SemaOverload.cpp revision a133e26a86b181df1188a7af7671db790b5e56b2
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32  static const ImplicitConversionCategory
33    Category[(int)ICK_Num_Conversion_Kinds] = {
34    ICC_Identity,
35    ICC_Lvalue_Transformation,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Qualification_Adjustment,
39    ICC_Promotion,
40    ICC_Promotion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion
48  };
49  return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55  static const ImplicitConversionRank
56    Rank[(int)ICK_Num_Conversion_Kinds] = {
57    ICR_Exact_Match,
58    ICR_Exact_Match,
59    ICR_Exact_Match,
60    ICR_Exact_Match,
61    ICR_Exact_Match,
62    ICR_Promotion,
63    ICR_Promotion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion,
67    ICR_Conversion,
68    ICR_Conversion,
69    ICR_Conversion,
70    ICR_Conversion
71  };
72  return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79    "No conversion",
80    "Lvalue-to-rvalue",
81    "Array-to-pointer",
82    "Function-to-pointer",
83    "Qualification",
84    "Integral promotion",
85    "Floating point promotion",
86    "Integral conversion",
87    "Floating conversion",
88    "Floating-integral conversion",
89    "Pointer conversion",
90    "Pointer-to-member conversion",
91    "Boolean conversion",
92    "Derived-to-base conversion"
93  };
94  return Name[Kind];
95}
96
97/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100  First = ICK_Identity;
101  Second = ICK_Identity;
102  Third = ICK_Identity;
103  Deprecated = false;
104  ReferenceBinding = false;
105  DirectBinding = false;
106  CopyConstructor = 0;
107}
108
109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113  ImplicitConversionRank Rank = ICR_Exact_Match;
114  if  (GetConversionRank(First) > Rank)
115    Rank = GetConversionRank(First);
116  if  (GetConversionRank(Second) > Rank)
117    Rank = GetConversionRank(Second);
118  if  (GetConversionRank(Third) > Rank)
119    Rank = GetConversionRank(Third);
120  return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132  // Note that FromType has not necessarily been transformed by the
133  // array-to-pointer or function-to-pointer implicit conversions, so
134  // check for their presence as well as checking whether FromType is
135  // a pointer.
136  if (ToType->isBooleanType() &&
137      (FromType->isPointerType() ||
138       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139    return true;
140
141  return false;
142}
143
144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155  // Note that FromType has not necessarily been transformed by the
156  // array-to-pointer implicit conversion, so check for its presence
157  // and redo the conversion to get a pointer.
158  if (First == ICK_Array_To_Pointer)
159    FromType = Context.getArrayDecayedType(FromType);
160
161  if (Second == ICK_Pointer_Conversion)
162    if (const PointerType* ToPtrType = ToType->getAsPointerType())
163      return ToPtrType->getPointeeType()->isVoidType();
164
165  return false;
166}
167
168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171  bool PrintedSomething = false;
172  if (First != ICK_Identity) {
173    fprintf(stderr, "%s", GetImplicitConversionName(First));
174    PrintedSomething = true;
175  }
176
177  if (Second != ICK_Identity) {
178    if (PrintedSomething) {
179      fprintf(stderr, " -> ");
180    }
181    fprintf(stderr, "%s", GetImplicitConversionName(Second));
182
183    if (CopyConstructor) {
184      fprintf(stderr, " (by copy constructor)");
185    } else if (DirectBinding) {
186      fprintf(stderr, " (direct reference binding)");
187    } else if (ReferenceBinding) {
188      fprintf(stderr, " (reference binding)");
189    }
190    PrintedSomething = true;
191  }
192
193  if (Third != ICK_Identity) {
194    if (PrintedSomething) {
195      fprintf(stderr, " -> ");
196    }
197    fprintf(stderr, "%s", GetImplicitConversionName(Third));
198    PrintedSomething = true;
199  }
200
201  if (!PrintedSomething) {
202    fprintf(stderr, "No conversions required");
203  }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209  if (Before.First || Before.Second || Before.Third) {
210    Before.DebugPrint();
211    fprintf(stderr, " -> ");
212  }
213  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
214  if (After.First || After.Second || After.Third) {
215    fprintf(stderr, " -> ");
216    After.DebugPrint();
217  }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223  switch (ConversionKind) {
224  case StandardConversion:
225    fprintf(stderr, "Standard conversion: ");
226    Standard.DebugPrint();
227    break;
228  case UserDefinedConversion:
229    fprintf(stderr, "User-defined conversion: ");
230    UserDefined.DebugPrint();
231    break;
232  case EllipsisConversion:
233    fprintf(stderr, "Ellipsis conversion");
234    break;
235  case BadConversion:
236    fprintf(stderr, "Bad conversion");
237    break;
238  }
239
240  fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253//   void f(int, float); // #1
254//   void f(int, int); // #2
255//   int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1.  By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276    // Is this new function an overload of every function in the
277    // overload set?
278    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279                                           FuncEnd = Ovl->function_end();
280    for (; Func != FuncEnd; ++Func) {
281      if (!IsOverload(New, *Func, MatchedDecl)) {
282        MatchedDecl = Func;
283        return false;
284      }
285    }
286
287    // This function overloads every function in the overload set.
288    return true;
289  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290    // Is the function New an overload of the function Old?
291    QualType OldQType = Context.getCanonicalType(Old->getType());
292    QualType NewQType = Context.getCanonicalType(New->getType());
293
294    // Compare the signatures (C++ 1.3.10) of the two functions to
295    // determine whether they are overloads. If we find any mismatch
296    // in the signature, they are overloads.
297
298    // If either of these functions is a K&R-style function (no
299    // prototype), then we consider them to have matching signatures.
300    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302      return false;
303
304    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307    // The signature of a function includes the types of its
308    // parameters (C++ 1.3.10), which includes the presence or absence
309    // of the ellipsis; see C++ DR 357).
310    if (OldQType != NewQType &&
311        (OldType->getNumArgs() != NewType->getNumArgs() ||
312         OldType->isVariadic() != NewType->isVariadic() ||
313         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314                     NewType->arg_type_begin())))
315      return true;
316
317    // If the function is a class member, its signature includes the
318    // cv-qualifiers (if any) on the function itself.
319    //
320    // As part of this, also check whether one of the member functions
321    // is static, in which case they are not overloads (C++
322    // 13.1p2). While not part of the definition of the signature,
323    // this check is important to determine whether these functions
324    // can be overloaded.
325    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327    if (OldMethod && NewMethod &&
328        !OldMethod->isStatic() && !NewMethod->isStatic() &&
329        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
330      return true;
331
332    // The signatures match; this is not an overload.
333    return false;
334  } else {
335    // (C++ 13p1):
336    //   Only function declarations can be overloaded; object and type
337    //   declarations cannot be overloaded.
338    return false;
339  }
340}
341
342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
346///
347///   void f(float f);
348///   void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
363ImplicitConversionSequence
364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365                            bool SuppressUserConversions)
366{
367  ImplicitConversionSequence ICS;
368  if (IsStandardConversion(From, ToType, ICS.Standard))
369    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
370  else if (!SuppressUserConversions &&
371           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
372    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
373    // C++ [over.ics.user]p4:
374    //   A conversion of an expression of class type to the same class
375    //   type is given Exact Match rank, and a conversion of an
376    //   expression of class type to a base class of that type is
377    //   given Conversion rank, in spite of the fact that a copy
378    //   constructor (i.e., a user-defined conversion function) is
379    //   called for those cases.
380    if (CXXConstructorDecl *Constructor
381          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382      if (Constructor->isCopyConstructor(Context)) {
383        // Turn this into a "standard" conversion sequence, so that it
384        // gets ranked with standard conversion sequences.
385        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386        ICS.Standard.setAsIdentityConversion();
387        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
389        ICS.Standard.CopyConstructor = Constructor;
390        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391                          ToType.getUnqualifiedType()))
392          ICS.Standard.Second = ICK_Derived_To_Base;
393      }
394    }
395  } else
396    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
397
398  return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411                           StandardConversionSequence &SCS)
412{
413  QualType FromType = From->getType();
414
415  // There are no standard conversions for class types, so abort early.
416  if (FromType->isRecordType() || ToType->isRecordType())
417    return false;
418
419  // Standard conversions (C++ [conv])
420  SCS.setAsIdentityConversion();
421  SCS.Deprecated = false;
422  SCS.FromTypePtr = FromType.getAsOpaquePtr();
423  SCS.CopyConstructor = 0;
424
425  // The first conversion can be an lvalue-to-rvalue conversion,
426  // array-to-pointer conversion, or function-to-pointer conversion
427  // (C++ 4p1).
428
429  // Lvalue-to-rvalue conversion (C++ 4.1):
430  //   An lvalue (3.10) of a non-function, non-array type T can be
431  //   converted to an rvalue.
432  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433  if (argIsLvalue == Expr::LV_Valid &&
434      !FromType->isFunctionType() && !FromType->isArrayType() &&
435      !FromType->isOverloadType()) {
436    SCS.First = ICK_Lvalue_To_Rvalue;
437
438    // If T is a non-class type, the type of the rvalue is the
439    // cv-unqualified version of T. Otherwise, the type of the rvalue
440    // is T (C++ 4.1p1).
441    FromType = FromType.getUnqualifiedType();
442  }
443  // Array-to-pointer conversion (C++ 4.2)
444  else if (FromType->isArrayType()) {
445    SCS.First = ICK_Array_To_Pointer;
446
447    // An lvalue or rvalue of type "array of N T" or "array of unknown
448    // bound of T" can be converted to an rvalue of type "pointer to
449    // T" (C++ 4.2p1).
450    FromType = Context.getArrayDecayedType(FromType);
451
452    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453      // This conversion is deprecated. (C++ D.4).
454      SCS.Deprecated = true;
455
456      // For the purpose of ranking in overload resolution
457      // (13.3.3.1.1), this conversion is considered an
458      // array-to-pointer conversion followed by a qualification
459      // conversion (4.4). (C++ 4.2p2)
460      SCS.Second = ICK_Identity;
461      SCS.Third = ICK_Qualification;
462      SCS.ToTypePtr = ToType.getAsOpaquePtr();
463      return true;
464    }
465  }
466  // Function-to-pointer conversion (C++ 4.3).
467  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
468    SCS.First = ICK_Function_To_Pointer;
469
470    // An lvalue of function type T can be converted to an rvalue of
471    // type "pointer to T." The result is a pointer to the
472    // function. (C++ 4.3p1).
473    FromType = Context.getPointerType(FromType);
474  }
475  // Address of overloaded function (C++ [over.over]).
476  else if (FunctionDecl *Fn
477             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478    SCS.First = ICK_Function_To_Pointer;
479
480    // We were able to resolve the address of the overloaded function,
481    // so we can convert to the type of that function.
482    FromType = Fn->getType();
483    if (ToType->isReferenceType())
484      FromType = Context.getReferenceType(FromType);
485    else
486      FromType = Context.getPointerType(FromType);
487  }
488  // We don't require any conversions for the first step.
489  else {
490    SCS.First = ICK_Identity;
491  }
492
493  // The second conversion can be an integral promotion, floating
494  // point promotion, integral conversion, floating point conversion,
495  // floating-integral conversion, pointer conversion,
496  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498      Context.getCanonicalType(ToType).getUnqualifiedType()) {
499    // The unqualified versions of the types are the same: there's no
500    // conversion to do.
501    SCS.Second = ICK_Identity;
502  }
503  // Integral promotion (C++ 4.5).
504  else if (IsIntegralPromotion(From, FromType, ToType)) {
505    SCS.Second = ICK_Integral_Promotion;
506    FromType = ToType.getUnqualifiedType();
507  }
508  // Floating point promotion (C++ 4.6).
509  else if (IsFloatingPointPromotion(FromType, ToType)) {
510    SCS.Second = ICK_Floating_Promotion;
511    FromType = ToType.getUnqualifiedType();
512  }
513  // Integral conversions (C++ 4.7).
514  // FIXME: isIntegralType shouldn't be true for enums in C++.
515  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
516           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
517    SCS.Second = ICK_Integral_Conversion;
518    FromType = ToType.getUnqualifiedType();
519  }
520  // Floating point conversions (C++ 4.8).
521  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
522    SCS.Second = ICK_Floating_Conversion;
523    FromType = ToType.getUnqualifiedType();
524  }
525  // Floating-integral conversions (C++ 4.9).
526  // FIXME: isIntegralType shouldn't be true for enums in C++.
527  else if ((FromType->isFloatingType() &&
528            ToType->isIntegralType() && !ToType->isBooleanType() &&
529                                        !ToType->isEnumeralType()) ||
530           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531            ToType->isFloatingType())) {
532    SCS.Second = ICK_Floating_Integral;
533    FromType = ToType.getUnqualifiedType();
534  }
535  // Pointer conversions (C++ 4.10).
536  else if (IsPointerConversion(From, FromType, ToType, FromType)) {
537    SCS.Second = ICK_Pointer_Conversion;
538  }
539  // FIXME: Pointer to member conversions (4.11).
540  // Boolean conversions (C++ 4.12).
541  // FIXME: pointer-to-member type
542  else if (ToType->isBooleanType() &&
543           (FromType->isArithmeticType() ||
544            FromType->isEnumeralType() ||
545            FromType->isPointerType())) {
546    SCS.Second = ICK_Boolean_Conversion;
547    FromType = Context.BoolTy;
548  } else {
549    // No second conversion required.
550    SCS.Second = ICK_Identity;
551  }
552
553  QualType CanonFrom;
554  QualType CanonTo;
555  // The third conversion can be a qualification conversion (C++ 4p1).
556  if (IsQualificationConversion(FromType, ToType)) {
557    SCS.Third = ICK_Qualification;
558    FromType = ToType;
559    CanonFrom = Context.getCanonicalType(FromType);
560    CanonTo = Context.getCanonicalType(ToType);
561  } else {
562    // No conversion required
563    SCS.Third = ICK_Identity;
564
565    // C++ [over.best.ics]p6:
566    //   [...] Any difference in top-level cv-qualification is
567    //   subsumed by the initialization itself and does not constitute
568    //   a conversion. [...]
569    CanonFrom = Context.getCanonicalType(FromType);
570    CanonTo = Context.getCanonicalType(ToType);
571    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
572        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573      FromType = ToType;
574      CanonFrom = CanonTo;
575    }
576  }
577
578  // If we have not converted the argument type to the parameter type,
579  // this is a bad conversion sequence.
580  if (CanonFrom != CanonTo)
581    return false;
582
583  SCS.ToTypePtr = FromType.getAsOpaquePtr();
584  return true;
585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593  const BuiltinType *To = ToType->getAsBuiltinType();
594  // All integers are built-in.
595  if (!To) {
596    return false;
597  }
598
599  // An rvalue of type char, signed char, unsigned char, short int, or
600  // unsigned short int can be converted to an rvalue of type int if
601  // int can represent all the values of the source type; otherwise,
602  // the source rvalue can be converted to an rvalue of type unsigned
603  // int (C++ 4.5p1).
604  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
605    if (// We can promote any signed, promotable integer type to an int
606        (FromType->isSignedIntegerType() ||
607         // We can promote any unsigned integer type whose size is
608         // less than int to an int.
609         (!FromType->isSignedIntegerType() &&
610          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
611      return To->getKind() == BuiltinType::Int;
612    }
613
614    return To->getKind() == BuiltinType::UInt;
615  }
616
617  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618  // can be converted to an rvalue of the first of the following types
619  // that can represent all the values of its underlying type: int,
620  // unsigned int, long, or unsigned long (C++ 4.5p2).
621  if ((FromType->isEnumeralType() || FromType->isWideCharType())
622      && ToType->isIntegerType()) {
623    // Determine whether the type we're converting from is signed or
624    // unsigned.
625    bool FromIsSigned;
626    uint64_t FromSize = Context.getTypeSize(FromType);
627    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629      FromIsSigned = UnderlyingType->isSignedIntegerType();
630    } else {
631      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632      FromIsSigned = true;
633    }
634
635    // The types we'll try to promote to, in the appropriate
636    // order. Try each of these types.
637    QualType PromoteTypes[4] = {
638      Context.IntTy, Context.UnsignedIntTy,
639      Context.LongTy, Context.UnsignedLongTy
640    };
641    for (int Idx = 0; Idx < 4; ++Idx) {
642      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
643      if (FromSize < ToSize ||
644          (FromSize == ToSize &&
645           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
646        // We found the type that we can promote to. If this is the
647        // type we wanted, we have a promotion. Otherwise, no
648        // promotion.
649        return Context.getCanonicalType(ToType).getUnqualifiedType()
650          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
651      }
652    }
653  }
654
655  // An rvalue for an integral bit-field (9.6) can be converted to an
656  // rvalue of type int if int can represent all the values of the
657  // bit-field; otherwise, it can be converted to unsigned int if
658  // unsigned int can represent all the values of the bit-field. If
659  // the bit-field is larger yet, no integral promotion applies to
660  // it. If the bit-field has an enumerated type, it is treated as any
661  // other value of that type for promotion purposes (C++ 4.5p3).
662  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
663    using llvm::APSInt;
664    FieldDecl *MemberDecl = MemRef->getMemberDecl();
665    APSInt BitWidth;
666    if (MemberDecl->isBitField() &&
667        FromType->isIntegralType() && !FromType->isEnumeralType() &&
668        From->isIntegerConstantExpr(BitWidth, Context)) {
669      APSInt ToSize(Context.getTypeSize(ToType));
670
671      // Are we promoting to an int from a bitfield that fits in an int?
672      if (BitWidth < ToSize ||
673          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
674        return To->getKind() == BuiltinType::Int;
675      }
676
677      // Are we promoting to an unsigned int from an unsigned bitfield
678      // that fits into an unsigned int?
679      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
680        return To->getKind() == BuiltinType::UInt;
681      }
682
683      return false;
684    }
685  }
686
687  // An rvalue of type bool can be converted to an rvalue of type int,
688  // with false becoming zero and true becoming one (C++ 4.5p4).
689  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
690    return true;
691  }
692
693  return false;
694}
695
696/// IsFloatingPointPromotion - Determines whether the conversion from
697/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
698/// returns true and sets PromotedType to the promoted type.
699bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
700{
701  /// An rvalue of type float can be converted to an rvalue of type
702  /// double. (C++ 4.6p1).
703  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
704    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
705      if (FromBuiltin->getKind() == BuiltinType::Float &&
706          ToBuiltin->getKind() == BuiltinType::Double)
707        return true;
708
709  return false;
710}
711
712/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
713/// the pointer type FromPtr to a pointer to type ToPointee, with the
714/// same type qualifiers as FromPtr has on its pointee type. ToType,
715/// if non-empty, will be a pointer to ToType that may or may not have
716/// the right set of qualifiers on its pointee.
717static QualType
718BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
719                                   QualType ToPointee, QualType ToType,
720                                   ASTContext &Context) {
721  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
722  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
723  unsigned Quals = CanonFromPointee.getCVRQualifiers();
724
725  // Exact qualifier match -> return the pointer type we're converting to.
726  if (CanonToPointee.getCVRQualifiers() == Quals) {
727    // ToType is exactly what we need. Return it.
728    if (ToType.getTypePtr())
729      return ToType;
730
731    // Build a pointer to ToPointee. It has the right qualifiers
732    // already.
733    return Context.getPointerType(ToPointee);
734  }
735
736  // Just build a canonical type that has the right qualifiers.
737  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
738}
739
740/// IsPointerConversion - Determines whether the conversion of the
741/// expression From, which has the (possibly adjusted) type FromType,
742/// can be converted to the type ToType via a pointer conversion (C++
743/// 4.10). If so, returns true and places the converted type (that
744/// might differ from ToType in its cv-qualifiers at some level) into
745/// ConvertedType.
746///
747/// This routine also supports conversions to and from block pointers
748/// and conversions with Objective-C's 'id', 'id<protocols...>', and
749/// pointers to interfaces. FIXME: Once we've determined the
750/// appropriate overloading rules for Objective-C, we may want to
751/// split the Objective-C checks into a different routine; however,
752/// GCC seems to consider all of these conversions to be pointer
753/// conversions, so for now they live here.
754bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
755                               QualType& ConvertedType)
756{
757  // Blocks: Block pointers can be converted to void*.
758  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
759      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
760    ConvertedType = ToType;
761    return true;
762  }
763  // Blocks: A null pointer constant can be converted to a block
764  // pointer type.
765  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
766    ConvertedType = ToType;
767    return true;
768  }
769
770  // Conversions with Objective-C's id<...>.
771  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
772      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
773    ConvertedType = ToType;
774    return true;
775  }
776
777  const PointerType* ToTypePtr = ToType->getAsPointerType();
778  if (!ToTypePtr)
779    return false;
780
781  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
782  if (From->isNullPointerConstant(Context)) {
783    ConvertedType = ToType;
784    return true;
785  }
786
787  // Beyond this point, both types need to be pointers.
788  const PointerType *FromTypePtr = FromType->getAsPointerType();
789  if (!FromTypePtr)
790    return false;
791
792  QualType FromPointeeType = FromTypePtr->getPointeeType();
793  QualType ToPointeeType = ToTypePtr->getPointeeType();
794
795  // An rvalue of type "pointer to cv T," where T is an object type,
796  // can be converted to an rvalue of type "pointer to cv void" (C++
797  // 4.10p2).
798  if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
799    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
800                                                       ToPointeeType,
801                                                       ToType, Context);
802    return true;
803  }
804
805  // C++ [conv.ptr]p3:
806  //
807  //   An rvalue of type "pointer to cv D," where D is a class type,
808  //   can be converted to an rvalue of type "pointer to cv B," where
809  //   B is a base class (clause 10) of D. If B is an inaccessible
810  //   (clause 11) or ambiguous (10.2) base class of D, a program that
811  //   necessitates this conversion is ill-formed. The result of the
812  //   conversion is a pointer to the base class sub-object of the
813  //   derived class object. The null pointer value is converted to
814  //   the null pointer value of the destination type.
815  //
816  // Note that we do not check for ambiguity or inaccessibility
817  // here. That is handled by CheckPointerConversion.
818  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
819      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
820    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
821                                                       ToPointeeType,
822                                                       ToType, Context);
823    return true;
824  }
825
826  // Objective C++: We're able to convert from a pointer to an
827  // interface to a pointer to a different interface.
828  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
829  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
830  if (FromIface && ToIface &&
831      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
832    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
833                                                       ToPointeeType,
834                                                       ToType, Context);
835    return true;
836  }
837
838  // Objective C++: We're able to convert between "id" and a pointer
839  // to any interface (in both directions).
840  if ((FromIface && Context.isObjCIdType(ToPointeeType))
841      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
842    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
843                                                       ToPointeeType,
844                                                       ToType, Context);
845    return true;
846  }
847
848  return false;
849}
850
851/// CheckPointerConversion - Check the pointer conversion from the
852/// expression From to the type ToType. This routine checks for
853/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
854/// conversions for which IsPointerConversion has already returned
855/// true. It returns true and produces a diagnostic if there was an
856/// error, or returns false otherwise.
857bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
858  QualType FromType = From->getType();
859
860  if (const PointerType *FromPtrType = FromType->getAsPointerType())
861    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
862      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
863                      /*DetectVirtual=*/false);
864      QualType FromPointeeType = FromPtrType->getPointeeType(),
865               ToPointeeType   = ToPtrType->getPointeeType();
866      if (FromPointeeType->isRecordType() &&
867          ToPointeeType->isRecordType()) {
868        // We must have a derived-to-base conversion. Check an
869        // ambiguous or inaccessible conversion.
870        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
871                                            From->getExprLoc(),
872                                            From->getSourceRange());
873      }
874    }
875
876  return false;
877}
878
879/// IsQualificationConversion - Determines whether the conversion from
880/// an rvalue of type FromType to ToType is a qualification conversion
881/// (C++ 4.4).
882bool
883Sema::IsQualificationConversion(QualType FromType, QualType ToType)
884{
885  FromType = Context.getCanonicalType(FromType);
886  ToType = Context.getCanonicalType(ToType);
887
888  // If FromType and ToType are the same type, this is not a
889  // qualification conversion.
890  if (FromType == ToType)
891    return false;
892
893  // (C++ 4.4p4):
894  //   A conversion can add cv-qualifiers at levels other than the first
895  //   in multi-level pointers, subject to the following rules: [...]
896  bool PreviousToQualsIncludeConst = true;
897  bool UnwrappedAnyPointer = false;
898  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
899    // Within each iteration of the loop, we check the qualifiers to
900    // determine if this still looks like a qualification
901    // conversion. Then, if all is well, we unwrap one more level of
902    // pointers or pointers-to-members and do it all again
903    // until there are no more pointers or pointers-to-members left to
904    // unwrap.
905    UnwrappedAnyPointer = true;
906
907    //   -- for every j > 0, if const is in cv 1,j then const is in cv
908    //      2,j, and similarly for volatile.
909    if (!ToType.isAtLeastAsQualifiedAs(FromType))
910      return false;
911
912    //   -- if the cv 1,j and cv 2,j are different, then const is in
913    //      every cv for 0 < k < j.
914    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
915        && !PreviousToQualsIncludeConst)
916      return false;
917
918    // Keep track of whether all prior cv-qualifiers in the "to" type
919    // include const.
920    PreviousToQualsIncludeConst
921      = PreviousToQualsIncludeConst && ToType.isConstQualified();
922  }
923
924  // We are left with FromType and ToType being the pointee types
925  // after unwrapping the original FromType and ToType the same number
926  // of types. If we unwrapped any pointers, and if FromType and
927  // ToType have the same unqualified type (since we checked
928  // qualifiers above), then this is a qualification conversion.
929  return UnwrappedAnyPointer &&
930    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
931}
932
933/// IsUserDefinedConversion - Determines whether there is a
934/// user-defined conversion sequence (C++ [over.ics.user]) that
935/// converts expression From to the type ToType. If such a conversion
936/// exists, User will contain the user-defined conversion sequence
937/// that performs such a conversion and this routine will return
938/// true. Otherwise, this routine returns false and User is
939/// unspecified.
940bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
941                                   UserDefinedConversionSequence& User)
942{
943  OverloadCandidateSet CandidateSet;
944  if (const CXXRecordType *ToRecordType
945        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
946    // C++ [over.match.ctor]p1:
947    //   When objects of class type are direct-initialized (8.5), or
948    //   copy-initialized from an expression of the same or a
949    //   derived class type (8.5), overload resolution selects the
950    //   constructor. [...] For copy-initialization, the candidate
951    //   functions are all the converting constructors (12.3.1) of
952    //   that class. The argument list is the expression-list within
953    //   the parentheses of the initializer.
954    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
955    const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
956    for (OverloadedFunctionDecl::function_const_iterator func
957           = Constructors->function_begin();
958         func != Constructors->function_end(); ++func) {
959      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
960      if (Constructor->isConvertingConstructor())
961        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
962                             /*SuppressUserConversions=*/true);
963    }
964  }
965
966  if (const CXXRecordType *FromRecordType
967        = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
968    // Add all of the conversion functions as candidates.
969    // FIXME: Look for conversions in base classes!
970    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
971    OverloadedFunctionDecl *Conversions
972      = FromRecordDecl->getConversionFunctions();
973    for (OverloadedFunctionDecl::function_iterator Func
974           = Conversions->function_begin();
975         Func != Conversions->function_end(); ++Func) {
976      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
977      AddConversionCandidate(Conv, From, ToType, CandidateSet);
978    }
979  }
980
981  OverloadCandidateSet::iterator Best;
982  switch (BestViableFunction(CandidateSet, Best)) {
983    case OR_Success:
984      // Record the standard conversion we used and the conversion function.
985      if (CXXConstructorDecl *Constructor
986            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
987        // C++ [over.ics.user]p1:
988        //   If the user-defined conversion is specified by a
989        //   constructor (12.3.1), the initial standard conversion
990        //   sequence converts the source type to the type required by
991        //   the argument of the constructor.
992        //
993        // FIXME: What about ellipsis conversions?
994        QualType ThisType = Constructor->getThisType(Context);
995        User.Before = Best->Conversions[0].Standard;
996        User.ConversionFunction = Constructor;
997        User.After.setAsIdentityConversion();
998        User.After.FromTypePtr
999          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1000        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1001        return true;
1002      } else if (CXXConversionDecl *Conversion
1003                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1004        // C++ [over.ics.user]p1:
1005        //
1006        //   [...] If the user-defined conversion is specified by a
1007        //   conversion function (12.3.2), the initial standard
1008        //   conversion sequence converts the source type to the
1009        //   implicit object parameter of the conversion function.
1010        User.Before = Best->Conversions[0].Standard;
1011        User.ConversionFunction = Conversion;
1012
1013        // C++ [over.ics.user]p2:
1014        //   The second standard conversion sequence converts the
1015        //   result of the user-defined conversion to the target type
1016        //   for the sequence. Since an implicit conversion sequence
1017        //   is an initialization, the special rules for
1018        //   initialization by user-defined conversion apply when
1019        //   selecting the best user-defined conversion for a
1020        //   user-defined conversion sequence (see 13.3.3 and
1021        //   13.3.3.1).
1022        User.After = Best->FinalConversion;
1023        return true;
1024      } else {
1025        assert(false && "Not a constructor or conversion function?");
1026        return false;
1027      }
1028
1029    case OR_No_Viable_Function:
1030      // No conversion here! We're done.
1031      return false;
1032
1033    case OR_Ambiguous:
1034      // FIXME: See C++ [over.best.ics]p10 for the handling of
1035      // ambiguous conversion sequences.
1036      return false;
1037    }
1038
1039  return false;
1040}
1041
1042/// CompareImplicitConversionSequences - Compare two implicit
1043/// conversion sequences to determine whether one is better than the
1044/// other or if they are indistinguishable (C++ 13.3.3.2).
1045ImplicitConversionSequence::CompareKind
1046Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1047                                         const ImplicitConversionSequence& ICS2)
1048{
1049  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1050  // conversion sequences (as defined in 13.3.3.1)
1051  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1052  //      conversion sequence than a user-defined conversion sequence or
1053  //      an ellipsis conversion sequence, and
1054  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1055  //      conversion sequence than an ellipsis conversion sequence
1056  //      (13.3.3.1.3).
1057  //
1058  if (ICS1.ConversionKind < ICS2.ConversionKind)
1059    return ImplicitConversionSequence::Better;
1060  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1061    return ImplicitConversionSequence::Worse;
1062
1063  // Two implicit conversion sequences of the same form are
1064  // indistinguishable conversion sequences unless one of the
1065  // following rules apply: (C++ 13.3.3.2p3):
1066  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1067    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1068  else if (ICS1.ConversionKind ==
1069             ImplicitConversionSequence::UserDefinedConversion) {
1070    // User-defined conversion sequence U1 is a better conversion
1071    // sequence than another user-defined conversion sequence U2 if
1072    // they contain the same user-defined conversion function or
1073    // constructor and if the second standard conversion sequence of
1074    // U1 is better than the second standard conversion sequence of
1075    // U2 (C++ 13.3.3.2p3).
1076    if (ICS1.UserDefined.ConversionFunction ==
1077          ICS2.UserDefined.ConversionFunction)
1078      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1079                                                ICS2.UserDefined.After);
1080  }
1081
1082  return ImplicitConversionSequence::Indistinguishable;
1083}
1084
1085/// CompareStandardConversionSequences - Compare two standard
1086/// conversion sequences to determine whether one is better than the
1087/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1088ImplicitConversionSequence::CompareKind
1089Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1090                                         const StandardConversionSequence& SCS2)
1091{
1092  // Standard conversion sequence S1 is a better conversion sequence
1093  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1094
1095  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1096  //     sequences in the canonical form defined by 13.3.3.1.1,
1097  //     excluding any Lvalue Transformation; the identity conversion
1098  //     sequence is considered to be a subsequence of any
1099  //     non-identity conversion sequence) or, if not that,
1100  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1101    // Neither is a proper subsequence of the other. Do nothing.
1102    ;
1103  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1104           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1105           (SCS1.Second == ICK_Identity &&
1106            SCS1.Third == ICK_Identity))
1107    // SCS1 is a proper subsequence of SCS2.
1108    return ImplicitConversionSequence::Better;
1109  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1110           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1111           (SCS2.Second == ICK_Identity &&
1112            SCS2.Third == ICK_Identity))
1113    // SCS2 is a proper subsequence of SCS1.
1114    return ImplicitConversionSequence::Worse;
1115
1116  //  -- the rank of S1 is better than the rank of S2 (by the rules
1117  //     defined below), or, if not that,
1118  ImplicitConversionRank Rank1 = SCS1.getRank();
1119  ImplicitConversionRank Rank2 = SCS2.getRank();
1120  if (Rank1 < Rank2)
1121    return ImplicitConversionSequence::Better;
1122  else if (Rank2 < Rank1)
1123    return ImplicitConversionSequence::Worse;
1124
1125  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1126  // are indistinguishable unless one of the following rules
1127  // applies:
1128
1129  //   A conversion that is not a conversion of a pointer, or
1130  //   pointer to member, to bool is better than another conversion
1131  //   that is such a conversion.
1132  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1133    return SCS2.isPointerConversionToBool()
1134             ? ImplicitConversionSequence::Better
1135             : ImplicitConversionSequence::Worse;
1136
1137  // C++ [over.ics.rank]p4b2:
1138  //
1139  //   If class B is derived directly or indirectly from class A,
1140  //   conversion of B* to A* is better than conversion of B* to
1141  //   void*, and conversion of A* to void* is better than conversion
1142  //   of B* to void*.
1143  bool SCS1ConvertsToVoid
1144    = SCS1.isPointerConversionToVoidPointer(Context);
1145  bool SCS2ConvertsToVoid
1146    = SCS2.isPointerConversionToVoidPointer(Context);
1147  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1148    // Exactly one of the conversion sequences is a conversion to
1149    // a void pointer; it's the worse conversion.
1150    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1151                              : ImplicitConversionSequence::Worse;
1152  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1153    // Neither conversion sequence converts to a void pointer; compare
1154    // their derived-to-base conversions.
1155    if (ImplicitConversionSequence::CompareKind DerivedCK
1156          = CompareDerivedToBaseConversions(SCS1, SCS2))
1157      return DerivedCK;
1158  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1159    // Both conversion sequences are conversions to void
1160    // pointers. Compare the source types to determine if there's an
1161    // inheritance relationship in their sources.
1162    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1163    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1164
1165    // Adjust the types we're converting from via the array-to-pointer
1166    // conversion, if we need to.
1167    if (SCS1.First == ICK_Array_To_Pointer)
1168      FromType1 = Context.getArrayDecayedType(FromType1);
1169    if (SCS2.First == ICK_Array_To_Pointer)
1170      FromType2 = Context.getArrayDecayedType(FromType2);
1171
1172    QualType FromPointee1
1173      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1174    QualType FromPointee2
1175      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1176
1177    if (IsDerivedFrom(FromPointee2, FromPointee1))
1178      return ImplicitConversionSequence::Better;
1179    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1180      return ImplicitConversionSequence::Worse;
1181
1182    // Objective-C++: If one interface is more specific than the
1183    // other, it is the better one.
1184    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1185    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1186    if (FromIface1 && FromIface1) {
1187      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1188        return ImplicitConversionSequence::Better;
1189      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1190        return ImplicitConversionSequence::Worse;
1191    }
1192  }
1193
1194  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1195  // bullet 3).
1196  if (ImplicitConversionSequence::CompareKind QualCK
1197        = CompareQualificationConversions(SCS1, SCS2))
1198    return QualCK;
1199
1200  // C++ [over.ics.rank]p3b4:
1201  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1202  //      which the references refer are the same type except for
1203  //      top-level cv-qualifiers, and the type to which the reference
1204  //      initialized by S2 refers is more cv-qualified than the type
1205  //      to which the reference initialized by S1 refers.
1206  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1207    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1208    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1209    T1 = Context.getCanonicalType(T1);
1210    T2 = Context.getCanonicalType(T2);
1211    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1212      if (T2.isMoreQualifiedThan(T1))
1213        return ImplicitConversionSequence::Better;
1214      else if (T1.isMoreQualifiedThan(T2))
1215        return ImplicitConversionSequence::Worse;
1216    }
1217  }
1218
1219  return ImplicitConversionSequence::Indistinguishable;
1220}
1221
1222/// CompareQualificationConversions - Compares two standard conversion
1223/// sequences to determine whether they can be ranked based on their
1224/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1225ImplicitConversionSequence::CompareKind
1226Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1227                                      const StandardConversionSequence& SCS2)
1228{
1229  // C++ 13.3.3.2p3:
1230  //  -- S1 and S2 differ only in their qualification conversion and
1231  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1232  //     cv-qualification signature of type T1 is a proper subset of
1233  //     the cv-qualification signature of type T2, and S1 is not the
1234  //     deprecated string literal array-to-pointer conversion (4.2).
1235  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1236      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1237    return ImplicitConversionSequence::Indistinguishable;
1238
1239  // FIXME: the example in the standard doesn't use a qualification
1240  // conversion (!)
1241  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1242  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1243  T1 = Context.getCanonicalType(T1);
1244  T2 = Context.getCanonicalType(T2);
1245
1246  // If the types are the same, we won't learn anything by unwrapped
1247  // them.
1248  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1249    return ImplicitConversionSequence::Indistinguishable;
1250
1251  ImplicitConversionSequence::CompareKind Result
1252    = ImplicitConversionSequence::Indistinguishable;
1253  while (UnwrapSimilarPointerTypes(T1, T2)) {
1254    // Within each iteration of the loop, we check the qualifiers to
1255    // determine if this still looks like a qualification
1256    // conversion. Then, if all is well, we unwrap one more level of
1257    // pointers or pointers-to-members and do it all again
1258    // until there are no more pointers or pointers-to-members left
1259    // to unwrap. This essentially mimics what
1260    // IsQualificationConversion does, but here we're checking for a
1261    // strict subset of qualifiers.
1262    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1263      // The qualifiers are the same, so this doesn't tell us anything
1264      // about how the sequences rank.
1265      ;
1266    else if (T2.isMoreQualifiedThan(T1)) {
1267      // T1 has fewer qualifiers, so it could be the better sequence.
1268      if (Result == ImplicitConversionSequence::Worse)
1269        // Neither has qualifiers that are a subset of the other's
1270        // qualifiers.
1271        return ImplicitConversionSequence::Indistinguishable;
1272
1273      Result = ImplicitConversionSequence::Better;
1274    } else if (T1.isMoreQualifiedThan(T2)) {
1275      // T2 has fewer qualifiers, so it could be the better sequence.
1276      if (Result == ImplicitConversionSequence::Better)
1277        // Neither has qualifiers that are a subset of the other's
1278        // qualifiers.
1279        return ImplicitConversionSequence::Indistinguishable;
1280
1281      Result = ImplicitConversionSequence::Worse;
1282    } else {
1283      // Qualifiers are disjoint.
1284      return ImplicitConversionSequence::Indistinguishable;
1285    }
1286
1287    // If the types after this point are equivalent, we're done.
1288    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1289      break;
1290  }
1291
1292  // Check that the winning standard conversion sequence isn't using
1293  // the deprecated string literal array to pointer conversion.
1294  switch (Result) {
1295  case ImplicitConversionSequence::Better:
1296    if (SCS1.Deprecated)
1297      Result = ImplicitConversionSequence::Indistinguishable;
1298    break;
1299
1300  case ImplicitConversionSequence::Indistinguishable:
1301    break;
1302
1303  case ImplicitConversionSequence::Worse:
1304    if (SCS2.Deprecated)
1305      Result = ImplicitConversionSequence::Indistinguishable;
1306    break;
1307  }
1308
1309  return Result;
1310}
1311
1312/// CompareDerivedToBaseConversions - Compares two standard conversion
1313/// sequences to determine whether they can be ranked based on their
1314/// various kinds of derived-to-base conversions (C++
1315/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1316/// conversions between Objective-C interface types.
1317ImplicitConversionSequence::CompareKind
1318Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1319                                      const StandardConversionSequence& SCS2) {
1320  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1321  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1322  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1323  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1324
1325  // Adjust the types we're converting from via the array-to-pointer
1326  // conversion, if we need to.
1327  if (SCS1.First == ICK_Array_To_Pointer)
1328    FromType1 = Context.getArrayDecayedType(FromType1);
1329  if (SCS2.First == ICK_Array_To_Pointer)
1330    FromType2 = Context.getArrayDecayedType(FromType2);
1331
1332  // Canonicalize all of the types.
1333  FromType1 = Context.getCanonicalType(FromType1);
1334  ToType1 = Context.getCanonicalType(ToType1);
1335  FromType2 = Context.getCanonicalType(FromType2);
1336  ToType2 = Context.getCanonicalType(ToType2);
1337
1338  // C++ [over.ics.rank]p4b3:
1339  //
1340  //   If class B is derived directly or indirectly from class A and
1341  //   class C is derived directly or indirectly from B,
1342  //
1343  // For Objective-C, we let A, B, and C also be Objective-C
1344  // interfaces.
1345
1346  // Compare based on pointer conversions.
1347  if (SCS1.Second == ICK_Pointer_Conversion &&
1348      SCS2.Second == ICK_Pointer_Conversion &&
1349      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1350      FromType1->isPointerType() && FromType2->isPointerType() &&
1351      ToType1->isPointerType() && ToType2->isPointerType()) {
1352    QualType FromPointee1
1353      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1354    QualType ToPointee1
1355      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1356    QualType FromPointee2
1357      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1358    QualType ToPointee2
1359      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1360
1361    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1362    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1363    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1364    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1365
1366    //   -- conversion of C* to B* is better than conversion of C* to A*,
1367    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1368      if (IsDerivedFrom(ToPointee1, ToPointee2))
1369        return ImplicitConversionSequence::Better;
1370      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1371        return ImplicitConversionSequence::Worse;
1372
1373      if (ToIface1 && ToIface2) {
1374        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1375          return ImplicitConversionSequence::Better;
1376        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1377          return ImplicitConversionSequence::Worse;
1378      }
1379    }
1380
1381    //   -- conversion of B* to A* is better than conversion of C* to A*,
1382    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1383      if (IsDerivedFrom(FromPointee2, FromPointee1))
1384        return ImplicitConversionSequence::Better;
1385      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1386        return ImplicitConversionSequence::Worse;
1387
1388      if (FromIface1 && FromIface2) {
1389        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1390          return ImplicitConversionSequence::Better;
1391        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1392          return ImplicitConversionSequence::Worse;
1393      }
1394    }
1395  }
1396
1397  // Compare based on reference bindings.
1398  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1399      SCS1.Second == ICK_Derived_To_Base) {
1400    //   -- binding of an expression of type C to a reference of type
1401    //      B& is better than binding an expression of type C to a
1402    //      reference of type A&,
1403    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1404        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1405      if (IsDerivedFrom(ToType1, ToType2))
1406        return ImplicitConversionSequence::Better;
1407      else if (IsDerivedFrom(ToType2, ToType1))
1408        return ImplicitConversionSequence::Worse;
1409    }
1410
1411    //   -- binding of an expression of type B to a reference of type
1412    //      A& is better than binding an expression of type C to a
1413    //      reference of type A&,
1414    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1415        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1416      if (IsDerivedFrom(FromType2, FromType1))
1417        return ImplicitConversionSequence::Better;
1418      else if (IsDerivedFrom(FromType1, FromType2))
1419        return ImplicitConversionSequence::Worse;
1420    }
1421  }
1422
1423
1424  // FIXME: conversion of A::* to B::* is better than conversion of
1425  // A::* to C::*,
1426
1427  // FIXME: conversion of B::* to C::* is better than conversion of
1428  // A::* to C::*, and
1429
1430  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1431      SCS1.Second == ICK_Derived_To_Base) {
1432    //   -- conversion of C to B is better than conversion of C to A,
1433    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1434        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1435      if (IsDerivedFrom(ToType1, ToType2))
1436        return ImplicitConversionSequence::Better;
1437      else if (IsDerivedFrom(ToType2, ToType1))
1438        return ImplicitConversionSequence::Worse;
1439    }
1440
1441    //   -- conversion of B to A is better than conversion of C to A.
1442    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1443        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1444      if (IsDerivedFrom(FromType2, FromType1))
1445        return ImplicitConversionSequence::Better;
1446      else if (IsDerivedFrom(FromType1, FromType2))
1447        return ImplicitConversionSequence::Worse;
1448    }
1449  }
1450
1451  return ImplicitConversionSequence::Indistinguishable;
1452}
1453
1454/// TryCopyInitialization - Try to copy-initialize a value of type
1455/// ToType from the expression From. Return the implicit conversion
1456/// sequence required to pass this argument, which may be a bad
1457/// conversion sequence (meaning that the argument cannot be passed to
1458/// a parameter of this type). If @p SuppressUserConversions, then we
1459/// do not permit any user-defined conversion sequences.
1460ImplicitConversionSequence
1461Sema::TryCopyInitialization(Expr *From, QualType ToType,
1462                            bool SuppressUserConversions) {
1463  if (!getLangOptions().CPlusPlus) {
1464    // In C, copy initialization is the same as performing an assignment.
1465    AssignConvertType ConvTy =
1466      CheckSingleAssignmentConstraints(ToType, From);
1467    ImplicitConversionSequence ICS;
1468    if (getLangOptions().NoExtensions? ConvTy != Compatible
1469                                     : ConvTy == Incompatible)
1470      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1471    else
1472      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1473    return ICS;
1474  } else if (ToType->isReferenceType()) {
1475    ImplicitConversionSequence ICS;
1476    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1477    return ICS;
1478  } else {
1479    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1480  }
1481}
1482
1483/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1484/// type ToType. Returns true (and emits a diagnostic) if there was
1485/// an error, returns false if the initialization succeeded.
1486bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1487                                     const char* Flavor) {
1488  if (!getLangOptions().CPlusPlus) {
1489    // In C, argument passing is the same as performing an assignment.
1490    QualType FromType = From->getType();
1491    AssignConvertType ConvTy =
1492      CheckSingleAssignmentConstraints(ToType, From);
1493
1494    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1495                                    FromType, From, Flavor);
1496  }
1497
1498  if (ToType->isReferenceType())
1499    return CheckReferenceInit(From, ToType);
1500
1501  if (!PerformImplicitConversion(From, ToType))
1502    return false;
1503
1504  return Diag(From->getSourceRange().getBegin(),
1505              diag::err_typecheck_convert_incompatible)
1506    << ToType << From->getType() << Flavor << From->getSourceRange();
1507}
1508
1509/// TryObjectArgumentInitialization - Try to initialize the object
1510/// parameter of the given member function (@c Method) from the
1511/// expression @p From.
1512ImplicitConversionSequence
1513Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1514  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1515  unsigned MethodQuals = Method->getTypeQualifiers();
1516  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1517
1518  // Set up the conversion sequence as a "bad" conversion, to allow us
1519  // to exit early.
1520  ImplicitConversionSequence ICS;
1521  ICS.Standard.setAsIdentityConversion();
1522  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1523
1524  // We need to have an object of class type.
1525  QualType FromType = From->getType();
1526  if (!FromType->isRecordType())
1527    return ICS;
1528
1529  // The implicit object parmeter is has the type "reference to cv X",
1530  // where X is the class of which the function is a member
1531  // (C++ [over.match.funcs]p4). However, when finding an implicit
1532  // conversion sequence for the argument, we are not allowed to
1533  // create temporaries or perform user-defined conversions
1534  // (C++ [over.match.funcs]p5). We perform a simplified version of
1535  // reference binding here, that allows class rvalues to bind to
1536  // non-constant references.
1537
1538  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1539  // with the implicit object parameter (C++ [over.match.funcs]p5).
1540  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1541  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1542      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1543    return ICS;
1544
1545  // Check that we have either the same type or a derived type. It
1546  // affects the conversion rank.
1547  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1548  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1549    ICS.Standard.Second = ICK_Identity;
1550  else if (IsDerivedFrom(FromType, ClassType))
1551    ICS.Standard.Second = ICK_Derived_To_Base;
1552  else
1553    return ICS;
1554
1555  // Success. Mark this as a reference binding.
1556  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1557  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1558  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1559  ICS.Standard.ReferenceBinding = true;
1560  ICS.Standard.DirectBinding = true;
1561  return ICS;
1562}
1563
1564/// PerformObjectArgumentInitialization - Perform initialization of
1565/// the implicit object parameter for the given Method with the given
1566/// expression.
1567bool
1568Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1569  QualType ImplicitParamType
1570    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1571  ImplicitConversionSequence ICS
1572    = TryObjectArgumentInitialization(From, Method);
1573  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1574    return Diag(From->getSourceRange().getBegin(),
1575                diag::err_implicit_object_parameter_init)
1576       << ImplicitParamType << From->getType() << From->getSourceRange();
1577
1578  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1579      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1580                                   From->getSourceRange().getBegin(),
1581                                   From->getSourceRange()))
1582    return true;
1583
1584  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1585  return false;
1586}
1587
1588/// AddOverloadCandidate - Adds the given function to the set of
1589/// candidate functions, using the given function call arguments.  If
1590/// @p SuppressUserConversions, then don't allow user-defined
1591/// conversions via constructors or conversion operators.
1592void
1593Sema::AddOverloadCandidate(FunctionDecl *Function,
1594                           Expr **Args, unsigned NumArgs,
1595                           OverloadCandidateSet& CandidateSet,
1596                           bool SuppressUserConversions)
1597{
1598  const FunctionTypeProto* Proto
1599    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1600  assert(Proto && "Functions without a prototype cannot be overloaded");
1601  assert(!isa<CXXConversionDecl>(Function) &&
1602         "Use AddConversionCandidate for conversion functions");
1603
1604  // Add this candidate
1605  CandidateSet.push_back(OverloadCandidate());
1606  OverloadCandidate& Candidate = CandidateSet.back();
1607  Candidate.Function = Function;
1608  Candidate.IsSurrogate = false;
1609
1610  unsigned NumArgsInProto = Proto->getNumArgs();
1611
1612  // (C++ 13.3.2p2): A candidate function having fewer than m
1613  // parameters is viable only if it has an ellipsis in its parameter
1614  // list (8.3.5).
1615  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1616    Candidate.Viable = false;
1617    return;
1618  }
1619
1620  // (C++ 13.3.2p2): A candidate function having more than m parameters
1621  // is viable only if the (m+1)st parameter has a default argument
1622  // (8.3.6). For the purposes of overload resolution, the
1623  // parameter list is truncated on the right, so that there are
1624  // exactly m parameters.
1625  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1626  if (NumArgs < MinRequiredArgs) {
1627    // Not enough arguments.
1628    Candidate.Viable = false;
1629    return;
1630  }
1631
1632  // Determine the implicit conversion sequences for each of the
1633  // arguments.
1634  Candidate.Viable = true;
1635  Candidate.Conversions.resize(NumArgs);
1636  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1637    if (ArgIdx < NumArgsInProto) {
1638      // (C++ 13.3.2p3): for F to be a viable function, there shall
1639      // exist for each argument an implicit conversion sequence
1640      // (13.3.3.1) that converts that argument to the corresponding
1641      // parameter of F.
1642      QualType ParamType = Proto->getArgType(ArgIdx);
1643      Candidate.Conversions[ArgIdx]
1644        = TryCopyInitialization(Args[ArgIdx], ParamType,
1645                                SuppressUserConversions);
1646      if (Candidate.Conversions[ArgIdx].ConversionKind
1647            == ImplicitConversionSequence::BadConversion) {
1648        Candidate.Viable = false;
1649        break;
1650      }
1651    } else {
1652      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1653      // argument for which there is no corresponding parameter is
1654      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1655      Candidate.Conversions[ArgIdx].ConversionKind
1656        = ImplicitConversionSequence::EllipsisConversion;
1657    }
1658  }
1659}
1660
1661/// AddMethodCandidate - Adds the given C++ member function to the set
1662/// of candidate functions, using the given function call arguments
1663/// and the object argument (@c Object). For example, in a call
1664/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1665/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1666/// allow user-defined conversions via constructors or conversion
1667/// operators.
1668void
1669Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1670                         Expr **Args, unsigned NumArgs,
1671                         OverloadCandidateSet& CandidateSet,
1672                         bool SuppressUserConversions)
1673{
1674  const FunctionTypeProto* Proto
1675    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1676  assert(Proto && "Methods without a prototype cannot be overloaded");
1677  assert(!isa<CXXConversionDecl>(Method) &&
1678         "Use AddConversionCandidate for conversion functions");
1679
1680  // Add this candidate
1681  CandidateSet.push_back(OverloadCandidate());
1682  OverloadCandidate& Candidate = CandidateSet.back();
1683  Candidate.Function = Method;
1684  Candidate.IsSurrogate = false;
1685
1686  unsigned NumArgsInProto = Proto->getNumArgs();
1687
1688  // (C++ 13.3.2p2): A candidate function having fewer than m
1689  // parameters is viable only if it has an ellipsis in its parameter
1690  // list (8.3.5).
1691  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1692    Candidate.Viable = false;
1693    return;
1694  }
1695
1696  // (C++ 13.3.2p2): A candidate function having more than m parameters
1697  // is viable only if the (m+1)st parameter has a default argument
1698  // (8.3.6). For the purposes of overload resolution, the
1699  // parameter list is truncated on the right, so that there are
1700  // exactly m parameters.
1701  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1702  if (NumArgs < MinRequiredArgs) {
1703    // Not enough arguments.
1704    Candidate.Viable = false;
1705    return;
1706  }
1707
1708  Candidate.Viable = true;
1709  Candidate.Conversions.resize(NumArgs + 1);
1710
1711  // Determine the implicit conversion sequence for the object
1712  // parameter.
1713  Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1714  if (Candidate.Conversions[0].ConversionKind
1715        == ImplicitConversionSequence::BadConversion) {
1716    Candidate.Viable = false;
1717    return;
1718  }
1719
1720  // Determine the implicit conversion sequences for each of the
1721  // arguments.
1722  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1723    if (ArgIdx < NumArgsInProto) {
1724      // (C++ 13.3.2p3): for F to be a viable function, there shall
1725      // exist for each argument an implicit conversion sequence
1726      // (13.3.3.1) that converts that argument to the corresponding
1727      // parameter of F.
1728      QualType ParamType = Proto->getArgType(ArgIdx);
1729      Candidate.Conversions[ArgIdx + 1]
1730        = TryCopyInitialization(Args[ArgIdx], ParamType,
1731                                SuppressUserConversions);
1732      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1733            == ImplicitConversionSequence::BadConversion) {
1734        Candidate.Viable = false;
1735        break;
1736      }
1737    } else {
1738      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1739      // argument for which there is no corresponding parameter is
1740      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1741      Candidate.Conversions[ArgIdx + 1].ConversionKind
1742        = ImplicitConversionSequence::EllipsisConversion;
1743    }
1744  }
1745}
1746
1747/// AddConversionCandidate - Add a C++ conversion function as a
1748/// candidate in the candidate set (C++ [over.match.conv],
1749/// C++ [over.match.copy]). From is the expression we're converting from,
1750/// and ToType is the type that we're eventually trying to convert to
1751/// (which may or may not be the same type as the type that the
1752/// conversion function produces).
1753void
1754Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1755                             Expr *From, QualType ToType,
1756                             OverloadCandidateSet& CandidateSet) {
1757  // Add this candidate
1758  CandidateSet.push_back(OverloadCandidate());
1759  OverloadCandidate& Candidate = CandidateSet.back();
1760  Candidate.Function = Conversion;
1761  Candidate.IsSurrogate = false;
1762  Candidate.FinalConversion.setAsIdentityConversion();
1763  Candidate.FinalConversion.FromTypePtr
1764    = Conversion->getConversionType().getAsOpaquePtr();
1765  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1766
1767  // Determine the implicit conversion sequence for the implicit
1768  // object parameter.
1769  Candidate.Viable = true;
1770  Candidate.Conversions.resize(1);
1771  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
1772
1773  if (Candidate.Conversions[0].ConversionKind
1774      == ImplicitConversionSequence::BadConversion) {
1775    Candidate.Viable = false;
1776    return;
1777  }
1778
1779  // To determine what the conversion from the result of calling the
1780  // conversion function to the type we're eventually trying to
1781  // convert to (ToType), we need to synthesize a call to the
1782  // conversion function and attempt copy initialization from it. This
1783  // makes sure that we get the right semantics with respect to
1784  // lvalues/rvalues and the type. Fortunately, we can allocate this
1785  // call on the stack and we don't need its arguments to be
1786  // well-formed.
1787  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1788                            SourceLocation());
1789  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
1790                                &ConversionRef, false);
1791  CallExpr Call(&ConversionFn, 0, 0,
1792                Conversion->getConversionType().getNonReferenceType(),
1793                SourceLocation());
1794  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1795  switch (ICS.ConversionKind) {
1796  case ImplicitConversionSequence::StandardConversion:
1797    Candidate.FinalConversion = ICS.Standard;
1798    break;
1799
1800  case ImplicitConversionSequence::BadConversion:
1801    Candidate.Viable = false;
1802    break;
1803
1804  default:
1805    assert(false &&
1806           "Can only end up with a standard conversion sequence or failure");
1807  }
1808}
1809
1810/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1811/// converts the given @c Object to a function pointer via the
1812/// conversion function @c Conversion, and then attempts to call it
1813/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1814/// the type of function that we'll eventually be calling.
1815void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1816                                 const FunctionTypeProto *Proto,
1817                                 Expr *Object, Expr **Args, unsigned NumArgs,
1818                                 OverloadCandidateSet& CandidateSet) {
1819  CandidateSet.push_back(OverloadCandidate());
1820  OverloadCandidate& Candidate = CandidateSet.back();
1821  Candidate.Function = 0;
1822  Candidate.Surrogate = Conversion;
1823  Candidate.Viable = true;
1824  Candidate.IsSurrogate = true;
1825  Candidate.Conversions.resize(NumArgs + 1);
1826
1827  // Determine the implicit conversion sequence for the implicit
1828  // object parameter.
1829  ImplicitConversionSequence ObjectInit
1830    = TryObjectArgumentInitialization(Object, Conversion);
1831  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1832    Candidate.Viable = false;
1833    return;
1834  }
1835
1836  // The first conversion is actually a user-defined conversion whose
1837  // first conversion is ObjectInit's standard conversion (which is
1838  // effectively a reference binding). Record it as such.
1839  Candidate.Conversions[0].ConversionKind
1840    = ImplicitConversionSequence::UserDefinedConversion;
1841  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1842  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1843  Candidate.Conversions[0].UserDefined.After
1844    = Candidate.Conversions[0].UserDefined.Before;
1845  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1846
1847  // Find the
1848  unsigned NumArgsInProto = Proto->getNumArgs();
1849
1850  // (C++ 13.3.2p2): A candidate function having fewer than m
1851  // parameters is viable only if it has an ellipsis in its parameter
1852  // list (8.3.5).
1853  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1854    Candidate.Viable = false;
1855    return;
1856  }
1857
1858  // Function types don't have any default arguments, so just check if
1859  // we have enough arguments.
1860  if (NumArgs < NumArgsInProto) {
1861    // Not enough arguments.
1862    Candidate.Viable = false;
1863    return;
1864  }
1865
1866  // Determine the implicit conversion sequences for each of the
1867  // arguments.
1868  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1869    if (ArgIdx < NumArgsInProto) {
1870      // (C++ 13.3.2p3): for F to be a viable function, there shall
1871      // exist for each argument an implicit conversion sequence
1872      // (13.3.3.1) that converts that argument to the corresponding
1873      // parameter of F.
1874      QualType ParamType = Proto->getArgType(ArgIdx);
1875      Candidate.Conversions[ArgIdx + 1]
1876        = TryCopyInitialization(Args[ArgIdx], ParamType,
1877                                /*SuppressUserConversions=*/false);
1878      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1879            == ImplicitConversionSequence::BadConversion) {
1880        Candidate.Viable = false;
1881        break;
1882      }
1883    } else {
1884      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1885      // argument for which there is no corresponding parameter is
1886      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1887      Candidate.Conversions[ArgIdx + 1].ConversionKind
1888        = ImplicitConversionSequence::EllipsisConversion;
1889    }
1890  }
1891}
1892
1893/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1894/// an acceptable non-member overloaded operator for a call whose
1895/// arguments have types T1 (and, if non-empty, T2). This routine
1896/// implements the check in C++ [over.match.oper]p3b2 concerning
1897/// enumeration types.
1898static bool
1899IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1900                                       QualType T1, QualType T2,
1901                                       ASTContext &Context) {
1902  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1903    return true;
1904
1905  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1906  if (Proto->getNumArgs() < 1)
1907    return false;
1908
1909  if (T1->isEnumeralType()) {
1910    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1911    if (Context.getCanonicalType(T1).getUnqualifiedType()
1912          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1913      return true;
1914  }
1915
1916  if (Proto->getNumArgs() < 2)
1917    return false;
1918
1919  if (!T2.isNull() && T2->isEnumeralType()) {
1920    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1921    if (Context.getCanonicalType(T2).getUnqualifiedType()
1922          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1923      return true;
1924  }
1925
1926  return false;
1927}
1928
1929/// AddOperatorCandidates - Add the overloaded operator candidates for
1930/// the operator Op that was used in an operator expression such as "x
1931/// Op y". S is the scope in which the expression occurred (used for
1932/// name lookup of the operator), Args/NumArgs provides the operator
1933/// arguments, and CandidateSet will store the added overload
1934/// candidates. (C++ [over.match.oper]).
1935void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1936                                 Expr **Args, unsigned NumArgs,
1937                                 OverloadCandidateSet& CandidateSet) {
1938  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1939
1940  // C++ [over.match.oper]p3:
1941  //   For a unary operator @ with an operand of a type whose
1942  //   cv-unqualified version is T1, and for a binary operator @ with
1943  //   a left operand of a type whose cv-unqualified version is T1 and
1944  //   a right operand of a type whose cv-unqualified version is T2,
1945  //   three sets of candidate functions, designated member
1946  //   candidates, non-member candidates and built-in candidates, are
1947  //   constructed as follows:
1948  QualType T1 = Args[0]->getType();
1949  QualType T2;
1950  if (NumArgs > 1)
1951    T2 = Args[1]->getType();
1952
1953  //     -- If T1 is a class type, the set of member candidates is the
1954  //        result of the qualified lookup of T1::operator@
1955  //        (13.3.1.1.1); otherwise, the set of member candidates is
1956  //        empty.
1957  if (const RecordType *T1Rec = T1->getAsRecordType()) {
1958    IdentifierResolver::iterator I
1959      = IdResolver.begin(OpName, cast<CXXRecordType>(T1Rec)->getDecl(),
1960                         /*LookInParentCtx=*/false);
1961    NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
1962    if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1963      AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1964                         /*SuppressUserConversions=*/false);
1965    else if (OverloadedFunctionDecl *Ovl
1966               = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1967      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1968                                                  FEnd = Ovl->function_end();
1969           F != FEnd; ++F) {
1970        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1971          AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1972                             /*SuppressUserConversions=*/false);
1973      }
1974    }
1975  }
1976
1977  //     -- The set of non-member candidates is the result of the
1978  //        unqualified lookup of operator@ in the context of the
1979  //        expression according to the usual rules for name lookup in
1980  //        unqualified function calls (3.4.2) except that all member
1981  //        functions are ignored. However, if no operand has a class
1982  //        type, only those non-member functions in the lookup set
1983  //        that have a first parameter of type T1 or “reference to
1984  //        (possibly cv-qualified) T1”, when T1 is an enumeration
1985  //        type, or (if there is a right operand) a second parameter
1986  //        of type T2 or “reference to (possibly cv-qualified) T2”,
1987  //        when T2 is an enumeration type, are candidate functions.
1988  {
1989    NamedDecl *NonMemberOps = 0;
1990    for (IdentifierResolver::iterator I
1991           = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
1992         I != IdResolver.end(); ++I) {
1993      // We don't need to check the identifier namespace, because
1994      // operator names can only be ordinary identifiers.
1995
1996      // Ignore member functions.
1997      if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
1998        if (SD->getDeclContext()->isCXXRecord())
1999          continue;
2000      }
2001
2002      // We found something with this name. We're done.
2003      NonMemberOps = *I;
2004      break;
2005    }
2006
2007    if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2008      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2009        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2010                             /*SuppressUserConversions=*/false);
2011    } else if (OverloadedFunctionDecl *Ovl
2012                 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
2013      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2014                                                  FEnd = Ovl->function_end();
2015           F != FEnd; ++F) {
2016        if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2017          AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2018                               /*SuppressUserConversions=*/false);
2019      }
2020    }
2021  }
2022
2023  // Add builtin overload candidates (C++ [over.built]).
2024  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2025}
2026
2027/// AddBuiltinCandidate - Add a candidate for a built-in
2028/// operator. ResultTy and ParamTys are the result and parameter types
2029/// of the built-in candidate, respectively. Args and NumArgs are the
2030/// arguments being passed to the candidate.
2031void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2032                               Expr **Args, unsigned NumArgs,
2033                               OverloadCandidateSet& CandidateSet) {
2034  // Add this candidate
2035  CandidateSet.push_back(OverloadCandidate());
2036  OverloadCandidate& Candidate = CandidateSet.back();
2037  Candidate.Function = 0;
2038  Candidate.BuiltinTypes.ResultTy = ResultTy;
2039  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2040    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2041
2042  // Determine the implicit conversion sequences for each of the
2043  // arguments.
2044  Candidate.Viable = true;
2045  Candidate.Conversions.resize(NumArgs);
2046  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2047    Candidate.Conversions[ArgIdx]
2048      = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2049    if (Candidate.Conversions[ArgIdx].ConversionKind
2050        == ImplicitConversionSequence::BadConversion) {
2051      Candidate.Viable = false;
2052      break;
2053    }
2054  }
2055}
2056
2057/// BuiltinCandidateTypeSet - A set of types that will be used for the
2058/// candidate operator functions for built-in operators (C++
2059/// [over.built]). The types are separated into pointer types and
2060/// enumeration types.
2061class BuiltinCandidateTypeSet  {
2062  /// TypeSet - A set of types.
2063  typedef llvm::SmallPtrSet<void*, 8> TypeSet;
2064
2065  /// PointerTypes - The set of pointer types that will be used in the
2066  /// built-in candidates.
2067  TypeSet PointerTypes;
2068
2069  /// EnumerationTypes - The set of enumeration types that will be
2070  /// used in the built-in candidates.
2071  TypeSet EnumerationTypes;
2072
2073  /// Context - The AST context in which we will build the type sets.
2074  ASTContext &Context;
2075
2076  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2077
2078public:
2079  /// iterator - Iterates through the types that are part of the set.
2080  class iterator {
2081    TypeSet::iterator Base;
2082
2083  public:
2084    typedef QualType                 value_type;
2085    typedef QualType                 reference;
2086    typedef QualType                 pointer;
2087    typedef std::ptrdiff_t           difference_type;
2088    typedef std::input_iterator_tag  iterator_category;
2089
2090    iterator(TypeSet::iterator B) : Base(B) { }
2091
2092    iterator& operator++() {
2093      ++Base;
2094      return *this;
2095    }
2096
2097    iterator operator++(int) {
2098      iterator tmp(*this);
2099      ++(*this);
2100      return tmp;
2101    }
2102
2103    reference operator*() const {
2104      return QualType::getFromOpaquePtr(*Base);
2105    }
2106
2107    pointer operator->() const {
2108      return **this;
2109    }
2110
2111    friend bool operator==(iterator LHS, iterator RHS) {
2112      return LHS.Base == RHS.Base;
2113    }
2114
2115    friend bool operator!=(iterator LHS, iterator RHS) {
2116      return LHS.Base != RHS.Base;
2117    }
2118  };
2119
2120  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2121
2122  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2123
2124  /// pointer_begin - First pointer type found;
2125  iterator pointer_begin() { return PointerTypes.begin(); }
2126
2127  /// pointer_end - Last pointer type found;
2128  iterator pointer_end() { return PointerTypes.end(); }
2129
2130  /// enumeration_begin - First enumeration type found;
2131  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2132
2133  /// enumeration_end - Last enumeration type found;
2134  iterator enumeration_end() { return EnumerationTypes.end(); }
2135};
2136
2137/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2138/// the set of pointer types along with any more-qualified variants of
2139/// that type. For example, if @p Ty is "int const *", this routine
2140/// will add "int const *", "int const volatile *", "int const
2141/// restrict *", and "int const volatile restrict *" to the set of
2142/// pointer types. Returns true if the add of @p Ty itself succeeded,
2143/// false otherwise.
2144bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2145  // Insert this type.
2146  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
2147    return false;
2148
2149  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2150    QualType PointeeTy = PointerTy->getPointeeType();
2151    // FIXME: Optimize this so that we don't keep trying to add the same types.
2152
2153    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2154    // with all pointer conversions that don't cast away constness?
2155    if (!PointeeTy.isConstQualified())
2156      AddWithMoreQualifiedTypeVariants
2157        (Context.getPointerType(PointeeTy.withConst()));
2158    if (!PointeeTy.isVolatileQualified())
2159      AddWithMoreQualifiedTypeVariants
2160        (Context.getPointerType(PointeeTy.withVolatile()));
2161    if (!PointeeTy.isRestrictQualified())
2162      AddWithMoreQualifiedTypeVariants
2163        (Context.getPointerType(PointeeTy.withRestrict()));
2164  }
2165
2166  return true;
2167}
2168
2169/// AddTypesConvertedFrom - Add each of the types to which the type @p
2170/// Ty can be implicit converted to the given set of @p Types. We're
2171/// primarily interested in pointer types, enumeration types,
2172void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2173                                                    bool AllowUserConversions) {
2174  // Only deal with canonical types.
2175  Ty = Context.getCanonicalType(Ty);
2176
2177  // Look through reference types; they aren't part of the type of an
2178  // expression for the purposes of conversions.
2179  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2180    Ty = RefTy->getPointeeType();
2181
2182  // We don't care about qualifiers on the type.
2183  Ty = Ty.getUnqualifiedType();
2184
2185  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2186    QualType PointeeTy = PointerTy->getPointeeType();
2187
2188    // Insert our type, and its more-qualified variants, into the set
2189    // of types.
2190    if (!AddWithMoreQualifiedTypeVariants(Ty))
2191      return;
2192
2193    // Add 'cv void*' to our set of types.
2194    if (!Ty->isVoidType()) {
2195      QualType QualVoid
2196        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2197      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2198    }
2199
2200    // If this is a pointer to a class type, add pointers to its bases
2201    // (with the same level of cv-qualification as the original
2202    // derived class, of course).
2203    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2204      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2205      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2206           Base != ClassDecl->bases_end(); ++Base) {
2207        QualType BaseTy = Context.getCanonicalType(Base->getType());
2208        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2209
2210        // Add the pointer type, recursively, so that we get all of
2211        // the indirect base classes, too.
2212        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2213      }
2214    }
2215  } else if (Ty->isEnumeralType()) {
2216    EnumerationTypes.insert(Ty.getAsOpaquePtr());
2217  } else if (AllowUserConversions) {
2218    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2219      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2220      // FIXME: Visit conversion functions in the base classes, too.
2221      OverloadedFunctionDecl *Conversions
2222        = ClassDecl->getConversionFunctions();
2223      for (OverloadedFunctionDecl::function_iterator Func
2224             = Conversions->function_begin();
2225           Func != Conversions->function_end(); ++Func) {
2226        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2227        AddTypesConvertedFrom(Conv->getConversionType(), false);
2228      }
2229    }
2230  }
2231}
2232
2233/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2234/// operator overloads to the candidate set (C++ [over.built]), based
2235/// on the operator @p Op and the arguments given. For example, if the
2236/// operator is a binary '+', this routine might add "int
2237/// operator+(int, int)" to cover integer addition.
2238void
2239Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2240                                   Expr **Args, unsigned NumArgs,
2241                                   OverloadCandidateSet& CandidateSet) {
2242  // The set of "promoted arithmetic types", which are the arithmetic
2243  // types are that preserved by promotion (C++ [over.built]p2). Note
2244  // that the first few of these types are the promoted integral
2245  // types; these types need to be first.
2246  // FIXME: What about complex?
2247  const unsigned FirstIntegralType = 0;
2248  const unsigned LastIntegralType = 13;
2249  const unsigned FirstPromotedIntegralType = 7,
2250                 LastPromotedIntegralType = 13;
2251  const unsigned FirstPromotedArithmeticType = 7,
2252                 LastPromotedArithmeticType = 16;
2253  const unsigned NumArithmeticTypes = 16;
2254  QualType ArithmeticTypes[NumArithmeticTypes] = {
2255    Context.BoolTy, Context.CharTy, Context.WCharTy,
2256    Context.SignedCharTy, Context.ShortTy,
2257    Context.UnsignedCharTy, Context.UnsignedShortTy,
2258    Context.IntTy, Context.LongTy, Context.LongLongTy,
2259    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2260    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2261  };
2262
2263  // Find all of the types that the arguments can convert to, but only
2264  // if the operator we're looking at has built-in operator candidates
2265  // that make use of these types.
2266  BuiltinCandidateTypeSet CandidateTypes(Context);
2267  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2268      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2269      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2270      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2271      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2272      (Op == OO_Star && NumArgs == 1)) {
2273    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2274      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2275  }
2276
2277  bool isComparison = false;
2278  switch (Op) {
2279  case OO_None:
2280  case NUM_OVERLOADED_OPERATORS:
2281    assert(false && "Expected an overloaded operator");
2282    break;
2283
2284  case OO_Star: // '*' is either unary or binary
2285    if (NumArgs == 1)
2286      goto UnaryStar;
2287    else
2288      goto BinaryStar;
2289    break;
2290
2291  case OO_Plus: // '+' is either unary or binary
2292    if (NumArgs == 1)
2293      goto UnaryPlus;
2294    else
2295      goto BinaryPlus;
2296    break;
2297
2298  case OO_Minus: // '-' is either unary or binary
2299    if (NumArgs == 1)
2300      goto UnaryMinus;
2301    else
2302      goto BinaryMinus;
2303    break;
2304
2305  case OO_Amp: // '&' is either unary or binary
2306    if (NumArgs == 1)
2307      goto UnaryAmp;
2308    else
2309      goto BinaryAmp;
2310
2311  case OO_PlusPlus:
2312  case OO_MinusMinus:
2313    // C++ [over.built]p3:
2314    //
2315    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2316    //   is either volatile or empty, there exist candidate operator
2317    //   functions of the form
2318    //
2319    //       VQ T&      operator++(VQ T&);
2320    //       T          operator++(VQ T&, int);
2321    //
2322    // C++ [over.built]p4:
2323    //
2324    //   For every pair (T, VQ), where T is an arithmetic type other
2325    //   than bool, and VQ is either volatile or empty, there exist
2326    //   candidate operator functions of the form
2327    //
2328    //       VQ T&      operator--(VQ T&);
2329    //       T          operator--(VQ T&, int);
2330    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2331         Arith < NumArithmeticTypes; ++Arith) {
2332      QualType ArithTy = ArithmeticTypes[Arith];
2333      QualType ParamTypes[2]
2334        = { Context.getReferenceType(ArithTy), Context.IntTy };
2335
2336      // Non-volatile version.
2337      if (NumArgs == 1)
2338        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2339      else
2340        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2341
2342      // Volatile version
2343      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2344      if (NumArgs == 1)
2345        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2346      else
2347        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2348    }
2349
2350    // C++ [over.built]p5:
2351    //
2352    //   For every pair (T, VQ), where T is a cv-qualified or
2353    //   cv-unqualified object type, and VQ is either volatile or
2354    //   empty, there exist candidate operator functions of the form
2355    //
2356    //       T*VQ&      operator++(T*VQ&);
2357    //       T*VQ&      operator--(T*VQ&);
2358    //       T*         operator++(T*VQ&, int);
2359    //       T*         operator--(T*VQ&, int);
2360    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2361         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2362      // Skip pointer types that aren't pointers to object types.
2363      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
2364        continue;
2365
2366      QualType ParamTypes[2] = {
2367        Context.getReferenceType(*Ptr), Context.IntTy
2368      };
2369
2370      // Without volatile
2371      if (NumArgs == 1)
2372        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2373      else
2374        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2375
2376      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2377        // With volatile
2378        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2379        if (NumArgs == 1)
2380          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2381        else
2382          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2383      }
2384    }
2385    break;
2386
2387  UnaryStar:
2388    // C++ [over.built]p6:
2389    //   For every cv-qualified or cv-unqualified object type T, there
2390    //   exist candidate operator functions of the form
2391    //
2392    //       T&         operator*(T*);
2393    //
2394    // C++ [over.built]p7:
2395    //   For every function type T, there exist candidate operator
2396    //   functions of the form
2397    //       T&         operator*(T*);
2398    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2399         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2400      QualType ParamTy = *Ptr;
2401      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2402      AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2403                          &ParamTy, Args, 1, CandidateSet);
2404    }
2405    break;
2406
2407  UnaryPlus:
2408    // C++ [over.built]p8:
2409    //   For every type T, there exist candidate operator functions of
2410    //   the form
2411    //
2412    //       T*         operator+(T*);
2413    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2414         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2415      QualType ParamTy = *Ptr;
2416      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2417    }
2418
2419    // Fall through
2420
2421  UnaryMinus:
2422    // C++ [over.built]p9:
2423    //  For every promoted arithmetic type T, there exist candidate
2424    //  operator functions of the form
2425    //
2426    //       T         operator+(T);
2427    //       T         operator-(T);
2428    for (unsigned Arith = FirstPromotedArithmeticType;
2429         Arith < LastPromotedArithmeticType; ++Arith) {
2430      QualType ArithTy = ArithmeticTypes[Arith];
2431      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2432    }
2433    break;
2434
2435  case OO_Tilde:
2436    // C++ [over.built]p10:
2437    //   For every promoted integral type T, there exist candidate
2438    //   operator functions of the form
2439    //
2440    //        T         operator~(T);
2441    for (unsigned Int = FirstPromotedIntegralType;
2442         Int < LastPromotedIntegralType; ++Int) {
2443      QualType IntTy = ArithmeticTypes[Int];
2444      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2445    }
2446    break;
2447
2448  case OO_New:
2449  case OO_Delete:
2450  case OO_Array_New:
2451  case OO_Array_Delete:
2452  case OO_Call:
2453    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2454    break;
2455
2456  case OO_Comma:
2457  UnaryAmp:
2458  case OO_Arrow:
2459    // C++ [over.match.oper]p3:
2460    //   -- For the operator ',', the unary operator '&', or the
2461    //      operator '->', the built-in candidates set is empty.
2462    break;
2463
2464  case OO_Less:
2465  case OO_Greater:
2466  case OO_LessEqual:
2467  case OO_GreaterEqual:
2468  case OO_EqualEqual:
2469  case OO_ExclaimEqual:
2470    // C++ [over.built]p15:
2471    //
2472    //   For every pointer or enumeration type T, there exist
2473    //   candidate operator functions of the form
2474    //
2475    //        bool       operator<(T, T);
2476    //        bool       operator>(T, T);
2477    //        bool       operator<=(T, T);
2478    //        bool       operator>=(T, T);
2479    //        bool       operator==(T, T);
2480    //        bool       operator!=(T, T);
2481    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2482         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2483      QualType ParamTypes[2] = { *Ptr, *Ptr };
2484      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2485    }
2486    for (BuiltinCandidateTypeSet::iterator Enum
2487           = CandidateTypes.enumeration_begin();
2488         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2489      QualType ParamTypes[2] = { *Enum, *Enum };
2490      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2491    }
2492
2493    // Fall through.
2494    isComparison = true;
2495
2496  BinaryPlus:
2497  BinaryMinus:
2498    if (!isComparison) {
2499      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2500
2501      // C++ [over.built]p13:
2502      //
2503      //   For every cv-qualified or cv-unqualified object type T
2504      //   there exist candidate operator functions of the form
2505      //
2506      //      T*         operator+(T*, ptrdiff_t);
2507      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2508      //      T*         operator-(T*, ptrdiff_t);
2509      //      T*         operator+(ptrdiff_t, T*);
2510      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2511      //
2512      // C++ [over.built]p14:
2513      //
2514      //   For every T, where T is a pointer to object type, there
2515      //   exist candidate operator functions of the form
2516      //
2517      //      ptrdiff_t  operator-(T, T);
2518      for (BuiltinCandidateTypeSet::iterator Ptr
2519             = CandidateTypes.pointer_begin();
2520           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2521        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2522
2523        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2524        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2525
2526        if (Op == OO_Plus) {
2527          // T* operator+(ptrdiff_t, T*);
2528          ParamTypes[0] = ParamTypes[1];
2529          ParamTypes[1] = *Ptr;
2530          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2531        } else {
2532          // ptrdiff_t operator-(T, T);
2533          ParamTypes[1] = *Ptr;
2534          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2535                              Args, 2, CandidateSet);
2536        }
2537      }
2538    }
2539    // Fall through
2540
2541  case OO_Slash:
2542  BinaryStar:
2543    // C++ [over.built]p12:
2544    //
2545    //   For every pair of promoted arithmetic types L and R, there
2546    //   exist candidate operator functions of the form
2547    //
2548    //        LR         operator*(L, R);
2549    //        LR         operator/(L, R);
2550    //        LR         operator+(L, R);
2551    //        LR         operator-(L, R);
2552    //        bool       operator<(L, R);
2553    //        bool       operator>(L, R);
2554    //        bool       operator<=(L, R);
2555    //        bool       operator>=(L, R);
2556    //        bool       operator==(L, R);
2557    //        bool       operator!=(L, R);
2558    //
2559    //   where LR is the result of the usual arithmetic conversions
2560    //   between types L and R.
2561    for (unsigned Left = FirstPromotedArithmeticType;
2562         Left < LastPromotedArithmeticType; ++Left) {
2563      for (unsigned Right = FirstPromotedArithmeticType;
2564           Right < LastPromotedArithmeticType; ++Right) {
2565        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2566        QualType Result
2567          = isComparison? Context.BoolTy
2568                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2569        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2570      }
2571    }
2572    break;
2573
2574  case OO_Percent:
2575  BinaryAmp:
2576  case OO_Caret:
2577  case OO_Pipe:
2578  case OO_LessLess:
2579  case OO_GreaterGreater:
2580    // C++ [over.built]p17:
2581    //
2582    //   For every pair of promoted integral types L and R, there
2583    //   exist candidate operator functions of the form
2584    //
2585    //      LR         operator%(L, R);
2586    //      LR         operator&(L, R);
2587    //      LR         operator^(L, R);
2588    //      LR         operator|(L, R);
2589    //      L          operator<<(L, R);
2590    //      L          operator>>(L, R);
2591    //
2592    //   where LR is the result of the usual arithmetic conversions
2593    //   between types L and R.
2594    for (unsigned Left = FirstPromotedIntegralType;
2595         Left < LastPromotedIntegralType; ++Left) {
2596      for (unsigned Right = FirstPromotedIntegralType;
2597           Right < LastPromotedIntegralType; ++Right) {
2598        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2599        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2600            ? LandR[0]
2601            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2602        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2603      }
2604    }
2605    break;
2606
2607  case OO_Equal:
2608    // C++ [over.built]p20:
2609    //
2610    //   For every pair (T, VQ), where T is an enumeration or
2611    //   (FIXME:) pointer to member type and VQ is either volatile or
2612    //   empty, there exist candidate operator functions of the form
2613    //
2614    //        VQ T&      operator=(VQ T&, T);
2615    for (BuiltinCandidateTypeSet::iterator Enum
2616           = CandidateTypes.enumeration_begin();
2617         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2618      QualType ParamTypes[2];
2619
2620      // T& operator=(T&, T)
2621      ParamTypes[0] = Context.getReferenceType(*Enum);
2622      ParamTypes[1] = *Enum;
2623      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2624
2625      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2626        // volatile T& operator=(volatile T&, T)
2627        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2628        ParamTypes[1] = *Enum;
2629        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2630      }
2631    }
2632    // Fall through.
2633
2634  case OO_PlusEqual:
2635  case OO_MinusEqual:
2636    // C++ [over.built]p19:
2637    //
2638    //   For every pair (T, VQ), where T is any type and VQ is either
2639    //   volatile or empty, there exist candidate operator functions
2640    //   of the form
2641    //
2642    //        T*VQ&      operator=(T*VQ&, T*);
2643    //
2644    // C++ [over.built]p21:
2645    //
2646    //   For every pair (T, VQ), where T is a cv-qualified or
2647    //   cv-unqualified object type and VQ is either volatile or
2648    //   empty, there exist candidate operator functions of the form
2649    //
2650    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
2651    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
2652    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2653         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2654      QualType ParamTypes[2];
2655      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2656
2657      // non-volatile version
2658      ParamTypes[0] = Context.getReferenceType(*Ptr);
2659      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2660
2661      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2662        // volatile version
2663        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2664        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2665      }
2666    }
2667    // Fall through.
2668
2669  case OO_StarEqual:
2670  case OO_SlashEqual:
2671    // C++ [over.built]p18:
2672    //
2673    //   For every triple (L, VQ, R), where L is an arithmetic type,
2674    //   VQ is either volatile or empty, and R is a promoted
2675    //   arithmetic type, there exist candidate operator functions of
2676    //   the form
2677    //
2678    //        VQ L&      operator=(VQ L&, R);
2679    //        VQ L&      operator*=(VQ L&, R);
2680    //        VQ L&      operator/=(VQ L&, R);
2681    //        VQ L&      operator+=(VQ L&, R);
2682    //        VQ L&      operator-=(VQ L&, R);
2683    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2684      for (unsigned Right = FirstPromotedArithmeticType;
2685           Right < LastPromotedArithmeticType; ++Right) {
2686        QualType ParamTypes[2];
2687        ParamTypes[1] = ArithmeticTypes[Right];
2688
2689        // Add this built-in operator as a candidate (VQ is empty).
2690        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2691        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2692
2693        // Add this built-in operator as a candidate (VQ is 'volatile').
2694        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2695        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2696        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2697      }
2698    }
2699    break;
2700
2701  case OO_PercentEqual:
2702  case OO_LessLessEqual:
2703  case OO_GreaterGreaterEqual:
2704  case OO_AmpEqual:
2705  case OO_CaretEqual:
2706  case OO_PipeEqual:
2707    // C++ [over.built]p22:
2708    //
2709    //   For every triple (L, VQ, R), where L is an integral type, VQ
2710    //   is either volatile or empty, and R is a promoted integral
2711    //   type, there exist candidate operator functions of the form
2712    //
2713    //        VQ L&       operator%=(VQ L&, R);
2714    //        VQ L&       operator<<=(VQ L&, R);
2715    //        VQ L&       operator>>=(VQ L&, R);
2716    //        VQ L&       operator&=(VQ L&, R);
2717    //        VQ L&       operator^=(VQ L&, R);
2718    //        VQ L&       operator|=(VQ L&, R);
2719    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2720      for (unsigned Right = FirstPromotedIntegralType;
2721           Right < LastPromotedIntegralType; ++Right) {
2722        QualType ParamTypes[2];
2723        ParamTypes[1] = ArithmeticTypes[Right];
2724
2725        // Add this built-in operator as a candidate (VQ is empty).
2726        // FIXME: We should be caching these declarations somewhere,
2727        // rather than re-building them every time.
2728        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2729        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2730
2731        // Add this built-in operator as a candidate (VQ is 'volatile').
2732        ParamTypes[0] = ArithmeticTypes[Left];
2733        ParamTypes[0].addVolatile();
2734        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2735        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2736      }
2737    }
2738    break;
2739
2740  case OO_Exclaim: {
2741    // C++ [over.operator]p23:
2742    //
2743    //   There also exist candidate operator functions of the form
2744    //
2745    //        bool        operator!(bool);
2746    //        bool        operator&&(bool, bool);     [BELOW]
2747    //        bool        operator||(bool, bool);     [BELOW]
2748    QualType ParamTy = Context.BoolTy;
2749    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2750    break;
2751  }
2752
2753  case OO_AmpAmp:
2754  case OO_PipePipe: {
2755    // C++ [over.operator]p23:
2756    //
2757    //   There also exist candidate operator functions of the form
2758    //
2759    //        bool        operator!(bool);            [ABOVE]
2760    //        bool        operator&&(bool, bool);
2761    //        bool        operator||(bool, bool);
2762    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2763    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2764    break;
2765  }
2766
2767  case OO_Subscript:
2768    // C++ [over.built]p13:
2769    //
2770    //   For every cv-qualified or cv-unqualified object type T there
2771    //   exist candidate operator functions of the form
2772    //
2773    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
2774    //        T&         operator[](T*, ptrdiff_t);
2775    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
2776    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
2777    //        T&         operator[](ptrdiff_t, T*);
2778    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2779         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2780      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2781      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2782      QualType ResultTy = Context.getReferenceType(PointeeType);
2783
2784      // T& operator[](T*, ptrdiff_t)
2785      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2786
2787      // T& operator[](ptrdiff_t, T*);
2788      ParamTypes[0] = ParamTypes[1];
2789      ParamTypes[1] = *Ptr;
2790      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2791    }
2792    break;
2793
2794  case OO_ArrowStar:
2795    // FIXME: No support for pointer-to-members yet.
2796    break;
2797  }
2798}
2799
2800/// AddOverloadCandidates - Add all of the function overloads in Ovl
2801/// to the candidate set.
2802void
2803Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
2804                            Expr **Args, unsigned NumArgs,
2805                            OverloadCandidateSet& CandidateSet,
2806                            bool SuppressUserConversions)
2807{
2808  for (OverloadedFunctionDecl::function_const_iterator Func
2809         = Ovl->function_begin();
2810       Func != Ovl->function_end(); ++Func)
2811    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2812                         SuppressUserConversions);
2813}
2814
2815/// isBetterOverloadCandidate - Determines whether the first overload
2816/// candidate is a better candidate than the second (C++ 13.3.3p1).
2817bool
2818Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2819                                const OverloadCandidate& Cand2)
2820{
2821  // Define viable functions to be better candidates than non-viable
2822  // functions.
2823  if (!Cand2.Viable)
2824    return Cand1.Viable;
2825  else if (!Cand1.Viable)
2826    return false;
2827
2828  // FIXME: Deal with the implicit object parameter for static member
2829  // functions. (C++ 13.3.3p1).
2830
2831  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2832  // function than another viable function F2 if for all arguments i,
2833  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2834  // then...
2835  unsigned NumArgs = Cand1.Conversions.size();
2836  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2837  bool HasBetterConversion = false;
2838  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2839    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2840                                               Cand2.Conversions[ArgIdx])) {
2841    case ImplicitConversionSequence::Better:
2842      // Cand1 has a better conversion sequence.
2843      HasBetterConversion = true;
2844      break;
2845
2846    case ImplicitConversionSequence::Worse:
2847      // Cand1 can't be better than Cand2.
2848      return false;
2849
2850    case ImplicitConversionSequence::Indistinguishable:
2851      // Do nothing.
2852      break;
2853    }
2854  }
2855
2856  if (HasBetterConversion)
2857    return true;
2858
2859  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2860  // implemented, but they require template support.
2861
2862  // C++ [over.match.best]p1b4:
2863  //
2864  //   -- the context is an initialization by user-defined conversion
2865  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
2866  //      from the return type of F1 to the destination type (i.e.,
2867  //      the type of the entity being initialized) is a better
2868  //      conversion sequence than the standard conversion sequence
2869  //      from the return type of F2 to the destination type.
2870  if (Cand1.Function && Cand2.Function &&
2871      isa<CXXConversionDecl>(Cand1.Function) &&
2872      isa<CXXConversionDecl>(Cand2.Function)) {
2873    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2874                                               Cand2.FinalConversion)) {
2875    case ImplicitConversionSequence::Better:
2876      // Cand1 has a better conversion sequence.
2877      return true;
2878
2879    case ImplicitConversionSequence::Worse:
2880      // Cand1 can't be better than Cand2.
2881      return false;
2882
2883    case ImplicitConversionSequence::Indistinguishable:
2884      // Do nothing
2885      break;
2886    }
2887  }
2888
2889  return false;
2890}
2891
2892/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2893/// within an overload candidate set. If overloading is successful,
2894/// the result will be OR_Success and Best will be set to point to the
2895/// best viable function within the candidate set. Otherwise, one of
2896/// several kinds of errors will be returned; see
2897/// Sema::OverloadingResult.
2898Sema::OverloadingResult
2899Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2900                         OverloadCandidateSet::iterator& Best)
2901{
2902  // Find the best viable function.
2903  Best = CandidateSet.end();
2904  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2905       Cand != CandidateSet.end(); ++Cand) {
2906    if (Cand->Viable) {
2907      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2908        Best = Cand;
2909    }
2910  }
2911
2912  // If we didn't find any viable functions, abort.
2913  if (Best == CandidateSet.end())
2914    return OR_No_Viable_Function;
2915
2916  // Make sure that this function is better than every other viable
2917  // function. If not, we have an ambiguity.
2918  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2919       Cand != CandidateSet.end(); ++Cand) {
2920    if (Cand->Viable &&
2921        Cand != Best &&
2922        !isBetterOverloadCandidate(*Best, *Cand)) {
2923      Best = CandidateSet.end();
2924      return OR_Ambiguous;
2925    }
2926  }
2927
2928  // Best is the best viable function.
2929  return OR_Success;
2930}
2931
2932/// PrintOverloadCandidates - When overload resolution fails, prints
2933/// diagnostic messages containing the candidates in the candidate
2934/// set. If OnlyViable is true, only viable candidates will be printed.
2935void
2936Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2937                              bool OnlyViable)
2938{
2939  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2940                             LastCand = CandidateSet.end();
2941  for (; Cand != LastCand; ++Cand) {
2942    if (Cand->Viable || !OnlyViable) {
2943      if (Cand->Function) {
2944        // Normal function
2945        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
2946      } else if (Cand->IsSurrogate) {
2947        // Desugar the type of the surrogate down to a function type,
2948        // retaining as many typedefs as possible while still showing
2949        // the function type (and, therefore, its parameter types).
2950        QualType FnType = Cand->Surrogate->getConversionType();
2951        bool isReference = false;
2952        bool isPointer = false;
2953        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2954          FnType = FnTypeRef->getPointeeType();
2955          isReference = true;
2956        }
2957        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2958          FnType = FnTypePtr->getPointeeType();
2959          isPointer = true;
2960        }
2961        // Desugar down to a function type.
2962        FnType = QualType(FnType->getAsFunctionType(), 0);
2963        // Reconstruct the pointer/reference as appropriate.
2964        if (isPointer) FnType = Context.getPointerType(FnType);
2965        if (isReference) FnType = Context.getReferenceType(FnType);
2966
2967        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
2968          << FnType;
2969      } else {
2970        // FIXME: We need to get the identifier in here
2971        // FIXME: Do we want the error message to point at the
2972        // operator? (built-ins won't have a location)
2973        QualType FnType
2974          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2975                                    Cand->BuiltinTypes.ParamTypes,
2976                                    Cand->Conversions.size(),
2977                                    false, 0);
2978
2979        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
2980      }
2981    }
2982  }
2983}
2984
2985/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
2986/// an overloaded function (C++ [over.over]), where @p From is an
2987/// expression with overloaded function type and @p ToType is the type
2988/// we're trying to resolve to. For example:
2989///
2990/// @code
2991/// int f(double);
2992/// int f(int);
2993///
2994/// int (*pfd)(double) = f; // selects f(double)
2995/// @endcode
2996///
2997/// This routine returns the resulting FunctionDecl if it could be
2998/// resolved, and NULL otherwise. When @p Complain is true, this
2999/// routine will emit diagnostics if there is an error.
3000FunctionDecl *
3001Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3002                                         bool Complain) {
3003  QualType FunctionType = ToType;
3004  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3005    FunctionType = ToTypePtr->getPointeeType();
3006
3007  // We only look at pointers or references to functions.
3008  if (!FunctionType->isFunctionType())
3009    return 0;
3010
3011  // Find the actual overloaded function declaration.
3012  OverloadedFunctionDecl *Ovl = 0;
3013
3014  // C++ [over.over]p1:
3015  //   [...] [Note: any redundant set of parentheses surrounding the
3016  //   overloaded function name is ignored (5.1). ]
3017  Expr *OvlExpr = From->IgnoreParens();
3018
3019  // C++ [over.over]p1:
3020  //   [...] The overloaded function name can be preceded by the &
3021  //   operator.
3022  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3023    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3024      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3025  }
3026
3027  // Try to dig out the overloaded function.
3028  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3029    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3030
3031  // If there's no overloaded function declaration, we're done.
3032  if (!Ovl)
3033    return 0;
3034
3035  // Look through all of the overloaded functions, searching for one
3036  // whose type matches exactly.
3037  // FIXME: When templates or using declarations come along, we'll actually
3038  // have to deal with duplicates, partial ordering, etc. For now, we
3039  // can just do a simple search.
3040  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3041  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3042       Fun != Ovl->function_end(); ++Fun) {
3043    // C++ [over.over]p3:
3044    //   Non-member functions and static member functions match
3045    //   targets of type “pointer-to-function”or
3046    //   “reference-to-function.”
3047    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3048      if (!Method->isStatic())
3049        continue;
3050
3051    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3052      return *Fun;
3053  }
3054
3055  return 0;
3056}
3057
3058/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3059/// (which eventually refers to the set of overloaded functions in
3060/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3061/// function call down to a specific function. If overload resolution
3062/// succeeds, returns the function declaration produced by overload
3063/// resolution. Otherwise, emits diagnostics, deletes all of the
3064/// arguments and Fn, and returns NULL.
3065FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3066                                            SourceLocation LParenLoc,
3067                                            Expr **Args, unsigned NumArgs,
3068                                            SourceLocation *CommaLocs,
3069                                            SourceLocation RParenLoc) {
3070  OverloadCandidateSet CandidateSet;
3071  AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3072  OverloadCandidateSet::iterator Best;
3073  switch (BestViableFunction(CandidateSet, Best)) {
3074  case OR_Success:
3075    return Best->Function;
3076
3077  case OR_No_Viable_Function:
3078    Diag(Fn->getSourceRange().getBegin(),
3079         diag::err_ovl_no_viable_function_in_call)
3080      << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3081      << Fn->getSourceRange();
3082    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3083    break;
3084
3085  case OR_Ambiguous:
3086    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3087      << Ovl->getDeclName() << Fn->getSourceRange();
3088    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3089    break;
3090  }
3091
3092  // Overload resolution failed. Destroy all of the subexpressions and
3093  // return NULL.
3094  Fn->Destroy(Context);
3095  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3096    Args[Arg]->Destroy(Context);
3097  return 0;
3098}
3099
3100/// BuildCallToObjectOfClassType - Build a call to an object of class
3101/// type (C++ [over.call.object]), which can end up invoking an
3102/// overloaded function call operator (@c operator()) or performing a
3103/// user-defined conversion on the object argument.
3104Action::ExprResult
3105Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3106                                   SourceLocation LParenLoc,
3107                                   Expr **Args, unsigned NumArgs,
3108                                   SourceLocation *CommaLocs,
3109                                   SourceLocation RParenLoc) {
3110  assert(Object->getType()->isRecordType() && "Requires object type argument");
3111  const RecordType *Record = Object->getType()->getAsRecordType();
3112
3113  // C++ [over.call.object]p1:
3114  //  If the primary-expression E in the function call syntax
3115  //  evaluates to a class object of type “cv T”, then the set of
3116  //  candidate functions includes at least the function call
3117  //  operators of T. The function call operators of T are obtained by
3118  //  ordinary lookup of the name operator() in the context of
3119  //  (E).operator().
3120  OverloadCandidateSet CandidateSet;
3121  IdentifierResolver::iterator I
3122    = IdResolver.begin(Context.DeclarationNames.getCXXOperatorName(OO_Call),
3123                       cast<CXXRecordType>(Record)->getDecl(),
3124                       /*LookInParentCtx=*/false);
3125  NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3126  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3127    AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3128                       /*SuppressUserConversions=*/false);
3129  else if (OverloadedFunctionDecl *Ovl
3130           = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3131    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3132           FEnd = Ovl->function_end();
3133         F != FEnd; ++F) {
3134      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3135        AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3136                           /*SuppressUserConversions=*/false);
3137    }
3138  }
3139
3140  // C++ [over.call.object]p2:
3141  //   In addition, for each conversion function declared in T of the
3142  //   form
3143  //
3144  //        operator conversion-type-id () cv-qualifier;
3145  //
3146  //   where cv-qualifier is the same cv-qualification as, or a
3147  //   greater cv-qualification than, cv, and where conversion-type-id
3148  //   denotes the type "pointer to function of (P1,...,Pn) returning
3149  //   R", or the type "reference to pointer to function of
3150  //   (P1,...,Pn) returning R", or the type "reference to function
3151  //   of (P1,...,Pn) returning R", a surrogate call function [...]
3152  //   is also considered as a candidate function. Similarly,
3153  //   surrogate call functions are added to the set of candidate
3154  //   functions for each conversion function declared in an
3155  //   accessible base class provided the function is not hidden
3156  //   within T by another intervening declaration.
3157  //
3158  // FIXME: Look in base classes for more conversion operators!
3159  OverloadedFunctionDecl *Conversions
3160    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
3161  for (OverloadedFunctionDecl::function_iterator
3162         Func = Conversions->function_begin(),
3163         FuncEnd = Conversions->function_end();
3164       Func != FuncEnd; ++Func) {
3165    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3166
3167    // Strip the reference type (if any) and then the pointer type (if
3168    // any) to get down to what might be a function type.
3169    QualType ConvType = Conv->getConversionType().getNonReferenceType();
3170    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3171      ConvType = ConvPtrType->getPointeeType();
3172
3173    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3174      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3175  }
3176
3177  // Perform overload resolution.
3178  OverloadCandidateSet::iterator Best;
3179  switch (BestViableFunction(CandidateSet, Best)) {
3180  case OR_Success:
3181    // Overload resolution succeeded; we'll build the appropriate call
3182    // below.
3183    break;
3184
3185  case OR_No_Viable_Function:
3186    Diag(Object->getSourceRange().getBegin(),
3187         diag::err_ovl_no_viable_object_call)
3188      << Object->getType() << (unsigned)CandidateSet.size()
3189      << Object->getSourceRange();
3190    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3191    break;
3192
3193  case OR_Ambiguous:
3194    Diag(Object->getSourceRange().getBegin(),
3195         diag::err_ovl_ambiguous_object_call)
3196      << Object->getType() << Object->getSourceRange();
3197    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3198    break;
3199  }
3200
3201  if (Best == CandidateSet.end()) {
3202    // We had an error; delete all of the subexpressions and return
3203    // the error.
3204    delete Object;
3205    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3206      delete Args[ArgIdx];
3207    return true;
3208  }
3209
3210  if (Best->Function == 0) {
3211    // Since there is no function declaration, this is one of the
3212    // surrogate candidates. Dig out the conversion function.
3213    CXXConversionDecl *Conv
3214      = cast<CXXConversionDecl>(
3215                         Best->Conversions[0].UserDefined.ConversionFunction);
3216
3217    // We selected one of the surrogate functions that converts the
3218    // object parameter to a function pointer. Perform the conversion
3219    // on the object argument, then let ActOnCallExpr finish the job.
3220    // FIXME: Represent the user-defined conversion in the AST!
3221    ImpCastExprToType(Object,
3222                      Conv->getConversionType().getNonReferenceType(),
3223                      Conv->getConversionType()->isReferenceType());
3224    return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3225                         CommaLocs, RParenLoc);
3226  }
3227
3228  // We found an overloaded operator(). Build a CXXOperatorCallExpr
3229  // that calls this method, using Object for the implicit object
3230  // parameter and passing along the remaining arguments.
3231  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3232  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3233
3234  unsigned NumArgsInProto = Proto->getNumArgs();
3235  unsigned NumArgsToCheck = NumArgs;
3236
3237  // Build the full argument list for the method call (the
3238  // implicit object parameter is placed at the beginning of the
3239  // list).
3240  Expr **MethodArgs;
3241  if (NumArgs < NumArgsInProto) {
3242    NumArgsToCheck = NumArgsInProto;
3243    MethodArgs = new Expr*[NumArgsInProto + 1];
3244  } else {
3245    MethodArgs = new Expr*[NumArgs + 1];
3246  }
3247  MethodArgs[0] = Object;
3248  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3249    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3250
3251  Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3252                                SourceLocation());
3253  UsualUnaryConversions(NewFn);
3254
3255  // Once we've built TheCall, all of the expressions are properly
3256  // owned.
3257  QualType ResultTy = Method->getResultType().getNonReferenceType();
3258  llvm::OwningPtr<CXXOperatorCallExpr>
3259    TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3260                                    ResultTy, RParenLoc));
3261  delete [] MethodArgs;
3262
3263  // Initialize the implicit object parameter.
3264  if (!PerformObjectArgumentInitialization(Object, Method))
3265    return true;
3266  TheCall->setArg(0, Object);
3267
3268  // Check the argument types.
3269  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3270    QualType ProtoArgType = Proto->getArgType(i);
3271
3272    Expr *Arg;
3273    if (i < NumArgs)
3274      Arg = Args[i];
3275    else
3276      Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3277    QualType ArgType = Arg->getType();
3278
3279    // Pass the argument.
3280    if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3281      return true;
3282
3283    TheCall->setArg(i + 1, Arg);
3284  }
3285
3286  // If this is a variadic call, handle args passed through "...".
3287  if (Proto->isVariadic()) {
3288    // Promote the arguments (C99 6.5.2.2p7).
3289    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3290      Expr *Arg = Args[i];
3291      DefaultArgumentPromotion(Arg);
3292      TheCall->setArg(i + 1, Arg);
3293    }
3294  }
3295
3296  return CheckFunctionCall(Method, TheCall.take());
3297}
3298
3299/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3300///  (if one exists), where @c Base is an expression of class type and
3301/// @c Member is the name of the member we're trying to find.
3302Action::ExprResult
3303Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3304                               SourceLocation MemberLoc,
3305                               IdentifierInfo &Member) {
3306  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3307
3308  // C++ [over.ref]p1:
3309  //
3310  //   [...] An expression x->m is interpreted as (x.operator->())->m
3311  //   for a class object x of type T if T::operator->() exists and if
3312  //   the operator is selected as the best match function by the
3313  //   overload resolution mechanism (13.3).
3314  // FIXME: look in base classes.
3315  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3316  OverloadCandidateSet CandidateSet;
3317  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3318  IdentifierResolver::iterator I
3319    = IdResolver.begin(OpName, cast<CXXRecordType>(BaseRecord)->getDecl(),
3320                       /*LookInParentCtx=*/false);
3321  NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3322  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3323    AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3324                       /*SuppressUserConversions=*/false);
3325  else if (OverloadedFunctionDecl *Ovl
3326             = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3327    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3328           FEnd = Ovl->function_end();
3329         F != FEnd; ++F) {
3330      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3331        AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3332                           /*SuppressUserConversions=*/false);
3333    }
3334  }
3335
3336  llvm::OwningPtr<Expr> BasePtr(Base);
3337
3338  // Perform overload resolution.
3339  OverloadCandidateSet::iterator Best;
3340  switch (BestViableFunction(CandidateSet, Best)) {
3341  case OR_Success:
3342    // Overload resolution succeeded; we'll build the call below.
3343    break;
3344
3345  case OR_No_Viable_Function:
3346    if (CandidateSet.empty())
3347      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
3348        << BasePtr->getType() << BasePtr->getSourceRange();
3349    else
3350      Diag(OpLoc, diag::err_ovl_no_viable_oper)
3351        << "operator->" << (unsigned)CandidateSet.size()
3352        << BasePtr->getSourceRange();
3353    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3354    return true;
3355
3356  case OR_Ambiguous:
3357    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3358      << "operator->" << BasePtr->getSourceRange();
3359    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3360    return true;
3361  }
3362
3363  // Convert the object parameter.
3364  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3365  if (PerformObjectArgumentInitialization(Base, Method))
3366    return true;
3367
3368  // No concerns about early exits now.
3369  BasePtr.take();
3370
3371  // Build the operator call.
3372  Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3373  UsualUnaryConversions(FnExpr);
3374  Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3375                                 Method->getResultType().getNonReferenceType(),
3376                                 OpLoc);
3377  return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3378}
3379
3380/// FixOverloadedFunctionReference - E is an expression that refers to
3381/// a C++ overloaded function (possibly with some parentheses and
3382/// perhaps a '&' around it). We have resolved the overloaded function
3383/// to the function declaration Fn, so patch up the expression E to
3384/// refer (possibly indirectly) to Fn.
3385void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3386  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3387    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3388    E->setType(PE->getSubExpr()->getType());
3389  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3390    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3391           "Can only take the address of an overloaded function");
3392    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3393    E->setType(Context.getPointerType(E->getType()));
3394  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3395    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3396           "Expected overloaded function");
3397    DR->setDecl(Fn);
3398    E->setType(Fn->getType());
3399  } else {
3400    assert(false && "Invalid reference to overloaded function");
3401  }
3402}
3403
3404} // end namespace clang
3405