to bool (C++0x [conv]p3).
2638ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2639  return TryImplicitConversion(From, Context.BoolTy,
2640                               // FIXME: Are these flags correct?
2641                               /*SuppressUserConversions=*/false,
2642                               /*AllowExplicit=*/true,
2643                               /*ForceRValue=*/false,
2644                               /*InOverloadResolution=*/false);
2645}
2646
2647/// PerformContextuallyConvertToBool - Perform a contextual conversion
2648/// of the expression From to bool (C++0x [conv]p3).
2649bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2650  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2651  if (!ICS.isBad())
2652    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2653
2654  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2655    return  Diag(From->getSourceRange().getBegin(),
2656                 diag::err_typecheck_bool_condition)
2657                  << From->getType() << From->getSourceRange();
2658  return true;
2659}
2660
2661/// AddOverloadCandidate - Adds the given function to the set of
2662/// candidate functions, using the given function call arguments.  If
2663/// @p SuppressUserConversions, then don't allow user-defined
2664/// conversions via constructors or conversion operators.
2665/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2666/// hacky way to implement the overloading rules for elidable copy
2667/// initialization in C++0x (C++0x 12.8p15).
2668///
2669/// \para PartialOverloading true if we are performing "partial" overloading
2670/// based on an incomplete set of function arguments. This feature is used by
2671/// code completion.
2672void
2673Sema::AddOverloadCandidate(FunctionDecl *Function,
2674                           DeclAccessPair FoundDecl,
2675                           Expr **Args, unsigned NumArgs,
2676                           OverloadCandidateSet& CandidateSet,
2677                           bool SuppressUserConversions,
2678                           bool ForceRValue,
2679                           bool PartialOverloading) {
2680  const FunctionProtoType* Proto
2681    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2682  assert(Proto && "Functions without a prototype cannot be overloaded");
2683  assert(!Function->getDescribedFunctionTemplate() &&
2684         "Use AddTemplateOverloadCandidate for function templates");
2685
2686  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2687    if (!isa<CXXConstructorDecl>(Method)) {
2688      // If we get here, it's because we're calling a member function
2689      // that is named without a member access expression (e.g.,
2690      // "this->f") that was either written explicitly or created
2691      // implicitly. This can happen with a qualified call to a member
2692      // function, e.g., X::f(). We use an empty type for the implied
2693      // object argument (C++ [over.call.func]p3), and the acting context
2694      // is irrelevant.
2695      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2696                         QualType(), Args, NumArgs, CandidateSet,
2697                         SuppressUserConversions);
2698      return;
2699    }
2700    // We treat a constructor like a non-member function, since its object
2701    // argument doesn't participate in overload resolution.
2702  }
2703
2704  if (!CandidateSet.isNewCandidate(Function))
2705    return;
2706
2707  // Overload resolution is always an unevaluated context.
2708  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2709
2710  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2711    // C++ [class.copy]p3:
2712    //   A member function template is never instantiated to perform the copy
2713    //   of a class object to an object of its class type.
2714    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2715    if (NumArgs == 1 &&
2716        Constructor->isCopyConstructorLikeSpecialization() &&
2717        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2718         IsDerivedFrom(Args[0]->getType(), ClassType)))
2719      return;
2720  }
2721
2722  // Add this candidate
2723  CandidateSet.push_back(OverloadCandidate());
2724  OverloadCandidate& Candidate = CandidateSet.back();
2725  Candidate.FoundDecl = FoundDecl;
2726  Candidate.Function = Function;
2727  Candidate.Viable = true;
2728  Candidate.IsSurrogate = false;
2729  Candidate.IgnoreObjectArgument = false;
2730
2731  unsigned NumArgsInProto = Proto->getNumArgs();
2732
2733  // (C++ 13.3.2p2): A candidate function having fewer than m
2734  // parameters is viable only if it has an ellipsis in its parameter
2735  // list (8.3.5).
2736  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2737      !Proto->isVariadic()) {
2738    Candidate.Viable = false;
2739    Candidate.FailureKind = ovl_fail_too_many_arguments;
2740    return;
2741  }
2742
2743  // (C++ 13.3.2p2): A candidate function having more than m parameters
2744  // is viable only if the (m+1)st parameter has a default argument
2745  // (8.3.6). For the purposes of overload resolution, the
2746  // parameter list is truncated on the right, so that there are
2747  // exactly m parameters.
2748  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2749  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2750    // Not enough arguments.
2751    Candidate.Viable = false;
2752    Candidate.FailureKind = ovl_fail_too_few_arguments;
2753    return;
2754  }
2755
2756  // Determine the implicit conversion sequences for each of the
2757  // arguments.
2758  Candidate.Conversions.resize(NumArgs);
2759  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2760    if (ArgIdx < NumArgsInProto) {
2761      // (C++ 13.3.2p3): for F to be a viable function, there shall
2762      // exist for each argument an implicit conversion sequence
2763      // (13.3.3.1) that converts that argument to the corresponding
2764      // parameter of F.
2765      QualType ParamType = Proto->getArgType(ArgIdx);
2766      Candidate.Conversions[ArgIdx]
2767        = TryCopyInitialization(Args[ArgIdx], ParamType,
2768                                SuppressUserConversions, ForceRValue,
2769                                /*InOverloadResolution=*/true);
2770      if (Candidate.Conversions[ArgIdx].isBad()) {
2771        Candidate.Viable = false;
2772        Candidate.FailureKind = ovl_fail_bad_conversion;
2773        break;
2774      }
2775    } else {
2776      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2777      // argument for which there is no corresponding parameter is
2778      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2779      Candidate.Conversions[ArgIdx].setEllipsis();
2780    }
2781  }
2782}
2783
2784/// \brief Add all of the function declarations in the given function set to
2785/// the overload canddiate set.
2786void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2787                                 Expr **Args, unsigned NumArgs,
2788                                 OverloadCandidateSet& CandidateSet,
2789                                 bool SuppressUserConversions) {
2790  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2791    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2792    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2793      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2794        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2795                           cast<CXXMethodDecl>(FD)->getParent(),
2796                           Args[0]->getType(), Args + 1, NumArgs - 1,
2797                           CandidateSet, SuppressUserConversions);
2798      else
2799        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2800                             SuppressUserConversions);
2801    } else {
2802      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2803      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2804          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2805        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2806                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2807                                   /*FIXME: explicit args */ 0,
2808                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2809                                   CandidateSet,
2810                                   SuppressUserConversions);
2811      else
2812        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2813                                     /*FIXME: explicit args */ 0,
2814                                     Args, NumArgs, CandidateSet,
2815                                     SuppressUserConversions);
2816    }
2817  }
2818}
2819
2820/// AddMethodCandidate - Adds a named decl (which is some kind of
2821/// method) as a method candidate to the given overload set.
2822void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2823                              QualType ObjectType,
2824                              Expr **Args, unsigned NumArgs,
2825                              OverloadCandidateSet& CandidateSet,
2826                              bool SuppressUserConversions) {
2827  NamedDecl *Decl = FoundDecl.getDecl();
2828  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2829
2830  if (isa<UsingShadowDecl>(Decl))
2831    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2832
2833  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2834    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2835           "Expected a member function template");
2836    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2837                               /*ExplicitArgs*/ 0,
2838                               ObjectType, Args, NumArgs,
2839                               CandidateSet,
2840                               SuppressUserConversions);
2841  } else {
2842    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2843                       ObjectType, Args, NumArgs,
2844                       CandidateSet, SuppressUserConversions);
2845  }
2846}
2847
2848/// AddMethodCandidate - Adds the given C++ member function to the set
2849/// of candidate functions, using the given function call arguments
2850/// and the object argument (@c Object). For example, in a call
2851/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2852/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2853/// allow user-defined conversions via constructors or conversion
2854/// operators.
2855void
2856Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2857                         CXXRecordDecl *ActingContext, QualType ObjectType,
2858                         Expr **Args, unsigned NumArgs,
2859                         OverloadCandidateSet& CandidateSet,
2860                         bool SuppressUserConversions) {
2861  const FunctionProtoType* Proto
2862    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2863  assert(Proto && "Methods without a prototype cannot be overloaded");
2864  assert(!isa<CXXConstructorDecl>(Method) &&
2865         "Use AddOverloadCandidate for constructors");
2866
2867  if (!CandidateSet.isNewCandidate(Method))
2868    return;
2869
2870  // Overload resolution is always an unevaluated context.
2871  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2872
2873  // Add this candidate
2874  CandidateSet.push_back(OverloadCandidate());
2875  OverloadCandidate& Candidate = CandidateSet.back();
2876  Candidate.FoundDecl = FoundDecl;
2877  Candidate.Function = Method;
2878  Candidate.IsSurrogate = false;
2879  Candidate.IgnoreObjectArgument = false;
2880
2881  unsigned NumArgsInProto = Proto->getNumArgs();
2882
2883  // (C++ 13.3.2p2): A candidate function having fewer than m
2884  // parameters is viable only if it has an ellipsis in its parameter
2885  // list (8.3.5).
2886  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2887    Candidate.Viable = false;
2888    Candidate.FailureKind = ovl_fail_too_many_arguments;
2889    return;
2890  }
2891
2892  // (C++ 13.3.2p2): A candidate function having more than m parameters
2893  // is viable only if the (m+1)st parameter has a default argument
2894  // (8.3.6). For the purposes of overload resolution, the
2895  // parameter list is truncated on the right, so that there are
2896  // exactly m parameters.
2897  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2898  if (NumArgs < MinRequiredArgs) {
2899    // Not enough arguments.
2900    Candidate.Viable = false;
2901    Candidate.FailureKind = ovl_fail_too_few_arguments;
2902    return;
2903  }
2904
2905  Candidate.Viable = true;
2906  Candidate.Conversions.resize(NumArgs + 1);
2907
2908  if (Method->isStatic() || ObjectType.isNull())
2909    // The implicit object argument is ignored.
2910    Candidate.IgnoreObjectArgument = true;
2911  else {
2912    // Determine the implicit conversion sequence for the object
2913    // parameter.
2914    Candidate.Conversions[0]
2915      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2916    if (Candidate.Conversions[0].isBad()) {
2917      Candidate.Viable = false;
2918      Candidate.FailureKind = ovl_fail_bad_conversion;
2919      return;
2920    }
2921  }
2922
2923  // Determine the implicit conversion sequences for each of the
2924  // arguments.
2925  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2926    if (ArgIdx < NumArgsInProto) {
2927      // (C++ 13.3.2p3): for F to be a viable function, there shall
2928      // exist for each argument an implicit conversion sequence
2929      // (13.3.3.1) that converts that argument to the corresponding
2930      // parameter of F.
2931      QualType ParamType = Proto->getArgType(ArgIdx);
2932      Candidate.Conversions[ArgIdx + 1]
2933        = TryCopyInitialization(Args[ArgIdx], ParamType,
2934                                SuppressUserConversions,
2935                                /*ForceRValue=*/false,
2936                                /*InOverloadResolution=*/true);
2937      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2938        Candidate.Viable = false;
2939        Candidate.FailureKind = ovl_fail_bad_conversion;
2940        break;
2941      }
2942    } else {
2943      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2944      // argument for which there is no corresponding parameter is
2945      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2946      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2947    }
2948  }
2949}
2950
2951/// \brief Add a C++ member function template as a candidate to the candidate
2952/// set, using template argument deduction to produce an appropriate member
2953/// function template specialization.
2954void
2955Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2956                                 DeclAccessPair FoundDecl,
2957                                 CXXRecordDecl *ActingContext,
2958                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2959                                 QualType ObjectType,
2960                                 Expr **Args, unsigned NumArgs,
2961                                 OverloadCandidateSet& CandidateSet,
2962                                 bool SuppressUserConversions) {
2963  if (!CandidateSet.isNewCandidate(MethodTmpl))
2964    return;
2965
2966  // C++ [over.match.funcs]p7:
2967  //   In each case where a candidate is a function template, candidate
2968  //   function template specializations are generated using template argument
2969  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2970  //   candidate functions in the usual way.113) A given name can refer to one
2971  //   or more function templates and also to a set of overloaded non-template
2972  //   functions. In such a case, the candidate functions generated from each
2973  //   function template are combined with the set of non-template candidate
2974  //   functions.
2975  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2976  FunctionDecl *Specialization = 0;
2977  if (TemplateDeductionResult Result
2978      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2979                                Args, NumArgs, Specialization, Info)) {
2980        // FIXME: Record what happened with template argument deduction, so
2981        // that we can give the user a beautiful diagnostic.
2982        (void)Result;
2983        return;
2984      }
2985
2986  // Add the function template specialization produced by template argument
2987  // deduction as a candidate.
2988  assert(Specialization && "Missing member function template specialization?");
2989  assert(isa<CXXMethodDecl>(Specialization) &&
2990         "Specialization is not a member function?");
2991  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2992                     ActingContext, ObjectType, Args, NumArgs,
2993                     CandidateSet, SuppressUserConversions);
2994}
2995
2996/// \brief Add a C++ function template specialization as a candidate
2997/// in the candidate set, using template argument deduction to produce
2998/// an appropriate function template specialization.
2999void
3000Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3001                                   DeclAccessPair FoundDecl,
3002                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3003                                   Expr **Args, unsigned NumArgs,
3004                                   OverloadCandidateSet& CandidateSet,
3005                                   bool SuppressUserConversions) {
3006  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3007    return;
3008
3009  // C++ [over.match.funcs]p7:
3010  //   In each case where a candidate is a function template, candidate
3011  //   function template specializations are generated using template argument
3012  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3013  //   candidate functions in the usual way.113) A given name can refer to one
3014  //   or more function templates and also to a set of overloaded non-template
3015  //   functions. In such a case, the candidate functions generated from each
3016  //   function template are combined with the set of non-template candidate
3017  //   functions.
3018  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3019  FunctionDecl *Specialization = 0;
3020  if (TemplateDeductionResult Result
3021        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3022                                  Args, NumArgs, Specialization, Info)) {
3023    CandidateSet.push_back(OverloadCandidate());
3024    OverloadCandidate &Candidate = CandidateSet.back();
3025    Candidate.FoundDecl = FoundDecl;
3026    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3027    Candidate.Viable = false;
3028    Candidate.FailureKind = ovl_fail_bad_deduction;
3029    Candidate.IsSurrogate = false;
3030    Candidate.IgnoreObjectArgument = false;
3031
3032    // TODO: record more information about failed template arguments
3033    Candidate.DeductionFailure.Result = Result;
3034    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3035    return;
3036  }
3037
3038  // Add the function template specialization produced by template argument
3039  // deduction as a candidate.
3040  assert(Specialization && "Missing function template specialization?");
3041  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3042                       SuppressUserConversions);
3043}
3044
3045/// AddConversionCandidate - Add a C++ conversion function as a
3046/// candidate in the candidate set (C++ [over.match.conv],
3047/// C++ [over.match.copy]). From is the expression we're converting from,
3048/// and ToType is the type that we're eventually trying to convert to
3049/// (which may or may not be the same type as the type that the
3050/// conversion function produces).
3051void
3052Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3053                             DeclAccessPair FoundDecl,
3054                             CXXRecordDecl *ActingContext,
3055                             Expr *From, QualType ToType,
3056                             OverloadCandidateSet& CandidateSet) {
3057  assert(!Conversion->getDescribedFunctionTemplate() &&
3058         "Conversion function templates use AddTemplateConversionCandidate");
3059
3060  if (!CandidateSet.isNewCandidate(Conversion))
3061    return;
3062
3063  // Overload resolution is always an unevaluated context.
3064  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3065
3066  // Add this candidate
3067  CandidateSet.push_back(OverloadCandidate());
3068  OverloadCandidate& Candidate = CandidateSet.back();
3069  Candidate.FoundDecl = FoundDecl;
3070  Candidate.Function = Conversion;
3071  Candidate.IsSurrogate = false;
3072  Candidate.IgnoreObjectArgument = false;
3073  Candidate.FinalConversion.setAsIdentityConversion();
3074  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
3075  Candidate.FinalConversion.setAllToTypes(ToType);
3076
3077  // Determine the implicit conversion sequence for the implicit
3078  // object parameter.
3079  Candidate.Viable = true;
3080  Candidate.Conversions.resize(1);
3081  Candidate.Conversions[0]
3082    = TryObjectArgumentInitialization(From->getType(), Conversion,
3083                                      ActingContext);
3084  // Conversion functions to a different type in the base class is visible in
3085  // the derived class.  So, a derived to base conversion should not participate
3086  // in overload resolution.
3087  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3088    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3089  if (Candidate.Conversions[0].isBad()) {
3090    Candidate.Viable = false;
3091    Candidate.FailureKind = ovl_fail_bad_conversion;
3092    return;
3093  }
3094
3095  // We won't go through a user-define type conversion function to convert a
3096  // derived to base as such conversions are given Conversion Rank. They only
3097  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3098  QualType FromCanon
3099    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3100  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3101  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3102    Candidate.Viable = false;
3103    Candidate.FailureKind = ovl_fail_trivial_conversion;
3104    return;
3105  }
3106
3107
3108  // To determine what the conversion from the result of calling the
3109  // conversion function to the type we're eventually trying to
3110  // convert to (ToType), we need to synthesize a call to the
3111  // conversion function and attempt copy initialization from it. This
3112  // makes sure that we get the right semantics with respect to
3113  // lvalues/rvalues and the type. Fortunately, we can allocate this
3114  // call on the stack and we don't need its arguments to be
3115  // well-formed.
3116  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3117                            From->getLocStart());
3118  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3119                                CastExpr::CK_FunctionToPointerDecay,
3120                                &ConversionRef, false);
3121
3122  // Note that it is safe to allocate CallExpr on the stack here because
3123  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3124  // allocator).
3125  CallExpr Call(Context, &ConversionFn, 0, 0,
3126                Conversion->getConversionType().getNonReferenceType(),
3127                From->getLocStart());
3128  ImplicitConversionSequence ICS =
3129    TryCopyInitialization(&Call, ToType,
3130                          /*SuppressUserConversions=*/true,
3131                          /*ForceRValue=*/false,
3132                          /*InOverloadResolution=*/false);
3133
3134  switch (ICS.getKind()) {
3135  case ImplicitConversionSequence::StandardConversion:
3136    Candidate.FinalConversion = ICS.Standard;
3137
3138    // C++ [over.ics.user]p3:
3139    //   If the user-defined conversion is specified by a specialization of a
3140    //   conversion function template, the second standard conversion sequence
3141    //   shall have exact match rank.
3142    if (Conversion->getPrimaryTemplate() &&
3143        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3144      Candidate.Viable = false;
3145      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3146    }
3147
3148    break;
3149
3150  case ImplicitConversionSequence::BadConversion:
3151    Candidate.Viable = false;
3152    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3153    break;
3154
3155  default:
3156    assert(false &&
3157           "Can only end up with a standard conversion sequence or failure");
3158  }
3159}
3160
3161/// \brief Adds a conversion function template specialization
3162/// candidate to the overload set, using template argument deduction
3163/// to deduce the template arguments of the conversion function
3164/// template from the type that we are converting to (C++
3165/// [temp.deduct.conv]).
3166void
3167Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3168                                     DeclAccessPair FoundDecl,
3169                                     CXXRecordDecl *ActingDC,
3170                                     Expr *From, QualType ToType,
3171                                     OverloadCandidateSet &CandidateSet) {
3172  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3173         "Only conversion function templates permitted here");
3174
3175  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3176    return;
3177
3178  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3179  CXXConversionDecl *Specialization = 0;
3180  if (TemplateDeductionResult Result
3181        = DeduceTemplateArguments(FunctionTemplate, ToType,
3182                                  Specialization, Info)) {
3183    // FIXME: Record what happened with template argument deduction, so
3184    // that we can give the user a beautiful diagnostic.
3185    (void)Result;
3186    return;
3187  }
3188
3189  // Add the conversion function template specialization produced by
3190  // template argument deduction as a candidate.
3191  assert(Specialization && "Missing function template specialization?");
3192  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3193                         CandidateSet);
3194}
3195
3196/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3197/// converts the given @c Object to a function pointer via the
3198/// conversion function @c Conversion, and then attempts to call it
3199/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3200/// the type of function that we'll eventually be calling.
3201void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3202                                 DeclAccessPair FoundDecl,
3203                                 CXXRecordDecl *ActingContext,
3204                                 const FunctionProtoType *Proto,
3205                                 QualType ObjectType,
3206                                 Expr **Args, unsigned NumArgs,
3207                                 OverloadCandidateSet& CandidateSet) {
3208  if (!CandidateSet.isNewCandidate(Conversion))
3209    return;
3210
3211  // Overload resolution is always an unevaluated context.
3212  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3213
3214  CandidateSet.push_back(OverloadCandidate());
3215  OverloadCandidate& Candidate = CandidateSet.back();
3216  Candidate.FoundDecl = FoundDecl;
3217  Candidate.Function = 0;
3218  Candidate.Surrogate = Conversion;
3219  Candidate.Viable = true;
3220  Candidate.IsSurrogate = true;
3221  Candidate.IgnoreObjectArgument = false;
3222  Candidate.Conversions.resize(NumArgs + 1);
3223
3224  // Determine the implicit conversion sequence for the implicit
3225  // object parameter.
3226  ImplicitConversionSequence ObjectInit
3227    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3228  if (ObjectInit.isBad()) {
3229    Candidate.Viable = false;
3230    Candidate.FailureKind = ovl_fail_bad_conversion;
3231    Candidate.Conversions[0] = ObjectInit;
3232    return;
3233  }
3234
3235  // The first conversion is actually a user-defined conversion whose
3236  // first conversion is ObjectInit's standard conversion (which is
3237  // effectively a reference binding). Record it as such.
3238  Candidate.Conversions[0].setUserDefined();
3239  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3240  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3241  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3242  Candidate.Conversions[0].UserDefined.After
3243    = Candidate.Conversions[0].UserDefined.Before;
3244  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3245
3246  // Find the
3247  unsigned NumArgsInProto = Proto->getNumArgs();
3248
3249  // (C++ 13.3.2p2): A candidate function having fewer than m
3250  // parameters is viable only if it has an ellipsis in its parameter
3251  // list (8.3.5).
3252  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3253    Candidate.Viable = false;
3254    Candidate.FailureKind = ovl_fail_too_many_arguments;
3255    return;
3256  }
3257
3258  // Function types don't have any default arguments, so just check if
3259  // we have enough arguments.
3260  if (NumArgs < NumArgsInProto) {
3261    // Not enough arguments.
3262    Candidate.Viable = false;
3263    Candidate.FailureKind = ovl_fail_too_few_arguments;
3264    return;
3265  }
3266
3267  // Determine the implicit conversion sequences for each of the
3268  // arguments.
3269  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3270    if (ArgIdx < NumArgsInProto) {
3271      // (C++ 13.3.2p3): for F to be a viable function, there shall
3272      // exist for each argument an implicit conversion sequence
3273      // (13.3.3.1) that converts that argument to the corresponding
3274      // parameter of F.
3275      QualType ParamType = Proto->getArgType(ArgIdx);
3276      Candidate.Conversions[ArgIdx + 1]
3277        = TryCopyInitialization(Args[ArgIdx], ParamType,
3278                                /*SuppressUserConversions=*/false,
3279                                /*ForceRValue=*/false,
3280                                /*InOverloadResolution=*/false);
3281      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3282        Candidate.Viable = false;
3283        Candidate.FailureKind = ovl_fail_bad_conversion;
3284        break;
3285      }
3286    } else {
3287      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3288      // argument for which there is no corresponding parameter is
3289      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3290      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3291    }
3292  }
3293}
3294
3295// FIXME: This will eventually be removed, once we've migrated all of the
3296// operator overloading logic over to the scheme used by binary operators, which
3297// works for template instantiation.
3298void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3299                                 SourceLocation OpLoc,
3300                                 Expr **Args, unsigned NumArgs,
3301                                 OverloadCandidateSet& CandidateSet,
3302                                 SourceRange OpRange) {
3303  UnresolvedSet<16> Fns;
3304
3305  QualType T1 = Args[0]->getType();
3306  QualType T2;
3307  if (NumArgs > 1)
3308    T2 = Args[1]->getType();
3309
3310  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3311  if (S)
3312    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3313  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3314  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3315                                       CandidateSet);
3316  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3317  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3318}
3319
3320/// \brief Add overload candidates for overloaded operators that are
3321/// member functions.
3322///
3323/// Add the overloaded operator candidates that are member functions
3324/// for the operator Op that was used in an operator expression such
3325/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3326/// CandidateSet will store the added overload candidates. (C++
3327/// [over.match.oper]).
3328void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3329                                       SourceLocation OpLoc,
3330                                       Expr **Args, unsigned NumArgs,
3331                                       OverloadCandidateSet& CandidateSet,
3332                                       SourceRange OpRange) {
3333  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3334
3335  // C++ [over.match.oper]p3:
3336  //   For a unary operator @ with an operand of a type whose
3337  //   cv-unqualified version is T1, and for a binary operator @ with
3338  //   a left operand of a type whose cv-unqualified version is T1 and
3339  //   a right operand of a type whose cv-unqualified version is T2,
3340  //   three sets of candidate functions, designated member
3341  //   candidates, non-member candidates and built-in candidates, are
3342  //   constructed as follows:
3343  QualType T1 = Args[0]->getType();
3344  QualType T2;
3345  if (NumArgs > 1)
3346    T2 = Args[1]->getType();
3347
3348  //     -- If T1 is a class type, the set of member candidates is the
3349  //        result of the qualified lookup of T1::operator@
3350  //        (13.3.1.1.1); otherwise, the set of member candidates is
3351  //        empty.
3352  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3353    // Complete the type if it can be completed. Otherwise, we're done.
3354    if (RequireCompleteType(OpLoc, T1, PDiag()))
3355      return;
3356
3357    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3358    LookupQualifiedName(Operators, T1Rec->getDecl());
3359    Operators.suppressDiagnostics();
3360
3361    for (LookupResult::iterator Oper = Operators.begin(),
3362                             OperEnd = Operators.end();
3363         Oper != OperEnd;
3364         ++Oper)
3365      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3366                         Args + 1, NumArgs - 1, CandidateSet,
3367                         /* SuppressUserConversions = */ false);
3368  }
3369}
3370
3371/// AddBuiltinCandidate - Add a candidate for a built-in
3372/// operator. ResultTy and ParamTys are the result and parameter types
3373/// of the built-in candidate, respectively. Args and NumArgs are the
3374/// arguments being passed to the candidate. IsAssignmentOperator
3375/// should be true when this built-in candidate is an assignment
3376/// operator. NumContextualBoolArguments is the number of arguments
3377/// (at the beginning of the argument list) that will be contextually
3378/// converted to bool.
3379void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3380                               Expr **Args, unsigned NumArgs,
3381                               OverloadCandidateSet& CandidateSet,
3382                               bool IsAssignmentOperator,
3383                               unsigned NumContextualBoolArguments) {
3384  // Overload resolution is always an unevaluated context.
3385  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3386
3387  // Add this candidate
3388  CandidateSet.push_back(OverloadCandidate());
3389  OverloadCandidate& Candidate = CandidateSet.back();
3390  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3391  Candidate.Function = 0;
3392  Candidate.IsSurrogate = false;
3393  Candidate.IgnoreObjectArgument = false;
3394  Candidate.BuiltinTypes.ResultTy = ResultTy;
3395  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3396    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3397
3398  // Determine the implicit conversion sequences for each of the
3399  // arguments.
3400  Candidate.Viable = true;
3401  Candidate.Conversions.resize(NumArgs);
3402  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3403    // C++ [over.match.oper]p4:
3404    //   For the built-in assignment operators, conversions of the
3405    //   left operand are restricted as follows:
3406    //     -- no temporaries are introduced to hold the left operand, and
3407    //     -- no user-defined conversions are applied to the left
3408    //        operand to achieve a type match with the left-most
3409    //        parameter of a built-in candidate.
3410    //
3411    // We block these conversions by turning off user-defined
3412    // conversions, since that is the only way that initialization of
3413    // a reference to a non-class type can occur from something that
3414    // is not of the same type.
3415    if (ArgIdx < NumContextualBoolArguments) {
3416      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3417             "Contextual conversion to bool requires bool type");
3418      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3419    } else {
3420      Candidate.Conversions[ArgIdx]
3421        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3422                                ArgIdx == 0 && IsAssignmentOperator,
3423                                /*ForceRValue=*/false,
3424                                /*InOverloadResolution=*/false);
3425    }
3426    if (Candidate.Conversions[ArgIdx].isBad()) {
3427      Candidate.Viable = false;
3428      Candidate.FailureKind = ovl_fail_bad_conversion;
3429      break;
3430    }
3431  }
3432}
3433
3434/// BuiltinCandidateTypeSet - A set of types that will be used for the
3435/// candidate operator functions for built-in operators (C++
3436/// [over.built]). The types are separated into pointer types and
3437/// enumeration types.
3438class BuiltinCandidateTypeSet  {
3439  /// TypeSet - A set of types.
3440  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3441
3442  /// PointerTypes - The set of pointer types that will be used in the
3443  /// built-in candidates.
3444  TypeSet PointerTypes;
3445
3446  /// MemberPointerTypes - The set of member pointer types that will be
3447  /// used in the built-in candidates.
3448  TypeSet MemberPointerTypes;
3449
3450  /// EnumerationTypes - The set of enumeration types that will be
3451  /// used in the built-in candidates.
3452  TypeSet EnumerationTypes;
3453
3454  /// Sema - The semantic analysis instance where we are building the
3455  /// candidate type set.
3456  Sema &SemaRef;
3457
3458  /// Context - The AST context in which we will build the type sets.
3459  ASTContext &Context;
3460
3461  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3462                                               const Qualifiers &VisibleQuals);
3463  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3464
3465public:
3466  /// iterator - Iterates through the types that are part of the set.
3467  typedef TypeSet::iterator iterator;
3468
3469  BuiltinCandidateTypeSet(Sema &SemaRef)
3470    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3471
3472  void AddTypesConvertedFrom(QualType Ty,
3473                             SourceLocation Loc,
3474                             bool AllowUserConversions,
3475                             bool AllowExplicitConversions,
3476                             const Qualifiers &VisibleTypeConversionsQuals);
3477
3478  /// pointer_begin - First pointer type found;
3479  iterator pointer_begin() { return PointerTypes.begin(); }
3480
3481  /// pointer_end - Past the last pointer type found;
3482  iterator pointer_end() { return PointerTypes.end(); }
3483
3484  /// member_pointer_begin - First member pointer type found;
3485  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3486
3487  /// member_pointer_end - Past the last member pointer type found;
3488  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3489
3490  /// enumeration_begin - First enumeration type found;
3491  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3492
3493  /// enumeration_end - Past the last enumeration type found;
3494  iterator enumeration_end() { return EnumerationTypes.end(); }
3495};
3496
3497/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3498/// the set of pointer types along with any more-qualified variants of
3499/// that type. For example, if @p Ty is "int const *", this routine
3500/// will add "int const *", "int const volatile *", "int const
3501/// restrict *", and "int const volatile restrict *" to the set of
3502/// pointer types. Returns true if the add of @p Ty itself succeeded,
3503/// false otherwise.
3504///
3505/// FIXME: what to do about extended qualifiers?
3506bool
3507BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3508                                             const Qualifiers &VisibleQuals) {
3509
3510  // Insert this type.
3511  if (!PointerTypes.insert(Ty))
3512    return false;
3513
3514  const PointerType *PointerTy = Ty->getAs<PointerType>();
3515  assert(PointerTy && "type was not a pointer type!");
3516
3517  QualType PointeeTy = PointerTy->getPointeeType();
3518  // Don't add qualified variants of arrays. For one, they're not allowed
3519  // (the qualifier would sink to the element type), and for another, the
3520  // only overload situation where it matters is subscript or pointer +- int,
3521  // and those shouldn't have qualifier variants anyway.
3522  if (PointeeTy->isArrayType())
3523    return true;
3524  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3525  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3526    BaseCVR = Array->getElementType().getCVRQualifiers();
3527  bool hasVolatile = VisibleQuals.hasVolatile();
3528  bool hasRestrict = VisibleQuals.hasRestrict();
3529
3530  // Iterate through all strict supersets of BaseCVR.
3531  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3532    if ((CVR | BaseCVR) != CVR) continue;
3533    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3534    // in the types.
3535    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3536    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3537    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3538    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3539  }
3540
3541  return true;
3542}
3543
3544/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3545/// to the set of pointer types along with any more-qualified variants of
3546/// that type. For example, if @p Ty is "int const *", this routine
3547/// will add "int const *", "int const volatile *", "int const
3548/// restrict *", and "int const volatile restrict *" to the set of
3549/// pointer types. Returns true if the add of @p Ty itself succeeded,
3550/// false otherwise.
3551///
3552/// FIXME: what to do about extended qualifiers?
3553bool
3554BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3555    QualType Ty) {
3556  // Insert this type.
3557  if (!MemberPointerTypes.insert(Ty))
3558    return false;
3559
3560  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3561  assert(PointerTy && "type was not a member pointer type!");
3562
3563  QualType PointeeTy = PointerTy->getPointeeType();
3564  // Don't add qualified variants of arrays. For one, they're not allowed
3565  // (the qualifier would sink to the element type), and for another, the
3566  // only overload situation where it matters is subscript or pointer +- int,
3567  // and those shouldn't have qualifier variants anyway.
3568  if (PointeeTy->isArrayType())
3569    return true;
3570  const Type *ClassTy = PointerTy->getClass();
3571
3572  // Iterate through all strict supersets of the pointee type's CVR
3573  // qualifiers.
3574  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3575  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3576    if ((CVR | BaseCVR) != CVR) continue;
3577
3578    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3579    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3580  }
3581
3582  return true;
3583}
3584
3585/// AddTypesConvertedFrom - Add each of the types to which the type @p
3586/// Ty can be implicit converted to the given set of @p Types. We're
3587/// primarily interested in pointer types and enumeration types. We also
3588/// take member pointer types, for the conditional operator.
3589/// AllowUserConversions is true if we should look at the conversion
3590/// functions of a class type, and AllowExplicitConversions if we
3591/// should also include the explicit conversion functions of a class
3592/// type.
3593void
3594BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3595                                               SourceLocation Loc,
3596                                               bool AllowUserConversions,
3597                                               bool AllowExplicitConversions,
3598                                               const Qualifiers &VisibleQuals) {
3599  // Only deal with canonical types.
3600  Ty = Context.getCanonicalType(Ty);
3601
3602  // Look through reference types; they aren't part of the type of an
3603  // expression for the purposes of conversions.
3604  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3605    Ty = RefTy->getPointeeType();
3606
3607  // We don't care about qualifiers on the type.
3608  Ty = Ty.getLocalUnqualifiedType();
3609
3610  // If we're dealing with an array type, decay to the pointer.
3611  if (Ty->isArrayType())
3612    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3613
3614  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3615    QualType PointeeTy = PointerTy->getPointeeType();
3616
3617    // Insert our type, and its more-qualified variants, into the set
3618    // of types.
3619    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3620      return;
3621  } else if (Ty->isMemberPointerType()) {
3622    // Member pointers are far easier, since the pointee can't be converted.
3623    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3624      return;
3625  } else if (Ty->isEnumeralType()) {
3626    EnumerationTypes.insert(Ty);
3627  } else if (AllowUserConversions) {
3628    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3629      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3630        // No conversion functions in incomplete types.
3631        return;
3632      }
3633
3634      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3635      const UnresolvedSetImpl *Conversions
3636        = ClassDecl->getVisibleConversionFunctions();
3637      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3638             E = Conversions->end(); I != E; ++I) {
3639        NamedDecl *D = I.getDecl();
3640        if (isa<UsingShadowDecl>(D))
3641          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3642
3643        // Skip conversion function templates; they don't tell us anything
3644        // about which builtin types we can convert to.
3645        if (isa<FunctionTemplateDecl>(D))
3646          continue;
3647
3648        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3649        if (AllowExplicitConversions || !Conv->isExplicit()) {
3650          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3651                                VisibleQuals);
3652        }
3653      }
3654    }
3655  }
3656}
3657
3658/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3659/// the volatile- and non-volatile-qualified assignment operators for the
3660/// given type to the candidate set.
3661static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3662                                                   QualType T,
3663                                                   Expr **Args,
3664                                                   unsigned NumArgs,
3665                                    OverloadCandidateSet &CandidateSet) {
3666  QualType ParamTypes[2];
3667
3668  // T& operator=(T&, T)
3669  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3670  ParamTypes[1] = T;
3671  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3672                        /*IsAssignmentOperator=*/true);
3673
3674  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3675    // volatile T& operator=(volatile T&, T)
3676    ParamTypes[0]
3677      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3678    ParamTypes[1] = T;
3679    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3680                          /*IsAssignmentOperator=*/true);
3681  }
3682}
3683
3684/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3685/// if any, found in visible type conversion functions found in ArgExpr's type.
3686static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3687    Qualifiers VRQuals;
3688    const RecordType *TyRec;
3689    if (const MemberPointerType *RHSMPType =
3690        ArgExpr->getType()->getAs<MemberPointerType>())
3691      TyRec = cast<RecordType>(RHSMPType->getClass());
3692    else
3693      TyRec = ArgExpr->getType()->getAs<RecordType>();
3694    if (!TyRec) {
3695      // Just to be safe, assume the worst case.
3696      VRQuals.addVolatile();
3697      VRQuals.addRestrict();
3698      return VRQuals;
3699    }
3700
3701    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3702    if (!ClassDecl->hasDefinition())
3703      return VRQuals;
3704
3705    const UnresolvedSetImpl *Conversions =
3706      ClassDecl->getVisibleConversionFunctions();
3707
3708    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3709           E = Conversions->end(); I != E; ++I) {
3710      NamedDecl *D = I.getDecl();
3711      if (isa<UsingShadowDecl>(D))
3712        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3713      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3714        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3715        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3716          CanTy = ResTypeRef->getPointeeType();
3717        // Need to go down the pointer/mempointer chain and add qualifiers
3718        // as see them.
3719        bool done = false;
3720        while (!done) {
3721          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3722            CanTy = ResTypePtr->getPointeeType();
3723          else if (const MemberPointerType *ResTypeMPtr =
3724                CanTy->getAs<MemberPointerType>())
3725            CanTy = ResTypeMPtr->getPointeeType();
3726          else
3727            done = true;
3728          if (CanTy.isVolatileQualified())
3729            VRQuals.addVolatile();
3730          if (CanTy.isRestrictQualified())
3731            VRQuals.addRestrict();
3732          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3733            return VRQuals;
3734        }
3735      }
3736    }
3737    return VRQuals;
3738}
3739
3740/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3741/// operator overloads to the candidate set (C++ [over.built]), based
3742/// on the operator @p Op and the arguments given. For example, if the
3743/// operator is a binary '+', this routine might add "int
3744/// operator+(int, int)" to cover integer addition.
3745void
3746Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3747                                   SourceLocation OpLoc,
3748                                   Expr **Args, unsigned NumArgs,
3749                                   OverloadCandidateSet& CandidateSet) {
3750  // The set of "promoted arithmetic types", which are the arithmetic
3751  // types are that preserved by promotion (C++ [over.built]p2). Note
3752  // that the first few of these types are the promoted integral
3753  // types; these types need to be first.
3754  // FIXME: What about complex?
3755  const unsigned FirstIntegralType = 0;
3756  const unsigned LastIntegralType = 13;
3757  const unsigned FirstPromotedIntegralType = 7,
3758                 LastPromotedIntegralType = 13;
3759  const unsigned FirstPromotedArithmeticType = 7,
3760                 LastPromotedArithmeticType = 16;
3761  const unsigned NumArithmeticTypes = 16;
3762  QualType ArithmeticTypes[NumArithmeticTypes] = {
3763    Context.BoolTy, Context.CharTy, Context.WCharTy,
3764// FIXME:   Context.Char16Ty, Context.Char32Ty,
3765    Context.SignedCharTy, Context.ShortTy,
3766    Context.UnsignedCharTy, Context.UnsignedShortTy,
3767    Context.IntTy, Context.LongTy, Context.LongLongTy,
3768    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3769    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3770  };
3771  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3772         "Invalid first promoted integral type");
3773  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3774           == Context.UnsignedLongLongTy &&
3775         "Invalid last promoted integral type");
3776  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3777         "Invalid first promoted arithmetic type");
3778  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3779            == Context.LongDoubleTy &&
3780         "Invalid last promoted arithmetic type");
3781
3782  // Find all of the types that the arguments can convert to, but only
3783  // if the operator we're looking at has built-in operator candidates
3784  // that make use of these types.
3785  Qualifiers VisibleTypeConversionsQuals;
3786  VisibleTypeConversionsQuals.addConst();
3787  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3788    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3789
3790  BuiltinCandidateTypeSet CandidateTypes(*this);
3791  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3792      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3793      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3794      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3795      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3796      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3797    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3798      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3799                                           OpLoc,
3800                                           true,
3801                                           (Op == OO_Exclaim ||
3802                                            Op == OO_AmpAmp ||
3803                                            Op == OO_PipePipe),
3804                                           VisibleTypeConversionsQuals);
3805  }
3806
3807  bool isComparison = false;
3808  switch (Op) {
3809  case OO_None:
3810  case NUM_OVERLOADED_OPERATORS:
3811    assert(false && "Expected an overloaded operator");
3812    break;
3813
3814  case OO_Star: // '*' is either unary or binary
3815    if (NumArgs == 1)
3816      goto UnaryStar;
3817    else
3818      goto BinaryStar;
3819    break;
3820
3821  case OO_Plus: // '+' is either unary or binary
3822    if (NumArgs == 1)
3823      goto UnaryPlus;
3824    else
3825      goto BinaryPlus;
3826    break;
3827
3828  case OO_Minus: // '-' is either unary or binary
3829    if (NumArgs == 1)
3830      goto UnaryMinus;
3831    else
3832      goto BinaryMinus;
3833    break;
3834
3835  case OO_Amp: // '&' is either unary or binary
3836    if (NumArgs == 1)
3837      goto UnaryAmp;
3838    else
3839      goto BinaryAmp;
3840
3841  case OO_PlusPlus:
3842  case OO_MinusMinus:
3843    // C++ [over.built]p3:
3844    //
3845    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3846    //   is either volatile or empty, there exist candidate operator
3847    //   functions of the form
3848    //
3849    //       VQ T&      operator++(VQ T&);
3850    //       T          operator++(VQ T&, int);
3851    //
3852    // C++ [over.built]p4:
3853    //
3854    //   For every pair (T, VQ), where T is an arithmetic type other
3855    //   than bool, and VQ is either volatile or empty, there exist
3856    //   candidate operator functions of the form
3857    //
3858    //       VQ T&      operator--(VQ T&);
3859    //       T          operator--(VQ T&, int);
3860    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3861         Arith < NumArithmeticTypes; ++Arith) {
3862      QualType ArithTy = ArithmeticTypes[Arith];
3863      QualType ParamTypes[2]
3864        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3865
3866      // Non-volatile version.
3867      if (NumArgs == 1)
3868        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3869      else
3870        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3871      // heuristic to reduce number of builtin candidates in the set.
3872      // Add volatile version only if there are conversions to a volatile type.
3873      if (VisibleTypeConversionsQuals.hasVolatile()) {
3874        // Volatile version
3875        ParamTypes[0]
3876          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3877        if (NumArgs == 1)
3878          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3879        else
3880          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3881      }
3882    }
3883
3884    // C++ [over.built]p5:
3885    //
3886    //   For every pair (T, VQ), where T is a cv-qualified or
3887    //   cv-unqualified object type, and VQ is either volatile or
3888    //   empty, there exist candidate operator functions of the form
3889    //
3890    //       T*VQ&      operator++(T*VQ&);
3891    //       T*VQ&      operator--(T*VQ&);
3892    //       T*         operator++(T*VQ&, int);
3893    //       T*         operator--(T*VQ&, int);
3894    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3895         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3896      // Skip pointer types that aren't pointers to object types.
3897      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3898        continue;
3899
3900      QualType ParamTypes[2] = {
3901        Context.getLValueReferenceType(*Ptr), Context.IntTy
3902      };
3903
3904      // Without volatile
3905      if (NumArgs == 1)
3906        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3907      else
3908        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3909
3910      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3911          VisibleTypeConversionsQuals.hasVolatile()) {
3912        // With volatile
3913        ParamTypes[0]
3914          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3915        if (NumArgs == 1)
3916          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3917        else
3918          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3919      }
3920    }
3921    break;
3922
3923  UnaryStar:
3924    // C++ [over.built]p6:
3925    //   For every cv-qualified or cv-unqualified object type T, there
3926    //   exist candidate operator functions of the form
3927    //
3928    //       T&         operator*(T*);
3929    //
3930    // C++ [over.built]p7:
3931    //   For every function type T, there exist candidate operator
3932    //   functions of the form
3933    //       T&         operator*(T*);
3934    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3935         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3936      QualType ParamTy = *Ptr;
3937      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3938      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3939                          &ParamTy, Args, 1, CandidateSet);
3940    }
3941    break;
3942
3943  UnaryPlus:
3944    // C++ [over.built]p8:
3945    //   For every type T, there exist candidate operator functions of
3946    //   the form
3947    //
3948    //       T*         operator+(T*);
3949    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3950         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3951      QualType ParamTy = *Ptr;
3952      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3953    }
3954
3955    // Fall through
3956
3957  UnaryMinus:
3958    // C++ [over.built]p9:
3959    //  For every promoted arithmetic type T, there exist candidate
3960    //  operator functions of the form
3961    //
3962    //       T         operator+(T);
3963    //       T         operator-(T);
3964    for (unsigned Arith = FirstPromotedArithmeticType;
3965         Arith < LastPromotedArithmeticType; ++Arith) {
3966      QualType ArithTy = ArithmeticTypes[Arith];
3967      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3968    }
3969    break;
3970
3971  case OO_Tilde:
3972    // C++ [over.built]p10:
3973    //   For every promoted integral type T, there exist candidate
3974    //   operator functions of the form
3975    //
3976    //        T         operator~(T);
3977    for (unsigned Int = FirstPromotedIntegralType;
3978         Int < LastPromotedIntegralType; ++Int) {
3979      QualType IntTy = ArithmeticTypes[Int];
3980      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3981    }
3982    break;
3983
3984  case OO_New:
3985  case OO_Delete:
3986  case OO_Array_New:
3987  case OO_Array_Delete:
3988  case OO_Call:
3989    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3990    break;
3991
3992  case OO_Comma:
3993  UnaryAmp:
3994  case OO_Arrow:
3995    // C++ [over.match.oper]p3:
3996    //   -- For the operator ',', the unary operator '&', or the
3997    //      operator '->', the built-in candidates set is empty.
3998    break;
3999
4000  case OO_EqualEqual:
4001  case OO_ExclaimEqual:
4002    // C++ [over.match.oper]p16:
4003    //   For every pointer to member type T, there exist candidate operator
4004    //   functions of the form
4005    //
4006    //        bool operator==(T,T);
4007    //        bool operator!=(T,T);
4008    for (BuiltinCandidateTypeSet::iterator
4009           MemPtr = CandidateTypes.member_pointer_begin(),
4010           MemPtrEnd = CandidateTypes.member_pointer_end();
4011         MemPtr != MemPtrEnd;
4012         ++MemPtr) {
4013      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4014      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4015    }
4016
4017    // Fall through
4018
4019  case OO_Less:
4020  case OO_Greater:
4021  case OO_LessEqual:
4022  case OO_GreaterEqual:
4023    // C++ [over.built]p15:
4024    //
4025    //   For every pointer or enumeration type T, there exist
4026    //   candidate operator functions of the form
4027    //
4028    //        bool       operator<(T, T);
4029    //        bool       operator>(T, T);
4030    //        bool       operator<=(T, T);
4031    //        bool       operator>=(T, T);
4032    //        bool       operator==(T, T);
4033    //        bool       operator!=(T, T);
4034    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4035         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4036      QualType ParamTypes[2] = { *Ptr, *Ptr };
4037      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4038    }
4039    for (BuiltinCandidateTypeSet::iterator Enum
4040           = CandidateTypes.enumeration_begin();
4041         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4042      QualType ParamTypes[2] = { *Enum, *Enum };
4043      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4044    }
4045
4046    // Fall through.
4047    isComparison = true;
4048
4049  BinaryPlus:
4050  BinaryMinus:
4051    if (!isComparison) {
4052      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4053
4054      // C++ [over.built]p13:
4055      //
4056      //   For every cv-qualified or cv-unqualified object type T
4057      //   there exist candidate operator functions of the form
4058      //
4059      //      T*         operator+(T*, ptrdiff_t);
4060      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4061      //      T*         operator-(T*, ptrdiff_t);
4062      //      T*         operator+(ptrdiff_t, T*);
4063      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4064      //
4065      // C++ [over.built]p14:
4066      //
4067      //   For every T, where T is a pointer to object type, there
4068      //   exist candidate operator functions of the form
4069      //
4070      //      ptrdiff_t  operator-(T, T);
4071      for (BuiltinCandidateTypeSet::iterator Ptr
4072             = CandidateTypes.pointer_begin();
4073           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4074        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4075
4076        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4077        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4078
4079        if (Op == OO_Plus) {
4080          // T* operator+(ptrdiff_t, T*);
4081          ParamTypes[0] = ParamTypes[1];
4082          ParamTypes[1] = *Ptr;
4083          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4084        } else {
4085          // ptrdiff_t operator-(T, T);
4086          ParamTypes[1] = *Ptr;
4087          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4088                              Args, 2, CandidateSet);
4089        }
4090      }
4091    }
4092    // Fall through
4093
4094  case OO_Slash:
4095  BinaryStar:
4096  Conditional:
4097    // C++ [over.built]p12:
4098    //
4099    //   For every pair of promoted arithmetic types L and R, there
4100    //   exist candidate operator functions of the form
4101    //
4102    //        LR         operator*(L, R);
4103    //        LR         operator/(L, R);
4104    //        LR         operator+(L, R);
4105    //        LR         operator-(L, R);
4106    //        bool       operator<(L, R);
4107    //        bool       operator>(L, R);
4108    //        bool       operator<=(L, R);
4109    //        bool       operator>=(L, R);
4110    //        bool       operator==(L, R);
4111    //        bool       operator!=(L, R);
4112    //
4113    //   where LR is the result of the usual arithmetic conversions
4114    //   between types L and R.
4115    //
4116    // C++ [over.built]p24:
4117    //
4118    //   For every pair of promoted arithmetic types L and R, there exist
4119    //   candidate operator functions of the form
4120    //
4121    //        LR       operator?(bool, L, R);
4122    //
4123    //   where LR is the result of the usual arithmetic conversions
4124    //   between types L and R.
4125    // Our candidates ignore the first parameter.
4126    for (unsigned Left = FirstPromotedArithmeticType;
4127         Left < LastPromotedArithmeticType; ++Left) {
4128      for (unsigned Right = FirstPromotedArithmeticType;
4129           Right < LastPromotedArithmeticType; ++Right) {
4130        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4131        QualType Result
4132          = isComparison
4133          ? Context.BoolTy
4134          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4135        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4136      }
4137    }
4138    break;
4139
4140  case OO_Percent:
4141  BinaryAmp:
4142  case OO_Caret:
4143  case OO_Pipe:
4144  case OO_LessLess:
4145  case OO_GreaterGreater:
4146    // C++ [over.built]p17:
4147    //
4148    //   For every pair of promoted integral types L and R, there
4149    //   exist candidate operator functions of the form
4150    //
4151    //      LR         operator%(L, R);
4152    //      LR         operator&(L, R);
4153    //      LR         operator^(L, R);
4154    //      LR         operator|(L, R);
4155    //      L          operator<<(L, R);
4156    //      L          operator>>(L, R);
4157    //
4158    //   where LR is the result of the usual arithmetic conversions
4159    //   between types L and R.
4160    for (unsigned Left = FirstPromotedIntegralType;
4161         Left < LastPromotedIntegralType; ++Left) {
4162      for (unsigned Right = FirstPromotedIntegralType;
4163           Right < LastPromotedIntegralType; ++Right) {
4164        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4165        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4166            ? LandR[0]
4167            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4168        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4169      }
4170    }
4171    break;
4172
4173  case OO_Equal:
4174    // C++ [over.built]p20:
4175    //
4176    //   For every pair (T, VQ), where T is an enumeration or
4177    //   pointer to member type and VQ is either volatile or
4178    //   empty, there exist candidate operator functions of the form
4179    //
4180    //        VQ T&      operator=(VQ T&, T);
4181    for (BuiltinCandidateTypeSet::iterator
4182           Enum = CandidateTypes.enumeration_begin(),
4183           EnumEnd = CandidateTypes.enumeration_end();
4184         Enum != EnumEnd; ++Enum)
4185      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4186                                             CandidateSet);
4187    for (BuiltinCandidateTypeSet::iterator
4188           MemPtr = CandidateTypes.member_pointer_begin(),
4189         MemPtrEnd = CandidateTypes.member_pointer_end();
4190         MemPtr != MemPtrEnd; ++MemPtr)
4191      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4192                                             CandidateSet);
4193      // Fall through.
4194
4195  case OO_PlusEqual:
4196  case OO_MinusEqual:
4197    // C++ [over.built]p19:
4198    //
4199    //   For every pair (T, VQ), where T is any type and VQ is either
4200    //   volatile or empty, there exist candidate operator functions
4201    //   of the form
4202    //
4203    //        T*VQ&      operator=(T*VQ&, T*);
4204    //
4205    // C++ [over.built]p21:
4206    //
4207    //   For every pair (T, VQ), where T is a cv-qualified or
4208    //   cv-unqualified object type and VQ is either volatile or
4209    //   empty, there exist candidate operator functions of the form
4210    //
4211    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4212    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4213    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4214         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4215      QualType ParamTypes[2];
4216      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4217
4218      // non-volatile version
4219      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4220      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4221                          /*IsAssigmentOperator=*/Op == OO_Equal);
4222
4223      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4224          VisibleTypeConversionsQuals.hasVolatile()) {
4225        // volatile version
4226        ParamTypes[0]
4227          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4228        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4229                            /*IsAssigmentOperator=*/Op == OO_Equal);
4230      }
4231    }
4232    // Fall through.
4233
4234  case OO_StarEqual:
4235  case OO_SlashEqual:
4236    // C++ [over.built]p18:
4237    //
4238    //   For every triple (L, VQ, R), where L is an arithmetic type,
4239    //   VQ is either volatile or empty, and R is a promoted
4240    //   arithmetic type, there exist candidate operator functions of
4241    //   the form
4242    //
4243    //        VQ L&      operator=(VQ L&, R);
4244    //        VQ L&      operator*=(VQ L&, R);
4245    //        VQ L&      operator/=(VQ L&, R);
4246    //        VQ L&      operator+=(VQ L&, R);
4247    //        VQ L&      operator-=(VQ L&, R);
4248    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4249      for (unsigned Right = FirstPromotedArithmeticType;
4250           Right < LastPromotedArithmeticType; ++Right) {
4251        QualType ParamTypes[2];
4252        ParamTypes[1] = ArithmeticTypes[Right];
4253
4254        // Add this built-in operator as a candidate (VQ is empty).
4255        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4256        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4257                            /*IsAssigmentOperator=*/Op == OO_Equal);
4258
4259        // Add this built-in operator as a candidate (VQ is 'volatile').
4260        if (VisibleTypeConversionsQuals.hasVolatile()) {
4261          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4262          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4263          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4264                              /*IsAssigmentOperator=*/Op == OO_Equal);
4265        }
4266      }
4267    }
4268    break;
4269
4270  case OO_PercentEqual:
4271  case OO_LessLessEqual:
4272  case OO_GreaterGreaterEqual:
4273  case OO_AmpEqual:
4274  case OO_CaretEqual:
4275  case OO_PipeEqual:
4276    // C++ [over.built]p22:
4277    //
4278    //   For every triple (L, VQ, R), where L is an integral type, VQ
4279    //   is either volatile or empty, and R is a promoted integral
4280    //   type, there exist candidate operator functions of the form
4281    //
4282    //        VQ L&       operator%=(VQ L&, R);
4283    //        VQ L&       operator<<=(VQ L&, R);
4284    //        VQ L&       operator>>=(VQ L&, R);
4285    //        VQ L&       operator&=(VQ L&, R);
4286    //        VQ L&       operator^=(VQ L&, R);
4287    //        VQ L&       operator|=(VQ L&, R);
4288    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4289      for (unsigned Right = FirstPromotedIntegralType;
4290           Right < LastPromotedIntegralType; ++Right) {
4291        QualType ParamTypes[2];
4292        ParamTypes[1] = ArithmeticTypes[Right];
4293
4294        // Add this built-in operator as a candidate (VQ is empty).
4295        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4296        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4297        if (VisibleTypeConversionsQuals.hasVolatile()) {
4298          // Add this built-in operator as a candidate (VQ is 'volatile').
4299          ParamTypes[0] = ArithmeticTypes[Left];
4300          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4301          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4302          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4303        }
4304      }
4305    }
4306    break;
4307
4308  case OO_Exclaim: {
4309    // C++ [over.operator]p23:
4310    //
4311    //   There also exist candidate operator functions of the form
4312    //
4313    //        bool        operator!(bool);
4314    //        bool        operator&&(bool, bool);     [BELOW]
4315    //        bool        operator||(bool, bool);     [BELOW]
4316    QualType ParamTy = Context.BoolTy;
4317    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4318                        /*IsAssignmentOperator=*/false,
4319                        /*NumContextualBoolArguments=*/1);
4320    break;
4321  }
4322
4323  case OO_AmpAmp:
4324  case OO_PipePipe: {
4325    // C++ [over.operator]p23:
4326    //
4327    //   There also exist candidate operator functions of the form
4328    //
4329    //        bool        operator!(bool);            [ABOVE]
4330    //        bool        operator&&(bool, bool);
4331    //        bool        operator||(bool, bool);
4332    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4333    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4334                        /*IsAssignmentOperator=*/false,
4335                        /*NumContextualBoolArguments=*/2);
4336    break;
4337  }
4338
4339  case OO_Subscript:
4340    // C++ [over.built]p13:
4341    //
4342    //   For every cv-qualified or cv-unqualified object type T there
4343    //   exist candidate operator functions of the form
4344    //
4345    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4346    //        T&         operator[](T*, ptrdiff_t);
4347    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4348    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4349    //        T&         operator[](ptrdiff_t, T*);
4350    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4351         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4352      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4353      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4354      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4355
4356      // T& operator[](T*, ptrdiff_t)
4357      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4358
4359      // T& operator[](ptrdiff_t, T*);
4360      ParamTypes[0] = ParamTypes[1];
4361      ParamTypes[1] = *Ptr;
4362      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4363    }
4364    break;
4365
4366  case OO_ArrowStar:
4367    // C++ [over.built]p11:
4368    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4369    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4370    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4371    //    there exist candidate operator functions of the form
4372    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4373    //    where CV12 is the union of CV1 and CV2.
4374    {
4375      for (BuiltinCandidateTypeSet::iterator Ptr =
4376             CandidateTypes.pointer_begin();
4377           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4378        QualType C1Ty = (*Ptr);
4379        QualType C1;
4380        QualifierCollector Q1;
4381        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4382          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4383          if (!isa<RecordType>(C1))
4384            continue;
4385          // heuristic to reduce number of builtin candidates in the set.
4386          // Add volatile/restrict version only if there are conversions to a
4387          // volatile/restrict type.
4388          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4389            continue;
4390          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4391            continue;
4392        }
4393        for (BuiltinCandidateTypeSet::iterator
4394             MemPtr = CandidateTypes.member_pointer_begin(),
4395             MemPtrEnd = CandidateTypes.member_pointer_end();
4396             MemPtr != MemPtrEnd; ++MemPtr) {
4397          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4398          QualType C2 = QualType(mptr->getClass(), 0);
4399          C2 = C2.getUnqualifiedType();
4400          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4401            break;
4402          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4403          // build CV12 T&
4404          QualType T = mptr->getPointeeType();
4405          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4406              T.isVolatileQualified())
4407            continue;
4408          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4409              T.isRestrictQualified())
4410            continue;
4411          T = Q1.apply(T);
4412          QualType ResultTy = Context.getLValueReferenceType(T);
4413          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4414        }
4415      }
4416    }
4417    break;
4418
4419  case OO_Conditional:
4420    // Note that we don't consider the first argument, since it has been
4421    // contextually converted to bool long ago. The candidates below are
4422    // therefore added as binary.
4423    //
4424    // C++ [over.built]p24:
4425    //   For every type T, where T is a pointer or pointer-to-member type,
4426    //   there exist candidate operator functions of the form
4427    //
4428    //        T        operator?(bool, T, T);
4429    //
4430    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4431         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4432      QualType ParamTypes[2] = { *Ptr, *Ptr };
4433      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4434    }
4435    for (BuiltinCandidateTypeSet::iterator Ptr =
4436           CandidateTypes.member_pointer_begin(),
4437         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4438      QualType ParamTypes[2] = { *Ptr, *Ptr };
4439      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4440    }
4441    goto Conditional;
4442  }
4443}
4444
4445/// \brief Add function candidates found via argument-dependent lookup
4446/// to the set of overloading candidates.
4447///
4448/// This routine performs argument-dependent name lookup based on the
4449/// given function name (which may also be an operator name) and adds
4450/// all of the overload candidates found by ADL to the overload
4451/// candidate set (C++ [basic.lookup.argdep]).
4452void
4453Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4454                                           bool Operator,
4455                                           Expr **Args, unsigned NumArgs,
4456                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4457                                           OverloadCandidateSet& CandidateSet,
4458                                           bool PartialOverloading) {
4459  ADLResult Fns;
4460
4461  // FIXME: This approach for uniquing ADL results (and removing
4462  // redundant candidates from the set) relies on pointer-equality,
4463  // which means we need to key off the canonical decl.  However,
4464  // always going back to the canonical decl might not get us the
4465  // right set of default arguments.  What default arguments are
4466  // we supposed to consider on ADL candidates, anyway?
4467
4468  // FIXME: Pass in the explicit template arguments?
4469  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4470
4471  // Erase all of the candidates we already knew about.
4472  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4473                                   CandEnd = CandidateSet.end();
4474       Cand != CandEnd; ++Cand)
4475    if (Cand->Function) {
4476      Fns.erase(Cand->Function);
4477      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4478        Fns.erase(FunTmpl);
4479    }
4480
4481  // For each of the ADL candidates we found, add it to the overload
4482  // set.
4483  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4484    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4485    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4486      if (ExplicitTemplateArgs)
4487        continue;
4488
4489      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4490                           false, false, PartialOverloading);
4491    } else
4492      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4493                                   FoundDecl, ExplicitTemplateArgs,
4494                                   Args, NumArgs, CandidateSet);
4495  }
4496}
4497
4498/// isBetterOverloadCandidate - Determines whether the first overload
4499/// candidate is a better candidate than the second (C++ 13.3.3p1).
4500bool
4501Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4502                                const OverloadCandidate& Cand2,
4503                                SourceLocation Loc) {
4504  // Define viable functions to be better candidates than non-viable
4505  // functions.
4506  if (!Cand2.Viable)
4507    return Cand1.Viable;
4508  else if (!Cand1.Viable)
4509    return false;
4510
4511  // C++ [over.match.best]p1:
4512  //
4513  //   -- if F is a static member function, ICS1(F) is defined such
4514  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4515  //      any function G, and, symmetrically, ICS1(G) is neither
4516  //      better nor worse than ICS1(F).
4517  unsigned StartArg = 0;
4518  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4519    StartArg = 1;
4520
4521  // C++ [over.match.best]p1:
4522  //   A viable function F1 is defined to be a better function than another
4523  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4524  //   conversion sequence than ICSi(F2), and then...
4525  unsigned NumArgs = Cand1.Conversions.size();
4526  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4527  bool HasBetterConversion = false;
4528  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4529    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4530                                               Cand2.Conversions[ArgIdx])) {
4531    case ImplicitConversionSequence::Better:
4532      // Cand1 has a better conversion sequence.
4533      HasBetterConversion = true;
4534      break;
4535
4536    case ImplicitConversionSequence::Worse:
4537      // Cand1 can't be better than Cand2.
4538      return false;
4539
4540    case ImplicitConversionSequence::Indistinguishable:
4541      // Do nothing.
4542      break;
4543    }
4544  }
4545
4546  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4547  //       ICSj(F2), or, if not that,
4548  if (HasBetterConversion)
4549    return true;
4550
4551  //     - F1 is a non-template function and F2 is a function template
4552  //       specialization, or, if not that,
4553  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4554      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4555    return true;
4556
4557  //   -- F1 and F2 are function template specializations, and the function
4558  //      template for F1 is more specialized than the template for F2
4559  //      according to the partial ordering rules described in 14.5.5.2, or,
4560  //      if not that,
4561  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4562      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4563    if (FunctionTemplateDecl *BetterTemplate
4564          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4565                                       Cand2.Function->getPrimaryTemplate(),
4566                                       Loc,
4567                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4568                                                             : TPOC_Call))
4569      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4570
4571  //   -- the context is an initialization by user-defined conversion
4572  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4573  //      from the return type of F1 to the destination type (i.e.,
4574  //      the type of the entity being initialized) is a better
4575  //      conversion sequence than the standard conversion sequence
4576  //      from the return type of F2 to the destination type.
4577  if (Cand1.Function && Cand2.Function &&
4578      isa<CXXConversionDecl>(Cand1.Function) &&
4579      isa<CXXConversionDecl>(Cand2.Function)) {
4580    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4581                                               Cand2.FinalConversion)) {
4582    case ImplicitConversionSequence::Better:
4583      // Cand1 has a better conversion sequence.
4584      return true;
4585
4586    case ImplicitConversionSequence::Worse:
4587      // Cand1 can't be better than Cand2.
4588      return false;
4589
4590    case ImplicitConversionSequence::Indistinguishable:
4591      // Do nothing
4592      break;
4593    }
4594  }
4595
4596  return false;
4597}
4598
4599/// \brief Computes the best viable function (C++ 13.3.3)
4600/// within an overload candidate set.
4601///
4602/// \param CandidateSet the set of candidate functions.
4603///
4604/// \param Loc the location of the function name (or operator symbol) for
4605/// which overload resolution occurs.
4606///
4607/// \param Best f overload resolution was successful or found a deleted
4608/// function, Best points to the candidate function found.
4609///
4610/// \returns The result of overload resolution.
4611OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4612                                           SourceLocation Loc,
4613                                        OverloadCandidateSet::iterator& Best) {
4614  // Find the best viable function.
4615  Best = CandidateSet.end();
4616  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4617       Cand != CandidateSet.end(); ++Cand) {
4618    if (Cand->Viable) {
4619      if (Best == CandidateSet.end() ||
4620          isBetterOverloadCandidate(*Cand, *Best, Loc))
4621        Best = Cand;
4622    }
4623  }
4624
4625  // If we didn't find any viable functions, abort.
4626  if (Best == CandidateSet.end())
4627    return OR_No_Viable_Function;
4628
4629  // Make sure that this function is better than every other viable
4630  // function. If not, we have an ambiguity.
4631  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4632       Cand != CandidateSet.end(); ++Cand) {
4633    if (Cand->Viable &&
4634        Cand != Best &&
4635        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4636      Best = CandidateSet.end();
4637      return OR_Ambiguous;
4638    }
4639  }
4640
4641  // Best is the best viable function.
4642  if (Best->Function &&
4643      (Best->Function->isDeleted() ||
4644       Best->Function->getAttr<UnavailableAttr>()))
4645    return OR_Deleted;
4646
4647  // C++ [basic.def.odr]p2:
4648  //   An overloaded function is used if it is selected by overload resolution
4649  //   when referred to from a potentially-evaluated expression. [Note: this
4650  //   covers calls to named functions (5.2.2), operator overloading
4651  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4652  //   placement new (5.3.4), as well as non-default initialization (8.5).
4653  if (Best->Function)
4654    MarkDeclarationReferenced(Loc, Best->Function);
4655  return OR_Success;
4656}
4657
4658namespace {
4659
4660enum OverloadCandidateKind {
4661  oc_function,
4662  oc_method,
4663  oc_constructor,
4664  oc_function_template,
4665  oc_method_template,
4666  oc_constructor_template,
4667  oc_implicit_default_constructor,
4668  oc_implicit_copy_constructor,
4669  oc_implicit_copy_assignment
4670};
4671
4672OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4673                                                FunctionDecl *Fn,
4674                                                std::string &Description) {
4675  bool isTemplate = false;
4676
4677  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4678    isTemplate = true;
4679    Description = S.getTemplateArgumentBindingsText(
4680      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4681  }
4682
4683  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4684    if (!Ctor->isImplicit())
4685      return isTemplate ? oc_constructor_template : oc_constructor;
4686
4687    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4688                                     : oc_implicit_default_constructor;
4689  }
4690
4691  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4692    // This actually gets spelled 'candidate function' for now, but
4693    // it doesn't hurt to split it out.
4694    if (!Meth->isImplicit())
4695      return isTemplate ? oc_method_template : oc_method;
4696
4697    assert(Meth->isCopyAssignment()
4698           && "implicit method is not copy assignment operator?");
4699    return oc_implicit_copy_assignment;
4700  }
4701
4702  return isTemplate ? oc_function_template : oc_function;
4703}
4704
4705} // end anonymous namespace
4706
4707// Notes the location of an overload candidate.
4708void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4709  std::string FnDesc;
4710  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4711  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4712    << (unsigned) K << FnDesc;
4713}
4714
4715/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4716/// "lead" diagnostic; it will be given two arguments, the source and
4717/// target types of the conversion.
4718void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4719                                       SourceLocation CaretLoc,
4720                                       const PartialDiagnostic &PDiag) {
4721  Diag(CaretLoc, PDiag)
4722    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4723  for (AmbiguousConversionSequence::const_iterator
4724         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4725    NoteOverloadCandidate(*I);
4726  }
4727}
4728
4729namespace {
4730
4731void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4732  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4733  assert(Conv.isBad());
4734  assert(Cand->Function && "for now, candidate must be a function");
4735  FunctionDecl *Fn = Cand->Function;
4736
4737  // There's a conversion slot for the object argument if this is a
4738  // non-constructor method.  Note that 'I' corresponds the
4739  // conversion-slot index.
4740  bool isObjectArgument = false;
4741  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4742    if (I == 0)
4743      isObjectArgument = true;
4744    else
4745      I--;
4746  }
4747
4748  std::string FnDesc;
4749  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4750
4751  Expr *FromExpr = Conv.Bad.FromExpr;
4752  QualType FromTy = Conv.Bad.getFromType();
4753  QualType ToTy = Conv.Bad.getToType();
4754
4755  if (FromTy == S.Context.OverloadTy) {
4756    assert(FromExpr && "overload set argument came from implicit argument?");
4757    Expr *E = FromExpr->IgnoreParens();
4758    if (isa<UnaryOperator>(E))
4759      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4760    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4761
4762    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4763      << (unsigned) FnKind << FnDesc
4764      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4765      << ToTy << Name << I+1;
4766    return;
4767  }
4768
4769  // Do some hand-waving analysis to see if the non-viability is due
4770  // to a qualifier mismatch.
4771  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4772  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4773  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4774    CToTy = RT->getPointeeType();
4775  else {
4776    // TODO: detect and diagnose the full richness of const mismatches.
4777    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4778      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4779        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4780  }
4781
4782  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4783      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4784    // It is dumb that we have to do this here.
4785    while (isa<ArrayType>(CFromTy))
4786      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4787    while (isa<ArrayType>(CToTy))
4788      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4789
4790    Qualifiers FromQs = CFromTy.getQualifiers();
4791    Qualifiers ToQs = CToTy.getQualifiers();
4792
4793    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4794      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4795        << (unsigned) FnKind << FnDesc
4796        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4797        << FromTy
4798        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4799        << (unsigned) isObjectArgument << I+1;
4800      return;
4801    }
4802
4803    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4804    assert(CVR && "unexpected qualifiers mismatch");
4805
4806    if (isObjectArgument) {
4807      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4808        << (unsigned) FnKind << FnDesc
4809        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4810        << FromTy << (CVR - 1);
4811    } else {
4812      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4813        << (unsigned) FnKind << FnDesc
4814        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4815        << FromTy << (CVR - 1) << I+1;
4816    }
4817    return;
4818  }
4819
4820  // Diagnose references or pointers to incomplete types differently,
4821  // since it's far from impossible that the incompleteness triggered
4822  // the failure.
4823  QualType TempFromTy = FromTy.getNonReferenceType();
4824  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4825    TempFromTy = PTy->getPointeeType();
4826  if (TempFromTy->isIncompleteType()) {
4827    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4828      << (unsigned) FnKind << FnDesc
4829      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4830      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4831    return;
4832  }
4833
4834  // TODO: specialize more based on the kind of mismatch
4835  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4836    << (unsigned) FnKind << FnDesc
4837    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4838    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4839}
4840
4841void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4842                           unsigned NumFormalArgs) {
4843  // TODO: treat calls to a missing default constructor as a special case
4844
4845  FunctionDecl *Fn = Cand->Function;
4846  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4847
4848  unsigned MinParams = Fn->getMinRequiredArguments();
4849
4850  // at least / at most / exactly
4851  unsigned mode, modeCount;
4852  if (NumFormalArgs < MinParams) {
4853    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4854    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4855      mode = 0; // "at least"
4856    else
4857      mode = 2; // "exactly"
4858    modeCount = MinParams;
4859  } else {
4860    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4861    if (MinParams != FnTy->getNumArgs())
4862      mode = 1; // "at most"
4863    else
4864      mode = 2; // "exactly"
4865    modeCount = FnTy->getNumArgs();
4866  }
4867
4868  std::string Description;
4869  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4870
4871  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4872    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4873}
4874
4875/// Diagnose a failed template-argument deduction.
4876void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4877                          Expr **Args, unsigned NumArgs) {
4878  FunctionDecl *Fn = Cand->Function; // pattern
4879
4880  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4881                                   Cand->DeductionFailure.TemplateParameter);
4882
4883  switch (Cand->DeductionFailure.Result) {
4884  case Sema::TDK_Success:
4885    llvm_unreachable("TDK_success while diagnosing bad deduction");
4886
4887  case Sema::TDK_Incomplete: {
4888    NamedDecl *ParamD;
4889    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4890    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4891    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4892    assert(ParamD && "no parameter found for incomplete deduction result");
4893    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4894      << ParamD->getDeclName();
4895    return;
4896  }
4897
4898  // TODO: diagnose these individually, then kill off
4899  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4900  case Sema::TDK_InstantiationDepth:
4901  case Sema::TDK_Inconsistent:
4902  case Sema::TDK_InconsistentQuals:
4903  case Sema::TDK_SubstitutionFailure:
4904  case Sema::TDK_NonDeducedMismatch:
4905  case Sema::TDK_TooManyArguments:
4906  case Sema::TDK_TooFewArguments:
4907  case Sema::TDK_InvalidExplicitArguments:
4908  case Sema::TDK_FailedOverloadResolution:
4909    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4910    return;
4911  }
4912}
4913
4914/// Generates a 'note' diagnostic for an overload candidate.  We've
4915/// already generated a primary error at the call site.
4916///
4917/// It really does need to be a single diagnostic with its caret
4918/// pointed at the candidate declaration.  Yes, this creates some
4919/// major challenges of technical writing.  Yes, this makes pointing
4920/// out problems with specific arguments quite awkward.  It's still
4921/// better than generating twenty screens of text for every failed
4922/// overload.
4923///
4924/// It would be great to be able to express per-candidate problems
4925/// more richly for those diagnostic clients that cared, but we'd
4926/// still have to be just as careful with the default diagnostics.
4927void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4928                           Expr **Args, unsigned NumArgs) {
4929  FunctionDecl *Fn = Cand->Function;
4930
4931  // Note deleted candidates, but only if they're viable.
4932  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4933    std::string FnDesc;
4934    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4935
4936    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4937      << FnKind << FnDesc << Fn->isDeleted();
4938    return;
4939  }
4940
4941  // We don't really have anything else to say about viable candidates.
4942  if (Cand->Viable) {
4943    S.NoteOverloadCandidate(Fn);
4944    return;
4945  }
4946
4947  switch (Cand->FailureKind) {
4948  case ovl_fail_too_many_arguments:
4949  case ovl_fail_too_few_arguments:
4950    return DiagnoseArityMismatch(S, Cand, NumArgs);
4951
4952  case ovl_fail_bad_deduction:
4953    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4954
4955  case ovl_fail_trivial_conversion:
4956  case ovl_fail_bad_final_conversion:
4957  case ovl_fail_final_conversion_not_exact:
4958    return S.NoteOverloadCandidate(Fn);
4959
4960  case ovl_fail_bad_conversion: {
4961    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4962    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4963      if (Cand->Conversions[I].isBad())
4964        return DiagnoseBadConversion(S, Cand, I);
4965
4966    // FIXME: this currently happens when we're called from SemaInit
4967    // when user-conversion overload fails.  Figure out how to handle
4968    // those conditions and diagnose them well.
4969    return S.NoteOverloadCandidate(Fn);
4970  }
4971  }
4972}
4973
4974void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4975  // Desugar the type of the surrogate down to a function type,
4976  // retaining as many typedefs as possible while still showing
4977  // the function type (and, therefore, its parameter types).
4978  QualType FnType = Cand->Surrogate->getConversionType();
4979  bool isLValueReference = false;
4980  bool isRValueReference = false;
4981  bool isPointer = false;
4982  if (const LValueReferenceType *FnTypeRef =
4983        FnType->getAs<LValueReferenceType>()) {
4984    FnType = FnTypeRef->getPointeeType();
4985    isLValueReference = true;
4986  } else if (const RValueReferenceType *FnTypeRef =
4987               FnType->getAs<RValueReferenceType>()) {
4988    FnType = FnTypeRef->getPointeeType();
4989    isRValueReference = true;
4990  }
4991  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4992    FnType = FnTypePtr->getPointeeType();
4993    isPointer = true;
4994  }
4995  // Desugar down to a function type.
4996  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4997  // Reconstruct the pointer/reference as appropriate.
4998  if (isPointer) FnType = S.Context.getPointerType(FnType);
4999  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5000  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5001
5002  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5003    << FnType;
5004}
5005
5006void NoteBuiltinOperatorCandidate(Sema &S,
5007                                  const char *Opc,
5008                                  SourceLocation OpLoc,
5009                                  OverloadCandidate *Cand) {
5010  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5011  std::string TypeStr("operator");
5012  TypeStr += Opc;
5013  TypeStr += "(";
5014  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5015  if (Cand->Conversions.size() == 1) {
5016    TypeStr += ")";
5017    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5018  } else {
5019    TypeStr += ", ";
5020    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5021    TypeStr += ")";
5022    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5023  }
5024}
5025
5026void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5027                                  OverloadCandidate *Cand) {
5028  unsigned NoOperands = Cand->Conversions.size();
5029  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5030    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5031    if (ICS.isBad()) break; // all meaningless after first invalid
5032    if (!ICS.isAmbiguous()) continue;
5033
5034    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5035                              S.PDiag(diag::note_ambiguous_type_conversion));
5036  }
5037}
5038
5039SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5040  if (Cand->Function)
5041    return Cand->Function->getLocation();
5042  if (Cand->IsSurrogate)
5043    return Cand->Surrogate->getLocation();
5044  return SourceLocation();
5045}
5046
5047struct CompareOverloadCandidatesForDisplay {
5048  Sema &S;
5049  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5050
5051  bool operator()(const OverloadCandidate *L,
5052                  const OverloadCandidate *R) {
5053    // Fast-path this check.
5054    if (L == R) return false;
5055
5056    // Order first by viability.
5057    if (L->Viable) {
5058      if (!R->Viable) return true;
5059
5060      // TODO: introduce a tri-valued comparison for overload
5061      // candidates.  Would be more worthwhile if we had a sort
5062      // that could exploit it.
5063      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5064      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5065    } else if (R->Viable)
5066      return false;
5067
5068    assert(L->Viable == R->Viable);
5069
5070    // Criteria by which we can sort non-viable candidates:
5071    if (!L->Viable) {
5072      // 1. Arity mismatches come after other candidates.
5073      if (L->FailureKind == ovl_fail_too_many_arguments ||
5074          L->FailureKind == ovl_fail_too_few_arguments)
5075        return false;
5076      if (R->FailureKind == ovl_fail_too_many_arguments ||
5077          R->FailureKind == ovl_fail_too_few_arguments)
5078        return true;
5079
5080      // 2. Bad conversions come first and are ordered by the number
5081      // of bad conversions and quality of good conversions.
5082      if (L->FailureKind == ovl_fail_bad_conversion) {
5083        if (R->FailureKind != ovl_fail_bad_conversion)
5084          return true;
5085
5086        // If there's any ordering between the defined conversions...
5087        // FIXME: this might not be transitive.
5088        assert(L->Conversions.size() == R->Conversions.size());
5089
5090        int leftBetter = 0;
5091        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5092        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5093          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5094                                                       R->Conversions[I])) {
5095          case ImplicitConversionSequence::Better:
5096            leftBetter++;
5097            break;
5098
5099          case ImplicitConversionSequence::Worse:
5100            leftBetter--;
5101            break;
5102
5103          case ImplicitConversionSequence::Indistinguishable:
5104            break;
5105          }
5106        }
5107        if (leftBetter > 0) return true;
5108        if (leftBetter < 0) return false;
5109
5110      } else if (R->FailureKind == ovl_fail_bad_conversion)
5111        return false;
5112
5113      // TODO: others?
5114    }
5115
5116    // Sort everything else by location.
5117    SourceLocation LLoc = GetLocationForCandidate(L);
5118    SourceLocation RLoc = GetLocationForCandidate(R);
5119
5120    // Put candidates without locations (e.g. builtins) at the end.
5121    if (LLoc.isInvalid()) return false;
5122    if (RLoc.isInvalid()) return true;
5123
5124    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5125  }
5126};
5127
5128/// CompleteNonViableCandidate - Normally, overload resolution only
5129/// computes up to the first
5130void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5131                                Expr **Args, unsigned NumArgs) {
5132  assert(!Cand->Viable);
5133
5134  // Don't do anything on failures other than bad conversion.
5135  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5136
5137  // Skip forward to the first bad conversion.
5138  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5139  unsigned ConvCount = Cand->Conversions.size();
5140  while (true) {
5141    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5142    ConvIdx++;
5143    if (Cand->Conversions[ConvIdx - 1].isBad())
5144      break;
5145  }
5146
5147  if (ConvIdx == ConvCount)
5148    return;
5149
5150  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5151         "remaining conversion is initialized?");
5152
5153  // FIXME: these should probably be preserved from the overload
5154  // operation somehow.
5155  bool SuppressUserConversions = false;
5156  bool ForceRValue = false;
5157
5158  const FunctionProtoType* Proto;
5159  unsigned ArgIdx = ConvIdx;
5160
5161  if (Cand->IsSurrogate) {
5162    QualType ConvType
5163      = Cand->Surrogate->getConversionType().getNonReferenceType();
5164    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5165      ConvType = ConvPtrType->getPointeeType();
5166    Proto = ConvType->getAs<FunctionProtoType>();
5167    ArgIdx--;
5168  } else if (Cand->Function) {
5169    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5170    if (isa<CXXMethodDecl>(Cand->Function) &&
5171        !isa<CXXConstructorDecl>(Cand->Function))
5172      ArgIdx--;
5173  } else {
5174    // Builtin binary operator with a bad first conversion.
5175    assert(ConvCount <= 3);
5176    for (; ConvIdx != ConvCount; ++ConvIdx)
5177      Cand->Conversions[ConvIdx]
5178        = S.TryCopyInitialization(Args[ConvIdx],
5179                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
5180                                  SuppressUserConversions, ForceRValue,
5181                                  /*InOverloadResolution*/ true);
5182    return;
5183  }
5184
5185  // Fill in the rest of the conversions.
5186  unsigned NumArgsInProto = Proto->getNumArgs();
5187  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5188    if (ArgIdx < NumArgsInProto)
5189      Cand->Conversions[ConvIdx]
5190        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
5191                                  SuppressUserConversions, ForceRValue,
5192                                  /*InOverloadResolution=*/true);
5193    else
5194      Cand->Conversions[ConvIdx].setEllipsis();
5195  }
5196}
5197
5198} // end anonymous namespace
5199
5200/// PrintOverloadCandidates - When overload resolution fails, prints
5201/// diagnostic messages containing the candidates in the candidate
5202/// set.
5203void
5204Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5205                              OverloadCandidateDisplayKind OCD,
5206                              Expr **Args, unsigned NumArgs,
5207                              const char *Opc,
5208                              SourceLocation OpLoc) {
5209  // Sort the candidates by viability and position.  Sorting directly would
5210  // be prohibitive, so we make a set of pointers and sort those.
5211  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5212  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5213  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5214                                  LastCand = CandidateSet.end();
5215       Cand != LastCand; ++Cand) {
5216    if (Cand->Viable)
5217      Cands.push_back(Cand);
5218    else if (OCD == OCD_AllCandidates) {
5219      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5220      Cands.push_back(Cand);
5221    }
5222  }
5223
5224  std::sort(Cands.begin(), Cands.end(),
5225            CompareOverloadCandidatesForDisplay(*this));
5226
5227  bool ReportedAmbiguousConversions = false;
5228
5229  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5230  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5231    OverloadCandidate *Cand = *I;
5232
5233    if (Cand->Function)
5234      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5235    else if (Cand->IsSurrogate)
5236      NoteSurrogateCandidate(*this, Cand);
5237
5238    // This a builtin candidate.  We do not, in general, want to list
5239    // every possible builtin candidate.
5240    else if (Cand->Viable) {
5241      // Generally we only see ambiguities including viable builtin
5242      // operators if overload resolution got screwed up by an
5243      // ambiguous user-defined conversion.
5244      //
5245      // FIXME: It's quite possible for different conversions to see
5246      // different ambiguities, though.
5247      if (!ReportedAmbiguousConversions) {
5248        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5249        ReportedAmbiguousConversions = true;
5250      }
5251
5252      // If this is a viable builtin, print it.
5253      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5254    }
5255  }
5256}
5257
5258static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5259  if (isa<UnresolvedLookupExpr>(E))
5260    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5261
5262  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5263}
5264
5265/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5266/// an overloaded function (C++ [over.over]), where @p From is an
5267/// expression with overloaded function type and @p ToType is the type
5268/// we're trying to resolve to. For example:
5269///
5270/// @code
5271/// int f(double);
5272/// int f(int);
5273///
5274/// int (*pfd)(double) = f; // selects f(double)
5275/// @endcode
5276///
5277/// This routine returns the resulting FunctionDecl if it could be
5278/// resolved, and NULL otherwise. When @p Complain is true, this
5279/// routine will emit diagnostics if there is an error.
5280FunctionDecl *
5281Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5282                                         bool Complain,
5283                                         DeclAccessPair &FoundResult) {
5284  QualType FunctionType = ToType;
5285  bool IsMember = false;
5286  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5287    FunctionType = ToTypePtr->getPointeeType();
5288  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5289    FunctionType = ToTypeRef->getPointeeType();
5290  else if (const MemberPointerType *MemTypePtr =
5291                    ToType->getAs<MemberPointerType>()) {
5292    FunctionType = MemTypePtr->getPointeeType();
5293    IsMember = true;
5294  }
5295
5296  // C++ [over.over]p1:
5297  //   [...] [Note: any redundant set of parentheses surrounding the
5298  //   overloaded function name is ignored (5.1). ]
5299  // C++ [over.over]p1:
5300  //   [...] The overloaded function name can be preceded by the &
5301  //   operator.
5302  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5303  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5304  if (OvlExpr->hasExplicitTemplateArgs()) {
5305    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5306    ExplicitTemplateArgs = &ETABuffer;
5307  }
5308
5309  // We expect a pointer or reference to function, or a function pointer.
5310  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5311  if (!FunctionType->isFunctionType()) {
5312    if (Complain)
5313      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5314        << OvlExpr->getName() << ToType;
5315
5316    return 0;
5317  }
5318
5319  assert(From->getType() == Context.OverloadTy);
5320
5321  // Look through all of the overloaded functions, searching for one
5322  // whose type matches exactly.
5323  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5324  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5325
5326  bool FoundNonTemplateFunction = false;
5327  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5328         E = OvlExpr->decls_end(); I != E; ++I) {
5329    // Look through any using declarations to find the underlying function.
5330    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5331
5332    // C++ [over.over]p3:
5333    //   Non-member functions and static member functions match
5334    //   targets of type "pointer-to-function" or "reference-to-function."
5335    //   Nonstatic member functions match targets of
5336    //   type "pointer-to-member-function."
5337    // Note that according to DR 247, the containing class does not matter.
5338
5339    if (FunctionTemplateDecl *FunctionTemplate
5340          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5341      if (CXXMethodDecl *Method
5342            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5343        // Skip non-static function templates when converting to pointer, and
5344        // static when converting to member pointer.
5345        if (Method->isStatic() == IsMember)
5346          continue;
5347      } else if (IsMember)
5348        continue;
5349
5350      // C++ [over.over]p2:
5351      //   If the name is a function template, template argument deduction is
5352      //   done (14.8.2.2), and if the argument deduction succeeds, the
5353      //   resulting template argument list is used to generate a single
5354      //   function template specialization, which is added to the set of
5355      //   overloaded functions considered.
5356      // FIXME: We don't really want to build the specialization here, do we?
5357      FunctionDecl *Specialization = 0;
5358      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5359      if (TemplateDeductionResult Result
5360            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5361                                      FunctionType, Specialization, Info)) {
5362        // FIXME: make a note of the failed deduction for diagnostics.
5363        (void)Result;
5364      } else {
5365        // FIXME: If the match isn't exact, shouldn't we just drop this as
5366        // a candidate? Find a testcase before changing the code.
5367        assert(FunctionType
5368                 == Context.getCanonicalType(Specialization->getType()));
5369        Matches.push_back(std::make_pair(I.getPair(),
5370                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5371      }
5372
5373      continue;
5374    }
5375
5376    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5377      // Skip non-static functions when converting to pointer, and static
5378      // when converting to member pointer.
5379      if (Method->isStatic() == IsMember)
5380        continue;
5381
5382      // If we have explicit template arguments, skip non-templates.
5383      if (OvlExpr->hasExplicitTemplateArgs())
5384        continue;
5385    } else if (IsMember)
5386      continue;
5387
5388    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5389      QualType ResultTy;
5390      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5391          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5392                               ResultTy)) {
5393        Matches.push_back(std::make_pair(I.getPair(),
5394                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5395        FoundNonTemplateFunction = true;
5396      }
5397    }
5398  }
5399
5400  // If there were 0 or 1 matches, we're done.
5401  if (Matches.empty()) {
5402    if (Complain) {
5403      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5404        << OvlExpr->getName() << FunctionType;
5405      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5406                                 E = OvlExpr->decls_end();
5407           I != E; ++I)
5408        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5409          NoteOverloadCandidate(F);
5410    }
5411
5412    return 0;
5413  } else if (Matches.size() == 1) {
5414    FunctionDecl *Result = Matches[0].second;
5415    FoundResult = Matches[0].first;
5416    MarkDeclarationReferenced(From->getLocStart(), Result);
5417    if (Complain)
5418      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5419    return Result;
5420  }
5421
5422  // C++ [over.over]p4:
5423  //   If more than one function is selected, [...]
5424  if (!FoundNonTemplateFunction) {
5425    //   [...] and any given function template specialization F1 is
5426    //   eliminated if the set contains a second function template
5427    //   specialization whose function template is more specialized
5428    //   than the function template of F1 according to the partial
5429    //   ordering rules of 14.5.5.2.
5430
5431    // The algorithm specified above is quadratic. We instead use a
5432    // two-pass algorithm (similar to the one used to identify the
5433    // best viable function in an overload set) that identifies the
5434    // best function template (if it exists).
5435
5436    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5437    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5438      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5439
5440    UnresolvedSetIterator Result =
5441        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5442                           TPOC_Other, From->getLocStart(),
5443                           PDiag(),
5444                           PDiag(diag::err_addr_ovl_ambiguous)
5445                               << Matches[0].second->getDeclName(),
5446                           PDiag(diag::note_ovl_candidate)
5447                               << (unsigned) oc_function_template);
5448    assert(Result != MatchesCopy.end() && "no most-specialized template");
5449    MarkDeclarationReferenced(From->getLocStart(), *Result);
5450    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5451    if (Complain)
5452      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5453    return cast<FunctionDecl>(*Result);
5454  }
5455
5456  //   [...] any function template specializations in the set are
5457  //   eliminated if the set also contains a non-template function, [...]
5458  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5459    if (Matches[I].second->getPrimaryTemplate() == 0)
5460      ++I;
5461    else {
5462      Matches[I] = Matches[--N];
5463      Matches.set_size(N);
5464    }
5465  }
5466
5467  // [...] After such eliminations, if any, there shall remain exactly one
5468  // selected function.
5469  if (Matches.size() == 1) {
5470    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5471    FoundResult = Matches[0].first;
5472    if (Complain)
5473      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5474    return cast<FunctionDecl>(Matches[0].second);
5475  }
5476
5477  // FIXME: We should probably return the same thing that BestViableFunction
5478  // returns (even if we issue the diagnostics here).
5479  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5480    << Matches[0].second->getDeclName();
5481  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5482    NoteOverloadCandidate(Matches[I].second);
5483  return 0;
5484}
5485
5486/// \brief Given an expression that refers to an overloaded function, try to
5487/// resolve that overloaded function expression down to a single function.
5488///
5489/// This routine can only resolve template-ids that refer to a single function
5490/// template, where that template-id refers to a single template whose template
5491/// arguments are either provided by the template-id or have defaults,
5492/// as described in C++0x [temp.arg.explicit]p3.
5493FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5494  // C++ [over.over]p1:
5495  //   [...] [Note: any redundant set of parentheses surrounding the
5496  //   overloaded function name is ignored (5.1). ]
5497  // C++ [over.over]p1:
5498  //   [...] The overloaded function name can be preceded by the &
5499  //   operator.
5500
5501  if (From->getType() != Context.OverloadTy)
5502    return 0;
5503
5504  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5505
5506  // If we didn't actually find any template-ids, we're done.
5507  if (!OvlExpr->hasExplicitTemplateArgs())
5508    return 0;
5509
5510  TemplateArgumentListInfo ExplicitTemplateArgs;
5511  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5512
5513  // Look through all of the overloaded functions, searching for one
5514  // whose type matches exactly.
5515  FunctionDecl *Matched = 0;
5516  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5517         E = OvlExpr->decls_end(); I != E; ++I) {
5518    // C++0x [temp.arg.explicit]p3:
5519    //   [...] In contexts where deduction is done and fails, or in contexts
5520    //   where deduction is not done, if a template argument list is
5521    //   specified and it, along with any default template arguments,
5522    //   identifies a single function template specialization, then the
5523    //   template-id is an lvalue for the function template specialization.
5524    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5525
5526    // C++ [over.over]p2:
5527    //   If the name is a function template, template argument deduction is
5528    //   done (14.8.2.2), and if the argument deduction succeeds, the
5529    //   resulting template argument list is used to generate a single
5530    //   function template specialization, which is added to the set of
5531    //   overloaded functions considered.
5532    FunctionDecl *Specialization = 0;
5533    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5534    if (TemplateDeductionResult Result
5535          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5536                                    Specialization, Info)) {
5537      // FIXME: make a note of the failed deduction for diagnostics.
5538      (void)Result;
5539      continue;
5540    }
5541
5542    // Multiple matches; we can't resolve to a single declaration.
5543    if (Matched)
5544      return 0;
5545
5546    Matched = Specialization;
5547  }
5548
5549  return Matched;
5550}
5551
5552/// \brief Add a single candidate to the overload set.
5553static void AddOverloadedCallCandidate(Sema &S,
5554                                       DeclAccessPair FoundDecl,
5555                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5556                                       Expr **Args, unsigned NumArgs,
5557                                       OverloadCandidateSet &CandidateSet,
5558                                       bool PartialOverloading) {
5559  NamedDecl *Callee = FoundDecl.getDecl();
5560  if (isa<UsingShadowDecl>(Callee))
5561    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5562
5563  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5564    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5565    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5566                           false, false, PartialOverloading);
5567    return;
5568  }
5569
5570  if (FunctionTemplateDecl *FuncTemplate
5571      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5572    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5573                                   ExplicitTemplateArgs,
5574                                   Args, NumArgs, CandidateSet);
5575    return;
5576  }
5577
5578  assert(false && "unhandled case in overloaded call candidate");
5579
5580  // do nothing?
5581}
5582
5583/// \brief Add the overload candidates named by callee and/or found by argument
5584/// dependent lookup to the given overload set.
5585void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5586                                       Expr **Args, unsigned NumArgs,
5587                                       OverloadCandidateSet &CandidateSet,
5588                                       bool PartialOverloading) {
5589
5590#ifndef NDEBUG
5591  // Verify that ArgumentDependentLookup is consistent with the rules
5592  // in C++0x [basic.lookup.argdep]p3:
5593  //
5594  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5595  //   and let Y be the lookup set produced by argument dependent
5596  //   lookup (defined as follows). If X contains
5597  //
5598  //     -- a declaration of a class member, or
5599  //
5600  //     -- a block-scope function declaration that is not a
5601  //        using-declaration, or
5602  //
5603  //     -- a declaration that is neither a function or a function
5604  //        template
5605  //
5606  //   then Y is empty.
5607
5608  if (ULE->requiresADL()) {
5609    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5610           E = ULE->decls_end(); I != E; ++I) {
5611      assert(!(*I)->getDeclContext()->isRecord());
5612      assert(isa<UsingShadowDecl>(*I) ||
5613             !(*I)->getDeclContext()->isFunctionOrMethod());
5614      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5615    }
5616  }
5617#endif
5618
5619  // It would be nice to avoid this copy.
5620  TemplateArgumentListInfo TABuffer;
5621  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5622  if (ULE->hasExplicitTemplateArgs()) {
5623    ULE->copyTemplateArgumentsInto(TABuffer);
5624    ExplicitTemplateArgs = &TABuffer;
5625  }
5626
5627  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5628         E = ULE->decls_end(); I != E; ++I)
5629    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5630                               Args, NumArgs, CandidateSet,
5631                               PartialOverloading);
5632
5633  if (ULE->requiresADL())
5634    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5635                                         Args, NumArgs,
5636                                         ExplicitTemplateArgs,
5637                                         CandidateSet,
5638                                         PartialOverloading);
5639}
5640
5641static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5642                                      Expr **Args, unsigned NumArgs) {
5643  Fn->Destroy(SemaRef.Context);
5644  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5645    Args[Arg]->Destroy(SemaRef.Context);
5646  return SemaRef.ExprError();
5647}
5648
5649/// Attempts to recover from a call where no functions were found.
5650///
5651/// Returns true if new candidates were found.
5652static Sema::OwningExprResult
5653BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5654                      UnresolvedLookupExpr *ULE,
5655                      SourceLocation LParenLoc,
5656                      Expr **Args, unsigned NumArgs,
5657                      SourceLocation *CommaLocs,
5658                      SourceLocation RParenLoc) {
5659
5660  CXXScopeSpec SS;
5661  if (ULE->getQualifier()) {
5662    SS.setScopeRep(ULE->getQualifier());
5663    SS.setRange(ULE->getQualifierRange());
5664  }
5665
5666  TemplateArgumentListInfo TABuffer;
5667  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5668  if (ULE->hasExplicitTemplateArgs()) {
5669    ULE->copyTemplateArgumentsInto(TABuffer);
5670    ExplicitTemplateArgs = &TABuffer;
5671  }
5672
5673  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5674                 Sema::LookupOrdinaryName);
5675  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5676    return Destroy(SemaRef, Fn, Args, NumArgs);
5677
5678  assert(!R.empty() && "lookup results empty despite recovery");
5679
5680  // Build an implicit member call if appropriate.  Just drop the
5681  // casts and such from the call, we don't really care.
5682  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5683  if ((*R.begin())->isCXXClassMember())
5684    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5685  else if (ExplicitTemplateArgs)
5686    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5687  else
5688    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5689
5690  if (NewFn.isInvalid())
5691    return Destroy(SemaRef, Fn, Args, NumArgs);
5692
5693  Fn->Destroy(SemaRef.Context);
5694
5695  // This shouldn't cause an infinite loop because we're giving it
5696  // an expression with non-empty lookup results, which should never
5697  // end up here.
5698  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5699                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5700                               CommaLocs, RParenLoc);
5701}
5702
5703/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5704/// (which eventually refers to the declaration Func) and the call
5705/// arguments Args/NumArgs, attempt to resolve the function call down
5706/// to a specific function. If overload resolution succeeds, returns
5707/// the function declaration produced by overload
5708/// resolution. Otherwise, emits diagnostics, deletes all of the
5709/// arguments and Fn, and returns NULL.
5710Sema::OwningExprResult
5711Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5712                              SourceLocation LParenLoc,
5713                              Expr **Args, unsigned NumArgs,
5714                              SourceLocation *CommaLocs,
5715                              SourceLocation RParenLoc) {
5716#ifndef NDEBUG
5717  if (ULE->requiresADL()) {
5718    // To do ADL, we must have found an unqualified name.
5719    assert(!ULE->getQualifier() && "qualified name with ADL");
5720
5721    // We don't perform ADL for implicit declarations of builtins.
5722    // Verify that this was correctly set up.
5723    FunctionDecl *F;
5724    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5725        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5726        F->getBuiltinID() && F->isImplicit())
5727      assert(0 && "performing ADL for builtin");
5728
5729    // We don't perform ADL in C.
5730    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5731  }
5732#endif
5733
5734  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5735
5736  // Add the functions denoted by the callee to the set of candidate
5737  // functions, including those from argument-dependent lookup.
5738  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5739
5740  // If we found nothing, try to recover.
5741  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5742  // bailout out if it fails.
5743  if (CandidateSet.empty())
5744    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5745                                 CommaLocs, RParenLoc);
5746
5747  OverloadCandidateSet::iterator Best;
5748  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5749  case OR_Success: {
5750    FunctionDecl *FDecl = Best->Function;
5751    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5752    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5753    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5754  }
5755
5756  case OR_No_Viable_Function:
5757    Diag(Fn->getSourceRange().getBegin(),
5758         diag::err_ovl_no_viable_function_in_call)
5759      << ULE->getName() << Fn->getSourceRange();
5760    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5761    break;
5762
5763  case OR_Ambiguous:
5764    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5765      << ULE->getName() << Fn->getSourceRange();
5766    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5767    break;
5768
5769  case OR_Deleted:
5770    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5771      << Best->Function->isDeleted()
5772      << ULE->getName()
5773      << Fn->getSourceRange();
5774    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5775    break;
5776  }
5777
5778  // Overload resolution failed. Destroy all of the subexpressions and
5779  // return NULL.
5780  Fn->Destroy(Context);
5781  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5782    Args[Arg]->Destroy(Context);
5783  return ExprError();
5784}
5785
5786static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5787  return Functions.size() > 1 ||
5788    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5789}
5790
5791/// \brief Create a unary operation that may resolve to an overloaded
5792/// operator.
5793///
5794/// \param OpLoc The location of the operator itself (e.g., '*').
5795///
5796/// \param OpcIn The UnaryOperator::Opcode that describes this
5797/// operator.
5798///
5799/// \param Functions The set of non-member functions that will be
5800/// considered by overload resolution. The caller needs to build this
5801/// set based on the context using, e.g.,
5802/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5803/// set should not contain any member functions; those will be added
5804/// by CreateOverloadedUnaryOp().
5805///
5806/// \param input The input argument.
5807Sema::OwningExprResult
5808Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5809                              const UnresolvedSetImpl &Fns,
5810                              ExprArg input) {
5811  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5812  Expr *Input = (Expr *)input.get();
5813
5814  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5815  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5816  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5817
5818  Expr *Args[2] = { Input, 0 };
5819  unsigned NumArgs = 1;
5820
5821  // For post-increment and post-decrement, add the implicit '0' as
5822  // the second argument, so that we know this is a post-increment or
5823  // post-decrement.
5824  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5825    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5826    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5827                                           SourceLocation());
5828    NumArgs = 2;
5829  }
5830
5831  if (Input->isTypeDependent()) {
5832    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5833    UnresolvedLookupExpr *Fn
5834      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5835                                     0, SourceRange(), OpName, OpLoc,
5836                                     /*ADL*/ true, IsOverloaded(Fns));
5837    Fn->addDecls(Fns.begin(), Fns.end());
5838
5839    input.release();
5840    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5841                                                   &Args[0], NumArgs,
5842                                                   Context.DependentTy,
5843                                                   OpLoc));
5844  }
5845
5846  // Build an empty overload set.
5847  OverloadCandidateSet CandidateSet(OpLoc);
5848
5849  // Add the candidates from the given function set.
5850  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5851
5852  // Add operator candidates that are member functions.
5853  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5854
5855  // Add candidates from ADL.
5856  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5857                                       Args, NumArgs,
5858                                       /*ExplicitTemplateArgs*/ 0,
5859                                       CandidateSet);
5860
5861  // Add builtin operator candidates.
5862  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5863
5864  // Perform overload resolution.
5865  OverloadCandidateSet::iterator Best;
5866  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5867  case OR_Success: {
5868    // We found a built-in operator or an overloaded operator.
5869    FunctionDecl *FnDecl = Best->Function;
5870
5871    if (FnDecl) {
5872      // We matched an overloaded operator. Build a call to that
5873      // operator.
5874
5875      // Convert the arguments.
5876      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5877        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5878
5879        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5880                                                Best->FoundDecl, Method))
5881          return ExprError();
5882      } else {
5883        // Convert the arguments.
5884        OwningExprResult InputInit
5885          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5886                                                      FnDecl->getParamDecl(0)),
5887                                      SourceLocation(),
5888                                      move(input));
5889        if (InputInit.isInvalid())
5890          return ExprError();
5891
5892        input = move(InputInit);
5893        Input = (Expr *)input.get();
5894      }
5895
5896      // Determine the result type
5897      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5898
5899      // Build the actual expression node.
5900      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5901                                               SourceLocation());
5902      UsualUnaryConversions(FnExpr);
5903
5904      input.release();
5905      Args[0] = Input;
5906      ExprOwningPtr<CallExpr> TheCall(this,
5907        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5908                                          Args, NumArgs, ResultTy, OpLoc));
5909
5910      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5911                              FnDecl))
5912        return ExprError();
5913
5914      return MaybeBindToTemporary(TheCall.release());
5915    } else {
5916      // We matched a built-in operator. Convert the arguments, then
5917      // break out so that we will build the appropriate built-in
5918      // operator node.
5919        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5920                                      Best->Conversions[0], AA_Passing))
5921          return ExprError();
5922
5923        break;
5924      }
5925    }
5926
5927    case OR_No_Viable_Function:
5928      // No viable function; fall through to handling this as a
5929      // built-in operator, which will produce an error message for us.
5930      break;
5931
5932    case OR_Ambiguous:
5933      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5934          << UnaryOperator::getOpcodeStr(Opc)
5935          << Input->getSourceRange();
5936      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5937                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5938      return ExprError();
5939
5940    case OR_Deleted:
5941      Diag(OpLoc, diag::err_ovl_deleted_oper)
5942        << Best->Function->isDeleted()
5943        << UnaryOperator::getOpcodeStr(Opc)
5944        << Input->getSourceRange();
5945      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5946      return ExprError();
5947    }
5948
5949  // Either we found no viable overloaded operator or we matched a
5950  // built-in operator. In either case, fall through to trying to
5951  // build a built-in operation.
5952  input.release();
5953  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5954}
5955
5956/// \brief Create a binary operation that may resolve to an overloaded
5957/// operator.
5958///
5959/// \param OpLoc The location of the operator itself (e.g., '+').
5960///
5961/// \param OpcIn The BinaryOperator::Opcode that describes this
5962/// operator.
5963///
5964/// \param Functions The set of non-member functions that will be
5965/// considered by overload resolution. The caller needs to build this
5966/// set based on the context using, e.g.,
5967/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5968/// set should not contain any member functions; those will be added
5969/// by CreateOverloadedBinOp().
5970///
5971/// \param LHS Left-hand argument.
5972/// \param RHS Right-hand argument.
5973Sema::OwningExprResult
5974Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5975                            unsigned OpcIn,
5976                            const UnresolvedSetImpl &Fns,
5977                            Expr *LHS, Expr *RHS) {
5978  Expr *Args[2] = { LHS, RHS };
5979  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5980
5981  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5982  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5983  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5984
5985  // If either side is type-dependent, create an appropriate dependent
5986  // expression.
5987  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5988    if (Fns.empty()) {
5989      // If there are no functions to store, just build a dependent
5990      // BinaryOperator or CompoundAssignment.
5991      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5992        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5993                                                  Context.DependentTy, OpLoc));
5994
5995      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5996                                                        Context.DependentTy,
5997                                                        Context.DependentTy,
5998                                                        Context.DependentTy,
5999                                                        OpLoc));
6000    }
6001
6002    // FIXME: save results of ADL from here?
6003    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6004    UnresolvedLookupExpr *Fn
6005      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6006                                     0, SourceRange(), OpName, OpLoc,
6007                                     /*ADL*/ true, IsOverloaded(Fns));
6008
6009    Fn->addDecls(Fns.begin(), Fns.end());
6010    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6011                                                   Args, 2,
6012                                                   Context.DependentTy,
6013                                                   OpLoc));
6014  }
6015
6016  // If this is the .* operator, which is not overloadable, just
6017  // create a built-in binary operator.
6018  if (Opc == BinaryOperator::PtrMemD)
6019    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6020
6021  // If this is the assignment operator, we only perform overload resolution
6022  // if the left-hand side is a class or enumeration type. This is actually
6023  // a hack. The standard requires that we do overload resolution between the
6024  // various built-in candidates, but as DR507 points out, this can lead to
6025  // problems. So we do it this way, which pretty much follows what GCC does.
6026  // Note that we go the traditional code path for compound assignment forms.
6027  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6028    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6029
6030  // Build an empty overload set.
6031  OverloadCandidateSet CandidateSet(OpLoc);
6032
6033  // Add the candidates from the given function set.
6034  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6035
6036  // Add operator candidates that are member functions.
6037  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6038
6039  // Add candidates from ADL.
6040  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6041                                       Args, 2,
6042                                       /*ExplicitTemplateArgs*/ 0,
6043                                       CandidateSet);
6044
6045  // Add builtin operator candidates.
6046  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6047
6048  // Perform overload resolution.
6049  OverloadCandidateSet::iterator Best;
6050  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6051    case OR_Success: {
6052      // We found a built-in operator or an overloaded operator.
6053      FunctionDecl *FnDecl = Best->Function;
6054
6055      if (FnDecl) {
6056        // We matched an overloaded operator. Build a call to that
6057        // operator.
6058
6059        // Convert the arguments.
6060        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6061          // Best->Access is only meaningful for class members.
6062          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6063
6064          OwningExprResult Arg1
6065            = PerformCopyInitialization(
6066                                        InitializedEntity::InitializeParameter(
6067                                                        FnDecl->getParamDecl(0)),
6068                                        SourceLocation(),
6069                                        Owned(Args[1]));
6070          if (Arg1.isInvalid())
6071            return ExprError();
6072
6073          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6074                                                  Best->FoundDecl, Method))
6075            return ExprError();
6076
6077          Args[1] = RHS = Arg1.takeAs<Expr>();
6078        } else {
6079          // Convert the arguments.
6080          OwningExprResult Arg0
6081            = PerformCopyInitialization(
6082                                        InitializedEntity::InitializeParameter(
6083                                                        FnDecl->getParamDecl(0)),
6084                                        SourceLocation(),
6085                                        Owned(Args[0]));
6086          if (Arg0.isInvalid())
6087            return ExprError();
6088
6089          OwningExprResult Arg1
6090            = PerformCopyInitialization(
6091                                        InitializedEntity::InitializeParameter(
6092                                                        FnDecl->getParamDecl(1)),
6093                                        SourceLocation(),
6094                                        Owned(Args[1]));
6095          if (Arg1.isInvalid())
6096            return ExprError();
6097          Args[0] = LHS = Arg0.takeAs<Expr>();
6098          Args[1] = RHS = Arg1.takeAs<Expr>();
6099        }
6100
6101        // Determine the result type
6102        QualType ResultTy
6103          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6104        ResultTy = ResultTy.getNonReferenceType();
6105
6106        // Build the actual expression node.
6107        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6108                                                 OpLoc);
6109        UsualUnaryConversions(FnExpr);
6110
6111        ExprOwningPtr<CXXOperatorCallExpr>
6112          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6113                                                          Args, 2, ResultTy,
6114                                                          OpLoc));
6115
6116        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6117                                FnDecl))
6118          return ExprError();
6119
6120        return MaybeBindToTemporary(TheCall.release());
6121      } else {
6122        // We matched a built-in operator. Convert the arguments, then
6123        // break out so that we will build the appropriate built-in
6124        // operator node.
6125        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6126                                      Best->Conversions[0], AA_Passing) ||
6127            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6128                                      Best->Conversions[1], AA_Passing))
6129          return ExprError();
6130
6131        break;
6132      }
6133    }
6134
6135    case OR_No_Viable_Function: {
6136      // C++ [over.match.oper]p9:
6137      //   If the operator is the operator , [...] and there are no
6138      //   viable functions, then the operator is assumed to be the
6139      //   built-in operator and interpreted according to clause 5.
6140      if (Opc == BinaryOperator::Comma)
6141        break;
6142
6143      // For class as left operand for assignment or compound assigment operator
6144      // do not fall through to handling in built-in, but report that no overloaded
6145      // assignment operator found
6146      OwningExprResult Result = ExprError();
6147      if (Args[0]->getType()->isRecordType() &&
6148          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6149        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6150             << BinaryOperator::getOpcodeStr(Opc)
6151             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6152      } else {
6153        // No viable function; try to create a built-in operation, which will
6154        // produce an error. Then, show the non-viable candidates.
6155        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6156      }
6157      assert(Result.isInvalid() &&
6158             "C++ binary operator overloading is missing candidates!");
6159      if (Result.isInvalid())
6160        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6161                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6162      return move(Result);
6163    }
6164
6165    case OR_Ambiguous:
6166      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6167          << BinaryOperator::getOpcodeStr(Opc)
6168          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6169      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6170                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6171      return ExprError();
6172
6173    case OR_Deleted:
6174      Diag(OpLoc, diag::err_ovl_deleted_oper)
6175        << Best->Function->isDeleted()
6176        << BinaryOperator::getOpcodeStr(Opc)
6177        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6178      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6179      return ExprError();
6180  }
6181
6182  // We matched a built-in operator; build it.
6183  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6184}
6185
6186Action::OwningExprResult
6187Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6188                                         SourceLocation RLoc,
6189                                         ExprArg Base, ExprArg Idx) {
6190  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6191                    static_cast<Expr*>(Idx.get()) };
6192  DeclarationName OpName =
6193      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6194
6195  // If either side is type-dependent, create an appropriate dependent
6196  // expression.
6197  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6198
6199    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6200    UnresolvedLookupExpr *Fn
6201      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6202                                     0, SourceRange(), OpName, LLoc,
6203                                     /*ADL*/ true, /*Overloaded*/ false);
6204    // Can't add any actual overloads yet
6205
6206    Base.release();
6207    Idx.release();
6208    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6209                                                   Args, 2,
6210                                                   Context.DependentTy,
6211                                                   RLoc));
6212  }
6213
6214  // Build an empty overload set.
6215  OverloadCandidateSet CandidateSet(LLoc);
6216
6217  // Subscript can only be overloaded as a member function.
6218
6219  // Add operator candidates that are member functions.
6220  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6221
6222  // Add builtin operator candidates.
6223  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6224
6225  // Perform overload resolution.
6226  OverloadCandidateSet::iterator Best;
6227  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6228    case OR_Success: {
6229      // We found a built-in operator or an overloaded operator.
6230      FunctionDecl *FnDecl = Best->Function;
6231
6232      if (FnDecl) {
6233        // We matched an overloaded operator. Build a call to that
6234        // operator.
6235
6236        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6237
6238        // Convert the arguments.
6239        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6240        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6241                                                Best->FoundDecl, Method))
6242          return ExprError();
6243
6244        // Convert the arguments.
6245        OwningExprResult InputInit
6246          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6247                                                      FnDecl->getParamDecl(0)),
6248                                      SourceLocation(),
6249                                      Owned(Args[1]));
6250        if (InputInit.isInvalid())
6251          return ExprError();
6252
6253        Args[1] = InputInit.takeAs<Expr>();
6254
6255        // Determine the result type
6256        QualType ResultTy
6257          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6258        ResultTy = ResultTy.getNonReferenceType();
6259
6260        // Build the actual expression node.
6261        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6262                                                 LLoc);
6263        UsualUnaryConversions(FnExpr);
6264
6265        Base.release();
6266        Idx.release();
6267        ExprOwningPtr<CXXOperatorCallExpr>
6268          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6269                                                          FnExpr, Args, 2,
6270                                                          ResultTy, RLoc));
6271
6272        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6273                                FnDecl))
6274          return ExprError();
6275
6276        return MaybeBindToTemporary(TheCall.release());
6277      } else {
6278        // We matched a built-in operator. Convert the arguments, then
6279        // break out so that we will build the appropriate built-in
6280        // operator node.
6281        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6282                                      Best->Conversions[0], AA_Passing) ||
6283            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6284                                      Best->Conversions[1], AA_Passing))
6285          return ExprError();
6286
6287        break;
6288      }
6289    }
6290
6291    case OR_No_Viable_Function: {
6292      if (CandidateSet.empty())
6293        Diag(LLoc, diag::err_ovl_no_oper)
6294          << Args[0]->getType() << /*subscript*/ 0
6295          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6296      else
6297        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6298          << Args[0]->getType()
6299          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6300      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6301                              "[]", LLoc);
6302      return ExprError();
6303    }
6304
6305    case OR_Ambiguous:
6306      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6307          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6308      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6309                              "[]", LLoc);
6310      return ExprError();
6311
6312    case OR_Deleted:
6313      Diag(LLoc, diag::err_ovl_deleted_oper)
6314        << Best->Function->isDeleted() << "[]"
6315        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6316      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6317                              "[]", LLoc);
6318      return ExprError();
6319    }
6320
6321  // We matched a built-in operator; build it.
6322  Base.release();
6323  Idx.release();
6324  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6325                                         Owned(Args[1]), RLoc);
6326}
6327
6328/// BuildCallToMemberFunction - Build a call to a member
6329/// function. MemExpr is the expression that refers to the member
6330/// function (and includes the object parameter), Args/NumArgs are the
6331/// arguments to the function call (not including the object
6332/// parameter). The caller needs to validate that the member
6333/// expression refers to a member function or an overloaded member
6334/// function.
6335Sema::OwningExprResult
6336Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6337                                SourceLocation LParenLoc, Expr **Args,
6338                                unsigned NumArgs, SourceLocation *CommaLocs,
6339                                SourceLocation RParenLoc) {
6340  // Dig out the member expression. This holds both the object
6341  // argument and the member function we're referring to.
6342  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6343
6344  MemberExpr *MemExpr;
6345  CXXMethodDecl *Method = 0;
6346  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6347  NestedNameSpecifier *Qualifier = 0;
6348  if (isa<MemberExpr>(NakedMemExpr)) {
6349    MemExpr = cast<MemberExpr>(NakedMemExpr);
6350    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6351    FoundDecl = MemExpr->getFoundDecl();
6352    Qualifier = MemExpr->getQualifier();
6353  } else {
6354    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6355    Qualifier = UnresExpr->getQualifier();
6356
6357    QualType ObjectType = UnresExpr->getBaseType();
6358
6359    // Add overload candidates
6360    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6361
6362    // FIXME: avoid copy.
6363    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6364    if (UnresExpr->hasExplicitTemplateArgs()) {
6365      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6366      TemplateArgs = &TemplateArgsBuffer;
6367    }
6368
6369    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6370           E = UnresExpr->decls_end(); I != E; ++I) {
6371
6372      NamedDecl *Func = *I;
6373      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6374      if (isa<UsingShadowDecl>(Func))
6375        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6376
6377      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6378        // If explicit template arguments were provided, we can't call a
6379        // non-template member function.
6380        if (TemplateArgs)
6381          continue;
6382
6383        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6384                           Args, NumArgs,
6385                           CandidateSet, /*SuppressUserConversions=*/false);
6386      } else {
6387        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6388                                   I.getPair(), ActingDC, TemplateArgs,
6389                                   ObjectType, Args, NumArgs,
6390                                   CandidateSet,
6391                                   /*SuppressUsedConversions=*/false);
6392      }
6393    }
6394
6395    DeclarationName DeclName = UnresExpr->getMemberName();
6396
6397    OverloadCandidateSet::iterator Best;
6398    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6399    case OR_Success:
6400      Method = cast<CXXMethodDecl>(Best->Function);
6401      FoundDecl = Best->FoundDecl;
6402      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6403      break;
6404
6405    case OR_No_Viable_Function:
6406      Diag(UnresExpr->getMemberLoc(),
6407           diag::err_ovl_no_viable_member_function_in_call)
6408        << DeclName << MemExprE->getSourceRange();
6409      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6410      // FIXME: Leaking incoming expressions!
6411      return ExprError();
6412
6413    case OR_Ambiguous:
6414      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6415        << DeclName << MemExprE->getSourceRange();
6416      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6417      // FIXME: Leaking incoming expressions!
6418      return ExprError();
6419
6420    case OR_Deleted:
6421      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6422        << Best->Function->isDeleted()
6423        << DeclName << MemExprE->getSourceRange();
6424      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6425      // FIXME: Leaking incoming expressions!
6426      return ExprError();
6427    }
6428
6429    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6430
6431    // If overload resolution picked a static member, build a
6432    // non-member call based on that function.
6433    if (Method->isStatic()) {
6434      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6435                                   Args, NumArgs, RParenLoc);
6436    }
6437
6438    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6439  }
6440
6441  assert(Method && "Member call to something that isn't a method?");
6442  ExprOwningPtr<CXXMemberCallExpr>
6443    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6444                                                  NumArgs,
6445                                  Method->getResultType().getNonReferenceType(),
6446                                  RParenLoc));
6447
6448  // Check for a valid return type.
6449  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6450                          TheCall.get(), Method))
6451    return ExprError();
6452
6453  // Convert the object argument (for a non-static member function call).
6454  // We only need to do this if there was actually an overload; otherwise
6455  // it was done at lookup.
6456  Expr *ObjectArg = MemExpr->getBase();
6457  if (!Method->isStatic() &&
6458      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6459                                          FoundDecl, Method))
6460    return ExprError();
6461  MemExpr->setBase(ObjectArg);
6462
6463  // Convert the rest of the arguments
6464  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6465  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6466                              RParenLoc))
6467    return ExprError();
6468
6469  if (CheckFunctionCall(Method, TheCall.get()))
6470    return ExprError();
6471
6472  return MaybeBindToTemporary(TheCall.release());
6473}
6474
6475/// BuildCallToObjectOfClassType - Build a call to an object of class
6476/// type (C++ [over.call.object]), which can end up invoking an
6477/// overloaded function call operator (@c operator()) or performing a
6478/// user-defined conversion on the object argument.
6479Sema::ExprResult
6480Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6481                                   SourceLocation LParenLoc,
6482                                   Expr **Args, unsigned NumArgs,
6483                                   SourceLocation *CommaLocs,
6484                                   SourceLocation RParenLoc) {
6485  assert(Object->getType()->isRecordType() && "Requires object type argument");
6486  const RecordType *Record = Object->getType()->getAs<RecordType>();
6487
6488  // C++ [over.call.object]p1:
6489  //  If the primary-expression E in the function call syntax
6490  //  evaluates to a class object of type "cv T", then the set of
6491  //  candidate functions includes at least the function call
6492  //  operators of T. The function call operators of T are obtained by
6493  //  ordinary lookup of the name operator() in the context of
6494  //  (E).operator().
6495  OverloadCandidateSet CandidateSet(LParenLoc);
6496  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6497
6498  if (RequireCompleteType(LParenLoc, Object->getType(),
6499                          PDiag(diag::err_incomplete_object_call)
6500                          << Object->getSourceRange()))
6501    return true;
6502
6503  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6504  LookupQualifiedName(R, Record->getDecl());
6505  R.suppressDiagnostics();
6506
6507  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6508       Oper != OperEnd; ++Oper) {
6509    AddMethodCandidate(Oper.getPair(), Object->getType(),
6510                       Args, NumArgs, CandidateSet,
6511                       /*SuppressUserConversions=*/ false);
6512  }
6513
6514  // C++ [over.call.object]p2:
6515  //   In addition, for each conversion function declared in T of the
6516  //   form
6517  //
6518  //        operator conversion-type-id () cv-qualifier;
6519  //
6520  //   where cv-qualifier is the same cv-qualification as, or a
6521  //   greater cv-qualification than, cv, and where conversion-type-id
6522  //   denotes the type "pointer to function of (P1,...,Pn) returning
6523  //   R", or the type "reference to pointer to function of
6524  //   (P1,...,Pn) returning R", or the type "reference to function
6525  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6526  //   is also considered as a candidate function. Similarly,
6527  //   surrogate call functions are added to the set of candidate
6528  //   functions for each conversion function declared in an
6529  //   accessible base class provided the function is not hidden
6530  //   within T by another intervening declaration.
6531  const UnresolvedSetImpl *Conversions
6532    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6533  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6534         E = Conversions->end(); I != E; ++I) {
6535    NamedDecl *D = *I;
6536    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6537    if (isa<UsingShadowDecl>(D))
6538      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6539
6540    // Skip over templated conversion functions; they aren't
6541    // surrogates.
6542    if (isa<FunctionTemplateDecl>(D))
6543      continue;
6544
6545    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6546
6547    // Strip the reference type (if any) and then the pointer type (if
6548    // any) to get down to what might be a function type.
6549    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6550    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6551      ConvType = ConvPtrType->getPointeeType();
6552
6553    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6554      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6555                            Object->getType(), Args, NumArgs,
6556                            CandidateSet);
6557  }
6558
6559  // Perform overload resolution.
6560  OverloadCandidateSet::iterator Best;
6561  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6562  case OR_Success:
6563    // Overload resolution succeeded; we'll build the appropriate call
6564    // below.
6565    break;
6566
6567  case OR_No_Viable_Function:
6568    if (CandidateSet.empty())
6569      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6570        << Object->getType() << /*call*/ 1
6571        << Object->getSourceRange();
6572    else
6573      Diag(Object->getSourceRange().getBegin(),
6574           diag::err_ovl_no_viable_object_call)
6575        << Object->getType() << Object->getSourceRange();
6576    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6577    break;
6578
6579  case OR_Ambiguous:
6580    Diag(Object->getSourceRange().getBegin(),
6581         diag::err_ovl_ambiguous_object_call)
6582      << Object->getType() << Object->getSourceRange();
6583    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6584    break;
6585
6586  case OR_Deleted:
6587    Diag(Object->getSourceRange().getBegin(),
6588         diag::err_ovl_deleted_object_call)
6589      << Best->Function->isDeleted()
6590      << Object->getType() << Object->getSourceRange();
6591    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6592    break;
6593  }
6594
6595  if (Best == CandidateSet.end()) {
6596    // We had an error; delete all of the subexpressions and return
6597    // the error.
6598    Object->Destroy(Context);
6599    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6600      Args[ArgIdx]->Destroy(Context);
6601    return true;
6602  }
6603
6604  if (Best->Function == 0) {
6605    // Since there is no function declaration, this is one of the
6606    // surrogate candidates. Dig out the conversion function.
6607    CXXConversionDecl *Conv
6608      = cast<CXXConversionDecl>(
6609                         Best->Conversions[0].UserDefined.ConversionFunction);
6610
6611    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6612
6613    // We selected one of the surrogate functions that converts the
6614    // object parameter to a function pointer. Perform the conversion
6615    // on the object argument, then let ActOnCallExpr finish the job.
6616
6617    // Create an implicit member expr to refer to the conversion operator.
6618    // and then call it.
6619    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6620                                                   Conv);
6621
6622    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6623                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6624                         CommaLocs, RParenLoc).result();
6625  }
6626
6627  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6628
6629  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6630  // that calls this method, using Object for the implicit object
6631  // parameter and passing along the remaining arguments.
6632  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6633  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6634
6635  unsigned NumArgsInProto = Proto->getNumArgs();
6636  unsigned NumArgsToCheck = NumArgs;
6637
6638  // Build the full argument list for the method call (the
6639  // implicit object parameter is placed at the beginning of the
6640  // list).
6641  Expr **MethodArgs;
6642  if (NumArgs < NumArgsInProto) {
6643    NumArgsToCheck = NumArgsInProto;
6644    MethodArgs = new Expr*[NumArgsInProto + 1];
6645  } else {
6646    MethodArgs = new Expr*[NumArgs + 1];
6647  }
6648  MethodArgs[0] = Object;
6649  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6650    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6651
6652  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6653                                          SourceLocation());
6654  UsualUnaryConversions(NewFn);
6655
6656  // Once we've built TheCall, all of the expressions are properly
6657  // owned.
6658  QualType ResultTy = Method->getResultType().getNonReferenceType();
6659  ExprOwningPtr<CXXOperatorCallExpr>
6660    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6661                                                    MethodArgs, NumArgs + 1,
6662                                                    ResultTy, RParenLoc));
6663  delete [] MethodArgs;
6664
6665  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6666                          Method))
6667    return true;
6668
6669  // We may have default arguments. If so, we need to allocate more
6670  // slots in the call for them.
6671  if (NumArgs < NumArgsInProto)
6672    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6673  else if (NumArgs > NumArgsInProto)
6674    NumArgsToCheck = NumArgsInProto;
6675
6676  bool IsError = false;
6677
6678  // Initialize the implicit object parameter.
6679  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6680                                                 Best->FoundDecl, Method);
6681  TheCall->setArg(0, Object);
6682
6683
6684  // Check the argument types.
6685  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6686    Expr *Arg;
6687    if (i < NumArgs) {
6688      Arg = Args[i];
6689
6690      // Pass the argument.
6691
6692      OwningExprResult InputInit
6693        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6694                                                    Method->getParamDecl(i)),
6695                                    SourceLocation(), Owned(Arg));
6696
6697      IsError |= InputInit.isInvalid();
6698      Arg = InputInit.takeAs<Expr>();
6699    } else {
6700      OwningExprResult DefArg
6701        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6702      if (DefArg.isInvalid()) {
6703        IsError = true;
6704        break;
6705      }
6706
6707      Arg = DefArg.takeAs<Expr>();
6708    }
6709
6710    TheCall->setArg(i + 1, Arg);
6711  }
6712
6713  // If this is a variadic call, handle args passed through "...".
6714  if (Proto->isVariadic()) {
6715    // Promote the arguments (C99 6.5.2.2p7).
6716    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6717      Expr *Arg = Args[i];
6718      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6719      TheCall->setArg(i + 1, Arg);
6720    }
6721  }
6722
6723  if (IsError) return true;
6724
6725  if (CheckFunctionCall(Method, TheCall.get()))
6726    return true;
6727
6728  return MaybeBindToTemporary(TheCall.release()).result();
6729}
6730
6731/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6732///  (if one exists), where @c Base is an expression of class type and
6733/// @c Member is the name of the member we're trying to find.
6734Sema::OwningExprResult
6735Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6736  Expr *Base = static_cast<Expr *>(BaseIn.get());
6737  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6738
6739  SourceLocation Loc = Base->getExprLoc();
6740
6741  // C++ [over.ref]p1:
6742  //
6743  //   [...] An expression x->m is interpreted as (x.operator->())->m
6744  //   for a class object x of type T if T::operator->() exists and if
6745  //   the operator is selected as the best match function by the
6746  //   overload resolution mechanism (13.3).
6747  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6748  OverloadCandidateSet CandidateSet(Loc);
6749  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6750
6751  if (RequireCompleteType(Loc, Base->getType(),
6752                          PDiag(diag::err_typecheck_incomplete_tag)
6753                            << Base->getSourceRange()))
6754    return ExprError();
6755
6756  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6757  LookupQualifiedName(R, BaseRecord->getDecl());
6758  R.suppressDiagnostics();
6759
6760  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6761       Oper != OperEnd; ++Oper) {
6762    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6763                       /*SuppressUserConversions=*/false);
6764  }
6765
6766  // Perform overload resolution.
6767  OverloadCandidateSet::iterator Best;
6768  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6769  case OR_Success:
6770    // Overload resolution succeeded; we'll build the call below.
6771    break;
6772
6773  case OR_No_Viable_Function:
6774    if (CandidateSet.empty())
6775      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6776        << Base->getType() << Base->getSourceRange();
6777    else
6778      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6779        << "operator->" << Base->getSourceRange();
6780    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6781    return ExprError();
6782
6783  case OR_Ambiguous:
6784    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6785      << "->" << Base->getSourceRange();
6786    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6787    return ExprError();
6788
6789  case OR_Deleted:
6790    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6791      << Best->Function->isDeleted()
6792      << "->" << Base->getSourceRange();
6793    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6794    return ExprError();
6795  }
6796
6797  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6798
6799  // Convert the object parameter.
6800  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6801  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6802                                          Best->FoundDecl, Method))
6803    return ExprError();
6804
6805  // No concerns about early exits now.
6806  BaseIn.release();
6807
6808  // Build the operator call.
6809  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6810                                           SourceLocation());
6811  UsualUnaryConversions(FnExpr);
6812
6813  QualType ResultTy = Method->getResultType().getNonReferenceType();
6814  ExprOwningPtr<CXXOperatorCallExpr>
6815    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6816                                                    &Base, 1, ResultTy, OpLoc));
6817
6818  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6819                          Method))
6820          return ExprError();
6821  return move(TheCall);
6822}
6823
6824/// FixOverloadedFunctionReference - E is an expression that refers to
6825/// a C++ overloaded function (possibly with some parentheses and
6826/// perhaps a '&' around it). We have resolved the overloaded function
6827/// to the function declaration Fn, so patch up the expression E to
6828/// refer (possibly indirectly) to Fn. Returns the new expr.
6829Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6830                                           FunctionDecl *Fn) {
6831  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6832    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6833                                                   Found, Fn);
6834    if (SubExpr == PE->getSubExpr())
6835      return PE->Retain();
6836
6837    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6838  }
6839
6840  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6841    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6842                                                   Found, Fn);
6843    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6844                               SubExpr->getType()) &&
6845           "Implicit cast type cannot be determined from overload");
6846    if (SubExpr == ICE->getSubExpr())
6847      return ICE->Retain();
6848
6849    return new (Context) ImplicitCastExpr(ICE->getType(),
6850                                          ICE->getCastKind(),
6851                                          SubExpr,
6852                                          ICE->isLvalueCast());
6853  }
6854
6855  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6856    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6857           "Can only take the address of an overloaded function");
6858    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6859      if (Method->isStatic()) {
6860        // Do nothing: static member functions aren't any different
6861        // from non-member functions.
6862      } else {
6863        // Fix the sub expression, which really has to be an
6864        // UnresolvedLookupExpr holding an overloaded member function
6865        // or template.
6866        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6867                                                       Found, Fn);
6868        if (SubExpr == UnOp->getSubExpr())
6869          return UnOp->Retain();
6870
6871        assert(isa<DeclRefExpr>(SubExpr)
6872               && "fixed to something other than a decl ref");
6873        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6874               && "fixed to a member ref with no nested name qualifier");
6875
6876        // We have taken the address of a pointer to member
6877        // function. Perform the computation here so that we get the
6878        // appropriate pointer to member type.
6879        QualType ClassType
6880          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6881        QualType MemPtrType
6882          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6883
6884        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6885                                           MemPtrType, UnOp->getOperatorLoc());
6886      }
6887    }
6888    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6889                                                   Found, Fn);
6890    if (SubExpr == UnOp->getSubExpr())
6891      return UnOp->Retain();
6892
6893    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6894                                     Context.getPointerType(SubExpr->getType()),
6895                                       UnOp->getOperatorLoc());
6896  }
6897
6898  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6899    // FIXME: avoid copy.
6900    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6901    if (ULE->hasExplicitTemplateArgs()) {
6902      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6903      TemplateArgs = &TemplateArgsBuffer;
6904    }
6905
6906    return DeclRefExpr::Create(Context,
6907                               ULE->getQualifier(),
6908                               ULE->getQualifierRange(),
6909                               Fn,
6910                               ULE->getNameLoc(),
6911                               Fn->getType(),
6912                               TemplateArgs);
6913  }
6914
6915  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6916    // FIXME: avoid copy.
6917    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6918    if (MemExpr->hasExplicitTemplateArgs()) {
6919      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6920      TemplateArgs = &TemplateArgsBuffer;
6921    }
6922
6923    Expr *Base;
6924
6925    // If we're filling in
6926    if (MemExpr->isImplicitAccess()) {
6927      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6928        return DeclRefExpr::Create(Context,
6929                                   MemExpr->getQualifier(),
6930                                   MemExpr->getQualifierRange(),
6931                                   Fn,
6932                                   MemExpr->getMemberLoc(),
6933                                   Fn->getType(),
6934                                   TemplateArgs);
6935      } else {
6936        SourceLocation Loc = MemExpr->getMemberLoc();
6937        if (MemExpr->getQualifier())
6938          Loc = MemExpr->getQualifierRange().getBegin();
6939        Base = new (Context) CXXThisExpr(Loc,
6940                                         MemExpr->getBaseType(),
6941                                         /*isImplicit=*/true);
6942      }
6943    } else
6944      Base = MemExpr->getBase()->Retain();
6945
6946    return MemberExpr::Create(Context, Base,
6947                              MemExpr->isArrow(),
6948                              MemExpr->getQualifier(),
6949                              MemExpr->getQualifierRange(),
6950                              Fn,
6951                              Found,
6952                              MemExpr->getMemberLoc(),
6953                              TemplateArgs,
6954                              Fn->getType());
6955  }
6956
6957  assert(false && "Invalid reference to overloaded function");
6958  return E->Retain();
6959}
6960
6961Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6962                                                          DeclAccessPair Found,
6963                                                            FunctionDecl *Fn) {
6964  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6965}
6966
6967} // end namespace clang
6968