SemaOverload.cpp revision 993a060816aa82ca90fc6ccab23000cd2803a9f2
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAsPointerType())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309    // C++ [temp.fct]p2:
310    //   A function template can be overloaded with other function templates
311    //   and with normal (non-template) functions.
312    if ((OldTemplate == 0) != (NewTemplate == 0))
313      return true;
314
315    // Is the function New an overload of the function Old?
316    QualType OldQType = Context.getCanonicalType(Old->getType());
317    QualType NewQType = Context.getCanonicalType(New->getType());
318
319    // Compare the signatures (C++ 1.3.10) of the two functions to
320    // determine whether they are overloads. If we find any mismatch
321    // in the signature, they are overloads.
322
323    // If either of these functions is a K&R-style function (no
324    // prototype), then we consider them to have matching signatures.
325    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327      return false;
328
329    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
331
332    // The signature of a function includes the types of its
333    // parameters (C++ 1.3.10), which includes the presence or absence
334    // of the ellipsis; see C++ DR 357).
335    if (OldQType != NewQType &&
336        (OldType->getNumArgs() != NewType->getNumArgs() ||
337         OldType->isVariadic() != NewType->isVariadic() ||
338         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339                     NewType->arg_type_begin())))
340      return true;
341
342    // C++ [temp.over.link]p4:
343    //   The signature of a function template consists of its function
344    //   signature, its return type and its template parameter list. The names
345    //   of the template parameters are significant only for establishing the
346    //   relationship between the template parameters and the rest of the
347    //   signature.
348    //
349    // We check the return type and template parameter lists for function
350    // templates first; the remaining checks follow.
351    if (NewTemplate &&
352        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353                                         OldTemplate->getTemplateParameters(),
354                                         false, false, SourceLocation()) ||
355         OldType->getResultType() != NewType->getResultType()))
356      return true;
357
358    // If the function is a class member, its signature includes the
359    // cv-qualifiers (if any) on the function itself.
360    //
361    // As part of this, also check whether one of the member functions
362    // is static, in which case they are not overloads (C++
363    // 13.1p2). While not part of the definition of the signature,
364    // this check is important to determine whether these functions
365    // can be overloaded.
366    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368    if (OldMethod && NewMethod &&
369        !OldMethod->isStatic() && !NewMethod->isStatic() &&
370        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371      return true;
372
373    // The signatures match; this is not an overload.
374    return false;
375  } else {
376    // (C++ 13p1):
377    //   Only function declarations can be overloaded; object and type
378    //   declarations cannot be overloaded.
379    return false;
380  }
381}
382
383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
387///
388///   void f(float f);
389///   void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
408ImplicitConversionSequence
409Sema::TryImplicitConversion(Expr* From, QualType ToType,
410                            bool SuppressUserConversions,
411                            bool AllowExplicit, bool ForceRValue)
412{
413  ImplicitConversionSequence ICS;
414  if (IsStandardConversion(From, ToType, ICS.Standard))
415    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416  else if (getLangOptions().CPlusPlus &&
417           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418                                   !SuppressUserConversions, AllowExplicit,
419                                   ForceRValue)) {
420    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421    // C++ [over.ics.user]p4:
422    //   A conversion of an expression of class type to the same class
423    //   type is given Exact Match rank, and a conversion of an
424    //   expression of class type to a base class of that type is
425    //   given Conversion rank, in spite of the fact that a copy
426    //   constructor (i.e., a user-defined conversion function) is
427    //   called for those cases.
428    if (CXXConstructorDecl *Constructor
429          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430      QualType FromCanon
431        = Context.getCanonicalType(From->getType().getUnqualifiedType());
432      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434        // Turn this into a "standard" conversion sequence, so that it
435        // gets ranked with standard conversion sequences.
436        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437        ICS.Standard.setAsIdentityConversion();
438        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440        ICS.Standard.CopyConstructor = Constructor;
441        if (ToCanon != FromCanon)
442          ICS.Standard.Second = ICK_Derived_To_Base;
443      }
444    }
445
446    // C++ [over.best.ics]p4:
447    //   However, when considering the argument of a user-defined
448    //   conversion function that is a candidate by 13.3.1.3 when
449    //   invoked for the copying of the temporary in the second step
450    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451    //   13.3.1.6 in all cases, only standard conversion sequences and
452    //   ellipsis conversion sequences are allowed.
453    if (SuppressUserConversions &&
454        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456  } else
457    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
458
459  return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472                           StandardConversionSequence &SCS)
473{
474  QualType FromType = From->getType();
475
476  // Standard conversions (C++ [conv])
477  SCS.setAsIdentityConversion();
478  SCS.Deprecated = false;
479  SCS.IncompatibleObjC = false;
480  SCS.FromTypePtr = FromType.getAsOpaquePtr();
481  SCS.CopyConstructor = 0;
482
483  // There are no standard conversions for class types in C++, so
484  // abort early. When overloading in C, however, we do permit
485  if (FromType->isRecordType() || ToType->isRecordType()) {
486    if (getLangOptions().CPlusPlus)
487      return false;
488
489    // When we're overloading in C, we allow, as standard conversions,
490  }
491
492  // The first conversion can be an lvalue-to-rvalue conversion,
493  // array-to-pointer conversion, or function-to-pointer conversion
494  // (C++ 4p1).
495
496  // Lvalue-to-rvalue conversion (C++ 4.1):
497  //   An lvalue (3.10) of a non-function, non-array type T can be
498  //   converted to an rvalue.
499  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500  if (argIsLvalue == Expr::LV_Valid &&
501      !FromType->isFunctionType() && !FromType->isArrayType() &&
502      Context.getCanonicalType(FromType) != Context.OverloadTy) {
503    SCS.First = ICK_Lvalue_To_Rvalue;
504
505    // If T is a non-class type, the type of the rvalue is the
506    // cv-unqualified version of T. Otherwise, the type of the rvalue
507    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508    // just strip the qualifiers because they don't matter.
509
510    // FIXME: Doesn't see through to qualifiers behind a typedef!
511    FromType = FromType.getUnqualifiedType();
512  }
513  // Array-to-pointer conversion (C++ 4.2)
514  else if (FromType->isArrayType()) {
515    SCS.First = ICK_Array_To_Pointer;
516
517    // An lvalue or rvalue of type "array of N T" or "array of unknown
518    // bound of T" can be converted to an rvalue of type "pointer to
519    // T" (C++ 4.2p1).
520    FromType = Context.getArrayDecayedType(FromType);
521
522    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523      // This conversion is deprecated. (C++ D.4).
524      SCS.Deprecated = true;
525
526      // For the purpose of ranking in overload resolution
527      // (13.3.3.1.1), this conversion is considered an
528      // array-to-pointer conversion followed by a qualification
529      // conversion (4.4). (C++ 4.2p2)
530      SCS.Second = ICK_Identity;
531      SCS.Third = ICK_Qualification;
532      SCS.ToTypePtr = ToType.getAsOpaquePtr();
533      return true;
534    }
535  }
536  // Function-to-pointer conversion (C++ 4.3).
537  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
538    SCS.First = ICK_Function_To_Pointer;
539
540    // An lvalue of function type T can be converted to an rvalue of
541    // type "pointer to T." The result is a pointer to the
542    // function. (C++ 4.3p1).
543    FromType = Context.getPointerType(FromType);
544  }
545  // Address of overloaded function (C++ [over.over]).
546  else if (FunctionDecl *Fn
547             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548    SCS.First = ICK_Function_To_Pointer;
549
550    // We were able to resolve the address of the overloaded function,
551    // so we can convert to the type of that function.
552    FromType = Fn->getType();
553    if (ToType->isLValueReferenceType())
554      FromType = Context.getLValueReferenceType(FromType);
555    else if (ToType->isRValueReferenceType())
556      FromType = Context.getRValueReferenceType(FromType);
557    else if (ToType->isMemberPointerType()) {
558      // Resolve address only succeeds if both sides are member pointers,
559      // but it doesn't have to be the same class. See DR 247.
560      // Note that this means that the type of &Derived::fn can be
561      // Ret (Base::*)(Args) if the fn overload actually found is from the
562      // base class, even if it was brought into the derived class via a
563      // using declaration. The standard isn't clear on this issue at all.
564      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565      FromType = Context.getMemberPointerType(FromType,
566                    Context.getTypeDeclType(M->getParent()).getTypePtr());
567    } else
568      FromType = Context.getPointerType(FromType);
569  }
570  // We don't require any conversions for the first step.
571  else {
572    SCS.First = ICK_Identity;
573  }
574
575  // The second conversion can be an integral promotion, floating
576  // point promotion, integral conversion, floating point conversion,
577  // floating-integral conversion, pointer conversion,
578  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579  // For overloading in C, this can also be a "compatible-type"
580  // conversion.
581  bool IncompatibleObjC = false;
582  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583    // The unqualified versions of the types are the same: there's no
584    // conversion to do.
585    SCS.Second = ICK_Identity;
586  }
587  // Integral promotion (C++ 4.5).
588  else if (IsIntegralPromotion(From, FromType, ToType)) {
589    SCS.Second = ICK_Integral_Promotion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating point promotion (C++ 4.6).
593  else if (IsFloatingPointPromotion(FromType, ToType)) {
594    SCS.Second = ICK_Floating_Promotion;
595    FromType = ToType.getUnqualifiedType();
596  }
597  // Complex promotion (Clang extension)
598  else if (IsComplexPromotion(FromType, ToType)) {
599    SCS.Second = ICK_Complex_Promotion;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Integral conversions (C++ 4.7).
603  // FIXME: isIntegralType shouldn't be true for enums in C++.
604  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
605           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
606    SCS.Second = ICK_Integral_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  }
609  // Floating point conversions (C++ 4.8).
610  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
611    SCS.Second = ICK_Floating_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  }
614  // Complex conversions (C99 6.3.1.6)
615  else if (FromType->isComplexType() && ToType->isComplexType()) {
616    SCS.Second = ICK_Complex_Conversion;
617    FromType = ToType.getUnqualifiedType();
618  }
619  // Floating-integral conversions (C++ 4.9).
620  // FIXME: isIntegralType shouldn't be true for enums in C++.
621  else if ((FromType->isFloatingType() &&
622            ToType->isIntegralType() && !ToType->isBooleanType() &&
623                                        !ToType->isEnumeralType()) ||
624           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625            ToType->isFloatingType())) {
626    SCS.Second = ICK_Floating_Integral;
627    FromType = ToType.getUnqualifiedType();
628  }
629  // Complex-real conversions (C99 6.3.1.7)
630  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631           (ToType->isComplexType() && FromType->isArithmeticType())) {
632    SCS.Second = ICK_Complex_Real;
633    FromType = ToType.getUnqualifiedType();
634  }
635  // Pointer conversions (C++ 4.10).
636  else if (IsPointerConversion(From, FromType, ToType, FromType,
637                               IncompatibleObjC)) {
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  }
641  // Pointer to member conversions (4.11).
642  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643    SCS.Second = ICK_Pointer_Member;
644  }
645  // Boolean conversions (C++ 4.12).
646  else if (ToType->isBooleanType() &&
647           (FromType->isArithmeticType() ||
648            FromType->isEnumeralType() ||
649            FromType->isPointerType() ||
650            FromType->isBlockPointerType() ||
651            FromType->isMemberPointerType() ||
652            FromType->isNullPtrType())) {
653    SCS.Second = ICK_Boolean_Conversion;
654    FromType = Context.BoolTy;
655  }
656  // Compatible conversions (Clang extension for C function overloading)
657  else if (!getLangOptions().CPlusPlus &&
658           Context.typesAreCompatible(ToType, FromType)) {
659    SCS.Second = ICK_Compatible_Conversion;
660  } else {
661    // No second conversion required.
662    SCS.Second = ICK_Identity;
663  }
664
665  QualType CanonFrom;
666  QualType CanonTo;
667  // The third conversion can be a qualification conversion (C++ 4p1).
668  if (IsQualificationConversion(FromType, ToType)) {
669    SCS.Third = ICK_Qualification;
670    FromType = ToType;
671    CanonFrom = Context.getCanonicalType(FromType);
672    CanonTo = Context.getCanonicalType(ToType);
673  } else {
674    // No conversion required
675    SCS.Third = ICK_Identity;
676
677    // C++ [over.best.ics]p6:
678    //   [...] Any difference in top-level cv-qualification is
679    //   subsumed by the initialization itself and does not constitute
680    //   a conversion. [...]
681    CanonFrom = Context.getCanonicalType(FromType);
682    CanonTo = Context.getCanonicalType(ToType);
683    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
684        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685      FromType = ToType;
686      CanonFrom = CanonTo;
687    }
688  }
689
690  // If we have not converted the argument type to the parameter type,
691  // this is a bad conversion sequence.
692  if (CanonFrom != CanonTo)
693    return false;
694
695  SCS.ToTypePtr = FromType.getAsOpaquePtr();
696  return true;
697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
704{
705  const BuiltinType *To = ToType->getAsBuiltinType();
706  // All integers are built-in.
707  if (!To) {
708    return false;
709  }
710
711  // An rvalue of type char, signed char, unsigned char, short int, or
712  // unsigned short int can be converted to an rvalue of type int if
713  // int can represent all the values of the source type; otherwise,
714  // the source rvalue can be converted to an rvalue of type unsigned
715  // int (C++ 4.5p1).
716  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
717    if (// We can promote any signed, promotable integer type to an int
718        (FromType->isSignedIntegerType() ||
719         // We can promote any unsigned integer type whose size is
720         // less than int to an int.
721         (!FromType->isSignedIntegerType() &&
722          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
723      return To->getKind() == BuiltinType::Int;
724    }
725
726    return To->getKind() == BuiltinType::UInt;
727  }
728
729  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730  // can be converted to an rvalue of the first of the following types
731  // that can represent all the values of its underlying type: int,
732  // unsigned int, long, or unsigned long (C++ 4.5p2).
733  if ((FromType->isEnumeralType() || FromType->isWideCharType())
734      && ToType->isIntegerType()) {
735    // Determine whether the type we're converting from is signed or
736    // unsigned.
737    bool FromIsSigned;
738    uint64_t FromSize = Context.getTypeSize(FromType);
739    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741      FromIsSigned = UnderlyingType->isSignedIntegerType();
742    } else {
743      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744      FromIsSigned = true;
745    }
746
747    // The types we'll try to promote to, in the appropriate
748    // order. Try each of these types.
749    QualType PromoteTypes[6] = {
750      Context.IntTy, Context.UnsignedIntTy,
751      Context.LongTy, Context.UnsignedLongTy ,
752      Context.LongLongTy, Context.UnsignedLongLongTy
753    };
754    for (int Idx = 0; Idx < 6; ++Idx) {
755      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756      if (FromSize < ToSize ||
757          (FromSize == ToSize &&
758           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759        // We found the type that we can promote to. If this is the
760        // type we wanted, we have a promotion. Otherwise, no
761        // promotion.
762        return Context.getCanonicalType(ToType).getUnqualifiedType()
763          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
764      }
765    }
766  }
767
768  // An rvalue for an integral bit-field (9.6) can be converted to an
769  // rvalue of type int if int can represent all the values of the
770  // bit-field; otherwise, it can be converted to unsigned int if
771  // unsigned int can represent all the values of the bit-field. If
772  // the bit-field is larger yet, no integral promotion applies to
773  // it. If the bit-field has an enumerated type, it is treated as any
774  // other value of that type for promotion purposes (C++ 4.5p3).
775  // FIXME: We should delay checking of bit-fields until we actually perform the
776  // conversion.
777  using llvm::APSInt;
778  if (From)
779    if (FieldDecl *MemberDecl = From->getBitField()) {
780      APSInt BitWidth;
781      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784        ToSize = Context.getTypeSize(ToType);
785
786        // Are we promoting to an int from a bitfield that fits in an int?
787        if (BitWidth < ToSize ||
788            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789          return To->getKind() == BuiltinType::Int;
790        }
791
792        // Are we promoting to an unsigned int from an unsigned bitfield
793        // that fits into an unsigned int?
794        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795          return To->getKind() == BuiltinType::UInt;
796        }
797
798        return false;
799      }
800    }
801
802  // An rvalue of type bool can be converted to an rvalue of type int,
803  // with false becoming zero and true becoming one (C++ 4.5p4).
804  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
805    return true;
806  }
807
808  return false;
809}
810
811/// IsFloatingPointPromotion - Determines whether the conversion from
812/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813/// returns true and sets PromotedType to the promoted type.
814bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
815{
816  /// An rvalue of type float can be converted to an rvalue of type
817  /// double. (C++ 4.6p1).
818  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
819    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
820      if (FromBuiltin->getKind() == BuiltinType::Float &&
821          ToBuiltin->getKind() == BuiltinType::Double)
822        return true;
823
824      // C99 6.3.1.5p1:
825      //   When a float is promoted to double or long double, or a
826      //   double is promoted to long double [...].
827      if (!getLangOptions().CPlusPlus &&
828          (FromBuiltin->getKind() == BuiltinType::Float ||
829           FromBuiltin->getKind() == BuiltinType::Double) &&
830          (ToBuiltin->getKind() == BuiltinType::LongDouble))
831        return true;
832    }
833
834  return false;
835}
836
837/// \brief Determine if a conversion is a complex promotion.
838///
839/// A complex promotion is defined as a complex -> complex conversion
840/// where the conversion between the underlying real types is a
841/// floating-point or integral promotion.
842bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843  const ComplexType *FromComplex = FromType->getAsComplexType();
844  if (!FromComplex)
845    return false;
846
847  const ComplexType *ToComplex = ToType->getAsComplexType();
848  if (!ToComplex)
849    return false;
850
851  return IsFloatingPointPromotion(FromComplex->getElementType(),
852                                  ToComplex->getElementType()) ||
853    IsIntegralPromotion(0, FromComplex->getElementType(),
854                        ToComplex->getElementType());
855}
856
857/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858/// the pointer type FromPtr to a pointer to type ToPointee, with the
859/// same type qualifiers as FromPtr has on its pointee type. ToType,
860/// if non-empty, will be a pointer to ToType that may or may not have
861/// the right set of qualifiers on its pointee.
862static QualType
863BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864                                   QualType ToPointee, QualType ToType,
865                                   ASTContext &Context) {
866  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868  unsigned Quals = CanonFromPointee.getCVRQualifiers();
869
870  // Exact qualifier match -> return the pointer type we're converting to.
871  if (CanonToPointee.getCVRQualifiers() == Quals) {
872    // ToType is exactly what we need. Return it.
873    if (ToType.getTypePtr())
874      return ToType;
875
876    // Build a pointer to ToPointee. It has the right qualifiers
877    // already.
878    return Context.getPointerType(ToPointee);
879  }
880
881  // Just build a canonical type that has the right qualifiers.
882  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
883}
884
885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
891///
892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
902                               QualType& ConvertedType,
903                               bool &IncompatibleObjC)
904{
905  IncompatibleObjC = false;
906  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907    return true;
908
909  // Conversion from a null pointer constant to any Objective-C pointer type.
910  if (Context.isObjCObjectPointerType(ToType) &&
911      From->isNullPointerConstant(Context)) {
912    ConvertedType = ToType;
913    return true;
914  }
915
916  // Blocks: Block pointers can be converted to void*.
917  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
918      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
919    ConvertedType = ToType;
920    return true;
921  }
922  // Blocks: A null pointer constant can be converted to a block
923  // pointer type.
924  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925    ConvertedType = ToType;
926    return true;
927  }
928
929  // If the left-hand-side is nullptr_t, the right side can be a null
930  // pointer constant.
931  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932    ConvertedType = ToType;
933    return true;
934  }
935
936  const PointerType* ToTypePtr = ToType->getAsPointerType();
937  if (!ToTypePtr)
938    return false;
939
940  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941  if (From->isNullPointerConstant(Context)) {
942    ConvertedType = ToType;
943    return true;
944  }
945
946  // Beyond this point, both types need to be pointers.
947  const PointerType *FromTypePtr = FromType->getAsPointerType();
948  if (!FromTypePtr)
949    return false;
950
951  QualType FromPointeeType = FromTypePtr->getPointeeType();
952  QualType ToPointeeType = ToTypePtr->getPointeeType();
953
954  // An rvalue of type "pointer to cv T," where T is an object type,
955  // can be converted to an rvalue of type "pointer to cv void" (C++
956  // 4.10p2).
957  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
958    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959                                                       ToPointeeType,
960                                                       ToType, Context);
961    return true;
962  }
963
964  // When we're overloading in C, we allow a special kind of pointer
965  // conversion for compatible-but-not-identical pointee types.
966  if (!getLangOptions().CPlusPlus &&
967      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969                                                       ToPointeeType,
970                                                       ToType, Context);
971    return true;
972  }
973
974  // C++ [conv.ptr]p3:
975  //
976  //   An rvalue of type "pointer to cv D," where D is a class type,
977  //   can be converted to an rvalue of type "pointer to cv B," where
978  //   B is a base class (clause 10) of D. If B is an inaccessible
979  //   (clause 11) or ambiguous (10.2) base class of D, a program that
980  //   necessitates this conversion is ill-formed. The result of the
981  //   conversion is a pointer to the base class sub-object of the
982  //   derived class object. The null pointer value is converted to
983  //   the null pointer value of the destination type.
984  //
985  // Note that we do not check for ambiguity or inaccessibility
986  // here. That is handled by CheckPointerConversion.
987  if (getLangOptions().CPlusPlus &&
988      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
989      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
990    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991                                                       ToPointeeType,
992                                                       ToType, Context);
993    return true;
994  }
995
996  return false;
997}
998
999/// isObjCPointerConversion - Determines whether this is an
1000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001/// with the same arguments and return values.
1002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003                                   QualType& ConvertedType,
1004                                   bool &IncompatibleObjC) {
1005  if (!getLangOptions().ObjC1)
1006    return false;
1007
1008  // Conversions with Objective-C's id<...>.
1009  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
1010      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
1011    ConvertedType = ToType;
1012    return true;
1013  }
1014
1015  // Beyond this point, both types need to be pointers or block pointers.
1016  QualType ToPointeeType;
1017  const PointerType* ToTypePtr = ToType->getAsPointerType();
1018  if (ToTypePtr)
1019    ToPointeeType = ToTypePtr->getPointeeType();
1020  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
1021    ToPointeeType = ToBlockPtr->getPointeeType();
1022  else
1023    return false;
1024
1025  QualType FromPointeeType;
1026  const PointerType *FromTypePtr = FromType->getAsPointerType();
1027  if (FromTypePtr)
1028    FromPointeeType = FromTypePtr->getPointeeType();
1029  else if (const BlockPointerType *FromBlockPtr
1030             = FromType->getAsBlockPointerType())
1031    FromPointeeType = FromBlockPtr->getPointeeType();
1032  else
1033    return false;
1034
1035  // Objective C++: We're able to convert from a pointer to an
1036  // interface to a pointer to a different interface.
1037  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1038  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1039  if (FromIface && ToIface &&
1040      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
1041    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1042                                                       ToPointeeType,
1043                                                       ToType, Context);
1044    return true;
1045  }
1046
1047  if (FromIface && ToIface &&
1048      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1049    // Okay: this is some kind of implicit downcast of Objective-C
1050    // interfaces, which is permitted. However, we're going to
1051    // complain about it.
1052    IncompatibleObjC = true;
1053    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1054                                                       ToPointeeType,
1055                                                       ToType, Context);
1056    return true;
1057  }
1058
1059  // Objective C++: We're able to convert between "id" and a pointer
1060  // to any interface (in both directions).
1061  if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1062      || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
1063    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1064                                                       ToPointeeType,
1065                                                       ToType, Context);
1066    return true;
1067  }
1068
1069  // Objective C++: Allow conversions between the Objective-C "id" and
1070  // "Class", in either direction.
1071  if ((Context.isObjCIdStructType(FromPointeeType) &&
1072       Context.isObjCClassStructType(ToPointeeType)) ||
1073      (Context.isObjCClassStructType(FromPointeeType) &&
1074       Context.isObjCIdStructType(ToPointeeType))) {
1075    ConvertedType = ToType;
1076    return true;
1077  }
1078
1079  // If we have pointers to pointers, recursively check whether this
1080  // is an Objective-C conversion.
1081  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1082      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1083                              IncompatibleObjC)) {
1084    // We always complain about this conversion.
1085    IncompatibleObjC = true;
1086    ConvertedType = ToType;
1087    return true;
1088  }
1089
1090  // If we have pointers to functions or blocks, check whether the only
1091  // differences in the argument and result types are in Objective-C
1092  // pointer conversions. If so, we permit the conversion (but
1093  // complain about it).
1094  const FunctionProtoType *FromFunctionType
1095    = FromPointeeType->getAsFunctionProtoType();
1096  const FunctionProtoType *ToFunctionType
1097    = ToPointeeType->getAsFunctionProtoType();
1098  if (FromFunctionType && ToFunctionType) {
1099    // If the function types are exactly the same, this isn't an
1100    // Objective-C pointer conversion.
1101    if (Context.getCanonicalType(FromPointeeType)
1102          == Context.getCanonicalType(ToPointeeType))
1103      return false;
1104
1105    // Perform the quick checks that will tell us whether these
1106    // function types are obviously different.
1107    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1108        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1109        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1110      return false;
1111
1112    bool HasObjCConversion = false;
1113    if (Context.getCanonicalType(FromFunctionType->getResultType())
1114          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1115      // Okay, the types match exactly. Nothing to do.
1116    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1117                                       ToFunctionType->getResultType(),
1118                                       ConvertedType, IncompatibleObjC)) {
1119      // Okay, we have an Objective-C pointer conversion.
1120      HasObjCConversion = true;
1121    } else {
1122      // Function types are too different. Abort.
1123      return false;
1124    }
1125
1126    // Check argument types.
1127    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1128         ArgIdx != NumArgs; ++ArgIdx) {
1129      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1130      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1131      if (Context.getCanonicalType(FromArgType)
1132            == Context.getCanonicalType(ToArgType)) {
1133        // Okay, the types match exactly. Nothing to do.
1134      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1135                                         ConvertedType, IncompatibleObjC)) {
1136        // Okay, we have an Objective-C pointer conversion.
1137        HasObjCConversion = true;
1138      } else {
1139        // Argument types are too different. Abort.
1140        return false;
1141      }
1142    }
1143
1144    if (HasObjCConversion) {
1145      // We had an Objective-C conversion. Allow this pointer
1146      // conversion, but complain about it.
1147      ConvertedType = ToType;
1148      IncompatibleObjC = true;
1149      return true;
1150    }
1151  }
1152
1153  return false;
1154}
1155
1156/// CheckPointerConversion - Check the pointer conversion from the
1157/// expression From to the type ToType. This routine checks for
1158/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1159/// conversions for which IsPointerConversion has already returned
1160/// true. It returns true and produces a diagnostic if there was an
1161/// error, or returns false otherwise.
1162bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1163  QualType FromType = From->getType();
1164
1165  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1166    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1167      QualType FromPointeeType = FromPtrType->getPointeeType(),
1168               ToPointeeType   = ToPtrType->getPointeeType();
1169
1170      // Objective-C++ conversions are always okay.
1171      // FIXME: We should have a different class of conversions for the
1172      // Objective-C++ implicit conversions.
1173      if (Context.isObjCIdStructType(FromPointeeType) ||
1174          Context.isObjCIdStructType(ToPointeeType) ||
1175          Context.isObjCClassStructType(FromPointeeType) ||
1176          Context.isObjCClassStructType(ToPointeeType))
1177        return false;
1178
1179      if (FromPointeeType->isRecordType() &&
1180          ToPointeeType->isRecordType()) {
1181        // We must have a derived-to-base conversion. Check an
1182        // ambiguous or inaccessible conversion.
1183        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1184                                            From->getExprLoc(),
1185                                            From->getSourceRange());
1186      }
1187    }
1188
1189  return false;
1190}
1191
1192/// IsMemberPointerConversion - Determines whether the conversion of the
1193/// expression From, which has the (possibly adjusted) type FromType, can be
1194/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1195/// If so, returns true and places the converted type (that might differ from
1196/// ToType in its cv-qualifiers at some level) into ConvertedType.
1197bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1198                                     QualType ToType, QualType &ConvertedType)
1199{
1200  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1201  if (!ToTypePtr)
1202    return false;
1203
1204  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1205  if (From->isNullPointerConstant(Context)) {
1206    ConvertedType = ToType;
1207    return true;
1208  }
1209
1210  // Otherwise, both types have to be member pointers.
1211  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1212  if (!FromTypePtr)
1213    return false;
1214
1215  // A pointer to member of B can be converted to a pointer to member of D,
1216  // where D is derived from B (C++ 4.11p2).
1217  QualType FromClass(FromTypePtr->getClass(), 0);
1218  QualType ToClass(ToTypePtr->getClass(), 0);
1219  // FIXME: What happens when these are dependent? Is this function even called?
1220
1221  if (IsDerivedFrom(ToClass, FromClass)) {
1222    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1223                                                 ToClass.getTypePtr());
1224    return true;
1225  }
1226
1227  return false;
1228}
1229
1230/// CheckMemberPointerConversion - Check the member pointer conversion from the
1231/// expression From to the type ToType. This routine checks for ambiguous or
1232/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1233/// for which IsMemberPointerConversion has already returned true. It returns
1234/// true and produces a diagnostic if there was an error, or returns false
1235/// otherwise.
1236bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1237  QualType FromType = From->getType();
1238  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1239  if (!FromPtrType)
1240    return false;
1241
1242  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1243  assert(ToPtrType && "No member pointer cast has a target type "
1244                      "that is not a member pointer.");
1245
1246  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1247  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1248
1249  // FIXME: What about dependent types?
1250  assert(FromClass->isRecordType() && "Pointer into non-class.");
1251  assert(ToClass->isRecordType() && "Pointer into non-class.");
1252
1253  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1254                  /*DetectVirtual=*/true);
1255  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1256  assert(DerivationOkay &&
1257         "Should not have been called if derivation isn't OK.");
1258  (void)DerivationOkay;
1259
1260  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1261                                  getUnqualifiedType())) {
1262    // Derivation is ambiguous. Redo the check to find the exact paths.
1263    Paths.clear();
1264    Paths.setRecordingPaths(true);
1265    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1266    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1267    (void)StillOkay;
1268
1269    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1270    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1271      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1272    return true;
1273  }
1274
1275  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1276    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1277      << FromClass << ToClass << QualType(VBase, 0)
1278      << From->getSourceRange();
1279    return true;
1280  }
1281
1282  return false;
1283}
1284
1285/// IsQualificationConversion - Determines whether the conversion from
1286/// an rvalue of type FromType to ToType is a qualification conversion
1287/// (C++ 4.4).
1288bool
1289Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1290{
1291  FromType = Context.getCanonicalType(FromType);
1292  ToType = Context.getCanonicalType(ToType);
1293
1294  // If FromType and ToType are the same type, this is not a
1295  // qualification conversion.
1296  if (FromType == ToType)
1297    return false;
1298
1299  // (C++ 4.4p4):
1300  //   A conversion can add cv-qualifiers at levels other than the first
1301  //   in multi-level pointers, subject to the following rules: [...]
1302  bool PreviousToQualsIncludeConst = true;
1303  bool UnwrappedAnyPointer = false;
1304  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1305    // Within each iteration of the loop, we check the qualifiers to
1306    // determine if this still looks like a qualification
1307    // conversion. Then, if all is well, we unwrap one more level of
1308    // pointers or pointers-to-members and do it all again
1309    // until there are no more pointers or pointers-to-members left to
1310    // unwrap.
1311    UnwrappedAnyPointer = true;
1312
1313    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1314    //      2,j, and similarly for volatile.
1315    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1316      return false;
1317
1318    //   -- if the cv 1,j and cv 2,j are different, then const is in
1319    //      every cv for 0 < k < j.
1320    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1321        && !PreviousToQualsIncludeConst)
1322      return false;
1323
1324    // Keep track of whether all prior cv-qualifiers in the "to" type
1325    // include const.
1326    PreviousToQualsIncludeConst
1327      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1328  }
1329
1330  // We are left with FromType and ToType being the pointee types
1331  // after unwrapping the original FromType and ToType the same number
1332  // of types. If we unwrapped any pointers, and if FromType and
1333  // ToType have the same unqualified type (since we checked
1334  // qualifiers above), then this is a qualification conversion.
1335  return UnwrappedAnyPointer &&
1336    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1337}
1338
1339/// Determines whether there is a user-defined conversion sequence
1340/// (C++ [over.ics.user]) that converts expression From to the type
1341/// ToType. If such a conversion exists, User will contain the
1342/// user-defined conversion sequence that performs such a conversion
1343/// and this routine will return true. Otherwise, this routine returns
1344/// false and User is unspecified.
1345///
1346/// \param AllowConversionFunctions true if the conversion should
1347/// consider conversion functions at all. If false, only constructors
1348/// will be considered.
1349///
1350/// \param AllowExplicit  true if the conversion should consider C++0x
1351/// "explicit" conversion functions as well as non-explicit conversion
1352/// functions (C++0x [class.conv.fct]p2).
1353///
1354/// \param ForceRValue  true if the expression should be treated as an rvalue
1355/// for overload resolution.
1356bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1357                                   UserDefinedConversionSequence& User,
1358                                   bool AllowConversionFunctions,
1359                                   bool AllowExplicit, bool ForceRValue)
1360{
1361  OverloadCandidateSet CandidateSet;
1362  if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1363    if (CXXRecordDecl *ToRecordDecl
1364          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1365      // C++ [over.match.ctor]p1:
1366      //   When objects of class type are direct-initialized (8.5), or
1367      //   copy-initialized from an expression of the same or a
1368      //   derived class type (8.5), overload resolution selects the
1369      //   constructor. [...] For copy-initialization, the candidate
1370      //   functions are all the converting constructors (12.3.1) of
1371      //   that class. The argument list is the expression-list within
1372      //   the parentheses of the initializer.
1373      DeclarationName ConstructorName
1374        = Context.DeclarationNames.getCXXConstructorName(
1375                          Context.getCanonicalType(ToType).getUnqualifiedType());
1376      DeclContext::lookup_iterator Con, ConEnd;
1377      for (llvm::tie(Con, ConEnd)
1378             = ToRecordDecl->lookup(Context, ConstructorName);
1379           Con != ConEnd; ++Con) {
1380        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1381        if (Constructor->isConvertingConstructor())
1382          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1383                               /*SuppressUserConversions=*/true, ForceRValue);
1384      }
1385    }
1386  }
1387
1388  if (!AllowConversionFunctions) {
1389    // Don't allow any conversion functions to enter the overload set.
1390  } else if (const RecordType *FromRecordType
1391               = From->getType()->getAsRecordType()) {
1392    if (CXXRecordDecl *FromRecordDecl
1393          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1394      // Add all of the conversion functions as candidates.
1395      // FIXME: Look for conversions in base classes!
1396      OverloadedFunctionDecl *Conversions
1397        = FromRecordDecl->getConversionFunctions();
1398      for (OverloadedFunctionDecl::function_iterator Func
1399             = Conversions->function_begin();
1400           Func != Conversions->function_end(); ++Func) {
1401        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1402        if (AllowExplicit || !Conv->isExplicit())
1403          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1404      }
1405    }
1406  }
1407
1408  OverloadCandidateSet::iterator Best;
1409  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1410    case OR_Success:
1411      // Record the standard conversion we used and the conversion function.
1412      if (CXXConstructorDecl *Constructor
1413            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1414        // C++ [over.ics.user]p1:
1415        //   If the user-defined conversion is specified by a
1416        //   constructor (12.3.1), the initial standard conversion
1417        //   sequence converts the source type to the type required by
1418        //   the argument of the constructor.
1419        //
1420        // FIXME: What about ellipsis conversions?
1421        QualType ThisType = Constructor->getThisType(Context);
1422        User.Before = Best->Conversions[0].Standard;
1423        User.ConversionFunction = Constructor;
1424        User.After.setAsIdentityConversion();
1425        User.After.FromTypePtr
1426          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1427        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1428        return true;
1429      } else if (CXXConversionDecl *Conversion
1430                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1431        // C++ [over.ics.user]p1:
1432        //
1433        //   [...] If the user-defined conversion is specified by a
1434        //   conversion function (12.3.2), the initial standard
1435        //   conversion sequence converts the source type to the
1436        //   implicit object parameter of the conversion function.
1437        User.Before = Best->Conversions[0].Standard;
1438        User.ConversionFunction = Conversion;
1439
1440        // C++ [over.ics.user]p2:
1441        //   The second standard conversion sequence converts the
1442        //   result of the user-defined conversion to the target type
1443        //   for the sequence. Since an implicit conversion sequence
1444        //   is an initialization, the special rules for
1445        //   initialization by user-defined conversion apply when
1446        //   selecting the best user-defined conversion for a
1447        //   user-defined conversion sequence (see 13.3.3 and
1448        //   13.3.3.1).
1449        User.After = Best->FinalConversion;
1450        return true;
1451      } else {
1452        assert(false && "Not a constructor or conversion function?");
1453        return false;
1454      }
1455
1456    case OR_No_Viable_Function:
1457    case OR_Deleted:
1458      // No conversion here! We're done.
1459      return false;
1460
1461    case OR_Ambiguous:
1462      // FIXME: See C++ [over.best.ics]p10 for the handling of
1463      // ambiguous conversion sequences.
1464      return false;
1465    }
1466
1467  return false;
1468}
1469
1470/// CompareImplicitConversionSequences - Compare two implicit
1471/// conversion sequences to determine whether one is better than the
1472/// other or if they are indistinguishable (C++ 13.3.3.2).
1473ImplicitConversionSequence::CompareKind
1474Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1475                                         const ImplicitConversionSequence& ICS2)
1476{
1477  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1478  // conversion sequences (as defined in 13.3.3.1)
1479  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1480  //      conversion sequence than a user-defined conversion sequence or
1481  //      an ellipsis conversion sequence, and
1482  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1483  //      conversion sequence than an ellipsis conversion sequence
1484  //      (13.3.3.1.3).
1485  //
1486  if (ICS1.ConversionKind < ICS2.ConversionKind)
1487    return ImplicitConversionSequence::Better;
1488  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1489    return ImplicitConversionSequence::Worse;
1490
1491  // Two implicit conversion sequences of the same form are
1492  // indistinguishable conversion sequences unless one of the
1493  // following rules apply: (C++ 13.3.3.2p3):
1494  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1495    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1496  else if (ICS1.ConversionKind ==
1497             ImplicitConversionSequence::UserDefinedConversion) {
1498    // User-defined conversion sequence U1 is a better conversion
1499    // sequence than another user-defined conversion sequence U2 if
1500    // they contain the same user-defined conversion function or
1501    // constructor and if the second standard conversion sequence of
1502    // U1 is better than the second standard conversion sequence of
1503    // U2 (C++ 13.3.3.2p3).
1504    if (ICS1.UserDefined.ConversionFunction ==
1505          ICS2.UserDefined.ConversionFunction)
1506      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1507                                                ICS2.UserDefined.After);
1508  }
1509
1510  return ImplicitConversionSequence::Indistinguishable;
1511}
1512
1513/// CompareStandardConversionSequences - Compare two standard
1514/// conversion sequences to determine whether one is better than the
1515/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1516ImplicitConversionSequence::CompareKind
1517Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1518                                         const StandardConversionSequence& SCS2)
1519{
1520  // Standard conversion sequence S1 is a better conversion sequence
1521  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1522
1523  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1524  //     sequences in the canonical form defined by 13.3.3.1.1,
1525  //     excluding any Lvalue Transformation; the identity conversion
1526  //     sequence is considered to be a subsequence of any
1527  //     non-identity conversion sequence) or, if not that,
1528  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1529    // Neither is a proper subsequence of the other. Do nothing.
1530    ;
1531  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1532           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1533           (SCS1.Second == ICK_Identity &&
1534            SCS1.Third == ICK_Identity))
1535    // SCS1 is a proper subsequence of SCS2.
1536    return ImplicitConversionSequence::Better;
1537  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1538           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1539           (SCS2.Second == ICK_Identity &&
1540            SCS2.Third == ICK_Identity))
1541    // SCS2 is a proper subsequence of SCS1.
1542    return ImplicitConversionSequence::Worse;
1543
1544  //  -- the rank of S1 is better than the rank of S2 (by the rules
1545  //     defined below), or, if not that,
1546  ImplicitConversionRank Rank1 = SCS1.getRank();
1547  ImplicitConversionRank Rank2 = SCS2.getRank();
1548  if (Rank1 < Rank2)
1549    return ImplicitConversionSequence::Better;
1550  else if (Rank2 < Rank1)
1551    return ImplicitConversionSequence::Worse;
1552
1553  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1554  // are indistinguishable unless one of the following rules
1555  // applies:
1556
1557  //   A conversion that is not a conversion of a pointer, or
1558  //   pointer to member, to bool is better than another conversion
1559  //   that is such a conversion.
1560  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1561    return SCS2.isPointerConversionToBool()
1562             ? ImplicitConversionSequence::Better
1563             : ImplicitConversionSequence::Worse;
1564
1565  // C++ [over.ics.rank]p4b2:
1566  //
1567  //   If class B is derived directly or indirectly from class A,
1568  //   conversion of B* to A* is better than conversion of B* to
1569  //   void*, and conversion of A* to void* is better than conversion
1570  //   of B* to void*.
1571  bool SCS1ConvertsToVoid
1572    = SCS1.isPointerConversionToVoidPointer(Context);
1573  bool SCS2ConvertsToVoid
1574    = SCS2.isPointerConversionToVoidPointer(Context);
1575  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1576    // Exactly one of the conversion sequences is a conversion to
1577    // a void pointer; it's the worse conversion.
1578    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1579                              : ImplicitConversionSequence::Worse;
1580  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1581    // Neither conversion sequence converts to a void pointer; compare
1582    // their derived-to-base conversions.
1583    if (ImplicitConversionSequence::CompareKind DerivedCK
1584          = CompareDerivedToBaseConversions(SCS1, SCS2))
1585      return DerivedCK;
1586  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1587    // Both conversion sequences are conversions to void
1588    // pointers. Compare the source types to determine if there's an
1589    // inheritance relationship in their sources.
1590    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1591    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1592
1593    // Adjust the types we're converting from via the array-to-pointer
1594    // conversion, if we need to.
1595    if (SCS1.First == ICK_Array_To_Pointer)
1596      FromType1 = Context.getArrayDecayedType(FromType1);
1597    if (SCS2.First == ICK_Array_To_Pointer)
1598      FromType2 = Context.getArrayDecayedType(FromType2);
1599
1600    QualType FromPointee1
1601      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1602    QualType FromPointee2
1603      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1604
1605    if (IsDerivedFrom(FromPointee2, FromPointee1))
1606      return ImplicitConversionSequence::Better;
1607    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1608      return ImplicitConversionSequence::Worse;
1609
1610    // Objective-C++: If one interface is more specific than the
1611    // other, it is the better one.
1612    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1613    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1614    if (FromIface1 && FromIface1) {
1615      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1616        return ImplicitConversionSequence::Better;
1617      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1618        return ImplicitConversionSequence::Worse;
1619    }
1620  }
1621
1622  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1623  // bullet 3).
1624  if (ImplicitConversionSequence::CompareKind QualCK
1625        = CompareQualificationConversions(SCS1, SCS2))
1626    return QualCK;
1627
1628  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1629    // C++0x [over.ics.rank]p3b4:
1630    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1631    //      implicit object parameter of a non-static member function declared
1632    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1633    //      rvalue and S2 binds an lvalue reference.
1634    // FIXME: We don't know if we're dealing with the implicit object parameter,
1635    // or if the member function in this case has a ref qualifier.
1636    // (Of course, we don't have ref qualifiers yet.)
1637    if (SCS1.RRefBinding != SCS2.RRefBinding)
1638      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1639                              : ImplicitConversionSequence::Worse;
1640
1641    // C++ [over.ics.rank]p3b4:
1642    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1643    //      which the references refer are the same type except for
1644    //      top-level cv-qualifiers, and the type to which the reference
1645    //      initialized by S2 refers is more cv-qualified than the type
1646    //      to which the reference initialized by S1 refers.
1647    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1648    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1649    T1 = Context.getCanonicalType(T1);
1650    T2 = Context.getCanonicalType(T2);
1651    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1652      if (T2.isMoreQualifiedThan(T1))
1653        return ImplicitConversionSequence::Better;
1654      else if (T1.isMoreQualifiedThan(T2))
1655        return ImplicitConversionSequence::Worse;
1656    }
1657  }
1658
1659  return ImplicitConversionSequence::Indistinguishable;
1660}
1661
1662/// CompareQualificationConversions - Compares two standard conversion
1663/// sequences to determine whether they can be ranked based on their
1664/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1665ImplicitConversionSequence::CompareKind
1666Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1667                                      const StandardConversionSequence& SCS2)
1668{
1669  // C++ 13.3.3.2p3:
1670  //  -- S1 and S2 differ only in their qualification conversion and
1671  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1672  //     cv-qualification signature of type T1 is a proper subset of
1673  //     the cv-qualification signature of type T2, and S1 is not the
1674  //     deprecated string literal array-to-pointer conversion (4.2).
1675  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1676      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1677    return ImplicitConversionSequence::Indistinguishable;
1678
1679  // FIXME: the example in the standard doesn't use a qualification
1680  // conversion (!)
1681  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1682  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1683  T1 = Context.getCanonicalType(T1);
1684  T2 = Context.getCanonicalType(T2);
1685
1686  // If the types are the same, we won't learn anything by unwrapped
1687  // them.
1688  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1689    return ImplicitConversionSequence::Indistinguishable;
1690
1691  ImplicitConversionSequence::CompareKind Result
1692    = ImplicitConversionSequence::Indistinguishable;
1693  while (UnwrapSimilarPointerTypes(T1, T2)) {
1694    // Within each iteration of the loop, we check the qualifiers to
1695    // determine if this still looks like a qualification
1696    // conversion. Then, if all is well, we unwrap one more level of
1697    // pointers or pointers-to-members and do it all again
1698    // until there are no more pointers or pointers-to-members left
1699    // to unwrap. This essentially mimics what
1700    // IsQualificationConversion does, but here we're checking for a
1701    // strict subset of qualifiers.
1702    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1703      // The qualifiers are the same, so this doesn't tell us anything
1704      // about how the sequences rank.
1705      ;
1706    else if (T2.isMoreQualifiedThan(T1)) {
1707      // T1 has fewer qualifiers, so it could be the better sequence.
1708      if (Result == ImplicitConversionSequence::Worse)
1709        // Neither has qualifiers that are a subset of the other's
1710        // qualifiers.
1711        return ImplicitConversionSequence::Indistinguishable;
1712
1713      Result = ImplicitConversionSequence::Better;
1714    } else if (T1.isMoreQualifiedThan(T2)) {
1715      // T2 has fewer qualifiers, so it could be the better sequence.
1716      if (Result == ImplicitConversionSequence::Better)
1717        // Neither has qualifiers that are a subset of the other's
1718        // qualifiers.
1719        return ImplicitConversionSequence::Indistinguishable;
1720
1721      Result = ImplicitConversionSequence::Worse;
1722    } else {
1723      // Qualifiers are disjoint.
1724      return ImplicitConversionSequence::Indistinguishable;
1725    }
1726
1727    // If the types after this point are equivalent, we're done.
1728    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1729      break;
1730  }
1731
1732  // Check that the winning standard conversion sequence isn't using
1733  // the deprecated string literal array to pointer conversion.
1734  switch (Result) {
1735  case ImplicitConversionSequence::Better:
1736    if (SCS1.Deprecated)
1737      Result = ImplicitConversionSequence::Indistinguishable;
1738    break;
1739
1740  case ImplicitConversionSequence::Indistinguishable:
1741    break;
1742
1743  case ImplicitConversionSequence::Worse:
1744    if (SCS2.Deprecated)
1745      Result = ImplicitConversionSequence::Indistinguishable;
1746    break;
1747  }
1748
1749  return Result;
1750}
1751
1752/// CompareDerivedToBaseConversions - Compares two standard conversion
1753/// sequences to determine whether they can be ranked based on their
1754/// various kinds of derived-to-base conversions (C++
1755/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1756/// conversions between Objective-C interface types.
1757ImplicitConversionSequence::CompareKind
1758Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1759                                      const StandardConversionSequence& SCS2) {
1760  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1761  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1762  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1763  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1764
1765  // Adjust the types we're converting from via the array-to-pointer
1766  // conversion, if we need to.
1767  if (SCS1.First == ICK_Array_To_Pointer)
1768    FromType1 = Context.getArrayDecayedType(FromType1);
1769  if (SCS2.First == ICK_Array_To_Pointer)
1770    FromType2 = Context.getArrayDecayedType(FromType2);
1771
1772  // Canonicalize all of the types.
1773  FromType1 = Context.getCanonicalType(FromType1);
1774  ToType1 = Context.getCanonicalType(ToType1);
1775  FromType2 = Context.getCanonicalType(FromType2);
1776  ToType2 = Context.getCanonicalType(ToType2);
1777
1778  // C++ [over.ics.rank]p4b3:
1779  //
1780  //   If class B is derived directly or indirectly from class A and
1781  //   class C is derived directly or indirectly from B,
1782  //
1783  // For Objective-C, we let A, B, and C also be Objective-C
1784  // interfaces.
1785
1786  // Compare based on pointer conversions.
1787  if (SCS1.Second == ICK_Pointer_Conversion &&
1788      SCS2.Second == ICK_Pointer_Conversion &&
1789      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1790      FromType1->isPointerType() && FromType2->isPointerType() &&
1791      ToType1->isPointerType() && ToType2->isPointerType()) {
1792    QualType FromPointee1
1793      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1794    QualType ToPointee1
1795      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1796    QualType FromPointee2
1797      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1798    QualType ToPointee2
1799      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1800
1801    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1802    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1803    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1804    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1805
1806    //   -- conversion of C* to B* is better than conversion of C* to A*,
1807    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1808      if (IsDerivedFrom(ToPointee1, ToPointee2))
1809        return ImplicitConversionSequence::Better;
1810      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1811        return ImplicitConversionSequence::Worse;
1812
1813      if (ToIface1 && ToIface2) {
1814        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1815          return ImplicitConversionSequence::Better;
1816        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1817          return ImplicitConversionSequence::Worse;
1818      }
1819    }
1820
1821    //   -- conversion of B* to A* is better than conversion of C* to A*,
1822    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1823      if (IsDerivedFrom(FromPointee2, FromPointee1))
1824        return ImplicitConversionSequence::Better;
1825      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1826        return ImplicitConversionSequence::Worse;
1827
1828      if (FromIface1 && FromIface2) {
1829        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1830          return ImplicitConversionSequence::Better;
1831        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1832          return ImplicitConversionSequence::Worse;
1833      }
1834    }
1835  }
1836
1837  // Compare based on reference bindings.
1838  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1839      SCS1.Second == ICK_Derived_To_Base) {
1840    //   -- binding of an expression of type C to a reference of type
1841    //      B& is better than binding an expression of type C to a
1842    //      reference of type A&,
1843    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1844        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1845      if (IsDerivedFrom(ToType1, ToType2))
1846        return ImplicitConversionSequence::Better;
1847      else if (IsDerivedFrom(ToType2, ToType1))
1848        return ImplicitConversionSequence::Worse;
1849    }
1850
1851    //   -- binding of an expression of type B to a reference of type
1852    //      A& is better than binding an expression of type C to a
1853    //      reference of type A&,
1854    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1855        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1856      if (IsDerivedFrom(FromType2, FromType1))
1857        return ImplicitConversionSequence::Better;
1858      else if (IsDerivedFrom(FromType1, FromType2))
1859        return ImplicitConversionSequence::Worse;
1860    }
1861  }
1862
1863
1864  // FIXME: conversion of A::* to B::* is better than conversion of
1865  // A::* to C::*,
1866
1867  // FIXME: conversion of B::* to C::* is better than conversion of
1868  // A::* to C::*, and
1869
1870  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1871      SCS1.Second == ICK_Derived_To_Base) {
1872    //   -- conversion of C to B is better than conversion of C to A,
1873    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1874        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1875      if (IsDerivedFrom(ToType1, ToType2))
1876        return ImplicitConversionSequence::Better;
1877      else if (IsDerivedFrom(ToType2, ToType1))
1878        return ImplicitConversionSequence::Worse;
1879    }
1880
1881    //   -- conversion of B to A is better than conversion of C to A.
1882    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1883        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1884      if (IsDerivedFrom(FromType2, FromType1))
1885        return ImplicitConversionSequence::Better;
1886      else if (IsDerivedFrom(FromType1, FromType2))
1887        return ImplicitConversionSequence::Worse;
1888    }
1889  }
1890
1891  return ImplicitConversionSequence::Indistinguishable;
1892}
1893
1894/// TryCopyInitialization - Try to copy-initialize a value of type
1895/// ToType from the expression From. Return the implicit conversion
1896/// sequence required to pass this argument, which may be a bad
1897/// conversion sequence (meaning that the argument cannot be passed to
1898/// a parameter of this type). If @p SuppressUserConversions, then we
1899/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1900/// then we treat @p From as an rvalue, even if it is an lvalue.
1901ImplicitConversionSequence
1902Sema::TryCopyInitialization(Expr *From, QualType ToType,
1903                            bool SuppressUserConversions, bool ForceRValue) {
1904  if (ToType->isReferenceType()) {
1905    ImplicitConversionSequence ICS;
1906    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1907                       /*AllowExplicit=*/false, ForceRValue);
1908    return ICS;
1909  } else {
1910    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1911                                 ForceRValue);
1912  }
1913}
1914
1915/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1916/// the expression @p From. Returns true (and emits a diagnostic) if there was
1917/// an error, returns false if the initialization succeeded. Elidable should
1918/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1919/// differently in C++0x for this case.
1920bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1921                                     const char* Flavor, bool Elidable) {
1922  if (!getLangOptions().CPlusPlus) {
1923    // In C, argument passing is the same as performing an assignment.
1924    QualType FromType = From->getType();
1925
1926    AssignConvertType ConvTy =
1927      CheckSingleAssignmentConstraints(ToType, From);
1928    if (ConvTy != Compatible &&
1929        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1930      ConvTy = Compatible;
1931
1932    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1933                                    FromType, From, Flavor);
1934  }
1935
1936  if (ToType->isReferenceType())
1937    return CheckReferenceInit(From, ToType);
1938
1939  if (!PerformImplicitConversion(From, ToType, Flavor,
1940                                 /*AllowExplicit=*/false, Elidable))
1941    return false;
1942
1943  return Diag(From->getSourceRange().getBegin(),
1944              diag::err_typecheck_convert_incompatible)
1945    << ToType << From->getType() << Flavor << From->getSourceRange();
1946}
1947
1948/// TryObjectArgumentInitialization - Try to initialize the object
1949/// parameter of the given member function (@c Method) from the
1950/// expression @p From.
1951ImplicitConversionSequence
1952Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1953  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1954  unsigned MethodQuals = Method->getTypeQualifiers();
1955  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1956
1957  // Set up the conversion sequence as a "bad" conversion, to allow us
1958  // to exit early.
1959  ImplicitConversionSequence ICS;
1960  ICS.Standard.setAsIdentityConversion();
1961  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1962
1963  // We need to have an object of class type.
1964  QualType FromType = From->getType();
1965  if (const PointerType *PT = FromType->getAsPointerType())
1966    FromType = PT->getPointeeType();
1967
1968  assert(FromType->isRecordType());
1969
1970  // The implicit object parmeter is has the type "reference to cv X",
1971  // where X is the class of which the function is a member
1972  // (C++ [over.match.funcs]p4). However, when finding an implicit
1973  // conversion sequence for the argument, we are not allowed to
1974  // create temporaries or perform user-defined conversions
1975  // (C++ [over.match.funcs]p5). We perform a simplified version of
1976  // reference binding here, that allows class rvalues to bind to
1977  // non-constant references.
1978
1979  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1980  // with the implicit object parameter (C++ [over.match.funcs]p5).
1981  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1982  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1983      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1984    return ICS;
1985
1986  // Check that we have either the same type or a derived type. It
1987  // affects the conversion rank.
1988  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1989  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1990    ICS.Standard.Second = ICK_Identity;
1991  else if (IsDerivedFrom(FromType, ClassType))
1992    ICS.Standard.Second = ICK_Derived_To_Base;
1993  else
1994    return ICS;
1995
1996  // Success. Mark this as a reference binding.
1997  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1998  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1999  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2000  ICS.Standard.ReferenceBinding = true;
2001  ICS.Standard.DirectBinding = true;
2002  ICS.Standard.RRefBinding = false;
2003  return ICS;
2004}
2005
2006/// PerformObjectArgumentInitialization - Perform initialization of
2007/// the implicit object parameter for the given Method with the given
2008/// expression.
2009bool
2010Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2011  QualType FromRecordType, DestType;
2012  QualType ImplicitParamRecordType  =
2013    Method->getThisType(Context)->getAsPointerType()->getPointeeType();
2014
2015  if (const PointerType *PT = From->getType()->getAsPointerType()) {
2016    FromRecordType = PT->getPointeeType();
2017    DestType = Method->getThisType(Context);
2018  } else {
2019    FromRecordType = From->getType();
2020    DestType = ImplicitParamRecordType;
2021  }
2022
2023  ImplicitConversionSequence ICS
2024    = TryObjectArgumentInitialization(From, Method);
2025  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2026    return Diag(From->getSourceRange().getBegin(),
2027                diag::err_implicit_object_parameter_init)
2028       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2029
2030  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2031      CheckDerivedToBaseConversion(FromRecordType,
2032                                   ImplicitParamRecordType,
2033                                   From->getSourceRange().getBegin(),
2034                                   From->getSourceRange()))
2035    return true;
2036
2037  ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2038  return false;
2039}
2040
2041/// TryContextuallyConvertToBool - Attempt to contextually convert the
2042/// expression From to bool (C++0x [conv]p3).
2043ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2044  return TryImplicitConversion(From, Context.BoolTy, false, true);
2045}
2046
2047/// PerformContextuallyConvertToBool - Perform a contextual conversion
2048/// of the expression From to bool (C++0x [conv]p3).
2049bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2050  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2051  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2052    return false;
2053
2054  return Diag(From->getSourceRange().getBegin(),
2055              diag::err_typecheck_bool_condition)
2056    << From->getType() << From->getSourceRange();
2057}
2058
2059/// AddOverloadCandidate - Adds the given function to the set of
2060/// candidate functions, using the given function call arguments.  If
2061/// @p SuppressUserConversions, then don't allow user-defined
2062/// conversions via constructors or conversion operators.
2063/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2064/// hacky way to implement the overloading rules for elidable copy
2065/// initialization in C++0x (C++0x 12.8p15).
2066void
2067Sema::AddOverloadCandidate(FunctionDecl *Function,
2068                           Expr **Args, unsigned NumArgs,
2069                           OverloadCandidateSet& CandidateSet,
2070                           bool SuppressUserConversions,
2071                           bool ForceRValue)
2072{
2073  const FunctionProtoType* Proto
2074    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2075  assert(Proto && "Functions without a prototype cannot be overloaded");
2076  assert(!isa<CXXConversionDecl>(Function) &&
2077         "Use AddConversionCandidate for conversion functions");
2078  assert(!Function->getDescribedFunctionTemplate() &&
2079         "Use AddTemplateOverloadCandidate for function templates");
2080
2081  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2082    if (!isa<CXXConstructorDecl>(Method)) {
2083      // If we get here, it's because we're calling a member function
2084      // that is named without a member access expression (e.g.,
2085      // "this->f") that was either written explicitly or created
2086      // implicitly. This can happen with a qualified call to a member
2087      // function, e.g., X::f(). We use a NULL object as the implied
2088      // object argument (C++ [over.call.func]p3).
2089      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2090                         SuppressUserConversions, ForceRValue);
2091      return;
2092    }
2093    // We treat a constructor like a non-member function, since its object
2094    // argument doesn't participate in overload resolution.
2095  }
2096
2097
2098  // Add this candidate
2099  CandidateSet.push_back(OverloadCandidate());
2100  OverloadCandidate& Candidate = CandidateSet.back();
2101  Candidate.Function = Function;
2102  Candidate.Viable = true;
2103  Candidate.IsSurrogate = false;
2104  Candidate.IgnoreObjectArgument = false;
2105
2106  unsigned NumArgsInProto = Proto->getNumArgs();
2107
2108  // (C++ 13.3.2p2): A candidate function having fewer than m
2109  // parameters is viable only if it has an ellipsis in its parameter
2110  // list (8.3.5).
2111  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2112    Candidate.Viable = false;
2113    return;
2114  }
2115
2116  // (C++ 13.3.2p2): A candidate function having more than m parameters
2117  // is viable only if the (m+1)st parameter has a default argument
2118  // (8.3.6). For the purposes of overload resolution, the
2119  // parameter list is truncated on the right, so that there are
2120  // exactly m parameters.
2121  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2122  if (NumArgs < MinRequiredArgs) {
2123    // Not enough arguments.
2124    Candidate.Viable = false;
2125    return;
2126  }
2127
2128  // Determine the implicit conversion sequences for each of the
2129  // arguments.
2130  Candidate.Conversions.resize(NumArgs);
2131  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2132    if (ArgIdx < NumArgsInProto) {
2133      // (C++ 13.3.2p3): for F to be a viable function, there shall
2134      // exist for each argument an implicit conversion sequence
2135      // (13.3.3.1) that converts that argument to the corresponding
2136      // parameter of F.
2137      QualType ParamType = Proto->getArgType(ArgIdx);
2138      Candidate.Conversions[ArgIdx]
2139        = TryCopyInitialization(Args[ArgIdx], ParamType,
2140                                SuppressUserConversions, ForceRValue);
2141      if (Candidate.Conversions[ArgIdx].ConversionKind
2142            == ImplicitConversionSequence::BadConversion) {
2143        Candidate.Viable = false;
2144        break;
2145      }
2146    } else {
2147      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2148      // argument for which there is no corresponding parameter is
2149      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2150      Candidate.Conversions[ArgIdx].ConversionKind
2151        = ImplicitConversionSequence::EllipsisConversion;
2152    }
2153  }
2154}
2155
2156/// \brief Add all of the function declarations in the given function set to
2157/// the overload canddiate set.
2158void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2159                                 Expr **Args, unsigned NumArgs,
2160                                 OverloadCandidateSet& CandidateSet,
2161                                 bool SuppressUserConversions) {
2162  for (FunctionSet::const_iterator F = Functions.begin(),
2163                                FEnd = Functions.end();
2164       F != FEnd; ++F) {
2165    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2166      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2167                           SuppressUserConversions);
2168    else
2169      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F), Args,
2170                                   NumArgs, CandidateSet,
2171                                   SuppressUserConversions);
2172  }
2173}
2174
2175/// AddMethodCandidate - Adds the given C++ member function to the set
2176/// of candidate functions, using the given function call arguments
2177/// and the object argument (@c Object). For example, in a call
2178/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2179/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2180/// allow user-defined conversions via constructors or conversion
2181/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2182/// a slightly hacky way to implement the overloading rules for elidable copy
2183/// initialization in C++0x (C++0x 12.8p15).
2184void
2185Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2186                         Expr **Args, unsigned NumArgs,
2187                         OverloadCandidateSet& CandidateSet,
2188                         bool SuppressUserConversions, bool ForceRValue)
2189{
2190  const FunctionProtoType* Proto
2191    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2192  assert(Proto && "Methods without a prototype cannot be overloaded");
2193  assert(!isa<CXXConversionDecl>(Method) &&
2194         "Use AddConversionCandidate for conversion functions");
2195  assert(!isa<CXXConstructorDecl>(Method) &&
2196         "Use AddOverloadCandidate for constructors");
2197
2198  // Add this candidate
2199  CandidateSet.push_back(OverloadCandidate());
2200  OverloadCandidate& Candidate = CandidateSet.back();
2201  Candidate.Function = Method;
2202  Candidate.IsSurrogate = false;
2203  Candidate.IgnoreObjectArgument = false;
2204
2205  unsigned NumArgsInProto = Proto->getNumArgs();
2206
2207  // (C++ 13.3.2p2): A candidate function having fewer than m
2208  // parameters is viable only if it has an ellipsis in its parameter
2209  // list (8.3.5).
2210  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2211    Candidate.Viable = false;
2212    return;
2213  }
2214
2215  // (C++ 13.3.2p2): A candidate function having more than m parameters
2216  // is viable only if the (m+1)st parameter has a default argument
2217  // (8.3.6). For the purposes of overload resolution, the
2218  // parameter list is truncated on the right, so that there are
2219  // exactly m parameters.
2220  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2221  if (NumArgs < MinRequiredArgs) {
2222    // Not enough arguments.
2223    Candidate.Viable = false;
2224    return;
2225  }
2226
2227  Candidate.Viable = true;
2228  Candidate.Conversions.resize(NumArgs + 1);
2229
2230  if (Method->isStatic() || !Object)
2231    // The implicit object argument is ignored.
2232    Candidate.IgnoreObjectArgument = true;
2233  else {
2234    // Determine the implicit conversion sequence for the object
2235    // parameter.
2236    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2237    if (Candidate.Conversions[0].ConversionKind
2238          == ImplicitConversionSequence::BadConversion) {
2239      Candidate.Viable = false;
2240      return;
2241    }
2242  }
2243
2244  // Determine the implicit conversion sequences for each of the
2245  // arguments.
2246  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2247    if (ArgIdx < NumArgsInProto) {
2248      // (C++ 13.3.2p3): for F to be a viable function, there shall
2249      // exist for each argument an implicit conversion sequence
2250      // (13.3.3.1) that converts that argument to the corresponding
2251      // parameter of F.
2252      QualType ParamType = Proto->getArgType(ArgIdx);
2253      Candidate.Conversions[ArgIdx + 1]
2254        = TryCopyInitialization(Args[ArgIdx], ParamType,
2255                                SuppressUserConversions, ForceRValue);
2256      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2257            == ImplicitConversionSequence::BadConversion) {
2258        Candidate.Viable = false;
2259        break;
2260      }
2261    } else {
2262      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2263      // argument for which there is no corresponding parameter is
2264      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2265      Candidate.Conversions[ArgIdx + 1].ConversionKind
2266        = ImplicitConversionSequence::EllipsisConversion;
2267    }
2268  }
2269}
2270
2271/// \brief Add a C++ function template as a candidate in the candidate set,
2272/// using template argument deduction to produce an appropriate function
2273/// template specialization.
2274void
2275Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2276                                   Expr **Args, unsigned NumArgs,
2277                                   OverloadCandidateSet& CandidateSet,
2278                                   bool SuppressUserConversions,
2279                                   bool ForceRValue) {
2280  // C++ [over.match.funcs]p7:
2281  //   In each case where a candidate is a function template, candidate
2282  //   function template specializations are generated using template argument
2283  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2284  //   candidate functions in the usual way.113) A given name can refer to one
2285  //   or more function templates and also to a set of overloaded non-template
2286  //   functions. In such a case, the candidate functions generated from each
2287  //   function template are combined with the set of non-template candidate
2288  //   functions.
2289  TemplateDeductionInfo Info(Context);
2290  FunctionDecl *Specialization = 0;
2291  if (TemplateDeductionResult Result
2292        = DeduceTemplateArguments(FunctionTemplate, Args, NumArgs,
2293                                  Specialization, Info)) {
2294    // FIXME: Record what happened with template argument deduction, so
2295    // that we can give the user a beautiful diagnostic.
2296    (void)Result;
2297    return;
2298  }
2299
2300  // Add the function template specialization produced by template argument
2301  // deduction as a candidate.
2302  assert(Specialization && "Missing function template specialization?");
2303  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2304                       SuppressUserConversions, ForceRValue);
2305}
2306
2307/// AddConversionCandidate - Add a C++ conversion function as a
2308/// candidate in the candidate set (C++ [over.match.conv],
2309/// C++ [over.match.copy]). From is the expression we're converting from,
2310/// and ToType is the type that we're eventually trying to convert to
2311/// (which may or may not be the same type as the type that the
2312/// conversion function produces).
2313void
2314Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2315                             Expr *From, QualType ToType,
2316                             OverloadCandidateSet& CandidateSet) {
2317  // Add this candidate
2318  CandidateSet.push_back(OverloadCandidate());
2319  OverloadCandidate& Candidate = CandidateSet.back();
2320  Candidate.Function = Conversion;
2321  Candidate.IsSurrogate = false;
2322  Candidate.IgnoreObjectArgument = false;
2323  Candidate.FinalConversion.setAsIdentityConversion();
2324  Candidate.FinalConversion.FromTypePtr
2325    = Conversion->getConversionType().getAsOpaquePtr();
2326  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2327
2328  // Determine the implicit conversion sequence for the implicit
2329  // object parameter.
2330  Candidate.Viable = true;
2331  Candidate.Conversions.resize(1);
2332  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2333
2334  if (Candidate.Conversions[0].ConversionKind
2335      == ImplicitConversionSequence::BadConversion) {
2336    Candidate.Viable = false;
2337    return;
2338  }
2339
2340  // To determine what the conversion from the result of calling the
2341  // conversion function to the type we're eventually trying to
2342  // convert to (ToType), we need to synthesize a call to the
2343  // conversion function and attempt copy initialization from it. This
2344  // makes sure that we get the right semantics with respect to
2345  // lvalues/rvalues and the type. Fortunately, we can allocate this
2346  // call on the stack and we don't need its arguments to be
2347  // well-formed.
2348  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2349                            SourceLocation());
2350  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2351                                &ConversionRef, false);
2352
2353  // Note that it is safe to allocate CallExpr on the stack here because
2354  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2355  // allocator).
2356  CallExpr Call(Context, &ConversionFn, 0, 0,
2357                Conversion->getConversionType().getNonReferenceType(),
2358                SourceLocation());
2359  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2360  switch (ICS.ConversionKind) {
2361  case ImplicitConversionSequence::StandardConversion:
2362    Candidate.FinalConversion = ICS.Standard;
2363    break;
2364
2365  case ImplicitConversionSequence::BadConversion:
2366    Candidate.Viable = false;
2367    break;
2368
2369  default:
2370    assert(false &&
2371           "Can only end up with a standard conversion sequence or failure");
2372  }
2373}
2374
2375/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2376/// converts the given @c Object to a function pointer via the
2377/// conversion function @c Conversion, and then attempts to call it
2378/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2379/// the type of function that we'll eventually be calling.
2380void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2381                                 const FunctionProtoType *Proto,
2382                                 Expr *Object, Expr **Args, unsigned NumArgs,
2383                                 OverloadCandidateSet& CandidateSet) {
2384  CandidateSet.push_back(OverloadCandidate());
2385  OverloadCandidate& Candidate = CandidateSet.back();
2386  Candidate.Function = 0;
2387  Candidate.Surrogate = Conversion;
2388  Candidate.Viable = true;
2389  Candidate.IsSurrogate = true;
2390  Candidate.IgnoreObjectArgument = false;
2391  Candidate.Conversions.resize(NumArgs + 1);
2392
2393  // Determine the implicit conversion sequence for the implicit
2394  // object parameter.
2395  ImplicitConversionSequence ObjectInit
2396    = TryObjectArgumentInitialization(Object, Conversion);
2397  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2398    Candidate.Viable = false;
2399    return;
2400  }
2401
2402  // The first conversion is actually a user-defined conversion whose
2403  // first conversion is ObjectInit's standard conversion (which is
2404  // effectively a reference binding). Record it as such.
2405  Candidate.Conversions[0].ConversionKind
2406    = ImplicitConversionSequence::UserDefinedConversion;
2407  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2408  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2409  Candidate.Conversions[0].UserDefined.After
2410    = Candidate.Conversions[0].UserDefined.Before;
2411  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2412
2413  // Find the
2414  unsigned NumArgsInProto = Proto->getNumArgs();
2415
2416  // (C++ 13.3.2p2): A candidate function having fewer than m
2417  // parameters is viable only if it has an ellipsis in its parameter
2418  // list (8.3.5).
2419  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2420    Candidate.Viable = false;
2421    return;
2422  }
2423
2424  // Function types don't have any default arguments, so just check if
2425  // we have enough arguments.
2426  if (NumArgs < NumArgsInProto) {
2427    // Not enough arguments.
2428    Candidate.Viable = false;
2429    return;
2430  }
2431
2432  // Determine the implicit conversion sequences for each of the
2433  // arguments.
2434  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2435    if (ArgIdx < NumArgsInProto) {
2436      // (C++ 13.3.2p3): for F to be a viable function, there shall
2437      // exist for each argument an implicit conversion sequence
2438      // (13.3.3.1) that converts that argument to the corresponding
2439      // parameter of F.
2440      QualType ParamType = Proto->getArgType(ArgIdx);
2441      Candidate.Conversions[ArgIdx + 1]
2442        = TryCopyInitialization(Args[ArgIdx], ParamType,
2443                                /*SuppressUserConversions=*/false);
2444      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2445            == ImplicitConversionSequence::BadConversion) {
2446        Candidate.Viable = false;
2447        break;
2448      }
2449    } else {
2450      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2451      // argument for which there is no corresponding parameter is
2452      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2453      Candidate.Conversions[ArgIdx + 1].ConversionKind
2454        = ImplicitConversionSequence::EllipsisConversion;
2455    }
2456  }
2457}
2458
2459// FIXME: This will eventually be removed, once we've migrated all of the
2460// operator overloading logic over to the scheme used by binary operators, which
2461// works for template instantiation.
2462void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2463                                 SourceLocation OpLoc,
2464                                 Expr **Args, unsigned NumArgs,
2465                                 OverloadCandidateSet& CandidateSet,
2466                                 SourceRange OpRange) {
2467
2468  FunctionSet Functions;
2469
2470  QualType T1 = Args[0]->getType();
2471  QualType T2;
2472  if (NumArgs > 1)
2473    T2 = Args[1]->getType();
2474
2475  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2476  if (S)
2477    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2478  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2479  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2480  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2481  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2482}
2483
2484/// \brief Add overload candidates for overloaded operators that are
2485/// member functions.
2486///
2487/// Add the overloaded operator candidates that are member functions
2488/// for the operator Op that was used in an operator expression such
2489/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2490/// CandidateSet will store the added overload candidates. (C++
2491/// [over.match.oper]).
2492void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2493                                       SourceLocation OpLoc,
2494                                       Expr **Args, unsigned NumArgs,
2495                                       OverloadCandidateSet& CandidateSet,
2496                                       SourceRange OpRange) {
2497  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2498
2499  // C++ [over.match.oper]p3:
2500  //   For a unary operator @ with an operand of a type whose
2501  //   cv-unqualified version is T1, and for a binary operator @ with
2502  //   a left operand of a type whose cv-unqualified version is T1 and
2503  //   a right operand of a type whose cv-unqualified version is T2,
2504  //   three sets of candidate functions, designated member
2505  //   candidates, non-member candidates and built-in candidates, are
2506  //   constructed as follows:
2507  QualType T1 = Args[0]->getType();
2508  QualType T2;
2509  if (NumArgs > 1)
2510    T2 = Args[1]->getType();
2511
2512  //     -- If T1 is a class type, the set of member candidates is the
2513  //        result of the qualified lookup of T1::operator@
2514  //        (13.3.1.1.1); otherwise, the set of member candidates is
2515  //        empty.
2516  // FIXME: Lookup in base classes, too!
2517  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2518    DeclContext::lookup_const_iterator Oper, OperEnd;
2519    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
2520         Oper != OperEnd; ++Oper)
2521      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2522                         Args+1, NumArgs - 1, CandidateSet,
2523                         /*SuppressUserConversions=*/false);
2524  }
2525}
2526
2527/// AddBuiltinCandidate - Add a candidate for a built-in
2528/// operator. ResultTy and ParamTys are the result and parameter types
2529/// of the built-in candidate, respectively. Args and NumArgs are the
2530/// arguments being passed to the candidate. IsAssignmentOperator
2531/// should be true when this built-in candidate is an assignment
2532/// operator. NumContextualBoolArguments is the number of arguments
2533/// (at the beginning of the argument list) that will be contextually
2534/// converted to bool.
2535void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2536                               Expr **Args, unsigned NumArgs,
2537                               OverloadCandidateSet& CandidateSet,
2538                               bool IsAssignmentOperator,
2539                               unsigned NumContextualBoolArguments) {
2540  // Add this candidate
2541  CandidateSet.push_back(OverloadCandidate());
2542  OverloadCandidate& Candidate = CandidateSet.back();
2543  Candidate.Function = 0;
2544  Candidate.IsSurrogate = false;
2545  Candidate.IgnoreObjectArgument = false;
2546  Candidate.BuiltinTypes.ResultTy = ResultTy;
2547  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2548    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2549
2550  // Determine the implicit conversion sequences for each of the
2551  // arguments.
2552  Candidate.Viable = true;
2553  Candidate.Conversions.resize(NumArgs);
2554  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2555    // C++ [over.match.oper]p4:
2556    //   For the built-in assignment operators, conversions of the
2557    //   left operand are restricted as follows:
2558    //     -- no temporaries are introduced to hold the left operand, and
2559    //     -- no user-defined conversions are applied to the left
2560    //        operand to achieve a type match with the left-most
2561    //        parameter of a built-in candidate.
2562    //
2563    // We block these conversions by turning off user-defined
2564    // conversions, since that is the only way that initialization of
2565    // a reference to a non-class type can occur from something that
2566    // is not of the same type.
2567    if (ArgIdx < NumContextualBoolArguments) {
2568      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2569             "Contextual conversion to bool requires bool type");
2570      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2571    } else {
2572      Candidate.Conversions[ArgIdx]
2573        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2574                                ArgIdx == 0 && IsAssignmentOperator);
2575    }
2576    if (Candidate.Conversions[ArgIdx].ConversionKind
2577        == ImplicitConversionSequence::BadConversion) {
2578      Candidate.Viable = false;
2579      break;
2580    }
2581  }
2582}
2583
2584/// BuiltinCandidateTypeSet - A set of types that will be used for the
2585/// candidate operator functions for built-in operators (C++
2586/// [over.built]). The types are separated into pointer types and
2587/// enumeration types.
2588class BuiltinCandidateTypeSet  {
2589  /// TypeSet - A set of types.
2590  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2591
2592  /// PointerTypes - The set of pointer types that will be used in the
2593  /// built-in candidates.
2594  TypeSet PointerTypes;
2595
2596  /// MemberPointerTypes - The set of member pointer types that will be
2597  /// used in the built-in candidates.
2598  TypeSet MemberPointerTypes;
2599
2600  /// EnumerationTypes - The set of enumeration types that will be
2601  /// used in the built-in candidates.
2602  TypeSet EnumerationTypes;
2603
2604  /// Context - The AST context in which we will build the type sets.
2605  ASTContext &Context;
2606
2607  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2608  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2609
2610public:
2611  /// iterator - Iterates through the types that are part of the set.
2612  typedef TypeSet::iterator iterator;
2613
2614  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2615
2616  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2617                             bool AllowExplicitConversions);
2618
2619  /// pointer_begin - First pointer type found;
2620  iterator pointer_begin() { return PointerTypes.begin(); }
2621
2622  /// pointer_end - Past the last pointer type found;
2623  iterator pointer_end() { return PointerTypes.end(); }
2624
2625  /// member_pointer_begin - First member pointer type found;
2626  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2627
2628  /// member_pointer_end - Past the last member pointer type found;
2629  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2630
2631  /// enumeration_begin - First enumeration type found;
2632  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2633
2634  /// enumeration_end - Past the last enumeration type found;
2635  iterator enumeration_end() { return EnumerationTypes.end(); }
2636};
2637
2638/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2639/// the set of pointer types along with any more-qualified variants of
2640/// that type. For example, if @p Ty is "int const *", this routine
2641/// will add "int const *", "int const volatile *", "int const
2642/// restrict *", and "int const volatile restrict *" to the set of
2643/// pointer types. Returns true if the add of @p Ty itself succeeded,
2644/// false otherwise.
2645bool
2646BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2647  // Insert this type.
2648  if (!PointerTypes.insert(Ty))
2649    return false;
2650
2651  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2652    QualType PointeeTy = PointerTy->getPointeeType();
2653    // FIXME: Optimize this so that we don't keep trying to add the same types.
2654
2655    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2656    // pointer conversions that don't cast away constness?
2657    if (!PointeeTy.isConstQualified())
2658      AddPointerWithMoreQualifiedTypeVariants
2659        (Context.getPointerType(PointeeTy.withConst()));
2660    if (!PointeeTy.isVolatileQualified())
2661      AddPointerWithMoreQualifiedTypeVariants
2662        (Context.getPointerType(PointeeTy.withVolatile()));
2663    if (!PointeeTy.isRestrictQualified())
2664      AddPointerWithMoreQualifiedTypeVariants
2665        (Context.getPointerType(PointeeTy.withRestrict()));
2666  }
2667
2668  return true;
2669}
2670
2671/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2672/// to the set of pointer types along with any more-qualified variants of
2673/// that type. For example, if @p Ty is "int const *", this routine
2674/// will add "int const *", "int const volatile *", "int const
2675/// restrict *", and "int const volatile restrict *" to the set of
2676/// pointer types. Returns true if the add of @p Ty itself succeeded,
2677/// false otherwise.
2678bool
2679BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2680    QualType Ty) {
2681  // Insert this type.
2682  if (!MemberPointerTypes.insert(Ty))
2683    return false;
2684
2685  if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2686    QualType PointeeTy = PointerTy->getPointeeType();
2687    const Type *ClassTy = PointerTy->getClass();
2688    // FIXME: Optimize this so that we don't keep trying to add the same types.
2689
2690    if (!PointeeTy.isConstQualified())
2691      AddMemberPointerWithMoreQualifiedTypeVariants
2692        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2693    if (!PointeeTy.isVolatileQualified())
2694      AddMemberPointerWithMoreQualifiedTypeVariants
2695        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2696    if (!PointeeTy.isRestrictQualified())
2697      AddMemberPointerWithMoreQualifiedTypeVariants
2698        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2699  }
2700
2701  return true;
2702}
2703
2704/// AddTypesConvertedFrom - Add each of the types to which the type @p
2705/// Ty can be implicit converted to the given set of @p Types. We're
2706/// primarily interested in pointer types and enumeration types. We also
2707/// take member pointer types, for the conditional operator.
2708/// AllowUserConversions is true if we should look at the conversion
2709/// functions of a class type, and AllowExplicitConversions if we
2710/// should also include the explicit conversion functions of a class
2711/// type.
2712void
2713BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2714                                               bool AllowUserConversions,
2715                                               bool AllowExplicitConversions) {
2716  // Only deal with canonical types.
2717  Ty = Context.getCanonicalType(Ty);
2718
2719  // Look through reference types; they aren't part of the type of an
2720  // expression for the purposes of conversions.
2721  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2722    Ty = RefTy->getPointeeType();
2723
2724  // We don't care about qualifiers on the type.
2725  Ty = Ty.getUnqualifiedType();
2726
2727  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2728    QualType PointeeTy = PointerTy->getPointeeType();
2729
2730    // Insert our type, and its more-qualified variants, into the set
2731    // of types.
2732    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2733      return;
2734
2735    // Add 'cv void*' to our set of types.
2736    if (!Ty->isVoidType()) {
2737      QualType QualVoid
2738        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2739      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2740    }
2741
2742    // If this is a pointer to a class type, add pointers to its bases
2743    // (with the same level of cv-qualification as the original
2744    // derived class, of course).
2745    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2746      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2747      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2748           Base != ClassDecl->bases_end(); ++Base) {
2749        QualType BaseTy = Context.getCanonicalType(Base->getType());
2750        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2751
2752        // Add the pointer type, recursively, so that we get all of
2753        // the indirect base classes, too.
2754        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2755      }
2756    }
2757  } else if (Ty->isMemberPointerType()) {
2758    // Member pointers are far easier, since the pointee can't be converted.
2759    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2760      return;
2761  } else if (Ty->isEnumeralType()) {
2762    EnumerationTypes.insert(Ty);
2763  } else if (AllowUserConversions) {
2764    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2765      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2766      // FIXME: Visit conversion functions in the base classes, too.
2767      OverloadedFunctionDecl *Conversions
2768        = ClassDecl->getConversionFunctions();
2769      for (OverloadedFunctionDecl::function_iterator Func
2770             = Conversions->function_begin();
2771           Func != Conversions->function_end(); ++Func) {
2772        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2773        if (AllowExplicitConversions || !Conv->isExplicit())
2774          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2775      }
2776    }
2777  }
2778}
2779
2780/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2781/// operator overloads to the candidate set (C++ [over.built]), based
2782/// on the operator @p Op and the arguments given. For example, if the
2783/// operator is a binary '+', this routine might add "int
2784/// operator+(int, int)" to cover integer addition.
2785void
2786Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2787                                   Expr **Args, unsigned NumArgs,
2788                                   OverloadCandidateSet& CandidateSet) {
2789  // The set of "promoted arithmetic types", which are the arithmetic
2790  // types are that preserved by promotion (C++ [over.built]p2). Note
2791  // that the first few of these types are the promoted integral
2792  // types; these types need to be first.
2793  // FIXME: What about complex?
2794  const unsigned FirstIntegralType = 0;
2795  const unsigned LastIntegralType = 13;
2796  const unsigned FirstPromotedIntegralType = 7,
2797                 LastPromotedIntegralType = 13;
2798  const unsigned FirstPromotedArithmeticType = 7,
2799                 LastPromotedArithmeticType = 16;
2800  const unsigned NumArithmeticTypes = 16;
2801  QualType ArithmeticTypes[NumArithmeticTypes] = {
2802    Context.BoolTy, Context.CharTy, Context.WCharTy,
2803    Context.SignedCharTy, Context.ShortTy,
2804    Context.UnsignedCharTy, Context.UnsignedShortTy,
2805    Context.IntTy, Context.LongTy, Context.LongLongTy,
2806    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2807    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2808  };
2809
2810  // Find all of the types that the arguments can convert to, but only
2811  // if the operator we're looking at has built-in operator candidates
2812  // that make use of these types.
2813  BuiltinCandidateTypeSet CandidateTypes(Context);
2814  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2815      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2816      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2817      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2818      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2819      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2820    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2821      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2822                                           true,
2823                                           (Op == OO_Exclaim ||
2824                                            Op == OO_AmpAmp ||
2825                                            Op == OO_PipePipe));
2826  }
2827
2828  bool isComparison = false;
2829  switch (Op) {
2830  case OO_None:
2831  case NUM_OVERLOADED_OPERATORS:
2832    assert(false && "Expected an overloaded operator");
2833    break;
2834
2835  case OO_Star: // '*' is either unary or binary
2836    if (NumArgs == 1)
2837      goto UnaryStar;
2838    else
2839      goto BinaryStar;
2840    break;
2841
2842  case OO_Plus: // '+' is either unary or binary
2843    if (NumArgs == 1)
2844      goto UnaryPlus;
2845    else
2846      goto BinaryPlus;
2847    break;
2848
2849  case OO_Minus: // '-' is either unary or binary
2850    if (NumArgs == 1)
2851      goto UnaryMinus;
2852    else
2853      goto BinaryMinus;
2854    break;
2855
2856  case OO_Amp: // '&' is either unary or binary
2857    if (NumArgs == 1)
2858      goto UnaryAmp;
2859    else
2860      goto BinaryAmp;
2861
2862  case OO_PlusPlus:
2863  case OO_MinusMinus:
2864    // C++ [over.built]p3:
2865    //
2866    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2867    //   is either volatile or empty, there exist candidate operator
2868    //   functions of the form
2869    //
2870    //       VQ T&      operator++(VQ T&);
2871    //       T          operator++(VQ T&, int);
2872    //
2873    // C++ [over.built]p4:
2874    //
2875    //   For every pair (T, VQ), where T is an arithmetic type other
2876    //   than bool, and VQ is either volatile or empty, there exist
2877    //   candidate operator functions of the form
2878    //
2879    //       VQ T&      operator--(VQ T&);
2880    //       T          operator--(VQ T&, int);
2881    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2882         Arith < NumArithmeticTypes; ++Arith) {
2883      QualType ArithTy = ArithmeticTypes[Arith];
2884      QualType ParamTypes[2]
2885        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2886
2887      // Non-volatile version.
2888      if (NumArgs == 1)
2889        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2890      else
2891        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2892
2893      // Volatile version
2894      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2895      if (NumArgs == 1)
2896        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2897      else
2898        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2899    }
2900
2901    // C++ [over.built]p5:
2902    //
2903    //   For every pair (T, VQ), where T is a cv-qualified or
2904    //   cv-unqualified object type, and VQ is either volatile or
2905    //   empty, there exist candidate operator functions of the form
2906    //
2907    //       T*VQ&      operator++(T*VQ&);
2908    //       T*VQ&      operator--(T*VQ&);
2909    //       T*         operator++(T*VQ&, int);
2910    //       T*         operator--(T*VQ&, int);
2911    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2912         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2913      // Skip pointer types that aren't pointers to object types.
2914      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2915        continue;
2916
2917      QualType ParamTypes[2] = {
2918        Context.getLValueReferenceType(*Ptr), Context.IntTy
2919      };
2920
2921      // Without volatile
2922      if (NumArgs == 1)
2923        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2924      else
2925        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2926
2927      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2928        // With volatile
2929        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2930        if (NumArgs == 1)
2931          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2932        else
2933          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2934      }
2935    }
2936    break;
2937
2938  UnaryStar:
2939    // C++ [over.built]p6:
2940    //   For every cv-qualified or cv-unqualified object type T, there
2941    //   exist candidate operator functions of the form
2942    //
2943    //       T&         operator*(T*);
2944    //
2945    // C++ [over.built]p7:
2946    //   For every function type T, there exist candidate operator
2947    //   functions of the form
2948    //       T&         operator*(T*);
2949    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2950         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2951      QualType ParamTy = *Ptr;
2952      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2953      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2954                          &ParamTy, Args, 1, CandidateSet);
2955    }
2956    break;
2957
2958  UnaryPlus:
2959    // C++ [over.built]p8:
2960    //   For every type T, there exist candidate operator functions of
2961    //   the form
2962    //
2963    //       T*         operator+(T*);
2964    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2965         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2966      QualType ParamTy = *Ptr;
2967      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2968    }
2969
2970    // Fall through
2971
2972  UnaryMinus:
2973    // C++ [over.built]p9:
2974    //  For every promoted arithmetic type T, there exist candidate
2975    //  operator functions of the form
2976    //
2977    //       T         operator+(T);
2978    //       T         operator-(T);
2979    for (unsigned Arith = FirstPromotedArithmeticType;
2980         Arith < LastPromotedArithmeticType; ++Arith) {
2981      QualType ArithTy = ArithmeticTypes[Arith];
2982      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2983    }
2984    break;
2985
2986  case OO_Tilde:
2987    // C++ [over.built]p10:
2988    //   For every promoted integral type T, there exist candidate
2989    //   operator functions of the form
2990    //
2991    //        T         operator~(T);
2992    for (unsigned Int = FirstPromotedIntegralType;
2993         Int < LastPromotedIntegralType; ++Int) {
2994      QualType IntTy = ArithmeticTypes[Int];
2995      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2996    }
2997    break;
2998
2999  case OO_New:
3000  case OO_Delete:
3001  case OO_Array_New:
3002  case OO_Array_Delete:
3003  case OO_Call:
3004    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3005    break;
3006
3007  case OO_Comma:
3008  UnaryAmp:
3009  case OO_Arrow:
3010    // C++ [over.match.oper]p3:
3011    //   -- For the operator ',', the unary operator '&', or the
3012    //      operator '->', the built-in candidates set is empty.
3013    break;
3014
3015  case OO_Less:
3016  case OO_Greater:
3017  case OO_LessEqual:
3018  case OO_GreaterEqual:
3019  case OO_EqualEqual:
3020  case OO_ExclaimEqual:
3021    // C++ [over.built]p15:
3022    //
3023    //   For every pointer or enumeration type T, there exist
3024    //   candidate operator functions of the form
3025    //
3026    //        bool       operator<(T, T);
3027    //        bool       operator>(T, T);
3028    //        bool       operator<=(T, T);
3029    //        bool       operator>=(T, T);
3030    //        bool       operator==(T, T);
3031    //        bool       operator!=(T, T);
3032    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3033         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3034      QualType ParamTypes[2] = { *Ptr, *Ptr };
3035      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3036    }
3037    for (BuiltinCandidateTypeSet::iterator Enum
3038           = CandidateTypes.enumeration_begin();
3039         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3040      QualType ParamTypes[2] = { *Enum, *Enum };
3041      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3042    }
3043
3044    // Fall through.
3045    isComparison = true;
3046
3047  BinaryPlus:
3048  BinaryMinus:
3049    if (!isComparison) {
3050      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3051
3052      // C++ [over.built]p13:
3053      //
3054      //   For every cv-qualified or cv-unqualified object type T
3055      //   there exist candidate operator functions of the form
3056      //
3057      //      T*         operator+(T*, ptrdiff_t);
3058      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3059      //      T*         operator-(T*, ptrdiff_t);
3060      //      T*         operator+(ptrdiff_t, T*);
3061      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3062      //
3063      // C++ [over.built]p14:
3064      //
3065      //   For every T, where T is a pointer to object type, there
3066      //   exist candidate operator functions of the form
3067      //
3068      //      ptrdiff_t  operator-(T, T);
3069      for (BuiltinCandidateTypeSet::iterator Ptr
3070             = CandidateTypes.pointer_begin();
3071           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3072        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3073
3074        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3075        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3076
3077        if (Op == OO_Plus) {
3078          // T* operator+(ptrdiff_t, T*);
3079          ParamTypes[0] = ParamTypes[1];
3080          ParamTypes[1] = *Ptr;
3081          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3082        } else {
3083          // ptrdiff_t operator-(T, T);
3084          ParamTypes[1] = *Ptr;
3085          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3086                              Args, 2, CandidateSet);
3087        }
3088      }
3089    }
3090    // Fall through
3091
3092  case OO_Slash:
3093  BinaryStar:
3094  Conditional:
3095    // C++ [over.built]p12:
3096    //
3097    //   For every pair of promoted arithmetic types L and R, there
3098    //   exist candidate operator functions of the form
3099    //
3100    //        LR         operator*(L, R);
3101    //        LR         operator/(L, R);
3102    //        LR         operator+(L, R);
3103    //        LR         operator-(L, R);
3104    //        bool       operator<(L, R);
3105    //        bool       operator>(L, R);
3106    //        bool       operator<=(L, R);
3107    //        bool       operator>=(L, R);
3108    //        bool       operator==(L, R);
3109    //        bool       operator!=(L, R);
3110    //
3111    //   where LR is the result of the usual arithmetic conversions
3112    //   between types L and R.
3113    //
3114    // C++ [over.built]p24:
3115    //
3116    //   For every pair of promoted arithmetic types L and R, there exist
3117    //   candidate operator functions of the form
3118    //
3119    //        LR       operator?(bool, L, R);
3120    //
3121    //   where LR is the result of the usual arithmetic conversions
3122    //   between types L and R.
3123    // Our candidates ignore the first parameter.
3124    for (unsigned Left = FirstPromotedArithmeticType;
3125         Left < LastPromotedArithmeticType; ++Left) {
3126      for (unsigned Right = FirstPromotedArithmeticType;
3127           Right < LastPromotedArithmeticType; ++Right) {
3128        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3129        QualType Result
3130          = isComparison? Context.BoolTy
3131                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3132        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3133      }
3134    }
3135    break;
3136
3137  case OO_Percent:
3138  BinaryAmp:
3139  case OO_Caret:
3140  case OO_Pipe:
3141  case OO_LessLess:
3142  case OO_GreaterGreater:
3143    // C++ [over.built]p17:
3144    //
3145    //   For every pair of promoted integral types L and R, there
3146    //   exist candidate operator functions of the form
3147    //
3148    //      LR         operator%(L, R);
3149    //      LR         operator&(L, R);
3150    //      LR         operator^(L, R);
3151    //      LR         operator|(L, R);
3152    //      L          operator<<(L, R);
3153    //      L          operator>>(L, R);
3154    //
3155    //   where LR is the result of the usual arithmetic conversions
3156    //   between types L and R.
3157    for (unsigned Left = FirstPromotedIntegralType;
3158         Left < LastPromotedIntegralType; ++Left) {
3159      for (unsigned Right = FirstPromotedIntegralType;
3160           Right < LastPromotedIntegralType; ++Right) {
3161        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3162        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3163            ? LandR[0]
3164            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3165        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3166      }
3167    }
3168    break;
3169
3170  case OO_Equal:
3171    // C++ [over.built]p20:
3172    //
3173    //   For every pair (T, VQ), where T is an enumeration or
3174    //   (FIXME:) pointer to member type and VQ is either volatile or
3175    //   empty, there exist candidate operator functions of the form
3176    //
3177    //        VQ T&      operator=(VQ T&, T);
3178    for (BuiltinCandidateTypeSet::iterator Enum
3179           = CandidateTypes.enumeration_begin();
3180         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3181      QualType ParamTypes[2];
3182
3183      // T& operator=(T&, T)
3184      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3185      ParamTypes[1] = *Enum;
3186      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3187                          /*IsAssignmentOperator=*/false);
3188
3189      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3190        // volatile T& operator=(volatile T&, T)
3191        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3192        ParamTypes[1] = *Enum;
3193        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3194                            /*IsAssignmentOperator=*/false);
3195      }
3196    }
3197    // Fall through.
3198
3199  case OO_PlusEqual:
3200  case OO_MinusEqual:
3201    // C++ [over.built]p19:
3202    //
3203    //   For every pair (T, VQ), where T is any type and VQ is either
3204    //   volatile or empty, there exist candidate operator functions
3205    //   of the form
3206    //
3207    //        T*VQ&      operator=(T*VQ&, T*);
3208    //
3209    // C++ [over.built]p21:
3210    //
3211    //   For every pair (T, VQ), where T is a cv-qualified or
3212    //   cv-unqualified object type and VQ is either volatile or
3213    //   empty, there exist candidate operator functions of the form
3214    //
3215    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3216    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3217    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3218         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3219      QualType ParamTypes[2];
3220      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3221
3222      // non-volatile version
3223      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3224      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3225                          /*IsAssigmentOperator=*/Op == OO_Equal);
3226
3227      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3228        // volatile version
3229        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3230        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3231                            /*IsAssigmentOperator=*/Op == OO_Equal);
3232      }
3233    }
3234    // Fall through.
3235
3236  case OO_StarEqual:
3237  case OO_SlashEqual:
3238    // C++ [over.built]p18:
3239    //
3240    //   For every triple (L, VQ, R), where L is an arithmetic type,
3241    //   VQ is either volatile or empty, and R is a promoted
3242    //   arithmetic type, there exist candidate operator functions of
3243    //   the form
3244    //
3245    //        VQ L&      operator=(VQ L&, R);
3246    //        VQ L&      operator*=(VQ L&, R);
3247    //        VQ L&      operator/=(VQ L&, R);
3248    //        VQ L&      operator+=(VQ L&, R);
3249    //        VQ L&      operator-=(VQ L&, R);
3250    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3251      for (unsigned Right = FirstPromotedArithmeticType;
3252           Right < LastPromotedArithmeticType; ++Right) {
3253        QualType ParamTypes[2];
3254        ParamTypes[1] = ArithmeticTypes[Right];
3255
3256        // Add this built-in operator as a candidate (VQ is empty).
3257        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3258        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3259                            /*IsAssigmentOperator=*/Op == OO_Equal);
3260
3261        // Add this built-in operator as a candidate (VQ is 'volatile').
3262        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3263        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3264        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3265                            /*IsAssigmentOperator=*/Op == OO_Equal);
3266      }
3267    }
3268    break;
3269
3270  case OO_PercentEqual:
3271  case OO_LessLessEqual:
3272  case OO_GreaterGreaterEqual:
3273  case OO_AmpEqual:
3274  case OO_CaretEqual:
3275  case OO_PipeEqual:
3276    // C++ [over.built]p22:
3277    //
3278    //   For every triple (L, VQ, R), where L is an integral type, VQ
3279    //   is either volatile or empty, and R is a promoted integral
3280    //   type, there exist candidate operator functions of the form
3281    //
3282    //        VQ L&       operator%=(VQ L&, R);
3283    //        VQ L&       operator<<=(VQ L&, R);
3284    //        VQ L&       operator>>=(VQ L&, R);
3285    //        VQ L&       operator&=(VQ L&, R);
3286    //        VQ L&       operator^=(VQ L&, R);
3287    //        VQ L&       operator|=(VQ L&, R);
3288    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3289      for (unsigned Right = FirstPromotedIntegralType;
3290           Right < LastPromotedIntegralType; ++Right) {
3291        QualType ParamTypes[2];
3292        ParamTypes[1] = ArithmeticTypes[Right];
3293
3294        // Add this built-in operator as a candidate (VQ is empty).
3295        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3296        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3297
3298        // Add this built-in operator as a candidate (VQ is 'volatile').
3299        ParamTypes[0] = ArithmeticTypes[Left];
3300        ParamTypes[0].addVolatile();
3301        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3302        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3303      }
3304    }
3305    break;
3306
3307  case OO_Exclaim: {
3308    // C++ [over.operator]p23:
3309    //
3310    //   There also exist candidate operator functions of the form
3311    //
3312    //        bool        operator!(bool);
3313    //        bool        operator&&(bool, bool);     [BELOW]
3314    //        bool        operator||(bool, bool);     [BELOW]
3315    QualType ParamTy = Context.BoolTy;
3316    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3317                        /*IsAssignmentOperator=*/false,
3318                        /*NumContextualBoolArguments=*/1);
3319    break;
3320  }
3321
3322  case OO_AmpAmp:
3323  case OO_PipePipe: {
3324    // C++ [over.operator]p23:
3325    //
3326    //   There also exist candidate operator functions of the form
3327    //
3328    //        bool        operator!(bool);            [ABOVE]
3329    //        bool        operator&&(bool, bool);
3330    //        bool        operator||(bool, bool);
3331    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3332    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3333                        /*IsAssignmentOperator=*/false,
3334                        /*NumContextualBoolArguments=*/2);
3335    break;
3336  }
3337
3338  case OO_Subscript:
3339    // C++ [over.built]p13:
3340    //
3341    //   For every cv-qualified or cv-unqualified object type T there
3342    //   exist candidate operator functions of the form
3343    //
3344    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3345    //        T&         operator[](T*, ptrdiff_t);
3346    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3347    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3348    //        T&         operator[](ptrdiff_t, T*);
3349    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3350         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3351      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3352      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3353      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3354
3355      // T& operator[](T*, ptrdiff_t)
3356      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3357
3358      // T& operator[](ptrdiff_t, T*);
3359      ParamTypes[0] = ParamTypes[1];
3360      ParamTypes[1] = *Ptr;
3361      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3362    }
3363    break;
3364
3365  case OO_ArrowStar:
3366    // FIXME: No support for pointer-to-members yet.
3367    break;
3368
3369  case OO_Conditional:
3370    // Note that we don't consider the first argument, since it has been
3371    // contextually converted to bool long ago. The candidates below are
3372    // therefore added as binary.
3373    //
3374    // C++ [over.built]p24:
3375    //   For every type T, where T is a pointer or pointer-to-member type,
3376    //   there exist candidate operator functions of the form
3377    //
3378    //        T        operator?(bool, T, T);
3379    //
3380    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3381         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3382      QualType ParamTypes[2] = { *Ptr, *Ptr };
3383      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3384    }
3385    for (BuiltinCandidateTypeSet::iterator Ptr =
3386           CandidateTypes.member_pointer_begin(),
3387         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3388      QualType ParamTypes[2] = { *Ptr, *Ptr };
3389      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3390    }
3391    goto Conditional;
3392  }
3393}
3394
3395/// \brief Add function candidates found via argument-dependent lookup
3396/// to the set of overloading candidates.
3397///
3398/// This routine performs argument-dependent name lookup based on the
3399/// given function name (which may also be an operator name) and adds
3400/// all of the overload candidates found by ADL to the overload
3401/// candidate set (C++ [basic.lookup.argdep]).
3402void
3403Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3404                                           Expr **Args, unsigned NumArgs,
3405                                           OverloadCandidateSet& CandidateSet) {
3406  FunctionSet Functions;
3407
3408  // Record all of the function candidates that we've already
3409  // added to the overload set, so that we don't add those same
3410  // candidates a second time.
3411  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3412                                   CandEnd = CandidateSet.end();
3413       Cand != CandEnd; ++Cand)
3414    if (Cand->Function) {
3415      Functions.insert(Cand->Function);
3416      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3417        Functions.insert(FunTmpl);
3418    }
3419
3420  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3421
3422  // Erase all of the candidates we already knew about.
3423  // FIXME: This is suboptimal. Is there a better way?
3424  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3425                                   CandEnd = CandidateSet.end();
3426       Cand != CandEnd; ++Cand)
3427    if (Cand->Function) {
3428      Functions.erase(Cand->Function);
3429      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3430        Functions.erase(FunTmpl);
3431    }
3432
3433  // For each of the ADL candidates we found, add it to the overload
3434  // set.
3435  for (FunctionSet::iterator Func = Functions.begin(),
3436                          FuncEnd = Functions.end();
3437       Func != FuncEnd; ++Func) {
3438    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3439      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3440    else
3441      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), Args,
3442                                   NumArgs, CandidateSet);
3443  }
3444}
3445
3446/// isBetterOverloadCandidate - Determines whether the first overload
3447/// candidate is a better candidate than the second (C++ 13.3.3p1).
3448bool
3449Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3450                                const OverloadCandidate& Cand2)
3451{
3452  // Define viable functions to be better candidates than non-viable
3453  // functions.
3454  if (!Cand2.Viable)
3455    return Cand1.Viable;
3456  else if (!Cand1.Viable)
3457    return false;
3458
3459  // C++ [over.match.best]p1:
3460  //
3461  //   -- if F is a static member function, ICS1(F) is defined such
3462  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3463  //      any function G, and, symmetrically, ICS1(G) is neither
3464  //      better nor worse than ICS1(F).
3465  unsigned StartArg = 0;
3466  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3467    StartArg = 1;
3468
3469  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3470  // function than another viable function F2 if for all arguments i,
3471  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3472  // then...
3473  unsigned NumArgs = Cand1.Conversions.size();
3474  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3475  bool HasBetterConversion = false;
3476  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3477    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3478                                               Cand2.Conversions[ArgIdx])) {
3479    case ImplicitConversionSequence::Better:
3480      // Cand1 has a better conversion sequence.
3481      HasBetterConversion = true;
3482      break;
3483
3484    case ImplicitConversionSequence::Worse:
3485      // Cand1 can't be better than Cand2.
3486      return false;
3487
3488    case ImplicitConversionSequence::Indistinguishable:
3489      // Do nothing.
3490      break;
3491    }
3492  }
3493
3494  if (HasBetterConversion)
3495    return true;
3496
3497  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3498  // implemented, but they require template support.
3499
3500  // C++ [over.match.best]p1b4:
3501  //
3502  //   -- the context is an initialization by user-defined conversion
3503  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3504  //      from the return type of F1 to the destination type (i.e.,
3505  //      the type of the entity being initialized) is a better
3506  //      conversion sequence than the standard conversion sequence
3507  //      from the return type of F2 to the destination type.
3508  if (Cand1.Function && Cand2.Function &&
3509      isa<CXXConversionDecl>(Cand1.Function) &&
3510      isa<CXXConversionDecl>(Cand2.Function)) {
3511    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3512                                               Cand2.FinalConversion)) {
3513    case ImplicitConversionSequence::Better:
3514      // Cand1 has a better conversion sequence.
3515      return true;
3516
3517    case ImplicitConversionSequence::Worse:
3518      // Cand1 can't be better than Cand2.
3519      return false;
3520
3521    case ImplicitConversionSequence::Indistinguishable:
3522      // Do nothing
3523      break;
3524    }
3525  }
3526
3527  return false;
3528}
3529
3530/// \brief Computes the best viable function (C++ 13.3.3)
3531/// within an overload candidate set.
3532///
3533/// \param CandidateSet the set of candidate functions.
3534///
3535/// \param Loc the location of the function name (or operator symbol) for
3536/// which overload resolution occurs.
3537///
3538/// \param Best f overload resolution was successful or found a deleted
3539/// function, Best points to the candidate function found.
3540///
3541/// \returns The result of overload resolution.
3542Sema::OverloadingResult
3543Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3544                         SourceLocation Loc,
3545                         OverloadCandidateSet::iterator& Best)
3546{
3547  // Find the best viable function.
3548  Best = CandidateSet.end();
3549  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3550       Cand != CandidateSet.end(); ++Cand) {
3551    if (Cand->Viable) {
3552      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3553        Best = Cand;
3554    }
3555  }
3556
3557  // If we didn't find any viable functions, abort.
3558  if (Best == CandidateSet.end())
3559    return OR_No_Viable_Function;
3560
3561  // Make sure that this function is better than every other viable
3562  // function. If not, we have an ambiguity.
3563  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3564       Cand != CandidateSet.end(); ++Cand) {
3565    if (Cand->Viable &&
3566        Cand != Best &&
3567        !isBetterOverloadCandidate(*Best, *Cand)) {
3568      Best = CandidateSet.end();
3569      return OR_Ambiguous;
3570    }
3571  }
3572
3573  // Best is the best viable function.
3574  if (Best->Function &&
3575      (Best->Function->isDeleted() ||
3576       Best->Function->getAttr<UnavailableAttr>(Context)))
3577    return OR_Deleted;
3578
3579  // C++ [basic.def.odr]p2:
3580  //   An overloaded function is used if it is selected by overload resolution
3581  //   when referred to from a potentially-evaluated expression. [Note: this
3582  //   covers calls to named functions (5.2.2), operator overloading
3583  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3584  //   placement new (5.3.4), as well as non-default initialization (8.5).
3585  if (Best->Function)
3586    MarkDeclarationReferenced(Loc, Best->Function);
3587  return OR_Success;
3588}
3589
3590/// PrintOverloadCandidates - When overload resolution fails, prints
3591/// diagnostic messages containing the candidates in the candidate
3592/// set. If OnlyViable is true, only viable candidates will be printed.
3593void
3594Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3595                              bool OnlyViable)
3596{
3597  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3598                             LastCand = CandidateSet.end();
3599  for (; Cand != LastCand; ++Cand) {
3600    if (Cand->Viable || !OnlyViable) {
3601      if (Cand->Function) {
3602        if (Cand->Function->isDeleted() ||
3603            Cand->Function->getAttr<UnavailableAttr>(Context)) {
3604          // Deleted or "unavailable" function.
3605          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3606            << Cand->Function->isDeleted();
3607        } else {
3608          // Normal function
3609          // FIXME: Give a better reason!
3610          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3611        }
3612      } else if (Cand->IsSurrogate) {
3613        // Desugar the type of the surrogate down to a function type,
3614        // retaining as many typedefs as possible while still showing
3615        // the function type (and, therefore, its parameter types).
3616        QualType FnType = Cand->Surrogate->getConversionType();
3617        bool isLValueReference = false;
3618        bool isRValueReference = false;
3619        bool isPointer = false;
3620        if (const LValueReferenceType *FnTypeRef =
3621              FnType->getAsLValueReferenceType()) {
3622          FnType = FnTypeRef->getPointeeType();
3623          isLValueReference = true;
3624        } else if (const RValueReferenceType *FnTypeRef =
3625                     FnType->getAsRValueReferenceType()) {
3626          FnType = FnTypeRef->getPointeeType();
3627          isRValueReference = true;
3628        }
3629        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3630          FnType = FnTypePtr->getPointeeType();
3631          isPointer = true;
3632        }
3633        // Desugar down to a function type.
3634        FnType = QualType(FnType->getAsFunctionType(), 0);
3635        // Reconstruct the pointer/reference as appropriate.
3636        if (isPointer) FnType = Context.getPointerType(FnType);
3637        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3638        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3639
3640        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3641          << FnType;
3642      } else {
3643        // FIXME: We need to get the identifier in here
3644        // FIXME: Do we want the error message to point at the operator?
3645        // (built-ins won't have a location)
3646        QualType FnType
3647          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3648                                    Cand->BuiltinTypes.ParamTypes,
3649                                    Cand->Conversions.size(),
3650                                    false, 0);
3651
3652        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3653      }
3654    }
3655  }
3656}
3657
3658/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3659/// an overloaded function (C++ [over.over]), where @p From is an
3660/// expression with overloaded function type and @p ToType is the type
3661/// we're trying to resolve to. For example:
3662///
3663/// @code
3664/// int f(double);
3665/// int f(int);
3666///
3667/// int (*pfd)(double) = f; // selects f(double)
3668/// @endcode
3669///
3670/// This routine returns the resulting FunctionDecl if it could be
3671/// resolved, and NULL otherwise. When @p Complain is true, this
3672/// routine will emit diagnostics if there is an error.
3673FunctionDecl *
3674Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3675                                         bool Complain) {
3676  QualType FunctionType = ToType;
3677  bool IsMember = false;
3678  if (const PointerType *ToTypePtr = ToType->getAsPointerType())
3679    FunctionType = ToTypePtr->getPointeeType();
3680  else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3681    FunctionType = ToTypeRef->getPointeeType();
3682  else if (const MemberPointerType *MemTypePtr =
3683                    ToType->getAsMemberPointerType()) {
3684    FunctionType = MemTypePtr->getPointeeType();
3685    IsMember = true;
3686  }
3687
3688  // We only look at pointers or references to functions.
3689  if (!FunctionType->isFunctionType())
3690    return 0;
3691
3692  // Find the actual overloaded function declaration.
3693  OverloadedFunctionDecl *Ovl = 0;
3694
3695  // C++ [over.over]p1:
3696  //   [...] [Note: any redundant set of parentheses surrounding the
3697  //   overloaded function name is ignored (5.1). ]
3698  Expr *OvlExpr = From->IgnoreParens();
3699
3700  // C++ [over.over]p1:
3701  //   [...] The overloaded function name can be preceded by the &
3702  //   operator.
3703  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3704    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3705      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3706  }
3707
3708  // Try to dig out the overloaded function.
3709  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3710    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3711
3712  // If there's no overloaded function declaration, we're done.
3713  if (!Ovl)
3714    return 0;
3715
3716  // Look through all of the overloaded functions, searching for one
3717  // whose type matches exactly.
3718  // FIXME: When templates or using declarations come along, we'll actually
3719  // have to deal with duplicates, partial ordering, etc. For now, we
3720  // can just do a simple search.
3721  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3722  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3723       Fun != Ovl->function_end(); ++Fun) {
3724    // C++ [over.over]p3:
3725    //   Non-member functions and static member functions match
3726    //   targets of type "pointer-to-function" or "reference-to-function."
3727    //   Nonstatic member functions match targets of
3728    //   type "pointer-to-member-function."
3729    // Note that according to DR 247, the containing class does not matter.
3730    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3731      // Skip non-static functions when converting to pointer, and static
3732      // when converting to member pointer.
3733      if (Method->isStatic() == IsMember)
3734        continue;
3735    } else if (IsMember)
3736      continue;
3737
3738    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3739      if (FunctionType == Context.getCanonicalType(FunDecl->getType()))
3740        return FunDecl;
3741    } else {
3742      unsigned DiagID
3743        = PP.getDiagnostics().getCustomDiagID(Diagnostic::Warning,
3744                   "Clang does not yet support templated conversion functions");
3745      Diag(From->getLocStart(), DiagID);
3746    }
3747  }
3748
3749  return 0;
3750}
3751
3752/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3753/// (which eventually refers to the declaration Func) and the call
3754/// arguments Args/NumArgs, attempt to resolve the function call down
3755/// to a specific function. If overload resolution succeeds, returns
3756/// the function declaration produced by overload
3757/// resolution. Otherwise, emits diagnostics, deletes all of the
3758/// arguments and Fn, and returns NULL.
3759FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3760                                            DeclarationName UnqualifiedName,
3761                                            SourceLocation LParenLoc,
3762                                            Expr **Args, unsigned NumArgs,
3763                                            SourceLocation *CommaLocs,
3764                                            SourceLocation RParenLoc,
3765                                            bool &ArgumentDependentLookup) {
3766  OverloadCandidateSet CandidateSet;
3767
3768  // Add the functions denoted by Callee to the set of candidate
3769  // functions. While we're doing so, track whether argument-dependent
3770  // lookup still applies, per:
3771  //
3772  // C++0x [basic.lookup.argdep]p3:
3773  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3774  //   and let Y be the lookup set produced by argument dependent
3775  //   lookup (defined as follows). If X contains
3776  //
3777  //     -- a declaration of a class member, or
3778  //
3779  //     -- a block-scope function declaration that is not a
3780  //        using-declaration, or
3781  //
3782  //     -- a declaration that is neither a function or a function
3783  //        template
3784  //
3785  //   then Y is empty.
3786  if (OverloadedFunctionDecl *Ovl
3787        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3788    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3789                                                FuncEnd = Ovl->function_end();
3790         Func != FuncEnd; ++Func) {
3791      DeclContext *Ctx = 0;
3792      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3793        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3794        Ctx = FunDecl->getDeclContext();
3795      } else {
3796        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3797        AddTemplateOverloadCandidate(FunTmpl, Args, NumArgs, CandidateSet);
3798        Ctx = FunTmpl->getDeclContext();
3799      }
3800
3801
3802      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3803        ArgumentDependentLookup = false;
3804    }
3805  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3806    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3807
3808    if (Func->getDeclContext()->isRecord() ||
3809        Func->getDeclContext()->isFunctionOrMethod())
3810      ArgumentDependentLookup = false;
3811  } else if (FunctionTemplateDecl *FuncTemplate
3812               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3813    AddTemplateOverloadCandidate(FuncTemplate, Args, NumArgs, CandidateSet);
3814
3815    if (FuncTemplate->getDeclContext()->isRecord())
3816      ArgumentDependentLookup = false;
3817  }
3818
3819  if (Callee)
3820    UnqualifiedName = Callee->getDeclName();
3821
3822  if (ArgumentDependentLookup)
3823    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3824                                         CandidateSet);
3825
3826  OverloadCandidateSet::iterator Best;
3827  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3828  case OR_Success:
3829    return Best->Function;
3830
3831  case OR_No_Viable_Function:
3832    Diag(Fn->getSourceRange().getBegin(),
3833         diag::err_ovl_no_viable_function_in_call)
3834      << UnqualifiedName << Fn->getSourceRange();
3835    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3836    break;
3837
3838  case OR_Ambiguous:
3839    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3840      << UnqualifiedName << Fn->getSourceRange();
3841    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3842    break;
3843
3844  case OR_Deleted:
3845    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3846      << Best->Function->isDeleted()
3847      << UnqualifiedName
3848      << Fn->getSourceRange();
3849    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3850    break;
3851  }
3852
3853  // Overload resolution failed. Destroy all of the subexpressions and
3854  // return NULL.
3855  Fn->Destroy(Context);
3856  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3857    Args[Arg]->Destroy(Context);
3858  return 0;
3859}
3860
3861/// \brief Create a unary operation that may resolve to an overloaded
3862/// operator.
3863///
3864/// \param OpLoc The location of the operator itself (e.g., '*').
3865///
3866/// \param OpcIn The UnaryOperator::Opcode that describes this
3867/// operator.
3868///
3869/// \param Functions The set of non-member functions that will be
3870/// considered by overload resolution. The caller needs to build this
3871/// set based on the context using, e.g.,
3872/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3873/// set should not contain any member functions; those will be added
3874/// by CreateOverloadedUnaryOp().
3875///
3876/// \param input The input argument.
3877Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3878                                                     unsigned OpcIn,
3879                                                     FunctionSet &Functions,
3880                                                     ExprArg input) {
3881  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3882  Expr *Input = (Expr *)input.get();
3883
3884  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3885  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3886  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3887
3888  Expr *Args[2] = { Input, 0 };
3889  unsigned NumArgs = 1;
3890
3891  // For post-increment and post-decrement, add the implicit '0' as
3892  // the second argument, so that we know this is a post-increment or
3893  // post-decrement.
3894  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3895    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3896    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3897                                           SourceLocation());
3898    NumArgs = 2;
3899  }
3900
3901  if (Input->isTypeDependent()) {
3902    OverloadedFunctionDecl *Overloads
3903      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3904    for (FunctionSet::iterator Func = Functions.begin(),
3905                            FuncEnd = Functions.end();
3906         Func != FuncEnd; ++Func)
3907      Overloads->addOverload(*Func);
3908
3909    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3910                                                OpLoc, false, false);
3911
3912    input.release();
3913    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3914                                                   &Args[0], NumArgs,
3915                                                   Context.DependentTy,
3916                                                   OpLoc));
3917  }
3918
3919  // Build an empty overload set.
3920  OverloadCandidateSet CandidateSet;
3921
3922  // Add the candidates from the given function set.
3923  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3924
3925  // Add operator candidates that are member functions.
3926  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3927
3928  // Add builtin operator candidates.
3929  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3930
3931  // Perform overload resolution.
3932  OverloadCandidateSet::iterator Best;
3933  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
3934  case OR_Success: {
3935    // We found a built-in operator or an overloaded operator.
3936    FunctionDecl *FnDecl = Best->Function;
3937
3938    if (FnDecl) {
3939      // We matched an overloaded operator. Build a call to that
3940      // operator.
3941
3942      // Convert the arguments.
3943      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3944        if (PerformObjectArgumentInitialization(Input, Method))
3945          return ExprError();
3946      } else {
3947        // Convert the arguments.
3948        if (PerformCopyInitialization(Input,
3949                                      FnDecl->getParamDecl(0)->getType(),
3950                                      "passing"))
3951          return ExprError();
3952      }
3953
3954      // Determine the result type
3955      QualType ResultTy
3956        = FnDecl->getType()->getAsFunctionType()->getResultType();
3957      ResultTy = ResultTy.getNonReferenceType();
3958
3959      // Build the actual expression node.
3960      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3961                                               SourceLocation());
3962      UsualUnaryConversions(FnExpr);
3963
3964      input.release();
3965      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3966                                                     &Input, 1, ResultTy,
3967                                                     OpLoc));
3968    } else {
3969      // We matched a built-in operator. Convert the arguments, then
3970      // break out so that we will build the appropriate built-in
3971      // operator node.
3972        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3973                                      Best->Conversions[0], "passing"))
3974          return ExprError();
3975
3976        break;
3977      }
3978    }
3979
3980    case OR_No_Viable_Function:
3981      // No viable function; fall through to handling this as a
3982      // built-in operator, which will produce an error message for us.
3983      break;
3984
3985    case OR_Ambiguous:
3986      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3987          << UnaryOperator::getOpcodeStr(Opc)
3988          << Input->getSourceRange();
3989      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3990      return ExprError();
3991
3992    case OR_Deleted:
3993      Diag(OpLoc, diag::err_ovl_deleted_oper)
3994        << Best->Function->isDeleted()
3995        << UnaryOperator::getOpcodeStr(Opc)
3996        << Input->getSourceRange();
3997      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3998      return ExprError();
3999    }
4000
4001  // Either we found no viable overloaded operator or we matched a
4002  // built-in operator. In either case, fall through to trying to
4003  // build a built-in operation.
4004  input.release();
4005  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4006}
4007
4008/// \brief Create a binary operation that may resolve to an overloaded
4009/// operator.
4010///
4011/// \param OpLoc The location of the operator itself (e.g., '+').
4012///
4013/// \param OpcIn The BinaryOperator::Opcode that describes this
4014/// operator.
4015///
4016/// \param Functions The set of non-member functions that will be
4017/// considered by overload resolution. The caller needs to build this
4018/// set based on the context using, e.g.,
4019/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4020/// set should not contain any member functions; those will be added
4021/// by CreateOverloadedBinOp().
4022///
4023/// \param LHS Left-hand argument.
4024/// \param RHS Right-hand argument.
4025Sema::OwningExprResult
4026Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4027                            unsigned OpcIn,
4028                            FunctionSet &Functions,
4029                            Expr *LHS, Expr *RHS) {
4030  Expr *Args[2] = { LHS, RHS };
4031
4032  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4033  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4034  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4035
4036  // If either side is type-dependent, create an appropriate dependent
4037  // expression.
4038  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4039    // .* cannot be overloaded.
4040    if (Opc == BinaryOperator::PtrMemD)
4041      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4042                                                Context.DependentTy, OpLoc));
4043
4044    OverloadedFunctionDecl *Overloads
4045      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4046    for (FunctionSet::iterator Func = Functions.begin(),
4047                            FuncEnd = Functions.end();
4048         Func != FuncEnd; ++Func)
4049      Overloads->addOverload(*Func);
4050
4051    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4052                                                OpLoc, false, false);
4053
4054    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4055                                                   Args, 2,
4056                                                   Context.DependentTy,
4057                                                   OpLoc));
4058  }
4059
4060  // If this is the .* operator, which is not overloadable, just
4061  // create a built-in binary operator.
4062  if (Opc == BinaryOperator::PtrMemD)
4063    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4064
4065  // If this is one of the assignment operators, we only perform
4066  // overload resolution if the left-hand side is a class or
4067  // enumeration type (C++ [expr.ass]p3).
4068  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4069      !LHS->getType()->isOverloadableType())
4070    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4071
4072  // Build an empty overload set.
4073  OverloadCandidateSet CandidateSet;
4074
4075  // Add the candidates from the given function set.
4076  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4077
4078  // Add operator candidates that are member functions.
4079  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4080
4081  // Add builtin operator candidates.
4082  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4083
4084  // Perform overload resolution.
4085  OverloadCandidateSet::iterator Best;
4086  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4087    case OR_Success: {
4088      // We found a built-in operator or an overloaded operator.
4089      FunctionDecl *FnDecl = Best->Function;
4090
4091      if (FnDecl) {
4092        // We matched an overloaded operator. Build a call to that
4093        // operator.
4094
4095        // Convert the arguments.
4096        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4097          if (PerformObjectArgumentInitialization(LHS, Method) ||
4098              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4099                                        "passing"))
4100            return ExprError();
4101        } else {
4102          // Convert the arguments.
4103          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4104                                        "passing") ||
4105              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4106                                        "passing"))
4107            return ExprError();
4108        }
4109
4110        // Determine the result type
4111        QualType ResultTy
4112          = FnDecl->getType()->getAsFunctionType()->getResultType();
4113        ResultTy = ResultTy.getNonReferenceType();
4114
4115        // Build the actual expression node.
4116        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4117                                                 SourceLocation());
4118        UsualUnaryConversions(FnExpr);
4119
4120        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4121                                                       Args, 2, ResultTy,
4122                                                       OpLoc));
4123      } else {
4124        // We matched a built-in operator. Convert the arguments, then
4125        // break out so that we will build the appropriate built-in
4126        // operator node.
4127        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4128                                      Best->Conversions[0], "passing") ||
4129            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4130                                      Best->Conversions[1], "passing"))
4131          return ExprError();
4132
4133        break;
4134      }
4135    }
4136
4137    case OR_No_Viable_Function:
4138      // For class as left operand for assignment or compound assigment operator
4139      // do not fall through to handling in built-in, but report that no overloaded
4140      // assignment operator found
4141      if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4142        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4143             << BinaryOperator::getOpcodeStr(Opc)
4144             << LHS->getSourceRange() << RHS->getSourceRange();
4145        return ExprError();
4146      }
4147      // No viable function; fall through to handling this as a
4148      // built-in operator, which will produce an error message for us.
4149      break;
4150
4151    case OR_Ambiguous:
4152      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4153          << BinaryOperator::getOpcodeStr(Opc)
4154          << LHS->getSourceRange() << RHS->getSourceRange();
4155      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4156      return ExprError();
4157
4158    case OR_Deleted:
4159      Diag(OpLoc, diag::err_ovl_deleted_oper)
4160        << Best->Function->isDeleted()
4161        << BinaryOperator::getOpcodeStr(Opc)
4162        << LHS->getSourceRange() << RHS->getSourceRange();
4163      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4164      return ExprError();
4165    }
4166
4167  // Either we found no viable overloaded operator or we matched a
4168  // built-in operator. In either case, try to build a built-in
4169  // operation.
4170  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4171}
4172
4173/// BuildCallToMemberFunction - Build a call to a member
4174/// function. MemExpr is the expression that refers to the member
4175/// function (and includes the object parameter), Args/NumArgs are the
4176/// arguments to the function call (not including the object
4177/// parameter). The caller needs to validate that the member
4178/// expression refers to a member function or an overloaded member
4179/// function.
4180Sema::ExprResult
4181Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4182                                SourceLocation LParenLoc, Expr **Args,
4183                                unsigned NumArgs, SourceLocation *CommaLocs,
4184                                SourceLocation RParenLoc) {
4185  // Dig out the member expression. This holds both the object
4186  // argument and the member function we're referring to.
4187  MemberExpr *MemExpr = 0;
4188  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4189    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4190  else
4191    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4192  assert(MemExpr && "Building member call without member expression");
4193
4194  // Extract the object argument.
4195  Expr *ObjectArg = MemExpr->getBase();
4196
4197  CXXMethodDecl *Method = 0;
4198  if (OverloadedFunctionDecl *Ovl
4199        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4200    // Add overload candidates
4201    OverloadCandidateSet CandidateSet;
4202    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4203                                                FuncEnd = Ovl->function_end();
4204         Func != FuncEnd; ++Func) {
4205      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4206      Method = cast<CXXMethodDecl>(*Func);
4207      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4208                         /*SuppressUserConversions=*/false);
4209    }
4210
4211    OverloadCandidateSet::iterator Best;
4212    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4213    case OR_Success:
4214      Method = cast<CXXMethodDecl>(Best->Function);
4215      break;
4216
4217    case OR_No_Viable_Function:
4218      Diag(MemExpr->getSourceRange().getBegin(),
4219           diag::err_ovl_no_viable_member_function_in_call)
4220        << Ovl->getDeclName() << MemExprE->getSourceRange();
4221      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4222      // FIXME: Leaking incoming expressions!
4223      return true;
4224
4225    case OR_Ambiguous:
4226      Diag(MemExpr->getSourceRange().getBegin(),
4227           diag::err_ovl_ambiguous_member_call)
4228        << Ovl->getDeclName() << MemExprE->getSourceRange();
4229      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4230      // FIXME: Leaking incoming expressions!
4231      return true;
4232
4233    case OR_Deleted:
4234      Diag(MemExpr->getSourceRange().getBegin(),
4235           diag::err_ovl_deleted_member_call)
4236        << Best->Function->isDeleted()
4237        << Ovl->getDeclName() << MemExprE->getSourceRange();
4238      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4239      // FIXME: Leaking incoming expressions!
4240      return true;
4241    }
4242
4243    FixOverloadedFunctionReference(MemExpr, Method);
4244  } else {
4245    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4246  }
4247
4248  assert(Method && "Member call to something that isn't a method?");
4249  ExprOwningPtr<CXXMemberCallExpr>
4250    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4251                                                  NumArgs,
4252                                  Method->getResultType().getNonReferenceType(),
4253                                  RParenLoc));
4254
4255  // Convert the object argument (for a non-static member function call).
4256  if (!Method->isStatic() &&
4257      PerformObjectArgumentInitialization(ObjectArg, Method))
4258    return true;
4259  MemExpr->setBase(ObjectArg);
4260
4261  // Convert the rest of the arguments
4262  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4263  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4264                              RParenLoc))
4265    return true;
4266
4267  return CheckFunctionCall(Method, TheCall.take()).release();
4268}
4269
4270/// BuildCallToObjectOfClassType - Build a call to an object of class
4271/// type (C++ [over.call.object]), which can end up invoking an
4272/// overloaded function call operator (@c operator()) or performing a
4273/// user-defined conversion on the object argument.
4274Sema::ExprResult
4275Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4276                                   SourceLocation LParenLoc,
4277                                   Expr **Args, unsigned NumArgs,
4278                                   SourceLocation *CommaLocs,
4279                                   SourceLocation RParenLoc) {
4280  assert(Object->getType()->isRecordType() && "Requires object type argument");
4281  const RecordType *Record = Object->getType()->getAsRecordType();
4282
4283  // C++ [over.call.object]p1:
4284  //  If the primary-expression E in the function call syntax
4285  //  evaluates to a class object of type “cv T”, then the set of
4286  //  candidate functions includes at least the function call
4287  //  operators of T. The function call operators of T are obtained by
4288  //  ordinary lookup of the name operator() in the context of
4289  //  (E).operator().
4290  OverloadCandidateSet CandidateSet;
4291  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4292  DeclContext::lookup_const_iterator Oper, OperEnd;
4293  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
4294       Oper != OperEnd; ++Oper)
4295    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4296                       CandidateSet, /*SuppressUserConversions=*/false);
4297
4298  // C++ [over.call.object]p2:
4299  //   In addition, for each conversion function declared in T of the
4300  //   form
4301  //
4302  //        operator conversion-type-id () cv-qualifier;
4303  //
4304  //   where cv-qualifier is the same cv-qualification as, or a
4305  //   greater cv-qualification than, cv, and where conversion-type-id
4306  //   denotes the type "pointer to function of (P1,...,Pn) returning
4307  //   R", or the type "reference to pointer to function of
4308  //   (P1,...,Pn) returning R", or the type "reference to function
4309  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4310  //   is also considered as a candidate function. Similarly,
4311  //   surrogate call functions are added to the set of candidate
4312  //   functions for each conversion function declared in an
4313  //   accessible base class provided the function is not hidden
4314  //   within T by another intervening declaration.
4315  //
4316  // FIXME: Look in base classes for more conversion operators!
4317  OverloadedFunctionDecl *Conversions
4318    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4319  for (OverloadedFunctionDecl::function_iterator
4320         Func = Conversions->function_begin(),
4321         FuncEnd = Conversions->function_end();
4322       Func != FuncEnd; ++Func) {
4323    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4324
4325    // Strip the reference type (if any) and then the pointer type (if
4326    // any) to get down to what might be a function type.
4327    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4328    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4329      ConvType = ConvPtrType->getPointeeType();
4330
4331    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4332      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4333  }
4334
4335  // Perform overload resolution.
4336  OverloadCandidateSet::iterator Best;
4337  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4338  case OR_Success:
4339    // Overload resolution succeeded; we'll build the appropriate call
4340    // below.
4341    break;
4342
4343  case OR_No_Viable_Function:
4344    Diag(Object->getSourceRange().getBegin(),
4345         diag::err_ovl_no_viable_object_call)
4346      << Object->getType() << Object->getSourceRange();
4347    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4348    break;
4349
4350  case OR_Ambiguous:
4351    Diag(Object->getSourceRange().getBegin(),
4352         diag::err_ovl_ambiguous_object_call)
4353      << Object->getType() << Object->getSourceRange();
4354    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4355    break;
4356
4357  case OR_Deleted:
4358    Diag(Object->getSourceRange().getBegin(),
4359         diag::err_ovl_deleted_object_call)
4360      << Best->Function->isDeleted()
4361      << Object->getType() << Object->getSourceRange();
4362    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4363    break;
4364  }
4365
4366  if (Best == CandidateSet.end()) {
4367    // We had an error; delete all of the subexpressions and return
4368    // the error.
4369    Object->Destroy(Context);
4370    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4371      Args[ArgIdx]->Destroy(Context);
4372    return true;
4373  }
4374
4375  if (Best->Function == 0) {
4376    // Since there is no function declaration, this is one of the
4377    // surrogate candidates. Dig out the conversion function.
4378    CXXConversionDecl *Conv
4379      = cast<CXXConversionDecl>(
4380                         Best->Conversions[0].UserDefined.ConversionFunction);
4381
4382    // We selected one of the surrogate functions that converts the
4383    // object parameter to a function pointer. Perform the conversion
4384    // on the object argument, then let ActOnCallExpr finish the job.
4385    // FIXME: Represent the user-defined conversion in the AST!
4386    ImpCastExprToType(Object,
4387                      Conv->getConversionType().getNonReferenceType(),
4388                      Conv->getConversionType()->isLValueReferenceType());
4389    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4390                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4391                         CommaLocs, RParenLoc).release();
4392  }
4393
4394  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4395  // that calls this method, using Object for the implicit object
4396  // parameter and passing along the remaining arguments.
4397  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4398  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4399
4400  unsigned NumArgsInProto = Proto->getNumArgs();
4401  unsigned NumArgsToCheck = NumArgs;
4402
4403  // Build the full argument list for the method call (the
4404  // implicit object parameter is placed at the beginning of the
4405  // list).
4406  Expr **MethodArgs;
4407  if (NumArgs < NumArgsInProto) {
4408    NumArgsToCheck = NumArgsInProto;
4409    MethodArgs = new Expr*[NumArgsInProto + 1];
4410  } else {
4411    MethodArgs = new Expr*[NumArgs + 1];
4412  }
4413  MethodArgs[0] = Object;
4414  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4415    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4416
4417  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4418                                          SourceLocation());
4419  UsualUnaryConversions(NewFn);
4420
4421  // Once we've built TheCall, all of the expressions are properly
4422  // owned.
4423  QualType ResultTy = Method->getResultType().getNonReferenceType();
4424  ExprOwningPtr<CXXOperatorCallExpr>
4425    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4426                                                    MethodArgs, NumArgs + 1,
4427                                                    ResultTy, RParenLoc));
4428  delete [] MethodArgs;
4429
4430  // We may have default arguments. If so, we need to allocate more
4431  // slots in the call for them.
4432  if (NumArgs < NumArgsInProto)
4433    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4434  else if (NumArgs > NumArgsInProto)
4435    NumArgsToCheck = NumArgsInProto;
4436
4437  bool IsError = false;
4438
4439  // Initialize the implicit object parameter.
4440  IsError |= PerformObjectArgumentInitialization(Object, Method);
4441  TheCall->setArg(0, Object);
4442
4443
4444  // Check the argument types.
4445  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4446    Expr *Arg;
4447    if (i < NumArgs) {
4448      Arg = Args[i];
4449
4450      // Pass the argument.
4451      QualType ProtoArgType = Proto->getArgType(i);
4452      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4453    } else {
4454      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4455    }
4456
4457    TheCall->setArg(i + 1, Arg);
4458  }
4459
4460  // If this is a variadic call, handle args passed through "...".
4461  if (Proto->isVariadic()) {
4462    // Promote the arguments (C99 6.5.2.2p7).
4463    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4464      Expr *Arg = Args[i];
4465      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4466      TheCall->setArg(i + 1, Arg);
4467    }
4468  }
4469
4470  if (IsError) return true;
4471
4472  return CheckFunctionCall(Method, TheCall.take()).release();
4473}
4474
4475/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4476///  (if one exists), where @c Base is an expression of class type and
4477/// @c Member is the name of the member we're trying to find.
4478Action::ExprResult
4479Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4480                               SourceLocation MemberLoc,
4481                               IdentifierInfo &Member) {
4482  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4483
4484  // C++ [over.ref]p1:
4485  //
4486  //   [...] An expression x->m is interpreted as (x.operator->())->m
4487  //   for a class object x of type T if T::operator->() exists and if
4488  //   the operator is selected as the best match function by the
4489  //   overload resolution mechanism (13.3).
4490  // FIXME: look in base classes.
4491  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4492  OverloadCandidateSet CandidateSet;
4493  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4494
4495  DeclContext::lookup_const_iterator Oper, OperEnd;
4496  for (llvm::tie(Oper, OperEnd)
4497         = BaseRecord->getDecl()->lookup(Context, OpName);
4498       Oper != OperEnd; ++Oper)
4499    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4500                       /*SuppressUserConversions=*/false);
4501
4502  ExprOwningPtr<Expr> BasePtr(this, Base);
4503
4504  // Perform overload resolution.
4505  OverloadCandidateSet::iterator Best;
4506  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4507  case OR_Success:
4508    // Overload resolution succeeded; we'll build the call below.
4509    break;
4510
4511  case OR_No_Viable_Function:
4512    if (CandidateSet.empty())
4513      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4514        << BasePtr->getType() << BasePtr->getSourceRange();
4515    else
4516      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4517        << "operator->" << BasePtr->getSourceRange();
4518    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4519    return true;
4520
4521  case OR_Ambiguous:
4522    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4523      << "operator->" << BasePtr->getSourceRange();
4524    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4525    return true;
4526
4527  case OR_Deleted:
4528    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4529      << Best->Function->isDeleted()
4530      << "operator->" << BasePtr->getSourceRange();
4531    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4532    return true;
4533  }
4534
4535  // Convert the object parameter.
4536  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4537  if (PerformObjectArgumentInitialization(Base, Method))
4538    return true;
4539
4540  // No concerns about early exits now.
4541  BasePtr.take();
4542
4543  // Build the operator call.
4544  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4545                                           SourceLocation());
4546  UsualUnaryConversions(FnExpr);
4547  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4548                                 Method->getResultType().getNonReferenceType(),
4549                                 OpLoc);
4550  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4551                                  MemberLoc, Member, DeclPtrTy()).release();
4552}
4553
4554/// FixOverloadedFunctionReference - E is an expression that refers to
4555/// a C++ overloaded function (possibly with some parentheses and
4556/// perhaps a '&' around it). We have resolved the overloaded function
4557/// to the function declaration Fn, so patch up the expression E to
4558/// refer (possibly indirectly) to Fn.
4559void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4560  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4561    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4562    E->setType(PE->getSubExpr()->getType());
4563  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4564    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4565           "Can only take the address of an overloaded function");
4566    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4567      if (Method->isStatic()) {
4568        // Do nothing: static member functions aren't any different
4569        // from non-member functions.
4570      }
4571      else if (QualifiedDeclRefExpr *DRE
4572                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4573        // We have taken the address of a pointer to member
4574        // function. Perform the computation here so that we get the
4575        // appropriate pointer to member type.
4576        DRE->setDecl(Fn);
4577        DRE->setType(Fn->getType());
4578        QualType ClassType
4579          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4580        E->setType(Context.getMemberPointerType(Fn->getType(),
4581                                                ClassType.getTypePtr()));
4582        return;
4583      }
4584    }
4585    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4586    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4587  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4588    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4589           "Expected overloaded function");
4590    DR->setDecl(Fn);
4591    E->setType(Fn->getType());
4592  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4593    MemExpr->setMemberDecl(Fn);
4594    E->setType(Fn->getType());
4595  } else {
4596    assert(false && "Invalid reference to overloaded function");
4597  }
4598}
4599
4600} // end namespace clang
4601