SemaOverload.cpp revision a1977bf046b6f4721f63bdfa02e7887dc760bfd1
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Overload.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateDeduction.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include <algorithm>
36
37namespace clang {
38using namespace sema;
39
40/// A convenience routine for creating a decayed reference to a function.
41static ExprResult
42CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
43                      bool HadMultipleCandidates,
44                      SourceLocation Loc = SourceLocation(),
45                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
46  if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
47    return ExprError();
48  // If FoundDecl is different from Fn (such as if one is a template
49  // and the other a specialization), make sure DiagnoseUseOfDecl is
50  // called on both.
51  // FIXME: This would be more comprehensively addressed by modifying
52  // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
53  // being used.
54  if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
55    return ExprError();
56  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
57                                                 VK_LValue, Loc, LocInfo);
58  if (HadMultipleCandidates)
59    DRE->setHadMultipleCandidates(true);
60
61  S.MarkDeclRefReferenced(DRE);
62
63  ExprResult E = S.Owned(DRE);
64  E = S.DefaultFunctionArrayConversion(E.take());
65  if (E.isInvalid())
66    return ExprError();
67  return E;
68}
69
70static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
71                                 bool InOverloadResolution,
72                                 StandardConversionSequence &SCS,
73                                 bool CStyle,
74                                 bool AllowObjCWritebackConversion);
75
76static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
77                                                 QualType &ToType,
78                                                 bool InOverloadResolution,
79                                                 StandardConversionSequence &SCS,
80                                                 bool CStyle);
81static OverloadingResult
82IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
83                        UserDefinedConversionSequence& User,
84                        OverloadCandidateSet& Conversions,
85                        bool AllowExplicit,
86                        bool AllowObjCConversionOnExplicit);
87
88
89static ImplicitConversionSequence::CompareKind
90CompareStandardConversionSequences(Sema &S,
91                                   const StandardConversionSequence& SCS1,
92                                   const StandardConversionSequence& SCS2);
93
94static ImplicitConversionSequence::CompareKind
95CompareQualificationConversions(Sema &S,
96                                const StandardConversionSequence& SCS1,
97                                const StandardConversionSequence& SCS2);
98
99static ImplicitConversionSequence::CompareKind
100CompareDerivedToBaseConversions(Sema &S,
101                                const StandardConversionSequence& SCS1,
102                                const StandardConversionSequence& SCS2);
103
104
105
106/// GetConversionCategory - Retrieve the implicit conversion
107/// category corresponding to the given implicit conversion kind.
108ImplicitConversionCategory
109GetConversionCategory(ImplicitConversionKind Kind) {
110  static const ImplicitConversionCategory
111    Category[(int)ICK_Num_Conversion_Kinds] = {
112    ICC_Identity,
113    ICC_Lvalue_Transformation,
114    ICC_Lvalue_Transformation,
115    ICC_Lvalue_Transformation,
116    ICC_Identity,
117    ICC_Qualification_Adjustment,
118    ICC_Promotion,
119    ICC_Promotion,
120    ICC_Promotion,
121    ICC_Conversion,
122    ICC_Conversion,
123    ICC_Conversion,
124    ICC_Conversion,
125    ICC_Conversion,
126    ICC_Conversion,
127    ICC_Conversion,
128    ICC_Conversion,
129    ICC_Conversion,
130    ICC_Conversion,
131    ICC_Conversion,
132    ICC_Conversion,
133    ICC_Conversion
134  };
135  return Category[(int)Kind];
136}
137
138/// GetConversionRank - Retrieve the implicit conversion rank
139/// corresponding to the given implicit conversion kind.
140ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
141  static const ImplicitConversionRank
142    Rank[(int)ICK_Num_Conversion_Kinds] = {
143    ICR_Exact_Match,
144    ICR_Exact_Match,
145    ICR_Exact_Match,
146    ICR_Exact_Match,
147    ICR_Exact_Match,
148    ICR_Exact_Match,
149    ICR_Promotion,
150    ICR_Promotion,
151    ICR_Promotion,
152    ICR_Conversion,
153    ICR_Conversion,
154    ICR_Conversion,
155    ICR_Conversion,
156    ICR_Conversion,
157    ICR_Conversion,
158    ICR_Conversion,
159    ICR_Conversion,
160    ICR_Conversion,
161    ICR_Conversion,
162    ICR_Conversion,
163    ICR_Complex_Real_Conversion,
164    ICR_Conversion,
165    ICR_Conversion,
166    ICR_Writeback_Conversion
167  };
168  return Rank[(int)Kind];
169}
170
171/// GetImplicitConversionName - Return the name of this kind of
172/// implicit conversion.
173const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
174  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
175    "No conversion",
176    "Lvalue-to-rvalue",
177    "Array-to-pointer",
178    "Function-to-pointer",
179    "Noreturn adjustment",
180    "Qualification",
181    "Integral promotion",
182    "Floating point promotion",
183    "Complex promotion",
184    "Integral conversion",
185    "Floating conversion",
186    "Complex conversion",
187    "Floating-integral conversion",
188    "Pointer conversion",
189    "Pointer-to-member conversion",
190    "Boolean conversion",
191    "Compatible-types conversion",
192    "Derived-to-base conversion",
193    "Vector conversion",
194    "Vector splat",
195    "Complex-real conversion",
196    "Block Pointer conversion",
197    "Transparent Union Conversion"
198    "Writeback conversion"
199  };
200  return Name[Kind];
201}
202
203/// StandardConversionSequence - Set the standard conversion
204/// sequence to the identity conversion.
205void StandardConversionSequence::setAsIdentityConversion() {
206  First = ICK_Identity;
207  Second = ICK_Identity;
208  Third = ICK_Identity;
209  DeprecatedStringLiteralToCharPtr = false;
210  QualificationIncludesObjCLifetime = false;
211  ReferenceBinding = false;
212  DirectBinding = false;
213  IsLvalueReference = true;
214  BindsToFunctionLvalue = false;
215  BindsToRvalue = false;
216  BindsImplicitObjectArgumentWithoutRefQualifier = false;
217  ObjCLifetimeConversionBinding = false;
218  CopyConstructor = 0;
219}
220
221/// getRank - Retrieve the rank of this standard conversion sequence
222/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
223/// implicit conversions.
224ImplicitConversionRank StandardConversionSequence::getRank() const {
225  ImplicitConversionRank Rank = ICR_Exact_Match;
226  if  (GetConversionRank(First) > Rank)
227    Rank = GetConversionRank(First);
228  if  (GetConversionRank(Second) > Rank)
229    Rank = GetConversionRank(Second);
230  if  (GetConversionRank(Third) > Rank)
231    Rank = GetConversionRank(Third);
232  return Rank;
233}
234
235/// isPointerConversionToBool - Determines whether this conversion is
236/// a conversion of a pointer or pointer-to-member to bool. This is
237/// used as part of the ranking of standard conversion sequences
238/// (C++ 13.3.3.2p4).
239bool StandardConversionSequence::isPointerConversionToBool() const {
240  // Note that FromType has not necessarily been transformed by the
241  // array-to-pointer or function-to-pointer implicit conversions, so
242  // check for their presence as well as checking whether FromType is
243  // a pointer.
244  if (getToType(1)->isBooleanType() &&
245      (getFromType()->isPointerType() ||
246       getFromType()->isObjCObjectPointerType() ||
247       getFromType()->isBlockPointerType() ||
248       getFromType()->isNullPtrType() ||
249       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
250    return true;
251
252  return false;
253}
254
255/// isPointerConversionToVoidPointer - Determines whether this
256/// conversion is a conversion of a pointer to a void pointer. This is
257/// used as part of the ranking of standard conversion sequences (C++
258/// 13.3.3.2p4).
259bool
260StandardConversionSequence::
261isPointerConversionToVoidPointer(ASTContext& Context) const {
262  QualType FromType = getFromType();
263  QualType ToType = getToType(1);
264
265  // Note that FromType has not necessarily been transformed by the
266  // array-to-pointer implicit conversion, so check for its presence
267  // and redo the conversion to get a pointer.
268  if (First == ICK_Array_To_Pointer)
269    FromType = Context.getArrayDecayedType(FromType);
270
271  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
272    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
273      return ToPtrType->getPointeeType()->isVoidType();
274
275  return false;
276}
277
278/// Skip any implicit casts which could be either part of a narrowing conversion
279/// or after one in an implicit conversion.
280static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
281  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
282    switch (ICE->getCastKind()) {
283    case CK_NoOp:
284    case CK_IntegralCast:
285    case CK_IntegralToBoolean:
286    case CK_IntegralToFloating:
287    case CK_FloatingToIntegral:
288    case CK_FloatingToBoolean:
289    case CK_FloatingCast:
290      Converted = ICE->getSubExpr();
291      continue;
292
293    default:
294      return Converted;
295    }
296  }
297
298  return Converted;
299}
300
301/// Check if this standard conversion sequence represents a narrowing
302/// conversion, according to C++11 [dcl.init.list]p7.
303///
304/// \param Ctx  The AST context.
305/// \param Converted  The result of applying this standard conversion sequence.
306/// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
307///        value of the expression prior to the narrowing conversion.
308/// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
309///        type of the expression prior to the narrowing conversion.
310NarrowingKind
311StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
312                                             const Expr *Converted,
313                                             APValue &ConstantValue,
314                                             QualType &ConstantType) const {
315  assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
316
317  // C++11 [dcl.init.list]p7:
318  //   A narrowing conversion is an implicit conversion ...
319  QualType FromType = getToType(0);
320  QualType ToType = getToType(1);
321  switch (Second) {
322  // -- from a floating-point type to an integer type, or
323  //
324  // -- from an integer type or unscoped enumeration type to a floating-point
325  //    type, except where the source is a constant expression and the actual
326  //    value after conversion will fit into the target type and will produce
327  //    the original value when converted back to the original type, or
328  case ICK_Floating_Integral:
329    if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
330      return NK_Type_Narrowing;
331    } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
332      llvm::APSInt IntConstantValue;
333      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
334      if (Initializer &&
335          Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
336        // Convert the integer to the floating type.
337        llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
338        Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
339                                llvm::APFloat::rmNearestTiesToEven);
340        // And back.
341        llvm::APSInt ConvertedValue = IntConstantValue;
342        bool ignored;
343        Result.convertToInteger(ConvertedValue,
344                                llvm::APFloat::rmTowardZero, &ignored);
345        // If the resulting value is different, this was a narrowing conversion.
346        if (IntConstantValue != ConvertedValue) {
347          ConstantValue = APValue(IntConstantValue);
348          ConstantType = Initializer->getType();
349          return NK_Constant_Narrowing;
350        }
351      } else {
352        // Variables are always narrowings.
353        return NK_Variable_Narrowing;
354      }
355    }
356    return NK_Not_Narrowing;
357
358  // -- from long double to double or float, or from double to float, except
359  //    where the source is a constant expression and the actual value after
360  //    conversion is within the range of values that can be represented (even
361  //    if it cannot be represented exactly), or
362  case ICK_Floating_Conversion:
363    if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
364        Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
365      // FromType is larger than ToType.
366      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
367      if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
368        // Constant!
369        assert(ConstantValue.isFloat());
370        llvm::APFloat FloatVal = ConstantValue.getFloat();
371        // Convert the source value into the target type.
372        bool ignored;
373        llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
374          Ctx.getFloatTypeSemantics(ToType),
375          llvm::APFloat::rmNearestTiesToEven, &ignored);
376        // If there was no overflow, the source value is within the range of
377        // values that can be represented.
378        if (ConvertStatus & llvm::APFloat::opOverflow) {
379          ConstantType = Initializer->getType();
380          return NK_Constant_Narrowing;
381        }
382      } else {
383        return NK_Variable_Narrowing;
384      }
385    }
386    return NK_Not_Narrowing;
387
388  // -- from an integer type or unscoped enumeration type to an integer type
389  //    that cannot represent all the values of the original type, except where
390  //    the source is a constant expression and the actual value after
391  //    conversion will fit into the target type and will produce the original
392  //    value when converted back to the original type.
393  case ICK_Boolean_Conversion:  // Bools are integers too.
394    if (!FromType->isIntegralOrUnscopedEnumerationType()) {
395      // Boolean conversions can be from pointers and pointers to members
396      // [conv.bool], and those aren't considered narrowing conversions.
397      return NK_Not_Narrowing;
398    }  // Otherwise, fall through to the integral case.
399  case ICK_Integral_Conversion: {
400    assert(FromType->isIntegralOrUnscopedEnumerationType());
401    assert(ToType->isIntegralOrUnscopedEnumerationType());
402    const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
403    const unsigned FromWidth = Ctx.getIntWidth(FromType);
404    const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
405    const unsigned ToWidth = Ctx.getIntWidth(ToType);
406
407    if (FromWidth > ToWidth ||
408        (FromWidth == ToWidth && FromSigned != ToSigned) ||
409        (FromSigned && !ToSigned)) {
410      // Not all values of FromType can be represented in ToType.
411      llvm::APSInt InitializerValue;
412      const Expr *Initializer = IgnoreNarrowingConversion(Converted);
413      if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
414        // Such conversions on variables are always narrowing.
415        return NK_Variable_Narrowing;
416      }
417      bool Narrowing = false;
418      if (FromWidth < ToWidth) {
419        // Negative -> unsigned is narrowing. Otherwise, more bits is never
420        // narrowing.
421        if (InitializerValue.isSigned() && InitializerValue.isNegative())
422          Narrowing = true;
423      } else {
424        // Add a bit to the InitializerValue so we don't have to worry about
425        // signed vs. unsigned comparisons.
426        InitializerValue = InitializerValue.extend(
427          InitializerValue.getBitWidth() + 1);
428        // Convert the initializer to and from the target width and signed-ness.
429        llvm::APSInt ConvertedValue = InitializerValue;
430        ConvertedValue = ConvertedValue.trunc(ToWidth);
431        ConvertedValue.setIsSigned(ToSigned);
432        ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
433        ConvertedValue.setIsSigned(InitializerValue.isSigned());
434        // If the result is different, this was a narrowing conversion.
435        if (ConvertedValue != InitializerValue)
436          Narrowing = true;
437      }
438      if (Narrowing) {
439        ConstantType = Initializer->getType();
440        ConstantValue = APValue(InitializerValue);
441        return NK_Constant_Narrowing;
442      }
443    }
444    return NK_Not_Narrowing;
445  }
446
447  default:
448    // Other kinds of conversions are not narrowings.
449    return NK_Not_Narrowing;
450  }
451}
452
453/// DebugPrint - Print this standard conversion sequence to standard
454/// error. Useful for debugging overloading issues.
455void StandardConversionSequence::DebugPrint() const {
456  raw_ostream &OS = llvm::errs();
457  bool PrintedSomething = false;
458  if (First != ICK_Identity) {
459    OS << GetImplicitConversionName(First);
460    PrintedSomething = true;
461  }
462
463  if (Second != ICK_Identity) {
464    if (PrintedSomething) {
465      OS << " -> ";
466    }
467    OS << GetImplicitConversionName(Second);
468
469    if (CopyConstructor) {
470      OS << " (by copy constructor)";
471    } else if (DirectBinding) {
472      OS << " (direct reference binding)";
473    } else if (ReferenceBinding) {
474      OS << " (reference binding)";
475    }
476    PrintedSomething = true;
477  }
478
479  if (Third != ICK_Identity) {
480    if (PrintedSomething) {
481      OS << " -> ";
482    }
483    OS << GetImplicitConversionName(Third);
484    PrintedSomething = true;
485  }
486
487  if (!PrintedSomething) {
488    OS << "No conversions required";
489  }
490}
491
492/// DebugPrint - Print this user-defined conversion sequence to standard
493/// error. Useful for debugging overloading issues.
494void UserDefinedConversionSequence::DebugPrint() const {
495  raw_ostream &OS = llvm::errs();
496  if (Before.First || Before.Second || Before.Third) {
497    Before.DebugPrint();
498    OS << " -> ";
499  }
500  if (ConversionFunction)
501    OS << '\'' << *ConversionFunction << '\'';
502  else
503    OS << "aggregate initialization";
504  if (After.First || After.Second || After.Third) {
505    OS << " -> ";
506    After.DebugPrint();
507  }
508}
509
510/// DebugPrint - Print this implicit conversion sequence to standard
511/// error. Useful for debugging overloading issues.
512void ImplicitConversionSequence::DebugPrint() const {
513  raw_ostream &OS = llvm::errs();
514  if (isStdInitializerListElement())
515    OS << "Worst std::initializer_list element conversion: ";
516  switch (ConversionKind) {
517  case StandardConversion:
518    OS << "Standard conversion: ";
519    Standard.DebugPrint();
520    break;
521  case UserDefinedConversion:
522    OS << "User-defined conversion: ";
523    UserDefined.DebugPrint();
524    break;
525  case EllipsisConversion:
526    OS << "Ellipsis conversion";
527    break;
528  case AmbiguousConversion:
529    OS << "Ambiguous conversion";
530    break;
531  case BadConversion:
532    OS << "Bad conversion";
533    break;
534  }
535
536  OS << "\n";
537}
538
539void AmbiguousConversionSequence::construct() {
540  new (&conversions()) ConversionSet();
541}
542
543void AmbiguousConversionSequence::destruct() {
544  conversions().~ConversionSet();
545}
546
547void
548AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
549  FromTypePtr = O.FromTypePtr;
550  ToTypePtr = O.ToTypePtr;
551  new (&conversions()) ConversionSet(O.conversions());
552}
553
554namespace {
555  // Structure used by DeductionFailureInfo to store
556  // template argument information.
557  struct DFIArguments {
558    TemplateArgument FirstArg;
559    TemplateArgument SecondArg;
560  };
561  // Structure used by DeductionFailureInfo to store
562  // template parameter and template argument information.
563  struct DFIParamWithArguments : DFIArguments {
564    TemplateParameter Param;
565  };
566}
567
568/// \brief Convert from Sema's representation of template deduction information
569/// to the form used in overload-candidate information.
570DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context,
571                                              Sema::TemplateDeductionResult TDK,
572                                              TemplateDeductionInfo &Info) {
573  DeductionFailureInfo Result;
574  Result.Result = static_cast<unsigned>(TDK);
575  Result.HasDiagnostic = false;
576  Result.Data = 0;
577  switch (TDK) {
578  case Sema::TDK_Success:
579  case Sema::TDK_Invalid:
580  case Sema::TDK_InstantiationDepth:
581  case Sema::TDK_TooManyArguments:
582  case Sema::TDK_TooFewArguments:
583    break;
584
585  case Sema::TDK_Incomplete:
586  case Sema::TDK_InvalidExplicitArguments:
587    Result.Data = Info.Param.getOpaqueValue();
588    break;
589
590  case Sema::TDK_NonDeducedMismatch: {
591    // FIXME: Should allocate from normal heap so that we can free this later.
592    DFIArguments *Saved = new (Context) DFIArguments;
593    Saved->FirstArg = Info.FirstArg;
594    Saved->SecondArg = Info.SecondArg;
595    Result.Data = Saved;
596    break;
597  }
598
599  case Sema::TDK_Inconsistent:
600  case Sema::TDK_Underqualified: {
601    // FIXME: Should allocate from normal heap so that we can free this later.
602    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
603    Saved->Param = Info.Param;
604    Saved->FirstArg = Info.FirstArg;
605    Saved->SecondArg = Info.SecondArg;
606    Result.Data = Saved;
607    break;
608  }
609
610  case Sema::TDK_SubstitutionFailure:
611    Result.Data = Info.take();
612    if (Info.hasSFINAEDiagnostic()) {
613      PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
614          SourceLocation(), PartialDiagnostic::NullDiagnostic());
615      Info.takeSFINAEDiagnostic(*Diag);
616      Result.HasDiagnostic = true;
617    }
618    break;
619
620  case Sema::TDK_FailedOverloadResolution:
621    Result.Data = Info.Expression;
622    break;
623
624  case Sema::TDK_MiscellaneousDeductionFailure:
625    break;
626  }
627
628  return Result;
629}
630
631void DeductionFailureInfo::Destroy() {
632  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
633  case Sema::TDK_Success:
634  case Sema::TDK_Invalid:
635  case Sema::TDK_InstantiationDepth:
636  case Sema::TDK_Incomplete:
637  case Sema::TDK_TooManyArguments:
638  case Sema::TDK_TooFewArguments:
639  case Sema::TDK_InvalidExplicitArguments:
640  case Sema::TDK_FailedOverloadResolution:
641    break;
642
643  case Sema::TDK_Inconsistent:
644  case Sema::TDK_Underqualified:
645  case Sema::TDK_NonDeducedMismatch:
646    // FIXME: Destroy the data?
647    Data = 0;
648    break;
649
650  case Sema::TDK_SubstitutionFailure:
651    // FIXME: Destroy the template argument list?
652    Data = 0;
653    if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
654      Diag->~PartialDiagnosticAt();
655      HasDiagnostic = false;
656    }
657    break;
658
659  // Unhandled
660  case Sema::TDK_MiscellaneousDeductionFailure:
661    break;
662  }
663}
664
665PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
666  if (HasDiagnostic)
667    return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
668  return 0;
669}
670
671TemplateParameter DeductionFailureInfo::getTemplateParameter() {
672  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
673  case Sema::TDK_Success:
674  case Sema::TDK_Invalid:
675  case Sema::TDK_InstantiationDepth:
676  case Sema::TDK_TooManyArguments:
677  case Sema::TDK_TooFewArguments:
678  case Sema::TDK_SubstitutionFailure:
679  case Sema::TDK_NonDeducedMismatch:
680  case Sema::TDK_FailedOverloadResolution:
681    return TemplateParameter();
682
683  case Sema::TDK_Incomplete:
684  case Sema::TDK_InvalidExplicitArguments:
685    return TemplateParameter::getFromOpaqueValue(Data);
686
687  case Sema::TDK_Inconsistent:
688  case Sema::TDK_Underqualified:
689    return static_cast<DFIParamWithArguments*>(Data)->Param;
690
691  // Unhandled
692  case Sema::TDK_MiscellaneousDeductionFailure:
693    break;
694  }
695
696  return TemplateParameter();
697}
698
699TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
700  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
701  case Sema::TDK_Success:
702  case Sema::TDK_Invalid:
703  case Sema::TDK_InstantiationDepth:
704  case Sema::TDK_TooManyArguments:
705  case Sema::TDK_TooFewArguments:
706  case Sema::TDK_Incomplete:
707  case Sema::TDK_InvalidExplicitArguments:
708  case Sema::TDK_Inconsistent:
709  case Sema::TDK_Underqualified:
710  case Sema::TDK_NonDeducedMismatch:
711  case Sema::TDK_FailedOverloadResolution:
712    return 0;
713
714  case Sema::TDK_SubstitutionFailure:
715    return static_cast<TemplateArgumentList*>(Data);
716
717  // Unhandled
718  case Sema::TDK_MiscellaneousDeductionFailure:
719    break;
720  }
721
722  return 0;
723}
724
725const TemplateArgument *DeductionFailureInfo::getFirstArg() {
726  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
727  case Sema::TDK_Success:
728  case Sema::TDK_Invalid:
729  case Sema::TDK_InstantiationDepth:
730  case Sema::TDK_Incomplete:
731  case Sema::TDK_TooManyArguments:
732  case Sema::TDK_TooFewArguments:
733  case Sema::TDK_InvalidExplicitArguments:
734  case Sema::TDK_SubstitutionFailure:
735  case Sema::TDK_FailedOverloadResolution:
736    return 0;
737
738  case Sema::TDK_Inconsistent:
739  case Sema::TDK_Underqualified:
740  case Sema::TDK_NonDeducedMismatch:
741    return &static_cast<DFIArguments*>(Data)->FirstArg;
742
743  // Unhandled
744  case Sema::TDK_MiscellaneousDeductionFailure:
745    break;
746  }
747
748  return 0;
749}
750
751const TemplateArgument *DeductionFailureInfo::getSecondArg() {
752  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
753  case Sema::TDK_Success:
754  case Sema::TDK_Invalid:
755  case Sema::TDK_InstantiationDepth:
756  case Sema::TDK_Incomplete:
757  case Sema::TDK_TooManyArguments:
758  case Sema::TDK_TooFewArguments:
759  case Sema::TDK_InvalidExplicitArguments:
760  case Sema::TDK_SubstitutionFailure:
761  case Sema::TDK_FailedOverloadResolution:
762    return 0;
763
764  case Sema::TDK_Inconsistent:
765  case Sema::TDK_Underqualified:
766  case Sema::TDK_NonDeducedMismatch:
767    return &static_cast<DFIArguments*>(Data)->SecondArg;
768
769  // Unhandled
770  case Sema::TDK_MiscellaneousDeductionFailure:
771    break;
772  }
773
774  return 0;
775}
776
777Expr *DeductionFailureInfo::getExpr() {
778  if (static_cast<Sema::TemplateDeductionResult>(Result) ==
779        Sema::TDK_FailedOverloadResolution)
780    return static_cast<Expr*>(Data);
781
782  return 0;
783}
784
785void OverloadCandidateSet::destroyCandidates() {
786  for (iterator i = begin(), e = end(); i != e; ++i) {
787    for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
788      i->Conversions[ii].~ImplicitConversionSequence();
789    if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
790      i->DeductionFailure.Destroy();
791  }
792}
793
794void OverloadCandidateSet::clear() {
795  destroyCandidates();
796  NumInlineSequences = 0;
797  Candidates.clear();
798  Functions.clear();
799}
800
801namespace {
802  class UnbridgedCastsSet {
803    struct Entry {
804      Expr **Addr;
805      Expr *Saved;
806    };
807    SmallVector<Entry, 2> Entries;
808
809  public:
810    void save(Sema &S, Expr *&E) {
811      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
812      Entry entry = { &E, E };
813      Entries.push_back(entry);
814      E = S.stripARCUnbridgedCast(E);
815    }
816
817    void restore() {
818      for (SmallVectorImpl<Entry>::iterator
819             i = Entries.begin(), e = Entries.end(); i != e; ++i)
820        *i->Addr = i->Saved;
821    }
822  };
823}
824
825/// checkPlaceholderForOverload - Do any interesting placeholder-like
826/// preprocessing on the given expression.
827///
828/// \param unbridgedCasts a collection to which to add unbridged casts;
829///   without this, they will be immediately diagnosed as errors
830///
831/// Return true on unrecoverable error.
832static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
833                                        UnbridgedCastsSet *unbridgedCasts = 0) {
834  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
835    // We can't handle overloaded expressions here because overload
836    // resolution might reasonably tweak them.
837    if (placeholder->getKind() == BuiltinType::Overload) return false;
838
839    // If the context potentially accepts unbridged ARC casts, strip
840    // the unbridged cast and add it to the collection for later restoration.
841    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
842        unbridgedCasts) {
843      unbridgedCasts->save(S, E);
844      return false;
845    }
846
847    // Go ahead and check everything else.
848    ExprResult result = S.CheckPlaceholderExpr(E);
849    if (result.isInvalid())
850      return true;
851
852    E = result.take();
853    return false;
854  }
855
856  // Nothing to do.
857  return false;
858}
859
860/// checkArgPlaceholdersForOverload - Check a set of call operands for
861/// placeholders.
862static bool checkArgPlaceholdersForOverload(Sema &S,
863                                            MultiExprArg Args,
864                                            UnbridgedCastsSet &unbridged) {
865  for (unsigned i = 0, e = Args.size(); i != e; ++i)
866    if (checkPlaceholderForOverload(S, Args[i], &unbridged))
867      return true;
868
869  return false;
870}
871
872// IsOverload - Determine whether the given New declaration is an
873// overload of the declarations in Old. This routine returns false if
874// New and Old cannot be overloaded, e.g., if New has the same
875// signature as some function in Old (C++ 1.3.10) or if the Old
876// declarations aren't functions (or function templates) at all. When
877// it does return false, MatchedDecl will point to the decl that New
878// cannot be overloaded with.  This decl may be a UsingShadowDecl on
879// top of the underlying declaration.
880//
881// Example: Given the following input:
882//
883//   void f(int, float); // #1
884//   void f(int, int); // #2
885//   int f(int, int); // #3
886//
887// When we process #1, there is no previous declaration of "f",
888// so IsOverload will not be used.
889//
890// When we process #2, Old contains only the FunctionDecl for #1.  By
891// comparing the parameter types, we see that #1 and #2 are overloaded
892// (since they have different signatures), so this routine returns
893// false; MatchedDecl is unchanged.
894//
895// When we process #3, Old is an overload set containing #1 and #2. We
896// compare the signatures of #3 to #1 (they're overloaded, so we do
897// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
898// identical (return types of functions are not part of the
899// signature), IsOverload returns false and MatchedDecl will be set to
900// point to the FunctionDecl for #2.
901//
902// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
903// into a class by a using declaration.  The rules for whether to hide
904// shadow declarations ignore some properties which otherwise figure
905// into a function template's signature.
906Sema::OverloadKind
907Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
908                    NamedDecl *&Match, bool NewIsUsingDecl) {
909  for (LookupResult::iterator I = Old.begin(), E = Old.end();
910         I != E; ++I) {
911    NamedDecl *OldD = *I;
912
913    bool OldIsUsingDecl = false;
914    if (isa<UsingShadowDecl>(OldD)) {
915      OldIsUsingDecl = true;
916
917      // We can always introduce two using declarations into the same
918      // context, even if they have identical signatures.
919      if (NewIsUsingDecl) continue;
920
921      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
922    }
923
924    // If either declaration was introduced by a using declaration,
925    // we'll need to use slightly different rules for matching.
926    // Essentially, these rules are the normal rules, except that
927    // function templates hide function templates with different
928    // return types or template parameter lists.
929    bool UseMemberUsingDeclRules =
930      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
931      !New->getFriendObjectKind();
932
933    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
934      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
935        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
936          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
937          continue;
938        }
939
940        Match = *I;
941        return Ovl_Match;
942      }
943    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
944      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
945        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
946          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
947          continue;
948        }
949
950        if (!shouldLinkPossiblyHiddenDecl(*I, New))
951          continue;
952
953        Match = *I;
954        return Ovl_Match;
955      }
956    } else if (isa<UsingDecl>(OldD)) {
957      // We can overload with these, which can show up when doing
958      // redeclaration checks for UsingDecls.
959      assert(Old.getLookupKind() == LookupUsingDeclName);
960    } else if (isa<TagDecl>(OldD)) {
961      // We can always overload with tags by hiding them.
962    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
963      // Optimistically assume that an unresolved using decl will
964      // overload; if it doesn't, we'll have to diagnose during
965      // template instantiation.
966    } else {
967      // (C++ 13p1):
968      //   Only function declarations can be overloaded; object and type
969      //   declarations cannot be overloaded.
970      Match = *I;
971      return Ovl_NonFunction;
972    }
973  }
974
975  return Ovl_Overload;
976}
977
978bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
979                      bool UseUsingDeclRules) {
980  // C++ [basic.start.main]p2: This function shall not be overloaded.
981  if (New->isMain())
982    return false;
983
984  // MSVCRT user defined entry points cannot be overloaded.
985  if (New->isMSVCRTEntryPoint())
986    return false;
987
988  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
989  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
990
991  // C++ [temp.fct]p2:
992  //   A function template can be overloaded with other function templates
993  //   and with normal (non-template) functions.
994  if ((OldTemplate == 0) != (NewTemplate == 0))
995    return true;
996
997  // Is the function New an overload of the function Old?
998  QualType OldQType = Context.getCanonicalType(Old->getType());
999  QualType NewQType = Context.getCanonicalType(New->getType());
1000
1001  // Compare the signatures (C++ 1.3.10) of the two functions to
1002  // determine whether they are overloads. If we find any mismatch
1003  // in the signature, they are overloads.
1004
1005  // If either of these functions is a K&R-style function (no
1006  // prototype), then we consider them to have matching signatures.
1007  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1008      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1009    return false;
1010
1011  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
1012  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
1013
1014  // The signature of a function includes the types of its
1015  // parameters (C++ 1.3.10), which includes the presence or absence
1016  // of the ellipsis; see C++ DR 357).
1017  if (OldQType != NewQType &&
1018      (OldType->getNumArgs() != NewType->getNumArgs() ||
1019       OldType->isVariadic() != NewType->isVariadic() ||
1020       !FunctionArgTypesAreEqual(OldType, NewType)))
1021    return true;
1022
1023  // C++ [temp.over.link]p4:
1024  //   The signature of a function template consists of its function
1025  //   signature, its return type and its template parameter list. The names
1026  //   of the template parameters are significant only for establishing the
1027  //   relationship between the template parameters and the rest of the
1028  //   signature.
1029  //
1030  // We check the return type and template parameter lists for function
1031  // templates first; the remaining checks follow.
1032  //
1033  // However, we don't consider either of these when deciding whether
1034  // a member introduced by a shadow declaration is hidden.
1035  if (!UseUsingDeclRules && NewTemplate &&
1036      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1037                                       OldTemplate->getTemplateParameters(),
1038                                       false, TPL_TemplateMatch) ||
1039       OldType->getResultType() != NewType->getResultType()))
1040    return true;
1041
1042  // If the function is a class member, its signature includes the
1043  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1044  //
1045  // As part of this, also check whether one of the member functions
1046  // is static, in which case they are not overloads (C++
1047  // 13.1p2). While not part of the definition of the signature,
1048  // this check is important to determine whether these functions
1049  // can be overloaded.
1050  CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1051  CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1052  if (OldMethod && NewMethod &&
1053      !OldMethod->isStatic() && !NewMethod->isStatic()) {
1054    if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1055      if (!UseUsingDeclRules &&
1056          (OldMethod->getRefQualifier() == RQ_None ||
1057           NewMethod->getRefQualifier() == RQ_None)) {
1058        // C++0x [over.load]p2:
1059        //   - Member function declarations with the same name and the same
1060        //     parameter-type-list as well as member function template
1061        //     declarations with the same name, the same parameter-type-list, and
1062        //     the same template parameter lists cannot be overloaded if any of
1063        //     them, but not all, have a ref-qualifier (8.3.5).
1064        Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1065          << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1066        Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1067      }
1068      return true;
1069    }
1070
1071    // We may not have applied the implicit const for a constexpr member
1072    // function yet (because we haven't yet resolved whether this is a static
1073    // or non-static member function). Add it now, on the assumption that this
1074    // is a redeclaration of OldMethod.
1075    unsigned OldQuals = OldMethod->getTypeQualifiers();
1076    unsigned NewQuals = NewMethod->getTypeQualifiers();
1077    if (!getLangOpts().CPlusPlus1y && NewMethod->isConstexpr() &&
1078        !isa<CXXConstructorDecl>(NewMethod))
1079      NewQuals |= Qualifiers::Const;
1080
1081    // We do not allow overloading based off of '__restrict'.
1082    OldQuals &= ~Qualifiers::Restrict;
1083    NewQuals &= ~Qualifiers::Restrict;
1084    if (OldQuals != NewQuals)
1085      return true;
1086  }
1087
1088  // The signatures match; this is not an overload.
1089  return false;
1090}
1091
1092/// \brief Checks availability of the function depending on the current
1093/// function context. Inside an unavailable function, unavailability is ignored.
1094///
1095/// \returns true if \arg FD is unavailable and current context is inside
1096/// an available function, false otherwise.
1097bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1098  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
1099}
1100
1101/// \brief Tries a user-defined conversion from From to ToType.
1102///
1103/// Produces an implicit conversion sequence for when a standard conversion
1104/// is not an option. See TryImplicitConversion for more information.
1105static ImplicitConversionSequence
1106TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1107                         bool SuppressUserConversions,
1108                         bool AllowExplicit,
1109                         bool InOverloadResolution,
1110                         bool CStyle,
1111                         bool AllowObjCWritebackConversion,
1112                         bool AllowObjCConversionOnExplicit) {
1113  ImplicitConversionSequence ICS;
1114
1115  if (SuppressUserConversions) {
1116    // We're not in the case above, so there is no conversion that
1117    // we can perform.
1118    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1119    return ICS;
1120  }
1121
1122  // Attempt user-defined conversion.
1123  OverloadCandidateSet Conversions(From->getExprLoc());
1124  OverloadingResult UserDefResult
1125    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
1126                              AllowExplicit, AllowObjCConversionOnExplicit);
1127
1128  if (UserDefResult == OR_Success) {
1129    ICS.setUserDefined();
1130    // C++ [over.ics.user]p4:
1131    //   A conversion of an expression of class type to the same class
1132    //   type is given Exact Match rank, and a conversion of an
1133    //   expression of class type to a base class of that type is
1134    //   given Conversion rank, in spite of the fact that a copy
1135    //   constructor (i.e., a user-defined conversion function) is
1136    //   called for those cases.
1137    if (CXXConstructorDecl *Constructor
1138          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1139      QualType FromCanon
1140        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1141      QualType ToCanon
1142        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1143      if (Constructor->isCopyConstructor() &&
1144          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
1145        // Turn this into a "standard" conversion sequence, so that it
1146        // gets ranked with standard conversion sequences.
1147        ICS.setStandard();
1148        ICS.Standard.setAsIdentityConversion();
1149        ICS.Standard.setFromType(From->getType());
1150        ICS.Standard.setAllToTypes(ToType);
1151        ICS.Standard.CopyConstructor = Constructor;
1152        if (ToCanon != FromCanon)
1153          ICS.Standard.Second = ICK_Derived_To_Base;
1154      }
1155    }
1156
1157    // C++ [over.best.ics]p4:
1158    //   However, when considering the argument of a user-defined
1159    //   conversion function that is a candidate by 13.3.1.3 when
1160    //   invoked for the copying of the temporary in the second step
1161    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
1162    //   13.3.1.6 in all cases, only standard conversion sequences and
1163    //   ellipsis conversion sequences are allowed.
1164    if (SuppressUserConversions && ICS.isUserDefined()) {
1165      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
1166    }
1167  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
1168    ICS.setAmbiguous();
1169    ICS.Ambiguous.setFromType(From->getType());
1170    ICS.Ambiguous.setToType(ToType);
1171    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1172         Cand != Conversions.end(); ++Cand)
1173      if (Cand->Viable)
1174        ICS.Ambiguous.addConversion(Cand->Function);
1175  } else {
1176    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1177  }
1178
1179  return ICS;
1180}
1181
1182/// TryImplicitConversion - Attempt to perform an implicit conversion
1183/// from the given expression (Expr) to the given type (ToType). This
1184/// function returns an implicit conversion sequence that can be used
1185/// to perform the initialization. Given
1186///
1187///   void f(float f);
1188///   void g(int i) { f(i); }
1189///
1190/// this routine would produce an implicit conversion sequence to
1191/// describe the initialization of f from i, which will be a standard
1192/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1193/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1194//
1195/// Note that this routine only determines how the conversion can be
1196/// performed; it does not actually perform the conversion. As such,
1197/// it will not produce any diagnostics if no conversion is available,
1198/// but will instead return an implicit conversion sequence of kind
1199/// "BadConversion".
1200///
1201/// If @p SuppressUserConversions, then user-defined conversions are
1202/// not permitted.
1203/// If @p AllowExplicit, then explicit user-defined conversions are
1204/// permitted.
1205///
1206/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1207/// writeback conversion, which allows __autoreleasing id* parameters to
1208/// be initialized with __strong id* or __weak id* arguments.
1209static ImplicitConversionSequence
1210TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1211                      bool SuppressUserConversions,
1212                      bool AllowExplicit,
1213                      bool InOverloadResolution,
1214                      bool CStyle,
1215                      bool AllowObjCWritebackConversion,
1216                      bool AllowObjCConversionOnExplicit) {
1217  ImplicitConversionSequence ICS;
1218  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1219                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1220    ICS.setStandard();
1221    return ICS;
1222  }
1223
1224  if (!S.getLangOpts().CPlusPlus) {
1225    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1226    return ICS;
1227  }
1228
1229  // C++ [over.ics.user]p4:
1230  //   A conversion of an expression of class type to the same class
1231  //   type is given Exact Match rank, and a conversion of an
1232  //   expression of class type to a base class of that type is
1233  //   given Conversion rank, in spite of the fact that a copy/move
1234  //   constructor (i.e., a user-defined conversion function) is
1235  //   called for those cases.
1236  QualType FromType = From->getType();
1237  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1238      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1239       S.IsDerivedFrom(FromType, ToType))) {
1240    ICS.setStandard();
1241    ICS.Standard.setAsIdentityConversion();
1242    ICS.Standard.setFromType(FromType);
1243    ICS.Standard.setAllToTypes(ToType);
1244
1245    // We don't actually check at this point whether there is a valid
1246    // copy/move constructor, since overloading just assumes that it
1247    // exists. When we actually perform initialization, we'll find the
1248    // appropriate constructor to copy the returned object, if needed.
1249    ICS.Standard.CopyConstructor = 0;
1250
1251    // Determine whether this is considered a derived-to-base conversion.
1252    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1253      ICS.Standard.Second = ICK_Derived_To_Base;
1254
1255    return ICS;
1256  }
1257
1258  return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1259                                  AllowExplicit, InOverloadResolution, CStyle,
1260                                  AllowObjCWritebackConversion,
1261                                  AllowObjCConversionOnExplicit);
1262}
1263
1264ImplicitConversionSequence
1265Sema::TryImplicitConversion(Expr *From, QualType ToType,
1266                            bool SuppressUserConversions,
1267                            bool AllowExplicit,
1268                            bool InOverloadResolution,
1269                            bool CStyle,
1270                            bool AllowObjCWritebackConversion) {
1271  return clang::TryImplicitConversion(*this, From, ToType,
1272                                      SuppressUserConversions, AllowExplicit,
1273                                      InOverloadResolution, CStyle,
1274                                      AllowObjCWritebackConversion,
1275                                      /*AllowObjCConversionOnExplicit=*/false);
1276}
1277
1278/// PerformImplicitConversion - Perform an implicit conversion of the
1279/// expression From to the type ToType. Returns the
1280/// converted expression. Flavor is the kind of conversion we're
1281/// performing, used in the error message. If @p AllowExplicit,
1282/// explicit user-defined conversions are permitted.
1283ExprResult
1284Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1285                                AssignmentAction Action, bool AllowExplicit) {
1286  ImplicitConversionSequence ICS;
1287  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1288}
1289
1290ExprResult
1291Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1292                                AssignmentAction Action, bool AllowExplicit,
1293                                ImplicitConversionSequence& ICS) {
1294  if (checkPlaceholderForOverload(*this, From))
1295    return ExprError();
1296
1297  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1298  bool AllowObjCWritebackConversion
1299    = getLangOpts().ObjCAutoRefCount &&
1300      (Action == AA_Passing || Action == AA_Sending);
1301
1302  ICS = clang::TryImplicitConversion(*this, From, ToType,
1303                                     /*SuppressUserConversions=*/false,
1304                                     AllowExplicit,
1305                                     /*InOverloadResolution=*/false,
1306                                     /*CStyle=*/false,
1307                                     AllowObjCWritebackConversion,
1308                                     /*AllowObjCConversionOnExplicit=*/false);
1309  return PerformImplicitConversion(From, ToType, ICS, Action);
1310}
1311
1312/// \brief Determine whether the conversion from FromType to ToType is a valid
1313/// conversion that strips "noreturn" off the nested function type.
1314bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1315                                QualType &ResultTy) {
1316  if (Context.hasSameUnqualifiedType(FromType, ToType))
1317    return false;
1318
1319  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1320  // where F adds one of the following at most once:
1321  //   - a pointer
1322  //   - a member pointer
1323  //   - a block pointer
1324  CanQualType CanTo = Context.getCanonicalType(ToType);
1325  CanQualType CanFrom = Context.getCanonicalType(FromType);
1326  Type::TypeClass TyClass = CanTo->getTypeClass();
1327  if (TyClass != CanFrom->getTypeClass()) return false;
1328  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1329    if (TyClass == Type::Pointer) {
1330      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1331      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1332    } else if (TyClass == Type::BlockPointer) {
1333      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1334      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1335    } else if (TyClass == Type::MemberPointer) {
1336      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1337      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1338    } else {
1339      return false;
1340    }
1341
1342    TyClass = CanTo->getTypeClass();
1343    if (TyClass != CanFrom->getTypeClass()) return false;
1344    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1345      return false;
1346  }
1347
1348  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1349  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1350  if (!EInfo.getNoReturn()) return false;
1351
1352  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1353  assert(QualType(FromFn, 0).isCanonical());
1354  if (QualType(FromFn, 0) != CanTo) return false;
1355
1356  ResultTy = ToType;
1357  return true;
1358}
1359
1360/// \brief Determine whether the conversion from FromType to ToType is a valid
1361/// vector conversion.
1362///
1363/// \param ICK Will be set to the vector conversion kind, if this is a vector
1364/// conversion.
1365static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1366                               QualType ToType, ImplicitConversionKind &ICK) {
1367  // We need at least one of these types to be a vector type to have a vector
1368  // conversion.
1369  if (!ToType->isVectorType() && !FromType->isVectorType())
1370    return false;
1371
1372  // Identical types require no conversions.
1373  if (Context.hasSameUnqualifiedType(FromType, ToType))
1374    return false;
1375
1376  // There are no conversions between extended vector types, only identity.
1377  if (ToType->isExtVectorType()) {
1378    // There are no conversions between extended vector types other than the
1379    // identity conversion.
1380    if (FromType->isExtVectorType())
1381      return false;
1382
1383    // Vector splat from any arithmetic type to a vector.
1384    if (FromType->isArithmeticType()) {
1385      ICK = ICK_Vector_Splat;
1386      return true;
1387    }
1388  }
1389
1390  // We can perform the conversion between vector types in the following cases:
1391  // 1)vector types are equivalent AltiVec and GCC vector types
1392  // 2)lax vector conversions are permitted and the vector types are of the
1393  //   same size
1394  if (ToType->isVectorType() && FromType->isVectorType()) {
1395    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1396        (Context.getLangOpts().LaxVectorConversions &&
1397         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1398      ICK = ICK_Vector_Conversion;
1399      return true;
1400    }
1401  }
1402
1403  return false;
1404}
1405
1406static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1407                                bool InOverloadResolution,
1408                                StandardConversionSequence &SCS,
1409                                bool CStyle);
1410
1411/// IsStandardConversion - Determines whether there is a standard
1412/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1413/// expression From to the type ToType. Standard conversion sequences
1414/// only consider non-class types; for conversions that involve class
1415/// types, use TryImplicitConversion. If a conversion exists, SCS will
1416/// contain the standard conversion sequence required to perform this
1417/// conversion and this routine will return true. Otherwise, this
1418/// routine will return false and the value of SCS is unspecified.
1419static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1420                                 bool InOverloadResolution,
1421                                 StandardConversionSequence &SCS,
1422                                 bool CStyle,
1423                                 bool AllowObjCWritebackConversion) {
1424  QualType FromType = From->getType();
1425
1426  // Standard conversions (C++ [conv])
1427  SCS.setAsIdentityConversion();
1428  SCS.DeprecatedStringLiteralToCharPtr = false;
1429  SCS.IncompatibleObjC = false;
1430  SCS.setFromType(FromType);
1431  SCS.CopyConstructor = 0;
1432
1433  // There are no standard conversions for class types in C++, so
1434  // abort early. When overloading in C, however, we do permit
1435  if (FromType->isRecordType() || ToType->isRecordType()) {
1436    if (S.getLangOpts().CPlusPlus)
1437      return false;
1438
1439    // When we're overloading in C, we allow, as standard conversions,
1440  }
1441
1442  // The first conversion can be an lvalue-to-rvalue conversion,
1443  // array-to-pointer conversion, or function-to-pointer conversion
1444  // (C++ 4p1).
1445
1446  if (FromType == S.Context.OverloadTy) {
1447    DeclAccessPair AccessPair;
1448    if (FunctionDecl *Fn
1449          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1450                                                 AccessPair)) {
1451      // We were able to resolve the address of the overloaded function,
1452      // so we can convert to the type of that function.
1453      FromType = Fn->getType();
1454
1455      // we can sometimes resolve &foo<int> regardless of ToType, so check
1456      // if the type matches (identity) or we are converting to bool
1457      if (!S.Context.hasSameUnqualifiedType(
1458                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1459        QualType resultTy;
1460        // if the function type matches except for [[noreturn]], it's ok
1461        if (!S.IsNoReturnConversion(FromType,
1462              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1463          // otherwise, only a boolean conversion is standard
1464          if (!ToType->isBooleanType())
1465            return false;
1466      }
1467
1468      // Check if the "from" expression is taking the address of an overloaded
1469      // function and recompute the FromType accordingly. Take advantage of the
1470      // fact that non-static member functions *must* have such an address-of
1471      // expression.
1472      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1473      if (Method && !Method->isStatic()) {
1474        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1475               "Non-unary operator on non-static member address");
1476        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1477               == UO_AddrOf &&
1478               "Non-address-of operator on non-static member address");
1479        const Type *ClassType
1480          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1481        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1482      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1483        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1484               UO_AddrOf &&
1485               "Non-address-of operator for overloaded function expression");
1486        FromType = S.Context.getPointerType(FromType);
1487      }
1488
1489      // Check that we've computed the proper type after overload resolution.
1490      assert(S.Context.hasSameType(
1491        FromType,
1492        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1493    } else {
1494      return false;
1495    }
1496  }
1497  // Lvalue-to-rvalue conversion (C++11 4.1):
1498  //   A glvalue (3.10) of a non-function, non-array type T can
1499  //   be converted to a prvalue.
1500  bool argIsLValue = From->isGLValue();
1501  if (argIsLValue &&
1502      !FromType->isFunctionType() && !FromType->isArrayType() &&
1503      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1504    SCS.First = ICK_Lvalue_To_Rvalue;
1505
1506    // C11 6.3.2.1p2:
1507    //   ... if the lvalue has atomic type, the value has the non-atomic version
1508    //   of the type of the lvalue ...
1509    if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1510      FromType = Atomic->getValueType();
1511
1512    // If T is a non-class type, the type of the rvalue is the
1513    // cv-unqualified version of T. Otherwise, the type of the rvalue
1514    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1515    // just strip the qualifiers because they don't matter.
1516    FromType = FromType.getUnqualifiedType();
1517  } else if (FromType->isArrayType()) {
1518    // Array-to-pointer conversion (C++ 4.2)
1519    SCS.First = ICK_Array_To_Pointer;
1520
1521    // An lvalue or rvalue of type "array of N T" or "array of unknown
1522    // bound of T" can be converted to an rvalue of type "pointer to
1523    // T" (C++ 4.2p1).
1524    FromType = S.Context.getArrayDecayedType(FromType);
1525
1526    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1527      // This conversion is deprecated. (C++ D.4).
1528      SCS.DeprecatedStringLiteralToCharPtr = true;
1529
1530      // For the purpose of ranking in overload resolution
1531      // (13.3.3.1.1), this conversion is considered an
1532      // array-to-pointer conversion followed by a qualification
1533      // conversion (4.4). (C++ 4.2p2)
1534      SCS.Second = ICK_Identity;
1535      SCS.Third = ICK_Qualification;
1536      SCS.QualificationIncludesObjCLifetime = false;
1537      SCS.setAllToTypes(FromType);
1538      return true;
1539    }
1540  } else if (FromType->isFunctionType() && argIsLValue) {
1541    // Function-to-pointer conversion (C++ 4.3).
1542    SCS.First = ICK_Function_To_Pointer;
1543
1544    // An lvalue of function type T can be converted to an rvalue of
1545    // type "pointer to T." The result is a pointer to the
1546    // function. (C++ 4.3p1).
1547    FromType = S.Context.getPointerType(FromType);
1548  } else {
1549    // We don't require any conversions for the first step.
1550    SCS.First = ICK_Identity;
1551  }
1552  SCS.setToType(0, FromType);
1553
1554  // The second conversion can be an integral promotion, floating
1555  // point promotion, integral conversion, floating point conversion,
1556  // floating-integral conversion, pointer conversion,
1557  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1558  // For overloading in C, this can also be a "compatible-type"
1559  // conversion.
1560  bool IncompatibleObjC = false;
1561  ImplicitConversionKind SecondICK = ICK_Identity;
1562  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1563    // The unqualified versions of the types are the same: there's no
1564    // conversion to do.
1565    SCS.Second = ICK_Identity;
1566  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1567    // Integral promotion (C++ 4.5).
1568    SCS.Second = ICK_Integral_Promotion;
1569    FromType = ToType.getUnqualifiedType();
1570  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1571    // Floating point promotion (C++ 4.6).
1572    SCS.Second = ICK_Floating_Promotion;
1573    FromType = ToType.getUnqualifiedType();
1574  } else if (S.IsComplexPromotion(FromType, ToType)) {
1575    // Complex promotion (Clang extension)
1576    SCS.Second = ICK_Complex_Promotion;
1577    FromType = ToType.getUnqualifiedType();
1578  } else if (ToType->isBooleanType() &&
1579             (FromType->isArithmeticType() ||
1580              FromType->isAnyPointerType() ||
1581              FromType->isBlockPointerType() ||
1582              FromType->isMemberPointerType() ||
1583              FromType->isNullPtrType())) {
1584    // Boolean conversions (C++ 4.12).
1585    SCS.Second = ICK_Boolean_Conversion;
1586    FromType = S.Context.BoolTy;
1587  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1588             ToType->isIntegralType(S.Context)) {
1589    // Integral conversions (C++ 4.7).
1590    SCS.Second = ICK_Integral_Conversion;
1591    FromType = ToType.getUnqualifiedType();
1592  } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1593    // Complex conversions (C99 6.3.1.6)
1594    SCS.Second = ICK_Complex_Conversion;
1595    FromType = ToType.getUnqualifiedType();
1596  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1597             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1598    // Complex-real conversions (C99 6.3.1.7)
1599    SCS.Second = ICK_Complex_Real;
1600    FromType = ToType.getUnqualifiedType();
1601  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1602    // Floating point conversions (C++ 4.8).
1603    SCS.Second = ICK_Floating_Conversion;
1604    FromType = ToType.getUnqualifiedType();
1605  } else if ((FromType->isRealFloatingType() &&
1606              ToType->isIntegralType(S.Context)) ||
1607             (FromType->isIntegralOrUnscopedEnumerationType() &&
1608              ToType->isRealFloatingType())) {
1609    // Floating-integral conversions (C++ 4.9).
1610    SCS.Second = ICK_Floating_Integral;
1611    FromType = ToType.getUnqualifiedType();
1612  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1613    SCS.Second = ICK_Block_Pointer_Conversion;
1614  } else if (AllowObjCWritebackConversion &&
1615             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1616    SCS.Second = ICK_Writeback_Conversion;
1617  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1618                                   FromType, IncompatibleObjC)) {
1619    // Pointer conversions (C++ 4.10).
1620    SCS.Second = ICK_Pointer_Conversion;
1621    SCS.IncompatibleObjC = IncompatibleObjC;
1622    FromType = FromType.getUnqualifiedType();
1623  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1624                                         InOverloadResolution, FromType)) {
1625    // Pointer to member conversions (4.11).
1626    SCS.Second = ICK_Pointer_Member;
1627  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1628    SCS.Second = SecondICK;
1629    FromType = ToType.getUnqualifiedType();
1630  } else if (!S.getLangOpts().CPlusPlus &&
1631             S.Context.typesAreCompatible(ToType, FromType)) {
1632    // Compatible conversions (Clang extension for C function overloading)
1633    SCS.Second = ICK_Compatible_Conversion;
1634    FromType = ToType.getUnqualifiedType();
1635  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1636    // Treat a conversion that strips "noreturn" as an identity conversion.
1637    SCS.Second = ICK_NoReturn_Adjustment;
1638  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1639                                             InOverloadResolution,
1640                                             SCS, CStyle)) {
1641    SCS.Second = ICK_TransparentUnionConversion;
1642    FromType = ToType;
1643  } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1644                                 CStyle)) {
1645    // tryAtomicConversion has updated the standard conversion sequence
1646    // appropriately.
1647    return true;
1648  } else if (ToType->isEventT() &&
1649             From->isIntegerConstantExpr(S.getASTContext()) &&
1650             (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1651    SCS.Second = ICK_Zero_Event_Conversion;
1652    FromType = ToType;
1653  } else {
1654    // No second conversion required.
1655    SCS.Second = ICK_Identity;
1656  }
1657  SCS.setToType(1, FromType);
1658
1659  QualType CanonFrom;
1660  QualType CanonTo;
1661  // The third conversion can be a qualification conversion (C++ 4p1).
1662  bool ObjCLifetimeConversion;
1663  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1664                                  ObjCLifetimeConversion)) {
1665    SCS.Third = ICK_Qualification;
1666    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1667    FromType = ToType;
1668    CanonFrom = S.Context.getCanonicalType(FromType);
1669    CanonTo = S.Context.getCanonicalType(ToType);
1670  } else {
1671    // No conversion required
1672    SCS.Third = ICK_Identity;
1673
1674    // C++ [over.best.ics]p6:
1675    //   [...] Any difference in top-level cv-qualification is
1676    //   subsumed by the initialization itself and does not constitute
1677    //   a conversion. [...]
1678    CanonFrom = S.Context.getCanonicalType(FromType);
1679    CanonTo = S.Context.getCanonicalType(ToType);
1680    if (CanonFrom.getLocalUnqualifiedType()
1681                                       == CanonTo.getLocalUnqualifiedType() &&
1682        CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1683      FromType = ToType;
1684      CanonFrom = CanonTo;
1685    }
1686  }
1687  SCS.setToType(2, FromType);
1688
1689  // If we have not converted the argument type to the parameter type,
1690  // this is a bad conversion sequence.
1691  if (CanonFrom != CanonTo)
1692    return false;
1693
1694  return true;
1695}
1696
1697static bool
1698IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1699                                     QualType &ToType,
1700                                     bool InOverloadResolution,
1701                                     StandardConversionSequence &SCS,
1702                                     bool CStyle) {
1703
1704  const RecordType *UT = ToType->getAsUnionType();
1705  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1706    return false;
1707  // The field to initialize within the transparent union.
1708  RecordDecl *UD = UT->getDecl();
1709  // It's compatible if the expression matches any of the fields.
1710  for (RecordDecl::field_iterator it = UD->field_begin(),
1711       itend = UD->field_end();
1712       it != itend; ++it) {
1713    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1714                             CStyle, /*ObjCWritebackConversion=*/false)) {
1715      ToType = it->getType();
1716      return true;
1717    }
1718  }
1719  return false;
1720}
1721
1722/// IsIntegralPromotion - Determines whether the conversion from the
1723/// expression From (whose potentially-adjusted type is FromType) to
1724/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1725/// sets PromotedType to the promoted type.
1726bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1727  const BuiltinType *To = ToType->getAs<BuiltinType>();
1728  // All integers are built-in.
1729  if (!To) {
1730    return false;
1731  }
1732
1733  // An rvalue of type char, signed char, unsigned char, short int, or
1734  // unsigned short int can be converted to an rvalue of type int if
1735  // int can represent all the values of the source type; otherwise,
1736  // the source rvalue can be converted to an rvalue of type unsigned
1737  // int (C++ 4.5p1).
1738  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1739      !FromType->isEnumeralType()) {
1740    if (// We can promote any signed, promotable integer type to an int
1741        (FromType->isSignedIntegerType() ||
1742         // We can promote any unsigned integer type whose size is
1743         // less than int to an int.
1744         (!FromType->isSignedIntegerType() &&
1745          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1746      return To->getKind() == BuiltinType::Int;
1747    }
1748
1749    return To->getKind() == BuiltinType::UInt;
1750  }
1751
1752  // C++11 [conv.prom]p3:
1753  //   A prvalue of an unscoped enumeration type whose underlying type is not
1754  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1755  //   following types that can represent all the values of the enumeration
1756  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1757  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1758  //   long long int. If none of the types in that list can represent all the
1759  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1760  //   type can be converted to an rvalue a prvalue of the extended integer type
1761  //   with lowest integer conversion rank (4.13) greater than the rank of long
1762  //   long in which all the values of the enumeration can be represented. If
1763  //   there are two such extended types, the signed one is chosen.
1764  // C++11 [conv.prom]p4:
1765  //   A prvalue of an unscoped enumeration type whose underlying type is fixed
1766  //   can be converted to a prvalue of its underlying type. Moreover, if
1767  //   integral promotion can be applied to its underlying type, a prvalue of an
1768  //   unscoped enumeration type whose underlying type is fixed can also be
1769  //   converted to a prvalue of the promoted underlying type.
1770  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1771    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1772    // provided for a scoped enumeration.
1773    if (FromEnumType->getDecl()->isScoped())
1774      return false;
1775
1776    // We can perform an integral promotion to the underlying type of the enum,
1777    // even if that's not the promoted type.
1778    if (FromEnumType->getDecl()->isFixed()) {
1779      QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1780      return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1781             IsIntegralPromotion(From, Underlying, ToType);
1782    }
1783
1784    // We have already pre-calculated the promotion type, so this is trivial.
1785    if (ToType->isIntegerType() &&
1786        !RequireCompleteType(From->getLocStart(), FromType, 0))
1787      return Context.hasSameUnqualifiedType(ToType,
1788                                FromEnumType->getDecl()->getPromotionType());
1789  }
1790
1791  // C++0x [conv.prom]p2:
1792  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1793  //   to an rvalue a prvalue of the first of the following types that can
1794  //   represent all the values of its underlying type: int, unsigned int,
1795  //   long int, unsigned long int, long long int, or unsigned long long int.
1796  //   If none of the types in that list can represent all the values of its
1797  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1798  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1799  //   type.
1800  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1801      ToType->isIntegerType()) {
1802    // Determine whether the type we're converting from is signed or
1803    // unsigned.
1804    bool FromIsSigned = FromType->isSignedIntegerType();
1805    uint64_t FromSize = Context.getTypeSize(FromType);
1806
1807    // The types we'll try to promote to, in the appropriate
1808    // order. Try each of these types.
1809    QualType PromoteTypes[6] = {
1810      Context.IntTy, Context.UnsignedIntTy,
1811      Context.LongTy, Context.UnsignedLongTy ,
1812      Context.LongLongTy, Context.UnsignedLongLongTy
1813    };
1814    for (int Idx = 0; Idx < 6; ++Idx) {
1815      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1816      if (FromSize < ToSize ||
1817          (FromSize == ToSize &&
1818           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1819        // We found the type that we can promote to. If this is the
1820        // type we wanted, we have a promotion. Otherwise, no
1821        // promotion.
1822        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1823      }
1824    }
1825  }
1826
1827  // An rvalue for an integral bit-field (9.6) can be converted to an
1828  // rvalue of type int if int can represent all the values of the
1829  // bit-field; otherwise, it can be converted to unsigned int if
1830  // unsigned int can represent all the values of the bit-field. If
1831  // the bit-field is larger yet, no integral promotion applies to
1832  // it. If the bit-field has an enumerated type, it is treated as any
1833  // other value of that type for promotion purposes (C++ 4.5p3).
1834  // FIXME: We should delay checking of bit-fields until we actually perform the
1835  // conversion.
1836  using llvm::APSInt;
1837  if (From)
1838    if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1839      APSInt BitWidth;
1840      if (FromType->isIntegralType(Context) &&
1841          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1842        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1843        ToSize = Context.getTypeSize(ToType);
1844
1845        // Are we promoting to an int from a bitfield that fits in an int?
1846        if (BitWidth < ToSize ||
1847            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1848          return To->getKind() == BuiltinType::Int;
1849        }
1850
1851        // Are we promoting to an unsigned int from an unsigned bitfield
1852        // that fits into an unsigned int?
1853        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1854          return To->getKind() == BuiltinType::UInt;
1855        }
1856
1857        return false;
1858      }
1859    }
1860
1861  // An rvalue of type bool can be converted to an rvalue of type int,
1862  // with false becoming zero and true becoming one (C++ 4.5p4).
1863  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1864    return true;
1865  }
1866
1867  return false;
1868}
1869
1870/// IsFloatingPointPromotion - Determines whether the conversion from
1871/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1872/// returns true and sets PromotedType to the promoted type.
1873bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1874  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1875    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1876      /// An rvalue of type float can be converted to an rvalue of type
1877      /// double. (C++ 4.6p1).
1878      if (FromBuiltin->getKind() == BuiltinType::Float &&
1879          ToBuiltin->getKind() == BuiltinType::Double)
1880        return true;
1881
1882      // C99 6.3.1.5p1:
1883      //   When a float is promoted to double or long double, or a
1884      //   double is promoted to long double [...].
1885      if (!getLangOpts().CPlusPlus &&
1886          (FromBuiltin->getKind() == BuiltinType::Float ||
1887           FromBuiltin->getKind() == BuiltinType::Double) &&
1888          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1889        return true;
1890
1891      // Half can be promoted to float.
1892      if (!getLangOpts().NativeHalfType &&
1893           FromBuiltin->getKind() == BuiltinType::Half &&
1894          ToBuiltin->getKind() == BuiltinType::Float)
1895        return true;
1896    }
1897
1898  return false;
1899}
1900
1901/// \brief Determine if a conversion is a complex promotion.
1902///
1903/// A complex promotion is defined as a complex -> complex conversion
1904/// where the conversion between the underlying real types is a
1905/// floating-point or integral promotion.
1906bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1907  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1908  if (!FromComplex)
1909    return false;
1910
1911  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1912  if (!ToComplex)
1913    return false;
1914
1915  return IsFloatingPointPromotion(FromComplex->getElementType(),
1916                                  ToComplex->getElementType()) ||
1917    IsIntegralPromotion(0, FromComplex->getElementType(),
1918                        ToComplex->getElementType());
1919}
1920
1921/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1922/// the pointer type FromPtr to a pointer to type ToPointee, with the
1923/// same type qualifiers as FromPtr has on its pointee type. ToType,
1924/// if non-empty, will be a pointer to ToType that may or may not have
1925/// the right set of qualifiers on its pointee.
1926///
1927static QualType
1928BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1929                                   QualType ToPointee, QualType ToType,
1930                                   ASTContext &Context,
1931                                   bool StripObjCLifetime = false) {
1932  assert((FromPtr->getTypeClass() == Type::Pointer ||
1933          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1934         "Invalid similarly-qualified pointer type");
1935
1936  /// Conversions to 'id' subsume cv-qualifier conversions.
1937  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1938    return ToType.getUnqualifiedType();
1939
1940  QualType CanonFromPointee
1941    = Context.getCanonicalType(FromPtr->getPointeeType());
1942  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1943  Qualifiers Quals = CanonFromPointee.getQualifiers();
1944
1945  if (StripObjCLifetime)
1946    Quals.removeObjCLifetime();
1947
1948  // Exact qualifier match -> return the pointer type we're converting to.
1949  if (CanonToPointee.getLocalQualifiers() == Quals) {
1950    // ToType is exactly what we need. Return it.
1951    if (!ToType.isNull())
1952      return ToType.getUnqualifiedType();
1953
1954    // Build a pointer to ToPointee. It has the right qualifiers
1955    // already.
1956    if (isa<ObjCObjectPointerType>(ToType))
1957      return Context.getObjCObjectPointerType(ToPointee);
1958    return Context.getPointerType(ToPointee);
1959  }
1960
1961  // Just build a canonical type that has the right qualifiers.
1962  QualType QualifiedCanonToPointee
1963    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1964
1965  if (isa<ObjCObjectPointerType>(ToType))
1966    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1967  return Context.getPointerType(QualifiedCanonToPointee);
1968}
1969
1970static bool isNullPointerConstantForConversion(Expr *Expr,
1971                                               bool InOverloadResolution,
1972                                               ASTContext &Context) {
1973  // Handle value-dependent integral null pointer constants correctly.
1974  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1975  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1976      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1977    return !InOverloadResolution;
1978
1979  return Expr->isNullPointerConstant(Context,
1980                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1981                                        : Expr::NPC_ValueDependentIsNull);
1982}
1983
1984/// IsPointerConversion - Determines whether the conversion of the
1985/// expression From, which has the (possibly adjusted) type FromType,
1986/// can be converted to the type ToType via a pointer conversion (C++
1987/// 4.10). If so, returns true and places the converted type (that
1988/// might differ from ToType in its cv-qualifiers at some level) into
1989/// ConvertedType.
1990///
1991/// This routine also supports conversions to and from block pointers
1992/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1993/// pointers to interfaces. FIXME: Once we've determined the
1994/// appropriate overloading rules for Objective-C, we may want to
1995/// split the Objective-C checks into a different routine; however,
1996/// GCC seems to consider all of these conversions to be pointer
1997/// conversions, so for now they live here. IncompatibleObjC will be
1998/// set if the conversion is an allowed Objective-C conversion that
1999/// should result in a warning.
2000bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2001                               bool InOverloadResolution,
2002                               QualType& ConvertedType,
2003                               bool &IncompatibleObjC) {
2004  IncompatibleObjC = false;
2005  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2006                              IncompatibleObjC))
2007    return true;
2008
2009  // Conversion from a null pointer constant to any Objective-C pointer type.
2010  if (ToType->isObjCObjectPointerType() &&
2011      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2012    ConvertedType = ToType;
2013    return true;
2014  }
2015
2016  // Blocks: Block pointers can be converted to void*.
2017  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2018      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2019    ConvertedType = ToType;
2020    return true;
2021  }
2022  // Blocks: A null pointer constant can be converted to a block
2023  // pointer type.
2024  if (ToType->isBlockPointerType() &&
2025      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2026    ConvertedType = ToType;
2027    return true;
2028  }
2029
2030  // If the left-hand-side is nullptr_t, the right side can be a null
2031  // pointer constant.
2032  if (ToType->isNullPtrType() &&
2033      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2034    ConvertedType = ToType;
2035    return true;
2036  }
2037
2038  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2039  if (!ToTypePtr)
2040    return false;
2041
2042  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2043  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2044    ConvertedType = ToType;
2045    return true;
2046  }
2047
2048  // Beyond this point, both types need to be pointers
2049  // , including objective-c pointers.
2050  QualType ToPointeeType = ToTypePtr->getPointeeType();
2051  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2052      !getLangOpts().ObjCAutoRefCount) {
2053    ConvertedType = BuildSimilarlyQualifiedPointerType(
2054                                      FromType->getAs<ObjCObjectPointerType>(),
2055                                                       ToPointeeType,
2056                                                       ToType, Context);
2057    return true;
2058  }
2059  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2060  if (!FromTypePtr)
2061    return false;
2062
2063  QualType FromPointeeType = FromTypePtr->getPointeeType();
2064
2065  // If the unqualified pointee types are the same, this can't be a
2066  // pointer conversion, so don't do all of the work below.
2067  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2068    return false;
2069
2070  // An rvalue of type "pointer to cv T," where T is an object type,
2071  // can be converted to an rvalue of type "pointer to cv void" (C++
2072  // 4.10p2).
2073  if (FromPointeeType->isIncompleteOrObjectType() &&
2074      ToPointeeType->isVoidType()) {
2075    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2076                                                       ToPointeeType,
2077                                                       ToType, Context,
2078                                                   /*StripObjCLifetime=*/true);
2079    return true;
2080  }
2081
2082  // MSVC allows implicit function to void* type conversion.
2083  if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
2084      ToPointeeType->isVoidType()) {
2085    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2086                                                       ToPointeeType,
2087                                                       ToType, Context);
2088    return true;
2089  }
2090
2091  // When we're overloading in C, we allow a special kind of pointer
2092  // conversion for compatible-but-not-identical pointee types.
2093  if (!getLangOpts().CPlusPlus &&
2094      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2095    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2096                                                       ToPointeeType,
2097                                                       ToType, Context);
2098    return true;
2099  }
2100
2101  // C++ [conv.ptr]p3:
2102  //
2103  //   An rvalue of type "pointer to cv D," where D is a class type,
2104  //   can be converted to an rvalue of type "pointer to cv B," where
2105  //   B is a base class (clause 10) of D. If B is an inaccessible
2106  //   (clause 11) or ambiguous (10.2) base class of D, a program that
2107  //   necessitates this conversion is ill-formed. The result of the
2108  //   conversion is a pointer to the base class sub-object of the
2109  //   derived class object. The null pointer value is converted to
2110  //   the null pointer value of the destination type.
2111  //
2112  // Note that we do not check for ambiguity or inaccessibility
2113  // here. That is handled by CheckPointerConversion.
2114  if (getLangOpts().CPlusPlus &&
2115      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2116      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2117      !RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
2118      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
2119    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2120                                                       ToPointeeType,
2121                                                       ToType, Context);
2122    return true;
2123  }
2124
2125  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2126      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2127    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2128                                                       ToPointeeType,
2129                                                       ToType, Context);
2130    return true;
2131  }
2132
2133  return false;
2134}
2135
2136/// \brief Adopt the given qualifiers for the given type.
2137static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2138  Qualifiers TQs = T.getQualifiers();
2139
2140  // Check whether qualifiers already match.
2141  if (TQs == Qs)
2142    return T;
2143
2144  if (Qs.compatiblyIncludes(TQs))
2145    return Context.getQualifiedType(T, Qs);
2146
2147  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2148}
2149
2150/// isObjCPointerConversion - Determines whether this is an
2151/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2152/// with the same arguments and return values.
2153bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2154                                   QualType& ConvertedType,
2155                                   bool &IncompatibleObjC) {
2156  if (!getLangOpts().ObjC1)
2157    return false;
2158
2159  // The set of qualifiers on the type we're converting from.
2160  Qualifiers FromQualifiers = FromType.getQualifiers();
2161
2162  // First, we handle all conversions on ObjC object pointer types.
2163  const ObjCObjectPointerType* ToObjCPtr =
2164    ToType->getAs<ObjCObjectPointerType>();
2165  const ObjCObjectPointerType *FromObjCPtr =
2166    FromType->getAs<ObjCObjectPointerType>();
2167
2168  if (ToObjCPtr && FromObjCPtr) {
2169    // If the pointee types are the same (ignoring qualifications),
2170    // then this is not a pointer conversion.
2171    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2172                                       FromObjCPtr->getPointeeType()))
2173      return false;
2174
2175    // Check for compatible
2176    // Objective C++: We're able to convert between "id" or "Class" and a
2177    // pointer to any interface (in both directions).
2178    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
2179      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2180      return true;
2181    }
2182    // Conversions with Objective-C's id<...>.
2183    if ((FromObjCPtr->isObjCQualifiedIdType() ||
2184         ToObjCPtr->isObjCQualifiedIdType()) &&
2185        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
2186                                                  /*compare=*/false)) {
2187      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2188      return true;
2189    }
2190    // Objective C++: We're able to convert from a pointer to an
2191    // interface to a pointer to a different interface.
2192    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2193      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2194      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2195      if (getLangOpts().CPlusPlus && LHS && RHS &&
2196          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2197                                                FromObjCPtr->getPointeeType()))
2198        return false;
2199      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2200                                                   ToObjCPtr->getPointeeType(),
2201                                                         ToType, Context);
2202      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2203      return true;
2204    }
2205
2206    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2207      // Okay: this is some kind of implicit downcast of Objective-C
2208      // interfaces, which is permitted. However, we're going to
2209      // complain about it.
2210      IncompatibleObjC = true;
2211      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2212                                                   ToObjCPtr->getPointeeType(),
2213                                                         ToType, Context);
2214      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2215      return true;
2216    }
2217  }
2218  // Beyond this point, both types need to be C pointers or block pointers.
2219  QualType ToPointeeType;
2220  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2221    ToPointeeType = ToCPtr->getPointeeType();
2222  else if (const BlockPointerType *ToBlockPtr =
2223            ToType->getAs<BlockPointerType>()) {
2224    // Objective C++: We're able to convert from a pointer to any object
2225    // to a block pointer type.
2226    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2227      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2228      return true;
2229    }
2230    ToPointeeType = ToBlockPtr->getPointeeType();
2231  }
2232  else if (FromType->getAs<BlockPointerType>() &&
2233           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2234    // Objective C++: We're able to convert from a block pointer type to a
2235    // pointer to any object.
2236    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2237    return true;
2238  }
2239  else
2240    return false;
2241
2242  QualType FromPointeeType;
2243  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2244    FromPointeeType = FromCPtr->getPointeeType();
2245  else if (const BlockPointerType *FromBlockPtr =
2246           FromType->getAs<BlockPointerType>())
2247    FromPointeeType = FromBlockPtr->getPointeeType();
2248  else
2249    return false;
2250
2251  // If we have pointers to pointers, recursively check whether this
2252  // is an Objective-C conversion.
2253  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2254      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2255                              IncompatibleObjC)) {
2256    // We always complain about this conversion.
2257    IncompatibleObjC = true;
2258    ConvertedType = Context.getPointerType(ConvertedType);
2259    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2260    return true;
2261  }
2262  // Allow conversion of pointee being objective-c pointer to another one;
2263  // as in I* to id.
2264  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2265      ToPointeeType->getAs<ObjCObjectPointerType>() &&
2266      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2267                              IncompatibleObjC)) {
2268
2269    ConvertedType = Context.getPointerType(ConvertedType);
2270    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2271    return true;
2272  }
2273
2274  // If we have pointers to functions or blocks, check whether the only
2275  // differences in the argument and result types are in Objective-C
2276  // pointer conversions. If so, we permit the conversion (but
2277  // complain about it).
2278  const FunctionProtoType *FromFunctionType
2279    = FromPointeeType->getAs<FunctionProtoType>();
2280  const FunctionProtoType *ToFunctionType
2281    = ToPointeeType->getAs<FunctionProtoType>();
2282  if (FromFunctionType && ToFunctionType) {
2283    // If the function types are exactly the same, this isn't an
2284    // Objective-C pointer conversion.
2285    if (Context.getCanonicalType(FromPointeeType)
2286          == Context.getCanonicalType(ToPointeeType))
2287      return false;
2288
2289    // Perform the quick checks that will tell us whether these
2290    // function types are obviously different.
2291    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2292        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2293        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2294      return false;
2295
2296    bool HasObjCConversion = false;
2297    if (Context.getCanonicalType(FromFunctionType->getResultType())
2298          == Context.getCanonicalType(ToFunctionType->getResultType())) {
2299      // Okay, the types match exactly. Nothing to do.
2300    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
2301                                       ToFunctionType->getResultType(),
2302                                       ConvertedType, IncompatibleObjC)) {
2303      // Okay, we have an Objective-C pointer conversion.
2304      HasObjCConversion = true;
2305    } else {
2306      // Function types are too different. Abort.
2307      return false;
2308    }
2309
2310    // Check argument types.
2311    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2312         ArgIdx != NumArgs; ++ArgIdx) {
2313      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2314      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2315      if (Context.getCanonicalType(FromArgType)
2316            == Context.getCanonicalType(ToArgType)) {
2317        // Okay, the types match exactly. Nothing to do.
2318      } else if (isObjCPointerConversion(FromArgType, ToArgType,
2319                                         ConvertedType, IncompatibleObjC)) {
2320        // Okay, we have an Objective-C pointer conversion.
2321        HasObjCConversion = true;
2322      } else {
2323        // Argument types are too different. Abort.
2324        return false;
2325      }
2326    }
2327
2328    if (HasObjCConversion) {
2329      // We had an Objective-C conversion. Allow this pointer
2330      // conversion, but complain about it.
2331      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2332      IncompatibleObjC = true;
2333      return true;
2334    }
2335  }
2336
2337  return false;
2338}
2339
2340/// \brief Determine whether this is an Objective-C writeback conversion,
2341/// used for parameter passing when performing automatic reference counting.
2342///
2343/// \param FromType The type we're converting form.
2344///
2345/// \param ToType The type we're converting to.
2346///
2347/// \param ConvertedType The type that will be produced after applying
2348/// this conversion.
2349bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2350                                     QualType &ConvertedType) {
2351  if (!getLangOpts().ObjCAutoRefCount ||
2352      Context.hasSameUnqualifiedType(FromType, ToType))
2353    return false;
2354
2355  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2356  QualType ToPointee;
2357  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2358    ToPointee = ToPointer->getPointeeType();
2359  else
2360    return false;
2361
2362  Qualifiers ToQuals = ToPointee.getQualifiers();
2363  if (!ToPointee->isObjCLifetimeType() ||
2364      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2365      !ToQuals.withoutObjCLifetime().empty())
2366    return false;
2367
2368  // Argument must be a pointer to __strong to __weak.
2369  QualType FromPointee;
2370  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2371    FromPointee = FromPointer->getPointeeType();
2372  else
2373    return false;
2374
2375  Qualifiers FromQuals = FromPointee.getQualifiers();
2376  if (!FromPointee->isObjCLifetimeType() ||
2377      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2378       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2379    return false;
2380
2381  // Make sure that we have compatible qualifiers.
2382  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2383  if (!ToQuals.compatiblyIncludes(FromQuals))
2384    return false;
2385
2386  // Remove qualifiers from the pointee type we're converting from; they
2387  // aren't used in the compatibility check belong, and we'll be adding back
2388  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2389  FromPointee = FromPointee.getUnqualifiedType();
2390
2391  // The unqualified form of the pointee types must be compatible.
2392  ToPointee = ToPointee.getUnqualifiedType();
2393  bool IncompatibleObjC;
2394  if (Context.typesAreCompatible(FromPointee, ToPointee))
2395    FromPointee = ToPointee;
2396  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2397                                    IncompatibleObjC))
2398    return false;
2399
2400  /// \brief Construct the type we're converting to, which is a pointer to
2401  /// __autoreleasing pointee.
2402  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2403  ConvertedType = Context.getPointerType(FromPointee);
2404  return true;
2405}
2406
2407bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2408                                    QualType& ConvertedType) {
2409  QualType ToPointeeType;
2410  if (const BlockPointerType *ToBlockPtr =
2411        ToType->getAs<BlockPointerType>())
2412    ToPointeeType = ToBlockPtr->getPointeeType();
2413  else
2414    return false;
2415
2416  QualType FromPointeeType;
2417  if (const BlockPointerType *FromBlockPtr =
2418      FromType->getAs<BlockPointerType>())
2419    FromPointeeType = FromBlockPtr->getPointeeType();
2420  else
2421    return false;
2422  // We have pointer to blocks, check whether the only
2423  // differences in the argument and result types are in Objective-C
2424  // pointer conversions. If so, we permit the conversion.
2425
2426  const FunctionProtoType *FromFunctionType
2427    = FromPointeeType->getAs<FunctionProtoType>();
2428  const FunctionProtoType *ToFunctionType
2429    = ToPointeeType->getAs<FunctionProtoType>();
2430
2431  if (!FromFunctionType || !ToFunctionType)
2432    return false;
2433
2434  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2435    return true;
2436
2437  // Perform the quick checks that will tell us whether these
2438  // function types are obviously different.
2439  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2440      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2441    return false;
2442
2443  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2444  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2445  if (FromEInfo != ToEInfo)
2446    return false;
2447
2448  bool IncompatibleObjC = false;
2449  if (Context.hasSameType(FromFunctionType->getResultType(),
2450                          ToFunctionType->getResultType())) {
2451    // Okay, the types match exactly. Nothing to do.
2452  } else {
2453    QualType RHS = FromFunctionType->getResultType();
2454    QualType LHS = ToFunctionType->getResultType();
2455    if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2456        !RHS.hasQualifiers() && LHS.hasQualifiers())
2457       LHS = LHS.getUnqualifiedType();
2458
2459     if (Context.hasSameType(RHS,LHS)) {
2460       // OK exact match.
2461     } else if (isObjCPointerConversion(RHS, LHS,
2462                                        ConvertedType, IncompatibleObjC)) {
2463     if (IncompatibleObjC)
2464       return false;
2465     // Okay, we have an Objective-C pointer conversion.
2466     }
2467     else
2468       return false;
2469   }
2470
2471   // Check argument types.
2472   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2473        ArgIdx != NumArgs; ++ArgIdx) {
2474     IncompatibleObjC = false;
2475     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2476     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2477     if (Context.hasSameType(FromArgType, ToArgType)) {
2478       // Okay, the types match exactly. Nothing to do.
2479     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2480                                        ConvertedType, IncompatibleObjC)) {
2481       if (IncompatibleObjC)
2482         return false;
2483       // Okay, we have an Objective-C pointer conversion.
2484     } else
2485       // Argument types are too different. Abort.
2486       return false;
2487   }
2488   if (LangOpts.ObjCAutoRefCount &&
2489       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2490                                                    ToFunctionType))
2491     return false;
2492
2493   ConvertedType = ToType;
2494   return true;
2495}
2496
2497enum {
2498  ft_default,
2499  ft_different_class,
2500  ft_parameter_arity,
2501  ft_parameter_mismatch,
2502  ft_return_type,
2503  ft_qualifer_mismatch
2504};
2505
2506/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2507/// function types.  Catches different number of parameter, mismatch in
2508/// parameter types, and different return types.
2509void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2510                                      QualType FromType, QualType ToType) {
2511  // If either type is not valid, include no extra info.
2512  if (FromType.isNull() || ToType.isNull()) {
2513    PDiag << ft_default;
2514    return;
2515  }
2516
2517  // Get the function type from the pointers.
2518  if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2519    const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2520                            *ToMember = ToType->getAs<MemberPointerType>();
2521    if (FromMember->getClass() != ToMember->getClass()) {
2522      PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2523            << QualType(FromMember->getClass(), 0);
2524      return;
2525    }
2526    FromType = FromMember->getPointeeType();
2527    ToType = ToMember->getPointeeType();
2528  }
2529
2530  if (FromType->isPointerType())
2531    FromType = FromType->getPointeeType();
2532  if (ToType->isPointerType())
2533    ToType = ToType->getPointeeType();
2534
2535  // Remove references.
2536  FromType = FromType.getNonReferenceType();
2537  ToType = ToType.getNonReferenceType();
2538
2539  // Don't print extra info for non-specialized template functions.
2540  if (FromType->isInstantiationDependentType() &&
2541      !FromType->getAs<TemplateSpecializationType>()) {
2542    PDiag << ft_default;
2543    return;
2544  }
2545
2546  // No extra info for same types.
2547  if (Context.hasSameType(FromType, ToType)) {
2548    PDiag << ft_default;
2549    return;
2550  }
2551
2552  const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
2553                          *ToFunction = ToType->getAs<FunctionProtoType>();
2554
2555  // Both types need to be function types.
2556  if (!FromFunction || !ToFunction) {
2557    PDiag << ft_default;
2558    return;
2559  }
2560
2561  if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
2562    PDiag << ft_parameter_arity << ToFunction->getNumArgs()
2563          << FromFunction->getNumArgs();
2564    return;
2565  }
2566
2567  // Handle different parameter types.
2568  unsigned ArgPos;
2569  if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2570    PDiag << ft_parameter_mismatch << ArgPos + 1
2571          << ToFunction->getArgType(ArgPos)
2572          << FromFunction->getArgType(ArgPos);
2573    return;
2574  }
2575
2576  // Handle different return type.
2577  if (!Context.hasSameType(FromFunction->getResultType(),
2578                           ToFunction->getResultType())) {
2579    PDiag << ft_return_type << ToFunction->getResultType()
2580          << FromFunction->getResultType();
2581    return;
2582  }
2583
2584  unsigned FromQuals = FromFunction->getTypeQuals(),
2585           ToQuals = ToFunction->getTypeQuals();
2586  if (FromQuals != ToQuals) {
2587    PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2588    return;
2589  }
2590
2591  // Unable to find a difference, so add no extra info.
2592  PDiag << ft_default;
2593}
2594
2595/// FunctionArgTypesAreEqual - This routine checks two function proto types
2596/// for equality of their argument types. Caller has already checked that
2597/// they have same number of arguments.  If the parameters are different,
2598/// ArgPos will have the parameter index of the first different parameter.
2599bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2600                                    const FunctionProtoType *NewType,
2601                                    unsigned *ArgPos) {
2602  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2603       N = NewType->arg_type_begin(),
2604       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2605    if (!Context.hasSameType(O->getUnqualifiedType(),
2606                             N->getUnqualifiedType())) {
2607      if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
2608      return false;
2609    }
2610  }
2611  return true;
2612}
2613
2614/// CheckPointerConversion - Check the pointer conversion from the
2615/// expression From to the type ToType. This routine checks for
2616/// ambiguous or inaccessible derived-to-base pointer
2617/// conversions for which IsPointerConversion has already returned
2618/// true. It returns true and produces a diagnostic if there was an
2619/// error, or returns false otherwise.
2620bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2621                                  CastKind &Kind,
2622                                  CXXCastPath& BasePath,
2623                                  bool IgnoreBaseAccess) {
2624  QualType FromType = From->getType();
2625  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2626
2627  Kind = CK_BitCast;
2628
2629  if (!IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2630      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2631      Expr::NPCK_ZeroExpression) {
2632    if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2633      DiagRuntimeBehavior(From->getExprLoc(), From,
2634                          PDiag(diag::warn_impcast_bool_to_null_pointer)
2635                            << ToType << From->getSourceRange());
2636    else if (!isUnevaluatedContext())
2637      Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2638        << ToType << From->getSourceRange();
2639  }
2640  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2641    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2642      QualType FromPointeeType = FromPtrType->getPointeeType(),
2643               ToPointeeType   = ToPtrType->getPointeeType();
2644
2645      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2646          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2647        // We must have a derived-to-base conversion. Check an
2648        // ambiguous or inaccessible conversion.
2649        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2650                                         From->getExprLoc(),
2651                                         From->getSourceRange(), &BasePath,
2652                                         IgnoreBaseAccess))
2653          return true;
2654
2655        // The conversion was successful.
2656        Kind = CK_DerivedToBase;
2657      }
2658    }
2659  } else if (const ObjCObjectPointerType *ToPtrType =
2660               ToType->getAs<ObjCObjectPointerType>()) {
2661    if (const ObjCObjectPointerType *FromPtrType =
2662          FromType->getAs<ObjCObjectPointerType>()) {
2663      // Objective-C++ conversions are always okay.
2664      // FIXME: We should have a different class of conversions for the
2665      // Objective-C++ implicit conversions.
2666      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2667        return false;
2668    } else if (FromType->isBlockPointerType()) {
2669      Kind = CK_BlockPointerToObjCPointerCast;
2670    } else {
2671      Kind = CK_CPointerToObjCPointerCast;
2672    }
2673  } else if (ToType->isBlockPointerType()) {
2674    if (!FromType->isBlockPointerType())
2675      Kind = CK_AnyPointerToBlockPointerCast;
2676  }
2677
2678  // We shouldn't fall into this case unless it's valid for other
2679  // reasons.
2680  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2681    Kind = CK_NullToPointer;
2682
2683  return false;
2684}
2685
2686/// IsMemberPointerConversion - Determines whether the conversion of the
2687/// expression From, which has the (possibly adjusted) type FromType, can be
2688/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2689/// If so, returns true and places the converted type (that might differ from
2690/// ToType in its cv-qualifiers at some level) into ConvertedType.
2691bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2692                                     QualType ToType,
2693                                     bool InOverloadResolution,
2694                                     QualType &ConvertedType) {
2695  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2696  if (!ToTypePtr)
2697    return false;
2698
2699  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2700  if (From->isNullPointerConstant(Context,
2701                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2702                                        : Expr::NPC_ValueDependentIsNull)) {
2703    ConvertedType = ToType;
2704    return true;
2705  }
2706
2707  // Otherwise, both types have to be member pointers.
2708  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2709  if (!FromTypePtr)
2710    return false;
2711
2712  // A pointer to member of B can be converted to a pointer to member of D,
2713  // where D is derived from B (C++ 4.11p2).
2714  QualType FromClass(FromTypePtr->getClass(), 0);
2715  QualType ToClass(ToTypePtr->getClass(), 0);
2716
2717  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2718      !RequireCompleteType(From->getLocStart(), ToClass, 0) &&
2719      IsDerivedFrom(ToClass, FromClass)) {
2720    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2721                                                 ToClass.getTypePtr());
2722    return true;
2723  }
2724
2725  return false;
2726}
2727
2728/// CheckMemberPointerConversion - Check the member pointer conversion from the
2729/// expression From to the type ToType. This routine checks for ambiguous or
2730/// virtual or inaccessible base-to-derived member pointer conversions
2731/// for which IsMemberPointerConversion has already returned true. It returns
2732/// true and produces a diagnostic if there was an error, or returns false
2733/// otherwise.
2734bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2735                                        CastKind &Kind,
2736                                        CXXCastPath &BasePath,
2737                                        bool IgnoreBaseAccess) {
2738  QualType FromType = From->getType();
2739  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2740  if (!FromPtrType) {
2741    // This must be a null pointer to member pointer conversion
2742    assert(From->isNullPointerConstant(Context,
2743                                       Expr::NPC_ValueDependentIsNull) &&
2744           "Expr must be null pointer constant!");
2745    Kind = CK_NullToMemberPointer;
2746    return false;
2747  }
2748
2749  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2750  assert(ToPtrType && "No member pointer cast has a target type "
2751                      "that is not a member pointer.");
2752
2753  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2754  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2755
2756  // FIXME: What about dependent types?
2757  assert(FromClass->isRecordType() && "Pointer into non-class.");
2758  assert(ToClass->isRecordType() && "Pointer into non-class.");
2759
2760  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2761                     /*DetectVirtual=*/true);
2762  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2763  assert(DerivationOkay &&
2764         "Should not have been called if derivation isn't OK.");
2765  (void)DerivationOkay;
2766
2767  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2768                                  getUnqualifiedType())) {
2769    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2770    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2771      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2772    return true;
2773  }
2774
2775  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2776    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2777      << FromClass << ToClass << QualType(VBase, 0)
2778      << From->getSourceRange();
2779    return true;
2780  }
2781
2782  if (!IgnoreBaseAccess)
2783    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2784                         Paths.front(),
2785                         diag::err_downcast_from_inaccessible_base);
2786
2787  // Must be a base to derived member conversion.
2788  BuildBasePathArray(Paths, BasePath);
2789  Kind = CK_BaseToDerivedMemberPointer;
2790  return false;
2791}
2792
2793/// IsQualificationConversion - Determines whether the conversion from
2794/// an rvalue of type FromType to ToType is a qualification conversion
2795/// (C++ 4.4).
2796///
2797/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2798/// when the qualification conversion involves a change in the Objective-C
2799/// object lifetime.
2800bool
2801Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2802                                bool CStyle, bool &ObjCLifetimeConversion) {
2803  FromType = Context.getCanonicalType(FromType);
2804  ToType = Context.getCanonicalType(ToType);
2805  ObjCLifetimeConversion = false;
2806
2807  // If FromType and ToType are the same type, this is not a
2808  // qualification conversion.
2809  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2810    return false;
2811
2812  // (C++ 4.4p4):
2813  //   A conversion can add cv-qualifiers at levels other than the first
2814  //   in multi-level pointers, subject to the following rules: [...]
2815  bool PreviousToQualsIncludeConst = true;
2816  bool UnwrappedAnyPointer = false;
2817  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2818    // Within each iteration of the loop, we check the qualifiers to
2819    // determine if this still looks like a qualification
2820    // conversion. Then, if all is well, we unwrap one more level of
2821    // pointers or pointers-to-members and do it all again
2822    // until there are no more pointers or pointers-to-members left to
2823    // unwrap.
2824    UnwrappedAnyPointer = true;
2825
2826    Qualifiers FromQuals = FromType.getQualifiers();
2827    Qualifiers ToQuals = ToType.getQualifiers();
2828
2829    // Objective-C ARC:
2830    //   Check Objective-C lifetime conversions.
2831    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2832        UnwrappedAnyPointer) {
2833      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2834        ObjCLifetimeConversion = true;
2835        FromQuals.removeObjCLifetime();
2836        ToQuals.removeObjCLifetime();
2837      } else {
2838        // Qualification conversions cannot cast between different
2839        // Objective-C lifetime qualifiers.
2840        return false;
2841      }
2842    }
2843
2844    // Allow addition/removal of GC attributes but not changing GC attributes.
2845    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2846        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2847      FromQuals.removeObjCGCAttr();
2848      ToQuals.removeObjCGCAttr();
2849    }
2850
2851    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2852    //      2,j, and similarly for volatile.
2853    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2854      return false;
2855
2856    //   -- if the cv 1,j and cv 2,j are different, then const is in
2857    //      every cv for 0 < k < j.
2858    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2859        && !PreviousToQualsIncludeConst)
2860      return false;
2861
2862    // Keep track of whether all prior cv-qualifiers in the "to" type
2863    // include const.
2864    PreviousToQualsIncludeConst
2865      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2866  }
2867
2868  // We are left with FromType and ToType being the pointee types
2869  // after unwrapping the original FromType and ToType the same number
2870  // of types. If we unwrapped any pointers, and if FromType and
2871  // ToType have the same unqualified type (since we checked
2872  // qualifiers above), then this is a qualification conversion.
2873  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2874}
2875
2876/// \brief - Determine whether this is a conversion from a scalar type to an
2877/// atomic type.
2878///
2879/// If successful, updates \c SCS's second and third steps in the conversion
2880/// sequence to finish the conversion.
2881static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
2882                                bool InOverloadResolution,
2883                                StandardConversionSequence &SCS,
2884                                bool CStyle) {
2885  const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
2886  if (!ToAtomic)
2887    return false;
2888
2889  StandardConversionSequence InnerSCS;
2890  if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
2891                            InOverloadResolution, InnerSCS,
2892                            CStyle, /*AllowObjCWritebackConversion=*/false))
2893    return false;
2894
2895  SCS.Second = InnerSCS.Second;
2896  SCS.setToType(1, InnerSCS.getToType(1));
2897  SCS.Third = InnerSCS.Third;
2898  SCS.QualificationIncludesObjCLifetime
2899    = InnerSCS.QualificationIncludesObjCLifetime;
2900  SCS.setToType(2, InnerSCS.getToType(2));
2901  return true;
2902}
2903
2904static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
2905                                              CXXConstructorDecl *Constructor,
2906                                              QualType Type) {
2907  const FunctionProtoType *CtorType =
2908      Constructor->getType()->getAs<FunctionProtoType>();
2909  if (CtorType->getNumArgs() > 0) {
2910    QualType FirstArg = CtorType->getArgType(0);
2911    if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
2912      return true;
2913  }
2914  return false;
2915}
2916
2917static OverloadingResult
2918IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
2919                                       CXXRecordDecl *To,
2920                                       UserDefinedConversionSequence &User,
2921                                       OverloadCandidateSet &CandidateSet,
2922                                       bool AllowExplicit) {
2923  DeclContext::lookup_result R = S.LookupConstructors(To);
2924  for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
2925       Con != ConEnd; ++Con) {
2926    NamedDecl *D = *Con;
2927    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2928
2929    // Find the constructor (which may be a template).
2930    CXXConstructorDecl *Constructor = 0;
2931    FunctionTemplateDecl *ConstructorTmpl
2932      = dyn_cast<FunctionTemplateDecl>(D);
2933    if (ConstructorTmpl)
2934      Constructor
2935        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2936    else
2937      Constructor = cast<CXXConstructorDecl>(D);
2938
2939    bool Usable = !Constructor->isInvalidDecl() &&
2940                  S.isInitListConstructor(Constructor) &&
2941                  (AllowExplicit || !Constructor->isExplicit());
2942    if (Usable) {
2943      // If the first argument is (a reference to) the target type,
2944      // suppress conversions.
2945      bool SuppressUserConversions =
2946          isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
2947      if (ConstructorTmpl)
2948        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2949                                       /*ExplicitArgs*/ 0,
2950                                       From, CandidateSet,
2951                                       SuppressUserConversions);
2952      else
2953        S.AddOverloadCandidate(Constructor, FoundDecl,
2954                               From, CandidateSet,
2955                               SuppressUserConversions);
2956    }
2957  }
2958
2959  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2960
2961  OverloadCandidateSet::iterator Best;
2962  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2963  case OR_Success: {
2964    // Record the standard conversion we used and the conversion function.
2965    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
2966    QualType ThisType = Constructor->getThisType(S.Context);
2967    // Initializer lists don't have conversions as such.
2968    User.Before.setAsIdentityConversion();
2969    User.HadMultipleCandidates = HadMultipleCandidates;
2970    User.ConversionFunction = Constructor;
2971    User.FoundConversionFunction = Best->FoundDecl;
2972    User.After.setAsIdentityConversion();
2973    User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2974    User.After.setAllToTypes(ToType);
2975    return OR_Success;
2976  }
2977
2978  case OR_No_Viable_Function:
2979    return OR_No_Viable_Function;
2980  case OR_Deleted:
2981    return OR_Deleted;
2982  case OR_Ambiguous:
2983    return OR_Ambiguous;
2984  }
2985
2986  llvm_unreachable("Invalid OverloadResult!");
2987}
2988
2989/// Determines whether there is a user-defined conversion sequence
2990/// (C++ [over.ics.user]) that converts expression From to the type
2991/// ToType. If such a conversion exists, User will contain the
2992/// user-defined conversion sequence that performs such a conversion
2993/// and this routine will return true. Otherwise, this routine returns
2994/// false and User is unspecified.
2995///
2996/// \param AllowExplicit  true if the conversion should consider C++0x
2997/// "explicit" conversion functions as well as non-explicit conversion
2998/// functions (C++0x [class.conv.fct]p2).
2999///
3000/// \param AllowObjCConversionOnExplicit true if the conversion should
3001/// allow an extra Objective-C pointer conversion on uses of explicit
3002/// constructors. Requires \c AllowExplicit to also be set.
3003static OverloadingResult
3004IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3005                        UserDefinedConversionSequence &User,
3006                        OverloadCandidateSet &CandidateSet,
3007                        bool AllowExplicit,
3008                        bool AllowObjCConversionOnExplicit) {
3009  assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3010
3011  // Whether we will only visit constructors.
3012  bool ConstructorsOnly = false;
3013
3014  // If the type we are conversion to is a class type, enumerate its
3015  // constructors.
3016  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3017    // C++ [over.match.ctor]p1:
3018    //   When objects of class type are direct-initialized (8.5), or
3019    //   copy-initialized from an expression of the same or a
3020    //   derived class type (8.5), overload resolution selects the
3021    //   constructor. [...] For copy-initialization, the candidate
3022    //   functions are all the converting constructors (12.3.1) of
3023    //   that class. The argument list is the expression-list within
3024    //   the parentheses of the initializer.
3025    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3026        (From->getType()->getAs<RecordType>() &&
3027         S.IsDerivedFrom(From->getType(), ToType)))
3028      ConstructorsOnly = true;
3029
3030    S.RequireCompleteType(From->getExprLoc(), ToType, 0);
3031    // RequireCompleteType may have returned true due to some invalid decl
3032    // during template instantiation, but ToType may be complete enough now
3033    // to try to recover.
3034    if (ToType->isIncompleteType()) {
3035      // We're not going to find any constructors.
3036    } else if (CXXRecordDecl *ToRecordDecl
3037                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3038
3039      Expr **Args = &From;
3040      unsigned NumArgs = 1;
3041      bool ListInitializing = false;
3042      if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3043        // But first, see if there is an init-list-constructor that will work.
3044        OverloadingResult Result = IsInitializerListConstructorConversion(
3045            S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3046        if (Result != OR_No_Viable_Function)
3047          return Result;
3048        // Never mind.
3049        CandidateSet.clear();
3050
3051        // If we're list-initializing, we pass the individual elements as
3052        // arguments, not the entire list.
3053        Args = InitList->getInits();
3054        NumArgs = InitList->getNumInits();
3055        ListInitializing = true;
3056      }
3057
3058      DeclContext::lookup_result R = S.LookupConstructors(ToRecordDecl);
3059      for (DeclContext::lookup_iterator Con = R.begin(), ConEnd = R.end();
3060           Con != ConEnd; ++Con) {
3061        NamedDecl *D = *Con;
3062        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3063
3064        // Find the constructor (which may be a template).
3065        CXXConstructorDecl *Constructor = 0;
3066        FunctionTemplateDecl *ConstructorTmpl
3067          = dyn_cast<FunctionTemplateDecl>(D);
3068        if (ConstructorTmpl)
3069          Constructor
3070            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3071        else
3072          Constructor = cast<CXXConstructorDecl>(D);
3073
3074        bool Usable = !Constructor->isInvalidDecl();
3075        if (ListInitializing)
3076          Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
3077        else
3078          Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
3079        if (Usable) {
3080          bool SuppressUserConversions = !ConstructorsOnly;
3081          if (SuppressUserConversions && ListInitializing) {
3082            SuppressUserConversions = false;
3083            if (NumArgs == 1) {
3084              // If the first argument is (a reference to) the target type,
3085              // suppress conversions.
3086              SuppressUserConversions = isFirstArgumentCompatibleWithType(
3087                                                S.Context, Constructor, ToType);
3088            }
3089          }
3090          if (ConstructorTmpl)
3091            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3092                                           /*ExplicitArgs*/ 0,
3093                                           llvm::makeArrayRef(Args, NumArgs),
3094                                           CandidateSet, SuppressUserConversions);
3095          else
3096            // Allow one user-defined conversion when user specifies a
3097            // From->ToType conversion via an static cast (c-style, etc).
3098            S.AddOverloadCandidate(Constructor, FoundDecl,
3099                                   llvm::makeArrayRef(Args, NumArgs),
3100                                   CandidateSet, SuppressUserConversions);
3101        }
3102      }
3103    }
3104  }
3105
3106  // Enumerate conversion functions, if we're allowed to.
3107  if (ConstructorsOnly || isa<InitListExpr>(From)) {
3108  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
3109    // No conversion functions from incomplete types.
3110  } else if (const RecordType *FromRecordType
3111                                   = From->getType()->getAs<RecordType>()) {
3112    if (CXXRecordDecl *FromRecordDecl
3113         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3114      // Add all of the conversion functions as candidates.
3115      std::pair<CXXRecordDecl::conversion_iterator,
3116                CXXRecordDecl::conversion_iterator>
3117        Conversions = FromRecordDecl->getVisibleConversionFunctions();
3118      for (CXXRecordDecl::conversion_iterator
3119             I = Conversions.first, E = Conversions.second; I != E; ++I) {
3120        DeclAccessPair FoundDecl = I.getPair();
3121        NamedDecl *D = FoundDecl.getDecl();
3122        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3123        if (isa<UsingShadowDecl>(D))
3124          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3125
3126        CXXConversionDecl *Conv;
3127        FunctionTemplateDecl *ConvTemplate;
3128        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3129          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3130        else
3131          Conv = cast<CXXConversionDecl>(D);
3132
3133        if (AllowExplicit || !Conv->isExplicit()) {
3134          if (ConvTemplate)
3135            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3136                                             ActingContext, From, ToType,
3137                                             CandidateSet,
3138                                             AllowObjCConversionOnExplicit);
3139          else
3140            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3141                                     From, ToType, CandidateSet,
3142                                     AllowObjCConversionOnExplicit);
3143        }
3144      }
3145    }
3146  }
3147
3148  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3149
3150  OverloadCandidateSet::iterator Best;
3151  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
3152  case OR_Success:
3153    // Record the standard conversion we used and the conversion function.
3154    if (CXXConstructorDecl *Constructor
3155          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3156      // C++ [over.ics.user]p1:
3157      //   If the user-defined conversion is specified by a
3158      //   constructor (12.3.1), the initial standard conversion
3159      //   sequence converts the source type to the type required by
3160      //   the argument of the constructor.
3161      //
3162      QualType ThisType = Constructor->getThisType(S.Context);
3163      if (isa<InitListExpr>(From)) {
3164        // Initializer lists don't have conversions as such.
3165        User.Before.setAsIdentityConversion();
3166      } else {
3167        if (Best->Conversions[0].isEllipsis())
3168          User.EllipsisConversion = true;
3169        else {
3170          User.Before = Best->Conversions[0].Standard;
3171          User.EllipsisConversion = false;
3172        }
3173      }
3174      User.HadMultipleCandidates = HadMultipleCandidates;
3175      User.ConversionFunction = Constructor;
3176      User.FoundConversionFunction = Best->FoundDecl;
3177      User.After.setAsIdentityConversion();
3178      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3179      User.After.setAllToTypes(ToType);
3180      return OR_Success;
3181    }
3182    if (CXXConversionDecl *Conversion
3183                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3184      // C++ [over.ics.user]p1:
3185      //
3186      //   [...] If the user-defined conversion is specified by a
3187      //   conversion function (12.3.2), the initial standard
3188      //   conversion sequence converts the source type to the
3189      //   implicit object parameter of the conversion function.
3190      User.Before = Best->Conversions[0].Standard;
3191      User.HadMultipleCandidates = HadMultipleCandidates;
3192      User.ConversionFunction = Conversion;
3193      User.FoundConversionFunction = Best->FoundDecl;
3194      User.EllipsisConversion = false;
3195
3196      // C++ [over.ics.user]p2:
3197      //   The second standard conversion sequence converts the
3198      //   result of the user-defined conversion to the target type
3199      //   for the sequence. Since an implicit conversion sequence
3200      //   is an initialization, the special rules for
3201      //   initialization by user-defined conversion apply when
3202      //   selecting the best user-defined conversion for a
3203      //   user-defined conversion sequence (see 13.3.3 and
3204      //   13.3.3.1).
3205      User.After = Best->FinalConversion;
3206      return OR_Success;
3207    }
3208    llvm_unreachable("Not a constructor or conversion function?");
3209
3210  case OR_No_Viable_Function:
3211    return OR_No_Viable_Function;
3212  case OR_Deleted:
3213    // No conversion here! We're done.
3214    return OR_Deleted;
3215
3216  case OR_Ambiguous:
3217    return OR_Ambiguous;
3218  }
3219
3220  llvm_unreachable("Invalid OverloadResult!");
3221}
3222
3223bool
3224Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3225  ImplicitConversionSequence ICS;
3226  OverloadCandidateSet CandidateSet(From->getExprLoc());
3227  OverloadingResult OvResult =
3228    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3229                            CandidateSet, false, false);
3230  if (OvResult == OR_Ambiguous)
3231    Diag(From->getLocStart(),
3232         diag::err_typecheck_ambiguous_condition)
3233          << From->getType() << ToType << From->getSourceRange();
3234  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3235    if (!RequireCompleteType(From->getLocStart(), ToType,
3236                          diag::err_typecheck_nonviable_condition_incomplete,
3237                             From->getType(), From->getSourceRange()))
3238      Diag(From->getLocStart(),
3239           diag::err_typecheck_nonviable_condition)
3240           << From->getType() << From->getSourceRange() << ToType;
3241  }
3242  else
3243    return false;
3244  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3245  return true;
3246}
3247
3248/// \brief Compare the user-defined conversion functions or constructors
3249/// of two user-defined conversion sequences to determine whether any ordering
3250/// is possible.
3251static ImplicitConversionSequence::CompareKind
3252compareConversionFunctions(Sema &S,
3253                           FunctionDecl *Function1,
3254                           FunctionDecl *Function2) {
3255  if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3256    return ImplicitConversionSequence::Indistinguishable;
3257
3258  // Objective-C++:
3259  //   If both conversion functions are implicitly-declared conversions from
3260  //   a lambda closure type to a function pointer and a block pointer,
3261  //   respectively, always prefer the conversion to a function pointer,
3262  //   because the function pointer is more lightweight and is more likely
3263  //   to keep code working.
3264  CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
3265  if (!Conv1)
3266    return ImplicitConversionSequence::Indistinguishable;
3267
3268  CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3269  if (!Conv2)
3270    return ImplicitConversionSequence::Indistinguishable;
3271
3272  if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3273    bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3274    bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3275    if (Block1 != Block2)
3276      return Block1? ImplicitConversionSequence::Worse
3277                   : ImplicitConversionSequence::Better;
3278  }
3279
3280  return ImplicitConversionSequence::Indistinguishable;
3281}
3282
3283/// CompareImplicitConversionSequences - Compare two implicit
3284/// conversion sequences to determine whether one is better than the
3285/// other or if they are indistinguishable (C++ 13.3.3.2).
3286static ImplicitConversionSequence::CompareKind
3287CompareImplicitConversionSequences(Sema &S,
3288                                   const ImplicitConversionSequence& ICS1,
3289                                   const ImplicitConversionSequence& ICS2)
3290{
3291  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3292  // conversion sequences (as defined in 13.3.3.1)
3293  //   -- a standard conversion sequence (13.3.3.1.1) is a better
3294  //      conversion sequence than a user-defined conversion sequence or
3295  //      an ellipsis conversion sequence, and
3296  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3297  //      conversion sequence than an ellipsis conversion sequence
3298  //      (13.3.3.1.3).
3299  //
3300  // C++0x [over.best.ics]p10:
3301  //   For the purpose of ranking implicit conversion sequences as
3302  //   described in 13.3.3.2, the ambiguous conversion sequence is
3303  //   treated as a user-defined sequence that is indistinguishable
3304  //   from any other user-defined conversion sequence.
3305  if (ICS1.getKindRank() < ICS2.getKindRank())
3306    return ImplicitConversionSequence::Better;
3307  if (ICS2.getKindRank() < ICS1.getKindRank())
3308    return ImplicitConversionSequence::Worse;
3309
3310  // The following checks require both conversion sequences to be of
3311  // the same kind.
3312  if (ICS1.getKind() != ICS2.getKind())
3313    return ImplicitConversionSequence::Indistinguishable;
3314
3315  ImplicitConversionSequence::CompareKind Result =
3316      ImplicitConversionSequence::Indistinguishable;
3317
3318  // Two implicit conversion sequences of the same form are
3319  // indistinguishable conversion sequences unless one of the
3320  // following rules apply: (C++ 13.3.3.2p3):
3321  if (ICS1.isStandard())
3322    Result = CompareStandardConversionSequences(S,
3323                                                ICS1.Standard, ICS2.Standard);
3324  else if (ICS1.isUserDefined()) {
3325    // User-defined conversion sequence U1 is a better conversion
3326    // sequence than another user-defined conversion sequence U2 if
3327    // they contain the same user-defined conversion function or
3328    // constructor and if the second standard conversion sequence of
3329    // U1 is better than the second standard conversion sequence of
3330    // U2 (C++ 13.3.3.2p3).
3331    if (ICS1.UserDefined.ConversionFunction ==
3332          ICS2.UserDefined.ConversionFunction)
3333      Result = CompareStandardConversionSequences(S,
3334                                                  ICS1.UserDefined.After,
3335                                                  ICS2.UserDefined.After);
3336    else
3337      Result = compareConversionFunctions(S,
3338                                          ICS1.UserDefined.ConversionFunction,
3339                                          ICS2.UserDefined.ConversionFunction);
3340  }
3341
3342  // List-initialization sequence L1 is a better conversion sequence than
3343  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
3344  // for some X and L2 does not.
3345  if (Result == ImplicitConversionSequence::Indistinguishable &&
3346      !ICS1.isBad()) {
3347    if (ICS1.isStdInitializerListElement() &&
3348        !ICS2.isStdInitializerListElement())
3349      return ImplicitConversionSequence::Better;
3350    if (!ICS1.isStdInitializerListElement() &&
3351        ICS2.isStdInitializerListElement())
3352      return ImplicitConversionSequence::Worse;
3353  }
3354
3355  return Result;
3356}
3357
3358static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3359  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3360    Qualifiers Quals;
3361    T1 = Context.getUnqualifiedArrayType(T1, Quals);
3362    T2 = Context.getUnqualifiedArrayType(T2, Quals);
3363  }
3364
3365  return Context.hasSameUnqualifiedType(T1, T2);
3366}
3367
3368// Per 13.3.3.2p3, compare the given standard conversion sequences to
3369// determine if one is a proper subset of the other.
3370static ImplicitConversionSequence::CompareKind
3371compareStandardConversionSubsets(ASTContext &Context,
3372                                 const StandardConversionSequence& SCS1,
3373                                 const StandardConversionSequence& SCS2) {
3374  ImplicitConversionSequence::CompareKind Result
3375    = ImplicitConversionSequence::Indistinguishable;
3376
3377  // the identity conversion sequence is considered to be a subsequence of
3378  // any non-identity conversion sequence
3379  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3380    return ImplicitConversionSequence::Better;
3381  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3382    return ImplicitConversionSequence::Worse;
3383
3384  if (SCS1.Second != SCS2.Second) {
3385    if (SCS1.Second == ICK_Identity)
3386      Result = ImplicitConversionSequence::Better;
3387    else if (SCS2.Second == ICK_Identity)
3388      Result = ImplicitConversionSequence::Worse;
3389    else
3390      return ImplicitConversionSequence::Indistinguishable;
3391  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3392    return ImplicitConversionSequence::Indistinguishable;
3393
3394  if (SCS1.Third == SCS2.Third) {
3395    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3396                             : ImplicitConversionSequence::Indistinguishable;
3397  }
3398
3399  if (SCS1.Third == ICK_Identity)
3400    return Result == ImplicitConversionSequence::Worse
3401             ? ImplicitConversionSequence::Indistinguishable
3402             : ImplicitConversionSequence::Better;
3403
3404  if (SCS2.Third == ICK_Identity)
3405    return Result == ImplicitConversionSequence::Better
3406             ? ImplicitConversionSequence::Indistinguishable
3407             : ImplicitConversionSequence::Worse;
3408
3409  return ImplicitConversionSequence::Indistinguishable;
3410}
3411
3412/// \brief Determine whether one of the given reference bindings is better
3413/// than the other based on what kind of bindings they are.
3414static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3415                                       const StandardConversionSequence &SCS2) {
3416  // C++0x [over.ics.rank]p3b4:
3417  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3418  //      implicit object parameter of a non-static member function declared
3419  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3420  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3421  //      lvalue reference to a function lvalue and S2 binds an rvalue
3422  //      reference*.
3423  //
3424  // FIXME: Rvalue references. We're going rogue with the above edits,
3425  // because the semantics in the current C++0x working paper (N3225 at the
3426  // time of this writing) break the standard definition of std::forward
3427  // and std::reference_wrapper when dealing with references to functions.
3428  // Proposed wording changes submitted to CWG for consideration.
3429  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3430      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3431    return false;
3432
3433  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3434          SCS2.IsLvalueReference) ||
3435         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3436          !SCS2.IsLvalueReference);
3437}
3438
3439/// CompareStandardConversionSequences - Compare two standard
3440/// conversion sequences to determine whether one is better than the
3441/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3442static ImplicitConversionSequence::CompareKind
3443CompareStandardConversionSequences(Sema &S,
3444                                   const StandardConversionSequence& SCS1,
3445                                   const StandardConversionSequence& SCS2)
3446{
3447  // Standard conversion sequence S1 is a better conversion sequence
3448  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3449
3450  //  -- S1 is a proper subsequence of S2 (comparing the conversion
3451  //     sequences in the canonical form defined by 13.3.3.1.1,
3452  //     excluding any Lvalue Transformation; the identity conversion
3453  //     sequence is considered to be a subsequence of any
3454  //     non-identity conversion sequence) or, if not that,
3455  if (ImplicitConversionSequence::CompareKind CK
3456        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3457    return CK;
3458
3459  //  -- the rank of S1 is better than the rank of S2 (by the rules
3460  //     defined below), or, if not that,
3461  ImplicitConversionRank Rank1 = SCS1.getRank();
3462  ImplicitConversionRank Rank2 = SCS2.getRank();
3463  if (Rank1 < Rank2)
3464    return ImplicitConversionSequence::Better;
3465  else if (Rank2 < Rank1)
3466    return ImplicitConversionSequence::Worse;
3467
3468  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3469  // are indistinguishable unless one of the following rules
3470  // applies:
3471
3472  //   A conversion that is not a conversion of a pointer, or
3473  //   pointer to member, to bool is better than another conversion
3474  //   that is such a conversion.
3475  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3476    return SCS2.isPointerConversionToBool()
3477             ? ImplicitConversionSequence::Better
3478             : ImplicitConversionSequence::Worse;
3479
3480  // C++ [over.ics.rank]p4b2:
3481  //
3482  //   If class B is derived directly or indirectly from class A,
3483  //   conversion of B* to A* is better than conversion of B* to
3484  //   void*, and conversion of A* to void* is better than conversion
3485  //   of B* to void*.
3486  bool SCS1ConvertsToVoid
3487    = SCS1.isPointerConversionToVoidPointer(S.Context);
3488  bool SCS2ConvertsToVoid
3489    = SCS2.isPointerConversionToVoidPointer(S.Context);
3490  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3491    // Exactly one of the conversion sequences is a conversion to
3492    // a void pointer; it's the worse conversion.
3493    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3494                              : ImplicitConversionSequence::Worse;
3495  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3496    // Neither conversion sequence converts to a void pointer; compare
3497    // their derived-to-base conversions.
3498    if (ImplicitConversionSequence::CompareKind DerivedCK
3499          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
3500      return DerivedCK;
3501  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3502             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3503    // Both conversion sequences are conversions to void
3504    // pointers. Compare the source types to determine if there's an
3505    // inheritance relationship in their sources.
3506    QualType FromType1 = SCS1.getFromType();
3507    QualType FromType2 = SCS2.getFromType();
3508
3509    // Adjust the types we're converting from via the array-to-pointer
3510    // conversion, if we need to.
3511    if (SCS1.First == ICK_Array_To_Pointer)
3512      FromType1 = S.Context.getArrayDecayedType(FromType1);
3513    if (SCS2.First == ICK_Array_To_Pointer)
3514      FromType2 = S.Context.getArrayDecayedType(FromType2);
3515
3516    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3517    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3518
3519    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3520      return ImplicitConversionSequence::Better;
3521    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3522      return ImplicitConversionSequence::Worse;
3523
3524    // Objective-C++: If one interface is more specific than the
3525    // other, it is the better one.
3526    const ObjCObjectPointerType* FromObjCPtr1
3527      = FromType1->getAs<ObjCObjectPointerType>();
3528    const ObjCObjectPointerType* FromObjCPtr2
3529      = FromType2->getAs<ObjCObjectPointerType>();
3530    if (FromObjCPtr1 && FromObjCPtr2) {
3531      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3532                                                          FromObjCPtr2);
3533      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3534                                                           FromObjCPtr1);
3535      if (AssignLeft != AssignRight) {
3536        return AssignLeft? ImplicitConversionSequence::Better
3537                         : ImplicitConversionSequence::Worse;
3538      }
3539    }
3540  }
3541
3542  // Compare based on qualification conversions (C++ 13.3.3.2p3,
3543  // bullet 3).
3544  if (ImplicitConversionSequence::CompareKind QualCK
3545        = CompareQualificationConversions(S, SCS1, SCS2))
3546    return QualCK;
3547
3548  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3549    // Check for a better reference binding based on the kind of bindings.
3550    if (isBetterReferenceBindingKind(SCS1, SCS2))
3551      return ImplicitConversionSequence::Better;
3552    else if (isBetterReferenceBindingKind(SCS2, SCS1))
3553      return ImplicitConversionSequence::Worse;
3554
3555    // C++ [over.ics.rank]p3b4:
3556    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
3557    //      which the references refer are the same type except for
3558    //      top-level cv-qualifiers, and the type to which the reference
3559    //      initialized by S2 refers is more cv-qualified than the type
3560    //      to which the reference initialized by S1 refers.
3561    QualType T1 = SCS1.getToType(2);
3562    QualType T2 = SCS2.getToType(2);
3563    T1 = S.Context.getCanonicalType(T1);
3564    T2 = S.Context.getCanonicalType(T2);
3565    Qualifiers T1Quals, T2Quals;
3566    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3567    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3568    if (UnqualT1 == UnqualT2) {
3569      // Objective-C++ ARC: If the references refer to objects with different
3570      // lifetimes, prefer bindings that don't change lifetime.
3571      if (SCS1.ObjCLifetimeConversionBinding !=
3572                                          SCS2.ObjCLifetimeConversionBinding) {
3573        return SCS1.ObjCLifetimeConversionBinding
3574                                           ? ImplicitConversionSequence::Worse
3575                                           : ImplicitConversionSequence::Better;
3576      }
3577
3578      // If the type is an array type, promote the element qualifiers to the
3579      // type for comparison.
3580      if (isa<ArrayType>(T1) && T1Quals)
3581        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3582      if (isa<ArrayType>(T2) && T2Quals)
3583        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3584      if (T2.isMoreQualifiedThan(T1))
3585        return ImplicitConversionSequence::Better;
3586      else if (T1.isMoreQualifiedThan(T2))
3587        return ImplicitConversionSequence::Worse;
3588    }
3589  }
3590
3591  // In Microsoft mode, prefer an integral conversion to a
3592  // floating-to-integral conversion if the integral conversion
3593  // is between types of the same size.
3594  // For example:
3595  // void f(float);
3596  // void f(int);
3597  // int main {
3598  //    long a;
3599  //    f(a);
3600  // }
3601  // Here, MSVC will call f(int) instead of generating a compile error
3602  // as clang will do in standard mode.
3603  if (S.getLangOpts().MicrosoftMode &&
3604      SCS1.Second == ICK_Integral_Conversion &&
3605      SCS2.Second == ICK_Floating_Integral &&
3606      S.Context.getTypeSize(SCS1.getFromType()) ==
3607      S.Context.getTypeSize(SCS1.getToType(2)))
3608    return ImplicitConversionSequence::Better;
3609
3610  return ImplicitConversionSequence::Indistinguishable;
3611}
3612
3613/// CompareQualificationConversions - Compares two standard conversion
3614/// sequences to determine whether they can be ranked based on their
3615/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3616ImplicitConversionSequence::CompareKind
3617CompareQualificationConversions(Sema &S,
3618                                const StandardConversionSequence& SCS1,
3619                                const StandardConversionSequence& SCS2) {
3620  // C++ 13.3.3.2p3:
3621  //  -- S1 and S2 differ only in their qualification conversion and
3622  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3623  //     cv-qualification signature of type T1 is a proper subset of
3624  //     the cv-qualification signature of type T2, and S1 is not the
3625  //     deprecated string literal array-to-pointer conversion (4.2).
3626  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3627      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3628    return ImplicitConversionSequence::Indistinguishable;
3629
3630  // FIXME: the example in the standard doesn't use a qualification
3631  // conversion (!)
3632  QualType T1 = SCS1.getToType(2);
3633  QualType T2 = SCS2.getToType(2);
3634  T1 = S.Context.getCanonicalType(T1);
3635  T2 = S.Context.getCanonicalType(T2);
3636  Qualifiers T1Quals, T2Quals;
3637  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3638  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3639
3640  // If the types are the same, we won't learn anything by unwrapped
3641  // them.
3642  if (UnqualT1 == UnqualT2)
3643    return ImplicitConversionSequence::Indistinguishable;
3644
3645  // If the type is an array type, promote the element qualifiers to the type
3646  // for comparison.
3647  if (isa<ArrayType>(T1) && T1Quals)
3648    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3649  if (isa<ArrayType>(T2) && T2Quals)
3650    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3651
3652  ImplicitConversionSequence::CompareKind Result
3653    = ImplicitConversionSequence::Indistinguishable;
3654
3655  // Objective-C++ ARC:
3656  //   Prefer qualification conversions not involving a change in lifetime
3657  //   to qualification conversions that do not change lifetime.
3658  if (SCS1.QualificationIncludesObjCLifetime !=
3659                                      SCS2.QualificationIncludesObjCLifetime) {
3660    Result = SCS1.QualificationIncludesObjCLifetime
3661               ? ImplicitConversionSequence::Worse
3662               : ImplicitConversionSequence::Better;
3663  }
3664
3665  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3666    // Within each iteration of the loop, we check the qualifiers to
3667    // determine if this still looks like a qualification
3668    // conversion. Then, if all is well, we unwrap one more level of
3669    // pointers or pointers-to-members and do it all again
3670    // until there are no more pointers or pointers-to-members left
3671    // to unwrap. This essentially mimics what
3672    // IsQualificationConversion does, but here we're checking for a
3673    // strict subset of qualifiers.
3674    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3675      // The qualifiers are the same, so this doesn't tell us anything
3676      // about how the sequences rank.
3677      ;
3678    else if (T2.isMoreQualifiedThan(T1)) {
3679      // T1 has fewer qualifiers, so it could be the better sequence.
3680      if (Result == ImplicitConversionSequence::Worse)
3681        // Neither has qualifiers that are a subset of the other's
3682        // qualifiers.
3683        return ImplicitConversionSequence::Indistinguishable;
3684
3685      Result = ImplicitConversionSequence::Better;
3686    } else if (T1.isMoreQualifiedThan(T2)) {
3687      // T2 has fewer qualifiers, so it could be the better sequence.
3688      if (Result == ImplicitConversionSequence::Better)
3689        // Neither has qualifiers that are a subset of the other's
3690        // qualifiers.
3691        return ImplicitConversionSequence::Indistinguishable;
3692
3693      Result = ImplicitConversionSequence::Worse;
3694    } else {
3695      // Qualifiers are disjoint.
3696      return ImplicitConversionSequence::Indistinguishable;
3697    }
3698
3699    // If the types after this point are equivalent, we're done.
3700    if (S.Context.hasSameUnqualifiedType(T1, T2))
3701      break;
3702  }
3703
3704  // Check that the winning standard conversion sequence isn't using
3705  // the deprecated string literal array to pointer conversion.
3706  switch (Result) {
3707  case ImplicitConversionSequence::Better:
3708    if (SCS1.DeprecatedStringLiteralToCharPtr)
3709      Result = ImplicitConversionSequence::Indistinguishable;
3710    break;
3711
3712  case ImplicitConversionSequence::Indistinguishable:
3713    break;
3714
3715  case ImplicitConversionSequence::Worse:
3716    if (SCS2.DeprecatedStringLiteralToCharPtr)
3717      Result = ImplicitConversionSequence::Indistinguishable;
3718    break;
3719  }
3720
3721  return Result;
3722}
3723
3724/// CompareDerivedToBaseConversions - Compares two standard conversion
3725/// sequences to determine whether they can be ranked based on their
3726/// various kinds of derived-to-base conversions (C++
3727/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3728/// conversions between Objective-C interface types.
3729ImplicitConversionSequence::CompareKind
3730CompareDerivedToBaseConversions(Sema &S,
3731                                const StandardConversionSequence& SCS1,
3732                                const StandardConversionSequence& SCS2) {
3733  QualType FromType1 = SCS1.getFromType();
3734  QualType ToType1 = SCS1.getToType(1);
3735  QualType FromType2 = SCS2.getFromType();
3736  QualType ToType2 = SCS2.getToType(1);
3737
3738  // Adjust the types we're converting from via the array-to-pointer
3739  // conversion, if we need to.
3740  if (SCS1.First == ICK_Array_To_Pointer)
3741    FromType1 = S.Context.getArrayDecayedType(FromType1);
3742  if (SCS2.First == ICK_Array_To_Pointer)
3743    FromType2 = S.Context.getArrayDecayedType(FromType2);
3744
3745  // Canonicalize all of the types.
3746  FromType1 = S.Context.getCanonicalType(FromType1);
3747  ToType1 = S.Context.getCanonicalType(ToType1);
3748  FromType2 = S.Context.getCanonicalType(FromType2);
3749  ToType2 = S.Context.getCanonicalType(ToType2);
3750
3751  // C++ [over.ics.rank]p4b3:
3752  //
3753  //   If class B is derived directly or indirectly from class A and
3754  //   class C is derived directly or indirectly from B,
3755  //
3756  // Compare based on pointer conversions.
3757  if (SCS1.Second == ICK_Pointer_Conversion &&
3758      SCS2.Second == ICK_Pointer_Conversion &&
3759      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3760      FromType1->isPointerType() && FromType2->isPointerType() &&
3761      ToType1->isPointerType() && ToType2->isPointerType()) {
3762    QualType FromPointee1
3763      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3764    QualType ToPointee1
3765      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3766    QualType FromPointee2
3767      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3768    QualType ToPointee2
3769      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3770
3771    //   -- conversion of C* to B* is better than conversion of C* to A*,
3772    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3773      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3774        return ImplicitConversionSequence::Better;
3775      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3776        return ImplicitConversionSequence::Worse;
3777    }
3778
3779    //   -- conversion of B* to A* is better than conversion of C* to A*,
3780    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3781      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3782        return ImplicitConversionSequence::Better;
3783      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3784        return ImplicitConversionSequence::Worse;
3785    }
3786  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3787             SCS2.Second == ICK_Pointer_Conversion) {
3788    const ObjCObjectPointerType *FromPtr1
3789      = FromType1->getAs<ObjCObjectPointerType>();
3790    const ObjCObjectPointerType *FromPtr2
3791      = FromType2->getAs<ObjCObjectPointerType>();
3792    const ObjCObjectPointerType *ToPtr1
3793      = ToType1->getAs<ObjCObjectPointerType>();
3794    const ObjCObjectPointerType *ToPtr2
3795      = ToType2->getAs<ObjCObjectPointerType>();
3796
3797    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3798      // Apply the same conversion ranking rules for Objective-C pointer types
3799      // that we do for C++ pointers to class types. However, we employ the
3800      // Objective-C pseudo-subtyping relationship used for assignment of
3801      // Objective-C pointer types.
3802      bool FromAssignLeft
3803        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3804      bool FromAssignRight
3805        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3806      bool ToAssignLeft
3807        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3808      bool ToAssignRight
3809        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3810
3811      // A conversion to an a non-id object pointer type or qualified 'id'
3812      // type is better than a conversion to 'id'.
3813      if (ToPtr1->isObjCIdType() &&
3814          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3815        return ImplicitConversionSequence::Worse;
3816      if (ToPtr2->isObjCIdType() &&
3817          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3818        return ImplicitConversionSequence::Better;
3819
3820      // A conversion to a non-id object pointer type is better than a
3821      // conversion to a qualified 'id' type
3822      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3823        return ImplicitConversionSequence::Worse;
3824      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3825        return ImplicitConversionSequence::Better;
3826
3827      // A conversion to an a non-Class object pointer type or qualified 'Class'
3828      // type is better than a conversion to 'Class'.
3829      if (ToPtr1->isObjCClassType() &&
3830          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3831        return ImplicitConversionSequence::Worse;
3832      if (ToPtr2->isObjCClassType() &&
3833          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3834        return ImplicitConversionSequence::Better;
3835
3836      // A conversion to a non-Class object pointer type is better than a
3837      // conversion to a qualified 'Class' type.
3838      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3839        return ImplicitConversionSequence::Worse;
3840      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3841        return ImplicitConversionSequence::Better;
3842
3843      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3844      if (S.Context.hasSameType(FromType1, FromType2) &&
3845          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3846          (ToAssignLeft != ToAssignRight))
3847        return ToAssignLeft? ImplicitConversionSequence::Worse
3848                           : ImplicitConversionSequence::Better;
3849
3850      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3851      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3852          (FromAssignLeft != FromAssignRight))
3853        return FromAssignLeft? ImplicitConversionSequence::Better
3854        : ImplicitConversionSequence::Worse;
3855    }
3856  }
3857
3858  // Ranking of member-pointer types.
3859  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3860      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3861      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3862    const MemberPointerType * FromMemPointer1 =
3863                                        FromType1->getAs<MemberPointerType>();
3864    const MemberPointerType * ToMemPointer1 =
3865                                          ToType1->getAs<MemberPointerType>();
3866    const MemberPointerType * FromMemPointer2 =
3867                                          FromType2->getAs<MemberPointerType>();
3868    const MemberPointerType * ToMemPointer2 =
3869                                          ToType2->getAs<MemberPointerType>();
3870    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3871    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3872    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3873    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3874    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3875    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3876    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3877    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3878    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3879    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3880      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3881        return ImplicitConversionSequence::Worse;
3882      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3883        return ImplicitConversionSequence::Better;
3884    }
3885    // conversion of B::* to C::* is better than conversion of A::* to C::*
3886    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3887      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3888        return ImplicitConversionSequence::Better;
3889      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3890        return ImplicitConversionSequence::Worse;
3891    }
3892  }
3893
3894  if (SCS1.Second == ICK_Derived_To_Base) {
3895    //   -- conversion of C to B is better than conversion of C to A,
3896    //   -- binding of an expression of type C to a reference of type
3897    //      B& is better than binding an expression of type C to a
3898    //      reference of type A&,
3899    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3900        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3901      if (S.IsDerivedFrom(ToType1, ToType2))
3902        return ImplicitConversionSequence::Better;
3903      else if (S.IsDerivedFrom(ToType2, ToType1))
3904        return ImplicitConversionSequence::Worse;
3905    }
3906
3907    //   -- conversion of B to A is better than conversion of C to A.
3908    //   -- binding of an expression of type B to a reference of type
3909    //      A& is better than binding an expression of type C to a
3910    //      reference of type A&,
3911    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3912        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3913      if (S.IsDerivedFrom(FromType2, FromType1))
3914        return ImplicitConversionSequence::Better;
3915      else if (S.IsDerivedFrom(FromType1, FromType2))
3916        return ImplicitConversionSequence::Worse;
3917    }
3918  }
3919
3920  return ImplicitConversionSequence::Indistinguishable;
3921}
3922
3923/// \brief Determine whether the given type is valid, e.g., it is not an invalid
3924/// C++ class.
3925static bool isTypeValid(QualType T) {
3926  if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
3927    return !Record->isInvalidDecl();
3928
3929  return true;
3930}
3931
3932/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3933/// determine whether they are reference-related,
3934/// reference-compatible, reference-compatible with added
3935/// qualification, or incompatible, for use in C++ initialization by
3936/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3937/// type, and the first type (T1) is the pointee type of the reference
3938/// type being initialized.
3939Sema::ReferenceCompareResult
3940Sema::CompareReferenceRelationship(SourceLocation Loc,
3941                                   QualType OrigT1, QualType OrigT2,
3942                                   bool &DerivedToBase,
3943                                   bool &ObjCConversion,
3944                                   bool &ObjCLifetimeConversion) {
3945  assert(!OrigT1->isReferenceType() &&
3946    "T1 must be the pointee type of the reference type");
3947  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3948
3949  QualType T1 = Context.getCanonicalType(OrigT1);
3950  QualType T2 = Context.getCanonicalType(OrigT2);
3951  Qualifiers T1Quals, T2Quals;
3952  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3953  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3954
3955  // C++ [dcl.init.ref]p4:
3956  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3957  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3958  //   T1 is a base class of T2.
3959  DerivedToBase = false;
3960  ObjCConversion = false;
3961  ObjCLifetimeConversion = false;
3962  if (UnqualT1 == UnqualT2) {
3963    // Nothing to do.
3964  } else if (!RequireCompleteType(Loc, OrigT2, 0) &&
3965             isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
3966             IsDerivedFrom(UnqualT2, UnqualT1))
3967    DerivedToBase = true;
3968  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3969           UnqualT2->isObjCObjectOrInterfaceType() &&
3970           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3971    ObjCConversion = true;
3972  else
3973    return Ref_Incompatible;
3974
3975  // At this point, we know that T1 and T2 are reference-related (at
3976  // least).
3977
3978  // If the type is an array type, promote the element qualifiers to the type
3979  // for comparison.
3980  if (isa<ArrayType>(T1) && T1Quals)
3981    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3982  if (isa<ArrayType>(T2) && T2Quals)
3983    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3984
3985  // C++ [dcl.init.ref]p4:
3986  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3987  //   reference-related to T2 and cv1 is the same cv-qualification
3988  //   as, or greater cv-qualification than, cv2. For purposes of
3989  //   overload resolution, cases for which cv1 is greater
3990  //   cv-qualification than cv2 are identified as
3991  //   reference-compatible with added qualification (see 13.3.3.2).
3992  //
3993  // Note that we also require equivalence of Objective-C GC and address-space
3994  // qualifiers when performing these computations, so that e.g., an int in
3995  // address space 1 is not reference-compatible with an int in address
3996  // space 2.
3997  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3998      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3999    T1Quals.removeObjCLifetime();
4000    T2Quals.removeObjCLifetime();
4001    ObjCLifetimeConversion = true;
4002  }
4003
4004  if (T1Quals == T2Quals)
4005    return Ref_Compatible;
4006  else if (T1Quals.compatiblyIncludes(T2Quals))
4007    return Ref_Compatible_With_Added_Qualification;
4008  else
4009    return Ref_Related;
4010}
4011
4012/// \brief Look for a user-defined conversion to an value reference-compatible
4013///        with DeclType. Return true if something definite is found.
4014static bool
4015FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4016                         QualType DeclType, SourceLocation DeclLoc,
4017                         Expr *Init, QualType T2, bool AllowRvalues,
4018                         bool AllowExplicit) {
4019  assert(T2->isRecordType() && "Can only find conversions of record types.");
4020  CXXRecordDecl *T2RecordDecl
4021    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4022
4023  OverloadCandidateSet CandidateSet(DeclLoc);
4024  std::pair<CXXRecordDecl::conversion_iterator,
4025            CXXRecordDecl::conversion_iterator>
4026    Conversions = T2RecordDecl->getVisibleConversionFunctions();
4027  for (CXXRecordDecl::conversion_iterator
4028         I = Conversions.first, E = Conversions.second; I != E; ++I) {
4029    NamedDecl *D = *I;
4030    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4031    if (isa<UsingShadowDecl>(D))
4032      D = cast<UsingShadowDecl>(D)->getTargetDecl();
4033
4034    FunctionTemplateDecl *ConvTemplate
4035      = dyn_cast<FunctionTemplateDecl>(D);
4036    CXXConversionDecl *Conv;
4037    if (ConvTemplate)
4038      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4039    else
4040      Conv = cast<CXXConversionDecl>(D);
4041
4042    // If this is an explicit conversion, and we're not allowed to consider
4043    // explicit conversions, skip it.
4044    if (!AllowExplicit && Conv->isExplicit())
4045      continue;
4046
4047    if (AllowRvalues) {
4048      bool DerivedToBase = false;
4049      bool ObjCConversion = false;
4050      bool ObjCLifetimeConversion = false;
4051
4052      // If we are initializing an rvalue reference, don't permit conversion
4053      // functions that return lvalues.
4054      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4055        const ReferenceType *RefType
4056          = Conv->getConversionType()->getAs<LValueReferenceType>();
4057        if (RefType && !RefType->getPointeeType()->isFunctionType())
4058          continue;
4059      }
4060
4061      if (!ConvTemplate &&
4062          S.CompareReferenceRelationship(
4063            DeclLoc,
4064            Conv->getConversionType().getNonReferenceType()
4065              .getUnqualifiedType(),
4066            DeclType.getNonReferenceType().getUnqualifiedType(),
4067            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4068          Sema::Ref_Incompatible)
4069        continue;
4070    } else {
4071      // If the conversion function doesn't return a reference type,
4072      // it can't be considered for this conversion. An rvalue reference
4073      // is only acceptable if its referencee is a function type.
4074
4075      const ReferenceType *RefType =
4076        Conv->getConversionType()->getAs<ReferenceType>();
4077      if (!RefType ||
4078          (!RefType->isLValueReferenceType() &&
4079           !RefType->getPointeeType()->isFunctionType()))
4080        continue;
4081    }
4082
4083    if (ConvTemplate)
4084      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4085                                       Init, DeclType, CandidateSet,
4086                                       /*AllowObjCConversionOnExplicit=*/false);
4087    else
4088      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4089                               DeclType, CandidateSet,
4090                               /*AllowObjCConversionOnExplicit=*/false);
4091  }
4092
4093  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4094
4095  OverloadCandidateSet::iterator Best;
4096  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4097  case OR_Success:
4098    // C++ [over.ics.ref]p1:
4099    //
4100    //   [...] If the parameter binds directly to the result of
4101    //   applying a conversion function to the argument
4102    //   expression, the implicit conversion sequence is a
4103    //   user-defined conversion sequence (13.3.3.1.2), with the
4104    //   second standard conversion sequence either an identity
4105    //   conversion or, if the conversion function returns an
4106    //   entity of a type that is a derived class of the parameter
4107    //   type, a derived-to-base Conversion.
4108    if (!Best->FinalConversion.DirectBinding)
4109      return false;
4110
4111    ICS.setUserDefined();
4112    ICS.UserDefined.Before = Best->Conversions[0].Standard;
4113    ICS.UserDefined.After = Best->FinalConversion;
4114    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4115    ICS.UserDefined.ConversionFunction = Best->Function;
4116    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4117    ICS.UserDefined.EllipsisConversion = false;
4118    assert(ICS.UserDefined.After.ReferenceBinding &&
4119           ICS.UserDefined.After.DirectBinding &&
4120           "Expected a direct reference binding!");
4121    return true;
4122
4123  case OR_Ambiguous:
4124    ICS.setAmbiguous();
4125    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4126         Cand != CandidateSet.end(); ++Cand)
4127      if (Cand->Viable)
4128        ICS.Ambiguous.addConversion(Cand->Function);
4129    return true;
4130
4131  case OR_No_Viable_Function:
4132  case OR_Deleted:
4133    // There was no suitable conversion, or we found a deleted
4134    // conversion; continue with other checks.
4135    return false;
4136  }
4137
4138  llvm_unreachable("Invalid OverloadResult!");
4139}
4140
4141/// \brief Compute an implicit conversion sequence for reference
4142/// initialization.
4143static ImplicitConversionSequence
4144TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4145                 SourceLocation DeclLoc,
4146                 bool SuppressUserConversions,
4147                 bool AllowExplicit) {
4148  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4149
4150  // Most paths end in a failed conversion.
4151  ImplicitConversionSequence ICS;
4152  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4153
4154  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4155  QualType T2 = Init->getType();
4156
4157  // If the initializer is the address of an overloaded function, try
4158  // to resolve the overloaded function. If all goes well, T2 is the
4159  // type of the resulting function.
4160  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4161    DeclAccessPair Found;
4162    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4163                                                                false, Found))
4164      T2 = Fn->getType();
4165  }
4166
4167  // Compute some basic properties of the types and the initializer.
4168  bool isRValRef = DeclType->isRValueReferenceType();
4169  bool DerivedToBase = false;
4170  bool ObjCConversion = false;
4171  bool ObjCLifetimeConversion = false;
4172  Expr::Classification InitCategory = Init->Classify(S.Context);
4173  Sema::ReferenceCompareResult RefRelationship
4174    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4175                                     ObjCConversion, ObjCLifetimeConversion);
4176
4177
4178  // C++0x [dcl.init.ref]p5:
4179  //   A reference to type "cv1 T1" is initialized by an expression
4180  //   of type "cv2 T2" as follows:
4181
4182  //     -- If reference is an lvalue reference and the initializer expression
4183  if (!isRValRef) {
4184    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4185    //        reference-compatible with "cv2 T2," or
4186    //
4187    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4188    if (InitCategory.isLValue() &&
4189        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4190      // C++ [over.ics.ref]p1:
4191      //   When a parameter of reference type binds directly (8.5.3)
4192      //   to an argument expression, the implicit conversion sequence
4193      //   is the identity conversion, unless the argument expression
4194      //   has a type that is a derived class of the parameter type,
4195      //   in which case the implicit conversion sequence is a
4196      //   derived-to-base Conversion (13.3.3.1).
4197      ICS.setStandard();
4198      ICS.Standard.First = ICK_Identity;
4199      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4200                         : ObjCConversion? ICK_Compatible_Conversion
4201                         : ICK_Identity;
4202      ICS.Standard.Third = ICK_Identity;
4203      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4204      ICS.Standard.setToType(0, T2);
4205      ICS.Standard.setToType(1, T1);
4206      ICS.Standard.setToType(2, T1);
4207      ICS.Standard.ReferenceBinding = true;
4208      ICS.Standard.DirectBinding = true;
4209      ICS.Standard.IsLvalueReference = !isRValRef;
4210      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4211      ICS.Standard.BindsToRvalue = false;
4212      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4213      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4214      ICS.Standard.CopyConstructor = 0;
4215
4216      // Nothing more to do: the inaccessibility/ambiguity check for
4217      // derived-to-base conversions is suppressed when we're
4218      // computing the implicit conversion sequence (C++
4219      // [over.best.ics]p2).
4220      return ICS;
4221    }
4222
4223    //       -- has a class type (i.e., T2 is a class type), where T1 is
4224    //          not reference-related to T2, and can be implicitly
4225    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4226    //          is reference-compatible with "cv3 T3" 92) (this
4227    //          conversion is selected by enumerating the applicable
4228    //          conversion functions (13.3.1.6) and choosing the best
4229    //          one through overload resolution (13.3)),
4230    if (!SuppressUserConversions && T2->isRecordType() &&
4231        !S.RequireCompleteType(DeclLoc, T2, 0) &&
4232        RefRelationship == Sema::Ref_Incompatible) {
4233      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4234                                   Init, T2, /*AllowRvalues=*/false,
4235                                   AllowExplicit))
4236        return ICS;
4237    }
4238  }
4239
4240  //     -- Otherwise, the reference shall be an lvalue reference to a
4241  //        non-volatile const type (i.e., cv1 shall be const), or the reference
4242  //        shall be an rvalue reference.
4243  //
4244  // We actually handle one oddity of C++ [over.ics.ref] at this
4245  // point, which is that, due to p2 (which short-circuits reference
4246  // binding by only attempting a simple conversion for non-direct
4247  // bindings) and p3's strange wording, we allow a const volatile
4248  // reference to bind to an rvalue. Hence the check for the presence
4249  // of "const" rather than checking for "const" being the only
4250  // qualifier.
4251  // This is also the point where rvalue references and lvalue inits no longer
4252  // go together.
4253  if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4254    return ICS;
4255
4256  //       -- If the initializer expression
4257  //
4258  //            -- is an xvalue, class prvalue, array prvalue or function
4259  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4260  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4261      (InitCategory.isXValue() ||
4262      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4263      (InitCategory.isLValue() && T2->isFunctionType()))) {
4264    ICS.setStandard();
4265    ICS.Standard.First = ICK_Identity;
4266    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4267                      : ObjCConversion? ICK_Compatible_Conversion
4268                      : ICK_Identity;
4269    ICS.Standard.Third = ICK_Identity;
4270    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4271    ICS.Standard.setToType(0, T2);
4272    ICS.Standard.setToType(1, T1);
4273    ICS.Standard.setToType(2, T1);
4274    ICS.Standard.ReferenceBinding = true;
4275    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4276    // binding unless we're binding to a class prvalue.
4277    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4278    // allow the use of rvalue references in C++98/03 for the benefit of
4279    // standard library implementors; therefore, we need the xvalue check here.
4280    ICS.Standard.DirectBinding =
4281      S.getLangOpts().CPlusPlus11 ||
4282      (InitCategory.isPRValue() && !T2->isRecordType());
4283    ICS.Standard.IsLvalueReference = !isRValRef;
4284    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4285    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4286    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4287    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4288    ICS.Standard.CopyConstructor = 0;
4289    return ICS;
4290  }
4291
4292  //            -- has a class type (i.e., T2 is a class type), where T1 is not
4293  //               reference-related to T2, and can be implicitly converted to
4294  //               an xvalue, class prvalue, or function lvalue of type
4295  //               "cv3 T3", where "cv1 T1" is reference-compatible with
4296  //               "cv3 T3",
4297  //
4298  //          then the reference is bound to the value of the initializer
4299  //          expression in the first case and to the result of the conversion
4300  //          in the second case (or, in either case, to an appropriate base
4301  //          class subobject).
4302  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4303      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
4304      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4305                               Init, T2, /*AllowRvalues=*/true,
4306                               AllowExplicit)) {
4307    // In the second case, if the reference is an rvalue reference
4308    // and the second standard conversion sequence of the
4309    // user-defined conversion sequence includes an lvalue-to-rvalue
4310    // conversion, the program is ill-formed.
4311    if (ICS.isUserDefined() && isRValRef &&
4312        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4313      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4314
4315    return ICS;
4316  }
4317
4318  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4319  //          initialized from the initializer expression using the
4320  //          rules for a non-reference copy initialization (8.5). The
4321  //          reference is then bound to the temporary. If T1 is
4322  //          reference-related to T2, cv1 must be the same
4323  //          cv-qualification as, or greater cv-qualification than,
4324  //          cv2; otherwise, the program is ill-formed.
4325  if (RefRelationship == Sema::Ref_Related) {
4326    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4327    // we would be reference-compatible or reference-compatible with
4328    // added qualification. But that wasn't the case, so the reference
4329    // initialization fails.
4330    //
4331    // Note that we only want to check address spaces and cvr-qualifiers here.
4332    // ObjC GC and lifetime qualifiers aren't important.
4333    Qualifiers T1Quals = T1.getQualifiers();
4334    Qualifiers T2Quals = T2.getQualifiers();
4335    T1Quals.removeObjCGCAttr();
4336    T1Quals.removeObjCLifetime();
4337    T2Quals.removeObjCGCAttr();
4338    T2Quals.removeObjCLifetime();
4339    if (!T1Quals.compatiblyIncludes(T2Quals))
4340      return ICS;
4341  }
4342
4343  // If at least one of the types is a class type, the types are not
4344  // related, and we aren't allowed any user conversions, the
4345  // reference binding fails. This case is important for breaking
4346  // recursion, since TryImplicitConversion below will attempt to
4347  // create a temporary through the use of a copy constructor.
4348  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4349      (T1->isRecordType() || T2->isRecordType()))
4350    return ICS;
4351
4352  // If T1 is reference-related to T2 and the reference is an rvalue
4353  // reference, the initializer expression shall not be an lvalue.
4354  if (RefRelationship >= Sema::Ref_Related &&
4355      isRValRef && Init->Classify(S.Context).isLValue())
4356    return ICS;
4357
4358  // C++ [over.ics.ref]p2:
4359  //   When a parameter of reference type is not bound directly to
4360  //   an argument expression, the conversion sequence is the one
4361  //   required to convert the argument expression to the
4362  //   underlying type of the reference according to
4363  //   13.3.3.1. Conceptually, this conversion sequence corresponds
4364  //   to copy-initializing a temporary of the underlying type with
4365  //   the argument expression. Any difference in top-level
4366  //   cv-qualification is subsumed by the initialization itself
4367  //   and does not constitute a conversion.
4368  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4369                              /*AllowExplicit=*/false,
4370                              /*InOverloadResolution=*/false,
4371                              /*CStyle=*/false,
4372                              /*AllowObjCWritebackConversion=*/false,
4373                              /*AllowObjCConversionOnExplicit=*/false);
4374
4375  // Of course, that's still a reference binding.
4376  if (ICS.isStandard()) {
4377    ICS.Standard.ReferenceBinding = true;
4378    ICS.Standard.IsLvalueReference = !isRValRef;
4379    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4380    ICS.Standard.BindsToRvalue = true;
4381    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4382    ICS.Standard.ObjCLifetimeConversionBinding = false;
4383  } else if (ICS.isUserDefined()) {
4384    // Don't allow rvalue references to bind to lvalues.
4385    if (DeclType->isRValueReferenceType()) {
4386      if (const ReferenceType *RefType
4387            = ICS.UserDefined.ConversionFunction->getResultType()
4388                ->getAs<LValueReferenceType>()) {
4389        if (!RefType->getPointeeType()->isFunctionType()) {
4390          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
4391                     DeclType);
4392          return ICS;
4393        }
4394      }
4395    }
4396
4397    ICS.UserDefined.After.ReferenceBinding = true;
4398    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4399    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
4400    ICS.UserDefined.After.BindsToRvalue = true;
4401    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4402    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4403  }
4404
4405  return ICS;
4406}
4407
4408static ImplicitConversionSequence
4409TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4410                      bool SuppressUserConversions,
4411                      bool InOverloadResolution,
4412                      bool AllowObjCWritebackConversion,
4413                      bool AllowExplicit = false);
4414
4415/// TryListConversion - Try to copy-initialize a value of type ToType from the
4416/// initializer list From.
4417static ImplicitConversionSequence
4418TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4419                  bool SuppressUserConversions,
4420                  bool InOverloadResolution,
4421                  bool AllowObjCWritebackConversion) {
4422  // C++11 [over.ics.list]p1:
4423  //   When an argument is an initializer list, it is not an expression and
4424  //   special rules apply for converting it to a parameter type.
4425
4426  ImplicitConversionSequence Result;
4427  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4428
4429  // We need a complete type for what follows. Incomplete types can never be
4430  // initialized from init lists.
4431  if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
4432    return Result;
4433
4434  // C++11 [over.ics.list]p2:
4435  //   If the parameter type is std::initializer_list<X> or "array of X" and
4436  //   all the elements can be implicitly converted to X, the implicit
4437  //   conversion sequence is the worst conversion necessary to convert an
4438  //   element of the list to X.
4439  bool toStdInitializerList = false;
4440  QualType X;
4441  if (ToType->isArrayType())
4442    X = S.Context.getAsArrayType(ToType)->getElementType();
4443  else
4444    toStdInitializerList = S.isStdInitializerList(ToType, &X);
4445  if (!X.isNull()) {
4446    for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4447      Expr *Init = From->getInit(i);
4448      ImplicitConversionSequence ICS =
4449          TryCopyInitialization(S, Init, X, SuppressUserConversions,
4450                                InOverloadResolution,
4451                                AllowObjCWritebackConversion);
4452      // If a single element isn't convertible, fail.
4453      if (ICS.isBad()) {
4454        Result = ICS;
4455        break;
4456      }
4457      // Otherwise, look for the worst conversion.
4458      if (Result.isBad() ||
4459          CompareImplicitConversionSequences(S, ICS, Result) ==
4460              ImplicitConversionSequence::Worse)
4461        Result = ICS;
4462    }
4463
4464    // For an empty list, we won't have computed any conversion sequence.
4465    // Introduce the identity conversion sequence.
4466    if (From->getNumInits() == 0) {
4467      Result.setStandard();
4468      Result.Standard.setAsIdentityConversion();
4469      Result.Standard.setFromType(ToType);
4470      Result.Standard.setAllToTypes(ToType);
4471    }
4472
4473    Result.setStdInitializerListElement(toStdInitializerList);
4474    return Result;
4475  }
4476
4477  // C++11 [over.ics.list]p3:
4478  //   Otherwise, if the parameter is a non-aggregate class X and overload
4479  //   resolution chooses a single best constructor [...] the implicit
4480  //   conversion sequence is a user-defined conversion sequence. If multiple
4481  //   constructors are viable but none is better than the others, the
4482  //   implicit conversion sequence is a user-defined conversion sequence.
4483  if (ToType->isRecordType() && !ToType->isAggregateType()) {
4484    // This function can deal with initializer lists.
4485    return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4486                                    /*AllowExplicit=*/false,
4487                                    InOverloadResolution, /*CStyle=*/false,
4488                                    AllowObjCWritebackConversion,
4489                                    /*AllowObjCConversionOnExplicit=*/false);
4490  }
4491
4492  // C++11 [over.ics.list]p4:
4493  //   Otherwise, if the parameter has an aggregate type which can be
4494  //   initialized from the initializer list [...] the implicit conversion
4495  //   sequence is a user-defined conversion sequence.
4496  if (ToType->isAggregateType()) {
4497    // Type is an aggregate, argument is an init list. At this point it comes
4498    // down to checking whether the initialization works.
4499    // FIXME: Find out whether this parameter is consumed or not.
4500    InitializedEntity Entity =
4501        InitializedEntity::InitializeParameter(S.Context, ToType,
4502                                               /*Consumed=*/false);
4503    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
4504      Result.setUserDefined();
4505      Result.UserDefined.Before.setAsIdentityConversion();
4506      // Initializer lists don't have a type.
4507      Result.UserDefined.Before.setFromType(QualType());
4508      Result.UserDefined.Before.setAllToTypes(QualType());
4509
4510      Result.UserDefined.After.setAsIdentityConversion();
4511      Result.UserDefined.After.setFromType(ToType);
4512      Result.UserDefined.After.setAllToTypes(ToType);
4513      Result.UserDefined.ConversionFunction = 0;
4514    }
4515    return Result;
4516  }
4517
4518  // C++11 [over.ics.list]p5:
4519  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4520  if (ToType->isReferenceType()) {
4521    // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4522    // mention initializer lists in any way. So we go by what list-
4523    // initialization would do and try to extrapolate from that.
4524
4525    QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4526
4527    // If the initializer list has a single element that is reference-related
4528    // to the parameter type, we initialize the reference from that.
4529    if (From->getNumInits() == 1) {
4530      Expr *Init = From->getInit(0);
4531
4532      QualType T2 = Init->getType();
4533
4534      // If the initializer is the address of an overloaded function, try
4535      // to resolve the overloaded function. If all goes well, T2 is the
4536      // type of the resulting function.
4537      if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4538        DeclAccessPair Found;
4539        if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4540                                   Init, ToType, false, Found))
4541          T2 = Fn->getType();
4542      }
4543
4544      // Compute some basic properties of the types and the initializer.
4545      bool dummy1 = false;
4546      bool dummy2 = false;
4547      bool dummy3 = false;
4548      Sema::ReferenceCompareResult RefRelationship
4549        = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4550                                         dummy2, dummy3);
4551
4552      if (RefRelationship >= Sema::Ref_Related) {
4553        return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4554                                SuppressUserConversions,
4555                                /*AllowExplicit=*/false);
4556      }
4557    }
4558
4559    // Otherwise, we bind the reference to a temporary created from the
4560    // initializer list.
4561    Result = TryListConversion(S, From, T1, SuppressUserConversions,
4562                               InOverloadResolution,
4563                               AllowObjCWritebackConversion);
4564    if (Result.isFailure())
4565      return Result;
4566    assert(!Result.isEllipsis() &&
4567           "Sub-initialization cannot result in ellipsis conversion.");
4568
4569    // Can we even bind to a temporary?
4570    if (ToType->isRValueReferenceType() ||
4571        (T1.isConstQualified() && !T1.isVolatileQualified())) {
4572      StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4573                                            Result.UserDefined.After;
4574      SCS.ReferenceBinding = true;
4575      SCS.IsLvalueReference = ToType->isLValueReferenceType();
4576      SCS.BindsToRvalue = true;
4577      SCS.BindsToFunctionLvalue = false;
4578      SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4579      SCS.ObjCLifetimeConversionBinding = false;
4580    } else
4581      Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4582                    From, ToType);
4583    return Result;
4584  }
4585
4586  // C++11 [over.ics.list]p6:
4587  //   Otherwise, if the parameter type is not a class:
4588  if (!ToType->isRecordType()) {
4589    //    - if the initializer list has one element, the implicit conversion
4590    //      sequence is the one required to convert the element to the
4591    //      parameter type.
4592    unsigned NumInits = From->getNumInits();
4593    if (NumInits == 1)
4594      Result = TryCopyInitialization(S, From->getInit(0), ToType,
4595                                     SuppressUserConversions,
4596                                     InOverloadResolution,
4597                                     AllowObjCWritebackConversion);
4598    //    - if the initializer list has no elements, the implicit conversion
4599    //      sequence is the identity conversion.
4600    else if (NumInits == 0) {
4601      Result.setStandard();
4602      Result.Standard.setAsIdentityConversion();
4603      Result.Standard.setFromType(ToType);
4604      Result.Standard.setAllToTypes(ToType);
4605    }
4606    return Result;
4607  }
4608
4609  // C++11 [over.ics.list]p7:
4610  //   In all cases other than those enumerated above, no conversion is possible
4611  return Result;
4612}
4613
4614/// TryCopyInitialization - Try to copy-initialize a value of type
4615/// ToType from the expression From. Return the implicit conversion
4616/// sequence required to pass this argument, which may be a bad
4617/// conversion sequence (meaning that the argument cannot be passed to
4618/// a parameter of this type). If @p SuppressUserConversions, then we
4619/// do not permit any user-defined conversion sequences.
4620static ImplicitConversionSequence
4621TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4622                      bool SuppressUserConversions,
4623                      bool InOverloadResolution,
4624                      bool AllowObjCWritebackConversion,
4625                      bool AllowExplicit) {
4626  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4627    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4628                             InOverloadResolution,AllowObjCWritebackConversion);
4629
4630  if (ToType->isReferenceType())
4631    return TryReferenceInit(S, From, ToType,
4632                            /*FIXME:*/From->getLocStart(),
4633                            SuppressUserConversions,
4634                            AllowExplicit);
4635
4636  return TryImplicitConversion(S, From, ToType,
4637                               SuppressUserConversions,
4638                               /*AllowExplicit=*/false,
4639                               InOverloadResolution,
4640                               /*CStyle=*/false,
4641                               AllowObjCWritebackConversion,
4642                               /*AllowObjCConversionOnExplicit=*/false);
4643}
4644
4645static bool TryCopyInitialization(const CanQualType FromQTy,
4646                                  const CanQualType ToQTy,
4647                                  Sema &S,
4648                                  SourceLocation Loc,
4649                                  ExprValueKind FromVK) {
4650  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4651  ImplicitConversionSequence ICS =
4652    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4653
4654  return !ICS.isBad();
4655}
4656
4657/// TryObjectArgumentInitialization - Try to initialize the object
4658/// parameter of the given member function (@c Method) from the
4659/// expression @p From.
4660static ImplicitConversionSequence
4661TryObjectArgumentInitialization(Sema &S, QualType FromType,
4662                                Expr::Classification FromClassification,
4663                                CXXMethodDecl *Method,
4664                                CXXRecordDecl *ActingContext) {
4665  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4666  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4667  //                 const volatile object.
4668  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4669    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4670  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
4671
4672  // Set up the conversion sequence as a "bad" conversion, to allow us
4673  // to exit early.
4674  ImplicitConversionSequence ICS;
4675
4676  // We need to have an object of class type.
4677  if (const PointerType *PT = FromType->getAs<PointerType>()) {
4678    FromType = PT->getPointeeType();
4679
4680    // When we had a pointer, it's implicitly dereferenced, so we
4681    // better have an lvalue.
4682    assert(FromClassification.isLValue());
4683  }
4684
4685  assert(FromType->isRecordType());
4686
4687  // C++0x [over.match.funcs]p4:
4688  //   For non-static member functions, the type of the implicit object
4689  //   parameter is
4690  //
4691  //     - "lvalue reference to cv X" for functions declared without a
4692  //        ref-qualifier or with the & ref-qualifier
4693  //     - "rvalue reference to cv X" for functions declared with the &&
4694  //        ref-qualifier
4695  //
4696  // where X is the class of which the function is a member and cv is the
4697  // cv-qualification on the member function declaration.
4698  //
4699  // However, when finding an implicit conversion sequence for the argument, we
4700  // are not allowed to create temporaries or perform user-defined conversions
4701  // (C++ [over.match.funcs]p5). We perform a simplified version of
4702  // reference binding here, that allows class rvalues to bind to
4703  // non-constant references.
4704
4705  // First check the qualifiers.
4706  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4707  if (ImplicitParamType.getCVRQualifiers()
4708                                    != FromTypeCanon.getLocalCVRQualifiers() &&
4709      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4710    ICS.setBad(BadConversionSequence::bad_qualifiers,
4711               FromType, ImplicitParamType);
4712    return ICS;
4713  }
4714
4715  // Check that we have either the same type or a derived type. It
4716  // affects the conversion rank.
4717  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4718  ImplicitConversionKind SecondKind;
4719  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4720    SecondKind = ICK_Identity;
4721  } else if (S.IsDerivedFrom(FromType, ClassType))
4722    SecondKind = ICK_Derived_To_Base;
4723  else {
4724    ICS.setBad(BadConversionSequence::unrelated_class,
4725               FromType, ImplicitParamType);
4726    return ICS;
4727  }
4728
4729  // Check the ref-qualifier.
4730  switch (Method->getRefQualifier()) {
4731  case RQ_None:
4732    // Do nothing; we don't care about lvalueness or rvalueness.
4733    break;
4734
4735  case RQ_LValue:
4736    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4737      // non-const lvalue reference cannot bind to an rvalue
4738      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4739                 ImplicitParamType);
4740      return ICS;
4741    }
4742    break;
4743
4744  case RQ_RValue:
4745    if (!FromClassification.isRValue()) {
4746      // rvalue reference cannot bind to an lvalue
4747      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4748                 ImplicitParamType);
4749      return ICS;
4750    }
4751    break;
4752  }
4753
4754  // Success. Mark this as a reference binding.
4755  ICS.setStandard();
4756  ICS.Standard.setAsIdentityConversion();
4757  ICS.Standard.Second = SecondKind;
4758  ICS.Standard.setFromType(FromType);
4759  ICS.Standard.setAllToTypes(ImplicitParamType);
4760  ICS.Standard.ReferenceBinding = true;
4761  ICS.Standard.DirectBinding = true;
4762  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4763  ICS.Standard.BindsToFunctionLvalue = false;
4764  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4765  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4766    = (Method->getRefQualifier() == RQ_None);
4767  return ICS;
4768}
4769
4770/// PerformObjectArgumentInitialization - Perform initialization of
4771/// the implicit object parameter for the given Method with the given
4772/// expression.
4773ExprResult
4774Sema::PerformObjectArgumentInitialization(Expr *From,
4775                                          NestedNameSpecifier *Qualifier,
4776                                          NamedDecl *FoundDecl,
4777                                          CXXMethodDecl *Method) {
4778  QualType FromRecordType, DestType;
4779  QualType ImplicitParamRecordType  =
4780    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4781
4782  Expr::Classification FromClassification;
4783  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4784    FromRecordType = PT->getPointeeType();
4785    DestType = Method->getThisType(Context);
4786    FromClassification = Expr::Classification::makeSimpleLValue();
4787  } else {
4788    FromRecordType = From->getType();
4789    DestType = ImplicitParamRecordType;
4790    FromClassification = From->Classify(Context);
4791  }
4792
4793  // Note that we always use the true parent context when performing
4794  // the actual argument initialization.
4795  ImplicitConversionSequence ICS
4796    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4797                                      Method, Method->getParent());
4798  if (ICS.isBad()) {
4799    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4800      Qualifiers FromQs = FromRecordType.getQualifiers();
4801      Qualifiers ToQs = DestType.getQualifiers();
4802      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4803      if (CVR) {
4804        Diag(From->getLocStart(),
4805             diag::err_member_function_call_bad_cvr)
4806          << Method->getDeclName() << FromRecordType << (CVR - 1)
4807          << From->getSourceRange();
4808        Diag(Method->getLocation(), diag::note_previous_decl)
4809          << Method->getDeclName();
4810        return ExprError();
4811      }
4812    }
4813
4814    return Diag(From->getLocStart(),
4815                diag::err_implicit_object_parameter_init)
4816       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4817  }
4818
4819  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4820    ExprResult FromRes =
4821      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4822    if (FromRes.isInvalid())
4823      return ExprError();
4824    From = FromRes.take();
4825  }
4826
4827  if (!Context.hasSameType(From->getType(), DestType))
4828    From = ImpCastExprToType(From, DestType, CK_NoOp,
4829                             From->getValueKind()).take();
4830  return Owned(From);
4831}
4832
4833/// TryContextuallyConvertToBool - Attempt to contextually convert the
4834/// expression From to bool (C++0x [conv]p3).
4835static ImplicitConversionSequence
4836TryContextuallyConvertToBool(Sema &S, Expr *From) {
4837  return TryImplicitConversion(S, From, S.Context.BoolTy,
4838                               /*SuppressUserConversions=*/false,
4839                               /*AllowExplicit=*/true,
4840                               /*InOverloadResolution=*/false,
4841                               /*CStyle=*/false,
4842                               /*AllowObjCWritebackConversion=*/false,
4843                               /*AllowObjCConversionOnExplicit=*/false);
4844}
4845
4846/// PerformContextuallyConvertToBool - Perform a contextual conversion
4847/// of the expression From to bool (C++0x [conv]p3).
4848ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4849  if (checkPlaceholderForOverload(*this, From))
4850    return ExprError();
4851
4852  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4853  if (!ICS.isBad())
4854    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4855
4856  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4857    return Diag(From->getLocStart(),
4858                diag::err_typecheck_bool_condition)
4859                  << From->getType() << From->getSourceRange();
4860  return ExprError();
4861}
4862
4863/// Check that the specified conversion is permitted in a converted constant
4864/// expression, according to C++11 [expr.const]p3. Return true if the conversion
4865/// is acceptable.
4866static bool CheckConvertedConstantConversions(Sema &S,
4867                                              StandardConversionSequence &SCS) {
4868  // Since we know that the target type is an integral or unscoped enumeration
4869  // type, most conversion kinds are impossible. All possible First and Third
4870  // conversions are fine.
4871  switch (SCS.Second) {
4872  case ICK_Identity:
4873  case ICK_Integral_Promotion:
4874  case ICK_Integral_Conversion:
4875  case ICK_Zero_Event_Conversion:
4876    return true;
4877
4878  case ICK_Boolean_Conversion:
4879    // Conversion from an integral or unscoped enumeration type to bool is
4880    // classified as ICK_Boolean_Conversion, but it's also an integral
4881    // conversion, so it's permitted in a converted constant expression.
4882    return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
4883           SCS.getToType(2)->isBooleanType();
4884
4885  case ICK_Floating_Integral:
4886  case ICK_Complex_Real:
4887    return false;
4888
4889  case ICK_Lvalue_To_Rvalue:
4890  case ICK_Array_To_Pointer:
4891  case ICK_Function_To_Pointer:
4892  case ICK_NoReturn_Adjustment:
4893  case ICK_Qualification:
4894  case ICK_Compatible_Conversion:
4895  case ICK_Vector_Conversion:
4896  case ICK_Vector_Splat:
4897  case ICK_Derived_To_Base:
4898  case ICK_Pointer_Conversion:
4899  case ICK_Pointer_Member:
4900  case ICK_Block_Pointer_Conversion:
4901  case ICK_Writeback_Conversion:
4902  case ICK_Floating_Promotion:
4903  case ICK_Complex_Promotion:
4904  case ICK_Complex_Conversion:
4905  case ICK_Floating_Conversion:
4906  case ICK_TransparentUnionConversion:
4907    llvm_unreachable("unexpected second conversion kind");
4908
4909  case ICK_Num_Conversion_Kinds:
4910    break;
4911  }
4912
4913  llvm_unreachable("unknown conversion kind");
4914}
4915
4916/// CheckConvertedConstantExpression - Check that the expression From is a
4917/// converted constant expression of type T, perform the conversion and produce
4918/// the converted expression, per C++11 [expr.const]p3.
4919ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
4920                                                  llvm::APSInt &Value,
4921                                                  CCEKind CCE) {
4922  assert(LangOpts.CPlusPlus11 && "converted constant expression outside C++11");
4923  assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
4924
4925  if (checkPlaceholderForOverload(*this, From))
4926    return ExprError();
4927
4928  // C++11 [expr.const]p3 with proposed wording fixes:
4929  //  A converted constant expression of type T is a core constant expression,
4930  //  implicitly converted to a prvalue of type T, where the converted
4931  //  expression is a literal constant expression and the implicit conversion
4932  //  sequence contains only user-defined conversions, lvalue-to-rvalue
4933  //  conversions, integral promotions, and integral conversions other than
4934  //  narrowing conversions.
4935  ImplicitConversionSequence ICS =
4936    TryImplicitConversion(From, T,
4937                          /*SuppressUserConversions=*/false,
4938                          /*AllowExplicit=*/false,
4939                          /*InOverloadResolution=*/false,
4940                          /*CStyle=*/false,
4941                          /*AllowObjcWritebackConversion=*/false);
4942  StandardConversionSequence *SCS = 0;
4943  switch (ICS.getKind()) {
4944  case ImplicitConversionSequence::StandardConversion:
4945    if (!CheckConvertedConstantConversions(*this, ICS.Standard))
4946      return Diag(From->getLocStart(),
4947                  diag::err_typecheck_converted_constant_expression_disallowed)
4948               << From->getType() << From->getSourceRange() << T;
4949    SCS = &ICS.Standard;
4950    break;
4951  case ImplicitConversionSequence::UserDefinedConversion:
4952    // We are converting from class type to an integral or enumeration type, so
4953    // the Before sequence must be trivial.
4954    if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
4955      return Diag(From->getLocStart(),
4956                  diag::err_typecheck_converted_constant_expression_disallowed)
4957               << From->getType() << From->getSourceRange() << T;
4958    SCS = &ICS.UserDefined.After;
4959    break;
4960  case ImplicitConversionSequence::AmbiguousConversion:
4961  case ImplicitConversionSequence::BadConversion:
4962    if (!DiagnoseMultipleUserDefinedConversion(From, T))
4963      return Diag(From->getLocStart(),
4964                  diag::err_typecheck_converted_constant_expression)
4965                    << From->getType() << From->getSourceRange() << T;
4966    return ExprError();
4967
4968  case ImplicitConversionSequence::EllipsisConversion:
4969    llvm_unreachable("ellipsis conversion in converted constant expression");
4970  }
4971
4972  ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
4973  if (Result.isInvalid())
4974    return Result;
4975
4976  // Check for a narrowing implicit conversion.
4977  APValue PreNarrowingValue;
4978  QualType PreNarrowingType;
4979  switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
4980                                PreNarrowingType)) {
4981  case NK_Variable_Narrowing:
4982    // Implicit conversion to a narrower type, and the value is not a constant
4983    // expression. We'll diagnose this in a moment.
4984  case NK_Not_Narrowing:
4985    break;
4986
4987  case NK_Constant_Narrowing:
4988    Diag(From->getLocStart(),
4989         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4990                             diag::err_cce_narrowing)
4991      << CCE << /*Constant*/1
4992      << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
4993    break;
4994
4995  case NK_Type_Narrowing:
4996    Diag(From->getLocStart(),
4997         isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
4998                             diag::err_cce_narrowing)
4999      << CCE << /*Constant*/0 << From->getType() << T;
5000    break;
5001  }
5002
5003  // Check the expression is a constant expression.
5004  SmallVector<PartialDiagnosticAt, 8> Notes;
5005  Expr::EvalResult Eval;
5006  Eval.Diag = &Notes;
5007
5008  if (!Result.get()->EvaluateAsRValue(Eval, Context) || !Eval.Val.isInt()) {
5009    // The expression can't be folded, so we can't keep it at this position in
5010    // the AST.
5011    Result = ExprError();
5012  } else {
5013    Value = Eval.Val.getInt();
5014
5015    if (Notes.empty()) {
5016      // It's a constant expression.
5017      return Result;
5018    }
5019  }
5020
5021  // It's not a constant expression. Produce an appropriate diagnostic.
5022  if (Notes.size() == 1 &&
5023      Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5024    Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5025  else {
5026    Diag(From->getLocStart(), diag::err_expr_not_cce)
5027      << CCE << From->getSourceRange();
5028    for (unsigned I = 0; I < Notes.size(); ++I)
5029      Diag(Notes[I].first, Notes[I].second);
5030  }
5031  return Result;
5032}
5033
5034/// dropPointerConversions - If the given standard conversion sequence
5035/// involves any pointer conversions, remove them.  This may change
5036/// the result type of the conversion sequence.
5037static void dropPointerConversion(StandardConversionSequence &SCS) {
5038  if (SCS.Second == ICK_Pointer_Conversion) {
5039    SCS.Second = ICK_Identity;
5040    SCS.Third = ICK_Identity;
5041    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5042  }
5043}
5044
5045/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5046/// convert the expression From to an Objective-C pointer type.
5047static ImplicitConversionSequence
5048TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5049  // Do an implicit conversion to 'id'.
5050  QualType Ty = S.Context.getObjCIdType();
5051  ImplicitConversionSequence ICS
5052    = TryImplicitConversion(S, From, Ty,
5053                            // FIXME: Are these flags correct?
5054                            /*SuppressUserConversions=*/false,
5055                            /*AllowExplicit=*/true,
5056                            /*InOverloadResolution=*/false,
5057                            /*CStyle=*/false,
5058                            /*AllowObjCWritebackConversion=*/false,
5059                            /*AllowObjCConversionOnExplicit=*/true);
5060
5061  // Strip off any final conversions to 'id'.
5062  switch (ICS.getKind()) {
5063  case ImplicitConversionSequence::BadConversion:
5064  case ImplicitConversionSequence::AmbiguousConversion:
5065  case ImplicitConversionSequence::EllipsisConversion:
5066    break;
5067
5068  case ImplicitConversionSequence::UserDefinedConversion:
5069    dropPointerConversion(ICS.UserDefined.After);
5070    break;
5071
5072  case ImplicitConversionSequence::StandardConversion:
5073    dropPointerConversion(ICS.Standard);
5074    break;
5075  }
5076
5077  return ICS;
5078}
5079
5080/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5081/// conversion of the expression From to an Objective-C pointer type.
5082ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5083  if (checkPlaceholderForOverload(*this, From))
5084    return ExprError();
5085
5086  QualType Ty = Context.getObjCIdType();
5087  ImplicitConversionSequence ICS =
5088    TryContextuallyConvertToObjCPointer(*this, From);
5089  if (!ICS.isBad())
5090    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5091  return ExprError();
5092}
5093
5094/// Determine whether the provided type is an integral type, or an enumeration
5095/// type of a permitted flavor.
5096bool Sema::ICEConvertDiagnoser::match(QualType T) {
5097  return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5098                                 : T->isIntegralOrUnscopedEnumerationType();
5099}
5100
5101static ExprResult
5102diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5103                            Sema::ContextualImplicitConverter &Converter,
5104                            QualType T, UnresolvedSetImpl &ViableConversions) {
5105
5106  if (Converter.Suppress)
5107    return ExprError();
5108
5109  Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5110  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5111    CXXConversionDecl *Conv =
5112        cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5113    QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5114    Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5115  }
5116  return SemaRef.Owned(From);
5117}
5118
5119static bool
5120diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5121                           Sema::ContextualImplicitConverter &Converter,
5122                           QualType T, bool HadMultipleCandidates,
5123                           UnresolvedSetImpl &ExplicitConversions) {
5124  if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5125    DeclAccessPair Found = ExplicitConversions[0];
5126    CXXConversionDecl *Conversion =
5127        cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5128
5129    // The user probably meant to invoke the given explicit
5130    // conversion; use it.
5131    QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5132    std::string TypeStr;
5133    ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5134
5135    Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5136        << FixItHint::CreateInsertion(From->getLocStart(),
5137                                      "static_cast<" + TypeStr + ">(")
5138        << FixItHint::CreateInsertion(
5139               SemaRef.PP.getLocForEndOfToken(From->getLocEnd()), ")");
5140    Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5141
5142    // If we aren't in a SFINAE context, build a call to the
5143    // explicit conversion function.
5144    if (SemaRef.isSFINAEContext())
5145      return true;
5146
5147    SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5148    ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5149                                                       HadMultipleCandidates);
5150    if (Result.isInvalid())
5151      return true;
5152    // Record usage of conversion in an implicit cast.
5153    From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5154                                    CK_UserDefinedConversion, Result.get(), 0,
5155                                    Result.get()->getValueKind());
5156  }
5157  return false;
5158}
5159
5160static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5161                             Sema::ContextualImplicitConverter &Converter,
5162                             QualType T, bool HadMultipleCandidates,
5163                             DeclAccessPair &Found) {
5164  CXXConversionDecl *Conversion =
5165      cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5166  SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
5167
5168  QualType ToType = Conversion->getConversionType().getNonReferenceType();
5169  if (!Converter.SuppressConversion) {
5170    if (SemaRef.isSFINAEContext())
5171      return true;
5172
5173    Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5174        << From->getSourceRange();
5175  }
5176
5177  ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5178                                                     HadMultipleCandidates);
5179  if (Result.isInvalid())
5180    return true;
5181  // Record usage of conversion in an implicit cast.
5182  From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5183                                  CK_UserDefinedConversion, Result.get(), 0,
5184                                  Result.get()->getValueKind());
5185  return false;
5186}
5187
5188static ExprResult finishContextualImplicitConversion(
5189    Sema &SemaRef, SourceLocation Loc, Expr *From,
5190    Sema::ContextualImplicitConverter &Converter) {
5191  if (!Converter.match(From->getType()) && !Converter.Suppress)
5192    Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5193        << From->getSourceRange();
5194
5195  return SemaRef.DefaultLvalueConversion(From);
5196}
5197
5198static void
5199collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5200                                  UnresolvedSetImpl &ViableConversions,
5201                                  OverloadCandidateSet &CandidateSet) {
5202  for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5203    DeclAccessPair FoundDecl = ViableConversions[I];
5204    NamedDecl *D = FoundDecl.getDecl();
5205    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5206    if (isa<UsingShadowDecl>(D))
5207      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5208
5209    CXXConversionDecl *Conv;
5210    FunctionTemplateDecl *ConvTemplate;
5211    if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5212      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5213    else
5214      Conv = cast<CXXConversionDecl>(D);
5215
5216    if (ConvTemplate)
5217      SemaRef.AddTemplateConversionCandidate(
5218        ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5219        /*AllowObjCConversionOnExplicit=*/false);
5220    else
5221      SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5222                                     ToType, CandidateSet,
5223                                     /*AllowObjCConversionOnExplicit=*/false);
5224  }
5225}
5226
5227/// \brief Attempt to convert the given expression to a type which is accepted
5228/// by the given converter.
5229///
5230/// This routine will attempt to convert an expression of class type to a
5231/// type accepted by the specified converter. In C++11 and before, the class
5232/// must have a single non-explicit conversion function converting to a matching
5233/// type. In C++1y, there can be multiple such conversion functions, but only
5234/// one target type.
5235///
5236/// \param Loc The source location of the construct that requires the
5237/// conversion.
5238///
5239/// \param From The expression we're converting from.
5240///
5241/// \param Converter Used to control and diagnose the conversion process.
5242///
5243/// \returns The expression, converted to an integral or enumeration type if
5244/// successful.
5245ExprResult Sema::PerformContextualImplicitConversion(
5246    SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5247  // We can't perform any more checking for type-dependent expressions.
5248  if (From->isTypeDependent())
5249    return Owned(From);
5250
5251  // Process placeholders immediately.
5252  if (From->hasPlaceholderType()) {
5253    ExprResult result = CheckPlaceholderExpr(From);
5254    if (result.isInvalid())
5255      return result;
5256    From = result.take();
5257  }
5258
5259  // If the expression already has a matching type, we're golden.
5260  QualType T = From->getType();
5261  if (Converter.match(T))
5262    return DefaultLvalueConversion(From);
5263
5264  // FIXME: Check for missing '()' if T is a function type?
5265
5266  // We can only perform contextual implicit conversions on objects of class
5267  // type.
5268  const RecordType *RecordTy = T->getAs<RecordType>();
5269  if (!RecordTy || !getLangOpts().CPlusPlus) {
5270    if (!Converter.Suppress)
5271      Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5272    return Owned(From);
5273  }
5274
5275  // We must have a complete class type.
5276  struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5277    ContextualImplicitConverter &Converter;
5278    Expr *From;
5279
5280    TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5281        : TypeDiagnoser(Converter.Suppress), Converter(Converter), From(From) {}
5282
5283    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
5284      Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5285    }
5286  } IncompleteDiagnoser(Converter, From);
5287
5288  if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
5289    return Owned(From);
5290
5291  // Look for a conversion to an integral or enumeration type.
5292  UnresolvedSet<4>
5293      ViableConversions; // These are *potentially* viable in C++1y.
5294  UnresolvedSet<4> ExplicitConversions;
5295  std::pair<CXXRecordDecl::conversion_iterator,
5296            CXXRecordDecl::conversion_iterator> Conversions =
5297      cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5298
5299  bool HadMultipleCandidates =
5300      (std::distance(Conversions.first, Conversions.second) > 1);
5301
5302  // To check that there is only one target type, in C++1y:
5303  QualType ToType;
5304  bool HasUniqueTargetType = true;
5305
5306  // Collect explicit or viable (potentially in C++1y) conversions.
5307  for (CXXRecordDecl::conversion_iterator I = Conversions.first,
5308                                          E = Conversions.second;
5309       I != E; ++I) {
5310    NamedDecl *D = (*I)->getUnderlyingDecl();
5311    CXXConversionDecl *Conversion;
5312    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5313    if (ConvTemplate) {
5314      if (getLangOpts().CPlusPlus1y)
5315        Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5316      else
5317        continue; // C++11 does not consider conversion operator templates(?).
5318    } else
5319      Conversion = cast<CXXConversionDecl>(D);
5320
5321    assert((!ConvTemplate || getLangOpts().CPlusPlus1y) &&
5322           "Conversion operator templates are considered potentially "
5323           "viable in C++1y");
5324
5325    QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5326    if (Converter.match(CurToType) || ConvTemplate) {
5327
5328      if (Conversion->isExplicit()) {
5329        // FIXME: For C++1y, do we need this restriction?
5330        // cf. diagnoseNoViableConversion()
5331        if (!ConvTemplate)
5332          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5333      } else {
5334        if (!ConvTemplate && getLangOpts().CPlusPlus1y) {
5335          if (ToType.isNull())
5336            ToType = CurToType.getUnqualifiedType();
5337          else if (HasUniqueTargetType &&
5338                   (CurToType.getUnqualifiedType() != ToType))
5339            HasUniqueTargetType = false;
5340        }
5341        ViableConversions.addDecl(I.getDecl(), I.getAccess());
5342      }
5343    }
5344  }
5345
5346  if (getLangOpts().CPlusPlus1y) {
5347    // C++1y [conv]p6:
5348    // ... An expression e of class type E appearing in such a context
5349    // is said to be contextually implicitly converted to a specified
5350    // type T and is well-formed if and only if e can be implicitly
5351    // converted to a type T that is determined as follows: E is searched
5352    // for conversion functions whose return type is cv T or reference to
5353    // cv T such that T is allowed by the context. There shall be
5354    // exactly one such T.
5355
5356    // If no unique T is found:
5357    if (ToType.isNull()) {
5358      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5359                                     HadMultipleCandidates,
5360                                     ExplicitConversions))
5361        return ExprError();
5362      return finishContextualImplicitConversion(*this, Loc, From, Converter);
5363    }
5364
5365    // If more than one unique Ts are found:
5366    if (!HasUniqueTargetType)
5367      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5368                                         ViableConversions);
5369
5370    // If one unique T is found:
5371    // First, build a candidate set from the previously recorded
5372    // potentially viable conversions.
5373    OverloadCandidateSet CandidateSet(Loc);
5374    collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5375                                      CandidateSet);
5376
5377    // Then, perform overload resolution over the candidate set.
5378    OverloadCandidateSet::iterator Best;
5379    switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5380    case OR_Success: {
5381      // Apply this conversion.
5382      DeclAccessPair Found =
5383          DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5384      if (recordConversion(*this, Loc, From, Converter, T,
5385                           HadMultipleCandidates, Found))
5386        return ExprError();
5387      break;
5388    }
5389    case OR_Ambiguous:
5390      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5391                                         ViableConversions);
5392    case OR_No_Viable_Function:
5393      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5394                                     HadMultipleCandidates,
5395                                     ExplicitConversions))
5396        return ExprError();
5397    // fall through 'OR_Deleted' case.
5398    case OR_Deleted:
5399      // We'll complain below about a non-integral condition type.
5400      break;
5401    }
5402  } else {
5403    switch (ViableConversions.size()) {
5404    case 0: {
5405      if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5406                                     HadMultipleCandidates,
5407                                     ExplicitConversions))
5408        return ExprError();
5409
5410      // We'll complain below about a non-integral condition type.
5411      break;
5412    }
5413    case 1: {
5414      // Apply this conversion.
5415      DeclAccessPair Found = ViableConversions[0];
5416      if (recordConversion(*this, Loc, From, Converter, T,
5417                           HadMultipleCandidates, Found))
5418        return ExprError();
5419      break;
5420    }
5421    default:
5422      return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5423                                         ViableConversions);
5424    }
5425  }
5426
5427  return finishContextualImplicitConversion(*this, Loc, From, Converter);
5428}
5429
5430/// AddOverloadCandidate - Adds the given function to the set of
5431/// candidate functions, using the given function call arguments.  If
5432/// @p SuppressUserConversions, then don't allow user-defined
5433/// conversions via constructors or conversion operators.
5434///
5435/// \param PartialOverloading true if we are performing "partial" overloading
5436/// based on an incomplete set of function arguments. This feature is used by
5437/// code completion.
5438void
5439Sema::AddOverloadCandidate(FunctionDecl *Function,
5440                           DeclAccessPair FoundDecl,
5441                           ArrayRef<Expr *> Args,
5442                           OverloadCandidateSet& CandidateSet,
5443                           bool SuppressUserConversions,
5444                           bool PartialOverloading,
5445                           bool AllowExplicit) {
5446  const FunctionProtoType* Proto
5447    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5448  assert(Proto && "Functions without a prototype cannot be overloaded");
5449  assert(!Function->getDescribedFunctionTemplate() &&
5450         "Use AddTemplateOverloadCandidate for function templates");
5451
5452  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5453    if (!isa<CXXConstructorDecl>(Method)) {
5454      // If we get here, it's because we're calling a member function
5455      // that is named without a member access expression (e.g.,
5456      // "this->f") that was either written explicitly or created
5457      // implicitly. This can happen with a qualified call to a member
5458      // function, e.g., X::f(). We use an empty type for the implied
5459      // object argument (C++ [over.call.func]p3), and the acting context
5460      // is irrelevant.
5461      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5462                         QualType(), Expr::Classification::makeSimpleLValue(),
5463                         Args, CandidateSet, SuppressUserConversions);
5464      return;
5465    }
5466    // We treat a constructor like a non-member function, since its object
5467    // argument doesn't participate in overload resolution.
5468  }
5469
5470  if (!CandidateSet.isNewCandidate(Function))
5471    return;
5472
5473  // C++11 [class.copy]p11: [DR1402]
5474  //   A defaulted move constructor that is defined as deleted is ignored by
5475  //   overload resolution.
5476  CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5477  if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5478      Constructor->isMoveConstructor())
5479    return;
5480
5481  // Overload resolution is always an unevaluated context.
5482  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5483
5484  if (Constructor) {
5485    // C++ [class.copy]p3:
5486    //   A member function template is never instantiated to perform the copy
5487    //   of a class object to an object of its class type.
5488    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5489    if (Args.size() == 1 &&
5490        Constructor->isSpecializationCopyingObject() &&
5491        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5492         IsDerivedFrom(Args[0]->getType(), ClassType)))
5493      return;
5494  }
5495
5496  // Add this candidate
5497  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5498  Candidate.FoundDecl = FoundDecl;
5499  Candidate.Function = Function;
5500  Candidate.Viable = true;
5501  Candidate.IsSurrogate = false;
5502  Candidate.IgnoreObjectArgument = false;
5503  Candidate.ExplicitCallArguments = Args.size();
5504
5505  unsigned NumArgsInProto = Proto->getNumArgs();
5506
5507  // (C++ 13.3.2p2): A candidate function having fewer than m
5508  // parameters is viable only if it has an ellipsis in its parameter
5509  // list (8.3.5).
5510  if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
5511      !Proto->isVariadic()) {
5512    Candidate.Viable = false;
5513    Candidate.FailureKind = ovl_fail_too_many_arguments;
5514    return;
5515  }
5516
5517  // (C++ 13.3.2p2): A candidate function having more than m parameters
5518  // is viable only if the (m+1)st parameter has a default argument
5519  // (8.3.6). For the purposes of overload resolution, the
5520  // parameter list is truncated on the right, so that there are
5521  // exactly m parameters.
5522  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5523  if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5524    // Not enough arguments.
5525    Candidate.Viable = false;
5526    Candidate.FailureKind = ovl_fail_too_few_arguments;
5527    return;
5528  }
5529
5530  // (CUDA B.1): Check for invalid calls between targets.
5531  if (getLangOpts().CUDA)
5532    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5533      if (CheckCUDATarget(Caller, Function)) {
5534        Candidate.Viable = false;
5535        Candidate.FailureKind = ovl_fail_bad_target;
5536        return;
5537      }
5538
5539  // Determine the implicit conversion sequences for each of the
5540  // arguments.
5541  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5542    if (ArgIdx < NumArgsInProto) {
5543      // (C++ 13.3.2p3): for F to be a viable function, there shall
5544      // exist for each argument an implicit conversion sequence
5545      // (13.3.3.1) that converts that argument to the corresponding
5546      // parameter of F.
5547      QualType ParamType = Proto->getArgType(ArgIdx);
5548      Candidate.Conversions[ArgIdx]
5549        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5550                                SuppressUserConversions,
5551                                /*InOverloadResolution=*/true,
5552                                /*AllowObjCWritebackConversion=*/
5553                                  getLangOpts().ObjCAutoRefCount,
5554                                AllowExplicit);
5555      if (Candidate.Conversions[ArgIdx].isBad()) {
5556        Candidate.Viable = false;
5557        Candidate.FailureKind = ovl_fail_bad_conversion;
5558        break;
5559      }
5560    } else {
5561      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5562      // argument for which there is no corresponding parameter is
5563      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5564      Candidate.Conversions[ArgIdx].setEllipsis();
5565    }
5566  }
5567}
5568
5569/// \brief Add all of the function declarations in the given function set to
5570/// the overload candidate set.
5571void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
5572                                 ArrayRef<Expr *> Args,
5573                                 OverloadCandidateSet& CandidateSet,
5574                                 bool SuppressUserConversions,
5575                               TemplateArgumentListInfo *ExplicitTemplateArgs) {
5576  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
5577    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
5578    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5579      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
5580        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
5581                           cast<CXXMethodDecl>(FD)->getParent(),
5582                           Args[0]->getType(), Args[0]->Classify(Context),
5583                           Args.slice(1), CandidateSet,
5584                           SuppressUserConversions);
5585      else
5586        AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
5587                             SuppressUserConversions);
5588    } else {
5589      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
5590      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
5591          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
5592        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
5593                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
5594                                   ExplicitTemplateArgs,
5595                                   Args[0]->getType(),
5596                                   Args[0]->Classify(Context), Args.slice(1),
5597                                   CandidateSet, SuppressUserConversions);
5598      else
5599        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
5600                                     ExplicitTemplateArgs, Args,
5601                                     CandidateSet, SuppressUserConversions);
5602    }
5603  }
5604}
5605
5606/// AddMethodCandidate - Adds a named decl (which is some kind of
5607/// method) as a method candidate to the given overload set.
5608void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
5609                              QualType ObjectType,
5610                              Expr::Classification ObjectClassification,
5611                              ArrayRef<Expr *> Args,
5612                              OverloadCandidateSet& CandidateSet,
5613                              bool SuppressUserConversions) {
5614  NamedDecl *Decl = FoundDecl.getDecl();
5615  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
5616
5617  if (isa<UsingShadowDecl>(Decl))
5618    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
5619
5620  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
5621    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
5622           "Expected a member function template");
5623    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
5624                               /*ExplicitArgs*/ 0,
5625                               ObjectType, ObjectClassification,
5626                               Args, CandidateSet,
5627                               SuppressUserConversions);
5628  } else {
5629    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
5630                       ObjectType, ObjectClassification,
5631                       Args,
5632                       CandidateSet, SuppressUserConversions);
5633  }
5634}
5635
5636/// AddMethodCandidate - Adds the given C++ member function to the set
5637/// of candidate functions, using the given function call arguments
5638/// and the object argument (@c Object). For example, in a call
5639/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
5640/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
5641/// allow user-defined conversions via constructors or conversion
5642/// operators.
5643void
5644Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
5645                         CXXRecordDecl *ActingContext, QualType ObjectType,
5646                         Expr::Classification ObjectClassification,
5647                         ArrayRef<Expr *> Args,
5648                         OverloadCandidateSet& CandidateSet,
5649                         bool SuppressUserConversions) {
5650  const FunctionProtoType* Proto
5651    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
5652  assert(Proto && "Methods without a prototype cannot be overloaded");
5653  assert(!isa<CXXConstructorDecl>(Method) &&
5654         "Use AddOverloadCandidate for constructors");
5655
5656  if (!CandidateSet.isNewCandidate(Method))
5657    return;
5658
5659  // C++11 [class.copy]p23: [DR1402]
5660  //   A defaulted move assignment operator that is defined as deleted is
5661  //   ignored by overload resolution.
5662  if (Method->isDefaulted() && Method->isDeleted() &&
5663      Method->isMoveAssignmentOperator())
5664    return;
5665
5666  // Overload resolution is always an unevaluated context.
5667  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5668
5669  // Add this candidate
5670  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
5671  Candidate.FoundDecl = FoundDecl;
5672  Candidate.Function = Method;
5673  Candidate.IsSurrogate = false;
5674  Candidate.IgnoreObjectArgument = false;
5675  Candidate.ExplicitCallArguments = Args.size();
5676
5677  unsigned NumArgsInProto = Proto->getNumArgs();
5678
5679  // (C++ 13.3.2p2): A candidate function having fewer than m
5680  // parameters is viable only if it has an ellipsis in its parameter
5681  // list (8.3.5).
5682  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
5683    Candidate.Viable = false;
5684    Candidate.FailureKind = ovl_fail_too_many_arguments;
5685    return;
5686  }
5687
5688  // (C++ 13.3.2p2): A candidate function having more than m parameters
5689  // is viable only if the (m+1)st parameter has a default argument
5690  // (8.3.6). For the purposes of overload resolution, the
5691  // parameter list is truncated on the right, so that there are
5692  // exactly m parameters.
5693  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
5694  if (Args.size() < MinRequiredArgs) {
5695    // Not enough arguments.
5696    Candidate.Viable = false;
5697    Candidate.FailureKind = ovl_fail_too_few_arguments;
5698    return;
5699  }
5700
5701  Candidate.Viable = true;
5702
5703  if (Method->isStatic() || ObjectType.isNull())
5704    // The implicit object argument is ignored.
5705    Candidate.IgnoreObjectArgument = true;
5706  else {
5707    // Determine the implicit conversion sequence for the object
5708    // parameter.
5709    Candidate.Conversions[0]
5710      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
5711                                        Method, ActingContext);
5712    if (Candidate.Conversions[0].isBad()) {
5713      Candidate.Viable = false;
5714      Candidate.FailureKind = ovl_fail_bad_conversion;
5715      return;
5716    }
5717  }
5718
5719  // Determine the implicit conversion sequences for each of the
5720  // arguments.
5721  for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5722    if (ArgIdx < NumArgsInProto) {
5723      // (C++ 13.3.2p3): for F to be a viable function, there shall
5724      // exist for each argument an implicit conversion sequence
5725      // (13.3.3.1) that converts that argument to the corresponding
5726      // parameter of F.
5727      QualType ParamType = Proto->getArgType(ArgIdx);
5728      Candidate.Conversions[ArgIdx + 1]
5729        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5730                                SuppressUserConversions,
5731                                /*InOverloadResolution=*/true,
5732                                /*AllowObjCWritebackConversion=*/
5733                                  getLangOpts().ObjCAutoRefCount);
5734      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5735        Candidate.Viable = false;
5736        Candidate.FailureKind = ovl_fail_bad_conversion;
5737        break;
5738      }
5739    } else {
5740      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5741      // argument for which there is no corresponding parameter is
5742      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5743      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5744    }
5745  }
5746}
5747
5748/// \brief Add a C++ member function template as a candidate to the candidate
5749/// set, using template argument deduction to produce an appropriate member
5750/// function template specialization.
5751void
5752Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
5753                                 DeclAccessPair FoundDecl,
5754                                 CXXRecordDecl *ActingContext,
5755                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5756                                 QualType ObjectType,
5757                                 Expr::Classification ObjectClassification,
5758                                 ArrayRef<Expr *> Args,
5759                                 OverloadCandidateSet& CandidateSet,
5760                                 bool SuppressUserConversions) {
5761  if (!CandidateSet.isNewCandidate(MethodTmpl))
5762    return;
5763
5764  // C++ [over.match.funcs]p7:
5765  //   In each case where a candidate is a function template, candidate
5766  //   function template specializations are generated using template argument
5767  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5768  //   candidate functions in the usual way.113) A given name can refer to one
5769  //   or more function templates and also to a set of overloaded non-template
5770  //   functions. In such a case, the candidate functions generated from each
5771  //   function template are combined with the set of non-template candidate
5772  //   functions.
5773  TemplateDeductionInfo Info(CandidateSet.getLocation());
5774  FunctionDecl *Specialization = 0;
5775  if (TemplateDeductionResult Result
5776      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
5777                                Specialization, Info)) {
5778    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5779    Candidate.FoundDecl = FoundDecl;
5780    Candidate.Function = MethodTmpl->getTemplatedDecl();
5781    Candidate.Viable = false;
5782    Candidate.FailureKind = ovl_fail_bad_deduction;
5783    Candidate.IsSurrogate = false;
5784    Candidate.IgnoreObjectArgument = false;
5785    Candidate.ExplicitCallArguments = Args.size();
5786    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5787                                                          Info);
5788    return;
5789  }
5790
5791  // Add the function template specialization produced by template argument
5792  // deduction as a candidate.
5793  assert(Specialization && "Missing member function template specialization?");
5794  assert(isa<CXXMethodDecl>(Specialization) &&
5795         "Specialization is not a member function?");
5796  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
5797                     ActingContext, ObjectType, ObjectClassification, Args,
5798                     CandidateSet, SuppressUserConversions);
5799}
5800
5801/// \brief Add a C++ function template specialization as a candidate
5802/// in the candidate set, using template argument deduction to produce
5803/// an appropriate function template specialization.
5804void
5805Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
5806                                   DeclAccessPair FoundDecl,
5807                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5808                                   ArrayRef<Expr *> Args,
5809                                   OverloadCandidateSet& CandidateSet,
5810                                   bool SuppressUserConversions) {
5811  if (!CandidateSet.isNewCandidate(FunctionTemplate))
5812    return;
5813
5814  // C++ [over.match.funcs]p7:
5815  //   In each case where a candidate is a function template, candidate
5816  //   function template specializations are generated using template argument
5817  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
5818  //   candidate functions in the usual way.113) A given name can refer to one
5819  //   or more function templates and also to a set of overloaded non-template
5820  //   functions. In such a case, the candidate functions generated from each
5821  //   function template are combined with the set of non-template candidate
5822  //   functions.
5823  TemplateDeductionInfo Info(CandidateSet.getLocation());
5824  FunctionDecl *Specialization = 0;
5825  if (TemplateDeductionResult Result
5826        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
5827                                  Specialization, Info)) {
5828    OverloadCandidate &Candidate = CandidateSet.addCandidate();
5829    Candidate.FoundDecl = FoundDecl;
5830    Candidate.Function = FunctionTemplate->getTemplatedDecl();
5831    Candidate.Viable = false;
5832    Candidate.FailureKind = ovl_fail_bad_deduction;
5833    Candidate.IsSurrogate = false;
5834    Candidate.IgnoreObjectArgument = false;
5835    Candidate.ExplicitCallArguments = Args.size();
5836    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
5837                                                          Info);
5838    return;
5839  }
5840
5841  // Add the function template specialization produced by template argument
5842  // deduction as a candidate.
5843  assert(Specialization && "Missing function template specialization?");
5844  AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
5845                       SuppressUserConversions);
5846}
5847
5848/// Determine whether this is an allowable conversion from the result
5849/// of an explicit conversion operator to the expected type, per C++
5850/// [over.match.conv]p1 and [over.match.ref]p1.
5851///
5852/// \param ConvType The return type of the conversion function.
5853///
5854/// \param ToType The type we are converting to.
5855///
5856/// \param AllowObjCPointerConversion Allow a conversion from one
5857/// Objective-C pointer to another.
5858///
5859/// \returns true if the conversion is allowable, false otherwise.
5860static bool isAllowableExplicitConversion(Sema &S,
5861                                          QualType ConvType, QualType ToType,
5862                                          bool AllowObjCPointerConversion) {
5863  QualType ToNonRefType = ToType.getNonReferenceType();
5864
5865  // Easy case: the types are the same.
5866  if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
5867    return true;
5868
5869  // Allow qualification conversions.
5870  bool ObjCLifetimeConversion;
5871  if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
5872                                  ObjCLifetimeConversion))
5873    return true;
5874
5875  // If we're not allowed to consider Objective-C pointer conversions,
5876  // we're done.
5877  if (!AllowObjCPointerConversion)
5878    return false;
5879
5880  // Is this an Objective-C pointer conversion?
5881  bool IncompatibleObjC = false;
5882  QualType ConvertedType;
5883  return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
5884                                   IncompatibleObjC);
5885}
5886
5887/// AddConversionCandidate - Add a C++ conversion function as a
5888/// candidate in the candidate set (C++ [over.match.conv],
5889/// C++ [over.match.copy]). From is the expression we're converting from,
5890/// and ToType is the type that we're eventually trying to convert to
5891/// (which may or may not be the same type as the type that the
5892/// conversion function produces).
5893void
5894Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
5895                             DeclAccessPair FoundDecl,
5896                             CXXRecordDecl *ActingContext,
5897                             Expr *From, QualType ToType,
5898                             OverloadCandidateSet& CandidateSet,
5899                             bool AllowObjCConversionOnExplicit) {
5900  assert(!Conversion->getDescribedFunctionTemplate() &&
5901         "Conversion function templates use AddTemplateConversionCandidate");
5902  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
5903  if (!CandidateSet.isNewCandidate(Conversion))
5904    return;
5905
5906  // If the conversion function has an undeduced return type, trigger its
5907  // deduction now.
5908  if (getLangOpts().CPlusPlus1y && ConvType->isUndeducedType()) {
5909    if (DeduceReturnType(Conversion, From->getExprLoc()))
5910      return;
5911    ConvType = Conversion->getConversionType().getNonReferenceType();
5912  }
5913
5914  // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
5915  // operator is only a candidate if its return type is the target type or
5916  // can be converted to the target type with a qualification conversion.
5917  if (Conversion->isExplicit() &&
5918      !isAllowableExplicitConversion(*this, ConvType, ToType,
5919                                     AllowObjCConversionOnExplicit))
5920    return;
5921
5922  // Overload resolution is always an unevaluated context.
5923  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5924
5925  // Add this candidate
5926  OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
5927  Candidate.FoundDecl = FoundDecl;
5928  Candidate.Function = Conversion;
5929  Candidate.IsSurrogate = false;
5930  Candidate.IgnoreObjectArgument = false;
5931  Candidate.FinalConversion.setAsIdentityConversion();
5932  Candidate.FinalConversion.setFromType(ConvType);
5933  Candidate.FinalConversion.setAllToTypes(ToType);
5934  Candidate.Viable = true;
5935  Candidate.ExplicitCallArguments = 1;
5936
5937  // C++ [over.match.funcs]p4:
5938  //   For conversion functions, the function is considered to be a member of
5939  //   the class of the implicit implied object argument for the purpose of
5940  //   defining the type of the implicit object parameter.
5941  //
5942  // Determine the implicit conversion sequence for the implicit
5943  // object parameter.
5944  QualType ImplicitParamType = From->getType();
5945  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
5946    ImplicitParamType = FromPtrType->getPointeeType();
5947  CXXRecordDecl *ConversionContext
5948    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
5949
5950  Candidate.Conversions[0]
5951    = TryObjectArgumentInitialization(*this, From->getType(),
5952                                      From->Classify(Context),
5953                                      Conversion, ConversionContext);
5954
5955  if (Candidate.Conversions[0].isBad()) {
5956    Candidate.Viable = false;
5957    Candidate.FailureKind = ovl_fail_bad_conversion;
5958    return;
5959  }
5960
5961  // We won't go through a user-define type conversion function to convert a
5962  // derived to base as such conversions are given Conversion Rank. They only
5963  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
5964  QualType FromCanon
5965    = Context.getCanonicalType(From->getType().getUnqualifiedType());
5966  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
5967  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
5968    Candidate.Viable = false;
5969    Candidate.FailureKind = ovl_fail_trivial_conversion;
5970    return;
5971  }
5972
5973  // To determine what the conversion from the result of calling the
5974  // conversion function to the type we're eventually trying to
5975  // convert to (ToType), we need to synthesize a call to the
5976  // conversion function and attempt copy initialization from it. This
5977  // makes sure that we get the right semantics with respect to
5978  // lvalues/rvalues and the type. Fortunately, we can allocate this
5979  // call on the stack and we don't need its arguments to be
5980  // well-formed.
5981  DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
5982                            VK_LValue, From->getLocStart());
5983  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
5984                                Context.getPointerType(Conversion->getType()),
5985                                CK_FunctionToPointerDecay,
5986                                &ConversionRef, VK_RValue);
5987
5988  QualType ConversionType = Conversion->getConversionType();
5989  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
5990    Candidate.Viable = false;
5991    Candidate.FailureKind = ovl_fail_bad_final_conversion;
5992    return;
5993  }
5994
5995  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
5996
5997  // Note that it is safe to allocate CallExpr on the stack here because
5998  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
5999  // allocator).
6000  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6001  CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6002                From->getLocStart());
6003  ImplicitConversionSequence ICS =
6004    TryCopyInitialization(*this, &Call, ToType,
6005                          /*SuppressUserConversions=*/true,
6006                          /*InOverloadResolution=*/false,
6007                          /*AllowObjCWritebackConversion=*/false);
6008
6009  switch (ICS.getKind()) {
6010  case ImplicitConversionSequence::StandardConversion:
6011    Candidate.FinalConversion = ICS.Standard;
6012
6013    // C++ [over.ics.user]p3:
6014    //   If the user-defined conversion is specified by a specialization of a
6015    //   conversion function template, the second standard conversion sequence
6016    //   shall have exact match rank.
6017    if (Conversion->getPrimaryTemplate() &&
6018        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6019      Candidate.Viable = false;
6020      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6021    }
6022
6023    // C++0x [dcl.init.ref]p5:
6024    //    In the second case, if the reference is an rvalue reference and
6025    //    the second standard conversion sequence of the user-defined
6026    //    conversion sequence includes an lvalue-to-rvalue conversion, the
6027    //    program is ill-formed.
6028    if (ToType->isRValueReferenceType() &&
6029        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6030      Candidate.Viable = false;
6031      Candidate.FailureKind = ovl_fail_bad_final_conversion;
6032    }
6033    break;
6034
6035  case ImplicitConversionSequence::BadConversion:
6036    Candidate.Viable = false;
6037    Candidate.FailureKind = ovl_fail_bad_final_conversion;
6038    break;
6039
6040  default:
6041    llvm_unreachable(
6042           "Can only end up with a standard conversion sequence or failure");
6043  }
6044}
6045
6046/// \brief Adds a conversion function template specialization
6047/// candidate to the overload set, using template argument deduction
6048/// to deduce the template arguments of the conversion function
6049/// template from the type that we are converting to (C++
6050/// [temp.deduct.conv]).
6051void
6052Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
6053                                     DeclAccessPair FoundDecl,
6054                                     CXXRecordDecl *ActingDC,
6055                                     Expr *From, QualType ToType,
6056                                     OverloadCandidateSet &CandidateSet,
6057                                     bool AllowObjCConversionOnExplicit) {
6058  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
6059         "Only conversion function templates permitted here");
6060
6061  if (!CandidateSet.isNewCandidate(FunctionTemplate))
6062    return;
6063
6064  TemplateDeductionInfo Info(CandidateSet.getLocation());
6065  CXXConversionDecl *Specialization = 0;
6066  if (TemplateDeductionResult Result
6067        = DeduceTemplateArguments(FunctionTemplate, ToType,
6068                                  Specialization, Info)) {
6069    OverloadCandidate &Candidate = CandidateSet.addCandidate();
6070    Candidate.FoundDecl = FoundDecl;
6071    Candidate.Function = FunctionTemplate->getTemplatedDecl();
6072    Candidate.Viable = false;
6073    Candidate.FailureKind = ovl_fail_bad_deduction;
6074    Candidate.IsSurrogate = false;
6075    Candidate.IgnoreObjectArgument = false;
6076    Candidate.ExplicitCallArguments = 1;
6077    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6078                                                          Info);
6079    return;
6080  }
6081
6082  // Add the conversion function template specialization produced by
6083  // template argument deduction as a candidate.
6084  assert(Specialization && "Missing function template specialization?");
6085  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6086                         CandidateSet, AllowObjCConversionOnExplicit);
6087}
6088
6089/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6090/// converts the given @c Object to a function pointer via the
6091/// conversion function @c Conversion, and then attempts to call it
6092/// with the given arguments (C++ [over.call.object]p2-4). Proto is
6093/// the type of function that we'll eventually be calling.
6094void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6095                                 DeclAccessPair FoundDecl,
6096                                 CXXRecordDecl *ActingContext,
6097                                 const FunctionProtoType *Proto,
6098                                 Expr *Object,
6099                                 ArrayRef<Expr *> Args,
6100                                 OverloadCandidateSet& CandidateSet) {
6101  if (!CandidateSet.isNewCandidate(Conversion))
6102    return;
6103
6104  // Overload resolution is always an unevaluated context.
6105  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6106
6107  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6108  Candidate.FoundDecl = FoundDecl;
6109  Candidate.Function = 0;
6110  Candidate.Surrogate = Conversion;
6111  Candidate.Viable = true;
6112  Candidate.IsSurrogate = true;
6113  Candidate.IgnoreObjectArgument = false;
6114  Candidate.ExplicitCallArguments = Args.size();
6115
6116  // Determine the implicit conversion sequence for the implicit
6117  // object parameter.
6118  ImplicitConversionSequence ObjectInit
6119    = TryObjectArgumentInitialization(*this, Object->getType(),
6120                                      Object->Classify(Context),
6121                                      Conversion, ActingContext);
6122  if (ObjectInit.isBad()) {
6123    Candidate.Viable = false;
6124    Candidate.FailureKind = ovl_fail_bad_conversion;
6125    Candidate.Conversions[0] = ObjectInit;
6126    return;
6127  }
6128
6129  // The first conversion is actually a user-defined conversion whose
6130  // first conversion is ObjectInit's standard conversion (which is
6131  // effectively a reference binding). Record it as such.
6132  Candidate.Conversions[0].setUserDefined();
6133  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6134  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6135  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6136  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6137  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6138  Candidate.Conversions[0].UserDefined.After
6139    = Candidate.Conversions[0].UserDefined.Before;
6140  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6141
6142  // Find the
6143  unsigned NumArgsInProto = Proto->getNumArgs();
6144
6145  // (C++ 13.3.2p2): A candidate function having fewer than m
6146  // parameters is viable only if it has an ellipsis in its parameter
6147  // list (8.3.5).
6148  if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
6149    Candidate.Viable = false;
6150    Candidate.FailureKind = ovl_fail_too_many_arguments;
6151    return;
6152  }
6153
6154  // Function types don't have any default arguments, so just check if
6155  // we have enough arguments.
6156  if (Args.size() < NumArgsInProto) {
6157    // Not enough arguments.
6158    Candidate.Viable = false;
6159    Candidate.FailureKind = ovl_fail_too_few_arguments;
6160    return;
6161  }
6162
6163  // Determine the implicit conversion sequences for each of the
6164  // arguments.
6165  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6166    if (ArgIdx < NumArgsInProto) {
6167      // (C++ 13.3.2p3): for F to be a viable function, there shall
6168      // exist for each argument an implicit conversion sequence
6169      // (13.3.3.1) that converts that argument to the corresponding
6170      // parameter of F.
6171      QualType ParamType = Proto->getArgType(ArgIdx);
6172      Candidate.Conversions[ArgIdx + 1]
6173        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6174                                /*SuppressUserConversions=*/false,
6175                                /*InOverloadResolution=*/false,
6176                                /*AllowObjCWritebackConversion=*/
6177                                  getLangOpts().ObjCAutoRefCount);
6178      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6179        Candidate.Viable = false;
6180        Candidate.FailureKind = ovl_fail_bad_conversion;
6181        break;
6182      }
6183    } else {
6184      // (C++ 13.3.2p2): For the purposes of overload resolution, any
6185      // argument for which there is no corresponding parameter is
6186      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6187      Candidate.Conversions[ArgIdx + 1].setEllipsis();
6188    }
6189  }
6190}
6191
6192/// \brief Add overload candidates for overloaded operators that are
6193/// member functions.
6194///
6195/// Add the overloaded operator candidates that are member functions
6196/// for the operator Op that was used in an operator expression such
6197/// as "x Op y". , Args/NumArgs provides the operator arguments, and
6198/// CandidateSet will store the added overload candidates. (C++
6199/// [over.match.oper]).
6200void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6201                                       SourceLocation OpLoc,
6202                                       ArrayRef<Expr *> Args,
6203                                       OverloadCandidateSet& CandidateSet,
6204                                       SourceRange OpRange) {
6205  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6206
6207  // C++ [over.match.oper]p3:
6208  //   For a unary operator @ with an operand of a type whose
6209  //   cv-unqualified version is T1, and for a binary operator @ with
6210  //   a left operand of a type whose cv-unqualified version is T1 and
6211  //   a right operand of a type whose cv-unqualified version is T2,
6212  //   three sets of candidate functions, designated member
6213  //   candidates, non-member candidates and built-in candidates, are
6214  //   constructed as follows:
6215  QualType T1 = Args[0]->getType();
6216
6217  //     -- If T1 is a complete class type or a class currently being
6218  //        defined, the set of member candidates is the result of the
6219  //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6220  //        the set of member candidates is empty.
6221  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6222    // Complete the type if it can be completed.
6223    RequireCompleteType(OpLoc, T1, 0);
6224    // If the type is neither complete nor being defined, bail out now.
6225    if (!T1Rec->getDecl()->getDefinition())
6226      return;
6227
6228    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6229    LookupQualifiedName(Operators, T1Rec->getDecl());
6230    Operators.suppressDiagnostics();
6231
6232    for (LookupResult::iterator Oper = Operators.begin(),
6233                             OperEnd = Operators.end();
6234         Oper != OperEnd;
6235         ++Oper)
6236      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6237                         Args[0]->Classify(Context),
6238                         Args.slice(1),
6239                         CandidateSet,
6240                         /* SuppressUserConversions = */ false);
6241  }
6242}
6243
6244/// AddBuiltinCandidate - Add a candidate for a built-in
6245/// operator. ResultTy and ParamTys are the result and parameter types
6246/// of the built-in candidate, respectively. Args and NumArgs are the
6247/// arguments being passed to the candidate. IsAssignmentOperator
6248/// should be true when this built-in candidate is an assignment
6249/// operator. NumContextualBoolArguments is the number of arguments
6250/// (at the beginning of the argument list) that will be contextually
6251/// converted to bool.
6252void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6253                               ArrayRef<Expr *> Args,
6254                               OverloadCandidateSet& CandidateSet,
6255                               bool IsAssignmentOperator,
6256                               unsigned NumContextualBoolArguments) {
6257  // Overload resolution is always an unevaluated context.
6258  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6259
6260  // Add this candidate
6261  OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6262  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
6263  Candidate.Function = 0;
6264  Candidate.IsSurrogate = false;
6265  Candidate.IgnoreObjectArgument = false;
6266  Candidate.BuiltinTypes.ResultTy = ResultTy;
6267  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6268    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6269
6270  // Determine the implicit conversion sequences for each of the
6271  // arguments.
6272  Candidate.Viable = true;
6273  Candidate.ExplicitCallArguments = Args.size();
6274  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6275    // C++ [over.match.oper]p4:
6276    //   For the built-in assignment operators, conversions of the
6277    //   left operand are restricted as follows:
6278    //     -- no temporaries are introduced to hold the left operand, and
6279    //     -- no user-defined conversions are applied to the left
6280    //        operand to achieve a type match with the left-most
6281    //        parameter of a built-in candidate.
6282    //
6283    // We block these conversions by turning off user-defined
6284    // conversions, since that is the only way that initialization of
6285    // a reference to a non-class type can occur from something that
6286    // is not of the same type.
6287    if (ArgIdx < NumContextualBoolArguments) {
6288      assert(ParamTys[ArgIdx] == Context.BoolTy &&
6289             "Contextual conversion to bool requires bool type");
6290      Candidate.Conversions[ArgIdx]
6291        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6292    } else {
6293      Candidate.Conversions[ArgIdx]
6294        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6295                                ArgIdx == 0 && IsAssignmentOperator,
6296                                /*InOverloadResolution=*/false,
6297                                /*AllowObjCWritebackConversion=*/
6298                                  getLangOpts().ObjCAutoRefCount);
6299    }
6300    if (Candidate.Conversions[ArgIdx].isBad()) {
6301      Candidate.Viable = false;
6302      Candidate.FailureKind = ovl_fail_bad_conversion;
6303      break;
6304    }
6305  }
6306}
6307
6308namespace {
6309
6310/// BuiltinCandidateTypeSet - A set of types that will be used for the
6311/// candidate operator functions for built-in operators (C++
6312/// [over.built]). The types are separated into pointer types and
6313/// enumeration types.
6314class BuiltinCandidateTypeSet  {
6315  /// TypeSet - A set of types.
6316  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
6317
6318  /// PointerTypes - The set of pointer types that will be used in the
6319  /// built-in candidates.
6320  TypeSet PointerTypes;
6321
6322  /// MemberPointerTypes - The set of member pointer types that will be
6323  /// used in the built-in candidates.
6324  TypeSet MemberPointerTypes;
6325
6326  /// EnumerationTypes - The set of enumeration types that will be
6327  /// used in the built-in candidates.
6328  TypeSet EnumerationTypes;
6329
6330  /// \brief The set of vector types that will be used in the built-in
6331  /// candidates.
6332  TypeSet VectorTypes;
6333
6334  /// \brief A flag indicating non-record types are viable candidates
6335  bool HasNonRecordTypes;
6336
6337  /// \brief A flag indicating whether either arithmetic or enumeration types
6338  /// were present in the candidate set.
6339  bool HasArithmeticOrEnumeralTypes;
6340
6341  /// \brief A flag indicating whether the nullptr type was present in the
6342  /// candidate set.
6343  bool HasNullPtrType;
6344
6345  /// Sema - The semantic analysis instance where we are building the
6346  /// candidate type set.
6347  Sema &SemaRef;
6348
6349  /// Context - The AST context in which we will build the type sets.
6350  ASTContext &Context;
6351
6352  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6353                                               const Qualifiers &VisibleQuals);
6354  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6355
6356public:
6357  /// iterator - Iterates through the types that are part of the set.
6358  typedef TypeSet::iterator iterator;
6359
6360  BuiltinCandidateTypeSet(Sema &SemaRef)
6361    : HasNonRecordTypes(false),
6362      HasArithmeticOrEnumeralTypes(false),
6363      HasNullPtrType(false),
6364      SemaRef(SemaRef),
6365      Context(SemaRef.Context) { }
6366
6367  void AddTypesConvertedFrom(QualType Ty,
6368                             SourceLocation Loc,
6369                             bool AllowUserConversions,
6370                             bool AllowExplicitConversions,
6371                             const Qualifiers &VisibleTypeConversionsQuals);
6372
6373  /// pointer_begin - First pointer type found;
6374  iterator pointer_begin() { return PointerTypes.begin(); }
6375
6376  /// pointer_end - Past the last pointer type found;
6377  iterator pointer_end() { return PointerTypes.end(); }
6378
6379  /// member_pointer_begin - First member pointer type found;
6380  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6381
6382  /// member_pointer_end - Past the last member pointer type found;
6383  iterator member_pointer_end() { return MemberPointerTypes.end(); }
6384
6385  /// enumeration_begin - First enumeration type found;
6386  iterator enumeration_begin() { return EnumerationTypes.begin(); }
6387
6388  /// enumeration_end - Past the last enumeration type found;
6389  iterator enumeration_end() { return EnumerationTypes.end(); }
6390
6391  iterator vector_begin() { return VectorTypes.begin(); }
6392  iterator vector_end() { return VectorTypes.end(); }
6393
6394  bool hasNonRecordTypes() { return HasNonRecordTypes; }
6395  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
6396  bool hasNullPtrType() const { return HasNullPtrType; }
6397};
6398
6399} // end anonymous namespace
6400
6401/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6402/// the set of pointer types along with any more-qualified variants of
6403/// that type. For example, if @p Ty is "int const *", this routine
6404/// will add "int const *", "int const volatile *", "int const
6405/// restrict *", and "int const volatile restrict *" to the set of
6406/// pointer types. Returns true if the add of @p Ty itself succeeded,
6407/// false otherwise.
6408///
6409/// FIXME: what to do about extended qualifiers?
6410bool
6411BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6412                                             const Qualifiers &VisibleQuals) {
6413
6414  // Insert this type.
6415  if (!PointerTypes.insert(Ty))
6416    return false;
6417
6418  QualType PointeeTy;
6419  const PointerType *PointerTy = Ty->getAs<PointerType>();
6420  bool buildObjCPtr = false;
6421  if (!PointerTy) {
6422    const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6423    PointeeTy = PTy->getPointeeType();
6424    buildObjCPtr = true;
6425  } else {
6426    PointeeTy = PointerTy->getPointeeType();
6427  }
6428
6429  // Don't add qualified variants of arrays. For one, they're not allowed
6430  // (the qualifier would sink to the element type), and for another, the
6431  // only overload situation where it matters is subscript or pointer +- int,
6432  // and those shouldn't have qualifier variants anyway.
6433  if (PointeeTy->isArrayType())
6434    return true;
6435
6436  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6437  bool hasVolatile = VisibleQuals.hasVolatile();
6438  bool hasRestrict = VisibleQuals.hasRestrict();
6439
6440  // Iterate through all strict supersets of BaseCVR.
6441  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6442    if ((CVR | BaseCVR) != CVR) continue;
6443    // Skip over volatile if no volatile found anywhere in the types.
6444    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6445
6446    // Skip over restrict if no restrict found anywhere in the types, or if
6447    // the type cannot be restrict-qualified.
6448    if ((CVR & Qualifiers::Restrict) &&
6449        (!hasRestrict ||
6450         (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6451      continue;
6452
6453    // Build qualified pointee type.
6454    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6455
6456    // Build qualified pointer type.
6457    QualType QPointerTy;
6458    if (!buildObjCPtr)
6459      QPointerTy = Context.getPointerType(QPointeeTy);
6460    else
6461      QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6462
6463    // Insert qualified pointer type.
6464    PointerTypes.insert(QPointerTy);
6465  }
6466
6467  return true;
6468}
6469
6470/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6471/// to the set of pointer types along with any more-qualified variants of
6472/// that type. For example, if @p Ty is "int const *", this routine
6473/// will add "int const *", "int const volatile *", "int const
6474/// restrict *", and "int const volatile restrict *" to the set of
6475/// pointer types. Returns true if the add of @p Ty itself succeeded,
6476/// false otherwise.
6477///
6478/// FIXME: what to do about extended qualifiers?
6479bool
6480BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6481    QualType Ty) {
6482  // Insert this type.
6483  if (!MemberPointerTypes.insert(Ty))
6484    return false;
6485
6486  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6487  assert(PointerTy && "type was not a member pointer type!");
6488
6489  QualType PointeeTy = PointerTy->getPointeeType();
6490  // Don't add qualified variants of arrays. For one, they're not allowed
6491  // (the qualifier would sink to the element type), and for another, the
6492  // only overload situation where it matters is subscript or pointer +- int,
6493  // and those shouldn't have qualifier variants anyway.
6494  if (PointeeTy->isArrayType())
6495    return true;
6496  const Type *ClassTy = PointerTy->getClass();
6497
6498  // Iterate through all strict supersets of the pointee type's CVR
6499  // qualifiers.
6500  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6501  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6502    if ((CVR | BaseCVR) != CVR) continue;
6503
6504    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6505    MemberPointerTypes.insert(
6506      Context.getMemberPointerType(QPointeeTy, ClassTy));
6507  }
6508
6509  return true;
6510}
6511
6512/// AddTypesConvertedFrom - Add each of the types to which the type @p
6513/// Ty can be implicit converted to the given set of @p Types. We're
6514/// primarily interested in pointer types and enumeration types. We also
6515/// take member pointer types, for the conditional operator.
6516/// AllowUserConversions is true if we should look at the conversion
6517/// functions of a class type, and AllowExplicitConversions if we
6518/// should also include the explicit conversion functions of a class
6519/// type.
6520void
6521BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
6522                                               SourceLocation Loc,
6523                                               bool AllowUserConversions,
6524                                               bool AllowExplicitConversions,
6525                                               const Qualifiers &VisibleQuals) {
6526  // Only deal with canonical types.
6527  Ty = Context.getCanonicalType(Ty);
6528
6529  // Look through reference types; they aren't part of the type of an
6530  // expression for the purposes of conversions.
6531  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
6532    Ty = RefTy->getPointeeType();
6533
6534  // If we're dealing with an array type, decay to the pointer.
6535  if (Ty->isArrayType())
6536    Ty = SemaRef.Context.getArrayDecayedType(Ty);
6537
6538  // Otherwise, we don't care about qualifiers on the type.
6539  Ty = Ty.getLocalUnqualifiedType();
6540
6541  // Flag if we ever add a non-record type.
6542  const RecordType *TyRec = Ty->getAs<RecordType>();
6543  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
6544
6545  // Flag if we encounter an arithmetic type.
6546  HasArithmeticOrEnumeralTypes =
6547    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
6548
6549  if (Ty->isObjCIdType() || Ty->isObjCClassType())
6550    PointerTypes.insert(Ty);
6551  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
6552    // Insert our type, and its more-qualified variants, into the set
6553    // of types.
6554    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
6555      return;
6556  } else if (Ty->isMemberPointerType()) {
6557    // Member pointers are far easier, since the pointee can't be converted.
6558    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
6559      return;
6560  } else if (Ty->isEnumeralType()) {
6561    HasArithmeticOrEnumeralTypes = true;
6562    EnumerationTypes.insert(Ty);
6563  } else if (Ty->isVectorType()) {
6564    // We treat vector types as arithmetic types in many contexts as an
6565    // extension.
6566    HasArithmeticOrEnumeralTypes = true;
6567    VectorTypes.insert(Ty);
6568  } else if (Ty->isNullPtrType()) {
6569    HasNullPtrType = true;
6570  } else if (AllowUserConversions && TyRec) {
6571    // No conversion functions in incomplete types.
6572    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
6573      return;
6574
6575    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6576    std::pair<CXXRecordDecl::conversion_iterator,
6577              CXXRecordDecl::conversion_iterator>
6578      Conversions = ClassDecl->getVisibleConversionFunctions();
6579    for (CXXRecordDecl::conversion_iterator
6580           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6581      NamedDecl *D = I.getDecl();
6582      if (isa<UsingShadowDecl>(D))
6583        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6584
6585      // Skip conversion function templates; they don't tell us anything
6586      // about which builtin types we can convert to.
6587      if (isa<FunctionTemplateDecl>(D))
6588        continue;
6589
6590      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6591      if (AllowExplicitConversions || !Conv->isExplicit()) {
6592        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
6593                              VisibleQuals);
6594      }
6595    }
6596  }
6597}
6598
6599/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
6600/// the volatile- and non-volatile-qualified assignment operators for the
6601/// given type to the candidate set.
6602static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
6603                                                   QualType T,
6604                                                   ArrayRef<Expr *> Args,
6605                                    OverloadCandidateSet &CandidateSet) {
6606  QualType ParamTypes[2];
6607
6608  // T& operator=(T&, T)
6609  ParamTypes[0] = S.Context.getLValueReferenceType(T);
6610  ParamTypes[1] = T;
6611  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6612                        /*IsAssignmentOperator=*/true);
6613
6614  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
6615    // volatile T& operator=(volatile T&, T)
6616    ParamTypes[0]
6617      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
6618    ParamTypes[1] = T;
6619    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
6620                          /*IsAssignmentOperator=*/true);
6621  }
6622}
6623
6624/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
6625/// if any, found in visible type conversion functions found in ArgExpr's type.
6626static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
6627    Qualifiers VRQuals;
6628    const RecordType *TyRec;
6629    if (const MemberPointerType *RHSMPType =
6630        ArgExpr->getType()->getAs<MemberPointerType>())
6631      TyRec = RHSMPType->getClass()->getAs<RecordType>();
6632    else
6633      TyRec = ArgExpr->getType()->getAs<RecordType>();
6634    if (!TyRec) {
6635      // Just to be safe, assume the worst case.
6636      VRQuals.addVolatile();
6637      VRQuals.addRestrict();
6638      return VRQuals;
6639    }
6640
6641    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
6642    if (!ClassDecl->hasDefinition())
6643      return VRQuals;
6644
6645    std::pair<CXXRecordDecl::conversion_iterator,
6646              CXXRecordDecl::conversion_iterator>
6647      Conversions = ClassDecl->getVisibleConversionFunctions();
6648
6649    for (CXXRecordDecl::conversion_iterator
6650           I = Conversions.first, E = Conversions.second; I != E; ++I) {
6651      NamedDecl *D = I.getDecl();
6652      if (isa<UsingShadowDecl>(D))
6653        D = cast<UsingShadowDecl>(D)->getTargetDecl();
6654      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
6655        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
6656        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
6657          CanTy = ResTypeRef->getPointeeType();
6658        // Need to go down the pointer/mempointer chain and add qualifiers
6659        // as see them.
6660        bool done = false;
6661        while (!done) {
6662          if (CanTy.isRestrictQualified())
6663            VRQuals.addRestrict();
6664          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
6665            CanTy = ResTypePtr->getPointeeType();
6666          else if (const MemberPointerType *ResTypeMPtr =
6667                CanTy->getAs<MemberPointerType>())
6668            CanTy = ResTypeMPtr->getPointeeType();
6669          else
6670            done = true;
6671          if (CanTy.isVolatileQualified())
6672            VRQuals.addVolatile();
6673          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
6674            return VRQuals;
6675        }
6676      }
6677    }
6678    return VRQuals;
6679}
6680
6681namespace {
6682
6683/// \brief Helper class to manage the addition of builtin operator overload
6684/// candidates. It provides shared state and utility methods used throughout
6685/// the process, as well as a helper method to add each group of builtin
6686/// operator overloads from the standard to a candidate set.
6687class BuiltinOperatorOverloadBuilder {
6688  // Common instance state available to all overload candidate addition methods.
6689  Sema &S;
6690  ArrayRef<Expr *> Args;
6691  Qualifiers VisibleTypeConversionsQuals;
6692  bool HasArithmeticOrEnumeralCandidateType;
6693  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
6694  OverloadCandidateSet &CandidateSet;
6695
6696  // Define some constants used to index and iterate over the arithemetic types
6697  // provided via the getArithmeticType() method below.
6698  // The "promoted arithmetic types" are the arithmetic
6699  // types are that preserved by promotion (C++ [over.built]p2).
6700  static const unsigned FirstIntegralType = 3;
6701  static const unsigned LastIntegralType = 20;
6702  static const unsigned FirstPromotedIntegralType = 3,
6703                        LastPromotedIntegralType = 11;
6704  static const unsigned FirstPromotedArithmeticType = 0,
6705                        LastPromotedArithmeticType = 11;
6706  static const unsigned NumArithmeticTypes = 20;
6707
6708  /// \brief Get the canonical type for a given arithmetic type index.
6709  CanQualType getArithmeticType(unsigned index) {
6710    assert(index < NumArithmeticTypes);
6711    static CanQualType ASTContext::* const
6712      ArithmeticTypes[NumArithmeticTypes] = {
6713      // Start of promoted types.
6714      &ASTContext::FloatTy,
6715      &ASTContext::DoubleTy,
6716      &ASTContext::LongDoubleTy,
6717
6718      // Start of integral types.
6719      &ASTContext::IntTy,
6720      &ASTContext::LongTy,
6721      &ASTContext::LongLongTy,
6722      &ASTContext::Int128Ty,
6723      &ASTContext::UnsignedIntTy,
6724      &ASTContext::UnsignedLongTy,
6725      &ASTContext::UnsignedLongLongTy,
6726      &ASTContext::UnsignedInt128Ty,
6727      // End of promoted types.
6728
6729      &ASTContext::BoolTy,
6730      &ASTContext::CharTy,
6731      &ASTContext::WCharTy,
6732      &ASTContext::Char16Ty,
6733      &ASTContext::Char32Ty,
6734      &ASTContext::SignedCharTy,
6735      &ASTContext::ShortTy,
6736      &ASTContext::UnsignedCharTy,
6737      &ASTContext::UnsignedShortTy,
6738      // End of integral types.
6739      // FIXME: What about complex? What about half?
6740    };
6741    return S.Context.*ArithmeticTypes[index];
6742  }
6743
6744  /// \brief Gets the canonical type resulting from the usual arithemetic
6745  /// converions for the given arithmetic types.
6746  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
6747    // Accelerator table for performing the usual arithmetic conversions.
6748    // The rules are basically:
6749    //   - if either is floating-point, use the wider floating-point
6750    //   - if same signedness, use the higher rank
6751    //   - if same size, use unsigned of the higher rank
6752    //   - use the larger type
6753    // These rules, together with the axiom that higher ranks are
6754    // never smaller, are sufficient to precompute all of these results
6755    // *except* when dealing with signed types of higher rank.
6756    // (we could precompute SLL x UI for all known platforms, but it's
6757    // better not to make any assumptions).
6758    // We assume that int128 has a higher rank than long long on all platforms.
6759    enum PromotedType {
6760            Dep=-1,
6761            Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128
6762    };
6763    static const PromotedType ConversionsTable[LastPromotedArithmeticType]
6764                                        [LastPromotedArithmeticType] = {
6765/* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
6766/* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
6767/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
6768/*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL, S128,   UI,   UL,  ULL, U128 },
6769/*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL, S128,  Dep,   UL,  ULL, U128 },
6770/* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL, S128,  Dep,  Dep,  ULL, U128 },
6771/*S128*/ {  Flt,  Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
6772/*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep, S128,   UI,   UL,  ULL, U128 },
6773/*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep, S128,   UL,   UL,  ULL, U128 },
6774/* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL, S128,  ULL,  ULL,  ULL, U128 },
6775/*U128*/ {  Flt,  Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
6776    };
6777
6778    assert(L < LastPromotedArithmeticType);
6779    assert(R < LastPromotedArithmeticType);
6780    int Idx = ConversionsTable[L][R];
6781
6782    // Fast path: the table gives us a concrete answer.
6783    if (Idx != Dep) return getArithmeticType(Idx);
6784
6785    // Slow path: we need to compare widths.
6786    // An invariant is that the signed type has higher rank.
6787    CanQualType LT = getArithmeticType(L),
6788                RT = getArithmeticType(R);
6789    unsigned LW = S.Context.getIntWidth(LT),
6790             RW = S.Context.getIntWidth(RT);
6791
6792    // If they're different widths, use the signed type.
6793    if (LW > RW) return LT;
6794    else if (LW < RW) return RT;
6795
6796    // Otherwise, use the unsigned type of the signed type's rank.
6797    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
6798    assert(L == SLL || R == SLL);
6799    return S.Context.UnsignedLongLongTy;
6800  }
6801
6802  /// \brief Helper method to factor out the common pattern of adding overloads
6803  /// for '++' and '--' builtin operators.
6804  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
6805                                           bool HasVolatile,
6806                                           bool HasRestrict) {
6807    QualType ParamTypes[2] = {
6808      S.Context.getLValueReferenceType(CandidateTy),
6809      S.Context.IntTy
6810    };
6811
6812    // Non-volatile version.
6813    if (Args.size() == 1)
6814      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6815    else
6816      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6817
6818    // Use a heuristic to reduce number of builtin candidates in the set:
6819    // add volatile version only if there are conversions to a volatile type.
6820    if (HasVolatile) {
6821      ParamTypes[0] =
6822        S.Context.getLValueReferenceType(
6823          S.Context.getVolatileType(CandidateTy));
6824      if (Args.size() == 1)
6825        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6826      else
6827        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6828    }
6829
6830    // Add restrict version only if there are conversions to a restrict type
6831    // and our candidate type is a non-restrict-qualified pointer.
6832    if (HasRestrict && CandidateTy->isAnyPointerType() &&
6833        !CandidateTy.isRestrictQualified()) {
6834      ParamTypes[0]
6835        = S.Context.getLValueReferenceType(
6836            S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
6837      if (Args.size() == 1)
6838        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6839      else
6840        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6841
6842      if (HasVolatile) {
6843        ParamTypes[0]
6844          = S.Context.getLValueReferenceType(
6845              S.Context.getCVRQualifiedType(CandidateTy,
6846                                            (Qualifiers::Volatile |
6847                                             Qualifiers::Restrict)));
6848        if (Args.size() == 1)
6849          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
6850        else
6851          S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
6852      }
6853    }
6854
6855  }
6856
6857public:
6858  BuiltinOperatorOverloadBuilder(
6859    Sema &S, ArrayRef<Expr *> Args,
6860    Qualifiers VisibleTypeConversionsQuals,
6861    bool HasArithmeticOrEnumeralCandidateType,
6862    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
6863    OverloadCandidateSet &CandidateSet)
6864    : S(S), Args(Args),
6865      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
6866      HasArithmeticOrEnumeralCandidateType(
6867        HasArithmeticOrEnumeralCandidateType),
6868      CandidateTypes(CandidateTypes),
6869      CandidateSet(CandidateSet) {
6870    // Validate some of our static helper constants in debug builds.
6871    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
6872           "Invalid first promoted integral type");
6873    assert(getArithmeticType(LastPromotedIntegralType - 1)
6874             == S.Context.UnsignedInt128Ty &&
6875           "Invalid last promoted integral type");
6876    assert(getArithmeticType(FirstPromotedArithmeticType)
6877             == S.Context.FloatTy &&
6878           "Invalid first promoted arithmetic type");
6879    assert(getArithmeticType(LastPromotedArithmeticType - 1)
6880             == S.Context.UnsignedInt128Ty &&
6881           "Invalid last promoted arithmetic type");
6882  }
6883
6884  // C++ [over.built]p3:
6885  //
6886  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
6887  //   is either volatile or empty, there exist candidate operator
6888  //   functions of the form
6889  //
6890  //       VQ T&      operator++(VQ T&);
6891  //       T          operator++(VQ T&, int);
6892  //
6893  // C++ [over.built]p4:
6894  //
6895  //   For every pair (T, VQ), where T is an arithmetic type other
6896  //   than bool, and VQ is either volatile or empty, there exist
6897  //   candidate operator functions of the form
6898  //
6899  //       VQ T&      operator--(VQ T&);
6900  //       T          operator--(VQ T&, int);
6901  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
6902    if (!HasArithmeticOrEnumeralCandidateType)
6903      return;
6904
6905    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
6906         Arith < NumArithmeticTypes; ++Arith) {
6907      addPlusPlusMinusMinusStyleOverloads(
6908        getArithmeticType(Arith),
6909        VisibleTypeConversionsQuals.hasVolatile(),
6910        VisibleTypeConversionsQuals.hasRestrict());
6911    }
6912  }
6913
6914  // C++ [over.built]p5:
6915  //
6916  //   For every pair (T, VQ), where T is a cv-qualified or
6917  //   cv-unqualified object type, and VQ is either volatile or
6918  //   empty, there exist candidate operator functions of the form
6919  //
6920  //       T*VQ&      operator++(T*VQ&);
6921  //       T*VQ&      operator--(T*VQ&);
6922  //       T*         operator++(T*VQ&, int);
6923  //       T*         operator--(T*VQ&, int);
6924  void addPlusPlusMinusMinusPointerOverloads() {
6925    for (BuiltinCandidateTypeSet::iterator
6926              Ptr = CandidateTypes[0].pointer_begin(),
6927           PtrEnd = CandidateTypes[0].pointer_end();
6928         Ptr != PtrEnd; ++Ptr) {
6929      // Skip pointer types that aren't pointers to object types.
6930      if (!(*Ptr)->getPointeeType()->isObjectType())
6931        continue;
6932
6933      addPlusPlusMinusMinusStyleOverloads(*Ptr,
6934        (!(*Ptr).isVolatileQualified() &&
6935         VisibleTypeConversionsQuals.hasVolatile()),
6936        (!(*Ptr).isRestrictQualified() &&
6937         VisibleTypeConversionsQuals.hasRestrict()));
6938    }
6939  }
6940
6941  // C++ [over.built]p6:
6942  //   For every cv-qualified or cv-unqualified object type T, there
6943  //   exist candidate operator functions of the form
6944  //
6945  //       T&         operator*(T*);
6946  //
6947  // C++ [over.built]p7:
6948  //   For every function type T that does not have cv-qualifiers or a
6949  //   ref-qualifier, there exist candidate operator functions of the form
6950  //       T&         operator*(T*);
6951  void addUnaryStarPointerOverloads() {
6952    for (BuiltinCandidateTypeSet::iterator
6953              Ptr = CandidateTypes[0].pointer_begin(),
6954           PtrEnd = CandidateTypes[0].pointer_end();
6955         Ptr != PtrEnd; ++Ptr) {
6956      QualType ParamTy = *Ptr;
6957      QualType PointeeTy = ParamTy->getPointeeType();
6958      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
6959        continue;
6960
6961      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
6962        if (Proto->getTypeQuals() || Proto->getRefQualifier())
6963          continue;
6964
6965      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
6966                            &ParamTy, Args, CandidateSet);
6967    }
6968  }
6969
6970  // C++ [over.built]p9:
6971  //  For every promoted arithmetic type T, there exist candidate
6972  //  operator functions of the form
6973  //
6974  //       T         operator+(T);
6975  //       T         operator-(T);
6976  void addUnaryPlusOrMinusArithmeticOverloads() {
6977    if (!HasArithmeticOrEnumeralCandidateType)
6978      return;
6979
6980    for (unsigned Arith = FirstPromotedArithmeticType;
6981         Arith < LastPromotedArithmeticType; ++Arith) {
6982      QualType ArithTy = getArithmeticType(Arith);
6983      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
6984    }
6985
6986    // Extension: We also add these operators for vector types.
6987    for (BuiltinCandidateTypeSet::iterator
6988              Vec = CandidateTypes[0].vector_begin(),
6989           VecEnd = CandidateTypes[0].vector_end();
6990         Vec != VecEnd; ++Vec) {
6991      QualType VecTy = *Vec;
6992      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
6993    }
6994  }
6995
6996  // C++ [over.built]p8:
6997  //   For every type T, there exist candidate operator functions of
6998  //   the form
6999  //
7000  //       T*         operator+(T*);
7001  void addUnaryPlusPointerOverloads() {
7002    for (BuiltinCandidateTypeSet::iterator
7003              Ptr = CandidateTypes[0].pointer_begin(),
7004           PtrEnd = CandidateTypes[0].pointer_end();
7005         Ptr != PtrEnd; ++Ptr) {
7006      QualType ParamTy = *Ptr;
7007      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
7008    }
7009  }
7010
7011  // C++ [over.built]p10:
7012  //   For every promoted integral type T, there exist candidate
7013  //   operator functions of the form
7014  //
7015  //        T         operator~(T);
7016  void addUnaryTildePromotedIntegralOverloads() {
7017    if (!HasArithmeticOrEnumeralCandidateType)
7018      return;
7019
7020    for (unsigned Int = FirstPromotedIntegralType;
7021         Int < LastPromotedIntegralType; ++Int) {
7022      QualType IntTy = getArithmeticType(Int);
7023      S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
7024    }
7025
7026    // Extension: We also add this operator for vector types.
7027    for (BuiltinCandidateTypeSet::iterator
7028              Vec = CandidateTypes[0].vector_begin(),
7029           VecEnd = CandidateTypes[0].vector_end();
7030         Vec != VecEnd; ++Vec) {
7031      QualType VecTy = *Vec;
7032      S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7033    }
7034  }
7035
7036  // C++ [over.match.oper]p16:
7037  //   For every pointer to member type T, there exist candidate operator
7038  //   functions of the form
7039  //
7040  //        bool operator==(T,T);
7041  //        bool operator!=(T,T);
7042  void addEqualEqualOrNotEqualMemberPointerOverloads() {
7043    /// Set of (canonical) types that we've already handled.
7044    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7045
7046    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7047      for (BuiltinCandidateTypeSet::iterator
7048                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7049             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7050           MemPtr != MemPtrEnd;
7051           ++MemPtr) {
7052        // Don't add the same builtin candidate twice.
7053        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7054          continue;
7055
7056        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7057        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7058      }
7059    }
7060  }
7061
7062  // C++ [over.built]p15:
7063  //
7064  //   For every T, where T is an enumeration type, a pointer type, or
7065  //   std::nullptr_t, there exist candidate operator functions of the form
7066  //
7067  //        bool       operator<(T, T);
7068  //        bool       operator>(T, T);
7069  //        bool       operator<=(T, T);
7070  //        bool       operator>=(T, T);
7071  //        bool       operator==(T, T);
7072  //        bool       operator!=(T, T);
7073  void addRelationalPointerOrEnumeralOverloads() {
7074    // C++ [over.match.oper]p3:
7075    //   [...]the built-in candidates include all of the candidate operator
7076    //   functions defined in 13.6 that, compared to the given operator, [...]
7077    //   do not have the same parameter-type-list as any non-template non-member
7078    //   candidate.
7079    //
7080    // Note that in practice, this only affects enumeration types because there
7081    // aren't any built-in candidates of record type, and a user-defined operator
7082    // must have an operand of record or enumeration type. Also, the only other
7083    // overloaded operator with enumeration arguments, operator=,
7084    // cannot be overloaded for enumeration types, so this is the only place
7085    // where we must suppress candidates like this.
7086    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7087      UserDefinedBinaryOperators;
7088
7089    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7090      if (CandidateTypes[ArgIdx].enumeration_begin() !=
7091          CandidateTypes[ArgIdx].enumeration_end()) {
7092        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7093                                         CEnd = CandidateSet.end();
7094             C != CEnd; ++C) {
7095          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7096            continue;
7097
7098          if (C->Function->isFunctionTemplateSpecialization())
7099            continue;
7100
7101          QualType FirstParamType =
7102            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7103          QualType SecondParamType =
7104            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7105
7106          // Skip if either parameter isn't of enumeral type.
7107          if (!FirstParamType->isEnumeralType() ||
7108              !SecondParamType->isEnumeralType())
7109            continue;
7110
7111          // Add this operator to the set of known user-defined operators.
7112          UserDefinedBinaryOperators.insert(
7113            std::make_pair(S.Context.getCanonicalType(FirstParamType),
7114                           S.Context.getCanonicalType(SecondParamType)));
7115        }
7116      }
7117    }
7118
7119    /// Set of (canonical) types that we've already handled.
7120    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7121
7122    for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7123      for (BuiltinCandidateTypeSet::iterator
7124                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7125             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7126           Ptr != PtrEnd; ++Ptr) {
7127        // Don't add the same builtin candidate twice.
7128        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7129          continue;
7130
7131        QualType ParamTypes[2] = { *Ptr, *Ptr };
7132        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7133      }
7134      for (BuiltinCandidateTypeSet::iterator
7135                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7136             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7137           Enum != EnumEnd; ++Enum) {
7138        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7139
7140        // Don't add the same builtin candidate twice, or if a user defined
7141        // candidate exists.
7142        if (!AddedTypes.insert(CanonType) ||
7143            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7144                                                            CanonType)))
7145          continue;
7146
7147        QualType ParamTypes[2] = { *Enum, *Enum };
7148        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7149      }
7150
7151      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7152        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7153        if (AddedTypes.insert(NullPtrTy) &&
7154            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7155                                                             NullPtrTy))) {
7156          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7157          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7158                                CandidateSet);
7159        }
7160      }
7161    }
7162  }
7163
7164  // C++ [over.built]p13:
7165  //
7166  //   For every cv-qualified or cv-unqualified object type T
7167  //   there exist candidate operator functions of the form
7168  //
7169  //      T*         operator+(T*, ptrdiff_t);
7170  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
7171  //      T*         operator-(T*, ptrdiff_t);
7172  //      T*         operator+(ptrdiff_t, T*);
7173  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
7174  //
7175  // C++ [over.built]p14:
7176  //
7177  //   For every T, where T is a pointer to object type, there
7178  //   exist candidate operator functions of the form
7179  //
7180  //      ptrdiff_t  operator-(T, T);
7181  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7182    /// Set of (canonical) types that we've already handled.
7183    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7184
7185    for (int Arg = 0; Arg < 2; ++Arg) {
7186      QualType AsymetricParamTypes[2] = {
7187        S.Context.getPointerDiffType(),
7188        S.Context.getPointerDiffType(),
7189      };
7190      for (BuiltinCandidateTypeSet::iterator
7191                Ptr = CandidateTypes[Arg].pointer_begin(),
7192             PtrEnd = CandidateTypes[Arg].pointer_end();
7193           Ptr != PtrEnd; ++Ptr) {
7194        QualType PointeeTy = (*Ptr)->getPointeeType();
7195        if (!PointeeTy->isObjectType())
7196          continue;
7197
7198        AsymetricParamTypes[Arg] = *Ptr;
7199        if (Arg == 0 || Op == OO_Plus) {
7200          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7201          // T* operator+(ptrdiff_t, T*);
7202          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, CandidateSet);
7203        }
7204        if (Op == OO_Minus) {
7205          // ptrdiff_t operator-(T, T);
7206          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7207            continue;
7208
7209          QualType ParamTypes[2] = { *Ptr, *Ptr };
7210          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7211                                Args, CandidateSet);
7212        }
7213      }
7214    }
7215  }
7216
7217  // C++ [over.built]p12:
7218  //
7219  //   For every pair of promoted arithmetic types L and R, there
7220  //   exist candidate operator functions of the form
7221  //
7222  //        LR         operator*(L, R);
7223  //        LR         operator/(L, R);
7224  //        LR         operator+(L, R);
7225  //        LR         operator-(L, R);
7226  //        bool       operator<(L, R);
7227  //        bool       operator>(L, R);
7228  //        bool       operator<=(L, R);
7229  //        bool       operator>=(L, R);
7230  //        bool       operator==(L, R);
7231  //        bool       operator!=(L, R);
7232  //
7233  //   where LR is the result of the usual arithmetic conversions
7234  //   between types L and R.
7235  //
7236  // C++ [over.built]p24:
7237  //
7238  //   For every pair of promoted arithmetic types L and R, there exist
7239  //   candidate operator functions of the form
7240  //
7241  //        LR       operator?(bool, L, R);
7242  //
7243  //   where LR is the result of the usual arithmetic conversions
7244  //   between types L and R.
7245  // Our candidates ignore the first parameter.
7246  void addGenericBinaryArithmeticOverloads(bool isComparison) {
7247    if (!HasArithmeticOrEnumeralCandidateType)
7248      return;
7249
7250    for (unsigned Left = FirstPromotedArithmeticType;
7251         Left < LastPromotedArithmeticType; ++Left) {
7252      for (unsigned Right = FirstPromotedArithmeticType;
7253           Right < LastPromotedArithmeticType; ++Right) {
7254        QualType LandR[2] = { getArithmeticType(Left),
7255                              getArithmeticType(Right) };
7256        QualType Result =
7257          isComparison ? S.Context.BoolTy
7258                       : getUsualArithmeticConversions(Left, Right);
7259        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7260      }
7261    }
7262
7263    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7264    // conditional operator for vector types.
7265    for (BuiltinCandidateTypeSet::iterator
7266              Vec1 = CandidateTypes[0].vector_begin(),
7267           Vec1End = CandidateTypes[0].vector_end();
7268         Vec1 != Vec1End; ++Vec1) {
7269      for (BuiltinCandidateTypeSet::iterator
7270                Vec2 = CandidateTypes[1].vector_begin(),
7271             Vec2End = CandidateTypes[1].vector_end();
7272           Vec2 != Vec2End; ++Vec2) {
7273        QualType LandR[2] = { *Vec1, *Vec2 };
7274        QualType Result = S.Context.BoolTy;
7275        if (!isComparison) {
7276          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7277            Result = *Vec1;
7278          else
7279            Result = *Vec2;
7280        }
7281
7282        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7283      }
7284    }
7285  }
7286
7287  // C++ [over.built]p17:
7288  //
7289  //   For every pair of promoted integral types L and R, there
7290  //   exist candidate operator functions of the form
7291  //
7292  //      LR         operator%(L, R);
7293  //      LR         operator&(L, R);
7294  //      LR         operator^(L, R);
7295  //      LR         operator|(L, R);
7296  //      L          operator<<(L, R);
7297  //      L          operator>>(L, R);
7298  //
7299  //   where LR is the result of the usual arithmetic conversions
7300  //   between types L and R.
7301  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7302    if (!HasArithmeticOrEnumeralCandidateType)
7303      return;
7304
7305    for (unsigned Left = FirstPromotedIntegralType;
7306         Left < LastPromotedIntegralType; ++Left) {
7307      for (unsigned Right = FirstPromotedIntegralType;
7308           Right < LastPromotedIntegralType; ++Right) {
7309        QualType LandR[2] = { getArithmeticType(Left),
7310                              getArithmeticType(Right) };
7311        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7312            ? LandR[0]
7313            : getUsualArithmeticConversions(Left, Right);
7314        S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7315      }
7316    }
7317  }
7318
7319  // C++ [over.built]p20:
7320  //
7321  //   For every pair (T, VQ), where T is an enumeration or
7322  //   pointer to member type and VQ is either volatile or
7323  //   empty, there exist candidate operator functions of the form
7324  //
7325  //        VQ T&      operator=(VQ T&, T);
7326  void addAssignmentMemberPointerOrEnumeralOverloads() {
7327    /// Set of (canonical) types that we've already handled.
7328    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7329
7330    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7331      for (BuiltinCandidateTypeSet::iterator
7332                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7333             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7334           Enum != EnumEnd; ++Enum) {
7335        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7336          continue;
7337
7338        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7339      }
7340
7341      for (BuiltinCandidateTypeSet::iterator
7342                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7343             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7344           MemPtr != MemPtrEnd; ++MemPtr) {
7345        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7346          continue;
7347
7348        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7349      }
7350    }
7351  }
7352
7353  // C++ [over.built]p19:
7354  //
7355  //   For every pair (T, VQ), where T is any type and VQ is either
7356  //   volatile or empty, there exist candidate operator functions
7357  //   of the form
7358  //
7359  //        T*VQ&      operator=(T*VQ&, T*);
7360  //
7361  // C++ [over.built]p21:
7362  //
7363  //   For every pair (T, VQ), where T is a cv-qualified or
7364  //   cv-unqualified object type and VQ is either volatile or
7365  //   empty, there exist candidate operator functions of the form
7366  //
7367  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
7368  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
7369  void addAssignmentPointerOverloads(bool isEqualOp) {
7370    /// Set of (canonical) types that we've already handled.
7371    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7372
7373    for (BuiltinCandidateTypeSet::iterator
7374              Ptr = CandidateTypes[0].pointer_begin(),
7375           PtrEnd = CandidateTypes[0].pointer_end();
7376         Ptr != PtrEnd; ++Ptr) {
7377      // If this is operator=, keep track of the builtin candidates we added.
7378      if (isEqualOp)
7379        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7380      else if (!(*Ptr)->getPointeeType()->isObjectType())
7381        continue;
7382
7383      // non-volatile version
7384      QualType ParamTypes[2] = {
7385        S.Context.getLValueReferenceType(*Ptr),
7386        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7387      };
7388      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7389                            /*IsAssigmentOperator=*/ isEqualOp);
7390
7391      bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7392                          VisibleTypeConversionsQuals.hasVolatile();
7393      if (NeedVolatile) {
7394        // volatile version
7395        ParamTypes[0] =
7396          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7397        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7398                              /*IsAssigmentOperator=*/isEqualOp);
7399      }
7400
7401      if (!(*Ptr).isRestrictQualified() &&
7402          VisibleTypeConversionsQuals.hasRestrict()) {
7403        // restrict version
7404        ParamTypes[0]
7405          = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7406        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7407                              /*IsAssigmentOperator=*/isEqualOp);
7408
7409        if (NeedVolatile) {
7410          // volatile restrict version
7411          ParamTypes[0]
7412            = S.Context.getLValueReferenceType(
7413                S.Context.getCVRQualifiedType(*Ptr,
7414                                              (Qualifiers::Volatile |
7415                                               Qualifiers::Restrict)));
7416          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7417                                /*IsAssigmentOperator=*/isEqualOp);
7418        }
7419      }
7420    }
7421
7422    if (isEqualOp) {
7423      for (BuiltinCandidateTypeSet::iterator
7424                Ptr = CandidateTypes[1].pointer_begin(),
7425             PtrEnd = CandidateTypes[1].pointer_end();
7426           Ptr != PtrEnd; ++Ptr) {
7427        // Make sure we don't add the same candidate twice.
7428        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7429          continue;
7430
7431        QualType ParamTypes[2] = {
7432          S.Context.getLValueReferenceType(*Ptr),
7433          *Ptr,
7434        };
7435
7436        // non-volatile version
7437        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7438                              /*IsAssigmentOperator=*/true);
7439
7440        bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7441                           VisibleTypeConversionsQuals.hasVolatile();
7442        if (NeedVolatile) {
7443          // volatile version
7444          ParamTypes[0] =
7445            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7446          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7447                                /*IsAssigmentOperator=*/true);
7448        }
7449
7450        if (!(*Ptr).isRestrictQualified() &&
7451            VisibleTypeConversionsQuals.hasRestrict()) {
7452          // restrict version
7453          ParamTypes[0]
7454            = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7455          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7456                                /*IsAssigmentOperator=*/true);
7457
7458          if (NeedVolatile) {
7459            // volatile restrict version
7460            ParamTypes[0]
7461              = S.Context.getLValueReferenceType(
7462                  S.Context.getCVRQualifiedType(*Ptr,
7463                                                (Qualifiers::Volatile |
7464                                                 Qualifiers::Restrict)));
7465            S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7466                                  /*IsAssigmentOperator=*/true);
7467          }
7468        }
7469      }
7470    }
7471  }
7472
7473  // C++ [over.built]p18:
7474  //
7475  //   For every triple (L, VQ, R), where L is an arithmetic type,
7476  //   VQ is either volatile or empty, and R is a promoted
7477  //   arithmetic type, there exist candidate operator functions of
7478  //   the form
7479  //
7480  //        VQ L&      operator=(VQ L&, R);
7481  //        VQ L&      operator*=(VQ L&, R);
7482  //        VQ L&      operator/=(VQ L&, R);
7483  //        VQ L&      operator+=(VQ L&, R);
7484  //        VQ L&      operator-=(VQ L&, R);
7485  void addAssignmentArithmeticOverloads(bool isEqualOp) {
7486    if (!HasArithmeticOrEnumeralCandidateType)
7487      return;
7488
7489    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7490      for (unsigned Right = FirstPromotedArithmeticType;
7491           Right < LastPromotedArithmeticType; ++Right) {
7492        QualType ParamTypes[2];
7493        ParamTypes[1] = getArithmeticType(Right);
7494
7495        // Add this built-in operator as a candidate (VQ is empty).
7496        ParamTypes[0] =
7497          S.Context.getLValueReferenceType(getArithmeticType(Left));
7498        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7499                              /*IsAssigmentOperator=*/isEqualOp);
7500
7501        // Add this built-in operator as a candidate (VQ is 'volatile').
7502        if (VisibleTypeConversionsQuals.hasVolatile()) {
7503          ParamTypes[0] =
7504            S.Context.getVolatileType(getArithmeticType(Left));
7505          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7506          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7507                                /*IsAssigmentOperator=*/isEqualOp);
7508        }
7509      }
7510    }
7511
7512    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
7513    for (BuiltinCandidateTypeSet::iterator
7514              Vec1 = CandidateTypes[0].vector_begin(),
7515           Vec1End = CandidateTypes[0].vector_end();
7516         Vec1 != Vec1End; ++Vec1) {
7517      for (BuiltinCandidateTypeSet::iterator
7518                Vec2 = CandidateTypes[1].vector_begin(),
7519             Vec2End = CandidateTypes[1].vector_end();
7520           Vec2 != Vec2End; ++Vec2) {
7521        QualType ParamTypes[2];
7522        ParamTypes[1] = *Vec2;
7523        // Add this built-in operator as a candidate (VQ is empty).
7524        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
7525        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7526                              /*IsAssigmentOperator=*/isEqualOp);
7527
7528        // Add this built-in operator as a candidate (VQ is 'volatile').
7529        if (VisibleTypeConversionsQuals.hasVolatile()) {
7530          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
7531          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7532          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7533                                /*IsAssigmentOperator=*/isEqualOp);
7534        }
7535      }
7536    }
7537  }
7538
7539  // C++ [over.built]p22:
7540  //
7541  //   For every triple (L, VQ, R), where L is an integral type, VQ
7542  //   is either volatile or empty, and R is a promoted integral
7543  //   type, there exist candidate operator functions of the form
7544  //
7545  //        VQ L&       operator%=(VQ L&, R);
7546  //        VQ L&       operator<<=(VQ L&, R);
7547  //        VQ L&       operator>>=(VQ L&, R);
7548  //        VQ L&       operator&=(VQ L&, R);
7549  //        VQ L&       operator^=(VQ L&, R);
7550  //        VQ L&       operator|=(VQ L&, R);
7551  void addAssignmentIntegralOverloads() {
7552    if (!HasArithmeticOrEnumeralCandidateType)
7553      return;
7554
7555    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
7556      for (unsigned Right = FirstPromotedIntegralType;
7557           Right < LastPromotedIntegralType; ++Right) {
7558        QualType ParamTypes[2];
7559        ParamTypes[1] = getArithmeticType(Right);
7560
7561        // Add this built-in operator as a candidate (VQ is empty).
7562        ParamTypes[0] =
7563          S.Context.getLValueReferenceType(getArithmeticType(Left));
7564        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7565        if (VisibleTypeConversionsQuals.hasVolatile()) {
7566          // Add this built-in operator as a candidate (VQ is 'volatile').
7567          ParamTypes[0] = getArithmeticType(Left);
7568          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
7569          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
7570          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7571        }
7572      }
7573    }
7574  }
7575
7576  // C++ [over.operator]p23:
7577  //
7578  //   There also exist candidate operator functions of the form
7579  //
7580  //        bool        operator!(bool);
7581  //        bool        operator&&(bool, bool);
7582  //        bool        operator||(bool, bool);
7583  void addExclaimOverload() {
7584    QualType ParamTy = S.Context.BoolTy;
7585    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
7586                          /*IsAssignmentOperator=*/false,
7587                          /*NumContextualBoolArguments=*/1);
7588  }
7589  void addAmpAmpOrPipePipeOverload() {
7590    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
7591    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
7592                          /*IsAssignmentOperator=*/false,
7593                          /*NumContextualBoolArguments=*/2);
7594  }
7595
7596  // C++ [over.built]p13:
7597  //
7598  //   For every cv-qualified or cv-unqualified object type T there
7599  //   exist candidate operator functions of the form
7600  //
7601  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
7602  //        T&         operator[](T*, ptrdiff_t);
7603  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
7604  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
7605  //        T&         operator[](ptrdiff_t, T*);
7606  void addSubscriptOverloads() {
7607    for (BuiltinCandidateTypeSet::iterator
7608              Ptr = CandidateTypes[0].pointer_begin(),
7609           PtrEnd = CandidateTypes[0].pointer_end();
7610         Ptr != PtrEnd; ++Ptr) {
7611      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
7612      QualType PointeeType = (*Ptr)->getPointeeType();
7613      if (!PointeeType->isObjectType())
7614        continue;
7615
7616      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7617
7618      // T& operator[](T*, ptrdiff_t)
7619      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7620    }
7621
7622    for (BuiltinCandidateTypeSet::iterator
7623              Ptr = CandidateTypes[1].pointer_begin(),
7624           PtrEnd = CandidateTypes[1].pointer_end();
7625         Ptr != PtrEnd; ++Ptr) {
7626      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
7627      QualType PointeeType = (*Ptr)->getPointeeType();
7628      if (!PointeeType->isObjectType())
7629        continue;
7630
7631      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
7632
7633      // T& operator[](ptrdiff_t, T*)
7634      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7635    }
7636  }
7637
7638  // C++ [over.built]p11:
7639  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
7640  //    C1 is the same type as C2 or is a derived class of C2, T is an object
7641  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
7642  //    there exist candidate operator functions of the form
7643  //
7644  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
7645  //
7646  //    where CV12 is the union of CV1 and CV2.
7647  void addArrowStarOverloads() {
7648    for (BuiltinCandidateTypeSet::iterator
7649             Ptr = CandidateTypes[0].pointer_begin(),
7650           PtrEnd = CandidateTypes[0].pointer_end();
7651         Ptr != PtrEnd; ++Ptr) {
7652      QualType C1Ty = (*Ptr);
7653      QualType C1;
7654      QualifierCollector Q1;
7655      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
7656      if (!isa<RecordType>(C1))
7657        continue;
7658      // heuristic to reduce number of builtin candidates in the set.
7659      // Add volatile/restrict version only if there are conversions to a
7660      // volatile/restrict type.
7661      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
7662        continue;
7663      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
7664        continue;
7665      for (BuiltinCandidateTypeSet::iterator
7666                MemPtr = CandidateTypes[1].member_pointer_begin(),
7667             MemPtrEnd = CandidateTypes[1].member_pointer_end();
7668           MemPtr != MemPtrEnd; ++MemPtr) {
7669        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
7670        QualType C2 = QualType(mptr->getClass(), 0);
7671        C2 = C2.getUnqualifiedType();
7672        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
7673          break;
7674        QualType ParamTypes[2] = { *Ptr, *MemPtr };
7675        // build CV12 T&
7676        QualType T = mptr->getPointeeType();
7677        if (!VisibleTypeConversionsQuals.hasVolatile() &&
7678            T.isVolatileQualified())
7679          continue;
7680        if (!VisibleTypeConversionsQuals.hasRestrict() &&
7681            T.isRestrictQualified())
7682          continue;
7683        T = Q1.apply(S.Context, T);
7684        QualType ResultTy = S.Context.getLValueReferenceType(T);
7685        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
7686      }
7687    }
7688  }
7689
7690  // Note that we don't consider the first argument, since it has been
7691  // contextually converted to bool long ago. The candidates below are
7692  // therefore added as binary.
7693  //
7694  // C++ [over.built]p25:
7695  //   For every type T, where T is a pointer, pointer-to-member, or scoped
7696  //   enumeration type, there exist candidate operator functions of the form
7697  //
7698  //        T        operator?(bool, T, T);
7699  //
7700  void addConditionalOperatorOverloads() {
7701    /// Set of (canonical) types that we've already handled.
7702    llvm::SmallPtrSet<QualType, 8> AddedTypes;
7703
7704    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7705      for (BuiltinCandidateTypeSet::iterator
7706                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7707             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7708           Ptr != PtrEnd; ++Ptr) {
7709        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
7710          continue;
7711
7712        QualType ParamTypes[2] = { *Ptr, *Ptr };
7713        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
7714      }
7715
7716      for (BuiltinCandidateTypeSet::iterator
7717                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7718             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7719           MemPtr != MemPtrEnd; ++MemPtr) {
7720        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
7721          continue;
7722
7723        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7724        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
7725      }
7726
7727      if (S.getLangOpts().CPlusPlus11) {
7728        for (BuiltinCandidateTypeSet::iterator
7729                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7730               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7731             Enum != EnumEnd; ++Enum) {
7732          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
7733            continue;
7734
7735          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
7736            continue;
7737
7738          QualType ParamTypes[2] = { *Enum, *Enum };
7739          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
7740        }
7741      }
7742    }
7743  }
7744};
7745
7746} // end anonymous namespace
7747
7748/// AddBuiltinOperatorCandidates - Add the appropriate built-in
7749/// operator overloads to the candidate set (C++ [over.built]), based
7750/// on the operator @p Op and the arguments given. For example, if the
7751/// operator is a binary '+', this routine might add "int
7752/// operator+(int, int)" to cover integer addition.
7753void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
7754                                        SourceLocation OpLoc,
7755                                        ArrayRef<Expr *> Args,
7756                                        OverloadCandidateSet &CandidateSet) {
7757  // Find all of the types that the arguments can convert to, but only
7758  // if the operator we're looking at has built-in operator candidates
7759  // that make use of these types. Also record whether we encounter non-record
7760  // candidate types or either arithmetic or enumeral candidate types.
7761  Qualifiers VisibleTypeConversionsQuals;
7762  VisibleTypeConversionsQuals.addConst();
7763  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
7764    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
7765
7766  bool HasNonRecordCandidateType = false;
7767  bool HasArithmeticOrEnumeralCandidateType = false;
7768  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
7769  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7770    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
7771    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
7772                                                 OpLoc,
7773                                                 true,
7774                                                 (Op == OO_Exclaim ||
7775                                                  Op == OO_AmpAmp ||
7776                                                  Op == OO_PipePipe),
7777                                                 VisibleTypeConversionsQuals);
7778    HasNonRecordCandidateType = HasNonRecordCandidateType ||
7779        CandidateTypes[ArgIdx].hasNonRecordTypes();
7780    HasArithmeticOrEnumeralCandidateType =
7781        HasArithmeticOrEnumeralCandidateType ||
7782        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
7783  }
7784
7785  // Exit early when no non-record types have been added to the candidate set
7786  // for any of the arguments to the operator.
7787  //
7788  // We can't exit early for !, ||, or &&, since there we have always have
7789  // 'bool' overloads.
7790  if (!HasNonRecordCandidateType &&
7791      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
7792    return;
7793
7794  // Setup an object to manage the common state for building overloads.
7795  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
7796                                           VisibleTypeConversionsQuals,
7797                                           HasArithmeticOrEnumeralCandidateType,
7798                                           CandidateTypes, CandidateSet);
7799
7800  // Dispatch over the operation to add in only those overloads which apply.
7801  switch (Op) {
7802  case OO_None:
7803  case NUM_OVERLOADED_OPERATORS:
7804    llvm_unreachable("Expected an overloaded operator");
7805
7806  case OO_New:
7807  case OO_Delete:
7808  case OO_Array_New:
7809  case OO_Array_Delete:
7810  case OO_Call:
7811    llvm_unreachable(
7812                    "Special operators don't use AddBuiltinOperatorCandidates");
7813
7814  case OO_Comma:
7815  case OO_Arrow:
7816    // C++ [over.match.oper]p3:
7817    //   -- For the operator ',', the unary operator '&', or the
7818    //      operator '->', the built-in candidates set is empty.
7819    break;
7820
7821  case OO_Plus: // '+' is either unary or binary
7822    if (Args.size() == 1)
7823      OpBuilder.addUnaryPlusPointerOverloads();
7824    // Fall through.
7825
7826  case OO_Minus: // '-' is either unary or binary
7827    if (Args.size() == 1) {
7828      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
7829    } else {
7830      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
7831      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7832    }
7833    break;
7834
7835  case OO_Star: // '*' is either unary or binary
7836    if (Args.size() == 1)
7837      OpBuilder.addUnaryStarPointerOverloads();
7838    else
7839      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7840    break;
7841
7842  case OO_Slash:
7843    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7844    break;
7845
7846  case OO_PlusPlus:
7847  case OO_MinusMinus:
7848    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
7849    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
7850    break;
7851
7852  case OO_EqualEqual:
7853  case OO_ExclaimEqual:
7854    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
7855    // Fall through.
7856
7857  case OO_Less:
7858  case OO_Greater:
7859  case OO_LessEqual:
7860  case OO_GreaterEqual:
7861    OpBuilder.addRelationalPointerOrEnumeralOverloads();
7862    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
7863    break;
7864
7865  case OO_Percent:
7866  case OO_Caret:
7867  case OO_Pipe:
7868  case OO_LessLess:
7869  case OO_GreaterGreater:
7870    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7871    break;
7872
7873  case OO_Amp: // '&' is either unary or binary
7874    if (Args.size() == 1)
7875      // C++ [over.match.oper]p3:
7876      //   -- For the operator ',', the unary operator '&', or the
7877      //      operator '->', the built-in candidates set is empty.
7878      break;
7879
7880    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
7881    break;
7882
7883  case OO_Tilde:
7884    OpBuilder.addUnaryTildePromotedIntegralOverloads();
7885    break;
7886
7887  case OO_Equal:
7888    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
7889    // Fall through.
7890
7891  case OO_PlusEqual:
7892  case OO_MinusEqual:
7893    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
7894    // Fall through.
7895
7896  case OO_StarEqual:
7897  case OO_SlashEqual:
7898    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
7899    break;
7900
7901  case OO_PercentEqual:
7902  case OO_LessLessEqual:
7903  case OO_GreaterGreaterEqual:
7904  case OO_AmpEqual:
7905  case OO_CaretEqual:
7906  case OO_PipeEqual:
7907    OpBuilder.addAssignmentIntegralOverloads();
7908    break;
7909
7910  case OO_Exclaim:
7911    OpBuilder.addExclaimOverload();
7912    break;
7913
7914  case OO_AmpAmp:
7915  case OO_PipePipe:
7916    OpBuilder.addAmpAmpOrPipePipeOverload();
7917    break;
7918
7919  case OO_Subscript:
7920    OpBuilder.addSubscriptOverloads();
7921    break;
7922
7923  case OO_ArrowStar:
7924    OpBuilder.addArrowStarOverloads();
7925    break;
7926
7927  case OO_Conditional:
7928    OpBuilder.addConditionalOperatorOverloads();
7929    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
7930    break;
7931  }
7932}
7933
7934/// \brief Add function candidates found via argument-dependent lookup
7935/// to the set of overloading candidates.
7936///
7937/// This routine performs argument-dependent name lookup based on the
7938/// given function name (which may also be an operator name) and adds
7939/// all of the overload candidates found by ADL to the overload
7940/// candidate set (C++ [basic.lookup.argdep]).
7941void
7942Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
7943                                           bool Operator, SourceLocation Loc,
7944                                           ArrayRef<Expr *> Args,
7945                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
7946                                           OverloadCandidateSet& CandidateSet,
7947                                           bool PartialOverloading) {
7948  ADLResult Fns;
7949
7950  // FIXME: This approach for uniquing ADL results (and removing
7951  // redundant candidates from the set) relies on pointer-equality,
7952  // which means we need to key off the canonical decl.  However,
7953  // always going back to the canonical decl might not get us the
7954  // right set of default arguments.  What default arguments are
7955  // we supposed to consider on ADL candidates, anyway?
7956
7957  // FIXME: Pass in the explicit template arguments?
7958  ArgumentDependentLookup(Name, Operator, Loc, Args, Fns);
7959
7960  // Erase all of the candidates we already knew about.
7961  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
7962                                   CandEnd = CandidateSet.end();
7963       Cand != CandEnd; ++Cand)
7964    if (Cand->Function) {
7965      Fns.erase(Cand->Function);
7966      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
7967        Fns.erase(FunTmpl);
7968    }
7969
7970  // For each of the ADL candidates we found, add it to the overload
7971  // set.
7972  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
7973    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
7974    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
7975      if (ExplicitTemplateArgs)
7976        continue;
7977
7978      AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
7979                           PartialOverloading);
7980    } else
7981      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
7982                                   FoundDecl, ExplicitTemplateArgs,
7983                                   Args, CandidateSet);
7984  }
7985}
7986
7987/// isBetterOverloadCandidate - Determines whether the first overload
7988/// candidate is a better candidate than the second (C++ 13.3.3p1).
7989bool
7990isBetterOverloadCandidate(Sema &S,
7991                          const OverloadCandidate &Cand1,
7992                          const OverloadCandidate &Cand2,
7993                          SourceLocation Loc,
7994                          bool UserDefinedConversion) {
7995  // Define viable functions to be better candidates than non-viable
7996  // functions.
7997  if (!Cand2.Viable)
7998    return Cand1.Viable;
7999  else if (!Cand1.Viable)
8000    return false;
8001
8002  // C++ [over.match.best]p1:
8003  //
8004  //   -- if F is a static member function, ICS1(F) is defined such
8005  //      that ICS1(F) is neither better nor worse than ICS1(G) for
8006  //      any function G, and, symmetrically, ICS1(G) is neither
8007  //      better nor worse than ICS1(F).
8008  unsigned StartArg = 0;
8009  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8010    StartArg = 1;
8011
8012  // C++ [over.match.best]p1:
8013  //   A viable function F1 is defined to be a better function than another
8014  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
8015  //   conversion sequence than ICSi(F2), and then...
8016  unsigned NumArgs = Cand1.NumConversions;
8017  assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
8018  bool HasBetterConversion = false;
8019  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8020    switch (CompareImplicitConversionSequences(S,
8021                                               Cand1.Conversions[ArgIdx],
8022                                               Cand2.Conversions[ArgIdx])) {
8023    case ImplicitConversionSequence::Better:
8024      // Cand1 has a better conversion sequence.
8025      HasBetterConversion = true;
8026      break;
8027
8028    case ImplicitConversionSequence::Worse:
8029      // Cand1 can't be better than Cand2.
8030      return false;
8031
8032    case ImplicitConversionSequence::Indistinguishable:
8033      // Do nothing.
8034      break;
8035    }
8036  }
8037
8038  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
8039  //       ICSj(F2), or, if not that,
8040  if (HasBetterConversion)
8041    return true;
8042
8043  //     - F1 is a non-template function and F2 is a function template
8044  //       specialization, or, if not that,
8045  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
8046      Cand2.Function && Cand2.Function->getPrimaryTemplate())
8047    return true;
8048
8049  //   -- F1 and F2 are function template specializations, and the function
8050  //      template for F1 is more specialized than the template for F2
8051  //      according to the partial ordering rules described in 14.5.5.2, or,
8052  //      if not that,
8053  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
8054      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
8055    if (FunctionTemplateDecl *BetterTemplate
8056          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
8057                                         Cand2.Function->getPrimaryTemplate(),
8058                                         Loc,
8059                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
8060                                                             : TPOC_Call,
8061                                         Cand1.ExplicitCallArguments,
8062                                         Cand2.ExplicitCallArguments))
8063      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
8064  }
8065
8066  //   -- the context is an initialization by user-defined conversion
8067  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
8068  //      from the return type of F1 to the destination type (i.e.,
8069  //      the type of the entity being initialized) is a better
8070  //      conversion sequence than the standard conversion sequence
8071  //      from the return type of F2 to the destination type.
8072  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
8073      isa<CXXConversionDecl>(Cand1.Function) &&
8074      isa<CXXConversionDecl>(Cand2.Function)) {
8075    // First check whether we prefer one of the conversion functions over the
8076    // other. This only distinguishes the results in non-standard, extension
8077    // cases such as the conversion from a lambda closure type to a function
8078    // pointer or block.
8079    ImplicitConversionSequence::CompareKind FuncResult
8080      = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8081    if (FuncResult != ImplicitConversionSequence::Indistinguishable)
8082      return FuncResult;
8083
8084    switch (CompareStandardConversionSequences(S,
8085                                               Cand1.FinalConversion,
8086                                               Cand2.FinalConversion)) {
8087    case ImplicitConversionSequence::Better:
8088      // Cand1 has a better conversion sequence.
8089      return true;
8090
8091    case ImplicitConversionSequence::Worse:
8092      // Cand1 can't be better than Cand2.
8093      return false;
8094
8095    case ImplicitConversionSequence::Indistinguishable:
8096      // Do nothing
8097      break;
8098    }
8099  }
8100
8101  return false;
8102}
8103
8104/// \brief Computes the best viable function (C++ 13.3.3)
8105/// within an overload candidate set.
8106///
8107/// \param Loc The location of the function name (or operator symbol) for
8108/// which overload resolution occurs.
8109///
8110/// \param Best If overload resolution was successful or found a deleted
8111/// function, \p Best points to the candidate function found.
8112///
8113/// \returns The result of overload resolution.
8114OverloadingResult
8115OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8116                                         iterator &Best,
8117                                         bool UserDefinedConversion) {
8118  // Find the best viable function.
8119  Best = end();
8120  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8121    if (Cand->Viable)
8122      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8123                                                     UserDefinedConversion))
8124        Best = Cand;
8125  }
8126
8127  // If we didn't find any viable functions, abort.
8128  if (Best == end())
8129    return OR_No_Viable_Function;
8130
8131  // Make sure that this function is better than every other viable
8132  // function. If not, we have an ambiguity.
8133  for (iterator Cand = begin(); Cand != end(); ++Cand) {
8134    if (Cand->Viable &&
8135        Cand != Best &&
8136        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8137                                   UserDefinedConversion)) {
8138      Best = end();
8139      return OR_Ambiguous;
8140    }
8141  }
8142
8143  // Best is the best viable function.
8144  if (Best->Function &&
8145      (Best->Function->isDeleted() ||
8146       S.isFunctionConsideredUnavailable(Best->Function)))
8147    return OR_Deleted;
8148
8149  return OR_Success;
8150}
8151
8152namespace {
8153
8154enum OverloadCandidateKind {
8155  oc_function,
8156  oc_method,
8157  oc_constructor,
8158  oc_function_template,
8159  oc_method_template,
8160  oc_constructor_template,
8161  oc_implicit_default_constructor,
8162  oc_implicit_copy_constructor,
8163  oc_implicit_move_constructor,
8164  oc_implicit_copy_assignment,
8165  oc_implicit_move_assignment,
8166  oc_implicit_inherited_constructor
8167};
8168
8169OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8170                                                FunctionDecl *Fn,
8171                                                std::string &Description) {
8172  bool isTemplate = false;
8173
8174  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8175    isTemplate = true;
8176    Description = S.getTemplateArgumentBindingsText(
8177      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8178  }
8179
8180  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8181    if (!Ctor->isImplicit())
8182      return isTemplate ? oc_constructor_template : oc_constructor;
8183
8184    if (Ctor->getInheritedConstructor())
8185      return oc_implicit_inherited_constructor;
8186
8187    if (Ctor->isDefaultConstructor())
8188      return oc_implicit_default_constructor;
8189
8190    if (Ctor->isMoveConstructor())
8191      return oc_implicit_move_constructor;
8192
8193    assert(Ctor->isCopyConstructor() &&
8194           "unexpected sort of implicit constructor");
8195    return oc_implicit_copy_constructor;
8196  }
8197
8198  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8199    // This actually gets spelled 'candidate function' for now, but
8200    // it doesn't hurt to split it out.
8201    if (!Meth->isImplicit())
8202      return isTemplate ? oc_method_template : oc_method;
8203
8204    if (Meth->isMoveAssignmentOperator())
8205      return oc_implicit_move_assignment;
8206
8207    if (Meth->isCopyAssignmentOperator())
8208      return oc_implicit_copy_assignment;
8209
8210    assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8211    return oc_method;
8212  }
8213
8214  return isTemplate ? oc_function_template : oc_function;
8215}
8216
8217void MaybeEmitInheritedConstructorNote(Sema &S, Decl *Fn) {
8218  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
8219  if (!Ctor) return;
8220
8221  Ctor = Ctor->getInheritedConstructor();
8222  if (!Ctor) return;
8223
8224  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
8225}
8226
8227} // end anonymous namespace
8228
8229// Notes the location of an overload candidate.
8230void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
8231  std::string FnDesc;
8232  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
8233  PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
8234                             << (unsigned) K << FnDesc;
8235  HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
8236  Diag(Fn->getLocation(), PD);
8237  MaybeEmitInheritedConstructorNote(*this, Fn);
8238}
8239
8240// Notes the location of all overload candidates designated through
8241// OverloadedExpr
8242void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
8243  assert(OverloadedExpr->getType() == Context.OverloadTy);
8244
8245  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
8246  OverloadExpr *OvlExpr = Ovl.Expression;
8247
8248  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8249                            IEnd = OvlExpr->decls_end();
8250       I != IEnd; ++I) {
8251    if (FunctionTemplateDecl *FunTmpl =
8252                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
8253      NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
8254    } else if (FunctionDecl *Fun
8255                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
8256      NoteOverloadCandidate(Fun, DestType);
8257    }
8258  }
8259}
8260
8261/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
8262/// "lead" diagnostic; it will be given two arguments, the source and
8263/// target types of the conversion.
8264void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
8265                                 Sema &S,
8266                                 SourceLocation CaretLoc,
8267                                 const PartialDiagnostic &PDiag) const {
8268  S.Diag(CaretLoc, PDiag)
8269    << Ambiguous.getFromType() << Ambiguous.getToType();
8270  // FIXME: The note limiting machinery is borrowed from
8271  // OverloadCandidateSet::NoteCandidates; there's an opportunity for
8272  // refactoring here.
8273  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
8274  unsigned CandsShown = 0;
8275  AmbiguousConversionSequence::const_iterator I, E;
8276  for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
8277    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
8278      break;
8279    ++CandsShown;
8280    S.NoteOverloadCandidate(*I);
8281  }
8282  if (I != E)
8283    S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
8284}
8285
8286namespace {
8287
8288void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
8289  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
8290  assert(Conv.isBad());
8291  assert(Cand->Function && "for now, candidate must be a function");
8292  FunctionDecl *Fn = Cand->Function;
8293
8294  // There's a conversion slot for the object argument if this is a
8295  // non-constructor method.  Note that 'I' corresponds the
8296  // conversion-slot index.
8297  bool isObjectArgument = false;
8298  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
8299    if (I == 0)
8300      isObjectArgument = true;
8301    else
8302      I--;
8303  }
8304
8305  std::string FnDesc;
8306  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8307
8308  Expr *FromExpr = Conv.Bad.FromExpr;
8309  QualType FromTy = Conv.Bad.getFromType();
8310  QualType ToTy = Conv.Bad.getToType();
8311
8312  if (FromTy == S.Context.OverloadTy) {
8313    assert(FromExpr && "overload set argument came from implicit argument?");
8314    Expr *E = FromExpr->IgnoreParens();
8315    if (isa<UnaryOperator>(E))
8316      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
8317    DeclarationName Name = cast<OverloadExpr>(E)->getName();
8318
8319    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
8320      << (unsigned) FnKind << FnDesc
8321      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8322      << ToTy << Name << I+1;
8323    MaybeEmitInheritedConstructorNote(S, Fn);
8324    return;
8325  }
8326
8327  // Do some hand-waving analysis to see if the non-viability is due
8328  // to a qualifier mismatch.
8329  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
8330  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
8331  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
8332    CToTy = RT->getPointeeType();
8333  else {
8334    // TODO: detect and diagnose the full richness of const mismatches.
8335    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
8336      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
8337        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
8338  }
8339
8340  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
8341      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
8342    Qualifiers FromQs = CFromTy.getQualifiers();
8343    Qualifiers ToQs = CToTy.getQualifiers();
8344
8345    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
8346      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
8347        << (unsigned) FnKind << FnDesc
8348        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8349        << FromTy
8350        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
8351        << (unsigned) isObjectArgument << I+1;
8352      MaybeEmitInheritedConstructorNote(S, Fn);
8353      return;
8354    }
8355
8356    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8357      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
8358        << (unsigned) FnKind << FnDesc
8359        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8360        << FromTy
8361        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
8362        << (unsigned) isObjectArgument << I+1;
8363      MaybeEmitInheritedConstructorNote(S, Fn);
8364      return;
8365    }
8366
8367    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
8368      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
8369      << (unsigned) FnKind << FnDesc
8370      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8371      << FromTy
8372      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
8373      << (unsigned) isObjectArgument << I+1;
8374      MaybeEmitInheritedConstructorNote(S, Fn);
8375      return;
8376    }
8377
8378    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
8379    assert(CVR && "unexpected qualifiers mismatch");
8380
8381    if (isObjectArgument) {
8382      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
8383        << (unsigned) FnKind << FnDesc
8384        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8385        << FromTy << (CVR - 1);
8386    } else {
8387      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
8388        << (unsigned) FnKind << FnDesc
8389        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8390        << FromTy << (CVR - 1) << I+1;
8391    }
8392    MaybeEmitInheritedConstructorNote(S, Fn);
8393    return;
8394  }
8395
8396  // Special diagnostic for failure to convert an initializer list, since
8397  // telling the user that it has type void is not useful.
8398  if (FromExpr && isa<InitListExpr>(FromExpr)) {
8399    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
8400      << (unsigned) FnKind << FnDesc
8401      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8402      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8403    MaybeEmitInheritedConstructorNote(S, Fn);
8404    return;
8405  }
8406
8407  // Diagnose references or pointers to incomplete types differently,
8408  // since it's far from impossible that the incompleteness triggered
8409  // the failure.
8410  QualType TempFromTy = FromTy.getNonReferenceType();
8411  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
8412    TempFromTy = PTy->getPointeeType();
8413  if (TempFromTy->isIncompleteType()) {
8414    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
8415      << (unsigned) FnKind << FnDesc
8416      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8417      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8418    MaybeEmitInheritedConstructorNote(S, Fn);
8419    return;
8420  }
8421
8422  // Diagnose base -> derived pointer conversions.
8423  unsigned BaseToDerivedConversion = 0;
8424  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
8425    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
8426      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8427                                               FromPtrTy->getPointeeType()) &&
8428          !FromPtrTy->getPointeeType()->isIncompleteType() &&
8429          !ToPtrTy->getPointeeType()->isIncompleteType() &&
8430          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
8431                          FromPtrTy->getPointeeType()))
8432        BaseToDerivedConversion = 1;
8433    }
8434  } else if (const ObjCObjectPointerType *FromPtrTy
8435                                    = FromTy->getAs<ObjCObjectPointerType>()) {
8436    if (const ObjCObjectPointerType *ToPtrTy
8437                                        = ToTy->getAs<ObjCObjectPointerType>())
8438      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
8439        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
8440          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
8441                                                FromPtrTy->getPointeeType()) &&
8442              FromIface->isSuperClassOf(ToIface))
8443            BaseToDerivedConversion = 2;
8444  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
8445    if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
8446        !FromTy->isIncompleteType() &&
8447        !ToRefTy->getPointeeType()->isIncompleteType() &&
8448        S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) {
8449      BaseToDerivedConversion = 3;
8450    } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
8451               ToTy.getNonReferenceType().getCanonicalType() ==
8452               FromTy.getNonReferenceType().getCanonicalType()) {
8453      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
8454        << (unsigned) FnKind << FnDesc
8455        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8456        << (unsigned) isObjectArgument << I + 1;
8457      MaybeEmitInheritedConstructorNote(S, Fn);
8458      return;
8459    }
8460  }
8461
8462  if (BaseToDerivedConversion) {
8463    S.Diag(Fn->getLocation(),
8464           diag::note_ovl_candidate_bad_base_to_derived_conv)
8465      << (unsigned) FnKind << FnDesc
8466      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8467      << (BaseToDerivedConversion - 1)
8468      << FromTy << ToTy << I+1;
8469    MaybeEmitInheritedConstructorNote(S, Fn);
8470    return;
8471  }
8472
8473  if (isa<ObjCObjectPointerType>(CFromTy) &&
8474      isa<PointerType>(CToTy)) {
8475      Qualifiers FromQs = CFromTy.getQualifiers();
8476      Qualifiers ToQs = CToTy.getQualifiers();
8477      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
8478        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
8479        << (unsigned) FnKind << FnDesc
8480        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8481        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
8482        MaybeEmitInheritedConstructorNote(S, Fn);
8483        return;
8484      }
8485  }
8486
8487  // Emit the generic diagnostic and, optionally, add the hints to it.
8488  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
8489  FDiag << (unsigned) FnKind << FnDesc
8490    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
8491    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
8492    << (unsigned) (Cand->Fix.Kind);
8493
8494  // If we can fix the conversion, suggest the FixIts.
8495  for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
8496       HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
8497    FDiag << *HI;
8498  S.Diag(Fn->getLocation(), FDiag);
8499
8500  MaybeEmitInheritedConstructorNote(S, Fn);
8501}
8502
8503/// Additional arity mismatch diagnosis specific to a function overload
8504/// candidates. This is not covered by the more general DiagnoseArityMismatch()
8505/// over a candidate in any candidate set.
8506bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
8507                        unsigned NumArgs) {
8508  FunctionDecl *Fn = Cand->Function;
8509  unsigned MinParams = Fn->getMinRequiredArguments();
8510
8511  // With invalid overloaded operators, it's possible that we think we
8512  // have an arity mismatch when in fact it looks like we have the
8513  // right number of arguments, because only overloaded operators have
8514  // the weird behavior of overloading member and non-member functions.
8515  // Just don't report anything.
8516  if (Fn->isInvalidDecl() &&
8517      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
8518    return true;
8519
8520  if (NumArgs < MinParams) {
8521    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
8522           (Cand->FailureKind == ovl_fail_bad_deduction &&
8523            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
8524  } else {
8525    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
8526           (Cand->FailureKind == ovl_fail_bad_deduction &&
8527            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
8528  }
8529
8530  return false;
8531}
8532
8533/// General arity mismatch diagnosis over a candidate in a candidate set.
8534void DiagnoseArityMismatch(Sema &S, Decl *D, unsigned NumFormalArgs) {
8535  assert(isa<FunctionDecl>(D) &&
8536      "The templated declaration should at least be a function"
8537      " when diagnosing bad template argument deduction due to too many"
8538      " or too few arguments");
8539
8540  FunctionDecl *Fn = cast<FunctionDecl>(D);
8541
8542  // TODO: treat calls to a missing default constructor as a special case
8543  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
8544  unsigned MinParams = Fn->getMinRequiredArguments();
8545
8546  // at least / at most / exactly
8547  unsigned mode, modeCount;
8548  if (NumFormalArgs < MinParams) {
8549    if (MinParams != FnTy->getNumArgs() ||
8550        FnTy->isVariadic() || FnTy->isTemplateVariadic())
8551      mode = 0; // "at least"
8552    else
8553      mode = 2; // "exactly"
8554    modeCount = MinParams;
8555  } else {
8556    if (MinParams != FnTy->getNumArgs())
8557      mode = 1; // "at most"
8558    else
8559      mode = 2; // "exactly"
8560    modeCount = FnTy->getNumArgs();
8561  }
8562
8563  std::string Description;
8564  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
8565
8566  if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
8567    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
8568      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8569      << Fn->getParamDecl(0) << NumFormalArgs;
8570  else
8571    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
8572      << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
8573      << modeCount << NumFormalArgs;
8574  MaybeEmitInheritedConstructorNote(S, Fn);
8575}
8576
8577/// Arity mismatch diagnosis specific to a function overload candidate.
8578void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
8579                           unsigned NumFormalArgs) {
8580  if (!CheckArityMismatch(S, Cand, NumFormalArgs))
8581    DiagnoseArityMismatch(S, Cand->Function, NumFormalArgs);
8582}
8583
8584TemplateDecl *getDescribedTemplate(Decl *Templated) {
8585  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Templated))
8586    return FD->getDescribedFunctionTemplate();
8587  else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Templated))
8588    return RD->getDescribedClassTemplate();
8589
8590  llvm_unreachable("Unsupported: Getting the described template declaration"
8591                   " for bad deduction diagnosis");
8592}
8593
8594/// Diagnose a failed template-argument deduction.
8595void DiagnoseBadDeduction(Sema &S, Decl *Templated,
8596                          DeductionFailureInfo &DeductionFailure,
8597                          unsigned NumArgs) {
8598  TemplateParameter Param = DeductionFailure.getTemplateParameter();
8599  NamedDecl *ParamD;
8600  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
8601  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
8602  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
8603  switch (DeductionFailure.Result) {
8604  case Sema::TDK_Success:
8605    llvm_unreachable("TDK_success while diagnosing bad deduction");
8606
8607  case Sema::TDK_Incomplete: {
8608    assert(ParamD && "no parameter found for incomplete deduction result");
8609    S.Diag(Templated->getLocation(),
8610           diag::note_ovl_candidate_incomplete_deduction)
8611        << ParamD->getDeclName();
8612    MaybeEmitInheritedConstructorNote(S, Templated);
8613    return;
8614  }
8615
8616  case Sema::TDK_Underqualified: {
8617    assert(ParamD && "no parameter found for bad qualifiers deduction result");
8618    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
8619
8620    QualType Param = DeductionFailure.getFirstArg()->getAsType();
8621
8622    // Param will have been canonicalized, but it should just be a
8623    // qualified version of ParamD, so move the qualifiers to that.
8624    QualifierCollector Qs;
8625    Qs.strip(Param);
8626    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
8627    assert(S.Context.hasSameType(Param, NonCanonParam));
8628
8629    // Arg has also been canonicalized, but there's nothing we can do
8630    // about that.  It also doesn't matter as much, because it won't
8631    // have any template parameters in it (because deduction isn't
8632    // done on dependent types).
8633    QualType Arg = DeductionFailure.getSecondArg()->getAsType();
8634
8635    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
8636        << ParamD->getDeclName() << Arg << NonCanonParam;
8637    MaybeEmitInheritedConstructorNote(S, Templated);
8638    return;
8639  }
8640
8641  case Sema::TDK_Inconsistent: {
8642    assert(ParamD && "no parameter found for inconsistent deduction result");
8643    int which = 0;
8644    if (isa<TemplateTypeParmDecl>(ParamD))
8645      which = 0;
8646    else if (isa<NonTypeTemplateParmDecl>(ParamD))
8647      which = 1;
8648    else {
8649      which = 2;
8650    }
8651
8652    S.Diag(Templated->getLocation(),
8653           diag::note_ovl_candidate_inconsistent_deduction)
8654        << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
8655        << *DeductionFailure.getSecondArg();
8656    MaybeEmitInheritedConstructorNote(S, Templated);
8657    return;
8658  }
8659
8660  case Sema::TDK_InvalidExplicitArguments:
8661    assert(ParamD && "no parameter found for invalid explicit arguments");
8662    if (ParamD->getDeclName())
8663      S.Diag(Templated->getLocation(),
8664             diag::note_ovl_candidate_explicit_arg_mismatch_named)
8665          << ParamD->getDeclName();
8666    else {
8667      int index = 0;
8668      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
8669        index = TTP->getIndex();
8670      else if (NonTypeTemplateParmDecl *NTTP
8671                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
8672        index = NTTP->getIndex();
8673      else
8674        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
8675      S.Diag(Templated->getLocation(),
8676             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
8677          << (index + 1);
8678    }
8679    MaybeEmitInheritedConstructorNote(S, Templated);
8680    return;
8681
8682  case Sema::TDK_TooManyArguments:
8683  case Sema::TDK_TooFewArguments:
8684    DiagnoseArityMismatch(S, Templated, NumArgs);
8685    return;
8686
8687  case Sema::TDK_InstantiationDepth:
8688    S.Diag(Templated->getLocation(),
8689           diag::note_ovl_candidate_instantiation_depth);
8690    MaybeEmitInheritedConstructorNote(S, Templated);
8691    return;
8692
8693  case Sema::TDK_SubstitutionFailure: {
8694    // Format the template argument list into the argument string.
8695    SmallString<128> TemplateArgString;
8696    if (TemplateArgumentList *Args =
8697            DeductionFailure.getTemplateArgumentList()) {
8698      TemplateArgString = " ";
8699      TemplateArgString += S.getTemplateArgumentBindingsText(
8700          getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
8701    }
8702
8703    // If this candidate was disabled by enable_if, say so.
8704    PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
8705    if (PDiag && PDiag->second.getDiagID() ==
8706          diag::err_typename_nested_not_found_enable_if) {
8707      // FIXME: Use the source range of the condition, and the fully-qualified
8708      //        name of the enable_if template. These are both present in PDiag.
8709      S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
8710        << "'enable_if'" << TemplateArgString;
8711      return;
8712    }
8713
8714    // Format the SFINAE diagnostic into the argument string.
8715    // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
8716    //        formatted message in another diagnostic.
8717    SmallString<128> SFINAEArgString;
8718    SourceRange R;
8719    if (PDiag) {
8720      SFINAEArgString = ": ";
8721      R = SourceRange(PDiag->first, PDiag->first);
8722      PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
8723    }
8724
8725    S.Diag(Templated->getLocation(),
8726           diag::note_ovl_candidate_substitution_failure)
8727        << TemplateArgString << SFINAEArgString << R;
8728    MaybeEmitInheritedConstructorNote(S, Templated);
8729    return;
8730  }
8731
8732  case Sema::TDK_FailedOverloadResolution: {
8733    OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
8734    S.Diag(Templated->getLocation(),
8735           diag::note_ovl_candidate_failed_overload_resolution)
8736        << R.Expression->getName();
8737    return;
8738  }
8739
8740  case Sema::TDK_NonDeducedMismatch: {
8741    // FIXME: Provide a source location to indicate what we couldn't match.
8742    TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
8743    TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
8744    if (FirstTA.getKind() == TemplateArgument::Template &&
8745        SecondTA.getKind() == TemplateArgument::Template) {
8746      TemplateName FirstTN = FirstTA.getAsTemplate();
8747      TemplateName SecondTN = SecondTA.getAsTemplate();
8748      if (FirstTN.getKind() == TemplateName::Template &&
8749          SecondTN.getKind() == TemplateName::Template) {
8750        if (FirstTN.getAsTemplateDecl()->getName() ==
8751            SecondTN.getAsTemplateDecl()->getName()) {
8752          // FIXME: This fixes a bad diagnostic where both templates are named
8753          // the same.  This particular case is a bit difficult since:
8754          // 1) It is passed as a string to the diagnostic printer.
8755          // 2) The diagnostic printer only attempts to find a better
8756          //    name for types, not decls.
8757          // Ideally, this should folded into the diagnostic printer.
8758          S.Diag(Templated->getLocation(),
8759                 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
8760              << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
8761          return;
8762        }
8763      }
8764    }
8765    // FIXME: For generic lambda parameters, check if the function is a lambda
8766    // call operator, and if so, emit a prettier and more informative
8767    // diagnostic that mentions 'auto' and lambda in addition to
8768    // (or instead of?) the canonical template type parameters.
8769    S.Diag(Templated->getLocation(),
8770           diag::note_ovl_candidate_non_deduced_mismatch)
8771        << FirstTA << SecondTA;
8772    return;
8773  }
8774  // TODO: diagnose these individually, then kill off
8775  // note_ovl_candidate_bad_deduction, which is uselessly vague.
8776  case Sema::TDK_MiscellaneousDeductionFailure:
8777    S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
8778    MaybeEmitInheritedConstructorNote(S, Templated);
8779    return;
8780  }
8781}
8782
8783/// Diagnose a failed template-argument deduction, for function calls.
8784void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, unsigned NumArgs) {
8785  unsigned TDK = Cand->DeductionFailure.Result;
8786  if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
8787    if (CheckArityMismatch(S, Cand, NumArgs))
8788      return;
8789  }
8790  DiagnoseBadDeduction(S, Cand->Function, // pattern
8791                       Cand->DeductionFailure, NumArgs);
8792}
8793
8794/// CUDA: diagnose an invalid call across targets.
8795void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
8796  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
8797  FunctionDecl *Callee = Cand->Function;
8798
8799  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
8800                           CalleeTarget = S.IdentifyCUDATarget(Callee);
8801
8802  std::string FnDesc;
8803  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
8804
8805  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
8806      << (unsigned) FnKind << CalleeTarget << CallerTarget;
8807}
8808
8809/// Generates a 'note' diagnostic for an overload candidate.  We've
8810/// already generated a primary error at the call site.
8811///
8812/// It really does need to be a single diagnostic with its caret
8813/// pointed at the candidate declaration.  Yes, this creates some
8814/// major challenges of technical writing.  Yes, this makes pointing
8815/// out problems with specific arguments quite awkward.  It's still
8816/// better than generating twenty screens of text for every failed
8817/// overload.
8818///
8819/// It would be great to be able to express per-candidate problems
8820/// more richly for those diagnostic clients that cared, but we'd
8821/// still have to be just as careful with the default diagnostics.
8822void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
8823                           unsigned NumArgs) {
8824  FunctionDecl *Fn = Cand->Function;
8825
8826  // Note deleted candidates, but only if they're viable.
8827  if (Cand->Viable && (Fn->isDeleted() ||
8828      S.isFunctionConsideredUnavailable(Fn))) {
8829    std::string FnDesc;
8830    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
8831
8832    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
8833      << FnKind << FnDesc
8834      << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
8835    MaybeEmitInheritedConstructorNote(S, Fn);
8836    return;
8837  }
8838
8839  // We don't really have anything else to say about viable candidates.
8840  if (Cand->Viable) {
8841    S.NoteOverloadCandidate(Fn);
8842    return;
8843  }
8844
8845  switch (Cand->FailureKind) {
8846  case ovl_fail_too_many_arguments:
8847  case ovl_fail_too_few_arguments:
8848    return DiagnoseArityMismatch(S, Cand, NumArgs);
8849
8850  case ovl_fail_bad_deduction:
8851    return DiagnoseBadDeduction(S, Cand, NumArgs);
8852
8853  case ovl_fail_trivial_conversion:
8854  case ovl_fail_bad_final_conversion:
8855  case ovl_fail_final_conversion_not_exact:
8856    return S.NoteOverloadCandidate(Fn);
8857
8858  case ovl_fail_bad_conversion: {
8859    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
8860    for (unsigned N = Cand->NumConversions; I != N; ++I)
8861      if (Cand->Conversions[I].isBad())
8862        return DiagnoseBadConversion(S, Cand, I);
8863
8864    // FIXME: this currently happens when we're called from SemaInit
8865    // when user-conversion overload fails.  Figure out how to handle
8866    // those conditions and diagnose them well.
8867    return S.NoteOverloadCandidate(Fn);
8868  }
8869
8870  case ovl_fail_bad_target:
8871    return DiagnoseBadTarget(S, Cand);
8872  }
8873}
8874
8875void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
8876  // Desugar the type of the surrogate down to a function type,
8877  // retaining as many typedefs as possible while still showing
8878  // the function type (and, therefore, its parameter types).
8879  QualType FnType = Cand->Surrogate->getConversionType();
8880  bool isLValueReference = false;
8881  bool isRValueReference = false;
8882  bool isPointer = false;
8883  if (const LValueReferenceType *FnTypeRef =
8884        FnType->getAs<LValueReferenceType>()) {
8885    FnType = FnTypeRef->getPointeeType();
8886    isLValueReference = true;
8887  } else if (const RValueReferenceType *FnTypeRef =
8888               FnType->getAs<RValueReferenceType>()) {
8889    FnType = FnTypeRef->getPointeeType();
8890    isRValueReference = true;
8891  }
8892  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
8893    FnType = FnTypePtr->getPointeeType();
8894    isPointer = true;
8895  }
8896  // Desugar down to a function type.
8897  FnType = QualType(FnType->getAs<FunctionType>(), 0);
8898  // Reconstruct the pointer/reference as appropriate.
8899  if (isPointer) FnType = S.Context.getPointerType(FnType);
8900  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
8901  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
8902
8903  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
8904    << FnType;
8905  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
8906}
8907
8908void NoteBuiltinOperatorCandidate(Sema &S,
8909                                  StringRef Opc,
8910                                  SourceLocation OpLoc,
8911                                  OverloadCandidate *Cand) {
8912  assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
8913  std::string TypeStr("operator");
8914  TypeStr += Opc;
8915  TypeStr += "(";
8916  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
8917  if (Cand->NumConversions == 1) {
8918    TypeStr += ")";
8919    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
8920  } else {
8921    TypeStr += ", ";
8922    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
8923    TypeStr += ")";
8924    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
8925  }
8926}
8927
8928void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
8929                                  OverloadCandidate *Cand) {
8930  unsigned NoOperands = Cand->NumConversions;
8931  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
8932    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
8933    if (ICS.isBad()) break; // all meaningless after first invalid
8934    if (!ICS.isAmbiguous()) continue;
8935
8936    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
8937                              S.PDiag(diag::note_ambiguous_type_conversion));
8938  }
8939}
8940
8941static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
8942  if (Cand->Function)
8943    return Cand->Function->getLocation();
8944  if (Cand->IsSurrogate)
8945    return Cand->Surrogate->getLocation();
8946  return SourceLocation();
8947}
8948
8949static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
8950  switch ((Sema::TemplateDeductionResult)DFI.Result) {
8951  case Sema::TDK_Success:
8952    llvm_unreachable("TDK_success while diagnosing bad deduction");
8953
8954  case Sema::TDK_Invalid:
8955  case Sema::TDK_Incomplete:
8956    return 1;
8957
8958  case Sema::TDK_Underqualified:
8959  case Sema::TDK_Inconsistent:
8960    return 2;
8961
8962  case Sema::TDK_SubstitutionFailure:
8963  case Sema::TDK_NonDeducedMismatch:
8964  case Sema::TDK_MiscellaneousDeductionFailure:
8965    return 3;
8966
8967  case Sema::TDK_InstantiationDepth:
8968  case Sema::TDK_FailedOverloadResolution:
8969    return 4;
8970
8971  case Sema::TDK_InvalidExplicitArguments:
8972    return 5;
8973
8974  case Sema::TDK_TooManyArguments:
8975  case Sema::TDK_TooFewArguments:
8976    return 6;
8977  }
8978  llvm_unreachable("Unhandled deduction result");
8979}
8980
8981struct CompareOverloadCandidatesForDisplay {
8982  Sema &S;
8983  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
8984
8985  bool operator()(const OverloadCandidate *L,
8986                  const OverloadCandidate *R) {
8987    // Fast-path this check.
8988    if (L == R) return false;
8989
8990    // Order first by viability.
8991    if (L->Viable) {
8992      if (!R->Viable) return true;
8993
8994      // TODO: introduce a tri-valued comparison for overload
8995      // candidates.  Would be more worthwhile if we had a sort
8996      // that could exploit it.
8997      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
8998      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
8999    } else if (R->Viable)
9000      return false;
9001
9002    assert(L->Viable == R->Viable);
9003
9004    // Criteria by which we can sort non-viable candidates:
9005    if (!L->Viable) {
9006      // 1. Arity mismatches come after other candidates.
9007      if (L->FailureKind == ovl_fail_too_many_arguments ||
9008          L->FailureKind == ovl_fail_too_few_arguments)
9009        return false;
9010      if (R->FailureKind == ovl_fail_too_many_arguments ||
9011          R->FailureKind == ovl_fail_too_few_arguments)
9012        return true;
9013
9014      // 2. Bad conversions come first and are ordered by the number
9015      // of bad conversions and quality of good conversions.
9016      if (L->FailureKind == ovl_fail_bad_conversion) {
9017        if (R->FailureKind != ovl_fail_bad_conversion)
9018          return true;
9019
9020        // The conversion that can be fixed with a smaller number of changes,
9021        // comes first.
9022        unsigned numLFixes = L->Fix.NumConversionsFixed;
9023        unsigned numRFixes = R->Fix.NumConversionsFixed;
9024        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
9025        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
9026        if (numLFixes != numRFixes) {
9027          if (numLFixes < numRFixes)
9028            return true;
9029          else
9030            return false;
9031        }
9032
9033        // If there's any ordering between the defined conversions...
9034        // FIXME: this might not be transitive.
9035        assert(L->NumConversions == R->NumConversions);
9036
9037        int leftBetter = 0;
9038        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
9039        for (unsigned E = L->NumConversions; I != E; ++I) {
9040          switch (CompareImplicitConversionSequences(S,
9041                                                     L->Conversions[I],
9042                                                     R->Conversions[I])) {
9043          case ImplicitConversionSequence::Better:
9044            leftBetter++;
9045            break;
9046
9047          case ImplicitConversionSequence::Worse:
9048            leftBetter--;
9049            break;
9050
9051          case ImplicitConversionSequence::Indistinguishable:
9052            break;
9053          }
9054        }
9055        if (leftBetter > 0) return true;
9056        if (leftBetter < 0) return false;
9057
9058      } else if (R->FailureKind == ovl_fail_bad_conversion)
9059        return false;
9060
9061      if (L->FailureKind == ovl_fail_bad_deduction) {
9062        if (R->FailureKind != ovl_fail_bad_deduction)
9063          return true;
9064
9065        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9066          return RankDeductionFailure(L->DeductionFailure)
9067               < RankDeductionFailure(R->DeductionFailure);
9068      } else if (R->FailureKind == ovl_fail_bad_deduction)
9069        return false;
9070
9071      // TODO: others?
9072    }
9073
9074    // Sort everything else by location.
9075    SourceLocation LLoc = GetLocationForCandidate(L);
9076    SourceLocation RLoc = GetLocationForCandidate(R);
9077
9078    // Put candidates without locations (e.g. builtins) at the end.
9079    if (LLoc.isInvalid()) return false;
9080    if (RLoc.isInvalid()) return true;
9081
9082    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9083  }
9084};
9085
9086/// CompleteNonViableCandidate - Normally, overload resolution only
9087/// computes up to the first. Produces the FixIt set if possible.
9088void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9089                                ArrayRef<Expr *> Args) {
9090  assert(!Cand->Viable);
9091
9092  // Don't do anything on failures other than bad conversion.
9093  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9094
9095  // We only want the FixIts if all the arguments can be corrected.
9096  bool Unfixable = false;
9097  // Use a implicit copy initialization to check conversion fixes.
9098  Cand->Fix.setConversionChecker(TryCopyInitialization);
9099
9100  // Skip forward to the first bad conversion.
9101  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
9102  unsigned ConvCount = Cand->NumConversions;
9103  while (true) {
9104    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
9105    ConvIdx++;
9106    if (Cand->Conversions[ConvIdx - 1].isBad()) {
9107      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
9108      break;
9109    }
9110  }
9111
9112  if (ConvIdx == ConvCount)
9113    return;
9114
9115  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
9116         "remaining conversion is initialized?");
9117
9118  // FIXME: this should probably be preserved from the overload
9119  // operation somehow.
9120  bool SuppressUserConversions = false;
9121
9122  const FunctionProtoType* Proto;
9123  unsigned ArgIdx = ConvIdx;
9124
9125  if (Cand->IsSurrogate) {
9126    QualType ConvType
9127      = Cand->Surrogate->getConversionType().getNonReferenceType();
9128    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9129      ConvType = ConvPtrType->getPointeeType();
9130    Proto = ConvType->getAs<FunctionProtoType>();
9131    ArgIdx--;
9132  } else if (Cand->Function) {
9133    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
9134    if (isa<CXXMethodDecl>(Cand->Function) &&
9135        !isa<CXXConstructorDecl>(Cand->Function))
9136      ArgIdx--;
9137  } else {
9138    // Builtin binary operator with a bad first conversion.
9139    assert(ConvCount <= 3);
9140    for (; ConvIdx != ConvCount; ++ConvIdx)
9141      Cand->Conversions[ConvIdx]
9142        = TryCopyInitialization(S, Args[ConvIdx],
9143                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
9144                                SuppressUserConversions,
9145                                /*InOverloadResolution*/ true,
9146                                /*AllowObjCWritebackConversion=*/
9147                                  S.getLangOpts().ObjCAutoRefCount);
9148    return;
9149  }
9150
9151  // Fill in the rest of the conversions.
9152  unsigned NumArgsInProto = Proto->getNumArgs();
9153  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
9154    if (ArgIdx < NumArgsInProto) {
9155      Cand->Conversions[ConvIdx]
9156        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
9157                                SuppressUserConversions,
9158                                /*InOverloadResolution=*/true,
9159                                /*AllowObjCWritebackConversion=*/
9160                                  S.getLangOpts().ObjCAutoRefCount);
9161      // Store the FixIt in the candidate if it exists.
9162      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
9163        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
9164    }
9165    else
9166      Cand->Conversions[ConvIdx].setEllipsis();
9167  }
9168}
9169
9170} // end anonymous namespace
9171
9172/// PrintOverloadCandidates - When overload resolution fails, prints
9173/// diagnostic messages containing the candidates in the candidate
9174/// set.
9175void OverloadCandidateSet::NoteCandidates(Sema &S,
9176                                          OverloadCandidateDisplayKind OCD,
9177                                          ArrayRef<Expr *> Args,
9178                                          StringRef Opc,
9179                                          SourceLocation OpLoc) {
9180  // Sort the candidates by viability and position.  Sorting directly would
9181  // be prohibitive, so we make a set of pointers and sort those.
9182  SmallVector<OverloadCandidate*, 32> Cands;
9183  if (OCD == OCD_AllCandidates) Cands.reserve(size());
9184  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9185    if (Cand->Viable)
9186      Cands.push_back(Cand);
9187    else if (OCD == OCD_AllCandidates) {
9188      CompleteNonViableCandidate(S, Cand, Args);
9189      if (Cand->Function || Cand->IsSurrogate)
9190        Cands.push_back(Cand);
9191      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
9192      // want to list every possible builtin candidate.
9193    }
9194  }
9195
9196  std::sort(Cands.begin(), Cands.end(),
9197            CompareOverloadCandidatesForDisplay(S));
9198
9199  bool ReportedAmbiguousConversions = false;
9200
9201  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
9202  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9203  unsigned CandsShown = 0;
9204  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9205    OverloadCandidate *Cand = *I;
9206
9207    // Set an arbitrary limit on the number of candidate functions we'll spam
9208    // the user with.  FIXME: This limit should depend on details of the
9209    // candidate list.
9210    if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
9211      break;
9212    }
9213    ++CandsShown;
9214
9215    if (Cand->Function)
9216      NoteFunctionCandidate(S, Cand, Args.size());
9217    else if (Cand->IsSurrogate)
9218      NoteSurrogateCandidate(S, Cand);
9219    else {
9220      assert(Cand->Viable &&
9221             "Non-viable built-in candidates are not added to Cands.");
9222      // Generally we only see ambiguities including viable builtin
9223      // operators if overload resolution got screwed up by an
9224      // ambiguous user-defined conversion.
9225      //
9226      // FIXME: It's quite possible for different conversions to see
9227      // different ambiguities, though.
9228      if (!ReportedAmbiguousConversions) {
9229        NoteAmbiguousUserConversions(S, OpLoc, Cand);
9230        ReportedAmbiguousConversions = true;
9231      }
9232
9233      // If this is a viable builtin, print it.
9234      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
9235    }
9236  }
9237
9238  if (I != E)
9239    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
9240}
9241
9242static SourceLocation
9243GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
9244  return Cand->Specialization ? Cand->Specialization->getLocation()
9245                              : SourceLocation();
9246}
9247
9248struct CompareTemplateSpecCandidatesForDisplay {
9249  Sema &S;
9250  CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
9251
9252  bool operator()(const TemplateSpecCandidate *L,
9253                  const TemplateSpecCandidate *R) {
9254    // Fast-path this check.
9255    if (L == R)
9256      return false;
9257
9258    // Assuming that both candidates are not matches...
9259
9260    // Sort by the ranking of deduction failures.
9261    if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9262      return RankDeductionFailure(L->DeductionFailure) <
9263             RankDeductionFailure(R->DeductionFailure);
9264
9265    // Sort everything else by location.
9266    SourceLocation LLoc = GetLocationForCandidate(L);
9267    SourceLocation RLoc = GetLocationForCandidate(R);
9268
9269    // Put candidates without locations (e.g. builtins) at the end.
9270    if (LLoc.isInvalid())
9271      return false;
9272    if (RLoc.isInvalid())
9273      return true;
9274
9275    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9276  }
9277};
9278
9279/// Diagnose a template argument deduction failure.
9280/// We are treating these failures as overload failures due to bad
9281/// deductions.
9282void TemplateSpecCandidate::NoteDeductionFailure(Sema &S) {
9283  DiagnoseBadDeduction(S, Specialization, // pattern
9284                       DeductionFailure, /*NumArgs=*/0);
9285}
9286
9287void TemplateSpecCandidateSet::destroyCandidates() {
9288  for (iterator i = begin(), e = end(); i != e; ++i) {
9289    i->DeductionFailure.Destroy();
9290  }
9291}
9292
9293void TemplateSpecCandidateSet::clear() {
9294  destroyCandidates();
9295  Candidates.clear();
9296}
9297
9298/// NoteCandidates - When no template specialization match is found, prints
9299/// diagnostic messages containing the non-matching specializations that form
9300/// the candidate set.
9301/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
9302/// OCD == OCD_AllCandidates and Cand->Viable == false.
9303void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
9304  // Sort the candidates by position (assuming no candidate is a match).
9305  // Sorting directly would be prohibitive, so we make a set of pointers
9306  // and sort those.
9307  SmallVector<TemplateSpecCandidate *, 32> Cands;
9308  Cands.reserve(size());
9309  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
9310    if (Cand->Specialization)
9311      Cands.push_back(Cand);
9312    // Otherwise, this is a non matching builtin candidate.  We do not,
9313    // in general, want to list every possible builtin candidate.
9314  }
9315
9316  std::sort(Cands.begin(), Cands.end(),
9317            CompareTemplateSpecCandidatesForDisplay(S));
9318
9319  // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
9320  // for generalization purposes (?).
9321  const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9322
9323  SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
9324  unsigned CandsShown = 0;
9325  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
9326    TemplateSpecCandidate *Cand = *I;
9327
9328    // Set an arbitrary limit on the number of candidates we'll spam
9329    // the user with.  FIXME: This limit should depend on details of the
9330    // candidate list.
9331    if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9332      break;
9333    ++CandsShown;
9334
9335    assert(Cand->Specialization &&
9336           "Non-matching built-in candidates are not added to Cands.");
9337    Cand->NoteDeductionFailure(S);
9338  }
9339
9340  if (I != E)
9341    S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
9342}
9343
9344// [PossiblyAFunctionType]  -->   [Return]
9345// NonFunctionType --> NonFunctionType
9346// R (A) --> R(A)
9347// R (*)(A) --> R (A)
9348// R (&)(A) --> R (A)
9349// R (S::*)(A) --> R (A)
9350QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
9351  QualType Ret = PossiblyAFunctionType;
9352  if (const PointerType *ToTypePtr =
9353    PossiblyAFunctionType->getAs<PointerType>())
9354    Ret = ToTypePtr->getPointeeType();
9355  else if (const ReferenceType *ToTypeRef =
9356    PossiblyAFunctionType->getAs<ReferenceType>())
9357    Ret = ToTypeRef->getPointeeType();
9358  else if (const MemberPointerType *MemTypePtr =
9359    PossiblyAFunctionType->getAs<MemberPointerType>())
9360    Ret = MemTypePtr->getPointeeType();
9361  Ret =
9362    Context.getCanonicalType(Ret).getUnqualifiedType();
9363  return Ret;
9364}
9365
9366// A helper class to help with address of function resolution
9367// - allows us to avoid passing around all those ugly parameters
9368class AddressOfFunctionResolver
9369{
9370  Sema& S;
9371  Expr* SourceExpr;
9372  const QualType& TargetType;
9373  QualType TargetFunctionType; // Extracted function type from target type
9374
9375  bool Complain;
9376  //DeclAccessPair& ResultFunctionAccessPair;
9377  ASTContext& Context;
9378
9379  bool TargetTypeIsNonStaticMemberFunction;
9380  bool FoundNonTemplateFunction;
9381  bool StaticMemberFunctionFromBoundPointer;
9382
9383  OverloadExpr::FindResult OvlExprInfo;
9384  OverloadExpr *OvlExpr;
9385  TemplateArgumentListInfo OvlExplicitTemplateArgs;
9386  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
9387  TemplateSpecCandidateSet FailedCandidates;
9388
9389public:
9390  AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
9391                            const QualType &TargetType, bool Complain)
9392      : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
9393        Complain(Complain), Context(S.getASTContext()),
9394        TargetTypeIsNonStaticMemberFunction(
9395            !!TargetType->getAs<MemberPointerType>()),
9396        FoundNonTemplateFunction(false),
9397        StaticMemberFunctionFromBoundPointer(false),
9398        OvlExprInfo(OverloadExpr::find(SourceExpr)),
9399        OvlExpr(OvlExprInfo.Expression),
9400        FailedCandidates(OvlExpr->getNameLoc()) {
9401    ExtractUnqualifiedFunctionTypeFromTargetType();
9402
9403    if (TargetFunctionType->isFunctionType()) {
9404      if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
9405        if (!UME->isImplicitAccess() &&
9406            !S.ResolveSingleFunctionTemplateSpecialization(UME))
9407          StaticMemberFunctionFromBoundPointer = true;
9408    } else if (OvlExpr->hasExplicitTemplateArgs()) {
9409      DeclAccessPair dap;
9410      if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
9411              OvlExpr, false, &dap)) {
9412        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
9413          if (!Method->isStatic()) {
9414            // If the target type is a non-function type and the function found
9415            // is a non-static member function, pretend as if that was the
9416            // target, it's the only possible type to end up with.
9417            TargetTypeIsNonStaticMemberFunction = true;
9418
9419            // And skip adding the function if its not in the proper form.
9420            // We'll diagnose this due to an empty set of functions.
9421            if (!OvlExprInfo.HasFormOfMemberPointer)
9422              return;
9423          }
9424
9425        Matches.push_back(std::make_pair(dap, Fn));
9426      }
9427      return;
9428    }
9429
9430    if (OvlExpr->hasExplicitTemplateArgs())
9431      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
9432
9433    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
9434      // C++ [over.over]p4:
9435      //   If more than one function is selected, [...]
9436      if (Matches.size() > 1) {
9437        if (FoundNonTemplateFunction)
9438          EliminateAllTemplateMatches();
9439        else
9440          EliminateAllExceptMostSpecializedTemplate();
9441      }
9442    }
9443  }
9444
9445private:
9446  bool isTargetTypeAFunction() const {
9447    return TargetFunctionType->isFunctionType();
9448  }
9449
9450  // [ToType]     [Return]
9451
9452  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
9453  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
9454  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
9455  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
9456    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
9457  }
9458
9459  // return true if any matching specializations were found
9460  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
9461                                   const DeclAccessPair& CurAccessFunPair) {
9462    if (CXXMethodDecl *Method
9463              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
9464      // Skip non-static function templates when converting to pointer, and
9465      // static when converting to member pointer.
9466      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9467        return false;
9468    }
9469    else if (TargetTypeIsNonStaticMemberFunction)
9470      return false;
9471
9472    // C++ [over.over]p2:
9473    //   If the name is a function template, template argument deduction is
9474    //   done (14.8.2.2), and if the argument deduction succeeds, the
9475    //   resulting template argument list is used to generate a single
9476    //   function template specialization, which is added to the set of
9477    //   overloaded functions considered.
9478    FunctionDecl *Specialization = 0;
9479    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9480    if (Sema::TemplateDeductionResult Result
9481          = S.DeduceTemplateArguments(FunctionTemplate,
9482                                      &OvlExplicitTemplateArgs,
9483                                      TargetFunctionType, Specialization,
9484                                      Info, /*InOverloadResolution=*/true)) {
9485      // Make a note of the failed deduction for diagnostics.
9486      FailedCandidates.addCandidate()
9487          .set(FunctionTemplate->getTemplatedDecl(),
9488               MakeDeductionFailureInfo(Context, Result, Info));
9489      return false;
9490    }
9491
9492    // Template argument deduction ensures that we have an exact match or
9493    // compatible pointer-to-function arguments that would be adjusted by ICS.
9494    // This function template specicalization works.
9495    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
9496    assert(S.isSameOrCompatibleFunctionType(
9497              Context.getCanonicalType(Specialization->getType()),
9498              Context.getCanonicalType(TargetFunctionType)));
9499    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
9500    return true;
9501  }
9502
9503  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
9504                                      const DeclAccessPair& CurAccessFunPair) {
9505    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9506      // Skip non-static functions when converting to pointer, and static
9507      // when converting to member pointer.
9508      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
9509        return false;
9510    }
9511    else if (TargetTypeIsNonStaticMemberFunction)
9512      return false;
9513
9514    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
9515      if (S.getLangOpts().CUDA)
9516        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
9517          if (S.CheckCUDATarget(Caller, FunDecl))
9518            return false;
9519
9520      // If any candidate has a placeholder return type, trigger its deduction
9521      // now.
9522      if (S.getLangOpts().CPlusPlus1y &&
9523          FunDecl->getResultType()->isUndeducedType() &&
9524          S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain))
9525        return false;
9526
9527      QualType ResultTy;
9528      if (Context.hasSameUnqualifiedType(TargetFunctionType,
9529                                         FunDecl->getType()) ||
9530          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
9531                                 ResultTy)) {
9532        Matches.push_back(std::make_pair(CurAccessFunPair,
9533          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
9534        FoundNonTemplateFunction = true;
9535        return true;
9536      }
9537    }
9538
9539    return false;
9540  }
9541
9542  bool FindAllFunctionsThatMatchTargetTypeExactly() {
9543    bool Ret = false;
9544
9545    // If the overload expression doesn't have the form of a pointer to
9546    // member, don't try to convert it to a pointer-to-member type.
9547    if (IsInvalidFormOfPointerToMemberFunction())
9548      return false;
9549
9550    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9551                               E = OvlExpr->decls_end();
9552         I != E; ++I) {
9553      // Look through any using declarations to find the underlying function.
9554      NamedDecl *Fn = (*I)->getUnderlyingDecl();
9555
9556      // C++ [over.over]p3:
9557      //   Non-member functions and static member functions match
9558      //   targets of type "pointer-to-function" or "reference-to-function."
9559      //   Nonstatic member functions match targets of
9560      //   type "pointer-to-member-function."
9561      // Note that according to DR 247, the containing class does not matter.
9562      if (FunctionTemplateDecl *FunctionTemplate
9563                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
9564        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
9565          Ret = true;
9566      }
9567      // If we have explicit template arguments supplied, skip non-templates.
9568      else if (!OvlExpr->hasExplicitTemplateArgs() &&
9569               AddMatchingNonTemplateFunction(Fn, I.getPair()))
9570        Ret = true;
9571    }
9572    assert(Ret || Matches.empty());
9573    return Ret;
9574  }
9575
9576  void EliminateAllExceptMostSpecializedTemplate() {
9577    //   [...] and any given function template specialization F1 is
9578    //   eliminated if the set contains a second function template
9579    //   specialization whose function template is more specialized
9580    //   than the function template of F1 according to the partial
9581    //   ordering rules of 14.5.5.2.
9582
9583    // The algorithm specified above is quadratic. We instead use a
9584    // two-pass algorithm (similar to the one used to identify the
9585    // best viable function in an overload set) that identifies the
9586    // best function template (if it exists).
9587
9588    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
9589    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
9590      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
9591
9592    // TODO: It looks like FailedCandidates does not serve much purpose
9593    // here, since the no_viable diagnostic has index 0.
9594    UnresolvedSetIterator Result = S.getMostSpecialized(
9595        MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
9596        SourceExpr->getLocStart(), S.PDiag(),
9597        S.PDiag(diag::err_addr_ovl_ambiguous) << Matches[0]
9598                                                     .second->getDeclName(),
9599        S.PDiag(diag::note_ovl_candidate) << (unsigned)oc_function_template,
9600        Complain, TargetFunctionType);
9601
9602    if (Result != MatchesCopy.end()) {
9603      // Make it the first and only element
9604      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
9605      Matches[0].second = cast<FunctionDecl>(*Result);
9606      Matches.resize(1);
9607    }
9608  }
9609
9610  void EliminateAllTemplateMatches() {
9611    //   [...] any function template specializations in the set are
9612    //   eliminated if the set also contains a non-template function, [...]
9613    for (unsigned I = 0, N = Matches.size(); I != N; ) {
9614      if (Matches[I].second->getPrimaryTemplate() == 0)
9615        ++I;
9616      else {
9617        Matches[I] = Matches[--N];
9618        Matches.set_size(N);
9619      }
9620    }
9621  }
9622
9623public:
9624  void ComplainNoMatchesFound() const {
9625    assert(Matches.empty());
9626    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
9627        << OvlExpr->getName() << TargetFunctionType
9628        << OvlExpr->getSourceRange();
9629    if (FailedCandidates.empty())
9630      S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9631    else {
9632      // We have some deduction failure messages. Use them to diagnose
9633      // the function templates, and diagnose the non-template candidates
9634      // normally.
9635      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9636                                 IEnd = OvlExpr->decls_end();
9637           I != IEnd; ++I)
9638        if (FunctionDecl *Fun =
9639                dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
9640          S.NoteOverloadCandidate(Fun, TargetFunctionType);
9641      FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
9642    }
9643  }
9644
9645  bool IsInvalidFormOfPointerToMemberFunction() const {
9646    return TargetTypeIsNonStaticMemberFunction &&
9647      !OvlExprInfo.HasFormOfMemberPointer;
9648  }
9649
9650  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
9651      // TODO: Should we condition this on whether any functions might
9652      // have matched, or is it more appropriate to do that in callers?
9653      // TODO: a fixit wouldn't hurt.
9654      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
9655        << TargetType << OvlExpr->getSourceRange();
9656  }
9657
9658  bool IsStaticMemberFunctionFromBoundPointer() const {
9659    return StaticMemberFunctionFromBoundPointer;
9660  }
9661
9662  void ComplainIsStaticMemberFunctionFromBoundPointer() const {
9663    S.Diag(OvlExpr->getLocStart(),
9664           diag::err_invalid_form_pointer_member_function)
9665      << OvlExpr->getSourceRange();
9666  }
9667
9668  void ComplainOfInvalidConversion() const {
9669    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
9670      << OvlExpr->getName() << TargetType;
9671  }
9672
9673  void ComplainMultipleMatchesFound() const {
9674    assert(Matches.size() > 1);
9675    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
9676      << OvlExpr->getName()
9677      << OvlExpr->getSourceRange();
9678    S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
9679  }
9680
9681  bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
9682
9683  int getNumMatches() const { return Matches.size(); }
9684
9685  FunctionDecl* getMatchingFunctionDecl() const {
9686    if (Matches.size() != 1) return 0;
9687    return Matches[0].second;
9688  }
9689
9690  const DeclAccessPair* getMatchingFunctionAccessPair() const {
9691    if (Matches.size() != 1) return 0;
9692    return &Matches[0].first;
9693  }
9694};
9695
9696/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
9697/// an overloaded function (C++ [over.over]), where @p From is an
9698/// expression with overloaded function type and @p ToType is the type
9699/// we're trying to resolve to. For example:
9700///
9701/// @code
9702/// int f(double);
9703/// int f(int);
9704///
9705/// int (*pfd)(double) = f; // selects f(double)
9706/// @endcode
9707///
9708/// This routine returns the resulting FunctionDecl if it could be
9709/// resolved, and NULL otherwise. When @p Complain is true, this
9710/// routine will emit diagnostics if there is an error.
9711FunctionDecl *
9712Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
9713                                         QualType TargetType,
9714                                         bool Complain,
9715                                         DeclAccessPair &FoundResult,
9716                                         bool *pHadMultipleCandidates) {
9717  assert(AddressOfExpr->getType() == Context.OverloadTy);
9718
9719  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
9720                                     Complain);
9721  int NumMatches = Resolver.getNumMatches();
9722  FunctionDecl* Fn = 0;
9723  if (NumMatches == 0 && Complain) {
9724    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
9725      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
9726    else
9727      Resolver.ComplainNoMatchesFound();
9728  }
9729  else if (NumMatches > 1 && Complain)
9730    Resolver.ComplainMultipleMatchesFound();
9731  else if (NumMatches == 1) {
9732    Fn = Resolver.getMatchingFunctionDecl();
9733    assert(Fn);
9734    FoundResult = *Resolver.getMatchingFunctionAccessPair();
9735    if (Complain) {
9736      if (Resolver.IsStaticMemberFunctionFromBoundPointer())
9737        Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
9738      else
9739        CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
9740    }
9741  }
9742
9743  if (pHadMultipleCandidates)
9744    *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
9745  return Fn;
9746}
9747
9748/// \brief Given an expression that refers to an overloaded function, try to
9749/// resolve that overloaded function expression down to a single function.
9750///
9751/// This routine can only resolve template-ids that refer to a single function
9752/// template, where that template-id refers to a single template whose template
9753/// arguments are either provided by the template-id or have defaults,
9754/// as described in C++0x [temp.arg.explicit]p3.
9755///
9756/// If no template-ids are found, no diagnostics are emitted and NULL is
9757/// returned.
9758FunctionDecl *
9759Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
9760                                                  bool Complain,
9761                                                  DeclAccessPair *FoundResult) {
9762  // C++ [over.over]p1:
9763  //   [...] [Note: any redundant set of parentheses surrounding the
9764  //   overloaded function name is ignored (5.1). ]
9765  // C++ [over.over]p1:
9766  //   [...] The overloaded function name can be preceded by the &
9767  //   operator.
9768
9769  // If we didn't actually find any template-ids, we're done.
9770  if (!ovl->hasExplicitTemplateArgs())
9771    return 0;
9772
9773  TemplateArgumentListInfo ExplicitTemplateArgs;
9774  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
9775  TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
9776
9777  // Look through all of the overloaded functions, searching for one
9778  // whose type matches exactly.
9779  FunctionDecl *Matched = 0;
9780  for (UnresolvedSetIterator I = ovl->decls_begin(),
9781         E = ovl->decls_end(); I != E; ++I) {
9782    // C++0x [temp.arg.explicit]p3:
9783    //   [...] In contexts where deduction is done and fails, or in contexts
9784    //   where deduction is not done, if a template argument list is
9785    //   specified and it, along with any default template arguments,
9786    //   identifies a single function template specialization, then the
9787    //   template-id is an lvalue for the function template specialization.
9788    FunctionTemplateDecl *FunctionTemplate
9789      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
9790
9791    // C++ [over.over]p2:
9792    //   If the name is a function template, template argument deduction is
9793    //   done (14.8.2.2), and if the argument deduction succeeds, the
9794    //   resulting template argument list is used to generate a single
9795    //   function template specialization, which is added to the set of
9796    //   overloaded functions considered.
9797    FunctionDecl *Specialization = 0;
9798    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9799    if (TemplateDeductionResult Result
9800          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
9801                                    Specialization, Info,
9802                                    /*InOverloadResolution=*/true)) {
9803      // Make a note of the failed deduction for diagnostics.
9804      // TODO: Actually use the failed-deduction info?
9805      FailedCandidates.addCandidate()
9806          .set(FunctionTemplate->getTemplatedDecl(),
9807               MakeDeductionFailureInfo(Context, Result, Info));
9808      continue;
9809    }
9810
9811    assert(Specialization && "no specialization and no error?");
9812
9813    // Multiple matches; we can't resolve to a single declaration.
9814    if (Matched) {
9815      if (Complain) {
9816        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
9817          << ovl->getName();
9818        NoteAllOverloadCandidates(ovl);
9819      }
9820      return 0;
9821    }
9822
9823    Matched = Specialization;
9824    if (FoundResult) *FoundResult = I.getPair();
9825  }
9826
9827  if (Matched && getLangOpts().CPlusPlus1y &&
9828      Matched->getResultType()->isUndeducedType() &&
9829      DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
9830    return 0;
9831
9832  return Matched;
9833}
9834
9835
9836
9837
9838// Resolve and fix an overloaded expression that can be resolved
9839// because it identifies a single function template specialization.
9840//
9841// Last three arguments should only be supplied if Complain = true
9842//
9843// Return true if it was logically possible to so resolve the
9844// expression, regardless of whether or not it succeeded.  Always
9845// returns true if 'complain' is set.
9846bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
9847                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
9848                   bool complain, const SourceRange& OpRangeForComplaining,
9849                                           QualType DestTypeForComplaining,
9850                                            unsigned DiagIDForComplaining) {
9851  assert(SrcExpr.get()->getType() == Context.OverloadTy);
9852
9853  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
9854
9855  DeclAccessPair found;
9856  ExprResult SingleFunctionExpression;
9857  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
9858                           ovl.Expression, /*complain*/ false, &found)) {
9859    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
9860      SrcExpr = ExprError();
9861      return true;
9862    }
9863
9864    // It is only correct to resolve to an instance method if we're
9865    // resolving a form that's permitted to be a pointer to member.
9866    // Otherwise we'll end up making a bound member expression, which
9867    // is illegal in all the contexts we resolve like this.
9868    if (!ovl.HasFormOfMemberPointer &&
9869        isa<CXXMethodDecl>(fn) &&
9870        cast<CXXMethodDecl>(fn)->isInstance()) {
9871      if (!complain) return false;
9872
9873      Diag(ovl.Expression->getExprLoc(),
9874           diag::err_bound_member_function)
9875        << 0 << ovl.Expression->getSourceRange();
9876
9877      // TODO: I believe we only end up here if there's a mix of
9878      // static and non-static candidates (otherwise the expression
9879      // would have 'bound member' type, not 'overload' type).
9880      // Ideally we would note which candidate was chosen and why
9881      // the static candidates were rejected.
9882      SrcExpr = ExprError();
9883      return true;
9884    }
9885
9886    // Fix the expression to refer to 'fn'.
9887    SingleFunctionExpression =
9888      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
9889
9890    // If desired, do function-to-pointer decay.
9891    if (doFunctionPointerConverion) {
9892      SingleFunctionExpression =
9893        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
9894      if (SingleFunctionExpression.isInvalid()) {
9895        SrcExpr = ExprError();
9896        return true;
9897      }
9898    }
9899  }
9900
9901  if (!SingleFunctionExpression.isUsable()) {
9902    if (complain) {
9903      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
9904        << ovl.Expression->getName()
9905        << DestTypeForComplaining
9906        << OpRangeForComplaining
9907        << ovl.Expression->getQualifierLoc().getSourceRange();
9908      NoteAllOverloadCandidates(SrcExpr.get());
9909
9910      SrcExpr = ExprError();
9911      return true;
9912    }
9913
9914    return false;
9915  }
9916
9917  SrcExpr = SingleFunctionExpression;
9918  return true;
9919}
9920
9921/// \brief Add a single candidate to the overload set.
9922static void AddOverloadedCallCandidate(Sema &S,
9923                                       DeclAccessPair FoundDecl,
9924                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
9925                                       ArrayRef<Expr *> Args,
9926                                       OverloadCandidateSet &CandidateSet,
9927                                       bool PartialOverloading,
9928                                       bool KnownValid) {
9929  NamedDecl *Callee = FoundDecl.getDecl();
9930  if (isa<UsingShadowDecl>(Callee))
9931    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
9932
9933  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
9934    if (ExplicitTemplateArgs) {
9935      assert(!KnownValid && "Explicit template arguments?");
9936      return;
9937    }
9938    S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
9939                           PartialOverloading);
9940    return;
9941  }
9942
9943  if (FunctionTemplateDecl *FuncTemplate
9944      = dyn_cast<FunctionTemplateDecl>(Callee)) {
9945    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
9946                                   ExplicitTemplateArgs, Args, CandidateSet);
9947    return;
9948  }
9949
9950  assert(!KnownValid && "unhandled case in overloaded call candidate");
9951}
9952
9953/// \brief Add the overload candidates named by callee and/or found by argument
9954/// dependent lookup to the given overload set.
9955void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
9956                                       ArrayRef<Expr *> Args,
9957                                       OverloadCandidateSet &CandidateSet,
9958                                       bool PartialOverloading) {
9959
9960#ifndef NDEBUG
9961  // Verify that ArgumentDependentLookup is consistent with the rules
9962  // in C++0x [basic.lookup.argdep]p3:
9963  //
9964  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
9965  //   and let Y be the lookup set produced by argument dependent
9966  //   lookup (defined as follows). If X contains
9967  //
9968  //     -- a declaration of a class member, or
9969  //
9970  //     -- a block-scope function declaration that is not a
9971  //        using-declaration, or
9972  //
9973  //     -- a declaration that is neither a function or a function
9974  //        template
9975  //
9976  //   then Y is empty.
9977
9978  if (ULE->requiresADL()) {
9979    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9980           E = ULE->decls_end(); I != E; ++I) {
9981      assert(!(*I)->getDeclContext()->isRecord());
9982      assert(isa<UsingShadowDecl>(*I) ||
9983             !(*I)->getDeclContext()->isFunctionOrMethod());
9984      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
9985    }
9986  }
9987#endif
9988
9989  // It would be nice to avoid this copy.
9990  TemplateArgumentListInfo TABuffer;
9991  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
9992  if (ULE->hasExplicitTemplateArgs()) {
9993    ULE->copyTemplateArgumentsInto(TABuffer);
9994    ExplicitTemplateArgs = &TABuffer;
9995  }
9996
9997  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
9998         E = ULE->decls_end(); I != E; ++I)
9999    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
10000                               CandidateSet, PartialOverloading,
10001                               /*KnownValid*/ true);
10002
10003  if (ULE->requiresADL())
10004    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
10005                                         ULE->getExprLoc(),
10006                                         Args, ExplicitTemplateArgs,
10007                                         CandidateSet, PartialOverloading);
10008}
10009
10010/// Determine whether a declaration with the specified name could be moved into
10011/// a different namespace.
10012static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
10013  switch (Name.getCXXOverloadedOperator()) {
10014  case OO_New: case OO_Array_New:
10015  case OO_Delete: case OO_Array_Delete:
10016    return false;
10017
10018  default:
10019    return true;
10020  }
10021}
10022
10023/// Attempt to recover from an ill-formed use of a non-dependent name in a
10024/// template, where the non-dependent name was declared after the template
10025/// was defined. This is common in code written for a compilers which do not
10026/// correctly implement two-stage name lookup.
10027///
10028/// Returns true if a viable candidate was found and a diagnostic was issued.
10029static bool
10030DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
10031                       const CXXScopeSpec &SS, LookupResult &R,
10032                       TemplateArgumentListInfo *ExplicitTemplateArgs,
10033                       ArrayRef<Expr *> Args) {
10034  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
10035    return false;
10036
10037  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
10038    if (DC->isTransparentContext())
10039      continue;
10040
10041    SemaRef.LookupQualifiedName(R, DC);
10042
10043    if (!R.empty()) {
10044      R.suppressDiagnostics();
10045
10046      if (isa<CXXRecordDecl>(DC)) {
10047        // Don't diagnose names we find in classes; we get much better
10048        // diagnostics for these from DiagnoseEmptyLookup.
10049        R.clear();
10050        return false;
10051      }
10052
10053      OverloadCandidateSet Candidates(FnLoc);
10054      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
10055        AddOverloadedCallCandidate(SemaRef, I.getPair(),
10056                                   ExplicitTemplateArgs, Args,
10057                                   Candidates, false, /*KnownValid*/ false);
10058
10059      OverloadCandidateSet::iterator Best;
10060      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
10061        // No viable functions. Don't bother the user with notes for functions
10062        // which don't work and shouldn't be found anyway.
10063        R.clear();
10064        return false;
10065      }
10066
10067      // Find the namespaces where ADL would have looked, and suggest
10068      // declaring the function there instead.
10069      Sema::AssociatedNamespaceSet AssociatedNamespaces;
10070      Sema::AssociatedClassSet AssociatedClasses;
10071      SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
10072                                                 AssociatedNamespaces,
10073                                                 AssociatedClasses);
10074      Sema::AssociatedNamespaceSet SuggestedNamespaces;
10075      if (canBeDeclaredInNamespace(R.getLookupName())) {
10076        DeclContext *Std = SemaRef.getStdNamespace();
10077        for (Sema::AssociatedNamespaceSet::iterator
10078               it = AssociatedNamespaces.begin(),
10079               end = AssociatedNamespaces.end(); it != end; ++it) {
10080          // Never suggest declaring a function within namespace 'std'.
10081          if (Std && Std->Encloses(*it))
10082            continue;
10083
10084          // Never suggest declaring a function within a namespace with a
10085          // reserved name, like __gnu_cxx.
10086          NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
10087          if (NS &&
10088              NS->getQualifiedNameAsString().find("__") != std::string::npos)
10089            continue;
10090
10091          SuggestedNamespaces.insert(*it);
10092        }
10093      }
10094
10095      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
10096        << R.getLookupName();
10097      if (SuggestedNamespaces.empty()) {
10098        SemaRef.Diag(Best->Function->getLocation(),
10099                     diag::note_not_found_by_two_phase_lookup)
10100          << R.getLookupName() << 0;
10101      } else if (SuggestedNamespaces.size() == 1) {
10102        SemaRef.Diag(Best->Function->getLocation(),
10103                     diag::note_not_found_by_two_phase_lookup)
10104          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
10105      } else {
10106        // FIXME: It would be useful to list the associated namespaces here,
10107        // but the diagnostics infrastructure doesn't provide a way to produce
10108        // a localized representation of a list of items.
10109        SemaRef.Diag(Best->Function->getLocation(),
10110                     diag::note_not_found_by_two_phase_lookup)
10111          << R.getLookupName() << 2;
10112      }
10113
10114      // Try to recover by calling this function.
10115      return true;
10116    }
10117
10118    R.clear();
10119  }
10120
10121  return false;
10122}
10123
10124/// Attempt to recover from ill-formed use of a non-dependent operator in a
10125/// template, where the non-dependent operator was declared after the template
10126/// was defined.
10127///
10128/// Returns true if a viable candidate was found and a diagnostic was issued.
10129static bool
10130DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
10131                               SourceLocation OpLoc,
10132                               ArrayRef<Expr *> Args) {
10133  DeclarationName OpName =
10134    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
10135  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
10136  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
10137                                /*ExplicitTemplateArgs=*/0, Args);
10138}
10139
10140namespace {
10141class BuildRecoveryCallExprRAII {
10142  Sema &SemaRef;
10143public:
10144  BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
10145    assert(SemaRef.IsBuildingRecoveryCallExpr == false);
10146    SemaRef.IsBuildingRecoveryCallExpr = true;
10147  }
10148
10149  ~BuildRecoveryCallExprRAII() {
10150    SemaRef.IsBuildingRecoveryCallExpr = false;
10151  }
10152};
10153
10154}
10155
10156/// Attempts to recover from a call where no functions were found.
10157///
10158/// Returns true if new candidates were found.
10159static ExprResult
10160BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10161                      UnresolvedLookupExpr *ULE,
10162                      SourceLocation LParenLoc,
10163                      llvm::MutableArrayRef<Expr *> Args,
10164                      SourceLocation RParenLoc,
10165                      bool EmptyLookup, bool AllowTypoCorrection) {
10166  // Do not try to recover if it is already building a recovery call.
10167  // This stops infinite loops for template instantiations like
10168  //
10169  // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
10170  // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
10171  //
10172  if (SemaRef.IsBuildingRecoveryCallExpr)
10173    return ExprError();
10174  BuildRecoveryCallExprRAII RCE(SemaRef);
10175
10176  CXXScopeSpec SS;
10177  SS.Adopt(ULE->getQualifierLoc());
10178  SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
10179
10180  TemplateArgumentListInfo TABuffer;
10181  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
10182  if (ULE->hasExplicitTemplateArgs()) {
10183    ULE->copyTemplateArgumentsInto(TABuffer);
10184    ExplicitTemplateArgs = &TABuffer;
10185  }
10186
10187  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
10188                 Sema::LookupOrdinaryName);
10189  FunctionCallFilterCCC Validator(SemaRef, Args.size(),
10190                                  ExplicitTemplateArgs != 0);
10191  NoTypoCorrectionCCC RejectAll;
10192  CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
10193      (CorrectionCandidateCallback*)&Validator :
10194      (CorrectionCandidateCallback*)&RejectAll;
10195  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
10196                              ExplicitTemplateArgs, Args) &&
10197      (!EmptyLookup ||
10198       SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
10199                                   ExplicitTemplateArgs, Args)))
10200    return ExprError();
10201
10202  assert(!R.empty() && "lookup results empty despite recovery");
10203
10204  // Build an implicit member call if appropriate.  Just drop the
10205  // casts and such from the call, we don't really care.
10206  ExprResult NewFn = ExprError();
10207  if ((*R.begin())->isCXXClassMember())
10208    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
10209                                                    R, ExplicitTemplateArgs);
10210  else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
10211    NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
10212                                        ExplicitTemplateArgs);
10213  else
10214    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
10215
10216  if (NewFn.isInvalid())
10217    return ExprError();
10218
10219  // This shouldn't cause an infinite loop because we're giving it
10220  // an expression with viable lookup results, which should never
10221  // end up here.
10222  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
10223                               MultiExprArg(Args.data(), Args.size()),
10224                               RParenLoc);
10225}
10226
10227/// \brief Constructs and populates an OverloadedCandidateSet from
10228/// the given function.
10229/// \returns true when an the ExprResult output parameter has been set.
10230bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
10231                                  UnresolvedLookupExpr *ULE,
10232                                  MultiExprArg Args,
10233                                  SourceLocation RParenLoc,
10234                                  OverloadCandidateSet *CandidateSet,
10235                                  ExprResult *Result) {
10236#ifndef NDEBUG
10237  if (ULE->requiresADL()) {
10238    // To do ADL, we must have found an unqualified name.
10239    assert(!ULE->getQualifier() && "qualified name with ADL");
10240
10241    // We don't perform ADL for implicit declarations of builtins.
10242    // Verify that this was correctly set up.
10243    FunctionDecl *F;
10244    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
10245        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
10246        F->getBuiltinID() && F->isImplicit())
10247      llvm_unreachable("performing ADL for builtin");
10248
10249    // We don't perform ADL in C.
10250    assert(getLangOpts().CPlusPlus && "ADL enabled in C");
10251  }
10252#endif
10253
10254  UnbridgedCastsSet UnbridgedCasts;
10255  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
10256    *Result = ExprError();
10257    return true;
10258  }
10259
10260  // Add the functions denoted by the callee to the set of candidate
10261  // functions, including those from argument-dependent lookup.
10262  AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
10263
10264  // If we found nothing, try to recover.
10265  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
10266  // out if it fails.
10267  if (CandidateSet->empty()) {
10268    // In Microsoft mode, if we are inside a template class member function then
10269    // create a type dependent CallExpr. The goal is to postpone name lookup
10270    // to instantiation time to be able to search into type dependent base
10271    // classes.
10272    if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
10273        (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
10274      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args,
10275                                            Context.DependentTy, VK_RValue,
10276                                            RParenLoc);
10277      CE->setTypeDependent(true);
10278      *Result = Owned(CE);
10279      return true;
10280    }
10281    return false;
10282  }
10283
10284  UnbridgedCasts.restore();
10285  return false;
10286}
10287
10288/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
10289/// the completed call expression. If overload resolution fails, emits
10290/// diagnostics and returns ExprError()
10291static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
10292                                           UnresolvedLookupExpr *ULE,
10293                                           SourceLocation LParenLoc,
10294                                           MultiExprArg Args,
10295                                           SourceLocation RParenLoc,
10296                                           Expr *ExecConfig,
10297                                           OverloadCandidateSet *CandidateSet,
10298                                           OverloadCandidateSet::iterator *Best,
10299                                           OverloadingResult OverloadResult,
10300                                           bool AllowTypoCorrection) {
10301  if (CandidateSet->empty())
10302    return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
10303                                 RParenLoc, /*EmptyLookup=*/true,
10304                                 AllowTypoCorrection);
10305
10306  switch (OverloadResult) {
10307  case OR_Success: {
10308    FunctionDecl *FDecl = (*Best)->Function;
10309    SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
10310    if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
10311      return ExprError();
10312    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10313    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10314                                         ExecConfig);
10315  }
10316
10317  case OR_No_Viable_Function: {
10318    // Try to recover by looking for viable functions which the user might
10319    // have meant to call.
10320    ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
10321                                                Args, RParenLoc,
10322                                                /*EmptyLookup=*/false,
10323                                                AllowTypoCorrection);
10324    if (!Recovery.isInvalid())
10325      return Recovery;
10326
10327    SemaRef.Diag(Fn->getLocStart(),
10328         diag::err_ovl_no_viable_function_in_call)
10329      << ULE->getName() << Fn->getSourceRange();
10330    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10331    break;
10332  }
10333
10334  case OR_Ambiguous:
10335    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
10336      << ULE->getName() << Fn->getSourceRange();
10337    CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
10338    break;
10339
10340  case OR_Deleted: {
10341    SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
10342      << (*Best)->Function->isDeleted()
10343      << ULE->getName()
10344      << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
10345      << Fn->getSourceRange();
10346    CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
10347
10348    // We emitted an error for the unvailable/deleted function call but keep
10349    // the call in the AST.
10350    FunctionDecl *FDecl = (*Best)->Function;
10351    Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
10352    return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
10353                                         ExecConfig);
10354  }
10355  }
10356
10357  // Overload resolution failed.
10358  return ExprError();
10359}
10360
10361/// BuildOverloadedCallExpr - Given the call expression that calls Fn
10362/// (which eventually refers to the declaration Func) and the call
10363/// arguments Args/NumArgs, attempt to resolve the function call down
10364/// to a specific function. If overload resolution succeeds, returns
10365/// the call expression produced by overload resolution.
10366/// Otherwise, emits diagnostics and returns ExprError.
10367ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
10368                                         UnresolvedLookupExpr *ULE,
10369                                         SourceLocation LParenLoc,
10370                                         MultiExprArg Args,
10371                                         SourceLocation RParenLoc,
10372                                         Expr *ExecConfig,
10373                                         bool AllowTypoCorrection) {
10374  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
10375  ExprResult result;
10376
10377  if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
10378                             &result))
10379    return result;
10380
10381  OverloadCandidateSet::iterator Best;
10382  OverloadingResult OverloadResult =
10383      CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
10384
10385  return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
10386                                  RParenLoc, ExecConfig, &CandidateSet,
10387                                  &Best, OverloadResult,
10388                                  AllowTypoCorrection);
10389}
10390
10391static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
10392  return Functions.size() > 1 ||
10393    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
10394}
10395
10396/// \brief Create a unary operation that may resolve to an overloaded
10397/// operator.
10398///
10399/// \param OpLoc The location of the operator itself (e.g., '*').
10400///
10401/// \param OpcIn The UnaryOperator::Opcode that describes this
10402/// operator.
10403///
10404/// \param Fns The set of non-member functions that will be
10405/// considered by overload resolution. The caller needs to build this
10406/// set based on the context using, e.g.,
10407/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10408/// set should not contain any member functions; those will be added
10409/// by CreateOverloadedUnaryOp().
10410///
10411/// \param Input The input argument.
10412ExprResult
10413Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
10414                              const UnresolvedSetImpl &Fns,
10415                              Expr *Input) {
10416  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
10417
10418  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
10419  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
10420  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10421  // TODO: provide better source location info.
10422  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10423
10424  if (checkPlaceholderForOverload(*this, Input))
10425    return ExprError();
10426
10427  Expr *Args[2] = { Input, 0 };
10428  unsigned NumArgs = 1;
10429
10430  // For post-increment and post-decrement, add the implicit '0' as
10431  // the second argument, so that we know this is a post-increment or
10432  // post-decrement.
10433  if (Opc == UO_PostInc || Opc == UO_PostDec) {
10434    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
10435    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
10436                                     SourceLocation());
10437    NumArgs = 2;
10438  }
10439
10440  ArrayRef<Expr *> ArgsArray(Args, NumArgs);
10441
10442  if (Input->isTypeDependent()) {
10443    if (Fns.empty())
10444      return Owned(new (Context) UnaryOperator(Input,
10445                                               Opc,
10446                                               Context.DependentTy,
10447                                               VK_RValue, OK_Ordinary,
10448                                               OpLoc));
10449
10450    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10451    UnresolvedLookupExpr *Fn
10452      = UnresolvedLookupExpr::Create(Context, NamingClass,
10453                                     NestedNameSpecifierLoc(), OpNameInfo,
10454                                     /*ADL*/ true, IsOverloaded(Fns),
10455                                     Fns.begin(), Fns.end());
10456    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, ArgsArray,
10457                                                   Context.DependentTy,
10458                                                   VK_RValue,
10459                                                   OpLoc, false));
10460  }
10461
10462  // Build an empty overload set.
10463  OverloadCandidateSet CandidateSet(OpLoc);
10464
10465  // Add the candidates from the given function set.
10466  AddFunctionCandidates(Fns, ArgsArray, CandidateSet, false);
10467
10468  // Add operator candidates that are member functions.
10469  AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10470
10471  // Add candidates from ADL.
10472  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, OpLoc,
10473                                       ArgsArray, /*ExplicitTemplateArgs*/ 0,
10474                                       CandidateSet);
10475
10476  // Add builtin operator candidates.
10477  AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
10478
10479  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10480
10481  // Perform overload resolution.
10482  OverloadCandidateSet::iterator Best;
10483  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10484  case OR_Success: {
10485    // We found a built-in operator or an overloaded operator.
10486    FunctionDecl *FnDecl = Best->Function;
10487
10488    if (FnDecl) {
10489      // We matched an overloaded operator. Build a call to that
10490      // operator.
10491
10492      // Convert the arguments.
10493      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10494        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
10495
10496        ExprResult InputRes =
10497          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
10498                                              Best->FoundDecl, Method);
10499        if (InputRes.isInvalid())
10500          return ExprError();
10501        Input = InputRes.take();
10502      } else {
10503        // Convert the arguments.
10504        ExprResult InputInit
10505          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10506                                                      Context,
10507                                                      FnDecl->getParamDecl(0)),
10508                                      SourceLocation(),
10509                                      Input);
10510        if (InputInit.isInvalid())
10511          return ExprError();
10512        Input = InputInit.take();
10513      }
10514
10515      // Determine the result type.
10516      QualType ResultTy = FnDecl->getResultType();
10517      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10518      ResultTy = ResultTy.getNonLValueExprType(Context);
10519
10520      // Build the actual expression node.
10521      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
10522                                                HadMultipleCandidates, OpLoc);
10523      if (FnExpr.isInvalid())
10524        return ExprError();
10525
10526      Args[0] = Input;
10527      CallExpr *TheCall =
10528        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), ArgsArray,
10529                                          ResultTy, VK, OpLoc, false);
10530
10531      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10532                              FnDecl))
10533        return ExprError();
10534
10535      return MaybeBindToTemporary(TheCall);
10536    } else {
10537      // We matched a built-in operator. Convert the arguments, then
10538      // break out so that we will build the appropriate built-in
10539      // operator node.
10540      ExprResult InputRes =
10541        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
10542                                  Best->Conversions[0], AA_Passing);
10543      if (InputRes.isInvalid())
10544        return ExprError();
10545      Input = InputRes.take();
10546      break;
10547    }
10548  }
10549
10550  case OR_No_Viable_Function:
10551    // This is an erroneous use of an operator which can be overloaded by
10552    // a non-member function. Check for non-member operators which were
10553    // defined too late to be candidates.
10554    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
10555      // FIXME: Recover by calling the found function.
10556      return ExprError();
10557
10558    // No viable function; fall through to handling this as a
10559    // built-in operator, which will produce an error message for us.
10560    break;
10561
10562  case OR_Ambiguous:
10563    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
10564        << UnaryOperator::getOpcodeStr(Opc)
10565        << Input->getType()
10566        << Input->getSourceRange();
10567    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
10568                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10569    return ExprError();
10570
10571  case OR_Deleted:
10572    Diag(OpLoc, diag::err_ovl_deleted_oper)
10573      << Best->Function->isDeleted()
10574      << UnaryOperator::getOpcodeStr(Opc)
10575      << getDeletedOrUnavailableSuffix(Best->Function)
10576      << Input->getSourceRange();
10577    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
10578                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
10579    return ExprError();
10580  }
10581
10582  // Either we found no viable overloaded operator or we matched a
10583  // built-in operator. In either case, fall through to trying to
10584  // build a built-in operation.
10585  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10586}
10587
10588/// \brief Create a binary operation that may resolve to an overloaded
10589/// operator.
10590///
10591/// \param OpLoc The location of the operator itself (e.g., '+').
10592///
10593/// \param OpcIn The BinaryOperator::Opcode that describes this
10594/// operator.
10595///
10596/// \param Fns The set of non-member functions that will be
10597/// considered by overload resolution. The caller needs to build this
10598/// set based on the context using, e.g.,
10599/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
10600/// set should not contain any member functions; those will be added
10601/// by CreateOverloadedBinOp().
10602///
10603/// \param LHS Left-hand argument.
10604/// \param RHS Right-hand argument.
10605ExprResult
10606Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
10607                            unsigned OpcIn,
10608                            const UnresolvedSetImpl &Fns,
10609                            Expr *LHS, Expr *RHS) {
10610  Expr *Args[2] = { LHS, RHS };
10611  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
10612
10613  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
10614  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
10615  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
10616
10617  // If either side is type-dependent, create an appropriate dependent
10618  // expression.
10619  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10620    if (Fns.empty()) {
10621      // If there are no functions to store, just build a dependent
10622      // BinaryOperator or CompoundAssignment.
10623      if (Opc <= BO_Assign || Opc > BO_OrAssign)
10624        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
10625                                                  Context.DependentTy,
10626                                                  VK_RValue, OK_Ordinary,
10627                                                  OpLoc,
10628                                                  FPFeatures.fp_contract));
10629
10630      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
10631                                                        Context.DependentTy,
10632                                                        VK_LValue,
10633                                                        OK_Ordinary,
10634                                                        Context.DependentTy,
10635                                                        Context.DependentTy,
10636                                                        OpLoc,
10637                                                        FPFeatures.fp_contract));
10638    }
10639
10640    // FIXME: save results of ADL from here?
10641    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10642    // TODO: provide better source location info in DNLoc component.
10643    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
10644    UnresolvedLookupExpr *Fn
10645      = UnresolvedLookupExpr::Create(Context, NamingClass,
10646                                     NestedNameSpecifierLoc(), OpNameInfo,
10647                                     /*ADL*/ true, IsOverloaded(Fns),
10648                                     Fns.begin(), Fns.end());
10649    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, Args,
10650                                                Context.DependentTy, VK_RValue,
10651                                                OpLoc, FPFeatures.fp_contract));
10652  }
10653
10654  // Always do placeholder-like conversions on the RHS.
10655  if (checkPlaceholderForOverload(*this, Args[1]))
10656    return ExprError();
10657
10658  // Do placeholder-like conversion on the LHS; note that we should
10659  // not get here with a PseudoObject LHS.
10660  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
10661  if (checkPlaceholderForOverload(*this, Args[0]))
10662    return ExprError();
10663
10664  // If this is the assignment operator, we only perform overload resolution
10665  // if the left-hand side is a class or enumeration type. This is actually
10666  // a hack. The standard requires that we do overload resolution between the
10667  // various built-in candidates, but as DR507 points out, this can lead to
10668  // problems. So we do it this way, which pretty much follows what GCC does.
10669  // Note that we go the traditional code path for compound assignment forms.
10670  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
10671    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10672
10673  // If this is the .* operator, which is not overloadable, just
10674  // create a built-in binary operator.
10675  if (Opc == BO_PtrMemD)
10676    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10677
10678  // Build an empty overload set.
10679  OverloadCandidateSet CandidateSet(OpLoc);
10680
10681  // Add the candidates from the given function set.
10682  AddFunctionCandidates(Fns, Args, CandidateSet, false);
10683
10684  // Add operator candidates that are member functions.
10685  AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10686
10687  // Add candidates from ADL.
10688  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
10689                                       OpLoc, Args,
10690                                       /*ExplicitTemplateArgs*/ 0,
10691                                       CandidateSet);
10692
10693  // Add builtin operator candidates.
10694  AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
10695
10696  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10697
10698  // Perform overload resolution.
10699  OverloadCandidateSet::iterator Best;
10700  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
10701    case OR_Success: {
10702      // We found a built-in operator or an overloaded operator.
10703      FunctionDecl *FnDecl = Best->Function;
10704
10705      if (FnDecl) {
10706        // We matched an overloaded operator. Build a call to that
10707        // operator.
10708
10709        // Convert the arguments.
10710        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
10711          // Best->Access is only meaningful for class members.
10712          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
10713
10714          ExprResult Arg1 =
10715            PerformCopyInitialization(
10716              InitializedEntity::InitializeParameter(Context,
10717                                                     FnDecl->getParamDecl(0)),
10718              SourceLocation(), Owned(Args[1]));
10719          if (Arg1.isInvalid())
10720            return ExprError();
10721
10722          ExprResult Arg0 =
10723            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10724                                                Best->FoundDecl, Method);
10725          if (Arg0.isInvalid())
10726            return ExprError();
10727          Args[0] = Arg0.takeAs<Expr>();
10728          Args[1] = RHS = Arg1.takeAs<Expr>();
10729        } else {
10730          // Convert the arguments.
10731          ExprResult Arg0 = PerformCopyInitialization(
10732            InitializedEntity::InitializeParameter(Context,
10733                                                   FnDecl->getParamDecl(0)),
10734            SourceLocation(), Owned(Args[0]));
10735          if (Arg0.isInvalid())
10736            return ExprError();
10737
10738          ExprResult Arg1 =
10739            PerformCopyInitialization(
10740              InitializedEntity::InitializeParameter(Context,
10741                                                     FnDecl->getParamDecl(1)),
10742              SourceLocation(), Owned(Args[1]));
10743          if (Arg1.isInvalid())
10744            return ExprError();
10745          Args[0] = LHS = Arg0.takeAs<Expr>();
10746          Args[1] = RHS = Arg1.takeAs<Expr>();
10747        }
10748
10749        // Determine the result type.
10750        QualType ResultTy = FnDecl->getResultType();
10751        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10752        ResultTy = ResultTy.getNonLValueExprType(Context);
10753
10754        // Build the actual expression node.
10755        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10756                                                  Best->FoundDecl,
10757                                                  HadMultipleCandidates, OpLoc);
10758        if (FnExpr.isInvalid())
10759          return ExprError();
10760
10761        CXXOperatorCallExpr *TheCall =
10762          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
10763                                            Args, ResultTy, VK, OpLoc,
10764                                            FPFeatures.fp_contract);
10765
10766        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
10767                                FnDecl))
10768          return ExprError();
10769
10770        ArrayRef<const Expr *> ArgsArray(Args, 2);
10771        // Cut off the implicit 'this'.
10772        if (isa<CXXMethodDecl>(FnDecl))
10773          ArgsArray = ArgsArray.slice(1);
10774        checkCall(FnDecl, ArgsArray, 0, isa<CXXMethodDecl>(FnDecl), OpLoc,
10775                  TheCall->getSourceRange(), VariadicDoesNotApply);
10776
10777        return MaybeBindToTemporary(TheCall);
10778      } else {
10779        // We matched a built-in operator. Convert the arguments, then
10780        // break out so that we will build the appropriate built-in
10781        // operator node.
10782        ExprResult ArgsRes0 =
10783          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10784                                    Best->Conversions[0], AA_Passing);
10785        if (ArgsRes0.isInvalid())
10786          return ExprError();
10787        Args[0] = ArgsRes0.take();
10788
10789        ExprResult ArgsRes1 =
10790          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
10791                                    Best->Conversions[1], AA_Passing);
10792        if (ArgsRes1.isInvalid())
10793          return ExprError();
10794        Args[1] = ArgsRes1.take();
10795        break;
10796      }
10797    }
10798
10799    case OR_No_Viable_Function: {
10800      // C++ [over.match.oper]p9:
10801      //   If the operator is the operator , [...] and there are no
10802      //   viable functions, then the operator is assumed to be the
10803      //   built-in operator and interpreted according to clause 5.
10804      if (Opc == BO_Comma)
10805        break;
10806
10807      // For class as left operand for assignment or compound assigment
10808      // operator do not fall through to handling in built-in, but report that
10809      // no overloaded assignment operator found
10810      ExprResult Result = ExprError();
10811      if (Args[0]->getType()->isRecordType() &&
10812          Opc >= BO_Assign && Opc <= BO_OrAssign) {
10813        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
10814             << BinaryOperator::getOpcodeStr(Opc)
10815             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10816        if (Args[0]->getType()->isIncompleteType()) {
10817          Diag(OpLoc, diag::note_assign_lhs_incomplete)
10818            << Args[0]->getType()
10819            << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10820        }
10821      } else {
10822        // This is an erroneous use of an operator which can be overloaded by
10823        // a non-member function. Check for non-member operators which were
10824        // defined too late to be candidates.
10825        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
10826          // FIXME: Recover by calling the found function.
10827          return ExprError();
10828
10829        // No viable function; try to create a built-in operation, which will
10830        // produce an error. Then, show the non-viable candidates.
10831        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10832      }
10833      assert(Result.isInvalid() &&
10834             "C++ binary operator overloading is missing candidates!");
10835      if (Result.isInvalid())
10836        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10837                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
10838      return Result;
10839    }
10840
10841    case OR_Ambiguous:
10842      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
10843          << BinaryOperator::getOpcodeStr(Opc)
10844          << Args[0]->getType() << Args[1]->getType()
10845          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10846      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
10847                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10848      return ExprError();
10849
10850    case OR_Deleted:
10851      if (isImplicitlyDeleted(Best->Function)) {
10852        CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10853        Diag(OpLoc, diag::err_ovl_deleted_special_oper)
10854          << Context.getRecordType(Method->getParent())
10855          << getSpecialMember(Method);
10856
10857        // The user probably meant to call this special member. Just
10858        // explain why it's deleted.
10859        NoteDeletedFunction(Method);
10860        return ExprError();
10861      } else {
10862        Diag(OpLoc, diag::err_ovl_deleted_oper)
10863          << Best->Function->isDeleted()
10864          << BinaryOperator::getOpcodeStr(Opc)
10865          << getDeletedOrUnavailableSuffix(Best->Function)
10866          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
10867      }
10868      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
10869                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
10870      return ExprError();
10871  }
10872
10873  // We matched a built-in operator; build it.
10874  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
10875}
10876
10877ExprResult
10878Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
10879                                         SourceLocation RLoc,
10880                                         Expr *Base, Expr *Idx) {
10881  Expr *Args[2] = { Base, Idx };
10882  DeclarationName OpName =
10883      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
10884
10885  // If either side is type-dependent, create an appropriate dependent
10886  // expression.
10887  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
10888
10889    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
10890    // CHECKME: no 'operator' keyword?
10891    DeclarationNameInfo OpNameInfo(OpName, LLoc);
10892    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10893    UnresolvedLookupExpr *Fn
10894      = UnresolvedLookupExpr::Create(Context, NamingClass,
10895                                     NestedNameSpecifierLoc(), OpNameInfo,
10896                                     /*ADL*/ true, /*Overloaded*/ false,
10897                                     UnresolvedSetIterator(),
10898                                     UnresolvedSetIterator());
10899    // Can't add any actual overloads yet
10900
10901    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
10902                                                   Args,
10903                                                   Context.DependentTy,
10904                                                   VK_RValue,
10905                                                   RLoc, false));
10906  }
10907
10908  // Handle placeholders on both operands.
10909  if (checkPlaceholderForOverload(*this, Args[0]))
10910    return ExprError();
10911  if (checkPlaceholderForOverload(*this, Args[1]))
10912    return ExprError();
10913
10914  // Build an empty overload set.
10915  OverloadCandidateSet CandidateSet(LLoc);
10916
10917  // Subscript can only be overloaded as a member function.
10918
10919  // Add operator candidates that are member functions.
10920  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10921
10922  // Add builtin operator candidates.
10923  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
10924
10925  bool HadMultipleCandidates = (CandidateSet.size() > 1);
10926
10927  // Perform overload resolution.
10928  OverloadCandidateSet::iterator Best;
10929  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
10930    case OR_Success: {
10931      // We found a built-in operator or an overloaded operator.
10932      FunctionDecl *FnDecl = Best->Function;
10933
10934      if (FnDecl) {
10935        // We matched an overloaded operator. Build a call to that
10936        // operator.
10937
10938        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
10939
10940        // Convert the arguments.
10941        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
10942        ExprResult Arg0 =
10943          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
10944                                              Best->FoundDecl, Method);
10945        if (Arg0.isInvalid())
10946          return ExprError();
10947        Args[0] = Arg0.take();
10948
10949        // Convert the arguments.
10950        ExprResult InputInit
10951          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
10952                                                      Context,
10953                                                      FnDecl->getParamDecl(0)),
10954                                      SourceLocation(),
10955                                      Owned(Args[1]));
10956        if (InputInit.isInvalid())
10957          return ExprError();
10958
10959        Args[1] = InputInit.takeAs<Expr>();
10960
10961        // Determine the result type
10962        QualType ResultTy = FnDecl->getResultType();
10963        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10964        ResultTy = ResultTy.getNonLValueExprType(Context);
10965
10966        // Build the actual expression node.
10967        DeclarationNameInfo OpLocInfo(OpName, LLoc);
10968        OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
10969        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
10970                                                  Best->FoundDecl,
10971                                                  HadMultipleCandidates,
10972                                                  OpLocInfo.getLoc(),
10973                                                  OpLocInfo.getInfo());
10974        if (FnExpr.isInvalid())
10975          return ExprError();
10976
10977        CXXOperatorCallExpr *TheCall =
10978          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
10979                                            FnExpr.take(), Args,
10980                                            ResultTy, VK, RLoc,
10981                                            false);
10982
10983        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
10984                                FnDecl))
10985          return ExprError();
10986
10987        return MaybeBindToTemporary(TheCall);
10988      } else {
10989        // We matched a built-in operator. Convert the arguments, then
10990        // break out so that we will build the appropriate built-in
10991        // operator node.
10992        ExprResult ArgsRes0 =
10993          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
10994                                    Best->Conversions[0], AA_Passing);
10995        if (ArgsRes0.isInvalid())
10996          return ExprError();
10997        Args[0] = ArgsRes0.take();
10998
10999        ExprResult ArgsRes1 =
11000          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11001                                    Best->Conversions[1], AA_Passing);
11002        if (ArgsRes1.isInvalid())
11003          return ExprError();
11004        Args[1] = ArgsRes1.take();
11005
11006        break;
11007      }
11008    }
11009
11010    case OR_No_Viable_Function: {
11011      if (CandidateSet.empty())
11012        Diag(LLoc, diag::err_ovl_no_oper)
11013          << Args[0]->getType() << /*subscript*/ 0
11014          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11015      else
11016        Diag(LLoc, diag::err_ovl_no_viable_subscript)
11017          << Args[0]->getType()
11018          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11019      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11020                                  "[]", LLoc);
11021      return ExprError();
11022    }
11023
11024    case OR_Ambiguous:
11025      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
11026          << "[]"
11027          << Args[0]->getType() << Args[1]->getType()
11028          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11029      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11030                                  "[]", LLoc);
11031      return ExprError();
11032
11033    case OR_Deleted:
11034      Diag(LLoc, diag::err_ovl_deleted_oper)
11035        << Best->Function->isDeleted() << "[]"
11036        << getDeletedOrUnavailableSuffix(Best->Function)
11037        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11038      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11039                                  "[]", LLoc);
11040      return ExprError();
11041    }
11042
11043  // We matched a built-in operator; build it.
11044  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
11045}
11046
11047/// BuildCallToMemberFunction - Build a call to a member
11048/// function. MemExpr is the expression that refers to the member
11049/// function (and includes the object parameter), Args/NumArgs are the
11050/// arguments to the function call (not including the object
11051/// parameter). The caller needs to validate that the member
11052/// expression refers to a non-static member function or an overloaded
11053/// member function.
11054ExprResult
11055Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
11056                                SourceLocation LParenLoc,
11057                                MultiExprArg Args,
11058                                SourceLocation RParenLoc) {
11059  assert(MemExprE->getType() == Context.BoundMemberTy ||
11060         MemExprE->getType() == Context.OverloadTy);
11061
11062  // Dig out the member expression. This holds both the object
11063  // argument and the member function we're referring to.
11064  Expr *NakedMemExpr = MemExprE->IgnoreParens();
11065
11066  // Determine whether this is a call to a pointer-to-member function.
11067  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
11068    assert(op->getType() == Context.BoundMemberTy);
11069    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
11070
11071    QualType fnType =
11072      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
11073
11074    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
11075    QualType resultType = proto->getCallResultType(Context);
11076    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
11077
11078    // Check that the object type isn't more qualified than the
11079    // member function we're calling.
11080    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
11081
11082    QualType objectType = op->getLHS()->getType();
11083    if (op->getOpcode() == BO_PtrMemI)
11084      objectType = objectType->castAs<PointerType>()->getPointeeType();
11085    Qualifiers objectQuals = objectType.getQualifiers();
11086
11087    Qualifiers difference = objectQuals - funcQuals;
11088    difference.removeObjCGCAttr();
11089    difference.removeAddressSpace();
11090    if (difference) {
11091      std::string qualsString = difference.getAsString();
11092      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
11093        << fnType.getUnqualifiedType()
11094        << qualsString
11095        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
11096    }
11097
11098    CXXMemberCallExpr *call
11099      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11100                                        resultType, valueKind, RParenLoc);
11101
11102    if (CheckCallReturnType(proto->getResultType(),
11103                            op->getRHS()->getLocStart(),
11104                            call, 0))
11105      return ExprError();
11106
11107    if (ConvertArgumentsForCall(call, op, 0, proto, Args, RParenLoc))
11108      return ExprError();
11109
11110    if (CheckOtherCall(call, proto))
11111      return ExprError();
11112
11113    return MaybeBindToTemporary(call);
11114  }
11115
11116  UnbridgedCastsSet UnbridgedCasts;
11117  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11118    return ExprError();
11119
11120  MemberExpr *MemExpr;
11121  CXXMethodDecl *Method = 0;
11122  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
11123  NestedNameSpecifier *Qualifier = 0;
11124  if (isa<MemberExpr>(NakedMemExpr)) {
11125    MemExpr = cast<MemberExpr>(NakedMemExpr);
11126    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
11127    FoundDecl = MemExpr->getFoundDecl();
11128    Qualifier = MemExpr->getQualifier();
11129    UnbridgedCasts.restore();
11130  } else {
11131    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
11132    Qualifier = UnresExpr->getQualifier();
11133
11134    QualType ObjectType = UnresExpr->getBaseType();
11135    Expr::Classification ObjectClassification
11136      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
11137                            : UnresExpr->getBase()->Classify(Context);
11138
11139    // Add overload candidates
11140    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
11141
11142    // FIXME: avoid copy.
11143    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11144    if (UnresExpr->hasExplicitTemplateArgs()) {
11145      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11146      TemplateArgs = &TemplateArgsBuffer;
11147    }
11148
11149    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
11150           E = UnresExpr->decls_end(); I != E; ++I) {
11151
11152      NamedDecl *Func = *I;
11153      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
11154      if (isa<UsingShadowDecl>(Func))
11155        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
11156
11157
11158      // Microsoft supports direct constructor calls.
11159      if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
11160        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
11161                             Args, CandidateSet);
11162      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
11163        // If explicit template arguments were provided, we can't call a
11164        // non-template member function.
11165        if (TemplateArgs)
11166          continue;
11167
11168        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
11169                           ObjectClassification, Args, CandidateSet,
11170                           /*SuppressUserConversions=*/false);
11171      } else {
11172        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
11173                                   I.getPair(), ActingDC, TemplateArgs,
11174                                   ObjectType,  ObjectClassification,
11175                                   Args, CandidateSet,
11176                                   /*SuppressUsedConversions=*/false);
11177      }
11178    }
11179
11180    DeclarationName DeclName = UnresExpr->getMemberName();
11181
11182    UnbridgedCasts.restore();
11183
11184    OverloadCandidateSet::iterator Best;
11185    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
11186                                            Best)) {
11187    case OR_Success:
11188      Method = cast<CXXMethodDecl>(Best->Function);
11189      FoundDecl = Best->FoundDecl;
11190      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
11191      if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
11192        return ExprError();
11193      // If FoundDecl is different from Method (such as if one is a template
11194      // and the other a specialization), make sure DiagnoseUseOfDecl is
11195      // called on both.
11196      // FIXME: This would be more comprehensively addressed by modifying
11197      // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
11198      // being used.
11199      if (Method != FoundDecl.getDecl() &&
11200                      DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
11201        return ExprError();
11202      break;
11203
11204    case OR_No_Viable_Function:
11205      Diag(UnresExpr->getMemberLoc(),
11206           diag::err_ovl_no_viable_member_function_in_call)
11207        << DeclName << MemExprE->getSourceRange();
11208      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11209      // FIXME: Leaking incoming expressions!
11210      return ExprError();
11211
11212    case OR_Ambiguous:
11213      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
11214        << DeclName << MemExprE->getSourceRange();
11215      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11216      // FIXME: Leaking incoming expressions!
11217      return ExprError();
11218
11219    case OR_Deleted:
11220      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
11221        << Best->Function->isDeleted()
11222        << DeclName
11223        << getDeletedOrUnavailableSuffix(Best->Function)
11224        << MemExprE->getSourceRange();
11225      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11226      // FIXME: Leaking incoming expressions!
11227      return ExprError();
11228    }
11229
11230    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
11231
11232    // If overload resolution picked a static member, build a
11233    // non-member call based on that function.
11234    if (Method->isStatic()) {
11235      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
11236                                   RParenLoc);
11237    }
11238
11239    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
11240  }
11241
11242  QualType ResultType = Method->getResultType();
11243  ExprValueKind VK = Expr::getValueKindForType(ResultType);
11244  ResultType = ResultType.getNonLValueExprType(Context);
11245
11246  assert(Method && "Member call to something that isn't a method?");
11247  CXXMemberCallExpr *TheCall =
11248    new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
11249                                    ResultType, VK, RParenLoc);
11250
11251  // Check for a valid return type.
11252  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
11253                          TheCall, Method))
11254    return ExprError();
11255
11256  // Convert the object argument (for a non-static member function call).
11257  // We only need to do this if there was actually an overload; otherwise
11258  // it was done at lookup.
11259  if (!Method->isStatic()) {
11260    ExprResult ObjectArg =
11261      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
11262                                          FoundDecl, Method);
11263    if (ObjectArg.isInvalid())
11264      return ExprError();
11265    MemExpr->setBase(ObjectArg.take());
11266  }
11267
11268  // Convert the rest of the arguments
11269  const FunctionProtoType *Proto =
11270    Method->getType()->getAs<FunctionProtoType>();
11271  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
11272                              RParenLoc))
11273    return ExprError();
11274
11275  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11276
11277  if (CheckFunctionCall(Method, TheCall, Proto))
11278    return ExprError();
11279
11280  if ((isa<CXXConstructorDecl>(CurContext) ||
11281       isa<CXXDestructorDecl>(CurContext)) &&
11282      TheCall->getMethodDecl()->isPure()) {
11283    const CXXMethodDecl *MD = TheCall->getMethodDecl();
11284
11285    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
11286      Diag(MemExpr->getLocStart(),
11287           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
11288        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
11289        << MD->getParent()->getDeclName();
11290
11291      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
11292    }
11293  }
11294  return MaybeBindToTemporary(TheCall);
11295}
11296
11297/// BuildCallToObjectOfClassType - Build a call to an object of class
11298/// type (C++ [over.call.object]), which can end up invoking an
11299/// overloaded function call operator (@c operator()) or performing a
11300/// user-defined conversion on the object argument.
11301ExprResult
11302Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
11303                                   SourceLocation LParenLoc,
11304                                   MultiExprArg Args,
11305                                   SourceLocation RParenLoc) {
11306  if (checkPlaceholderForOverload(*this, Obj))
11307    return ExprError();
11308  ExprResult Object = Owned(Obj);
11309
11310  UnbridgedCastsSet UnbridgedCasts;
11311  if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
11312    return ExprError();
11313
11314  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
11315  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
11316
11317  // C++ [over.call.object]p1:
11318  //  If the primary-expression E in the function call syntax
11319  //  evaluates to a class object of type "cv T", then the set of
11320  //  candidate functions includes at least the function call
11321  //  operators of T. The function call operators of T are obtained by
11322  //  ordinary lookup of the name operator() in the context of
11323  //  (E).operator().
11324  OverloadCandidateSet CandidateSet(LParenLoc);
11325  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
11326
11327  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
11328                          diag::err_incomplete_object_call, Object.get()))
11329    return true;
11330
11331  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
11332  LookupQualifiedName(R, Record->getDecl());
11333  R.suppressDiagnostics();
11334
11335  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11336       Oper != OperEnd; ++Oper) {
11337    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
11338                       Object.get()->Classify(Context),
11339                       Args, CandidateSet,
11340                       /*SuppressUserConversions=*/ false);
11341  }
11342
11343  // C++ [over.call.object]p2:
11344  //   In addition, for each (non-explicit in C++0x) conversion function
11345  //   declared in T of the form
11346  //
11347  //        operator conversion-type-id () cv-qualifier;
11348  //
11349  //   where cv-qualifier is the same cv-qualification as, or a
11350  //   greater cv-qualification than, cv, and where conversion-type-id
11351  //   denotes the type "pointer to function of (P1,...,Pn) returning
11352  //   R", or the type "reference to pointer to function of
11353  //   (P1,...,Pn) returning R", or the type "reference to function
11354  //   of (P1,...,Pn) returning R", a surrogate call function [...]
11355  //   is also considered as a candidate function. Similarly,
11356  //   surrogate call functions are added to the set of candidate
11357  //   functions for each conversion function declared in an
11358  //   accessible base class provided the function is not hidden
11359  //   within T by another intervening declaration.
11360  std::pair<CXXRecordDecl::conversion_iterator,
11361            CXXRecordDecl::conversion_iterator> Conversions
11362    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
11363  for (CXXRecordDecl::conversion_iterator
11364         I = Conversions.first, E = Conversions.second; I != E; ++I) {
11365    NamedDecl *D = *I;
11366    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
11367    if (isa<UsingShadowDecl>(D))
11368      D = cast<UsingShadowDecl>(D)->getTargetDecl();
11369
11370    // Skip over templated conversion functions; they aren't
11371    // surrogates.
11372    if (isa<FunctionTemplateDecl>(D))
11373      continue;
11374
11375    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
11376    if (!Conv->isExplicit()) {
11377      // Strip the reference type (if any) and then the pointer type (if
11378      // any) to get down to what might be a function type.
11379      QualType ConvType = Conv->getConversionType().getNonReferenceType();
11380      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11381        ConvType = ConvPtrType->getPointeeType();
11382
11383      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
11384      {
11385        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
11386                              Object.get(), Args, CandidateSet);
11387      }
11388    }
11389  }
11390
11391  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11392
11393  // Perform overload resolution.
11394  OverloadCandidateSet::iterator Best;
11395  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
11396                             Best)) {
11397  case OR_Success:
11398    // Overload resolution succeeded; we'll build the appropriate call
11399    // below.
11400    break;
11401
11402  case OR_No_Viable_Function:
11403    if (CandidateSet.empty())
11404      Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
11405        << Object.get()->getType() << /*call*/ 1
11406        << Object.get()->getSourceRange();
11407    else
11408      Diag(Object.get()->getLocStart(),
11409           diag::err_ovl_no_viable_object_call)
11410        << Object.get()->getType() << Object.get()->getSourceRange();
11411    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11412    break;
11413
11414  case OR_Ambiguous:
11415    Diag(Object.get()->getLocStart(),
11416         diag::err_ovl_ambiguous_object_call)
11417      << Object.get()->getType() << Object.get()->getSourceRange();
11418    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11419    break;
11420
11421  case OR_Deleted:
11422    Diag(Object.get()->getLocStart(),
11423         diag::err_ovl_deleted_object_call)
11424      << Best->Function->isDeleted()
11425      << Object.get()->getType()
11426      << getDeletedOrUnavailableSuffix(Best->Function)
11427      << Object.get()->getSourceRange();
11428    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11429    break;
11430  }
11431
11432  if (Best == CandidateSet.end())
11433    return true;
11434
11435  UnbridgedCasts.restore();
11436
11437  if (Best->Function == 0) {
11438    // Since there is no function declaration, this is one of the
11439    // surrogate candidates. Dig out the conversion function.
11440    CXXConversionDecl *Conv
11441      = cast<CXXConversionDecl>(
11442                         Best->Conversions[0].UserDefined.ConversionFunction);
11443
11444    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11445    if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
11446      return ExprError();
11447    assert(Conv == Best->FoundDecl.getDecl() &&
11448             "Found Decl & conversion-to-functionptr should be same, right?!");
11449    // We selected one of the surrogate functions that converts the
11450    // object parameter to a function pointer. Perform the conversion
11451    // on the object argument, then let ActOnCallExpr finish the job.
11452
11453    // Create an implicit member expr to refer to the conversion operator.
11454    // and then call it.
11455    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
11456                                             Conv, HadMultipleCandidates);
11457    if (Call.isInvalid())
11458      return ExprError();
11459    // Record usage of conversion in an implicit cast.
11460    Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
11461                                          CK_UserDefinedConversion,
11462                                          Call.get(), 0, VK_RValue));
11463
11464    return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
11465  }
11466
11467  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
11468
11469  // We found an overloaded operator(). Build a CXXOperatorCallExpr
11470  // that calls this method, using Object for the implicit object
11471  // parameter and passing along the remaining arguments.
11472  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11473
11474  // An error diagnostic has already been printed when parsing the declaration.
11475  if (Method->isInvalidDecl())
11476    return ExprError();
11477
11478  const FunctionProtoType *Proto =
11479    Method->getType()->getAs<FunctionProtoType>();
11480
11481  unsigned NumArgsInProto = Proto->getNumArgs();
11482
11483  DeclarationNameInfo OpLocInfo(
11484               Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
11485  OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
11486  ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11487                                           HadMultipleCandidates,
11488                                           OpLocInfo.getLoc(),
11489                                           OpLocInfo.getInfo());
11490  if (NewFn.isInvalid())
11491    return true;
11492
11493  // Build the full argument list for the method call (the implicit object
11494  // parameter is placed at the beginning of the list).
11495  llvm::OwningArrayPtr<Expr *> MethodArgs(new Expr*[Args.size() + 1]);
11496  MethodArgs[0] = Object.get();
11497  std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
11498
11499  // Once we've built TheCall, all of the expressions are properly
11500  // owned.
11501  QualType ResultTy = Method->getResultType();
11502  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11503  ResultTy = ResultTy.getNonLValueExprType(Context);
11504
11505  CXXOperatorCallExpr *TheCall = new (Context)
11506      CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
11507                          llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
11508                          ResultTy, VK, RParenLoc, false);
11509  MethodArgs.reset();
11510
11511  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
11512                          Method))
11513    return true;
11514
11515  // We may have default arguments. If so, we need to allocate more
11516  // slots in the call for them.
11517  if (Args.size() < NumArgsInProto)
11518    TheCall->setNumArgs(Context, NumArgsInProto + 1);
11519
11520  bool IsError = false;
11521
11522  // Initialize the implicit object parameter.
11523  ExprResult ObjRes =
11524    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
11525                                        Best->FoundDecl, Method);
11526  if (ObjRes.isInvalid())
11527    IsError = true;
11528  else
11529    Object = ObjRes;
11530  TheCall->setArg(0, Object.take());
11531
11532  // Check the argument types.
11533  for (unsigned i = 0; i != NumArgsInProto; i++) {
11534    Expr *Arg;
11535    if (i < Args.size()) {
11536      Arg = Args[i];
11537
11538      // Pass the argument.
11539
11540      ExprResult InputInit
11541        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11542                                                    Context,
11543                                                    Method->getParamDecl(i)),
11544                                    SourceLocation(), Arg);
11545
11546      IsError |= InputInit.isInvalid();
11547      Arg = InputInit.takeAs<Expr>();
11548    } else {
11549      ExprResult DefArg
11550        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
11551      if (DefArg.isInvalid()) {
11552        IsError = true;
11553        break;
11554      }
11555
11556      Arg = DefArg.takeAs<Expr>();
11557    }
11558
11559    TheCall->setArg(i + 1, Arg);
11560  }
11561
11562  // If this is a variadic call, handle args passed through "...".
11563  if (Proto->isVariadic()) {
11564    // Promote the arguments (C99 6.5.2.2p7).
11565    for (unsigned i = NumArgsInProto, e = Args.size(); i < e; i++) {
11566      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
11567      IsError |= Arg.isInvalid();
11568      TheCall->setArg(i + 1, Arg.take());
11569    }
11570  }
11571
11572  if (IsError) return true;
11573
11574  DiagnoseSentinelCalls(Method, LParenLoc, Args);
11575
11576  if (CheckFunctionCall(Method, TheCall, Proto))
11577    return true;
11578
11579  return MaybeBindToTemporary(TheCall);
11580}
11581
11582/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
11583///  (if one exists), where @c Base is an expression of class type and
11584/// @c Member is the name of the member we're trying to find.
11585ExprResult
11586Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
11587                               bool *NoArrowOperatorFound) {
11588  assert(Base->getType()->isRecordType() &&
11589         "left-hand side must have class type");
11590
11591  if (checkPlaceholderForOverload(*this, Base))
11592    return ExprError();
11593
11594  SourceLocation Loc = Base->getExprLoc();
11595
11596  // C++ [over.ref]p1:
11597  //
11598  //   [...] An expression x->m is interpreted as (x.operator->())->m
11599  //   for a class object x of type T if T::operator->() exists and if
11600  //   the operator is selected as the best match function by the
11601  //   overload resolution mechanism (13.3).
11602  DeclarationName OpName =
11603    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
11604  OverloadCandidateSet CandidateSet(Loc);
11605  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
11606
11607  if (RequireCompleteType(Loc, Base->getType(),
11608                          diag::err_typecheck_incomplete_tag, Base))
11609    return ExprError();
11610
11611  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
11612  LookupQualifiedName(R, BaseRecord->getDecl());
11613  R.suppressDiagnostics();
11614
11615  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
11616       Oper != OperEnd; ++Oper) {
11617    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
11618                       None, CandidateSet, /*SuppressUserConversions=*/false);
11619  }
11620
11621  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11622
11623  // Perform overload resolution.
11624  OverloadCandidateSet::iterator Best;
11625  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11626  case OR_Success:
11627    // Overload resolution succeeded; we'll build the call below.
11628    break;
11629
11630  case OR_No_Viable_Function:
11631    if (CandidateSet.empty()) {
11632      QualType BaseType = Base->getType();
11633      if (NoArrowOperatorFound) {
11634        // Report this specific error to the caller instead of emitting a
11635        // diagnostic, as requested.
11636        *NoArrowOperatorFound = true;
11637        return ExprError();
11638      }
11639      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
11640        << BaseType << Base->getSourceRange();
11641      if (BaseType->isRecordType() && !BaseType->isPointerType()) {
11642        Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
11643          << FixItHint::CreateReplacement(OpLoc, ".");
11644      }
11645    } else
11646      Diag(OpLoc, diag::err_ovl_no_viable_oper)
11647        << "operator->" << Base->getSourceRange();
11648    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11649    return ExprError();
11650
11651  case OR_Ambiguous:
11652    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
11653      << "->" << Base->getType() << Base->getSourceRange();
11654    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
11655    return ExprError();
11656
11657  case OR_Deleted:
11658    Diag(OpLoc,  diag::err_ovl_deleted_oper)
11659      << Best->Function->isDeleted()
11660      << "->"
11661      << getDeletedOrUnavailableSuffix(Best->Function)
11662      << Base->getSourceRange();
11663    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
11664    return ExprError();
11665  }
11666
11667  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
11668
11669  // Convert the object parameter.
11670  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11671  ExprResult BaseResult =
11672    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
11673                                        Best->FoundDecl, Method);
11674  if (BaseResult.isInvalid())
11675    return ExprError();
11676  Base = BaseResult.take();
11677
11678  // Build the operator call.
11679  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
11680                                            HadMultipleCandidates, OpLoc);
11681  if (FnExpr.isInvalid())
11682    return ExprError();
11683
11684  QualType ResultTy = Method->getResultType();
11685  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11686  ResultTy = ResultTy.getNonLValueExprType(Context);
11687  CXXOperatorCallExpr *TheCall =
11688    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
11689                                      Base, ResultTy, VK, OpLoc, false);
11690
11691  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
11692                          Method))
11693          return ExprError();
11694
11695  return MaybeBindToTemporary(TheCall);
11696}
11697
11698/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
11699/// a literal operator described by the provided lookup results.
11700ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
11701                                          DeclarationNameInfo &SuffixInfo,
11702                                          ArrayRef<Expr*> Args,
11703                                          SourceLocation LitEndLoc,
11704                                       TemplateArgumentListInfo *TemplateArgs) {
11705  SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
11706
11707  OverloadCandidateSet CandidateSet(UDSuffixLoc);
11708  AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
11709                        TemplateArgs);
11710
11711  bool HadMultipleCandidates = (CandidateSet.size() > 1);
11712
11713  // Perform overload resolution. This will usually be trivial, but might need
11714  // to perform substitutions for a literal operator template.
11715  OverloadCandidateSet::iterator Best;
11716  switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
11717  case OR_Success:
11718  case OR_Deleted:
11719    break;
11720
11721  case OR_No_Viable_Function:
11722    Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
11723      << R.getLookupName();
11724    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
11725    return ExprError();
11726
11727  case OR_Ambiguous:
11728    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
11729    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
11730    return ExprError();
11731  }
11732
11733  FunctionDecl *FD = Best->Function;
11734  ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
11735                                        HadMultipleCandidates,
11736                                        SuffixInfo.getLoc(),
11737                                        SuffixInfo.getInfo());
11738  if (Fn.isInvalid())
11739    return true;
11740
11741  // Check the argument types. This should almost always be a no-op, except
11742  // that array-to-pointer decay is applied to string literals.
11743  Expr *ConvArgs[2];
11744  for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
11745    ExprResult InputInit = PerformCopyInitialization(
11746      InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
11747      SourceLocation(), Args[ArgIdx]);
11748    if (InputInit.isInvalid())
11749      return true;
11750    ConvArgs[ArgIdx] = InputInit.take();
11751  }
11752
11753  QualType ResultTy = FD->getResultType();
11754  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11755  ResultTy = ResultTy.getNonLValueExprType(Context);
11756
11757  UserDefinedLiteral *UDL =
11758    new (Context) UserDefinedLiteral(Context, Fn.take(),
11759                                     llvm::makeArrayRef(ConvArgs, Args.size()),
11760                                     ResultTy, VK, LitEndLoc, UDSuffixLoc);
11761
11762  if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
11763    return ExprError();
11764
11765  if (CheckFunctionCall(FD, UDL, NULL))
11766    return ExprError();
11767
11768  return MaybeBindToTemporary(UDL);
11769}
11770
11771/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
11772/// given LookupResult is non-empty, it is assumed to describe a member which
11773/// will be invoked. Otherwise, the function will be found via argument
11774/// dependent lookup.
11775/// CallExpr is set to a valid expression and FRS_Success returned on success,
11776/// otherwise CallExpr is set to ExprError() and some non-success value
11777/// is returned.
11778Sema::ForRangeStatus
11779Sema::BuildForRangeBeginEndCall(Scope *S, SourceLocation Loc,
11780                                SourceLocation RangeLoc, VarDecl *Decl,
11781                                BeginEndFunction BEF,
11782                                const DeclarationNameInfo &NameInfo,
11783                                LookupResult &MemberLookup,
11784                                OverloadCandidateSet *CandidateSet,
11785                                Expr *Range, ExprResult *CallExpr) {
11786  CandidateSet->clear();
11787  if (!MemberLookup.empty()) {
11788    ExprResult MemberRef =
11789        BuildMemberReferenceExpr(Range, Range->getType(), Loc,
11790                                 /*IsPtr=*/false, CXXScopeSpec(),
11791                                 /*TemplateKWLoc=*/SourceLocation(),
11792                                 /*FirstQualifierInScope=*/0,
11793                                 MemberLookup,
11794                                 /*TemplateArgs=*/0);
11795    if (MemberRef.isInvalid()) {
11796      *CallExpr = ExprError();
11797      Diag(Range->getLocStart(), diag::note_in_for_range)
11798          << RangeLoc << BEF << Range->getType();
11799      return FRS_DiagnosticIssued;
11800    }
11801    *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, 0);
11802    if (CallExpr->isInvalid()) {
11803      *CallExpr = ExprError();
11804      Diag(Range->getLocStart(), diag::note_in_for_range)
11805          << RangeLoc << BEF << Range->getType();
11806      return FRS_DiagnosticIssued;
11807    }
11808  } else {
11809    UnresolvedSet<0> FoundNames;
11810    UnresolvedLookupExpr *Fn =
11811      UnresolvedLookupExpr::Create(Context, /*NamingClass=*/0,
11812                                   NestedNameSpecifierLoc(), NameInfo,
11813                                   /*NeedsADL=*/true, /*Overloaded=*/false,
11814                                   FoundNames.begin(), FoundNames.end());
11815
11816    bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
11817                                                    CandidateSet, CallExpr);
11818    if (CandidateSet->empty() || CandidateSetError) {
11819      *CallExpr = ExprError();
11820      return FRS_NoViableFunction;
11821    }
11822    OverloadCandidateSet::iterator Best;
11823    OverloadingResult OverloadResult =
11824        CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
11825
11826    if (OverloadResult == OR_No_Viable_Function) {
11827      *CallExpr = ExprError();
11828      return FRS_NoViableFunction;
11829    }
11830    *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
11831                                         Loc, 0, CandidateSet, &Best,
11832                                         OverloadResult,
11833                                         /*AllowTypoCorrection=*/false);
11834    if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
11835      *CallExpr = ExprError();
11836      Diag(Range->getLocStart(), diag::note_in_for_range)
11837          << RangeLoc << BEF << Range->getType();
11838      return FRS_DiagnosticIssued;
11839    }
11840  }
11841  return FRS_Success;
11842}
11843
11844
11845/// FixOverloadedFunctionReference - E is an expression that refers to
11846/// a C++ overloaded function (possibly with some parentheses and
11847/// perhaps a '&' around it). We have resolved the overloaded function
11848/// to the function declaration Fn, so patch up the expression E to
11849/// refer (possibly indirectly) to Fn. Returns the new expr.
11850Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
11851                                           FunctionDecl *Fn) {
11852  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
11853    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
11854                                                   Found, Fn);
11855    if (SubExpr == PE->getSubExpr())
11856      return PE;
11857
11858    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
11859  }
11860
11861  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11862    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
11863                                                   Found, Fn);
11864    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
11865                               SubExpr->getType()) &&
11866           "Implicit cast type cannot be determined from overload");
11867    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
11868    if (SubExpr == ICE->getSubExpr())
11869      return ICE;
11870
11871    return ImplicitCastExpr::Create(Context, ICE->getType(),
11872                                    ICE->getCastKind(),
11873                                    SubExpr, 0,
11874                                    ICE->getValueKind());
11875  }
11876
11877  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
11878    assert(UnOp->getOpcode() == UO_AddrOf &&
11879           "Can only take the address of an overloaded function");
11880    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
11881      if (Method->isStatic()) {
11882        // Do nothing: static member functions aren't any different
11883        // from non-member functions.
11884      } else {
11885        // Fix the sub expression, which really has to be an
11886        // UnresolvedLookupExpr holding an overloaded member function
11887        // or template.
11888        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11889                                                       Found, Fn);
11890        if (SubExpr == UnOp->getSubExpr())
11891          return UnOp;
11892
11893        assert(isa<DeclRefExpr>(SubExpr)
11894               && "fixed to something other than a decl ref");
11895        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
11896               && "fixed to a member ref with no nested name qualifier");
11897
11898        // We have taken the address of a pointer to member
11899        // function. Perform the computation here so that we get the
11900        // appropriate pointer to member type.
11901        QualType ClassType
11902          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
11903        QualType MemPtrType
11904          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
11905
11906        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
11907                                           VK_RValue, OK_Ordinary,
11908                                           UnOp->getOperatorLoc());
11909      }
11910    }
11911    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
11912                                                   Found, Fn);
11913    if (SubExpr == UnOp->getSubExpr())
11914      return UnOp;
11915
11916    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
11917                                     Context.getPointerType(SubExpr->getType()),
11918                                       VK_RValue, OK_Ordinary,
11919                                       UnOp->getOperatorLoc());
11920  }
11921
11922  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
11923    // FIXME: avoid copy.
11924    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11925    if (ULE->hasExplicitTemplateArgs()) {
11926      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
11927      TemplateArgs = &TemplateArgsBuffer;
11928    }
11929
11930    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11931                                           ULE->getQualifierLoc(),
11932                                           ULE->getTemplateKeywordLoc(),
11933                                           Fn,
11934                                           /*enclosing*/ false, // FIXME?
11935                                           ULE->getNameLoc(),
11936                                           Fn->getType(),
11937                                           VK_LValue,
11938                                           Found.getDecl(),
11939                                           TemplateArgs);
11940    MarkDeclRefReferenced(DRE);
11941    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
11942    return DRE;
11943  }
11944
11945  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
11946    // FIXME: avoid copy.
11947    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
11948    if (MemExpr->hasExplicitTemplateArgs()) {
11949      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
11950      TemplateArgs = &TemplateArgsBuffer;
11951    }
11952
11953    Expr *Base;
11954
11955    // If we're filling in a static method where we used to have an
11956    // implicit member access, rewrite to a simple decl ref.
11957    if (MemExpr->isImplicitAccess()) {
11958      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11959        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
11960                                               MemExpr->getQualifierLoc(),
11961                                               MemExpr->getTemplateKeywordLoc(),
11962                                               Fn,
11963                                               /*enclosing*/ false,
11964                                               MemExpr->getMemberLoc(),
11965                                               Fn->getType(),
11966                                               VK_LValue,
11967                                               Found.getDecl(),
11968                                               TemplateArgs);
11969        MarkDeclRefReferenced(DRE);
11970        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
11971        return DRE;
11972      } else {
11973        SourceLocation Loc = MemExpr->getMemberLoc();
11974        if (MemExpr->getQualifier())
11975          Loc = MemExpr->getQualifierLoc().getBeginLoc();
11976        CheckCXXThisCapture(Loc);
11977        Base = new (Context) CXXThisExpr(Loc,
11978                                         MemExpr->getBaseType(),
11979                                         /*isImplicit=*/true);
11980      }
11981    } else
11982      Base = MemExpr->getBase();
11983
11984    ExprValueKind valueKind;
11985    QualType type;
11986    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
11987      valueKind = VK_LValue;
11988      type = Fn->getType();
11989    } else {
11990      valueKind = VK_RValue;
11991      type = Context.BoundMemberTy;
11992    }
11993
11994    MemberExpr *ME = MemberExpr::Create(Context, Base,
11995                                        MemExpr->isArrow(),
11996                                        MemExpr->getQualifierLoc(),
11997                                        MemExpr->getTemplateKeywordLoc(),
11998                                        Fn,
11999                                        Found,
12000                                        MemExpr->getMemberNameInfo(),
12001                                        TemplateArgs,
12002                                        type, valueKind, OK_Ordinary);
12003    ME->setHadMultipleCandidates(true);
12004    MarkMemberReferenced(ME);
12005    return ME;
12006  }
12007
12008  llvm_unreachable("Invalid reference to overloaded function");
12009}
12010
12011ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
12012                                                DeclAccessPair Found,
12013                                                FunctionDecl *Fn) {
12014  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
12015}
12016
12017} // end namespace clang
12018