SemaOverload.cpp revision 9dd3f959d1c82f95cb2022f2ab5e7bc983e46fd9
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Lex/Preprocessor.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407/// If @p UserCast, the implicit conversion is being done for a user-specified
408/// cast.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue,
413                            bool InOverloadResolution,
414                            bool UserCast) {
415  ImplicitConversionSequence ICS;
416  OverloadCandidateSet Conversions;
417  OverloadingResult UserDefResult = OR_Success;
418  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
419    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
420  else if (getLangOptions().CPlusPlus &&
421           (UserDefResult = IsUserDefinedConversion(From, ToType,
422                                   ICS.UserDefined,
423                                   Conversions,
424                                   !SuppressUserConversions, AllowExplicit,
425				   ForceRValue, UserCast)) == OR_Success) {
426    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
427    // C++ [over.ics.user]p4:
428    //   A conversion of an expression of class type to the same class
429    //   type is given Exact Match rank, and a conversion of an
430    //   expression of class type to a base class of that type is
431    //   given Conversion rank, in spite of the fact that a copy
432    //   constructor (i.e., a user-defined conversion function) is
433    //   called for those cases.
434    if (CXXConstructorDecl *Constructor
435          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
436      QualType FromCanon
437        = Context.getCanonicalType(From->getType().getUnqualifiedType());
438      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
439      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
440        // Turn this into a "standard" conversion sequence, so that it
441        // gets ranked with standard conversion sequences.
442        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
443        ICS.Standard.setAsIdentityConversion();
444        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
445        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
446        ICS.Standard.CopyConstructor = Constructor;
447        if (ToCanon != FromCanon)
448          ICS.Standard.Second = ICK_Derived_To_Base;
449      }
450    }
451
452    // C++ [over.best.ics]p4:
453    //   However, when considering the argument of a user-defined
454    //   conversion function that is a candidate by 13.3.1.3 when
455    //   invoked for the copying of the temporary in the second step
456    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
457    //   13.3.1.6 in all cases, only standard conversion sequences and
458    //   ellipsis conversion sequences are allowed.
459    if (SuppressUserConversions &&
460        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
461      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
462  } else {
463    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
464    if (UserDefResult == OR_Ambiguous) {
465      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
466           Cand != Conversions.end(); ++Cand)
467        if (Cand->Viable)
468          ICS.ConversionFunctionSet.push_back(Cand->Function);
469    }
470  }
471
472  return ICS;
473}
474
475/// IsStandardConversion - Determines whether there is a standard
476/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
477/// expression From to the type ToType. Standard conversion sequences
478/// only consider non-class types; for conversions that involve class
479/// types, use TryImplicitConversion. If a conversion exists, SCS will
480/// contain the standard conversion sequence required to perform this
481/// conversion and this routine will return true. Otherwise, this
482/// routine will return false and the value of SCS is unspecified.
483bool
484Sema::IsStandardConversion(Expr* From, QualType ToType,
485                           bool InOverloadResolution,
486                           StandardConversionSequence &SCS) {
487  QualType FromType = From->getType();
488
489  // Standard conversions (C++ [conv])
490  SCS.setAsIdentityConversion();
491  SCS.Deprecated = false;
492  SCS.IncompatibleObjC = false;
493  SCS.FromTypePtr = FromType.getAsOpaquePtr();
494  SCS.CopyConstructor = 0;
495
496  // There are no standard conversions for class types in C++, so
497  // abort early. When overloading in C, however, we do permit
498  if (FromType->isRecordType() || ToType->isRecordType()) {
499    if (getLangOptions().CPlusPlus)
500      return false;
501
502    // When we're overloading in C, we allow, as standard conversions,
503  }
504
505  // The first conversion can be an lvalue-to-rvalue conversion,
506  // array-to-pointer conversion, or function-to-pointer conversion
507  // (C++ 4p1).
508
509  // Lvalue-to-rvalue conversion (C++ 4.1):
510  //   An lvalue (3.10) of a non-function, non-array type T can be
511  //   converted to an rvalue.
512  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
513  if (argIsLvalue == Expr::LV_Valid &&
514      !FromType->isFunctionType() && !FromType->isArrayType() &&
515      Context.getCanonicalType(FromType) != Context.OverloadTy) {
516    SCS.First = ICK_Lvalue_To_Rvalue;
517
518    // If T is a non-class type, the type of the rvalue is the
519    // cv-unqualified version of T. Otherwise, the type of the rvalue
520    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
521    // just strip the qualifiers because they don't matter.
522
523    // FIXME: Doesn't see through to qualifiers behind a typedef!
524    FromType = FromType.getUnqualifiedType();
525  } else if (FromType->isArrayType()) {
526    // Array-to-pointer conversion (C++ 4.2)
527    SCS.First = ICK_Array_To_Pointer;
528
529    // An lvalue or rvalue of type "array of N T" or "array of unknown
530    // bound of T" can be converted to an rvalue of type "pointer to
531    // T" (C++ 4.2p1).
532    FromType = Context.getArrayDecayedType(FromType);
533
534    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
535      // This conversion is deprecated. (C++ D.4).
536      SCS.Deprecated = true;
537
538      // For the purpose of ranking in overload resolution
539      // (13.3.3.1.1), this conversion is considered an
540      // array-to-pointer conversion followed by a qualification
541      // conversion (4.4). (C++ 4.2p2)
542      SCS.Second = ICK_Identity;
543      SCS.Third = ICK_Qualification;
544      SCS.ToTypePtr = ToType.getAsOpaquePtr();
545      return true;
546    }
547  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
548    // Function-to-pointer conversion (C++ 4.3).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // An lvalue of function type T can be converted to an rvalue of
552    // type "pointer to T." The result is a pointer to the
553    // function. (C++ 4.3p1).
554    FromType = Context.getPointerType(FromType);
555  } else if (FunctionDecl *Fn
556             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
557    // Address of overloaded function (C++ [over.over]).
558    SCS.First = ICK_Function_To_Pointer;
559
560    // We were able to resolve the address of the overloaded function,
561    // so we can convert to the type of that function.
562    FromType = Fn->getType();
563    if (ToType->isLValueReferenceType())
564      FromType = Context.getLValueReferenceType(FromType);
565    else if (ToType->isRValueReferenceType())
566      FromType = Context.getRValueReferenceType(FromType);
567    else if (ToType->isMemberPointerType()) {
568      // Resolve address only succeeds if both sides are member pointers,
569      // but it doesn't have to be the same class. See DR 247.
570      // Note that this means that the type of &Derived::fn can be
571      // Ret (Base::*)(Args) if the fn overload actually found is from the
572      // base class, even if it was brought into the derived class via a
573      // using declaration. The standard isn't clear on this issue at all.
574      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
575      FromType = Context.getMemberPointerType(FromType,
576                    Context.getTypeDeclType(M->getParent()).getTypePtr());
577    } else
578      FromType = Context.getPointerType(FromType);
579  } else {
580    // We don't require any conversions for the first step.
581    SCS.First = ICK_Identity;
582  }
583
584  // The second conversion can be an integral promotion, floating
585  // point promotion, integral conversion, floating point conversion,
586  // floating-integral conversion, pointer conversion,
587  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
588  // For overloading in C, this can also be a "compatible-type"
589  // conversion.
590  bool IncompatibleObjC = false;
591  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
592    // The unqualified versions of the types are the same: there's no
593    // conversion to do.
594    SCS.Second = ICK_Identity;
595  } else if (IsIntegralPromotion(From, FromType, ToType)) {
596    // Integral promotion (C++ 4.5).
597    SCS.Second = ICK_Integral_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsFloatingPointPromotion(FromType, ToType)) {
600    // Floating point promotion (C++ 4.6).
601    SCS.Second = ICK_Floating_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if (IsComplexPromotion(FromType, ToType)) {
604    // Complex promotion (Clang extension)
605    SCS.Second = ICK_Complex_Promotion;
606    FromType = ToType.getUnqualifiedType();
607  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
608           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
609    // Integral conversions (C++ 4.7).
610    // FIXME: isIntegralType shouldn't be true for enums in C++.
611    SCS.Second = ICK_Integral_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
614    // Floating point conversions (C++ 4.8).
615    SCS.Second = ICK_Floating_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if (FromType->isComplexType() && ToType->isComplexType()) {
618    // Complex conversions (C99 6.3.1.6)
619    SCS.Second = ICK_Complex_Conversion;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isFloatingType() &&
622              ToType->isIntegralType() && (!ToType->isBooleanType() &&
623                                           !ToType->isEnumeralType())) ||
624             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625              ToType->isFloatingType())) {
626    // Floating-integral conversions (C++ 4.9).
627    // FIXME: isIntegralType shouldn't be true for enums in C++.
628    SCS.Second = ICK_Floating_Integral;
629    FromType = ToType.getUnqualifiedType();
630  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631             (ToType->isComplexType() && FromType->isArithmeticType())) {
632    // Complex-real conversions (C99 6.3.1.7)
633    SCS.Second = ICK_Complex_Real;
634    FromType = ToType.getUnqualifiedType();
635  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
636                                 FromType, IncompatibleObjC)) {
637    // Pointer conversions (C++ 4.10).
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  } else if (IsMemberPointerConversion(From, FromType, ToType,
641                                       InOverloadResolution, FromType)) {
642    // Pointer to member conversions (4.11).
643    SCS.Second = ICK_Pointer_Member;
644  } else if (ToType->isBooleanType() &&
645             (FromType->isArithmeticType() ||
646              FromType->isEnumeralType() ||
647              FromType->isPointerType() ||
648              FromType->isBlockPointerType() ||
649              FromType->isMemberPointerType() ||
650              FromType->isNullPtrType())) {
651    // Boolean conversions (C++ 4.12).
652    SCS.Second = ICK_Boolean_Conversion;
653    FromType = Context.BoolTy;
654  } else if (!getLangOptions().CPlusPlus &&
655             Context.typesAreCompatible(ToType, FromType)) {
656    // Compatible conversions (Clang extension for C function overloading)
657    SCS.Second = ICK_Compatible_Conversion;
658  } else {
659    // No second conversion required.
660    SCS.Second = ICK_Identity;
661  }
662
663  QualType CanonFrom;
664  QualType CanonTo;
665  // The third conversion can be a qualification conversion (C++ 4p1).
666  if (IsQualificationConversion(FromType, ToType)) {
667    SCS.Third = ICK_Qualification;
668    FromType = ToType;
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671  } else {
672    // No conversion required
673    SCS.Third = ICK_Identity;
674
675    // C++ [over.best.ics]p6:
676    //   [...] Any difference in top-level cv-qualification is
677    //   subsumed by the initialization itself and does not constitute
678    //   a conversion. [...]
679    CanonFrom = Context.getCanonicalType(FromType);
680    CanonTo = Context.getCanonicalType(ToType);
681    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
682        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
683      FromType = ToType;
684      CanonFrom = CanonTo;
685    }
686  }
687
688  // If we have not converted the argument type to the parameter type,
689  // this is a bad conversion sequence.
690  if (CanonFrom != CanonTo)
691    return false;
692
693  SCS.ToTypePtr = FromType.getAsOpaquePtr();
694  return true;
695}
696
697/// IsIntegralPromotion - Determines whether the conversion from the
698/// expression From (whose potentially-adjusted type is FromType) to
699/// ToType is an integral promotion (C++ 4.5). If so, returns true and
700/// sets PromotedType to the promoted type.
701bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
702  const BuiltinType *To = ToType->getAs<BuiltinType>();
703  // All integers are built-in.
704  if (!To) {
705    return false;
706  }
707
708  // An rvalue of type char, signed char, unsigned char, short int, or
709  // unsigned short int can be converted to an rvalue of type int if
710  // int can represent all the values of the source type; otherwise,
711  // the source rvalue can be converted to an rvalue of type unsigned
712  // int (C++ 4.5p1).
713  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
714    if (// We can promote any signed, promotable integer type to an int
715        (FromType->isSignedIntegerType() ||
716         // We can promote any unsigned integer type whose size is
717         // less than int to an int.
718         (!FromType->isSignedIntegerType() &&
719          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
720      return To->getKind() == BuiltinType::Int;
721    }
722
723    return To->getKind() == BuiltinType::UInt;
724  }
725
726  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
727  // can be converted to an rvalue of the first of the following types
728  // that can represent all the values of its underlying type: int,
729  // unsigned int, long, or unsigned long (C++ 4.5p2).
730  if ((FromType->isEnumeralType() || FromType->isWideCharType())
731      && ToType->isIntegerType()) {
732    // Determine whether the type we're converting from is signed or
733    // unsigned.
734    bool FromIsSigned;
735    uint64_t FromSize = Context.getTypeSize(FromType);
736    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
737      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
738      FromIsSigned = UnderlyingType->isSignedIntegerType();
739    } else {
740      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
741      FromIsSigned = true;
742    }
743
744    // The types we'll try to promote to, in the appropriate
745    // order. Try each of these types.
746    QualType PromoteTypes[6] = {
747      Context.IntTy, Context.UnsignedIntTy,
748      Context.LongTy, Context.UnsignedLongTy ,
749      Context.LongLongTy, Context.UnsignedLongLongTy
750    };
751    for (int Idx = 0; Idx < 6; ++Idx) {
752      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
753      if (FromSize < ToSize ||
754          (FromSize == ToSize &&
755           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
756        // We found the type that we can promote to. If this is the
757        // type we wanted, we have a promotion. Otherwise, no
758        // promotion.
759        return Context.getCanonicalType(ToType).getUnqualifiedType()
760          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
761      }
762    }
763  }
764
765  // An rvalue for an integral bit-field (9.6) can be converted to an
766  // rvalue of type int if int can represent all the values of the
767  // bit-field; otherwise, it can be converted to unsigned int if
768  // unsigned int can represent all the values of the bit-field. If
769  // the bit-field is larger yet, no integral promotion applies to
770  // it. If the bit-field has an enumerated type, it is treated as any
771  // other value of that type for promotion purposes (C++ 4.5p3).
772  // FIXME: We should delay checking of bit-fields until we actually perform the
773  // conversion.
774  using llvm::APSInt;
775  if (From)
776    if (FieldDecl *MemberDecl = From->getBitField()) {
777      APSInt BitWidth;
778      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
779          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
780        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
781        ToSize = Context.getTypeSize(ToType);
782
783        // Are we promoting to an int from a bitfield that fits in an int?
784        if (BitWidth < ToSize ||
785            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
786          return To->getKind() == BuiltinType::Int;
787        }
788
789        // Are we promoting to an unsigned int from an unsigned bitfield
790        // that fits into an unsigned int?
791        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
792          return To->getKind() == BuiltinType::UInt;
793        }
794
795        return false;
796      }
797    }
798
799  // An rvalue of type bool can be converted to an rvalue of type int,
800  // with false becoming zero and true becoming one (C++ 4.5p4).
801  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
802    return true;
803  }
804
805  return false;
806}
807
808/// IsFloatingPointPromotion - Determines whether the conversion from
809/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
810/// returns true and sets PromotedType to the promoted type.
811bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
812  /// An rvalue of type float can be converted to an rvalue of type
813  /// double. (C++ 4.6p1).
814  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
815    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
816      if (FromBuiltin->getKind() == BuiltinType::Float &&
817          ToBuiltin->getKind() == BuiltinType::Double)
818        return true;
819
820      // C99 6.3.1.5p1:
821      //   When a float is promoted to double or long double, or a
822      //   double is promoted to long double [...].
823      if (!getLangOptions().CPlusPlus &&
824          (FromBuiltin->getKind() == BuiltinType::Float ||
825           FromBuiltin->getKind() == BuiltinType::Double) &&
826          (ToBuiltin->getKind() == BuiltinType::LongDouble))
827        return true;
828    }
829
830  return false;
831}
832
833/// \brief Determine if a conversion is a complex promotion.
834///
835/// A complex promotion is defined as a complex -> complex conversion
836/// where the conversion between the underlying real types is a
837/// floating-point or integral promotion.
838bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
839  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
840  if (!FromComplex)
841    return false;
842
843  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
844  if (!ToComplex)
845    return false;
846
847  return IsFloatingPointPromotion(FromComplex->getElementType(),
848                                  ToComplex->getElementType()) ||
849    IsIntegralPromotion(0, FromComplex->getElementType(),
850                        ToComplex->getElementType());
851}
852
853/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
854/// the pointer type FromPtr to a pointer to type ToPointee, with the
855/// same type qualifiers as FromPtr has on its pointee type. ToType,
856/// if non-empty, will be a pointer to ToType that may or may not have
857/// the right set of qualifiers on its pointee.
858static QualType
859BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
860                                   QualType ToPointee, QualType ToType,
861                                   ASTContext &Context) {
862  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
863  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
864  Qualifiers Quals = CanonFromPointee.getQualifiers();
865
866  // Exact qualifier match -> return the pointer type we're converting to.
867  if (CanonToPointee.getQualifiers() == Quals) {
868    // ToType is exactly what we need. Return it.
869    if (!ToType.isNull())
870      return ToType;
871
872    // Build a pointer to ToPointee. It has the right qualifiers
873    // already.
874    return Context.getPointerType(ToPointee);
875  }
876
877  // Just build a canonical type that has the right qualifiers.
878  return Context.getPointerType(
879         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
880}
881
882static bool isNullPointerConstantForConversion(Expr *Expr,
883                                               bool InOverloadResolution,
884                                               ASTContext &Context) {
885  // Handle value-dependent integral null pointer constants correctly.
886  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
887  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
888      Expr->getType()->isIntegralType())
889    return !InOverloadResolution;
890
891  return Expr->isNullPointerConstant(Context,
892                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
893                                        : Expr::NPC_ValueDependentIsNull);
894}
895
896/// IsPointerConversion - Determines whether the conversion of the
897/// expression From, which has the (possibly adjusted) type FromType,
898/// can be converted to the type ToType via a pointer conversion (C++
899/// 4.10). If so, returns true and places the converted type (that
900/// might differ from ToType in its cv-qualifiers at some level) into
901/// ConvertedType.
902///
903/// This routine also supports conversions to and from block pointers
904/// and conversions with Objective-C's 'id', 'id<protocols...>', and
905/// pointers to interfaces. FIXME: Once we've determined the
906/// appropriate overloading rules for Objective-C, we may want to
907/// split the Objective-C checks into a different routine; however,
908/// GCC seems to consider all of these conversions to be pointer
909/// conversions, so for now they live here. IncompatibleObjC will be
910/// set if the conversion is an allowed Objective-C conversion that
911/// should result in a warning.
912bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
913                               bool InOverloadResolution,
914                               QualType& ConvertedType,
915                               bool &IncompatibleObjC) {
916  IncompatibleObjC = false;
917  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
918    return true;
919
920  // Conversion from a null pointer constant to any Objective-C pointer type.
921  if (ToType->isObjCObjectPointerType() &&
922      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
923    ConvertedType = ToType;
924    return true;
925  }
926
927  // Blocks: Block pointers can be converted to void*.
928  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
929      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
930    ConvertedType = ToType;
931    return true;
932  }
933  // Blocks: A null pointer constant can be converted to a block
934  // pointer type.
935  if (ToType->isBlockPointerType() &&
936      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
937    ConvertedType = ToType;
938    return true;
939  }
940
941  // If the left-hand-side is nullptr_t, the right side can be a null
942  // pointer constant.
943  if (ToType->isNullPtrType() &&
944      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
945    ConvertedType = ToType;
946    return true;
947  }
948
949  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
950  if (!ToTypePtr)
951    return false;
952
953  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
954  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
955    ConvertedType = ToType;
956    return true;
957  }
958
959  // Beyond this point, both types need to be pointers.
960  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
961  if (!FromTypePtr)
962    return false;
963
964  QualType FromPointeeType = FromTypePtr->getPointeeType();
965  QualType ToPointeeType = ToTypePtr->getPointeeType();
966
967  // An rvalue of type "pointer to cv T," where T is an object type,
968  // can be converted to an rvalue of type "pointer to cv void" (C++
969  // 4.10p2).
970  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
971    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
972                                                       ToPointeeType,
973                                                       ToType, Context);
974    return true;
975  }
976
977  // When we're overloading in C, we allow a special kind of pointer
978  // conversion for compatible-but-not-identical pointee types.
979  if (!getLangOptions().CPlusPlus &&
980      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
981    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
982                                                       ToPointeeType,
983                                                       ToType, Context);
984    return true;
985  }
986
987  // C++ [conv.ptr]p3:
988  //
989  //   An rvalue of type "pointer to cv D," where D is a class type,
990  //   can be converted to an rvalue of type "pointer to cv B," where
991  //   B is a base class (clause 10) of D. If B is an inaccessible
992  //   (clause 11) or ambiguous (10.2) base class of D, a program that
993  //   necessitates this conversion is ill-formed. The result of the
994  //   conversion is a pointer to the base class sub-object of the
995  //   derived class object. The null pointer value is converted to
996  //   the null pointer value of the destination type.
997  //
998  // Note that we do not check for ambiguity or inaccessibility
999  // here. That is handled by CheckPointerConversion.
1000  if (getLangOptions().CPlusPlus &&
1001      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1002      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1003    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1004                                                       ToPointeeType,
1005                                                       ToType, Context);
1006    return true;
1007  }
1008
1009  return false;
1010}
1011
1012/// isObjCPointerConversion - Determines whether this is an
1013/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1014/// with the same arguments and return values.
1015bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1016                                   QualType& ConvertedType,
1017                                   bool &IncompatibleObjC) {
1018  if (!getLangOptions().ObjC1)
1019    return false;
1020
1021  // First, we handle all conversions on ObjC object pointer types.
1022  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1023  const ObjCObjectPointerType *FromObjCPtr =
1024    FromType->getAs<ObjCObjectPointerType>();
1025
1026  if (ToObjCPtr && FromObjCPtr) {
1027    // Objective C++: We're able to convert between "id" or "Class" and a
1028    // pointer to any interface (in both directions).
1029    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1030      ConvertedType = ToType;
1031      return true;
1032    }
1033    // Conversions with Objective-C's id<...>.
1034    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1035         ToObjCPtr->isObjCQualifiedIdType()) &&
1036        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1037                                                  /*compare=*/false)) {
1038      ConvertedType = ToType;
1039      return true;
1040    }
1041    // Objective C++: We're able to convert from a pointer to an
1042    // interface to a pointer to a different interface.
1043    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1044      ConvertedType = ToType;
1045      return true;
1046    }
1047
1048    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1049      // Okay: this is some kind of implicit downcast of Objective-C
1050      // interfaces, which is permitted. However, we're going to
1051      // complain about it.
1052      IncompatibleObjC = true;
1053      ConvertedType = FromType;
1054      return true;
1055    }
1056  }
1057  // Beyond this point, both types need to be C pointers or block pointers.
1058  QualType ToPointeeType;
1059  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1060    ToPointeeType = ToCPtr->getPointeeType();
1061  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1062    ToPointeeType = ToBlockPtr->getPointeeType();
1063  else
1064    return false;
1065
1066  QualType FromPointeeType;
1067  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1068    FromPointeeType = FromCPtr->getPointeeType();
1069  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1070    FromPointeeType = FromBlockPtr->getPointeeType();
1071  else
1072    return false;
1073
1074  // If we have pointers to pointers, recursively check whether this
1075  // is an Objective-C conversion.
1076  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1077      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1078                              IncompatibleObjC)) {
1079    // We always complain about this conversion.
1080    IncompatibleObjC = true;
1081    ConvertedType = ToType;
1082    return true;
1083  }
1084  // If we have pointers to functions or blocks, check whether the only
1085  // differences in the argument and result types are in Objective-C
1086  // pointer conversions. If so, we permit the conversion (but
1087  // complain about it).
1088  const FunctionProtoType *FromFunctionType
1089    = FromPointeeType->getAs<FunctionProtoType>();
1090  const FunctionProtoType *ToFunctionType
1091    = ToPointeeType->getAs<FunctionProtoType>();
1092  if (FromFunctionType && ToFunctionType) {
1093    // If the function types are exactly the same, this isn't an
1094    // Objective-C pointer conversion.
1095    if (Context.getCanonicalType(FromPointeeType)
1096          == Context.getCanonicalType(ToPointeeType))
1097      return false;
1098
1099    // Perform the quick checks that will tell us whether these
1100    // function types are obviously different.
1101    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1102        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1103        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1104      return false;
1105
1106    bool HasObjCConversion = false;
1107    if (Context.getCanonicalType(FromFunctionType->getResultType())
1108          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1109      // Okay, the types match exactly. Nothing to do.
1110    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1111                                       ToFunctionType->getResultType(),
1112                                       ConvertedType, IncompatibleObjC)) {
1113      // Okay, we have an Objective-C pointer conversion.
1114      HasObjCConversion = true;
1115    } else {
1116      // Function types are too different. Abort.
1117      return false;
1118    }
1119
1120    // Check argument types.
1121    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1122         ArgIdx != NumArgs; ++ArgIdx) {
1123      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1124      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1125      if (Context.getCanonicalType(FromArgType)
1126            == Context.getCanonicalType(ToArgType)) {
1127        // Okay, the types match exactly. Nothing to do.
1128      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1129                                         ConvertedType, IncompatibleObjC)) {
1130        // Okay, we have an Objective-C pointer conversion.
1131        HasObjCConversion = true;
1132      } else {
1133        // Argument types are too different. Abort.
1134        return false;
1135      }
1136    }
1137
1138    if (HasObjCConversion) {
1139      // We had an Objective-C conversion. Allow this pointer
1140      // conversion, but complain about it.
1141      ConvertedType = ToType;
1142      IncompatibleObjC = true;
1143      return true;
1144    }
1145  }
1146
1147  return false;
1148}
1149
1150/// CheckPointerConversion - Check the pointer conversion from the
1151/// expression From to the type ToType. This routine checks for
1152/// ambiguous or inaccessible derived-to-base pointer
1153/// conversions for which IsPointerConversion has already returned
1154/// true. It returns true and produces a diagnostic if there was an
1155/// error, or returns false otherwise.
1156bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1157                                  CastExpr::CastKind &Kind) {
1158  QualType FromType = From->getType();
1159
1160  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1161    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1162      QualType FromPointeeType = FromPtrType->getPointeeType(),
1163               ToPointeeType   = ToPtrType->getPointeeType();
1164
1165      if (FromPointeeType->isRecordType() &&
1166          ToPointeeType->isRecordType()) {
1167        // We must have a derived-to-base conversion. Check an
1168        // ambiguous or inaccessible conversion.
1169        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1170                                         From->getExprLoc(),
1171                                         From->getSourceRange()))
1172          return true;
1173
1174        // The conversion was successful.
1175        Kind = CastExpr::CK_DerivedToBase;
1176      }
1177    }
1178  if (const ObjCObjectPointerType *FromPtrType =
1179        FromType->getAs<ObjCObjectPointerType>())
1180    if (const ObjCObjectPointerType *ToPtrType =
1181          ToType->getAs<ObjCObjectPointerType>()) {
1182      // Objective-C++ conversions are always okay.
1183      // FIXME: We should have a different class of conversions for the
1184      // Objective-C++ implicit conversions.
1185      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1186        return false;
1187
1188  }
1189  return false;
1190}
1191
1192/// IsMemberPointerConversion - Determines whether the conversion of the
1193/// expression From, which has the (possibly adjusted) type FromType, can be
1194/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1195/// If so, returns true and places the converted type (that might differ from
1196/// ToType in its cv-qualifiers at some level) into ConvertedType.
1197bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1198                                     QualType ToType,
1199                                     bool InOverloadResolution,
1200                                     QualType &ConvertedType) {
1201  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1202  if (!ToTypePtr)
1203    return false;
1204
1205  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1206  if (From->isNullPointerConstant(Context,
1207                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1208                                        : Expr::NPC_ValueDependentIsNull)) {
1209    ConvertedType = ToType;
1210    return true;
1211  }
1212
1213  // Otherwise, both types have to be member pointers.
1214  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1215  if (!FromTypePtr)
1216    return false;
1217
1218  // A pointer to member of B can be converted to a pointer to member of D,
1219  // where D is derived from B (C++ 4.11p2).
1220  QualType FromClass(FromTypePtr->getClass(), 0);
1221  QualType ToClass(ToTypePtr->getClass(), 0);
1222  // FIXME: What happens when these are dependent? Is this function even called?
1223
1224  if (IsDerivedFrom(ToClass, FromClass)) {
1225    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1226                                                 ToClass.getTypePtr());
1227    return true;
1228  }
1229
1230  return false;
1231}
1232
1233/// CheckMemberPointerConversion - Check the member pointer conversion from the
1234/// expression From to the type ToType. This routine checks for ambiguous or
1235/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1236/// for which IsMemberPointerConversion has already returned true. It returns
1237/// true and produces a diagnostic if there was an error, or returns false
1238/// otherwise.
1239bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1240                                        CastExpr::CastKind &Kind) {
1241  QualType FromType = From->getType();
1242  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1243  if (!FromPtrType) {
1244    // This must be a null pointer to member pointer conversion
1245    assert(From->isNullPointerConstant(Context,
1246                                       Expr::NPC_ValueDependentIsNull) &&
1247           "Expr must be null pointer constant!");
1248    Kind = CastExpr::CK_NullToMemberPointer;
1249    return false;
1250  }
1251
1252  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1253  assert(ToPtrType && "No member pointer cast has a target type "
1254                      "that is not a member pointer.");
1255
1256  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1257  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1258
1259  // FIXME: What about dependent types?
1260  assert(FromClass->isRecordType() && "Pointer into non-class.");
1261  assert(ToClass->isRecordType() && "Pointer into non-class.");
1262
1263  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1264                     /*DetectVirtual=*/true);
1265  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1266  assert(DerivationOkay &&
1267         "Should not have been called if derivation isn't OK.");
1268  (void)DerivationOkay;
1269
1270  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1271                                  getUnqualifiedType())) {
1272    // Derivation is ambiguous. Redo the check to find the exact paths.
1273    Paths.clear();
1274    Paths.setRecordingPaths(true);
1275    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1276    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1277    (void)StillOkay;
1278
1279    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1280    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1281      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1282    return true;
1283  }
1284
1285  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1286    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1287      << FromClass << ToClass << QualType(VBase, 0)
1288      << From->getSourceRange();
1289    return true;
1290  }
1291
1292  // Must be a base to derived member conversion.
1293  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1294  return false;
1295}
1296
1297/// IsQualificationConversion - Determines whether the conversion from
1298/// an rvalue of type FromType to ToType is a qualification conversion
1299/// (C++ 4.4).
1300bool
1301Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1302  FromType = Context.getCanonicalType(FromType);
1303  ToType = Context.getCanonicalType(ToType);
1304
1305  // If FromType and ToType are the same type, this is not a
1306  // qualification conversion.
1307  if (FromType == ToType)
1308    return false;
1309
1310  // (C++ 4.4p4):
1311  //   A conversion can add cv-qualifiers at levels other than the first
1312  //   in multi-level pointers, subject to the following rules: [...]
1313  bool PreviousToQualsIncludeConst = true;
1314  bool UnwrappedAnyPointer = false;
1315  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1316    // Within each iteration of the loop, we check the qualifiers to
1317    // determine if this still looks like a qualification
1318    // conversion. Then, if all is well, we unwrap one more level of
1319    // pointers or pointers-to-members and do it all again
1320    // until there are no more pointers or pointers-to-members left to
1321    // unwrap.
1322    UnwrappedAnyPointer = true;
1323
1324    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1325    //      2,j, and similarly for volatile.
1326    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1327      return false;
1328
1329    //   -- if the cv 1,j and cv 2,j are different, then const is in
1330    //      every cv for 0 < k < j.
1331    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1332        && !PreviousToQualsIncludeConst)
1333      return false;
1334
1335    // Keep track of whether all prior cv-qualifiers in the "to" type
1336    // include const.
1337    PreviousToQualsIncludeConst
1338      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1339  }
1340
1341  // We are left with FromType and ToType being the pointee types
1342  // after unwrapping the original FromType and ToType the same number
1343  // of types. If we unwrapped any pointers, and if FromType and
1344  // ToType have the same unqualified type (since we checked
1345  // qualifiers above), then this is a qualification conversion.
1346  return UnwrappedAnyPointer &&
1347    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1348}
1349
1350/// \brief Given a function template or function, extract the function template
1351/// declaration (if any) and the underlying function declaration.
1352template<typename T>
1353static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1354                                   FunctionTemplateDecl *&FunctionTemplate) {
1355  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1356  if (FunctionTemplate)
1357    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1358  else
1359    Function = cast<T>(Orig);
1360}
1361
1362/// Determines whether there is a user-defined conversion sequence
1363/// (C++ [over.ics.user]) that converts expression From to the type
1364/// ToType. If such a conversion exists, User will contain the
1365/// user-defined conversion sequence that performs such a conversion
1366/// and this routine will return true. Otherwise, this routine returns
1367/// false and User is unspecified.
1368///
1369/// \param AllowConversionFunctions true if the conversion should
1370/// consider conversion functions at all. If false, only constructors
1371/// will be considered.
1372///
1373/// \param AllowExplicit  true if the conversion should consider C++0x
1374/// "explicit" conversion functions as well as non-explicit conversion
1375/// functions (C++0x [class.conv.fct]p2).
1376///
1377/// \param ForceRValue  true if the expression should be treated as an rvalue
1378/// for overload resolution.
1379/// \param UserCast true if looking for user defined conversion for a static
1380/// cast.
1381Sema::OverloadingResult Sema::IsUserDefinedConversion(
1382                                   Expr *From, QualType ToType,
1383                                   UserDefinedConversionSequence& User,
1384                                   OverloadCandidateSet& CandidateSet,
1385                                   bool AllowConversionFunctions,
1386                                   bool AllowExplicit, bool ForceRValue,
1387                                   bool UserCast) {
1388  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1389    if (CXXRecordDecl *ToRecordDecl
1390          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1391      // C++ [over.match.ctor]p1:
1392      //   When objects of class type are direct-initialized (8.5), or
1393      //   copy-initialized from an expression of the same or a
1394      //   derived class type (8.5), overload resolution selects the
1395      //   constructor. [...] For copy-initialization, the candidate
1396      //   functions are all the converting constructors (12.3.1) of
1397      //   that class. The argument list is the expression-list within
1398      //   the parentheses of the initializer.
1399      DeclarationName ConstructorName
1400        = Context.DeclarationNames.getCXXConstructorName(
1401                          Context.getCanonicalType(ToType).getUnqualifiedType());
1402      DeclContext::lookup_iterator Con, ConEnd;
1403      for (llvm::tie(Con, ConEnd)
1404             = ToRecordDecl->lookup(ConstructorName);
1405           Con != ConEnd; ++Con) {
1406        // Find the constructor (which may be a template).
1407        CXXConstructorDecl *Constructor = 0;
1408        FunctionTemplateDecl *ConstructorTmpl
1409          = dyn_cast<FunctionTemplateDecl>(*Con);
1410        if (ConstructorTmpl)
1411          Constructor
1412            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1413        else
1414          Constructor = cast<CXXConstructorDecl>(*Con);
1415
1416        if (!Constructor->isInvalidDecl() &&
1417            Constructor->isConvertingConstructor(AllowExplicit)) {
1418          if (ConstructorTmpl)
1419            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1420                                         1, CandidateSet,
1421                                         /*SuppressUserConversions=*/!UserCast,
1422                                         ForceRValue);
1423          else
1424            // Allow one user-defined conversion when user specifies a
1425            // From->ToType conversion via an static cast (c-style, etc).
1426            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1427                                 /*SuppressUserConversions=*/!UserCast,
1428                                 ForceRValue);
1429        }
1430      }
1431    }
1432  }
1433
1434  if (!AllowConversionFunctions) {
1435    // Don't allow any conversion functions to enter the overload set.
1436  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1437                                 PDiag(0)
1438                                   << From->getSourceRange())) {
1439    // No conversion functions from incomplete types.
1440  } else if (const RecordType *FromRecordType
1441               = From->getType()->getAs<RecordType>()) {
1442    if (CXXRecordDecl *FromRecordDecl
1443         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1444      // Add all of the conversion functions as candidates.
1445      OverloadedFunctionDecl *Conversions
1446        = FromRecordDecl->getVisibleConversionFunctions();
1447      for (OverloadedFunctionDecl::function_iterator Func
1448             = Conversions->function_begin();
1449           Func != Conversions->function_end(); ++Func) {
1450        CXXConversionDecl *Conv;
1451        FunctionTemplateDecl *ConvTemplate;
1452        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1453        if (ConvTemplate)
1454          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1455        else
1456          Conv = dyn_cast<CXXConversionDecl>(*Func);
1457
1458        if (AllowExplicit || !Conv->isExplicit()) {
1459          if (ConvTemplate)
1460            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1461                                           CandidateSet);
1462          else
1463            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1464        }
1465      }
1466    }
1467  }
1468
1469  OverloadCandidateSet::iterator Best;
1470  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1471    case OR_Success:
1472      // Record the standard conversion we used and the conversion function.
1473      if (CXXConstructorDecl *Constructor
1474            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1475        // C++ [over.ics.user]p1:
1476        //   If the user-defined conversion is specified by a
1477        //   constructor (12.3.1), the initial standard conversion
1478        //   sequence converts the source type to the type required by
1479        //   the argument of the constructor.
1480        //
1481        // FIXME: What about ellipsis conversions?
1482        QualType ThisType = Constructor->getThisType(Context);
1483        User.Before = Best->Conversions[0].Standard;
1484        User.ConversionFunction = Constructor;
1485        User.After.setAsIdentityConversion();
1486        User.After.FromTypePtr
1487          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1488        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1489        return OR_Success;
1490      } else if (CXXConversionDecl *Conversion
1491                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1492        // C++ [over.ics.user]p1:
1493        //
1494        //   [...] If the user-defined conversion is specified by a
1495        //   conversion function (12.3.2), the initial standard
1496        //   conversion sequence converts the source type to the
1497        //   implicit object parameter of the conversion function.
1498        User.Before = Best->Conversions[0].Standard;
1499        User.ConversionFunction = Conversion;
1500
1501        // C++ [over.ics.user]p2:
1502        //   The second standard conversion sequence converts the
1503        //   result of the user-defined conversion to the target type
1504        //   for the sequence. Since an implicit conversion sequence
1505        //   is an initialization, the special rules for
1506        //   initialization by user-defined conversion apply when
1507        //   selecting the best user-defined conversion for a
1508        //   user-defined conversion sequence (see 13.3.3 and
1509        //   13.3.3.1).
1510        User.After = Best->FinalConversion;
1511        return OR_Success;
1512      } else {
1513        assert(false && "Not a constructor or conversion function?");
1514        return OR_No_Viable_Function;
1515      }
1516
1517    case OR_No_Viable_Function:
1518      return OR_No_Viable_Function;
1519    case OR_Deleted:
1520      // No conversion here! We're done.
1521      return OR_Deleted;
1522
1523    case OR_Ambiguous:
1524      return OR_Ambiguous;
1525    }
1526
1527  return OR_No_Viable_Function;
1528}
1529
1530bool
1531Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1532  ImplicitConversionSequence ICS;
1533  OverloadCandidateSet CandidateSet;
1534  OverloadingResult OvResult =
1535    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1536                            CandidateSet, true, false, false);
1537  if (OvResult != OR_Ambiguous)
1538    return false;
1539  Diag(From->getSourceRange().getBegin(),
1540       diag::err_typecheck_ambiguous_condition)
1541  << From->getType() << ToType << From->getSourceRange();
1542    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1543  return true;
1544}
1545
1546/// CompareImplicitConversionSequences - Compare two implicit
1547/// conversion sequences to determine whether one is better than the
1548/// other or if they are indistinguishable (C++ 13.3.3.2).
1549ImplicitConversionSequence::CompareKind
1550Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1551                                         const ImplicitConversionSequence& ICS2)
1552{
1553  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1554  // conversion sequences (as defined in 13.3.3.1)
1555  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1556  //      conversion sequence than a user-defined conversion sequence or
1557  //      an ellipsis conversion sequence, and
1558  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1559  //      conversion sequence than an ellipsis conversion sequence
1560  //      (13.3.3.1.3).
1561  //
1562  if (ICS1.ConversionKind < ICS2.ConversionKind)
1563    return ImplicitConversionSequence::Better;
1564  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1565    return ImplicitConversionSequence::Worse;
1566
1567  // Two implicit conversion sequences of the same form are
1568  // indistinguishable conversion sequences unless one of the
1569  // following rules apply: (C++ 13.3.3.2p3):
1570  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1571    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1572  else if (ICS1.ConversionKind ==
1573             ImplicitConversionSequence::UserDefinedConversion) {
1574    // User-defined conversion sequence U1 is a better conversion
1575    // sequence than another user-defined conversion sequence U2 if
1576    // they contain the same user-defined conversion function or
1577    // constructor and if the second standard conversion sequence of
1578    // U1 is better than the second standard conversion sequence of
1579    // U2 (C++ 13.3.3.2p3).
1580    if (ICS1.UserDefined.ConversionFunction ==
1581          ICS2.UserDefined.ConversionFunction)
1582      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1583                                                ICS2.UserDefined.After);
1584  }
1585
1586  return ImplicitConversionSequence::Indistinguishable;
1587}
1588
1589/// CompareStandardConversionSequences - Compare two standard
1590/// conversion sequences to determine whether one is better than the
1591/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1592ImplicitConversionSequence::CompareKind
1593Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1594                                         const StandardConversionSequence& SCS2)
1595{
1596  // Standard conversion sequence S1 is a better conversion sequence
1597  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1598
1599  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1600  //     sequences in the canonical form defined by 13.3.3.1.1,
1601  //     excluding any Lvalue Transformation; the identity conversion
1602  //     sequence is considered to be a subsequence of any
1603  //     non-identity conversion sequence) or, if not that,
1604  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1605    // Neither is a proper subsequence of the other. Do nothing.
1606    ;
1607  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1608           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1609           (SCS1.Second == ICK_Identity &&
1610            SCS1.Third == ICK_Identity))
1611    // SCS1 is a proper subsequence of SCS2.
1612    return ImplicitConversionSequence::Better;
1613  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1614           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1615           (SCS2.Second == ICK_Identity &&
1616            SCS2.Third == ICK_Identity))
1617    // SCS2 is a proper subsequence of SCS1.
1618    return ImplicitConversionSequence::Worse;
1619
1620  //  -- the rank of S1 is better than the rank of S2 (by the rules
1621  //     defined below), or, if not that,
1622  ImplicitConversionRank Rank1 = SCS1.getRank();
1623  ImplicitConversionRank Rank2 = SCS2.getRank();
1624  if (Rank1 < Rank2)
1625    return ImplicitConversionSequence::Better;
1626  else if (Rank2 < Rank1)
1627    return ImplicitConversionSequence::Worse;
1628
1629  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1630  // are indistinguishable unless one of the following rules
1631  // applies:
1632
1633  //   A conversion that is not a conversion of a pointer, or
1634  //   pointer to member, to bool is better than another conversion
1635  //   that is such a conversion.
1636  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1637    return SCS2.isPointerConversionToBool()
1638             ? ImplicitConversionSequence::Better
1639             : ImplicitConversionSequence::Worse;
1640
1641  // C++ [over.ics.rank]p4b2:
1642  //
1643  //   If class B is derived directly or indirectly from class A,
1644  //   conversion of B* to A* is better than conversion of B* to
1645  //   void*, and conversion of A* to void* is better than conversion
1646  //   of B* to void*.
1647  bool SCS1ConvertsToVoid
1648    = SCS1.isPointerConversionToVoidPointer(Context);
1649  bool SCS2ConvertsToVoid
1650    = SCS2.isPointerConversionToVoidPointer(Context);
1651  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1652    // Exactly one of the conversion sequences is a conversion to
1653    // a void pointer; it's the worse conversion.
1654    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1655                              : ImplicitConversionSequence::Worse;
1656  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1657    // Neither conversion sequence converts to a void pointer; compare
1658    // their derived-to-base conversions.
1659    if (ImplicitConversionSequence::CompareKind DerivedCK
1660          = CompareDerivedToBaseConversions(SCS1, SCS2))
1661      return DerivedCK;
1662  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1663    // Both conversion sequences are conversions to void
1664    // pointers. Compare the source types to determine if there's an
1665    // inheritance relationship in their sources.
1666    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1667    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1668
1669    // Adjust the types we're converting from via the array-to-pointer
1670    // conversion, if we need to.
1671    if (SCS1.First == ICK_Array_To_Pointer)
1672      FromType1 = Context.getArrayDecayedType(FromType1);
1673    if (SCS2.First == ICK_Array_To_Pointer)
1674      FromType2 = Context.getArrayDecayedType(FromType2);
1675
1676    QualType FromPointee1
1677      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1678    QualType FromPointee2
1679      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1680
1681    if (IsDerivedFrom(FromPointee2, FromPointee1))
1682      return ImplicitConversionSequence::Better;
1683    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1684      return ImplicitConversionSequence::Worse;
1685
1686    // Objective-C++: If one interface is more specific than the
1687    // other, it is the better one.
1688    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1689    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1690    if (FromIface1 && FromIface1) {
1691      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1692        return ImplicitConversionSequence::Better;
1693      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1694        return ImplicitConversionSequence::Worse;
1695    }
1696  }
1697
1698  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1699  // bullet 3).
1700  if (ImplicitConversionSequence::CompareKind QualCK
1701        = CompareQualificationConversions(SCS1, SCS2))
1702    return QualCK;
1703
1704  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1705    // C++0x [over.ics.rank]p3b4:
1706    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1707    //      implicit object parameter of a non-static member function declared
1708    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1709    //      rvalue and S2 binds an lvalue reference.
1710    // FIXME: We don't know if we're dealing with the implicit object parameter,
1711    // or if the member function in this case has a ref qualifier.
1712    // (Of course, we don't have ref qualifiers yet.)
1713    if (SCS1.RRefBinding != SCS2.RRefBinding)
1714      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1715                              : ImplicitConversionSequence::Worse;
1716
1717    // C++ [over.ics.rank]p3b4:
1718    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1719    //      which the references refer are the same type except for
1720    //      top-level cv-qualifiers, and the type to which the reference
1721    //      initialized by S2 refers is more cv-qualified than the type
1722    //      to which the reference initialized by S1 refers.
1723    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1724    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1725    T1 = Context.getCanonicalType(T1);
1726    T2 = Context.getCanonicalType(T2);
1727    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1728      if (T2.isMoreQualifiedThan(T1))
1729        return ImplicitConversionSequence::Better;
1730      else if (T1.isMoreQualifiedThan(T2))
1731        return ImplicitConversionSequence::Worse;
1732    }
1733  }
1734
1735  return ImplicitConversionSequence::Indistinguishable;
1736}
1737
1738/// CompareQualificationConversions - Compares two standard conversion
1739/// sequences to determine whether they can be ranked based on their
1740/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1741ImplicitConversionSequence::CompareKind
1742Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1743                                      const StandardConversionSequence& SCS2) {
1744  // C++ 13.3.3.2p3:
1745  //  -- S1 and S2 differ only in their qualification conversion and
1746  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1747  //     cv-qualification signature of type T1 is a proper subset of
1748  //     the cv-qualification signature of type T2, and S1 is not the
1749  //     deprecated string literal array-to-pointer conversion (4.2).
1750  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1751      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1752    return ImplicitConversionSequence::Indistinguishable;
1753
1754  // FIXME: the example in the standard doesn't use a qualification
1755  // conversion (!)
1756  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1757  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1758  T1 = Context.getCanonicalType(T1);
1759  T2 = Context.getCanonicalType(T2);
1760
1761  // If the types are the same, we won't learn anything by unwrapped
1762  // them.
1763  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1764    return ImplicitConversionSequence::Indistinguishable;
1765
1766  ImplicitConversionSequence::CompareKind Result
1767    = ImplicitConversionSequence::Indistinguishable;
1768  while (UnwrapSimilarPointerTypes(T1, T2)) {
1769    // Within each iteration of the loop, we check the qualifiers to
1770    // determine if this still looks like a qualification
1771    // conversion. Then, if all is well, we unwrap one more level of
1772    // pointers or pointers-to-members and do it all again
1773    // until there are no more pointers or pointers-to-members left
1774    // to unwrap. This essentially mimics what
1775    // IsQualificationConversion does, but here we're checking for a
1776    // strict subset of qualifiers.
1777    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1778      // The qualifiers are the same, so this doesn't tell us anything
1779      // about how the sequences rank.
1780      ;
1781    else if (T2.isMoreQualifiedThan(T1)) {
1782      // T1 has fewer qualifiers, so it could be the better sequence.
1783      if (Result == ImplicitConversionSequence::Worse)
1784        // Neither has qualifiers that are a subset of the other's
1785        // qualifiers.
1786        return ImplicitConversionSequence::Indistinguishable;
1787
1788      Result = ImplicitConversionSequence::Better;
1789    } else if (T1.isMoreQualifiedThan(T2)) {
1790      // T2 has fewer qualifiers, so it could be the better sequence.
1791      if (Result == ImplicitConversionSequence::Better)
1792        // Neither has qualifiers that are a subset of the other's
1793        // qualifiers.
1794        return ImplicitConversionSequence::Indistinguishable;
1795
1796      Result = ImplicitConversionSequence::Worse;
1797    } else {
1798      // Qualifiers are disjoint.
1799      return ImplicitConversionSequence::Indistinguishable;
1800    }
1801
1802    // If the types after this point are equivalent, we're done.
1803    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1804      break;
1805  }
1806
1807  // Check that the winning standard conversion sequence isn't using
1808  // the deprecated string literal array to pointer conversion.
1809  switch (Result) {
1810  case ImplicitConversionSequence::Better:
1811    if (SCS1.Deprecated)
1812      Result = ImplicitConversionSequence::Indistinguishable;
1813    break;
1814
1815  case ImplicitConversionSequence::Indistinguishable:
1816    break;
1817
1818  case ImplicitConversionSequence::Worse:
1819    if (SCS2.Deprecated)
1820      Result = ImplicitConversionSequence::Indistinguishable;
1821    break;
1822  }
1823
1824  return Result;
1825}
1826
1827/// CompareDerivedToBaseConversions - Compares two standard conversion
1828/// sequences to determine whether they can be ranked based on their
1829/// various kinds of derived-to-base conversions (C++
1830/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1831/// conversions between Objective-C interface types.
1832ImplicitConversionSequence::CompareKind
1833Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1834                                      const StandardConversionSequence& SCS2) {
1835  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1836  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1837  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1838  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1839
1840  // Adjust the types we're converting from via the array-to-pointer
1841  // conversion, if we need to.
1842  if (SCS1.First == ICK_Array_To_Pointer)
1843    FromType1 = Context.getArrayDecayedType(FromType1);
1844  if (SCS2.First == ICK_Array_To_Pointer)
1845    FromType2 = Context.getArrayDecayedType(FromType2);
1846
1847  // Canonicalize all of the types.
1848  FromType1 = Context.getCanonicalType(FromType1);
1849  ToType1 = Context.getCanonicalType(ToType1);
1850  FromType2 = Context.getCanonicalType(FromType2);
1851  ToType2 = Context.getCanonicalType(ToType2);
1852
1853  // C++ [over.ics.rank]p4b3:
1854  //
1855  //   If class B is derived directly or indirectly from class A and
1856  //   class C is derived directly or indirectly from B,
1857  //
1858  // For Objective-C, we let A, B, and C also be Objective-C
1859  // interfaces.
1860
1861  // Compare based on pointer conversions.
1862  if (SCS1.Second == ICK_Pointer_Conversion &&
1863      SCS2.Second == ICK_Pointer_Conversion &&
1864      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1865      FromType1->isPointerType() && FromType2->isPointerType() &&
1866      ToType1->isPointerType() && ToType2->isPointerType()) {
1867    QualType FromPointee1
1868      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1869    QualType ToPointee1
1870      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1871    QualType FromPointee2
1872      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1873    QualType ToPointee2
1874      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1875
1876    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1877    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1878    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1879    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1880
1881    //   -- conversion of C* to B* is better than conversion of C* to A*,
1882    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1883      if (IsDerivedFrom(ToPointee1, ToPointee2))
1884        return ImplicitConversionSequence::Better;
1885      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1886        return ImplicitConversionSequence::Worse;
1887
1888      if (ToIface1 && ToIface2) {
1889        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1890          return ImplicitConversionSequence::Better;
1891        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1892          return ImplicitConversionSequence::Worse;
1893      }
1894    }
1895
1896    //   -- conversion of B* to A* is better than conversion of C* to A*,
1897    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1898      if (IsDerivedFrom(FromPointee2, FromPointee1))
1899        return ImplicitConversionSequence::Better;
1900      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1901        return ImplicitConversionSequence::Worse;
1902
1903      if (FromIface1 && FromIface2) {
1904        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1905          return ImplicitConversionSequence::Better;
1906        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1907          return ImplicitConversionSequence::Worse;
1908      }
1909    }
1910  }
1911
1912  // Compare based on reference bindings.
1913  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1914      SCS1.Second == ICK_Derived_To_Base) {
1915    //   -- binding of an expression of type C to a reference of type
1916    //      B& is better than binding an expression of type C to a
1917    //      reference of type A&,
1918    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1919        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1920      if (IsDerivedFrom(ToType1, ToType2))
1921        return ImplicitConversionSequence::Better;
1922      else if (IsDerivedFrom(ToType2, ToType1))
1923        return ImplicitConversionSequence::Worse;
1924    }
1925
1926    //   -- binding of an expression of type B to a reference of type
1927    //      A& is better than binding an expression of type C to a
1928    //      reference of type A&,
1929    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1930        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1931      if (IsDerivedFrom(FromType2, FromType1))
1932        return ImplicitConversionSequence::Better;
1933      else if (IsDerivedFrom(FromType1, FromType2))
1934        return ImplicitConversionSequence::Worse;
1935    }
1936  }
1937
1938  // Ranking of member-pointer types.
1939  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1940      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1941      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1942    const MemberPointerType * FromMemPointer1 =
1943                                        FromType1->getAs<MemberPointerType>();
1944    const MemberPointerType * ToMemPointer1 =
1945                                          ToType1->getAs<MemberPointerType>();
1946    const MemberPointerType * FromMemPointer2 =
1947                                          FromType2->getAs<MemberPointerType>();
1948    const MemberPointerType * ToMemPointer2 =
1949                                          ToType2->getAs<MemberPointerType>();
1950    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1951    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1952    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1953    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1954    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1955    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1956    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1957    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1958    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1959    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1960      if (IsDerivedFrom(ToPointee1, ToPointee2))
1961        return ImplicitConversionSequence::Worse;
1962      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1963        return ImplicitConversionSequence::Better;
1964    }
1965    // conversion of B::* to C::* is better than conversion of A::* to C::*
1966    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1967      if (IsDerivedFrom(FromPointee1, FromPointee2))
1968        return ImplicitConversionSequence::Better;
1969      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1970        return ImplicitConversionSequence::Worse;
1971    }
1972  }
1973
1974  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1975      SCS1.Second == ICK_Derived_To_Base) {
1976    //   -- conversion of C to B is better than conversion of C to A,
1977    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1978        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1979      if (IsDerivedFrom(ToType1, ToType2))
1980        return ImplicitConversionSequence::Better;
1981      else if (IsDerivedFrom(ToType2, ToType1))
1982        return ImplicitConversionSequence::Worse;
1983    }
1984
1985    //   -- conversion of B to A is better than conversion of C to A.
1986    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1987        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1988      if (IsDerivedFrom(FromType2, FromType1))
1989        return ImplicitConversionSequence::Better;
1990      else if (IsDerivedFrom(FromType1, FromType2))
1991        return ImplicitConversionSequence::Worse;
1992    }
1993  }
1994
1995  return ImplicitConversionSequence::Indistinguishable;
1996}
1997
1998/// TryCopyInitialization - Try to copy-initialize a value of type
1999/// ToType from the expression From. Return the implicit conversion
2000/// sequence required to pass this argument, which may be a bad
2001/// conversion sequence (meaning that the argument cannot be passed to
2002/// a parameter of this type). If @p SuppressUserConversions, then we
2003/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2004/// then we treat @p From as an rvalue, even if it is an lvalue.
2005ImplicitConversionSequence
2006Sema::TryCopyInitialization(Expr *From, QualType ToType,
2007                            bool SuppressUserConversions, bool ForceRValue,
2008                            bool InOverloadResolution) {
2009  if (ToType->isReferenceType()) {
2010    ImplicitConversionSequence ICS;
2011    CheckReferenceInit(From, ToType,
2012                       /*FIXME:*/From->getLocStart(),
2013                       SuppressUserConversions,
2014                       /*AllowExplicit=*/false,
2015                       ForceRValue,
2016                       &ICS);
2017    return ICS;
2018  } else {
2019    return TryImplicitConversion(From, ToType,
2020                                 SuppressUserConversions,
2021                                 /*AllowExplicit=*/false,
2022                                 ForceRValue,
2023                                 InOverloadResolution);
2024  }
2025}
2026
2027/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2028/// the expression @p From. Returns true (and emits a diagnostic) if there was
2029/// an error, returns false if the initialization succeeded. Elidable should
2030/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2031/// differently in C++0x for this case.
2032bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2033                                     const char* Flavor, bool Elidable) {
2034  if (!getLangOptions().CPlusPlus) {
2035    // In C, argument passing is the same as performing an assignment.
2036    QualType FromType = From->getType();
2037
2038    AssignConvertType ConvTy =
2039      CheckSingleAssignmentConstraints(ToType, From);
2040    if (ConvTy != Compatible &&
2041        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2042      ConvTy = Compatible;
2043
2044    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2045                                    FromType, From, Flavor);
2046  }
2047
2048  if (ToType->isReferenceType())
2049    return CheckReferenceInit(From, ToType,
2050                              /*FIXME:*/From->getLocStart(),
2051                              /*SuppressUserConversions=*/false,
2052                              /*AllowExplicit=*/false,
2053                              /*ForceRValue=*/false);
2054
2055  if (!PerformImplicitConversion(From, ToType, Flavor,
2056                                 /*AllowExplicit=*/false, Elidable))
2057    return false;
2058  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2059    return Diag(From->getSourceRange().getBegin(),
2060                diag::err_typecheck_convert_incompatible)
2061      << ToType << From->getType() << Flavor << From->getSourceRange();
2062  return true;
2063}
2064
2065/// TryObjectArgumentInitialization - Try to initialize the object
2066/// parameter of the given member function (@c Method) from the
2067/// expression @p From.
2068ImplicitConversionSequence
2069Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2070  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2071  QualType ImplicitParamType
2072    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2073
2074  // Set up the conversion sequence as a "bad" conversion, to allow us
2075  // to exit early.
2076  ImplicitConversionSequence ICS;
2077  ICS.Standard.setAsIdentityConversion();
2078  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2079
2080  // We need to have an object of class type.
2081  QualType FromType = From->getType();
2082  if (const PointerType *PT = FromType->getAs<PointerType>())
2083    FromType = PT->getPointeeType();
2084
2085  assert(FromType->isRecordType());
2086
2087  // The implicit object parmeter is has the type "reference to cv X",
2088  // where X is the class of which the function is a member
2089  // (C++ [over.match.funcs]p4). However, when finding an implicit
2090  // conversion sequence for the argument, we are not allowed to
2091  // create temporaries or perform user-defined conversions
2092  // (C++ [over.match.funcs]p5). We perform a simplified version of
2093  // reference binding here, that allows class rvalues to bind to
2094  // non-constant references.
2095
2096  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2097  // with the implicit object parameter (C++ [over.match.funcs]p5).
2098  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2099  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2100      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2101    return ICS;
2102
2103  // Check that we have either the same type or a derived type. It
2104  // affects the conversion rank.
2105  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2106  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2107    ICS.Standard.Second = ICK_Identity;
2108  else if (IsDerivedFrom(FromType, ClassType))
2109    ICS.Standard.Second = ICK_Derived_To_Base;
2110  else
2111    return ICS;
2112
2113  // Success. Mark this as a reference binding.
2114  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2115  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2116  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2117  ICS.Standard.ReferenceBinding = true;
2118  ICS.Standard.DirectBinding = true;
2119  ICS.Standard.RRefBinding = false;
2120  return ICS;
2121}
2122
2123/// PerformObjectArgumentInitialization - Perform initialization of
2124/// the implicit object parameter for the given Method with the given
2125/// expression.
2126bool
2127Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2128  QualType FromRecordType, DestType;
2129  QualType ImplicitParamRecordType  =
2130    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2131
2132  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2133    FromRecordType = PT->getPointeeType();
2134    DestType = Method->getThisType(Context);
2135  } else {
2136    FromRecordType = From->getType();
2137    DestType = ImplicitParamRecordType;
2138  }
2139
2140  ImplicitConversionSequence ICS
2141    = TryObjectArgumentInitialization(From, Method);
2142  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2143    return Diag(From->getSourceRange().getBegin(),
2144                diag::err_implicit_object_parameter_init)
2145       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2146
2147  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2148      CheckDerivedToBaseConversion(FromRecordType,
2149                                   ImplicitParamRecordType,
2150                                   From->getSourceRange().getBegin(),
2151                                   From->getSourceRange()))
2152    return true;
2153
2154  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2155                    /*isLvalue=*/true);
2156  return false;
2157}
2158
2159/// TryContextuallyConvertToBool - Attempt to contextually convert the
2160/// expression From to bool (C++0x [conv]p3).
2161ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2162  return TryImplicitConversion(From, Context.BoolTy,
2163                               // FIXME: Are these flags correct?
2164                               /*SuppressUserConversions=*/false,
2165                               /*AllowExplicit=*/true,
2166                               /*ForceRValue=*/false,
2167                               /*InOverloadResolution=*/false);
2168}
2169
2170/// PerformContextuallyConvertToBool - Perform a contextual conversion
2171/// of the expression From to bool (C++0x [conv]p3).
2172bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2173  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2174  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2175    return false;
2176
2177  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2178    return  Diag(From->getSourceRange().getBegin(),
2179                 diag::err_typecheck_bool_condition)
2180                  << From->getType() << From->getSourceRange();
2181  return true;
2182}
2183
2184/// AddOverloadCandidate - Adds the given function to the set of
2185/// candidate functions, using the given function call arguments.  If
2186/// @p SuppressUserConversions, then don't allow user-defined
2187/// conversions via constructors or conversion operators.
2188/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2189/// hacky way to implement the overloading rules for elidable copy
2190/// initialization in C++0x (C++0x 12.8p15).
2191///
2192/// \para PartialOverloading true if we are performing "partial" overloading
2193/// based on an incomplete set of function arguments. This feature is used by
2194/// code completion.
2195void
2196Sema::AddOverloadCandidate(FunctionDecl *Function,
2197                           Expr **Args, unsigned NumArgs,
2198                           OverloadCandidateSet& CandidateSet,
2199                           bool SuppressUserConversions,
2200                           bool ForceRValue,
2201                           bool PartialOverloading) {
2202  const FunctionProtoType* Proto
2203    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2204  assert(Proto && "Functions without a prototype cannot be overloaded");
2205  assert(!isa<CXXConversionDecl>(Function) &&
2206         "Use AddConversionCandidate for conversion functions");
2207  assert(!Function->getDescribedFunctionTemplate() &&
2208         "Use AddTemplateOverloadCandidate for function templates");
2209
2210  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2211    if (!isa<CXXConstructorDecl>(Method)) {
2212      // If we get here, it's because we're calling a member function
2213      // that is named without a member access expression (e.g.,
2214      // "this->f") that was either written explicitly or created
2215      // implicitly. This can happen with a qualified call to a member
2216      // function, e.g., X::f(). We use a NULL object as the implied
2217      // object argument (C++ [over.call.func]p3).
2218      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2219                         SuppressUserConversions, ForceRValue);
2220      return;
2221    }
2222    // We treat a constructor like a non-member function, since its object
2223    // argument doesn't participate in overload resolution.
2224  }
2225
2226  if (!CandidateSet.isNewCandidate(Function))
2227    return;
2228
2229  // Add this candidate
2230  CandidateSet.push_back(OverloadCandidate());
2231  OverloadCandidate& Candidate = CandidateSet.back();
2232  Candidate.Function = Function;
2233  Candidate.Viable = true;
2234  Candidate.IsSurrogate = false;
2235  Candidate.IgnoreObjectArgument = false;
2236
2237  unsigned NumArgsInProto = Proto->getNumArgs();
2238
2239  // (C++ 13.3.2p2): A candidate function having fewer than m
2240  // parameters is viable only if it has an ellipsis in its parameter
2241  // list (8.3.5).
2242  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2243      !Proto->isVariadic()) {
2244    Candidate.Viable = false;
2245    return;
2246  }
2247
2248  // (C++ 13.3.2p2): A candidate function having more than m parameters
2249  // is viable only if the (m+1)st parameter has a default argument
2250  // (8.3.6). For the purposes of overload resolution, the
2251  // parameter list is truncated on the right, so that there are
2252  // exactly m parameters.
2253  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2254  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2255    // Not enough arguments.
2256    Candidate.Viable = false;
2257    return;
2258  }
2259
2260  // Determine the implicit conversion sequences for each of the
2261  // arguments.
2262  Candidate.Conversions.resize(NumArgs);
2263  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2264    if (ArgIdx < NumArgsInProto) {
2265      // (C++ 13.3.2p3): for F to be a viable function, there shall
2266      // exist for each argument an implicit conversion sequence
2267      // (13.3.3.1) that converts that argument to the corresponding
2268      // parameter of F.
2269      QualType ParamType = Proto->getArgType(ArgIdx);
2270      Candidate.Conversions[ArgIdx]
2271        = TryCopyInitialization(Args[ArgIdx], ParamType,
2272                                SuppressUserConversions, ForceRValue,
2273                                /*InOverloadResolution=*/true);
2274      if (Candidate.Conversions[ArgIdx].ConversionKind
2275            == ImplicitConversionSequence::BadConversion) {
2276      // 13.3.3.1-p10 If several different sequences of conversions exist that
2277      // each convert the argument to the parameter type, the implicit conversion
2278      // sequence associated with the parameter is defined to be the unique conversion
2279      // sequence designated the ambiguous conversion sequence. For the purpose of
2280      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2281      // conversion sequence is treated as a user-defined sequence that is
2282      // indistinguishable from any other user-defined conversion sequence
2283        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2284          Candidate.Conversions[ArgIdx].ConversionKind =
2285            ImplicitConversionSequence::UserDefinedConversion;
2286          // Set the conversion function to one of them. As due to ambiguity,
2287          // they carry the same weight and is needed for overload resolution
2288          // later.
2289          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2290            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2291        }
2292        else {
2293          Candidate.Viable = false;
2294          break;
2295        }
2296      }
2297    } else {
2298      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2299      // argument for which there is no corresponding parameter is
2300      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2301      Candidate.Conversions[ArgIdx].ConversionKind
2302        = ImplicitConversionSequence::EllipsisConversion;
2303    }
2304  }
2305}
2306
2307/// \brief Add all of the function declarations in the given function set to
2308/// the overload canddiate set.
2309void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2310                                 Expr **Args, unsigned NumArgs,
2311                                 OverloadCandidateSet& CandidateSet,
2312                                 bool SuppressUserConversions) {
2313  for (FunctionSet::const_iterator F = Functions.begin(),
2314                                FEnd = Functions.end();
2315       F != FEnd; ++F) {
2316    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2317      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2318        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2319                           Args[0], Args + 1, NumArgs - 1,
2320                           CandidateSet, SuppressUserConversions);
2321      else
2322        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2323                             SuppressUserConversions);
2324    } else {
2325      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2326      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2327          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2328        AddMethodTemplateCandidate(FunTmpl,
2329                                   /*FIXME: explicit args */false, 0, 0,
2330                                   Args[0], Args + 1, NumArgs - 1,
2331                                   CandidateSet,
2332                                   SuppressUserConversions);
2333      else
2334        AddTemplateOverloadCandidate(FunTmpl,
2335                                     /*FIXME: explicit args */false, 0, 0,
2336                                     Args, NumArgs, CandidateSet,
2337                                     SuppressUserConversions);
2338    }
2339  }
2340}
2341
2342/// AddMethodCandidate - Adds the given C++ member function to the set
2343/// of candidate functions, using the given function call arguments
2344/// and the object argument (@c Object). For example, in a call
2345/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2346/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2347/// allow user-defined conversions via constructors or conversion
2348/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2349/// a slightly hacky way to implement the overloading rules for elidable copy
2350/// initialization in C++0x (C++0x 12.8p15).
2351void
2352Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2353                         Expr **Args, unsigned NumArgs,
2354                         OverloadCandidateSet& CandidateSet,
2355                         bool SuppressUserConversions, bool ForceRValue) {
2356  const FunctionProtoType* Proto
2357    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2358  assert(Proto && "Methods without a prototype cannot be overloaded");
2359  assert(!isa<CXXConversionDecl>(Method) &&
2360         "Use AddConversionCandidate for conversion functions");
2361  assert(!isa<CXXConstructorDecl>(Method) &&
2362         "Use AddOverloadCandidate for constructors");
2363
2364  if (!CandidateSet.isNewCandidate(Method))
2365    return;
2366
2367  // Add this candidate
2368  CandidateSet.push_back(OverloadCandidate());
2369  OverloadCandidate& Candidate = CandidateSet.back();
2370  Candidate.Function = Method;
2371  Candidate.IsSurrogate = false;
2372  Candidate.IgnoreObjectArgument = false;
2373
2374  unsigned NumArgsInProto = Proto->getNumArgs();
2375
2376  // (C++ 13.3.2p2): A candidate function having fewer than m
2377  // parameters is viable only if it has an ellipsis in its parameter
2378  // list (8.3.5).
2379  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2380    Candidate.Viable = false;
2381    return;
2382  }
2383
2384  // (C++ 13.3.2p2): A candidate function having more than m parameters
2385  // is viable only if the (m+1)st parameter has a default argument
2386  // (8.3.6). For the purposes of overload resolution, the
2387  // parameter list is truncated on the right, so that there are
2388  // exactly m parameters.
2389  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2390  if (NumArgs < MinRequiredArgs) {
2391    // Not enough arguments.
2392    Candidate.Viable = false;
2393    return;
2394  }
2395
2396  Candidate.Viable = true;
2397  Candidate.Conversions.resize(NumArgs + 1);
2398
2399  if (Method->isStatic() || !Object)
2400    // The implicit object argument is ignored.
2401    Candidate.IgnoreObjectArgument = true;
2402  else {
2403    // Determine the implicit conversion sequence for the object
2404    // parameter.
2405    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2406    if (Candidate.Conversions[0].ConversionKind
2407          == ImplicitConversionSequence::BadConversion) {
2408      Candidate.Viable = false;
2409      return;
2410    }
2411  }
2412
2413  // Determine the implicit conversion sequences for each of the
2414  // arguments.
2415  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2416    if (ArgIdx < NumArgsInProto) {
2417      // (C++ 13.3.2p3): for F to be a viable function, there shall
2418      // exist for each argument an implicit conversion sequence
2419      // (13.3.3.1) that converts that argument to the corresponding
2420      // parameter of F.
2421      QualType ParamType = Proto->getArgType(ArgIdx);
2422      Candidate.Conversions[ArgIdx + 1]
2423        = TryCopyInitialization(Args[ArgIdx], ParamType,
2424                                SuppressUserConversions, ForceRValue,
2425                                /*InOverloadResolution=*/true);
2426      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2427            == ImplicitConversionSequence::BadConversion) {
2428        Candidate.Viable = false;
2429        break;
2430      }
2431    } else {
2432      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2433      // argument for which there is no corresponding parameter is
2434      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2435      Candidate.Conversions[ArgIdx + 1].ConversionKind
2436        = ImplicitConversionSequence::EllipsisConversion;
2437    }
2438  }
2439}
2440
2441/// \brief Add a C++ member function template as a candidate to the candidate
2442/// set, using template argument deduction to produce an appropriate member
2443/// function template specialization.
2444void
2445Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2446                                 bool HasExplicitTemplateArgs,
2447                                 const TemplateArgument *ExplicitTemplateArgs,
2448                                 unsigned NumExplicitTemplateArgs,
2449                                 Expr *Object, Expr **Args, unsigned NumArgs,
2450                                 OverloadCandidateSet& CandidateSet,
2451                                 bool SuppressUserConversions,
2452                                 bool ForceRValue) {
2453  if (!CandidateSet.isNewCandidate(MethodTmpl))
2454    return;
2455
2456  // C++ [over.match.funcs]p7:
2457  //   In each case where a candidate is a function template, candidate
2458  //   function template specializations are generated using template argument
2459  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2460  //   candidate functions in the usual way.113) A given name can refer to one
2461  //   or more function templates and also to a set of overloaded non-template
2462  //   functions. In such a case, the candidate functions generated from each
2463  //   function template are combined with the set of non-template candidate
2464  //   functions.
2465  TemplateDeductionInfo Info(Context);
2466  FunctionDecl *Specialization = 0;
2467  if (TemplateDeductionResult Result
2468      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2469                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2470                                Args, NumArgs, Specialization, Info)) {
2471        // FIXME: Record what happened with template argument deduction, so
2472        // that we can give the user a beautiful diagnostic.
2473        (void)Result;
2474        return;
2475      }
2476
2477  // Add the function template specialization produced by template argument
2478  // deduction as a candidate.
2479  assert(Specialization && "Missing member function template specialization?");
2480  assert(isa<CXXMethodDecl>(Specialization) &&
2481         "Specialization is not a member function?");
2482  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2483                     CandidateSet, SuppressUserConversions, ForceRValue);
2484}
2485
2486/// \brief Add a C++ function template specialization as a candidate
2487/// in the candidate set, using template argument deduction to produce
2488/// an appropriate function template specialization.
2489void
2490Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2491                                   bool HasExplicitTemplateArgs,
2492                                 const TemplateArgument *ExplicitTemplateArgs,
2493                                   unsigned NumExplicitTemplateArgs,
2494                                   Expr **Args, unsigned NumArgs,
2495                                   OverloadCandidateSet& CandidateSet,
2496                                   bool SuppressUserConversions,
2497                                   bool ForceRValue) {
2498  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2499    return;
2500
2501  // C++ [over.match.funcs]p7:
2502  //   In each case where a candidate is a function template, candidate
2503  //   function template specializations are generated using template argument
2504  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2505  //   candidate functions in the usual way.113) A given name can refer to one
2506  //   or more function templates and also to a set of overloaded non-template
2507  //   functions. In such a case, the candidate functions generated from each
2508  //   function template are combined with the set of non-template candidate
2509  //   functions.
2510  TemplateDeductionInfo Info(Context);
2511  FunctionDecl *Specialization = 0;
2512  if (TemplateDeductionResult Result
2513        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2514                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2515                                  Args, NumArgs, Specialization, Info)) {
2516    // FIXME: Record what happened with template argument deduction, so
2517    // that we can give the user a beautiful diagnostic.
2518    (void)Result;
2519    return;
2520  }
2521
2522  // Add the function template specialization produced by template argument
2523  // deduction as a candidate.
2524  assert(Specialization && "Missing function template specialization?");
2525  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2526                       SuppressUserConversions, ForceRValue);
2527}
2528
2529/// AddConversionCandidate - Add a C++ conversion function as a
2530/// candidate in the candidate set (C++ [over.match.conv],
2531/// C++ [over.match.copy]). From is the expression we're converting from,
2532/// and ToType is the type that we're eventually trying to convert to
2533/// (which may or may not be the same type as the type that the
2534/// conversion function produces).
2535void
2536Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2537                             Expr *From, QualType ToType,
2538                             OverloadCandidateSet& CandidateSet) {
2539  assert(!Conversion->getDescribedFunctionTemplate() &&
2540         "Conversion function templates use AddTemplateConversionCandidate");
2541
2542  if (!CandidateSet.isNewCandidate(Conversion))
2543    return;
2544
2545  // Add this candidate
2546  CandidateSet.push_back(OverloadCandidate());
2547  OverloadCandidate& Candidate = CandidateSet.back();
2548  Candidate.Function = Conversion;
2549  Candidate.IsSurrogate = false;
2550  Candidate.IgnoreObjectArgument = false;
2551  Candidate.FinalConversion.setAsIdentityConversion();
2552  Candidate.FinalConversion.FromTypePtr
2553    = Conversion->getConversionType().getAsOpaquePtr();
2554  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2555
2556  // Determine the implicit conversion sequence for the implicit
2557  // object parameter.
2558  Candidate.Viable = true;
2559  Candidate.Conversions.resize(1);
2560  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2561  // Conversion functions to a different type in the base class is visible in
2562  // the derived class.  So, a derived to base conversion should not participate
2563  // in overload resolution.
2564  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2565    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2566  if (Candidate.Conversions[0].ConversionKind
2567      == ImplicitConversionSequence::BadConversion) {
2568    Candidate.Viable = false;
2569    return;
2570  }
2571
2572  // We won't go through a user-define type conversion function to convert a
2573  // derived to base as such conversions are given Conversion Rank. They only
2574  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2575  QualType FromCanon
2576    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2577  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2578  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2579    Candidate.Viable = false;
2580    return;
2581  }
2582
2583
2584  // To determine what the conversion from the result of calling the
2585  // conversion function to the type we're eventually trying to
2586  // convert to (ToType), we need to synthesize a call to the
2587  // conversion function and attempt copy initialization from it. This
2588  // makes sure that we get the right semantics with respect to
2589  // lvalues/rvalues and the type. Fortunately, we can allocate this
2590  // call on the stack and we don't need its arguments to be
2591  // well-formed.
2592  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2593                            SourceLocation());
2594  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2595                                CastExpr::CK_FunctionToPointerDecay,
2596                                &ConversionRef, false);
2597
2598  // Note that it is safe to allocate CallExpr on the stack here because
2599  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2600  // allocator).
2601  CallExpr Call(Context, &ConversionFn, 0, 0,
2602                Conversion->getConversionType().getNonReferenceType(),
2603                SourceLocation());
2604  ImplicitConversionSequence ICS =
2605    TryCopyInitialization(&Call, ToType,
2606                          /*SuppressUserConversions=*/true,
2607                          /*ForceRValue=*/false,
2608                          /*InOverloadResolution=*/false);
2609
2610  switch (ICS.ConversionKind) {
2611  case ImplicitConversionSequence::StandardConversion:
2612    Candidate.FinalConversion = ICS.Standard;
2613    break;
2614
2615  case ImplicitConversionSequence::BadConversion:
2616    Candidate.Viable = false;
2617    break;
2618
2619  default:
2620    assert(false &&
2621           "Can only end up with a standard conversion sequence or failure");
2622  }
2623}
2624
2625/// \brief Adds a conversion function template specialization
2626/// candidate to the overload set, using template argument deduction
2627/// to deduce the template arguments of the conversion function
2628/// template from the type that we are converting to (C++
2629/// [temp.deduct.conv]).
2630void
2631Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2632                                     Expr *From, QualType ToType,
2633                                     OverloadCandidateSet &CandidateSet) {
2634  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2635         "Only conversion function templates permitted here");
2636
2637  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2638    return;
2639
2640  TemplateDeductionInfo Info(Context);
2641  CXXConversionDecl *Specialization = 0;
2642  if (TemplateDeductionResult Result
2643        = DeduceTemplateArguments(FunctionTemplate, ToType,
2644                                  Specialization, Info)) {
2645    // FIXME: Record what happened with template argument deduction, so
2646    // that we can give the user a beautiful diagnostic.
2647    (void)Result;
2648    return;
2649  }
2650
2651  // Add the conversion function template specialization produced by
2652  // template argument deduction as a candidate.
2653  assert(Specialization && "Missing function template specialization?");
2654  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2655}
2656
2657/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2658/// converts the given @c Object to a function pointer via the
2659/// conversion function @c Conversion, and then attempts to call it
2660/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2661/// the type of function that we'll eventually be calling.
2662void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2663                                 const FunctionProtoType *Proto,
2664                                 Expr *Object, Expr **Args, unsigned NumArgs,
2665                                 OverloadCandidateSet& CandidateSet) {
2666  if (!CandidateSet.isNewCandidate(Conversion))
2667    return;
2668
2669  CandidateSet.push_back(OverloadCandidate());
2670  OverloadCandidate& Candidate = CandidateSet.back();
2671  Candidate.Function = 0;
2672  Candidate.Surrogate = Conversion;
2673  Candidate.Viable = true;
2674  Candidate.IsSurrogate = true;
2675  Candidate.IgnoreObjectArgument = false;
2676  Candidate.Conversions.resize(NumArgs + 1);
2677
2678  // Determine the implicit conversion sequence for the implicit
2679  // object parameter.
2680  ImplicitConversionSequence ObjectInit
2681    = TryObjectArgumentInitialization(Object, Conversion);
2682  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2683    Candidate.Viable = false;
2684    return;
2685  }
2686
2687  // The first conversion is actually a user-defined conversion whose
2688  // first conversion is ObjectInit's standard conversion (which is
2689  // effectively a reference binding). Record it as such.
2690  Candidate.Conversions[0].ConversionKind
2691    = ImplicitConversionSequence::UserDefinedConversion;
2692  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2693  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2694  Candidate.Conversions[0].UserDefined.After
2695    = Candidate.Conversions[0].UserDefined.Before;
2696  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2697
2698  // Find the
2699  unsigned NumArgsInProto = Proto->getNumArgs();
2700
2701  // (C++ 13.3.2p2): A candidate function having fewer than m
2702  // parameters is viable only if it has an ellipsis in its parameter
2703  // list (8.3.5).
2704  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2705    Candidate.Viable = false;
2706    return;
2707  }
2708
2709  // Function types don't have any default arguments, so just check if
2710  // we have enough arguments.
2711  if (NumArgs < NumArgsInProto) {
2712    // Not enough arguments.
2713    Candidate.Viable = false;
2714    return;
2715  }
2716
2717  // Determine the implicit conversion sequences for each of the
2718  // arguments.
2719  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2720    if (ArgIdx < NumArgsInProto) {
2721      // (C++ 13.3.2p3): for F to be a viable function, there shall
2722      // exist for each argument an implicit conversion sequence
2723      // (13.3.3.1) that converts that argument to the corresponding
2724      // parameter of F.
2725      QualType ParamType = Proto->getArgType(ArgIdx);
2726      Candidate.Conversions[ArgIdx + 1]
2727        = TryCopyInitialization(Args[ArgIdx], ParamType,
2728                                /*SuppressUserConversions=*/false,
2729                                /*ForceRValue=*/false,
2730                                /*InOverloadResolution=*/false);
2731      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2732            == ImplicitConversionSequence::BadConversion) {
2733        Candidate.Viable = false;
2734        break;
2735      }
2736    } else {
2737      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2738      // argument for which there is no corresponding parameter is
2739      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2740      Candidate.Conversions[ArgIdx + 1].ConversionKind
2741        = ImplicitConversionSequence::EllipsisConversion;
2742    }
2743  }
2744}
2745
2746// FIXME: This will eventually be removed, once we've migrated all of the
2747// operator overloading logic over to the scheme used by binary operators, which
2748// works for template instantiation.
2749void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2750                                 SourceLocation OpLoc,
2751                                 Expr **Args, unsigned NumArgs,
2752                                 OverloadCandidateSet& CandidateSet,
2753                                 SourceRange OpRange) {
2754  FunctionSet Functions;
2755
2756  QualType T1 = Args[0]->getType();
2757  QualType T2;
2758  if (NumArgs > 1)
2759    T2 = Args[1]->getType();
2760
2761  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2762  if (S)
2763    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2764  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2765  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2766  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2767  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2768}
2769
2770/// \brief Add overload candidates for overloaded operators that are
2771/// member functions.
2772///
2773/// Add the overloaded operator candidates that are member functions
2774/// for the operator Op that was used in an operator expression such
2775/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2776/// CandidateSet will store the added overload candidates. (C++
2777/// [over.match.oper]).
2778void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2779                                       SourceLocation OpLoc,
2780                                       Expr **Args, unsigned NumArgs,
2781                                       OverloadCandidateSet& CandidateSet,
2782                                       SourceRange OpRange) {
2783  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2784
2785  // C++ [over.match.oper]p3:
2786  //   For a unary operator @ with an operand of a type whose
2787  //   cv-unqualified version is T1, and for a binary operator @ with
2788  //   a left operand of a type whose cv-unqualified version is T1 and
2789  //   a right operand of a type whose cv-unqualified version is T2,
2790  //   three sets of candidate functions, designated member
2791  //   candidates, non-member candidates and built-in candidates, are
2792  //   constructed as follows:
2793  QualType T1 = Args[0]->getType();
2794  QualType T2;
2795  if (NumArgs > 1)
2796    T2 = Args[1]->getType();
2797
2798  //     -- If T1 is a class type, the set of member candidates is the
2799  //        result of the qualified lookup of T1::operator@
2800  //        (13.3.1.1.1); otherwise, the set of member candidates is
2801  //        empty.
2802  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2803    // Complete the type if it can be completed. Otherwise, we're done.
2804    if (RequireCompleteType(OpLoc, T1, PDiag()))
2805      return;
2806
2807    LookupResult Operators;
2808    LookupQualifiedName(Operators, T1Rec->getDecl(), OpName,
2809                        LookupOrdinaryName, false);
2810    for (LookupResult::iterator Oper = Operators.begin(),
2811                             OperEnd = Operators.end();
2812         Oper != OperEnd;
2813         ++Oper) {
2814      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Oper)) {
2815        AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2816                           /*SuppressUserConversions=*/false);
2817        continue;
2818      }
2819
2820      assert(isa<FunctionTemplateDecl>(*Oper) &&
2821             isa<CXXMethodDecl>(cast<FunctionTemplateDecl>(*Oper)
2822                                                        ->getTemplatedDecl()) &&
2823             "Expected a member function template");
2824      AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Oper), false, 0, 0,
2825                                 Args[0], Args+1, NumArgs - 1, CandidateSet,
2826                                 /*SuppressUserConversions=*/false);
2827    }
2828  }
2829}
2830
2831/// AddBuiltinCandidate - Add a candidate for a built-in
2832/// operator. ResultTy and ParamTys are the result and parameter types
2833/// of the built-in candidate, respectively. Args and NumArgs are the
2834/// arguments being passed to the candidate. IsAssignmentOperator
2835/// should be true when this built-in candidate is an assignment
2836/// operator. NumContextualBoolArguments is the number of arguments
2837/// (at the beginning of the argument list) that will be contextually
2838/// converted to bool.
2839void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2840                               Expr **Args, unsigned NumArgs,
2841                               OverloadCandidateSet& CandidateSet,
2842                               bool IsAssignmentOperator,
2843                               unsigned NumContextualBoolArguments) {
2844  // Add this candidate
2845  CandidateSet.push_back(OverloadCandidate());
2846  OverloadCandidate& Candidate = CandidateSet.back();
2847  Candidate.Function = 0;
2848  Candidate.IsSurrogate = false;
2849  Candidate.IgnoreObjectArgument = false;
2850  Candidate.BuiltinTypes.ResultTy = ResultTy;
2851  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2852    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2853
2854  // Determine the implicit conversion sequences for each of the
2855  // arguments.
2856  Candidate.Viable = true;
2857  Candidate.Conversions.resize(NumArgs);
2858  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2859    // C++ [over.match.oper]p4:
2860    //   For the built-in assignment operators, conversions of the
2861    //   left operand are restricted as follows:
2862    //     -- no temporaries are introduced to hold the left operand, and
2863    //     -- no user-defined conversions are applied to the left
2864    //        operand to achieve a type match with the left-most
2865    //        parameter of a built-in candidate.
2866    //
2867    // We block these conversions by turning off user-defined
2868    // conversions, since that is the only way that initialization of
2869    // a reference to a non-class type can occur from something that
2870    // is not of the same type.
2871    if (ArgIdx < NumContextualBoolArguments) {
2872      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2873             "Contextual conversion to bool requires bool type");
2874      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2875    } else {
2876      Candidate.Conversions[ArgIdx]
2877        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2878                                ArgIdx == 0 && IsAssignmentOperator,
2879                                /*ForceRValue=*/false,
2880                                /*InOverloadResolution=*/false);
2881    }
2882    if (Candidate.Conversions[ArgIdx].ConversionKind
2883        == ImplicitConversionSequence::BadConversion) {
2884      Candidate.Viable = false;
2885      break;
2886    }
2887  }
2888}
2889
2890/// BuiltinCandidateTypeSet - A set of types that will be used for the
2891/// candidate operator functions for built-in operators (C++
2892/// [over.built]). The types are separated into pointer types and
2893/// enumeration types.
2894class BuiltinCandidateTypeSet  {
2895  /// TypeSet - A set of types.
2896  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2897
2898  /// PointerTypes - The set of pointer types that will be used in the
2899  /// built-in candidates.
2900  TypeSet PointerTypes;
2901
2902  /// MemberPointerTypes - The set of member pointer types that will be
2903  /// used in the built-in candidates.
2904  TypeSet MemberPointerTypes;
2905
2906  /// EnumerationTypes - The set of enumeration types that will be
2907  /// used in the built-in candidates.
2908  TypeSet EnumerationTypes;
2909
2910  /// Sema - The semantic analysis instance where we are building the
2911  /// candidate type set.
2912  Sema &SemaRef;
2913
2914  /// Context - The AST context in which we will build the type sets.
2915  ASTContext &Context;
2916
2917  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2918                                               const Qualifiers &VisibleQuals);
2919  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2920
2921public:
2922  /// iterator - Iterates through the types that are part of the set.
2923  typedef TypeSet::iterator iterator;
2924
2925  BuiltinCandidateTypeSet(Sema &SemaRef)
2926    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2927
2928  void AddTypesConvertedFrom(QualType Ty,
2929                             SourceLocation Loc,
2930                             bool AllowUserConversions,
2931                             bool AllowExplicitConversions,
2932                             const Qualifiers &VisibleTypeConversionsQuals);
2933
2934  /// pointer_begin - First pointer type found;
2935  iterator pointer_begin() { return PointerTypes.begin(); }
2936
2937  /// pointer_end - Past the last pointer type found;
2938  iterator pointer_end() { return PointerTypes.end(); }
2939
2940  /// member_pointer_begin - First member pointer type found;
2941  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2942
2943  /// member_pointer_end - Past the last member pointer type found;
2944  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2945
2946  /// enumeration_begin - First enumeration type found;
2947  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2948
2949  /// enumeration_end - Past the last enumeration type found;
2950  iterator enumeration_end() { return EnumerationTypes.end(); }
2951};
2952
2953/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2954/// the set of pointer types along with any more-qualified variants of
2955/// that type. For example, if @p Ty is "int const *", this routine
2956/// will add "int const *", "int const volatile *", "int const
2957/// restrict *", and "int const volatile restrict *" to the set of
2958/// pointer types. Returns true if the add of @p Ty itself succeeded,
2959/// false otherwise.
2960///
2961/// FIXME: what to do about extended qualifiers?
2962bool
2963BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2964                                             const Qualifiers &VisibleQuals) {
2965
2966  // Insert this type.
2967  if (!PointerTypes.insert(Ty))
2968    return false;
2969
2970  const PointerType *PointerTy = Ty->getAs<PointerType>();
2971  assert(PointerTy && "type was not a pointer type!");
2972
2973  QualType PointeeTy = PointerTy->getPointeeType();
2974  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2975  bool hasVolatile = VisibleQuals.hasVolatile();
2976  bool hasRestrict = VisibleQuals.hasRestrict();
2977
2978  // Iterate through all strict supersets of BaseCVR.
2979  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2980    if ((CVR | BaseCVR) != CVR) continue;
2981    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
2982    // in the types.
2983    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
2984    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
2985    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2986    PointerTypes.insert(Context.getPointerType(QPointeeTy));
2987  }
2988
2989  return true;
2990}
2991
2992/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2993/// to the set of pointer types along with any more-qualified variants of
2994/// that type. For example, if @p Ty is "int const *", this routine
2995/// will add "int const *", "int const volatile *", "int const
2996/// restrict *", and "int const volatile restrict *" to the set of
2997/// pointer types. Returns true if the add of @p Ty itself succeeded,
2998/// false otherwise.
2999///
3000/// FIXME: what to do about extended qualifiers?
3001bool
3002BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3003    QualType Ty) {
3004  // Insert this type.
3005  if (!MemberPointerTypes.insert(Ty))
3006    return false;
3007
3008  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3009  assert(PointerTy && "type was not a member pointer type!");
3010
3011  QualType PointeeTy = PointerTy->getPointeeType();
3012  const Type *ClassTy = PointerTy->getClass();
3013
3014  // Iterate through all strict supersets of the pointee type's CVR
3015  // qualifiers.
3016  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3017  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3018    if ((CVR | BaseCVR) != CVR) continue;
3019
3020    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3021    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3022  }
3023
3024  return true;
3025}
3026
3027/// AddTypesConvertedFrom - Add each of the types to which the type @p
3028/// Ty can be implicit converted to the given set of @p Types. We're
3029/// primarily interested in pointer types and enumeration types. We also
3030/// take member pointer types, for the conditional operator.
3031/// AllowUserConversions is true if we should look at the conversion
3032/// functions of a class type, and AllowExplicitConversions if we
3033/// should also include the explicit conversion functions of a class
3034/// type.
3035void
3036BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3037                                               SourceLocation Loc,
3038                                               bool AllowUserConversions,
3039                                               bool AllowExplicitConversions,
3040                                               const Qualifiers &VisibleQuals) {
3041  // Only deal with canonical types.
3042  Ty = Context.getCanonicalType(Ty);
3043
3044  // Look through reference types; they aren't part of the type of an
3045  // expression for the purposes of conversions.
3046  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3047    Ty = RefTy->getPointeeType();
3048
3049  // We don't care about qualifiers on the type.
3050  Ty = Ty.getUnqualifiedType();
3051
3052  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3053    QualType PointeeTy = PointerTy->getPointeeType();
3054
3055    // Insert our type, and its more-qualified variants, into the set
3056    // of types.
3057    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3058      return;
3059  } else if (Ty->isMemberPointerType()) {
3060    // Member pointers are far easier, since the pointee can't be converted.
3061    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3062      return;
3063  } else if (Ty->isEnumeralType()) {
3064    EnumerationTypes.insert(Ty);
3065  } else if (AllowUserConversions) {
3066    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3067      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3068        // No conversion functions in incomplete types.
3069        return;
3070      }
3071
3072      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3073      OverloadedFunctionDecl *Conversions
3074        = ClassDecl->getVisibleConversionFunctions();
3075      for (OverloadedFunctionDecl::function_iterator Func
3076             = Conversions->function_begin();
3077           Func != Conversions->function_end(); ++Func) {
3078        CXXConversionDecl *Conv;
3079        FunctionTemplateDecl *ConvTemplate;
3080        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
3081
3082        // Skip conversion function templates; they don't tell us anything
3083        // about which builtin types we can convert to.
3084        if (ConvTemplate)
3085          continue;
3086
3087        if (AllowExplicitConversions || !Conv->isExplicit()) {
3088          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3089                                VisibleQuals);
3090        }
3091      }
3092    }
3093  }
3094}
3095
3096/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3097/// the volatile- and non-volatile-qualified assignment operators for the
3098/// given type to the candidate set.
3099static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3100                                                   QualType T,
3101                                                   Expr **Args,
3102                                                   unsigned NumArgs,
3103                                    OverloadCandidateSet &CandidateSet) {
3104  QualType ParamTypes[2];
3105
3106  // T& operator=(T&, T)
3107  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3108  ParamTypes[1] = T;
3109  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3110                        /*IsAssignmentOperator=*/true);
3111
3112  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3113    // volatile T& operator=(volatile T&, T)
3114    ParamTypes[0]
3115      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3116    ParamTypes[1] = T;
3117    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3118                          /*IsAssignmentOperator=*/true);
3119  }
3120}
3121
3122/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers
3123/// , if any, found in visible type conversion functions found in ArgExpr's
3124/// type.
3125static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3126    Qualifiers VRQuals;
3127    const RecordType *TyRec;
3128    if (const MemberPointerType *RHSMPType =
3129        ArgExpr->getType()->getAs<MemberPointerType>())
3130      TyRec = cast<RecordType>(RHSMPType->getClass());
3131    else
3132      TyRec = ArgExpr->getType()->getAs<RecordType>();
3133    if (!TyRec) {
3134      // Just to be safe, assume the worst case.
3135      VRQuals.addVolatile();
3136      VRQuals.addRestrict();
3137      return VRQuals;
3138    }
3139
3140    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3141    OverloadedFunctionDecl *Conversions =
3142    ClassDecl->getVisibleConversionFunctions();
3143
3144    for (OverloadedFunctionDecl::function_iterator Func
3145         = Conversions->function_begin();
3146         Func != Conversions->function_end(); ++Func) {
3147      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) {
3148        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3149        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3150          CanTy = ResTypeRef->getPointeeType();
3151        // Need to go down the pointer/mempointer chain and add qualifiers
3152        // as see them.
3153        bool done = false;
3154        while (!done) {
3155          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3156            CanTy = ResTypePtr->getPointeeType();
3157          else if (const MemberPointerType *ResTypeMPtr =
3158                CanTy->getAs<MemberPointerType>())
3159            CanTy = ResTypeMPtr->getPointeeType();
3160          else
3161            done = true;
3162          if (CanTy.isVolatileQualified())
3163            VRQuals.addVolatile();
3164          if (CanTy.isRestrictQualified())
3165            VRQuals.addRestrict();
3166          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3167            return VRQuals;
3168        }
3169      }
3170    }
3171    return VRQuals;
3172}
3173
3174/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3175/// operator overloads to the candidate set (C++ [over.built]), based
3176/// on the operator @p Op and the arguments given. For example, if the
3177/// operator is a binary '+', this routine might add "int
3178/// operator+(int, int)" to cover integer addition.
3179void
3180Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3181                                   SourceLocation OpLoc,
3182                                   Expr **Args, unsigned NumArgs,
3183                                   OverloadCandidateSet& CandidateSet) {
3184  // The set of "promoted arithmetic types", which are the arithmetic
3185  // types are that preserved by promotion (C++ [over.built]p2). Note
3186  // that the first few of these types are the promoted integral
3187  // types; these types need to be first.
3188  // FIXME: What about complex?
3189  const unsigned FirstIntegralType = 0;
3190  const unsigned LastIntegralType = 13;
3191  const unsigned FirstPromotedIntegralType = 7,
3192                 LastPromotedIntegralType = 13;
3193  const unsigned FirstPromotedArithmeticType = 7,
3194                 LastPromotedArithmeticType = 16;
3195  const unsigned NumArithmeticTypes = 16;
3196  QualType ArithmeticTypes[NumArithmeticTypes] = {
3197    Context.BoolTy, Context.CharTy, Context.WCharTy,
3198// FIXME:   Context.Char16Ty, Context.Char32Ty,
3199    Context.SignedCharTy, Context.ShortTy,
3200    Context.UnsignedCharTy, Context.UnsignedShortTy,
3201    Context.IntTy, Context.LongTy, Context.LongLongTy,
3202    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3203    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3204  };
3205  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3206         "Invalid first promoted integral type");
3207  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3208           == Context.UnsignedLongLongTy &&
3209         "Invalid last promoted integral type");
3210  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3211         "Invalid first promoted arithmetic type");
3212  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3213            == Context.LongDoubleTy &&
3214         "Invalid last promoted arithmetic type");
3215
3216  // Find all of the types that the arguments can convert to, but only
3217  // if the operator we're looking at has built-in operator candidates
3218  // that make use of these types.
3219  Qualifiers VisibleTypeConversionsQuals;
3220  VisibleTypeConversionsQuals.addConst();
3221  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3222    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3223
3224  BuiltinCandidateTypeSet CandidateTypes(*this);
3225  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3226      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3227      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3228      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3229      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3230      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3231    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3232      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3233                                           OpLoc,
3234                                           true,
3235                                           (Op == OO_Exclaim ||
3236                                            Op == OO_AmpAmp ||
3237                                            Op == OO_PipePipe),
3238                                           VisibleTypeConversionsQuals);
3239  }
3240
3241  bool isComparison = false;
3242  switch (Op) {
3243  case OO_None:
3244  case NUM_OVERLOADED_OPERATORS:
3245    assert(false && "Expected an overloaded operator");
3246    break;
3247
3248  case OO_Star: // '*' is either unary or binary
3249    if (NumArgs == 1)
3250      goto UnaryStar;
3251    else
3252      goto BinaryStar;
3253    break;
3254
3255  case OO_Plus: // '+' is either unary or binary
3256    if (NumArgs == 1)
3257      goto UnaryPlus;
3258    else
3259      goto BinaryPlus;
3260    break;
3261
3262  case OO_Minus: // '-' is either unary or binary
3263    if (NumArgs == 1)
3264      goto UnaryMinus;
3265    else
3266      goto BinaryMinus;
3267    break;
3268
3269  case OO_Amp: // '&' is either unary or binary
3270    if (NumArgs == 1)
3271      goto UnaryAmp;
3272    else
3273      goto BinaryAmp;
3274
3275  case OO_PlusPlus:
3276  case OO_MinusMinus:
3277    // C++ [over.built]p3:
3278    //
3279    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3280    //   is either volatile or empty, there exist candidate operator
3281    //   functions of the form
3282    //
3283    //       VQ T&      operator++(VQ T&);
3284    //       T          operator++(VQ T&, int);
3285    //
3286    // C++ [over.built]p4:
3287    //
3288    //   For every pair (T, VQ), where T is an arithmetic type other
3289    //   than bool, and VQ is either volatile or empty, there exist
3290    //   candidate operator functions of the form
3291    //
3292    //       VQ T&      operator--(VQ T&);
3293    //       T          operator--(VQ T&, int);
3294    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3295         Arith < NumArithmeticTypes; ++Arith) {
3296      QualType ArithTy = ArithmeticTypes[Arith];
3297      QualType ParamTypes[2]
3298        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3299
3300      // Non-volatile version.
3301      if (NumArgs == 1)
3302        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3303      else
3304        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3305      // heuristic to reduce number of builtin candidates in the set.
3306      // Add volatile version only if there are conversions to a volatile type.
3307      if (VisibleTypeConversionsQuals.hasVolatile()) {
3308        // Volatile version
3309        ParamTypes[0]
3310          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3311        if (NumArgs == 1)
3312          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3313        else
3314          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3315      }
3316    }
3317
3318    // C++ [over.built]p5:
3319    //
3320    //   For every pair (T, VQ), where T is a cv-qualified or
3321    //   cv-unqualified object type, and VQ is either volatile or
3322    //   empty, there exist candidate operator functions of the form
3323    //
3324    //       T*VQ&      operator++(T*VQ&);
3325    //       T*VQ&      operator--(T*VQ&);
3326    //       T*         operator++(T*VQ&, int);
3327    //       T*         operator--(T*VQ&, int);
3328    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3329         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3330      // Skip pointer types that aren't pointers to object types.
3331      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3332        continue;
3333
3334      QualType ParamTypes[2] = {
3335        Context.getLValueReferenceType(*Ptr), Context.IntTy
3336      };
3337
3338      // Without volatile
3339      if (NumArgs == 1)
3340        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3341      else
3342        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3343
3344      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3345          VisibleTypeConversionsQuals.hasVolatile()) {
3346        // With volatile
3347        ParamTypes[0]
3348          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3349        if (NumArgs == 1)
3350          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3351        else
3352          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3353      }
3354    }
3355    break;
3356
3357  UnaryStar:
3358    // C++ [over.built]p6:
3359    //   For every cv-qualified or cv-unqualified object type T, there
3360    //   exist candidate operator functions of the form
3361    //
3362    //       T&         operator*(T*);
3363    //
3364    // C++ [over.built]p7:
3365    //   For every function type T, there exist candidate operator
3366    //   functions of the form
3367    //       T&         operator*(T*);
3368    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3369         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3370      QualType ParamTy = *Ptr;
3371      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3372      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3373                          &ParamTy, Args, 1, CandidateSet);
3374    }
3375    break;
3376
3377  UnaryPlus:
3378    // C++ [over.built]p8:
3379    //   For every type T, there exist candidate operator functions of
3380    //   the form
3381    //
3382    //       T*         operator+(T*);
3383    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3384         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3385      QualType ParamTy = *Ptr;
3386      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3387    }
3388
3389    // Fall through
3390
3391  UnaryMinus:
3392    // C++ [over.built]p9:
3393    //  For every promoted arithmetic type T, there exist candidate
3394    //  operator functions of the form
3395    //
3396    //       T         operator+(T);
3397    //       T         operator-(T);
3398    for (unsigned Arith = FirstPromotedArithmeticType;
3399         Arith < LastPromotedArithmeticType; ++Arith) {
3400      QualType ArithTy = ArithmeticTypes[Arith];
3401      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3402    }
3403    break;
3404
3405  case OO_Tilde:
3406    // C++ [over.built]p10:
3407    //   For every promoted integral type T, there exist candidate
3408    //   operator functions of the form
3409    //
3410    //        T         operator~(T);
3411    for (unsigned Int = FirstPromotedIntegralType;
3412         Int < LastPromotedIntegralType; ++Int) {
3413      QualType IntTy = ArithmeticTypes[Int];
3414      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3415    }
3416    break;
3417
3418  case OO_New:
3419  case OO_Delete:
3420  case OO_Array_New:
3421  case OO_Array_Delete:
3422  case OO_Call:
3423    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3424    break;
3425
3426  case OO_Comma:
3427  UnaryAmp:
3428  case OO_Arrow:
3429    // C++ [over.match.oper]p3:
3430    //   -- For the operator ',', the unary operator '&', or the
3431    //      operator '->', the built-in candidates set is empty.
3432    break;
3433
3434  case OO_EqualEqual:
3435  case OO_ExclaimEqual:
3436    // C++ [over.match.oper]p16:
3437    //   For every pointer to member type T, there exist candidate operator
3438    //   functions of the form
3439    //
3440    //        bool operator==(T,T);
3441    //        bool operator!=(T,T);
3442    for (BuiltinCandidateTypeSet::iterator
3443           MemPtr = CandidateTypes.member_pointer_begin(),
3444           MemPtrEnd = CandidateTypes.member_pointer_end();
3445         MemPtr != MemPtrEnd;
3446         ++MemPtr) {
3447      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3448      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3449    }
3450
3451    // Fall through
3452
3453  case OO_Less:
3454  case OO_Greater:
3455  case OO_LessEqual:
3456  case OO_GreaterEqual:
3457    // C++ [over.built]p15:
3458    //
3459    //   For every pointer or enumeration type T, there exist
3460    //   candidate operator functions of the form
3461    //
3462    //        bool       operator<(T, T);
3463    //        bool       operator>(T, T);
3464    //        bool       operator<=(T, T);
3465    //        bool       operator>=(T, T);
3466    //        bool       operator==(T, T);
3467    //        bool       operator!=(T, T);
3468    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3469         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3470      QualType ParamTypes[2] = { *Ptr, *Ptr };
3471      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3472    }
3473    for (BuiltinCandidateTypeSet::iterator Enum
3474           = CandidateTypes.enumeration_begin();
3475         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3476      QualType ParamTypes[2] = { *Enum, *Enum };
3477      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3478    }
3479
3480    // Fall through.
3481    isComparison = true;
3482
3483  BinaryPlus:
3484  BinaryMinus:
3485    if (!isComparison) {
3486      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3487
3488      // C++ [over.built]p13:
3489      //
3490      //   For every cv-qualified or cv-unqualified object type T
3491      //   there exist candidate operator functions of the form
3492      //
3493      //      T*         operator+(T*, ptrdiff_t);
3494      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3495      //      T*         operator-(T*, ptrdiff_t);
3496      //      T*         operator+(ptrdiff_t, T*);
3497      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3498      //
3499      // C++ [over.built]p14:
3500      //
3501      //   For every T, where T is a pointer to object type, there
3502      //   exist candidate operator functions of the form
3503      //
3504      //      ptrdiff_t  operator-(T, T);
3505      for (BuiltinCandidateTypeSet::iterator Ptr
3506             = CandidateTypes.pointer_begin();
3507           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3508        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3509
3510        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3511        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3512
3513        if (Op == OO_Plus) {
3514          // T* operator+(ptrdiff_t, T*);
3515          ParamTypes[0] = ParamTypes[1];
3516          ParamTypes[1] = *Ptr;
3517          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3518        } else {
3519          // ptrdiff_t operator-(T, T);
3520          ParamTypes[1] = *Ptr;
3521          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3522                              Args, 2, CandidateSet);
3523        }
3524      }
3525    }
3526    // Fall through
3527
3528  case OO_Slash:
3529  BinaryStar:
3530  Conditional:
3531    // C++ [over.built]p12:
3532    //
3533    //   For every pair of promoted arithmetic types L and R, there
3534    //   exist candidate operator functions of the form
3535    //
3536    //        LR         operator*(L, R);
3537    //        LR         operator/(L, R);
3538    //        LR         operator+(L, R);
3539    //        LR         operator-(L, R);
3540    //        bool       operator<(L, R);
3541    //        bool       operator>(L, R);
3542    //        bool       operator<=(L, R);
3543    //        bool       operator>=(L, R);
3544    //        bool       operator==(L, R);
3545    //        bool       operator!=(L, R);
3546    //
3547    //   where LR is the result of the usual arithmetic conversions
3548    //   between types L and R.
3549    //
3550    // C++ [over.built]p24:
3551    //
3552    //   For every pair of promoted arithmetic types L and R, there exist
3553    //   candidate operator functions of the form
3554    //
3555    //        LR       operator?(bool, L, R);
3556    //
3557    //   where LR is the result of the usual arithmetic conversions
3558    //   between types L and R.
3559    // Our candidates ignore the first parameter.
3560    for (unsigned Left = FirstPromotedArithmeticType;
3561         Left < LastPromotedArithmeticType; ++Left) {
3562      for (unsigned Right = FirstPromotedArithmeticType;
3563           Right < LastPromotedArithmeticType; ++Right) {
3564        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3565        QualType Result
3566          = isComparison
3567          ? Context.BoolTy
3568          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3569        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3570      }
3571    }
3572    break;
3573
3574  case OO_Percent:
3575  BinaryAmp:
3576  case OO_Caret:
3577  case OO_Pipe:
3578  case OO_LessLess:
3579  case OO_GreaterGreater:
3580    // C++ [over.built]p17:
3581    //
3582    //   For every pair of promoted integral types L and R, there
3583    //   exist candidate operator functions of the form
3584    //
3585    //      LR         operator%(L, R);
3586    //      LR         operator&(L, R);
3587    //      LR         operator^(L, R);
3588    //      LR         operator|(L, R);
3589    //      L          operator<<(L, R);
3590    //      L          operator>>(L, R);
3591    //
3592    //   where LR is the result of the usual arithmetic conversions
3593    //   between types L and R.
3594    for (unsigned Left = FirstPromotedIntegralType;
3595         Left < LastPromotedIntegralType; ++Left) {
3596      for (unsigned Right = FirstPromotedIntegralType;
3597           Right < LastPromotedIntegralType; ++Right) {
3598        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3599        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3600            ? LandR[0]
3601            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3602        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3603      }
3604    }
3605    break;
3606
3607  case OO_Equal:
3608    // C++ [over.built]p20:
3609    //
3610    //   For every pair (T, VQ), where T is an enumeration or
3611    //   pointer to member type and VQ is either volatile or
3612    //   empty, there exist candidate operator functions of the form
3613    //
3614    //        VQ T&      operator=(VQ T&, T);
3615    for (BuiltinCandidateTypeSet::iterator
3616           Enum = CandidateTypes.enumeration_begin(),
3617           EnumEnd = CandidateTypes.enumeration_end();
3618         Enum != EnumEnd; ++Enum)
3619      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3620                                             CandidateSet);
3621    for (BuiltinCandidateTypeSet::iterator
3622           MemPtr = CandidateTypes.member_pointer_begin(),
3623         MemPtrEnd = CandidateTypes.member_pointer_end();
3624         MemPtr != MemPtrEnd; ++MemPtr)
3625      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3626                                             CandidateSet);
3627      // Fall through.
3628
3629  case OO_PlusEqual:
3630  case OO_MinusEqual:
3631    // C++ [over.built]p19:
3632    //
3633    //   For every pair (T, VQ), where T is any type and VQ is either
3634    //   volatile or empty, there exist candidate operator functions
3635    //   of the form
3636    //
3637    //        T*VQ&      operator=(T*VQ&, T*);
3638    //
3639    // C++ [over.built]p21:
3640    //
3641    //   For every pair (T, VQ), where T is a cv-qualified or
3642    //   cv-unqualified object type and VQ is either volatile or
3643    //   empty, there exist candidate operator functions of the form
3644    //
3645    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3646    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3647    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3648         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3649      QualType ParamTypes[2];
3650      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3651
3652      // non-volatile version
3653      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3654      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3655                          /*IsAssigmentOperator=*/Op == OO_Equal);
3656
3657      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3658          VisibleTypeConversionsQuals.hasVolatile()) {
3659        // volatile version
3660        ParamTypes[0]
3661          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3662        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3663                            /*IsAssigmentOperator=*/Op == OO_Equal);
3664      }
3665    }
3666    // Fall through.
3667
3668  case OO_StarEqual:
3669  case OO_SlashEqual:
3670    // C++ [over.built]p18:
3671    //
3672    //   For every triple (L, VQ, R), where L is an arithmetic type,
3673    //   VQ is either volatile or empty, and R is a promoted
3674    //   arithmetic type, there exist candidate operator functions of
3675    //   the form
3676    //
3677    //        VQ L&      operator=(VQ L&, R);
3678    //        VQ L&      operator*=(VQ L&, R);
3679    //        VQ L&      operator/=(VQ L&, R);
3680    //        VQ L&      operator+=(VQ L&, R);
3681    //        VQ L&      operator-=(VQ L&, R);
3682    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3683      for (unsigned Right = FirstPromotedArithmeticType;
3684           Right < LastPromotedArithmeticType; ++Right) {
3685        QualType ParamTypes[2];
3686        ParamTypes[1] = ArithmeticTypes[Right];
3687
3688        // Add this built-in operator as a candidate (VQ is empty).
3689        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3690        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3691                            /*IsAssigmentOperator=*/Op == OO_Equal);
3692
3693        // Add this built-in operator as a candidate (VQ is 'volatile').
3694        if (VisibleTypeConversionsQuals.hasVolatile()) {
3695          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3696          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3697          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3698                              /*IsAssigmentOperator=*/Op == OO_Equal);
3699        }
3700      }
3701    }
3702    break;
3703
3704  case OO_PercentEqual:
3705  case OO_LessLessEqual:
3706  case OO_GreaterGreaterEqual:
3707  case OO_AmpEqual:
3708  case OO_CaretEqual:
3709  case OO_PipeEqual:
3710    // C++ [over.built]p22:
3711    //
3712    //   For every triple (L, VQ, R), where L is an integral type, VQ
3713    //   is either volatile or empty, and R is a promoted integral
3714    //   type, there exist candidate operator functions of the form
3715    //
3716    //        VQ L&       operator%=(VQ L&, R);
3717    //        VQ L&       operator<<=(VQ L&, R);
3718    //        VQ L&       operator>>=(VQ L&, R);
3719    //        VQ L&       operator&=(VQ L&, R);
3720    //        VQ L&       operator^=(VQ L&, R);
3721    //        VQ L&       operator|=(VQ L&, R);
3722    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3723      for (unsigned Right = FirstPromotedIntegralType;
3724           Right < LastPromotedIntegralType; ++Right) {
3725        QualType ParamTypes[2];
3726        ParamTypes[1] = ArithmeticTypes[Right];
3727
3728        // Add this built-in operator as a candidate (VQ is empty).
3729        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3730        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3731        if (VisibleTypeConversionsQuals.hasVolatile()) {
3732          // Add this built-in operator as a candidate (VQ is 'volatile').
3733          ParamTypes[0] = ArithmeticTypes[Left];
3734          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3735          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3736          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3737        }
3738      }
3739    }
3740    break;
3741
3742  case OO_Exclaim: {
3743    // C++ [over.operator]p23:
3744    //
3745    //   There also exist candidate operator functions of the form
3746    //
3747    //        bool        operator!(bool);
3748    //        bool        operator&&(bool, bool);     [BELOW]
3749    //        bool        operator||(bool, bool);     [BELOW]
3750    QualType ParamTy = Context.BoolTy;
3751    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3752                        /*IsAssignmentOperator=*/false,
3753                        /*NumContextualBoolArguments=*/1);
3754    break;
3755  }
3756
3757  case OO_AmpAmp:
3758  case OO_PipePipe: {
3759    // C++ [over.operator]p23:
3760    //
3761    //   There also exist candidate operator functions of the form
3762    //
3763    //        bool        operator!(bool);            [ABOVE]
3764    //        bool        operator&&(bool, bool);
3765    //        bool        operator||(bool, bool);
3766    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3767    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3768                        /*IsAssignmentOperator=*/false,
3769                        /*NumContextualBoolArguments=*/2);
3770    break;
3771  }
3772
3773  case OO_Subscript:
3774    // C++ [over.built]p13:
3775    //
3776    //   For every cv-qualified or cv-unqualified object type T there
3777    //   exist candidate operator functions of the form
3778    //
3779    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3780    //        T&         operator[](T*, ptrdiff_t);
3781    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3782    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3783    //        T&         operator[](ptrdiff_t, T*);
3784    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3785         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3786      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3787      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3788      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3789
3790      // T& operator[](T*, ptrdiff_t)
3791      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3792
3793      // T& operator[](ptrdiff_t, T*);
3794      ParamTypes[0] = ParamTypes[1];
3795      ParamTypes[1] = *Ptr;
3796      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3797    }
3798    break;
3799
3800  case OO_ArrowStar:
3801    // C++ [over.built]p11:
3802    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3803    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3804    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3805    //    there exist candidate operator functions of the form
3806    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3807    //    where CV12 is the union of CV1 and CV2.
3808    {
3809      for (BuiltinCandidateTypeSet::iterator Ptr =
3810             CandidateTypes.pointer_begin();
3811           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3812        QualType C1Ty = (*Ptr);
3813        QualType C1;
3814        QualifierCollector Q1;
3815        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3816          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3817          if (!isa<RecordType>(C1))
3818            continue;
3819          // heuristic to reduce number of builtin candidates in the set.
3820          // Add volatile/restrict version only if there are conversions to a
3821          // volatile/restrict type.
3822          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3823            continue;
3824          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3825            continue;
3826        }
3827        for (BuiltinCandidateTypeSet::iterator
3828             MemPtr = CandidateTypes.member_pointer_begin(),
3829             MemPtrEnd = CandidateTypes.member_pointer_end();
3830             MemPtr != MemPtrEnd; ++MemPtr) {
3831          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3832          QualType C2 = QualType(mptr->getClass(), 0);
3833          C2 = C2.getUnqualifiedType();
3834          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3835            break;
3836          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3837          // build CV12 T&
3838          QualType T = mptr->getPointeeType();
3839          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3840              T.isVolatileQualified())
3841            continue;
3842          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3843              T.isRestrictQualified())
3844            continue;
3845          T = Q1.apply(T);
3846          QualType ResultTy = Context.getLValueReferenceType(T);
3847          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3848        }
3849      }
3850    }
3851    break;
3852
3853  case OO_Conditional:
3854    // Note that we don't consider the first argument, since it has been
3855    // contextually converted to bool long ago. The candidates below are
3856    // therefore added as binary.
3857    //
3858    // C++ [over.built]p24:
3859    //   For every type T, where T is a pointer or pointer-to-member type,
3860    //   there exist candidate operator functions of the form
3861    //
3862    //        T        operator?(bool, T, T);
3863    //
3864    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3865         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3866      QualType ParamTypes[2] = { *Ptr, *Ptr };
3867      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3868    }
3869    for (BuiltinCandidateTypeSet::iterator Ptr =
3870           CandidateTypes.member_pointer_begin(),
3871         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3872      QualType ParamTypes[2] = { *Ptr, *Ptr };
3873      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3874    }
3875    goto Conditional;
3876  }
3877}
3878
3879/// \brief Add function candidates found via argument-dependent lookup
3880/// to the set of overloading candidates.
3881///
3882/// This routine performs argument-dependent name lookup based on the
3883/// given function name (which may also be an operator name) and adds
3884/// all of the overload candidates found by ADL to the overload
3885/// candidate set (C++ [basic.lookup.argdep]).
3886void
3887Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3888                                           Expr **Args, unsigned NumArgs,
3889                                           bool HasExplicitTemplateArgs,
3890                                const TemplateArgument *ExplicitTemplateArgs,
3891                                           unsigned NumExplicitTemplateArgs,
3892                                           OverloadCandidateSet& CandidateSet,
3893                                           bool PartialOverloading) {
3894  FunctionSet Functions;
3895
3896  // FIXME: Should we be trafficking in canonical function decls throughout?
3897
3898  // Record all of the function candidates that we've already
3899  // added to the overload set, so that we don't add those same
3900  // candidates a second time.
3901  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3902                                   CandEnd = CandidateSet.end();
3903       Cand != CandEnd; ++Cand)
3904    if (Cand->Function) {
3905      Functions.insert(Cand->Function);
3906      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3907        Functions.insert(FunTmpl);
3908    }
3909
3910  // FIXME: Pass in the explicit template arguments?
3911  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3912
3913  // Erase all of the candidates we already knew about.
3914  // FIXME: This is suboptimal. Is there a better way?
3915  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3916                                   CandEnd = CandidateSet.end();
3917       Cand != CandEnd; ++Cand)
3918    if (Cand->Function) {
3919      Functions.erase(Cand->Function);
3920      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3921        Functions.erase(FunTmpl);
3922    }
3923
3924  // For each of the ADL candidates we found, add it to the overload
3925  // set.
3926  for (FunctionSet::iterator Func = Functions.begin(),
3927                          FuncEnd = Functions.end();
3928       Func != FuncEnd; ++Func) {
3929    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3930      if (HasExplicitTemplateArgs)
3931        continue;
3932
3933      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3934                           false, false, PartialOverloading);
3935    } else
3936      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3937                                   HasExplicitTemplateArgs,
3938                                   ExplicitTemplateArgs,
3939                                   NumExplicitTemplateArgs,
3940                                   Args, NumArgs, CandidateSet);
3941  }
3942}
3943
3944/// isBetterOverloadCandidate - Determines whether the first overload
3945/// candidate is a better candidate than the second (C++ 13.3.3p1).
3946bool
3947Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3948                                const OverloadCandidate& Cand2) {
3949  // Define viable functions to be better candidates than non-viable
3950  // functions.
3951  if (!Cand2.Viable)
3952    return Cand1.Viable;
3953  else if (!Cand1.Viable)
3954    return false;
3955
3956  // C++ [over.match.best]p1:
3957  //
3958  //   -- if F is a static member function, ICS1(F) is defined such
3959  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3960  //      any function G, and, symmetrically, ICS1(G) is neither
3961  //      better nor worse than ICS1(F).
3962  unsigned StartArg = 0;
3963  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3964    StartArg = 1;
3965
3966  // C++ [over.match.best]p1:
3967  //   A viable function F1 is defined to be a better function than another
3968  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3969  //   conversion sequence than ICSi(F2), and then...
3970  unsigned NumArgs = Cand1.Conversions.size();
3971  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3972  bool HasBetterConversion = false;
3973  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3974    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3975                                               Cand2.Conversions[ArgIdx])) {
3976    case ImplicitConversionSequence::Better:
3977      // Cand1 has a better conversion sequence.
3978      HasBetterConversion = true;
3979      break;
3980
3981    case ImplicitConversionSequence::Worse:
3982      // Cand1 can't be better than Cand2.
3983      return false;
3984
3985    case ImplicitConversionSequence::Indistinguishable:
3986      // Do nothing.
3987      break;
3988    }
3989  }
3990
3991  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3992  //       ICSj(F2), or, if not that,
3993  if (HasBetterConversion)
3994    return true;
3995
3996  //     - F1 is a non-template function and F2 is a function template
3997  //       specialization, or, if not that,
3998  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3999      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4000    return true;
4001
4002  //   -- F1 and F2 are function template specializations, and the function
4003  //      template for F1 is more specialized than the template for F2
4004  //      according to the partial ordering rules described in 14.5.5.2, or,
4005  //      if not that,
4006  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4007      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4008    if (FunctionTemplateDecl *BetterTemplate
4009          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4010                                       Cand2.Function->getPrimaryTemplate(),
4011                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4012                                                             : TPOC_Call))
4013      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4014
4015  //   -- the context is an initialization by user-defined conversion
4016  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4017  //      from the return type of F1 to the destination type (i.e.,
4018  //      the type of the entity being initialized) is a better
4019  //      conversion sequence than the standard conversion sequence
4020  //      from the return type of F2 to the destination type.
4021  if (Cand1.Function && Cand2.Function &&
4022      isa<CXXConversionDecl>(Cand1.Function) &&
4023      isa<CXXConversionDecl>(Cand2.Function)) {
4024    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4025                                               Cand2.FinalConversion)) {
4026    case ImplicitConversionSequence::Better:
4027      // Cand1 has a better conversion sequence.
4028      return true;
4029
4030    case ImplicitConversionSequence::Worse:
4031      // Cand1 can't be better than Cand2.
4032      return false;
4033
4034    case ImplicitConversionSequence::Indistinguishable:
4035      // Do nothing
4036      break;
4037    }
4038  }
4039
4040  return false;
4041}
4042
4043/// \brief Computes the best viable function (C++ 13.3.3)
4044/// within an overload candidate set.
4045///
4046/// \param CandidateSet the set of candidate functions.
4047///
4048/// \param Loc the location of the function name (or operator symbol) for
4049/// which overload resolution occurs.
4050///
4051/// \param Best f overload resolution was successful or found a deleted
4052/// function, Best points to the candidate function found.
4053///
4054/// \returns The result of overload resolution.
4055Sema::OverloadingResult
4056Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4057                         SourceLocation Loc,
4058                         OverloadCandidateSet::iterator& Best) {
4059  // Find the best viable function.
4060  Best = CandidateSet.end();
4061  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4062       Cand != CandidateSet.end(); ++Cand) {
4063    if (Cand->Viable) {
4064      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4065        Best = Cand;
4066    }
4067  }
4068
4069  // If we didn't find any viable functions, abort.
4070  if (Best == CandidateSet.end())
4071    return OR_No_Viable_Function;
4072
4073  // Make sure that this function is better than every other viable
4074  // function. If not, we have an ambiguity.
4075  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4076       Cand != CandidateSet.end(); ++Cand) {
4077    if (Cand->Viable &&
4078        Cand != Best &&
4079        !isBetterOverloadCandidate(*Best, *Cand)) {
4080      Best = CandidateSet.end();
4081      return OR_Ambiguous;
4082    }
4083  }
4084
4085  // Best is the best viable function.
4086  if (Best->Function &&
4087      (Best->Function->isDeleted() ||
4088       Best->Function->getAttr<UnavailableAttr>()))
4089    return OR_Deleted;
4090
4091  // C++ [basic.def.odr]p2:
4092  //   An overloaded function is used if it is selected by overload resolution
4093  //   when referred to from a potentially-evaluated expression. [Note: this
4094  //   covers calls to named functions (5.2.2), operator overloading
4095  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4096  //   placement new (5.3.4), as well as non-default initialization (8.5).
4097  if (Best->Function)
4098    MarkDeclarationReferenced(Loc, Best->Function);
4099  return OR_Success;
4100}
4101
4102/// PrintOverloadCandidates - When overload resolution fails, prints
4103/// diagnostic messages containing the candidates in the candidate
4104/// set. If OnlyViable is true, only viable candidates will be printed.
4105void
4106Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4107                              bool OnlyViable,
4108                              const char *Opc,
4109                              SourceLocation OpLoc) {
4110  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4111                             LastCand = CandidateSet.end();
4112  bool Reported = false;
4113  for (; Cand != LastCand; ++Cand) {
4114    if (Cand->Viable || !OnlyViable) {
4115      if (Cand->Function) {
4116        if (Cand->Function->isDeleted() ||
4117            Cand->Function->getAttr<UnavailableAttr>()) {
4118          // Deleted or "unavailable" function.
4119          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4120            << Cand->Function->isDeleted();
4121        } else if (FunctionTemplateDecl *FunTmpl
4122                     = Cand->Function->getPrimaryTemplate()) {
4123          // Function template specialization
4124          // FIXME: Give a better reason!
4125          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4126            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4127                              *Cand->Function->getTemplateSpecializationArgs());
4128        } else {
4129          // Normal function
4130          bool errReported = false;
4131          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4132            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4133              const ImplicitConversionSequence &Conversion =
4134                                                        Cand->Conversions[i];
4135              if ((Conversion.ConversionKind !=
4136                   ImplicitConversionSequence::BadConversion) ||
4137                  Conversion.ConversionFunctionSet.size() == 0)
4138                continue;
4139              Diag(Cand->Function->getLocation(),
4140                   diag::err_ovl_candidate_not_viable) << (i+1);
4141              errReported = true;
4142              for (int j = Conversion.ConversionFunctionSet.size()-1;
4143                   j >= 0; j--) {
4144                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4145                Diag(Func->getLocation(), diag::err_ovl_candidate);
4146              }
4147            }
4148          }
4149          if (!errReported)
4150            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4151        }
4152      } else if (Cand->IsSurrogate) {
4153        // Desugar the type of the surrogate down to a function type,
4154        // retaining as many typedefs as possible while still showing
4155        // the function type (and, therefore, its parameter types).
4156        QualType FnType = Cand->Surrogate->getConversionType();
4157        bool isLValueReference = false;
4158        bool isRValueReference = false;
4159        bool isPointer = false;
4160        if (const LValueReferenceType *FnTypeRef =
4161              FnType->getAs<LValueReferenceType>()) {
4162          FnType = FnTypeRef->getPointeeType();
4163          isLValueReference = true;
4164        } else if (const RValueReferenceType *FnTypeRef =
4165                     FnType->getAs<RValueReferenceType>()) {
4166          FnType = FnTypeRef->getPointeeType();
4167          isRValueReference = true;
4168        }
4169        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4170          FnType = FnTypePtr->getPointeeType();
4171          isPointer = true;
4172        }
4173        // Desugar down to a function type.
4174        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4175        // Reconstruct the pointer/reference as appropriate.
4176        if (isPointer) FnType = Context.getPointerType(FnType);
4177        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4178        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4179
4180        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4181          << FnType;
4182      } else if (OnlyViable) {
4183        assert(Cand->Conversions.size() <= 2 &&
4184               "builtin-binary-operator-not-binary");
4185        std::string TypeStr("operator");
4186        TypeStr += Opc;
4187        TypeStr += "(";
4188        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4189        if (Cand->Conversions.size() == 1) {
4190          TypeStr += ")";
4191          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4192        }
4193        else {
4194          TypeStr += ", ";
4195          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4196          TypeStr += ")";
4197          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4198        }
4199      }
4200      else if (!Cand->Viable && !Reported) {
4201        // Non-viability might be due to ambiguous user-defined conversions,
4202        // needed for built-in operators. Report them as well, but only once
4203        // as we have typically many built-in candidates.
4204        unsigned NoOperands = Cand->Conversions.size();
4205        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4206          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4207          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4208              ICS.ConversionFunctionSet.empty())
4209            continue;
4210          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4211                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4212            QualType FromTy =
4213              QualType(
4214                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4215            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4216                  << FromTy << Func->getConversionType();
4217          }
4218          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4219            FunctionDecl *Func =
4220              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4221            Diag(Func->getLocation(),diag::err_ovl_candidate);
4222          }
4223        }
4224        Reported = true;
4225      }
4226    }
4227  }
4228}
4229
4230/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4231/// an overloaded function (C++ [over.over]), where @p From is an
4232/// expression with overloaded function type and @p ToType is the type
4233/// we're trying to resolve to. For example:
4234///
4235/// @code
4236/// int f(double);
4237/// int f(int);
4238///
4239/// int (*pfd)(double) = f; // selects f(double)
4240/// @endcode
4241///
4242/// This routine returns the resulting FunctionDecl if it could be
4243/// resolved, and NULL otherwise. When @p Complain is true, this
4244/// routine will emit diagnostics if there is an error.
4245FunctionDecl *
4246Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4247                                         bool Complain) {
4248  QualType FunctionType = ToType;
4249  bool IsMember = false;
4250  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4251    FunctionType = ToTypePtr->getPointeeType();
4252  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4253    FunctionType = ToTypeRef->getPointeeType();
4254  else if (const MemberPointerType *MemTypePtr =
4255                    ToType->getAs<MemberPointerType>()) {
4256    FunctionType = MemTypePtr->getPointeeType();
4257    IsMember = true;
4258  }
4259
4260  // We only look at pointers or references to functions.
4261  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4262  if (!FunctionType->isFunctionType())
4263    return 0;
4264
4265  // Find the actual overloaded function declaration.
4266  OverloadedFunctionDecl *Ovl = 0;
4267
4268  // C++ [over.over]p1:
4269  //   [...] [Note: any redundant set of parentheses surrounding the
4270  //   overloaded function name is ignored (5.1). ]
4271  Expr *OvlExpr = From->IgnoreParens();
4272
4273  // C++ [over.over]p1:
4274  //   [...] The overloaded function name can be preceded by the &
4275  //   operator.
4276  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4277    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4278      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4279  }
4280
4281  bool HasExplicitTemplateArgs = false;
4282  const TemplateArgument *ExplicitTemplateArgs = 0;
4283  unsigned NumExplicitTemplateArgs = 0;
4284
4285  // Try to dig out the overloaded function.
4286  FunctionTemplateDecl *FunctionTemplate = 0;
4287  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4288    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4289    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4290  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4291    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4292    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4293    // FIXME: Explicit template arguments
4294  } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) {
4295    TemplateName Name = TIRE->getTemplateName();
4296    Ovl = Name.getAsOverloadedFunctionDecl();
4297    FunctionTemplate =
4298      dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4299
4300    HasExplicitTemplateArgs = true;
4301    ExplicitTemplateArgs = TIRE->getTemplateArgs();
4302    NumExplicitTemplateArgs = TIRE->getNumTemplateArgs();
4303  }
4304
4305  // If there's no overloaded function declaration or function template,
4306  // we're done.
4307  if (!Ovl && !FunctionTemplate)
4308    return 0;
4309
4310  OverloadIterator Fun;
4311  if (Ovl)
4312    Fun = Ovl;
4313  else
4314    Fun = FunctionTemplate;
4315
4316  // Look through all of the overloaded functions, searching for one
4317  // whose type matches exactly.
4318  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4319  bool FoundNonTemplateFunction = false;
4320  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4321    // C++ [over.over]p3:
4322    //   Non-member functions and static member functions match
4323    //   targets of type "pointer-to-function" or "reference-to-function."
4324    //   Nonstatic member functions match targets of
4325    //   type "pointer-to-member-function."
4326    // Note that according to DR 247, the containing class does not matter.
4327
4328    if (FunctionTemplateDecl *FunctionTemplate
4329          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4330      if (CXXMethodDecl *Method
4331            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4332        // Skip non-static function templates when converting to pointer, and
4333        // static when converting to member pointer.
4334        if (Method->isStatic() == IsMember)
4335          continue;
4336      } else if (IsMember)
4337        continue;
4338
4339      // C++ [over.over]p2:
4340      //   If the name is a function template, template argument deduction is
4341      //   done (14.8.2.2), and if the argument deduction succeeds, the
4342      //   resulting template argument list is used to generate a single
4343      //   function template specialization, which is added to the set of
4344      //   overloaded functions considered.
4345      // FIXME: We don't really want to build the specialization here, do we?
4346      FunctionDecl *Specialization = 0;
4347      TemplateDeductionInfo Info(Context);
4348      if (TemplateDeductionResult Result
4349            = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
4350                                      ExplicitTemplateArgs,
4351                                      NumExplicitTemplateArgs,
4352                                      FunctionType, Specialization, Info)) {
4353        // FIXME: make a note of the failed deduction for diagnostics.
4354        (void)Result;
4355      } else {
4356        // FIXME: If the match isn't exact, shouldn't we just drop this as
4357        // a candidate? Find a testcase before changing the code.
4358        assert(FunctionType
4359                 == Context.getCanonicalType(Specialization->getType()));
4360        Matches.insert(
4361                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4362      }
4363    }
4364
4365    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4366      // Skip non-static functions when converting to pointer, and static
4367      // when converting to member pointer.
4368      if (Method->isStatic() == IsMember)
4369        continue;
4370    } else if (IsMember)
4371      continue;
4372
4373    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4374      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4375        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4376        FoundNonTemplateFunction = true;
4377      }
4378    }
4379  }
4380
4381  // If there were 0 or 1 matches, we're done.
4382  if (Matches.empty())
4383    return 0;
4384  else if (Matches.size() == 1) {
4385    FunctionDecl *Result = *Matches.begin();
4386    MarkDeclarationReferenced(From->getLocStart(), Result);
4387    return Result;
4388  }
4389
4390  // C++ [over.over]p4:
4391  //   If more than one function is selected, [...]
4392  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4393  if (!FoundNonTemplateFunction) {
4394    //   [...] and any given function template specialization F1 is
4395    //   eliminated if the set contains a second function template
4396    //   specialization whose function template is more specialized
4397    //   than the function template of F1 according to the partial
4398    //   ordering rules of 14.5.5.2.
4399
4400    // The algorithm specified above is quadratic. We instead use a
4401    // two-pass algorithm (similar to the one used to identify the
4402    // best viable function in an overload set) that identifies the
4403    // best function template (if it exists).
4404    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4405                                                         Matches.end());
4406    FunctionDecl *Result =
4407        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4408                           TPOC_Other, From->getLocStart(),
4409                           PDiag(),
4410                           PDiag(diag::err_addr_ovl_ambiguous)
4411                               << TemplateMatches[0]->getDeclName(),
4412                           PDiag(diag::err_ovl_template_candidate));
4413    MarkDeclarationReferenced(From->getLocStart(), Result);
4414    return Result;
4415  }
4416
4417  //   [...] any function template specializations in the set are
4418  //   eliminated if the set also contains a non-template function, [...]
4419  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4420  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4421    if ((*M)->getPrimaryTemplate() == 0)
4422      RemainingMatches.push_back(*M);
4423
4424  // [...] After such eliminations, if any, there shall remain exactly one
4425  // selected function.
4426  if (RemainingMatches.size() == 1) {
4427    FunctionDecl *Result = RemainingMatches.front();
4428    MarkDeclarationReferenced(From->getLocStart(), Result);
4429    return Result;
4430  }
4431
4432  // FIXME: We should probably return the same thing that BestViableFunction
4433  // returns (even if we issue the diagnostics here).
4434  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4435    << RemainingMatches[0]->getDeclName();
4436  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4437    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4438  return 0;
4439}
4440
4441/// \brief Add a single candidate to the overload set.
4442static void AddOverloadedCallCandidate(Sema &S,
4443                                       AnyFunctionDecl Callee,
4444                                       bool &ArgumentDependentLookup,
4445                                       bool HasExplicitTemplateArgs,
4446                                 const TemplateArgument *ExplicitTemplateArgs,
4447                                       unsigned NumExplicitTemplateArgs,
4448                                       Expr **Args, unsigned NumArgs,
4449                                       OverloadCandidateSet &CandidateSet,
4450                                       bool PartialOverloading) {
4451  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4452    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4453    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4454                           PartialOverloading);
4455
4456    if (Func->getDeclContext()->isRecord() ||
4457        Func->getDeclContext()->isFunctionOrMethod())
4458      ArgumentDependentLookup = false;
4459    return;
4460  }
4461
4462  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4463  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4464                                 ExplicitTemplateArgs,
4465                                 NumExplicitTemplateArgs,
4466                                 Args, NumArgs, CandidateSet);
4467
4468  if (FuncTemplate->getDeclContext()->isRecord())
4469    ArgumentDependentLookup = false;
4470}
4471
4472/// \brief Add the overload candidates named by callee and/or found by argument
4473/// dependent lookup to the given overload set.
4474void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4475                                       DeclarationName &UnqualifiedName,
4476                                       bool &ArgumentDependentLookup,
4477                                       bool HasExplicitTemplateArgs,
4478                                  const TemplateArgument *ExplicitTemplateArgs,
4479                                       unsigned NumExplicitTemplateArgs,
4480                                       Expr **Args, unsigned NumArgs,
4481                                       OverloadCandidateSet &CandidateSet,
4482                                       bool PartialOverloading) {
4483  // Add the functions denoted by Callee to the set of candidate
4484  // functions. While we're doing so, track whether argument-dependent
4485  // lookup still applies, per:
4486  //
4487  // C++0x [basic.lookup.argdep]p3:
4488  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4489  //   and let Y be the lookup set produced by argument dependent
4490  //   lookup (defined as follows). If X contains
4491  //
4492  //     -- a declaration of a class member, or
4493  //
4494  //     -- a block-scope function declaration that is not a
4495  //        using-declaration (FIXME: check for using declaration), or
4496  //
4497  //     -- a declaration that is neither a function or a function
4498  //        template
4499  //
4500  //   then Y is empty.
4501  if (!Callee) {
4502    // Nothing to do.
4503  } else if (OverloadedFunctionDecl *Ovl
4504               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4505    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4506                                                FuncEnd = Ovl->function_end();
4507         Func != FuncEnd; ++Func)
4508      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4509                                 HasExplicitTemplateArgs,
4510                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4511                                 Args, NumArgs, CandidateSet,
4512                                 PartialOverloading);
4513  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4514    AddOverloadedCallCandidate(*this,
4515                               AnyFunctionDecl::getFromNamedDecl(Callee),
4516                               ArgumentDependentLookup,
4517                               HasExplicitTemplateArgs,
4518                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4519                               Args, NumArgs, CandidateSet,
4520                               PartialOverloading);
4521  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4522  // checking dynamically.
4523
4524  if (Callee)
4525    UnqualifiedName = Callee->getDeclName();
4526
4527  if (ArgumentDependentLookup)
4528    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4529                                         HasExplicitTemplateArgs,
4530                                         ExplicitTemplateArgs,
4531                                         NumExplicitTemplateArgs,
4532                                         CandidateSet,
4533                                         PartialOverloading);
4534}
4535
4536/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4537/// (which eventually refers to the declaration Func) and the call
4538/// arguments Args/NumArgs, attempt to resolve the function call down
4539/// to a specific function. If overload resolution succeeds, returns
4540/// the function declaration produced by overload
4541/// resolution. Otherwise, emits diagnostics, deletes all of the
4542/// arguments and Fn, and returns NULL.
4543FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4544                                            DeclarationName UnqualifiedName,
4545                                            bool HasExplicitTemplateArgs,
4546                                 const TemplateArgument *ExplicitTemplateArgs,
4547                                            unsigned NumExplicitTemplateArgs,
4548                                            SourceLocation LParenLoc,
4549                                            Expr **Args, unsigned NumArgs,
4550                                            SourceLocation *CommaLocs,
4551                                            SourceLocation RParenLoc,
4552                                            bool &ArgumentDependentLookup) {
4553  OverloadCandidateSet CandidateSet;
4554
4555  // Add the functions denoted by Callee to the set of candidate
4556  // functions.
4557  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4558                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4559                              NumExplicitTemplateArgs, Args, NumArgs,
4560                              CandidateSet);
4561  OverloadCandidateSet::iterator Best;
4562  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4563  case OR_Success:
4564    return Best->Function;
4565
4566  case OR_No_Viable_Function:
4567    Diag(Fn->getSourceRange().getBegin(),
4568         diag::err_ovl_no_viable_function_in_call)
4569      << UnqualifiedName << Fn->getSourceRange();
4570    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4571    break;
4572
4573  case OR_Ambiguous:
4574    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4575      << UnqualifiedName << Fn->getSourceRange();
4576    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4577    break;
4578
4579  case OR_Deleted:
4580    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4581      << Best->Function->isDeleted()
4582      << UnqualifiedName
4583      << Fn->getSourceRange();
4584    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4585    break;
4586  }
4587
4588  // Overload resolution failed. Destroy all of the subexpressions and
4589  // return NULL.
4590  Fn->Destroy(Context);
4591  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4592    Args[Arg]->Destroy(Context);
4593  return 0;
4594}
4595
4596/// \brief Create a unary operation that may resolve to an overloaded
4597/// operator.
4598///
4599/// \param OpLoc The location of the operator itself (e.g., '*').
4600///
4601/// \param OpcIn The UnaryOperator::Opcode that describes this
4602/// operator.
4603///
4604/// \param Functions The set of non-member functions that will be
4605/// considered by overload resolution. The caller needs to build this
4606/// set based on the context using, e.g.,
4607/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4608/// set should not contain any member functions; those will be added
4609/// by CreateOverloadedUnaryOp().
4610///
4611/// \param input The input argument.
4612Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4613                                                     unsigned OpcIn,
4614                                                     FunctionSet &Functions,
4615                                                     ExprArg input) {
4616  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4617  Expr *Input = (Expr *)input.get();
4618
4619  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4620  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4621  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4622
4623  Expr *Args[2] = { Input, 0 };
4624  unsigned NumArgs = 1;
4625
4626  // For post-increment and post-decrement, add the implicit '0' as
4627  // the second argument, so that we know this is a post-increment or
4628  // post-decrement.
4629  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4630    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4631    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4632                                           SourceLocation());
4633    NumArgs = 2;
4634  }
4635
4636  if (Input->isTypeDependent()) {
4637    OverloadedFunctionDecl *Overloads
4638      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4639    for (FunctionSet::iterator Func = Functions.begin(),
4640                            FuncEnd = Functions.end();
4641         Func != FuncEnd; ++Func)
4642      Overloads->addOverload(*Func);
4643
4644    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4645                                                OpLoc, false, false);
4646
4647    input.release();
4648    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4649                                                   &Args[0], NumArgs,
4650                                                   Context.DependentTy,
4651                                                   OpLoc));
4652  }
4653
4654  // Build an empty overload set.
4655  OverloadCandidateSet CandidateSet;
4656
4657  // Add the candidates from the given function set.
4658  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4659
4660  // Add operator candidates that are member functions.
4661  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4662
4663  // Add builtin operator candidates.
4664  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4665
4666  // Perform overload resolution.
4667  OverloadCandidateSet::iterator Best;
4668  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4669  case OR_Success: {
4670    // We found a built-in operator or an overloaded operator.
4671    FunctionDecl *FnDecl = Best->Function;
4672
4673    if (FnDecl) {
4674      // We matched an overloaded operator. Build a call to that
4675      // operator.
4676
4677      // Convert the arguments.
4678      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4679        if (PerformObjectArgumentInitialization(Input, Method))
4680          return ExprError();
4681      } else {
4682        // Convert the arguments.
4683        if (PerformCopyInitialization(Input,
4684                                      FnDecl->getParamDecl(0)->getType(),
4685                                      "passing"))
4686          return ExprError();
4687      }
4688
4689      // Determine the result type
4690      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4691
4692      // Build the actual expression node.
4693      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4694                                               SourceLocation());
4695      UsualUnaryConversions(FnExpr);
4696
4697      input.release();
4698
4699      ExprOwningPtr<CallExpr> TheCall(this,
4700        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4701                                          &Input, 1, ResultTy, OpLoc));
4702
4703      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4704                              FnDecl))
4705        return ExprError();
4706
4707      return MaybeBindToTemporary(TheCall.release());
4708    } else {
4709      // We matched a built-in operator. Convert the arguments, then
4710      // break out so that we will build the appropriate built-in
4711      // operator node.
4712        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4713                                      Best->Conversions[0], "passing"))
4714          return ExprError();
4715
4716        break;
4717      }
4718    }
4719
4720    case OR_No_Viable_Function:
4721      // No viable function; fall through to handling this as a
4722      // built-in operator, which will produce an error message for us.
4723      break;
4724
4725    case OR_Ambiguous:
4726      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4727          << UnaryOperator::getOpcodeStr(Opc)
4728          << Input->getSourceRange();
4729      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4730                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4731      return ExprError();
4732
4733    case OR_Deleted:
4734      Diag(OpLoc, diag::err_ovl_deleted_oper)
4735        << Best->Function->isDeleted()
4736        << UnaryOperator::getOpcodeStr(Opc)
4737        << Input->getSourceRange();
4738      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4739      return ExprError();
4740    }
4741
4742  // Either we found no viable overloaded operator or we matched a
4743  // built-in operator. In either case, fall through to trying to
4744  // build a built-in operation.
4745  input.release();
4746  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4747}
4748
4749/// \brief Create a binary operation that may resolve to an overloaded
4750/// operator.
4751///
4752/// \param OpLoc The location of the operator itself (e.g., '+').
4753///
4754/// \param OpcIn The BinaryOperator::Opcode that describes this
4755/// operator.
4756///
4757/// \param Functions The set of non-member functions that will be
4758/// considered by overload resolution. The caller needs to build this
4759/// set based on the context using, e.g.,
4760/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4761/// set should not contain any member functions; those will be added
4762/// by CreateOverloadedBinOp().
4763///
4764/// \param LHS Left-hand argument.
4765/// \param RHS Right-hand argument.
4766Sema::OwningExprResult
4767Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4768                            unsigned OpcIn,
4769                            FunctionSet &Functions,
4770                            Expr *LHS, Expr *RHS) {
4771  Expr *Args[2] = { LHS, RHS };
4772  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4773
4774  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4775  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4776  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4777
4778  // If either side is type-dependent, create an appropriate dependent
4779  // expression.
4780  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4781    // .* cannot be overloaded.
4782    if (Opc == BinaryOperator::PtrMemD)
4783      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4784                                                Context.DependentTy, OpLoc));
4785
4786    OverloadedFunctionDecl *Overloads
4787      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4788    for (FunctionSet::iterator Func = Functions.begin(),
4789                            FuncEnd = Functions.end();
4790         Func != FuncEnd; ++Func)
4791      Overloads->addOverload(*Func);
4792
4793    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4794                                                OpLoc, false, false);
4795
4796    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4797                                                   Args, 2,
4798                                                   Context.DependentTy,
4799                                                   OpLoc));
4800  }
4801
4802  // If this is the .* operator, which is not overloadable, just
4803  // create a built-in binary operator.
4804  if (Opc == BinaryOperator::PtrMemD)
4805    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4806
4807  // If this is one of the assignment operators, we only perform
4808  // overload resolution if the left-hand side is a class or
4809  // enumeration type (C++ [expr.ass]p3).
4810  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4811      !Args[0]->getType()->isOverloadableType())
4812    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4813
4814  // Build an empty overload set.
4815  OverloadCandidateSet CandidateSet;
4816
4817  // Add the candidates from the given function set.
4818  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4819
4820  // Add operator candidates that are member functions.
4821  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4822
4823  // Add builtin operator candidates.
4824  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4825
4826  // Perform overload resolution.
4827  OverloadCandidateSet::iterator Best;
4828  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4829    case OR_Success: {
4830      // We found a built-in operator or an overloaded operator.
4831      FunctionDecl *FnDecl = Best->Function;
4832
4833      if (FnDecl) {
4834        // We matched an overloaded operator. Build a call to that
4835        // operator.
4836
4837        // Convert the arguments.
4838        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4839          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4840              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4841                                        "passing"))
4842            return ExprError();
4843        } else {
4844          // Convert the arguments.
4845          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4846                                        "passing") ||
4847              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4848                                        "passing"))
4849            return ExprError();
4850        }
4851
4852        // Determine the result type
4853        QualType ResultTy
4854          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4855        ResultTy = ResultTy.getNonReferenceType();
4856
4857        // Build the actual expression node.
4858        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4859                                                 OpLoc);
4860        UsualUnaryConversions(FnExpr);
4861
4862        ExprOwningPtr<CXXOperatorCallExpr>
4863          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4864                                                          Args, 2, ResultTy,
4865                                                          OpLoc));
4866
4867        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4868                                FnDecl))
4869          return ExprError();
4870
4871        return MaybeBindToTemporary(TheCall.release());
4872      } else {
4873        // We matched a built-in operator. Convert the arguments, then
4874        // break out so that we will build the appropriate built-in
4875        // operator node.
4876        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4877                                      Best->Conversions[0], "passing") ||
4878            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4879                                      Best->Conversions[1], "passing"))
4880          return ExprError();
4881
4882        break;
4883      }
4884    }
4885
4886    case OR_No_Viable_Function: {
4887      // C++ [over.match.oper]p9:
4888      //   If the operator is the operator , [...] and there are no
4889      //   viable functions, then the operator is assumed to be the
4890      //   built-in operator and interpreted according to clause 5.
4891      if (Opc == BinaryOperator::Comma)
4892        break;
4893
4894      // For class as left operand for assignment or compound assigment operator
4895      // do not fall through to handling in built-in, but report that no overloaded
4896      // assignment operator found
4897      OwningExprResult Result = ExprError();
4898      if (Args[0]->getType()->isRecordType() &&
4899          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4900        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4901             << BinaryOperator::getOpcodeStr(Opc)
4902             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4903      } else {
4904        // No viable function; try to create a built-in operation, which will
4905        // produce an error. Then, show the non-viable candidates.
4906        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4907      }
4908      assert(Result.isInvalid() &&
4909             "C++ binary operator overloading is missing candidates!");
4910      if (Result.isInvalid())
4911        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4912                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4913      return move(Result);
4914    }
4915
4916    case OR_Ambiguous:
4917      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4918          << BinaryOperator::getOpcodeStr(Opc)
4919          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4920      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4921                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4922      return ExprError();
4923
4924    case OR_Deleted:
4925      Diag(OpLoc, diag::err_ovl_deleted_oper)
4926        << Best->Function->isDeleted()
4927        << BinaryOperator::getOpcodeStr(Opc)
4928        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4929      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4930      return ExprError();
4931    }
4932
4933  // We matched a built-in operator; build it.
4934  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4935}
4936
4937/// BuildCallToMemberFunction - Build a call to a member
4938/// function. MemExpr is the expression that refers to the member
4939/// function (and includes the object parameter), Args/NumArgs are the
4940/// arguments to the function call (not including the object
4941/// parameter). The caller needs to validate that the member
4942/// expression refers to a member function or an overloaded member
4943/// function.
4944Sema::ExprResult
4945Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4946                                SourceLocation LParenLoc, Expr **Args,
4947                                unsigned NumArgs, SourceLocation *CommaLocs,
4948                                SourceLocation RParenLoc) {
4949  // Dig out the member expression. This holds both the object
4950  // argument and the member function we're referring to.
4951  MemberExpr *MemExpr = 0;
4952  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4953    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4954  else
4955    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4956  assert(MemExpr && "Building member call without member expression");
4957
4958  // Extract the object argument.
4959  Expr *ObjectArg = MemExpr->getBase();
4960
4961  CXXMethodDecl *Method = 0;
4962  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4963      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4964    // Add overload candidates
4965    OverloadCandidateSet CandidateSet;
4966    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4967
4968    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4969         Func != FuncEnd; ++Func) {
4970      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4971        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4972                           /*SuppressUserConversions=*/false);
4973      else
4974        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4975                                   MemExpr->hasExplicitTemplateArgumentList(),
4976                                   MemExpr->getTemplateArgs(),
4977                                   MemExpr->getNumTemplateArgs(),
4978                                   ObjectArg, Args, NumArgs,
4979                                   CandidateSet,
4980                                   /*SuppressUsedConversions=*/false);
4981    }
4982
4983    OverloadCandidateSet::iterator Best;
4984    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4985    case OR_Success:
4986      Method = cast<CXXMethodDecl>(Best->Function);
4987      break;
4988
4989    case OR_No_Viable_Function:
4990      Diag(MemExpr->getSourceRange().getBegin(),
4991           diag::err_ovl_no_viable_member_function_in_call)
4992        << DeclName << MemExprE->getSourceRange();
4993      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4994      // FIXME: Leaking incoming expressions!
4995      return true;
4996
4997    case OR_Ambiguous:
4998      Diag(MemExpr->getSourceRange().getBegin(),
4999           diag::err_ovl_ambiguous_member_call)
5000        << DeclName << MemExprE->getSourceRange();
5001      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5002      // FIXME: Leaking incoming expressions!
5003      return true;
5004
5005    case OR_Deleted:
5006      Diag(MemExpr->getSourceRange().getBegin(),
5007           diag::err_ovl_deleted_member_call)
5008        << Best->Function->isDeleted()
5009        << DeclName << MemExprE->getSourceRange();
5010      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5011      // FIXME: Leaking incoming expressions!
5012      return true;
5013    }
5014
5015    FixOverloadedFunctionReference(MemExpr, Method);
5016  } else {
5017    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5018  }
5019
5020  assert(Method && "Member call to something that isn't a method?");
5021  ExprOwningPtr<CXXMemberCallExpr>
5022    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5023                                                  NumArgs,
5024                                  Method->getResultType().getNonReferenceType(),
5025                                  RParenLoc));
5026
5027  // Check for a valid return type.
5028  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5029                          TheCall.get(), Method))
5030    return true;
5031
5032  // Convert the object argument (for a non-static member function call).
5033  if (!Method->isStatic() &&
5034      PerformObjectArgumentInitialization(ObjectArg, Method))
5035    return true;
5036  MemExpr->setBase(ObjectArg);
5037
5038  // Convert the rest of the arguments
5039  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5040  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5041                              RParenLoc))
5042    return true;
5043
5044  if (CheckFunctionCall(Method, TheCall.get()))
5045    return true;
5046
5047  return MaybeBindToTemporary(TheCall.release()).release();
5048}
5049
5050/// BuildCallToObjectOfClassType - Build a call to an object of class
5051/// type (C++ [over.call.object]), which can end up invoking an
5052/// overloaded function call operator (@c operator()) or performing a
5053/// user-defined conversion on the object argument.
5054Sema::ExprResult
5055Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5056                                   SourceLocation LParenLoc,
5057                                   Expr **Args, unsigned NumArgs,
5058                                   SourceLocation *CommaLocs,
5059                                   SourceLocation RParenLoc) {
5060  assert(Object->getType()->isRecordType() && "Requires object type argument");
5061  const RecordType *Record = Object->getType()->getAs<RecordType>();
5062
5063  // C++ [over.call.object]p1:
5064  //  If the primary-expression E in the function call syntax
5065  //  evaluates to a class object of type "cv T", then the set of
5066  //  candidate functions includes at least the function call
5067  //  operators of T. The function call operators of T are obtained by
5068  //  ordinary lookup of the name operator() in the context of
5069  //  (E).operator().
5070  OverloadCandidateSet CandidateSet;
5071  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5072  DeclContext::lookup_const_iterator Oper, OperEnd;
5073  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
5074       Oper != OperEnd; ++Oper)
5075    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
5076                       CandidateSet, /*SuppressUserConversions=*/false);
5077
5078  if (RequireCompleteType(LParenLoc, Object->getType(),
5079                          PartialDiagnostic(diag::err_incomplete_object_call)
5080                            << Object->getSourceRange()))
5081    return true;
5082
5083  // C++ [over.call.object]p2:
5084  //   In addition, for each conversion function declared in T of the
5085  //   form
5086  //
5087  //        operator conversion-type-id () cv-qualifier;
5088  //
5089  //   where cv-qualifier is the same cv-qualification as, or a
5090  //   greater cv-qualification than, cv, and where conversion-type-id
5091  //   denotes the type "pointer to function of (P1,...,Pn) returning
5092  //   R", or the type "reference to pointer to function of
5093  //   (P1,...,Pn) returning R", or the type "reference to function
5094  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5095  //   is also considered as a candidate function. Similarly,
5096  //   surrogate call functions are added to the set of candidate
5097  //   functions for each conversion function declared in an
5098  //   accessible base class provided the function is not hidden
5099  //   within T by another intervening declaration.
5100  // FIXME: Look in base classes for more conversion operators!
5101  OverloadedFunctionDecl *Conversions
5102    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5103  for (OverloadedFunctionDecl::function_iterator
5104         Func = Conversions->function_begin(),
5105         FuncEnd = Conversions->function_end();
5106       Func != FuncEnd; ++Func) {
5107    CXXConversionDecl *Conv;
5108    FunctionTemplateDecl *ConvTemplate;
5109    GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
5110
5111    // Skip over templated conversion functions; they aren't
5112    // surrogates.
5113    if (ConvTemplate)
5114      continue;
5115
5116    // Strip the reference type (if any) and then the pointer type (if
5117    // any) to get down to what might be a function type.
5118    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5119    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5120      ConvType = ConvPtrType->getPointeeType();
5121
5122    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5123      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5124  }
5125
5126  // Perform overload resolution.
5127  OverloadCandidateSet::iterator Best;
5128  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5129  case OR_Success:
5130    // Overload resolution succeeded; we'll build the appropriate call
5131    // below.
5132    break;
5133
5134  case OR_No_Viable_Function:
5135    Diag(Object->getSourceRange().getBegin(),
5136         diag::err_ovl_no_viable_object_call)
5137      << Object->getType() << Object->getSourceRange();
5138    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5139    break;
5140
5141  case OR_Ambiguous:
5142    Diag(Object->getSourceRange().getBegin(),
5143         diag::err_ovl_ambiguous_object_call)
5144      << Object->getType() << Object->getSourceRange();
5145    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5146    break;
5147
5148  case OR_Deleted:
5149    Diag(Object->getSourceRange().getBegin(),
5150         diag::err_ovl_deleted_object_call)
5151      << Best->Function->isDeleted()
5152      << Object->getType() << Object->getSourceRange();
5153    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5154    break;
5155  }
5156
5157  if (Best == CandidateSet.end()) {
5158    // We had an error; delete all of the subexpressions and return
5159    // the error.
5160    Object->Destroy(Context);
5161    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5162      Args[ArgIdx]->Destroy(Context);
5163    return true;
5164  }
5165
5166  if (Best->Function == 0) {
5167    // Since there is no function declaration, this is one of the
5168    // surrogate candidates. Dig out the conversion function.
5169    CXXConversionDecl *Conv
5170      = cast<CXXConversionDecl>(
5171                         Best->Conversions[0].UserDefined.ConversionFunction);
5172
5173    // We selected one of the surrogate functions that converts the
5174    // object parameter to a function pointer. Perform the conversion
5175    // on the object argument, then let ActOnCallExpr finish the job.
5176
5177    // Create an implicit member expr to refer to the conversion operator.
5178    // and then call it.
5179    CXXMemberCallExpr *CE =
5180    BuildCXXMemberCallExpr(Object, Conv);
5181
5182    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5183                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5184                         CommaLocs, RParenLoc).release();
5185  }
5186
5187  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5188  // that calls this method, using Object for the implicit object
5189  // parameter and passing along the remaining arguments.
5190  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5191  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5192
5193  unsigned NumArgsInProto = Proto->getNumArgs();
5194  unsigned NumArgsToCheck = NumArgs;
5195
5196  // Build the full argument list for the method call (the
5197  // implicit object parameter is placed at the beginning of the
5198  // list).
5199  Expr **MethodArgs;
5200  if (NumArgs < NumArgsInProto) {
5201    NumArgsToCheck = NumArgsInProto;
5202    MethodArgs = new Expr*[NumArgsInProto + 1];
5203  } else {
5204    MethodArgs = new Expr*[NumArgs + 1];
5205  }
5206  MethodArgs[0] = Object;
5207  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5208    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5209
5210  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5211                                          SourceLocation());
5212  UsualUnaryConversions(NewFn);
5213
5214  // Once we've built TheCall, all of the expressions are properly
5215  // owned.
5216  QualType ResultTy = Method->getResultType().getNonReferenceType();
5217  ExprOwningPtr<CXXOperatorCallExpr>
5218    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5219                                                    MethodArgs, NumArgs + 1,
5220                                                    ResultTy, RParenLoc));
5221  delete [] MethodArgs;
5222
5223  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5224                          Method))
5225    return true;
5226
5227  // We may have default arguments. If so, we need to allocate more
5228  // slots in the call for them.
5229  if (NumArgs < NumArgsInProto)
5230    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5231  else if (NumArgs > NumArgsInProto)
5232    NumArgsToCheck = NumArgsInProto;
5233
5234  bool IsError = false;
5235
5236  // Initialize the implicit object parameter.
5237  IsError |= PerformObjectArgumentInitialization(Object, Method);
5238  TheCall->setArg(0, Object);
5239
5240
5241  // Check the argument types.
5242  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5243    Expr *Arg;
5244    if (i < NumArgs) {
5245      Arg = Args[i];
5246
5247      // Pass the argument.
5248      QualType ProtoArgType = Proto->getArgType(i);
5249      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5250    } else {
5251      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
5252    }
5253
5254    TheCall->setArg(i + 1, Arg);
5255  }
5256
5257  // If this is a variadic call, handle args passed through "...".
5258  if (Proto->isVariadic()) {
5259    // Promote the arguments (C99 6.5.2.2p7).
5260    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5261      Expr *Arg = Args[i];
5262      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5263      TheCall->setArg(i + 1, Arg);
5264    }
5265  }
5266
5267  if (IsError) return true;
5268
5269  if (CheckFunctionCall(Method, TheCall.get()))
5270    return true;
5271
5272  return MaybeBindToTemporary(TheCall.release()).release();
5273}
5274
5275/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5276///  (if one exists), where @c Base is an expression of class type and
5277/// @c Member is the name of the member we're trying to find.
5278Sema::OwningExprResult
5279Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5280  Expr *Base = static_cast<Expr *>(BaseIn.get());
5281  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5282
5283  // C++ [over.ref]p1:
5284  //
5285  //   [...] An expression x->m is interpreted as (x.operator->())->m
5286  //   for a class object x of type T if T::operator->() exists and if
5287  //   the operator is selected as the best match function by the
5288  //   overload resolution mechanism (13.3).
5289  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5290  OverloadCandidateSet CandidateSet;
5291  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5292
5293  LookupResult R;
5294  LookupQualifiedName(R, BaseRecord->getDecl(), OpName, LookupOrdinaryName);
5295
5296  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5297       Oper != OperEnd; ++Oper)
5298    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5299                       /*SuppressUserConversions=*/false);
5300
5301  // Perform overload resolution.
5302  OverloadCandidateSet::iterator Best;
5303  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5304  case OR_Success:
5305    // Overload resolution succeeded; we'll build the call below.
5306    break;
5307
5308  case OR_No_Viable_Function:
5309    if (CandidateSet.empty())
5310      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5311        << Base->getType() << Base->getSourceRange();
5312    else
5313      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5314        << "operator->" << Base->getSourceRange();
5315    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5316    return ExprError();
5317
5318  case OR_Ambiguous:
5319    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5320      << "->" << Base->getSourceRange();
5321    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5322    return ExprError();
5323
5324  case OR_Deleted:
5325    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5326      << Best->Function->isDeleted()
5327      << "->" << Base->getSourceRange();
5328    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5329    return ExprError();
5330  }
5331
5332  // Convert the object parameter.
5333  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5334  if (PerformObjectArgumentInitialization(Base, Method))
5335    return ExprError();
5336
5337  // No concerns about early exits now.
5338  BaseIn.release();
5339
5340  // Build the operator call.
5341  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5342                                           SourceLocation());
5343  UsualUnaryConversions(FnExpr);
5344
5345  QualType ResultTy = Method->getResultType().getNonReferenceType();
5346  ExprOwningPtr<CXXOperatorCallExpr>
5347    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5348                                                    &Base, 1, ResultTy, OpLoc));
5349
5350  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5351                          Method))
5352          return ExprError();
5353  return move(TheCall);
5354}
5355
5356/// FixOverloadedFunctionReference - E is an expression that refers to
5357/// a C++ overloaded function (possibly with some parentheses and
5358/// perhaps a '&' around it). We have resolved the overloaded function
5359/// to the function declaration Fn, so patch up the expression E to
5360/// refer (possibly indirectly) to Fn. Returns the new expr.
5361Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5362  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5363    Expr *NewExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5364    NewExpr->setType(PE->getSubExpr()->getType());
5365    return NewExpr;
5366  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5367    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5368           "Can only take the address of an overloaded function");
5369    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5370      if (Method->isStatic()) {
5371        // Do nothing: static member functions aren't any different
5372        // from non-member functions.
5373      } else if (QualifiedDeclRefExpr *DRE
5374                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
5375        // We have taken the address of a pointer to member
5376        // function. Perform the computation here so that we get the
5377        // appropriate pointer to member type.
5378        DRE->setDecl(Fn);
5379        DRE->setType(Fn->getType());
5380        QualType ClassType
5381          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5382        E->setType(Context.getMemberPointerType(Fn->getType(),
5383                                                ClassType.getTypePtr()));
5384        return E;
5385      }
5386      // FIXME: TemplateIdRefExpr referring to a member function template
5387      // specialization!
5388    }
5389    Expr *NewExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5390    UnOp->setSubExpr(NewExpr);
5391    UnOp->setType(Context.getPointerType(NewExpr->getType()));
5392
5393    return UnOp;
5394  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5395    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5396            isa<FunctionTemplateDecl>(DR->getDecl())) &&
5397           "Expected overloaded function or function template");
5398    DR->setDecl(Fn);
5399    E->setType(Fn->getType());
5400  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5401    MemExpr->setMemberDecl(Fn);
5402    E->setType(Fn->getType());
5403  } else if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) {
5404    // FIXME: We should capture the template arguments here.
5405    if (NestedNameSpecifier *Qualifier = TID->getQualifier())
5406      E = new (Context) QualifiedDeclRefExpr(Fn, Fn->getType(),
5407                                             TID->getTemplateNameLoc(),
5408                                             /*FIXME?*/false, /*FIXME?*/false,
5409                                             TID->getQualifierRange(),
5410                                             Qualifier);
5411    else
5412      E = new (Context) DeclRefExpr(Fn, Fn->getType(),
5413                                    TID->getTemplateNameLoc());
5414
5415    TID->Destroy(Context);
5416  } else {
5417    assert(false && "Invalid reference to overloaded function");
5418  }
5419
5420  return E;
5421}
5422
5423} // end namespace clang
5424