SemaOverload.cpp revision a4be78a1958286e80599206d29c93b0c4dc9282e
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad();
457    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
458    return ICS;
459  }
460
461  OverloadCandidateSet Conversions(From->getExprLoc());
462  OverloadingResult UserDefResult
463    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
464                              !SuppressUserConversions, AllowExplicit,
465                              ForceRValue, UserCast);
466
467  if (UserDefResult == OR_Success) {
468    ICS.setUserDefined();
469    // C++ [over.ics.user]p4:
470    //   A conversion of an expression of class type to the same class
471    //   type is given Exact Match rank, and a conversion of an
472    //   expression of class type to a base class of that type is
473    //   given Conversion rank, in spite of the fact that a copy
474    //   constructor (i.e., a user-defined conversion function) is
475    //   called for those cases.
476    if (CXXConstructorDecl *Constructor
477          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
478      QualType FromCanon
479        = Context.getCanonicalType(From->getType().getUnqualifiedType());
480      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
481      if (Constructor->isCopyConstructor() &&
482          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
483        // Turn this into a "standard" conversion sequence, so that it
484        // gets ranked with standard conversion sequences.
485        ICS.setStandard();
486        ICS.Standard.setAsIdentityConversion();
487        ICS.Standard.setFromType(From->getType());
488        ICS.Standard.setAllToTypes(ToType);
489        ICS.Standard.CopyConstructor = Constructor;
490        if (ToCanon != FromCanon)
491          ICS.Standard.Second = ICK_Derived_To_Base;
492      }
493    }
494
495    // C++ [over.best.ics]p4:
496    //   However, when considering the argument of a user-defined
497    //   conversion function that is a candidate by 13.3.1.3 when
498    //   invoked for the copying of the temporary in the second step
499    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
500    //   13.3.1.6 in all cases, only standard conversion sequences and
501    //   ellipsis conversion sequences are allowed.
502    if (SuppressUserConversions && ICS.isUserDefined()) {
503      ICS.setBad();
504      ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType);
505    }
506  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
507    ICS.setAmbiguous();
508    ICS.Ambiguous.setFromType(From->getType());
509    ICS.Ambiguous.setToType(ToType);
510    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
511         Cand != Conversions.end(); ++Cand)
512      if (Cand->Viable)
513        ICS.Ambiguous.addConversion(Cand->Function);
514  } else {
515    ICS.setBad();
516    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
517  }
518
519  return ICS;
520}
521
522/// \brief Determine whether the conversion from FromType to ToType is a valid
523/// conversion that strips "noreturn" off the nested function type.
524static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
525                                 QualType ToType, QualType &ResultTy) {
526  if (Context.hasSameUnqualifiedType(FromType, ToType))
527    return false;
528
529  // Strip the noreturn off the type we're converting from; noreturn can
530  // safely be removed.
531  FromType = Context.getNoReturnType(FromType, false);
532  if (!Context.hasSameUnqualifiedType(FromType, ToType))
533    return false;
534
535  ResultTy = FromType;
536  return true;
537}
538
539/// IsStandardConversion - Determines whether there is a standard
540/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
541/// expression From to the type ToType. Standard conversion sequences
542/// only consider non-class types; for conversions that involve class
543/// types, use TryImplicitConversion. If a conversion exists, SCS will
544/// contain the standard conversion sequence required to perform this
545/// conversion and this routine will return true. Otherwise, this
546/// routine will return false and the value of SCS is unspecified.
547bool
548Sema::IsStandardConversion(Expr* From, QualType ToType,
549                           bool InOverloadResolution,
550                           StandardConversionSequence &SCS) {
551  QualType FromType = From->getType();
552
553  // Standard conversions (C++ [conv])
554  SCS.setAsIdentityConversion();
555  SCS.Deprecated = false;
556  SCS.IncompatibleObjC = false;
557  SCS.setFromType(FromType);
558  SCS.CopyConstructor = 0;
559
560  // There are no standard conversions for class types in C++, so
561  // abort early. When overloading in C, however, we do permit
562  if (FromType->isRecordType() || ToType->isRecordType()) {
563    if (getLangOptions().CPlusPlus)
564      return false;
565
566    // When we're overloading in C, we allow, as standard conversions,
567  }
568
569  // The first conversion can be an lvalue-to-rvalue conversion,
570  // array-to-pointer conversion, or function-to-pointer conversion
571  // (C++ 4p1).
572
573  // Lvalue-to-rvalue conversion (C++ 4.1):
574  //   An lvalue (3.10) of a non-function, non-array type T can be
575  //   converted to an rvalue.
576  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
577  if (argIsLvalue == Expr::LV_Valid &&
578      !FromType->isFunctionType() && !FromType->isArrayType() &&
579      Context.getCanonicalType(FromType) != Context.OverloadTy) {
580    SCS.First = ICK_Lvalue_To_Rvalue;
581
582    // If T is a non-class type, the type of the rvalue is the
583    // cv-unqualified version of T. Otherwise, the type of the rvalue
584    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
585    // just strip the qualifiers because they don't matter.
586    FromType = FromType.getUnqualifiedType();
587  } else if (FromType->isArrayType()) {
588    // Array-to-pointer conversion (C++ 4.2)
589    SCS.First = ICK_Array_To_Pointer;
590
591    // An lvalue or rvalue of type "array of N T" or "array of unknown
592    // bound of T" can be converted to an rvalue of type "pointer to
593    // T" (C++ 4.2p1).
594    FromType = Context.getArrayDecayedType(FromType);
595
596    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
597      // This conversion is deprecated. (C++ D.4).
598      SCS.Deprecated = true;
599
600      // For the purpose of ranking in overload resolution
601      // (13.3.3.1.1), this conversion is considered an
602      // array-to-pointer conversion followed by a qualification
603      // conversion (4.4). (C++ 4.2p2)
604      SCS.Second = ICK_Identity;
605      SCS.Third = ICK_Qualification;
606      SCS.setAllToTypes(FromType);
607      return true;
608    }
609  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
610    // Function-to-pointer conversion (C++ 4.3).
611    SCS.First = ICK_Function_To_Pointer;
612
613    // An lvalue of function type T can be converted to an rvalue of
614    // type "pointer to T." The result is a pointer to the
615    // function. (C++ 4.3p1).
616    FromType = Context.getPointerType(FromType);
617  } else if (FunctionDecl *Fn
618               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
619    // Address of overloaded function (C++ [over.over]).
620    SCS.First = ICK_Function_To_Pointer;
621
622    // We were able to resolve the address of the overloaded function,
623    // so we can convert to the type of that function.
624    FromType = Fn->getType();
625    if (ToType->isLValueReferenceType())
626      FromType = Context.getLValueReferenceType(FromType);
627    else if (ToType->isRValueReferenceType())
628      FromType = Context.getRValueReferenceType(FromType);
629    else if (ToType->isMemberPointerType()) {
630      // Resolve address only succeeds if both sides are member pointers,
631      // but it doesn't have to be the same class. See DR 247.
632      // Note that this means that the type of &Derived::fn can be
633      // Ret (Base::*)(Args) if the fn overload actually found is from the
634      // base class, even if it was brought into the derived class via a
635      // using declaration. The standard isn't clear on this issue at all.
636      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
637      FromType = Context.getMemberPointerType(FromType,
638                    Context.getTypeDeclType(M->getParent()).getTypePtr());
639    } else
640      FromType = Context.getPointerType(FromType);
641  } else {
642    // We don't require any conversions for the first step.
643    SCS.First = ICK_Identity;
644  }
645  SCS.setToType(0, FromType);
646
647  // The second conversion can be an integral promotion, floating
648  // point promotion, integral conversion, floating point conversion,
649  // floating-integral conversion, pointer conversion,
650  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
651  // For overloading in C, this can also be a "compatible-type"
652  // conversion.
653  bool IncompatibleObjC = false;
654  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
655    // The unqualified versions of the types are the same: there's no
656    // conversion to do.
657    SCS.Second = ICK_Identity;
658  } else if (IsIntegralPromotion(From, FromType, ToType)) {
659    // Integral promotion (C++ 4.5).
660    SCS.Second = ICK_Integral_Promotion;
661    FromType = ToType.getUnqualifiedType();
662  } else if (IsFloatingPointPromotion(FromType, ToType)) {
663    // Floating point promotion (C++ 4.6).
664    SCS.Second = ICK_Floating_Promotion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (IsComplexPromotion(FromType, ToType)) {
667    // Complex promotion (Clang extension)
668    SCS.Second = ICK_Complex_Promotion;
669    FromType = ToType.getUnqualifiedType();
670  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
671           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
672    // Integral conversions (C++ 4.7).
673    SCS.Second = ICK_Integral_Conversion;
674    FromType = ToType.getUnqualifiedType();
675  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
676    // Floating point conversions (C++ 4.8).
677    SCS.Second = ICK_Floating_Conversion;
678    FromType = ToType.getUnqualifiedType();
679  } else if (FromType->isComplexType() && ToType->isComplexType()) {
680    // Complex conversions (C99 6.3.1.6)
681    SCS.Second = ICK_Complex_Conversion;
682    FromType = ToType.getUnqualifiedType();
683  } else if ((FromType->isFloatingType() &&
684              ToType->isIntegralType() && (!ToType->isBooleanType() &&
685                                           !ToType->isEnumeralType())) ||
686             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
687              ToType->isFloatingType())) {
688    // Floating-integral conversions (C++ 4.9).
689    SCS.Second = ICK_Floating_Integral;
690    FromType = ToType.getUnqualifiedType();
691  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
692             (ToType->isComplexType() && FromType->isArithmeticType())) {
693    // Complex-real conversions (C99 6.3.1.7)
694    SCS.Second = ICK_Complex_Real;
695    FromType = ToType.getUnqualifiedType();
696  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
697                                 FromType, IncompatibleObjC)) {
698    // Pointer conversions (C++ 4.10).
699    SCS.Second = ICK_Pointer_Conversion;
700    SCS.IncompatibleObjC = IncompatibleObjC;
701  } else if (IsMemberPointerConversion(From, FromType, ToType,
702                                       InOverloadResolution, FromType)) {
703    // Pointer to member conversions (4.11).
704    SCS.Second = ICK_Pointer_Member;
705  } else if (ToType->isBooleanType() &&
706             (FromType->isArithmeticType() ||
707              FromType->isEnumeralType() ||
708              FromType->isAnyPointerType() ||
709              FromType->isBlockPointerType() ||
710              FromType->isMemberPointerType() ||
711              FromType->isNullPtrType())) {
712    // Boolean conversions (C++ 4.12).
713    SCS.Second = ICK_Boolean_Conversion;
714    FromType = Context.BoolTy;
715  } else if (!getLangOptions().CPlusPlus &&
716             Context.typesAreCompatible(ToType, FromType)) {
717    // Compatible conversions (Clang extension for C function overloading)
718    SCS.Second = ICK_Compatible_Conversion;
719  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
720    // Treat a conversion that strips "noreturn" as an identity conversion.
721    SCS.Second = ICK_NoReturn_Adjustment;
722  } else {
723    // No second conversion required.
724    SCS.Second = ICK_Identity;
725  }
726  SCS.setToType(1, FromType);
727
728  QualType CanonFrom;
729  QualType CanonTo;
730  // The third conversion can be a qualification conversion (C++ 4p1).
731  if (IsQualificationConversion(FromType, ToType)) {
732    SCS.Third = ICK_Qualification;
733    FromType = ToType;
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736  } else {
737    // No conversion required
738    SCS.Third = ICK_Identity;
739
740    // C++ [over.best.ics]p6:
741    //   [...] Any difference in top-level cv-qualification is
742    //   subsumed by the initialization itself and does not constitute
743    //   a conversion. [...]
744    CanonFrom = Context.getCanonicalType(FromType);
745    CanonTo = Context.getCanonicalType(ToType);
746    if (CanonFrom.getLocalUnqualifiedType()
747                                       == CanonTo.getLocalUnqualifiedType() &&
748        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
749      FromType = ToType;
750      CanonFrom = CanonTo;
751    }
752  }
753  SCS.setToType(2, FromType);
754
755  // If we have not converted the argument type to the parameter type,
756  // this is a bad conversion sequence.
757  if (CanonFrom != CanonTo)
758    return false;
759
760  return true;
761}
762
763/// IsIntegralPromotion - Determines whether the conversion from the
764/// expression From (whose potentially-adjusted type is FromType) to
765/// ToType is an integral promotion (C++ 4.5). If so, returns true and
766/// sets PromotedType to the promoted type.
767bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
768  const BuiltinType *To = ToType->getAs<BuiltinType>();
769  // All integers are built-in.
770  if (!To) {
771    return false;
772  }
773
774  // An rvalue of type char, signed char, unsigned char, short int, or
775  // unsigned short int can be converted to an rvalue of type int if
776  // int can represent all the values of the source type; otherwise,
777  // the source rvalue can be converted to an rvalue of type unsigned
778  // int (C++ 4.5p1).
779  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
780      !FromType->isEnumeralType()) {
781    if (// We can promote any signed, promotable integer type to an int
782        (FromType->isSignedIntegerType() ||
783         // We can promote any unsigned integer type whose size is
784         // less than int to an int.
785         (!FromType->isSignedIntegerType() &&
786          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
787      return To->getKind() == BuiltinType::Int;
788    }
789
790    return To->getKind() == BuiltinType::UInt;
791  }
792
793  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
794  // can be converted to an rvalue of the first of the following types
795  // that can represent all the values of its underlying type: int,
796  // unsigned int, long, or unsigned long (C++ 4.5p2).
797
798  // We pre-calculate the promotion type for enum types.
799  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
800    if (ToType->isIntegerType())
801      return Context.hasSameUnqualifiedType(ToType,
802                                FromEnumType->getDecl()->getPromotionType());
803
804  if (FromType->isWideCharType() && ToType->isIntegerType()) {
805    // Determine whether the type we're converting from is signed or
806    // unsigned.
807    bool FromIsSigned;
808    uint64_t FromSize = Context.getTypeSize(FromType);
809
810    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
811    FromIsSigned = true;
812
813    // The types we'll try to promote to, in the appropriate
814    // order. Try each of these types.
815    QualType PromoteTypes[6] = {
816      Context.IntTy, Context.UnsignedIntTy,
817      Context.LongTy, Context.UnsignedLongTy ,
818      Context.LongLongTy, Context.UnsignedLongLongTy
819    };
820    for (int Idx = 0; Idx < 6; ++Idx) {
821      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
822      if (FromSize < ToSize ||
823          (FromSize == ToSize &&
824           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
825        // We found the type that we can promote to. If this is the
826        // type we wanted, we have a promotion. Otherwise, no
827        // promotion.
828        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
829      }
830    }
831  }
832
833  // An rvalue for an integral bit-field (9.6) can be converted to an
834  // rvalue of type int if int can represent all the values of the
835  // bit-field; otherwise, it can be converted to unsigned int if
836  // unsigned int can represent all the values of the bit-field. If
837  // the bit-field is larger yet, no integral promotion applies to
838  // it. If the bit-field has an enumerated type, it is treated as any
839  // other value of that type for promotion purposes (C++ 4.5p3).
840  // FIXME: We should delay checking of bit-fields until we actually perform the
841  // conversion.
842  using llvm::APSInt;
843  if (From)
844    if (FieldDecl *MemberDecl = From->getBitField()) {
845      APSInt BitWidth;
846      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
847          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
848        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
849        ToSize = Context.getTypeSize(ToType);
850
851        // Are we promoting to an int from a bitfield that fits in an int?
852        if (BitWidth < ToSize ||
853            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
854          return To->getKind() == BuiltinType::Int;
855        }
856
857        // Are we promoting to an unsigned int from an unsigned bitfield
858        // that fits into an unsigned int?
859        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
860          return To->getKind() == BuiltinType::UInt;
861        }
862
863        return false;
864      }
865    }
866
867  // An rvalue of type bool can be converted to an rvalue of type int,
868  // with false becoming zero and true becoming one (C++ 4.5p4).
869  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
870    return true;
871  }
872
873  return false;
874}
875
876/// IsFloatingPointPromotion - Determines whether the conversion from
877/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
878/// returns true and sets PromotedType to the promoted type.
879bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
880  /// An rvalue of type float can be converted to an rvalue of type
881  /// double. (C++ 4.6p1).
882  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
883    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
884      if (FromBuiltin->getKind() == BuiltinType::Float &&
885          ToBuiltin->getKind() == BuiltinType::Double)
886        return true;
887
888      // C99 6.3.1.5p1:
889      //   When a float is promoted to double or long double, or a
890      //   double is promoted to long double [...].
891      if (!getLangOptions().CPlusPlus &&
892          (FromBuiltin->getKind() == BuiltinType::Float ||
893           FromBuiltin->getKind() == BuiltinType::Double) &&
894          (ToBuiltin->getKind() == BuiltinType::LongDouble))
895        return true;
896    }
897
898  return false;
899}
900
901/// \brief Determine if a conversion is a complex promotion.
902///
903/// A complex promotion is defined as a complex -> complex conversion
904/// where the conversion between the underlying real types is a
905/// floating-point or integral promotion.
906bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
907  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
908  if (!FromComplex)
909    return false;
910
911  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
912  if (!ToComplex)
913    return false;
914
915  return IsFloatingPointPromotion(FromComplex->getElementType(),
916                                  ToComplex->getElementType()) ||
917    IsIntegralPromotion(0, FromComplex->getElementType(),
918                        ToComplex->getElementType());
919}
920
921/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
922/// the pointer type FromPtr to a pointer to type ToPointee, with the
923/// same type qualifiers as FromPtr has on its pointee type. ToType,
924/// if non-empty, will be a pointer to ToType that may or may not have
925/// the right set of qualifiers on its pointee.
926static QualType
927BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
928                                   QualType ToPointee, QualType ToType,
929                                   ASTContext &Context) {
930  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
931  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
932  Qualifiers Quals = CanonFromPointee.getQualifiers();
933
934  // Exact qualifier match -> return the pointer type we're converting to.
935  if (CanonToPointee.getLocalQualifiers() == Quals) {
936    // ToType is exactly what we need. Return it.
937    if (!ToType.isNull())
938      return ToType;
939
940    // Build a pointer to ToPointee. It has the right qualifiers
941    // already.
942    return Context.getPointerType(ToPointee);
943  }
944
945  // Just build a canonical type that has the right qualifiers.
946  return Context.getPointerType(
947         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
948                                  Quals));
949}
950
951/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
952/// the FromType, which is an objective-c pointer, to ToType, which may or may
953/// not have the right set of qualifiers.
954static QualType
955BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
956                                             QualType ToType,
957                                             ASTContext &Context) {
958  QualType CanonFromType = Context.getCanonicalType(FromType);
959  QualType CanonToType = Context.getCanonicalType(ToType);
960  Qualifiers Quals = CanonFromType.getQualifiers();
961
962  // Exact qualifier match -> return the pointer type we're converting to.
963  if (CanonToType.getLocalQualifiers() == Quals)
964    return ToType;
965
966  // Just build a canonical type that has the right qualifiers.
967  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
968}
969
970static bool isNullPointerConstantForConversion(Expr *Expr,
971                                               bool InOverloadResolution,
972                                               ASTContext &Context) {
973  // Handle value-dependent integral null pointer constants correctly.
974  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
975  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
976      Expr->getType()->isIntegralType())
977    return !InOverloadResolution;
978
979  return Expr->isNullPointerConstant(Context,
980                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
981                                        : Expr::NPC_ValueDependentIsNull);
982}
983
984/// IsPointerConversion - Determines whether the conversion of the
985/// expression From, which has the (possibly adjusted) type FromType,
986/// can be converted to the type ToType via a pointer conversion (C++
987/// 4.10). If so, returns true and places the converted type (that
988/// might differ from ToType in its cv-qualifiers at some level) into
989/// ConvertedType.
990///
991/// This routine also supports conversions to and from block pointers
992/// and conversions with Objective-C's 'id', 'id<protocols...>', and
993/// pointers to interfaces. FIXME: Once we've determined the
994/// appropriate overloading rules for Objective-C, we may want to
995/// split the Objective-C checks into a different routine; however,
996/// GCC seems to consider all of these conversions to be pointer
997/// conversions, so for now they live here. IncompatibleObjC will be
998/// set if the conversion is an allowed Objective-C conversion that
999/// should result in a warning.
1000bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1001                               bool InOverloadResolution,
1002                               QualType& ConvertedType,
1003                               bool &IncompatibleObjC) {
1004  IncompatibleObjC = false;
1005  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1006    return true;
1007
1008  // Conversion from a null pointer constant to any Objective-C pointer type.
1009  if (ToType->isObjCObjectPointerType() &&
1010      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1011    ConvertedType = ToType;
1012    return true;
1013  }
1014
1015  // Blocks: Block pointers can be converted to void*.
1016  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1017      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1018    ConvertedType = ToType;
1019    return true;
1020  }
1021  // Blocks: A null pointer constant can be converted to a block
1022  // pointer type.
1023  if (ToType->isBlockPointerType() &&
1024      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1025    ConvertedType = ToType;
1026    return true;
1027  }
1028
1029  // If the left-hand-side is nullptr_t, the right side can be a null
1030  // pointer constant.
1031  if (ToType->isNullPtrType() &&
1032      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1033    ConvertedType = ToType;
1034    return true;
1035  }
1036
1037  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1038  if (!ToTypePtr)
1039    return false;
1040
1041  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1042  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1043    ConvertedType = ToType;
1044    return true;
1045  }
1046
1047  // Beyond this point, both types need to be pointers
1048  // , including objective-c pointers.
1049  QualType ToPointeeType = ToTypePtr->getPointeeType();
1050  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1051    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1052                                                       ToType, Context);
1053    return true;
1054
1055  }
1056  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1057  if (!FromTypePtr)
1058    return false;
1059
1060  QualType FromPointeeType = FromTypePtr->getPointeeType();
1061
1062  // An rvalue of type "pointer to cv T," where T is an object type,
1063  // can be converted to an rvalue of type "pointer to cv void" (C++
1064  // 4.10p2).
1065  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1066    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1067                                                       ToPointeeType,
1068                                                       ToType, Context);
1069    return true;
1070  }
1071
1072  // When we're overloading in C, we allow a special kind of pointer
1073  // conversion for compatible-but-not-identical pointee types.
1074  if (!getLangOptions().CPlusPlus &&
1075      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1076    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1077                                                       ToPointeeType,
1078                                                       ToType, Context);
1079    return true;
1080  }
1081
1082  // C++ [conv.ptr]p3:
1083  //
1084  //   An rvalue of type "pointer to cv D," where D is a class type,
1085  //   can be converted to an rvalue of type "pointer to cv B," where
1086  //   B is a base class (clause 10) of D. If B is an inaccessible
1087  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1088  //   necessitates this conversion is ill-formed. The result of the
1089  //   conversion is a pointer to the base class sub-object of the
1090  //   derived class object. The null pointer value is converted to
1091  //   the null pointer value of the destination type.
1092  //
1093  // Note that we do not check for ambiguity or inaccessibility
1094  // here. That is handled by CheckPointerConversion.
1095  if (getLangOptions().CPlusPlus &&
1096      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1097      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1098      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1099    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1100                                                       ToPointeeType,
1101                                                       ToType, Context);
1102    return true;
1103  }
1104
1105  return false;
1106}
1107
1108/// isObjCPointerConversion - Determines whether this is an
1109/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1110/// with the same arguments and return values.
1111bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1112                                   QualType& ConvertedType,
1113                                   bool &IncompatibleObjC) {
1114  if (!getLangOptions().ObjC1)
1115    return false;
1116
1117  // First, we handle all conversions on ObjC object pointer types.
1118  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1119  const ObjCObjectPointerType *FromObjCPtr =
1120    FromType->getAs<ObjCObjectPointerType>();
1121
1122  if (ToObjCPtr && FromObjCPtr) {
1123    // Objective C++: We're able to convert between "id" or "Class" and a
1124    // pointer to any interface (in both directions).
1125    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1126      ConvertedType = ToType;
1127      return true;
1128    }
1129    // Conversions with Objective-C's id<...>.
1130    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1131         ToObjCPtr->isObjCQualifiedIdType()) &&
1132        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1133                                                  /*compare=*/false)) {
1134      ConvertedType = ToType;
1135      return true;
1136    }
1137    // Objective C++: We're able to convert from a pointer to an
1138    // interface to a pointer to a different interface.
1139    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143
1144    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1145      // Okay: this is some kind of implicit downcast of Objective-C
1146      // interfaces, which is permitted. However, we're going to
1147      // complain about it.
1148      IncompatibleObjC = true;
1149      ConvertedType = FromType;
1150      return true;
1151    }
1152  }
1153  // Beyond this point, both types need to be C pointers or block pointers.
1154  QualType ToPointeeType;
1155  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1156    ToPointeeType = ToCPtr->getPointeeType();
1157  else if (const BlockPointerType *ToBlockPtr =
1158            ToType->getAs<BlockPointerType>()) {
1159    // Objective C++: We're able to convert from a pointer to any object
1160    // to a block pointer type.
1161    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1162      ConvertedType = ToType;
1163      return true;
1164    }
1165    ToPointeeType = ToBlockPtr->getPointeeType();
1166  }
1167  else if (FromType->getAs<BlockPointerType>() &&
1168           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1169    // Objective C++: We're able to convert from a block pointer type to a
1170    // pointer to any object.
1171    ConvertedType = ToType;
1172    return true;
1173  }
1174  else
1175    return false;
1176
1177  QualType FromPointeeType;
1178  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1179    FromPointeeType = FromCPtr->getPointeeType();
1180  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1181    FromPointeeType = FromBlockPtr->getPointeeType();
1182  else
1183    return false;
1184
1185  // If we have pointers to pointers, recursively check whether this
1186  // is an Objective-C conversion.
1187  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1188      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1189                              IncompatibleObjC)) {
1190    // We always complain about this conversion.
1191    IncompatibleObjC = true;
1192    ConvertedType = ToType;
1193    return true;
1194  }
1195  // Allow conversion of pointee being objective-c pointer to another one;
1196  // as in I* to id.
1197  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1198      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1199      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1200                              IncompatibleObjC)) {
1201    ConvertedType = ToType;
1202    return true;
1203  }
1204
1205  // If we have pointers to functions or blocks, check whether the only
1206  // differences in the argument and result types are in Objective-C
1207  // pointer conversions. If so, we permit the conversion (but
1208  // complain about it).
1209  const FunctionProtoType *FromFunctionType
1210    = FromPointeeType->getAs<FunctionProtoType>();
1211  const FunctionProtoType *ToFunctionType
1212    = ToPointeeType->getAs<FunctionProtoType>();
1213  if (FromFunctionType && ToFunctionType) {
1214    // If the function types are exactly the same, this isn't an
1215    // Objective-C pointer conversion.
1216    if (Context.getCanonicalType(FromPointeeType)
1217          == Context.getCanonicalType(ToPointeeType))
1218      return false;
1219
1220    // Perform the quick checks that will tell us whether these
1221    // function types are obviously different.
1222    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1223        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1224        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1225      return false;
1226
1227    bool HasObjCConversion = false;
1228    if (Context.getCanonicalType(FromFunctionType->getResultType())
1229          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1230      // Okay, the types match exactly. Nothing to do.
1231    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1232                                       ToFunctionType->getResultType(),
1233                                       ConvertedType, IncompatibleObjC)) {
1234      // Okay, we have an Objective-C pointer conversion.
1235      HasObjCConversion = true;
1236    } else {
1237      // Function types are too different. Abort.
1238      return false;
1239    }
1240
1241    // Check argument types.
1242    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1243         ArgIdx != NumArgs; ++ArgIdx) {
1244      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1245      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1246      if (Context.getCanonicalType(FromArgType)
1247            == Context.getCanonicalType(ToArgType)) {
1248        // Okay, the types match exactly. Nothing to do.
1249      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1250                                         ConvertedType, IncompatibleObjC)) {
1251        // Okay, we have an Objective-C pointer conversion.
1252        HasObjCConversion = true;
1253      } else {
1254        // Argument types are too different. Abort.
1255        return false;
1256      }
1257    }
1258
1259    if (HasObjCConversion) {
1260      // We had an Objective-C conversion. Allow this pointer
1261      // conversion, but complain about it.
1262      ConvertedType = ToType;
1263      IncompatibleObjC = true;
1264      return true;
1265    }
1266  }
1267
1268  return false;
1269}
1270
1271/// CheckPointerConversion - Check the pointer conversion from the
1272/// expression From to the type ToType. This routine checks for
1273/// ambiguous or inaccessible derived-to-base pointer
1274/// conversions for which IsPointerConversion has already returned
1275/// true. It returns true and produces a diagnostic if there was an
1276/// error, or returns false otherwise.
1277bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1278                                  CastExpr::CastKind &Kind,
1279                                  bool IgnoreBaseAccess) {
1280  QualType FromType = From->getType();
1281
1282  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1283    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1284      QualType FromPointeeType = FromPtrType->getPointeeType(),
1285               ToPointeeType   = ToPtrType->getPointeeType();
1286
1287      if (FromPointeeType->isRecordType() &&
1288          ToPointeeType->isRecordType()) {
1289        // We must have a derived-to-base conversion. Check an
1290        // ambiguous or inaccessible conversion.
1291        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1292                                         From->getExprLoc(),
1293                                         From->getSourceRange(),
1294                                         IgnoreBaseAccess))
1295          return true;
1296
1297        // The conversion was successful.
1298        Kind = CastExpr::CK_DerivedToBase;
1299      }
1300    }
1301  if (const ObjCObjectPointerType *FromPtrType =
1302        FromType->getAs<ObjCObjectPointerType>())
1303    if (const ObjCObjectPointerType *ToPtrType =
1304          ToType->getAs<ObjCObjectPointerType>()) {
1305      // Objective-C++ conversions are always okay.
1306      // FIXME: We should have a different class of conversions for the
1307      // Objective-C++ implicit conversions.
1308      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1309        return false;
1310
1311  }
1312  return false;
1313}
1314
1315/// IsMemberPointerConversion - Determines whether the conversion of the
1316/// expression From, which has the (possibly adjusted) type FromType, can be
1317/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1318/// If so, returns true and places the converted type (that might differ from
1319/// ToType in its cv-qualifiers at some level) into ConvertedType.
1320bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1321                                     QualType ToType,
1322                                     bool InOverloadResolution,
1323                                     QualType &ConvertedType) {
1324  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1325  if (!ToTypePtr)
1326    return false;
1327
1328  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1329  if (From->isNullPointerConstant(Context,
1330                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1331                                        : Expr::NPC_ValueDependentIsNull)) {
1332    ConvertedType = ToType;
1333    return true;
1334  }
1335
1336  // Otherwise, both types have to be member pointers.
1337  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1338  if (!FromTypePtr)
1339    return false;
1340
1341  // A pointer to member of B can be converted to a pointer to member of D,
1342  // where D is derived from B (C++ 4.11p2).
1343  QualType FromClass(FromTypePtr->getClass(), 0);
1344  QualType ToClass(ToTypePtr->getClass(), 0);
1345  // FIXME: What happens when these are dependent? Is this function even called?
1346
1347  if (IsDerivedFrom(ToClass, FromClass)) {
1348    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1349                                                 ToClass.getTypePtr());
1350    return true;
1351  }
1352
1353  return false;
1354}
1355
1356/// CheckMemberPointerConversion - Check the member pointer conversion from the
1357/// expression From to the type ToType. This routine checks for ambiguous or
1358/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1359/// for which IsMemberPointerConversion has already returned true. It returns
1360/// true and produces a diagnostic if there was an error, or returns false
1361/// otherwise.
1362bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1363                                        CastExpr::CastKind &Kind,
1364                                        bool IgnoreBaseAccess) {
1365  (void)IgnoreBaseAccess;
1366  QualType FromType = From->getType();
1367  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1368  if (!FromPtrType) {
1369    // This must be a null pointer to member pointer conversion
1370    assert(From->isNullPointerConstant(Context,
1371                                       Expr::NPC_ValueDependentIsNull) &&
1372           "Expr must be null pointer constant!");
1373    Kind = CastExpr::CK_NullToMemberPointer;
1374    return false;
1375  }
1376
1377  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1378  assert(ToPtrType && "No member pointer cast has a target type "
1379                      "that is not a member pointer.");
1380
1381  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1382  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1383
1384  // FIXME: What about dependent types?
1385  assert(FromClass->isRecordType() && "Pointer into non-class.");
1386  assert(ToClass->isRecordType() && "Pointer into non-class.");
1387
1388  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1389                     /*DetectVirtual=*/true);
1390  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1391  assert(DerivationOkay &&
1392         "Should not have been called if derivation isn't OK.");
1393  (void)DerivationOkay;
1394
1395  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1396                                  getUnqualifiedType())) {
1397    // Derivation is ambiguous. Redo the check to find the exact paths.
1398    Paths.clear();
1399    Paths.setRecordingPaths(true);
1400    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1401    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1402    (void)StillOkay;
1403
1404    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1405    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1406      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1407    return true;
1408  }
1409
1410  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1411    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1412      << FromClass << ToClass << QualType(VBase, 0)
1413      << From->getSourceRange();
1414    return true;
1415  }
1416
1417  // Must be a base to derived member conversion.
1418  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1419  return false;
1420}
1421
1422/// IsQualificationConversion - Determines whether the conversion from
1423/// an rvalue of type FromType to ToType is a qualification conversion
1424/// (C++ 4.4).
1425bool
1426Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1427  FromType = Context.getCanonicalType(FromType);
1428  ToType = Context.getCanonicalType(ToType);
1429
1430  // If FromType and ToType are the same type, this is not a
1431  // qualification conversion.
1432  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1433    return false;
1434
1435  // (C++ 4.4p4):
1436  //   A conversion can add cv-qualifiers at levels other than the first
1437  //   in multi-level pointers, subject to the following rules: [...]
1438  bool PreviousToQualsIncludeConst = true;
1439  bool UnwrappedAnyPointer = false;
1440  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1441    // Within each iteration of the loop, we check the qualifiers to
1442    // determine if this still looks like a qualification
1443    // conversion. Then, if all is well, we unwrap one more level of
1444    // pointers or pointers-to-members and do it all again
1445    // until there are no more pointers or pointers-to-members left to
1446    // unwrap.
1447    UnwrappedAnyPointer = true;
1448
1449    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1450    //      2,j, and similarly for volatile.
1451    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1452      return false;
1453
1454    //   -- if the cv 1,j and cv 2,j are different, then const is in
1455    //      every cv for 0 < k < j.
1456    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1457        && !PreviousToQualsIncludeConst)
1458      return false;
1459
1460    // Keep track of whether all prior cv-qualifiers in the "to" type
1461    // include const.
1462    PreviousToQualsIncludeConst
1463      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1464  }
1465
1466  // We are left with FromType and ToType being the pointee types
1467  // after unwrapping the original FromType and ToType the same number
1468  // of types. If we unwrapped any pointers, and if FromType and
1469  // ToType have the same unqualified type (since we checked
1470  // qualifiers above), then this is a qualification conversion.
1471  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1472}
1473
1474/// Determines whether there is a user-defined conversion sequence
1475/// (C++ [over.ics.user]) that converts expression From to the type
1476/// ToType. If such a conversion exists, User will contain the
1477/// user-defined conversion sequence that performs such a conversion
1478/// and this routine will return true. Otherwise, this routine returns
1479/// false and User is unspecified.
1480///
1481/// \param AllowConversionFunctions true if the conversion should
1482/// consider conversion functions at all. If false, only constructors
1483/// will be considered.
1484///
1485/// \param AllowExplicit  true if the conversion should consider C++0x
1486/// "explicit" conversion functions as well as non-explicit conversion
1487/// functions (C++0x [class.conv.fct]p2).
1488///
1489/// \param ForceRValue  true if the expression should be treated as an rvalue
1490/// for overload resolution.
1491/// \param UserCast true if looking for user defined conversion for a static
1492/// cast.
1493OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1494                                          UserDefinedConversionSequence& User,
1495                                            OverloadCandidateSet& CandidateSet,
1496                                                bool AllowConversionFunctions,
1497                                                bool AllowExplicit,
1498                                                bool ForceRValue,
1499                                                bool UserCast) {
1500  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1501    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1502      // We're not going to find any constructors.
1503    } else if (CXXRecordDecl *ToRecordDecl
1504                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1505      // C++ [over.match.ctor]p1:
1506      //   When objects of class type are direct-initialized (8.5), or
1507      //   copy-initialized from an expression of the same or a
1508      //   derived class type (8.5), overload resolution selects the
1509      //   constructor. [...] For copy-initialization, the candidate
1510      //   functions are all the converting constructors (12.3.1) of
1511      //   that class. The argument list is the expression-list within
1512      //   the parentheses of the initializer.
1513      bool SuppressUserConversions = !UserCast;
1514      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1515          IsDerivedFrom(From->getType(), ToType)) {
1516        SuppressUserConversions = false;
1517        AllowConversionFunctions = false;
1518      }
1519
1520      DeclarationName ConstructorName
1521        = Context.DeclarationNames.getCXXConstructorName(
1522                          Context.getCanonicalType(ToType).getUnqualifiedType());
1523      DeclContext::lookup_iterator Con, ConEnd;
1524      for (llvm::tie(Con, ConEnd)
1525             = ToRecordDecl->lookup(ConstructorName);
1526           Con != ConEnd; ++Con) {
1527        // Find the constructor (which may be a template).
1528        CXXConstructorDecl *Constructor = 0;
1529        FunctionTemplateDecl *ConstructorTmpl
1530          = dyn_cast<FunctionTemplateDecl>(*Con);
1531        if (ConstructorTmpl)
1532          Constructor
1533            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1534        else
1535          Constructor = cast<CXXConstructorDecl>(*Con);
1536
1537        if (!Constructor->isInvalidDecl() &&
1538            Constructor->isConvertingConstructor(AllowExplicit)) {
1539          if (ConstructorTmpl)
1540            AddTemplateOverloadCandidate(ConstructorTmpl,
1541                                         ConstructorTmpl->getAccess(),
1542                                         /*ExplicitArgs*/ 0,
1543                                         &From, 1, CandidateSet,
1544                                         SuppressUserConversions, ForceRValue);
1545          else
1546            // Allow one user-defined conversion when user specifies a
1547            // From->ToType conversion via an static cast (c-style, etc).
1548            AddOverloadCandidate(Constructor, Constructor->getAccess(),
1549                                 &From, 1, CandidateSet,
1550                                 SuppressUserConversions, ForceRValue);
1551        }
1552      }
1553    }
1554  }
1555
1556  if (!AllowConversionFunctions) {
1557    // Don't allow any conversion functions to enter the overload set.
1558  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1559                                 PDiag(0)
1560                                   << From->getSourceRange())) {
1561    // No conversion functions from incomplete types.
1562  } else if (const RecordType *FromRecordType
1563               = From->getType()->getAs<RecordType>()) {
1564    if (CXXRecordDecl *FromRecordDecl
1565         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1566      // Add all of the conversion functions as candidates.
1567      const UnresolvedSetImpl *Conversions
1568        = FromRecordDecl->getVisibleConversionFunctions();
1569      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1570             E = Conversions->end(); I != E; ++I) {
1571        NamedDecl *D = *I;
1572        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1573        if (isa<UsingShadowDecl>(D))
1574          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1575
1576        CXXConversionDecl *Conv;
1577        FunctionTemplateDecl *ConvTemplate;
1578        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1579          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1580        else
1581          Conv = dyn_cast<CXXConversionDecl>(*I);
1582
1583        if (AllowExplicit || !Conv->isExplicit()) {
1584          if (ConvTemplate)
1585            AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
1586                                           ActingContext, From, ToType,
1587                                           CandidateSet);
1588          else
1589            AddConversionCandidate(Conv, I.getAccess(), ActingContext,
1590                                   From, ToType, CandidateSet);
1591        }
1592      }
1593    }
1594  }
1595
1596  OverloadCandidateSet::iterator Best;
1597  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1598    case OR_Success:
1599      // Record the standard conversion we used and the conversion function.
1600      if (CXXConstructorDecl *Constructor
1601            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1602        // C++ [over.ics.user]p1:
1603        //   If the user-defined conversion is specified by a
1604        //   constructor (12.3.1), the initial standard conversion
1605        //   sequence converts the source type to the type required by
1606        //   the argument of the constructor.
1607        //
1608        QualType ThisType = Constructor->getThisType(Context);
1609        if (Best->Conversions[0].isEllipsis())
1610          User.EllipsisConversion = true;
1611        else {
1612          User.Before = Best->Conversions[0].Standard;
1613          User.EllipsisConversion = false;
1614        }
1615        User.ConversionFunction = Constructor;
1616        User.After.setAsIdentityConversion();
1617        User.After.setFromType(
1618          ThisType->getAs<PointerType>()->getPointeeType());
1619        User.After.setAllToTypes(ToType);
1620        return OR_Success;
1621      } else if (CXXConversionDecl *Conversion
1622                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1623        // C++ [over.ics.user]p1:
1624        //
1625        //   [...] If the user-defined conversion is specified by a
1626        //   conversion function (12.3.2), the initial standard
1627        //   conversion sequence converts the source type to the
1628        //   implicit object parameter of the conversion function.
1629        User.Before = Best->Conversions[0].Standard;
1630        User.ConversionFunction = Conversion;
1631        User.EllipsisConversion = false;
1632
1633        // C++ [over.ics.user]p2:
1634        //   The second standard conversion sequence converts the
1635        //   result of the user-defined conversion to the target type
1636        //   for the sequence. Since an implicit conversion sequence
1637        //   is an initialization, the special rules for
1638        //   initialization by user-defined conversion apply when
1639        //   selecting the best user-defined conversion for a
1640        //   user-defined conversion sequence (see 13.3.3 and
1641        //   13.3.3.1).
1642        User.After = Best->FinalConversion;
1643        return OR_Success;
1644      } else {
1645        assert(false && "Not a constructor or conversion function?");
1646        return OR_No_Viable_Function;
1647      }
1648
1649    case OR_No_Viable_Function:
1650      return OR_No_Viable_Function;
1651    case OR_Deleted:
1652      // No conversion here! We're done.
1653      return OR_Deleted;
1654
1655    case OR_Ambiguous:
1656      return OR_Ambiguous;
1657    }
1658
1659  return OR_No_Viable_Function;
1660}
1661
1662bool
1663Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1664  ImplicitConversionSequence ICS;
1665  OverloadCandidateSet CandidateSet(From->getExprLoc());
1666  OverloadingResult OvResult =
1667    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1668                            CandidateSet, true, false, false);
1669  if (OvResult == OR_Ambiguous)
1670    Diag(From->getSourceRange().getBegin(),
1671         diag::err_typecheck_ambiguous_condition)
1672          << From->getType() << ToType << From->getSourceRange();
1673  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1674    Diag(From->getSourceRange().getBegin(),
1675         diag::err_typecheck_nonviable_condition)
1676    << From->getType() << ToType << From->getSourceRange();
1677  else
1678    return false;
1679  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1680  return true;
1681}
1682
1683/// CompareImplicitConversionSequences - Compare two implicit
1684/// conversion sequences to determine whether one is better than the
1685/// other or if they are indistinguishable (C++ 13.3.3.2).
1686ImplicitConversionSequence::CompareKind
1687Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1688                                         const ImplicitConversionSequence& ICS2)
1689{
1690  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1691  // conversion sequences (as defined in 13.3.3.1)
1692  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1693  //      conversion sequence than a user-defined conversion sequence or
1694  //      an ellipsis conversion sequence, and
1695  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1696  //      conversion sequence than an ellipsis conversion sequence
1697  //      (13.3.3.1.3).
1698  //
1699  // C++0x [over.best.ics]p10:
1700  //   For the purpose of ranking implicit conversion sequences as
1701  //   described in 13.3.3.2, the ambiguous conversion sequence is
1702  //   treated as a user-defined sequence that is indistinguishable
1703  //   from any other user-defined conversion sequence.
1704  if (ICS1.getKind() < ICS2.getKind()) {
1705    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1706      return ImplicitConversionSequence::Better;
1707  } else if (ICS2.getKind() < ICS1.getKind()) {
1708    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1709      return ImplicitConversionSequence::Worse;
1710  }
1711
1712  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1713    return ImplicitConversionSequence::Indistinguishable;
1714
1715  // Two implicit conversion sequences of the same form are
1716  // indistinguishable conversion sequences unless one of the
1717  // following rules apply: (C++ 13.3.3.2p3):
1718  if (ICS1.isStandard())
1719    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1720  else if (ICS1.isUserDefined()) {
1721    // User-defined conversion sequence U1 is a better conversion
1722    // sequence than another user-defined conversion sequence U2 if
1723    // they contain the same user-defined conversion function or
1724    // constructor and if the second standard conversion sequence of
1725    // U1 is better than the second standard conversion sequence of
1726    // U2 (C++ 13.3.3.2p3).
1727    if (ICS1.UserDefined.ConversionFunction ==
1728          ICS2.UserDefined.ConversionFunction)
1729      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1730                                                ICS2.UserDefined.After);
1731  }
1732
1733  return ImplicitConversionSequence::Indistinguishable;
1734}
1735
1736// Per 13.3.3.2p3, compare the given standard conversion sequences to
1737// determine if one is a proper subset of the other.
1738static ImplicitConversionSequence::CompareKind
1739compareStandardConversionSubsets(ASTContext &Context,
1740                                 const StandardConversionSequence& SCS1,
1741                                 const StandardConversionSequence& SCS2) {
1742  ImplicitConversionSequence::CompareKind Result
1743    = ImplicitConversionSequence::Indistinguishable;
1744
1745  if (SCS1.Second != SCS2.Second) {
1746    if (SCS1.Second == ICK_Identity)
1747      Result = ImplicitConversionSequence::Better;
1748    else if (SCS2.Second == ICK_Identity)
1749      Result = ImplicitConversionSequence::Worse;
1750    else
1751      return ImplicitConversionSequence::Indistinguishable;
1752  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1753    return ImplicitConversionSequence::Indistinguishable;
1754
1755  if (SCS1.Third == SCS2.Third) {
1756    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1757                             : ImplicitConversionSequence::Indistinguishable;
1758  }
1759
1760  if (SCS1.Third == ICK_Identity)
1761    return Result == ImplicitConversionSequence::Worse
1762             ? ImplicitConversionSequence::Indistinguishable
1763             : ImplicitConversionSequence::Better;
1764
1765  if (SCS2.Third == ICK_Identity)
1766    return Result == ImplicitConversionSequence::Better
1767             ? ImplicitConversionSequence::Indistinguishable
1768             : ImplicitConversionSequence::Worse;
1769
1770  return ImplicitConversionSequence::Indistinguishable;
1771}
1772
1773/// CompareStandardConversionSequences - Compare two standard
1774/// conversion sequences to determine whether one is better than the
1775/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1776ImplicitConversionSequence::CompareKind
1777Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1778                                         const StandardConversionSequence& SCS2)
1779{
1780  // Standard conversion sequence S1 is a better conversion sequence
1781  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1782
1783  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1784  //     sequences in the canonical form defined by 13.3.3.1.1,
1785  //     excluding any Lvalue Transformation; the identity conversion
1786  //     sequence is considered to be a subsequence of any
1787  //     non-identity conversion sequence) or, if not that,
1788  if (ImplicitConversionSequence::CompareKind CK
1789        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1790    return CK;
1791
1792  //  -- the rank of S1 is better than the rank of S2 (by the rules
1793  //     defined below), or, if not that,
1794  ImplicitConversionRank Rank1 = SCS1.getRank();
1795  ImplicitConversionRank Rank2 = SCS2.getRank();
1796  if (Rank1 < Rank2)
1797    return ImplicitConversionSequence::Better;
1798  else if (Rank2 < Rank1)
1799    return ImplicitConversionSequence::Worse;
1800
1801  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1802  // are indistinguishable unless one of the following rules
1803  // applies:
1804
1805  //   A conversion that is not a conversion of a pointer, or
1806  //   pointer to member, to bool is better than another conversion
1807  //   that is such a conversion.
1808  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1809    return SCS2.isPointerConversionToBool()
1810             ? ImplicitConversionSequence::Better
1811             : ImplicitConversionSequence::Worse;
1812
1813  // C++ [over.ics.rank]p4b2:
1814  //
1815  //   If class B is derived directly or indirectly from class A,
1816  //   conversion of B* to A* is better than conversion of B* to
1817  //   void*, and conversion of A* to void* is better than conversion
1818  //   of B* to void*.
1819  bool SCS1ConvertsToVoid
1820    = SCS1.isPointerConversionToVoidPointer(Context);
1821  bool SCS2ConvertsToVoid
1822    = SCS2.isPointerConversionToVoidPointer(Context);
1823  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1824    // Exactly one of the conversion sequences is a conversion to
1825    // a void pointer; it's the worse conversion.
1826    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1827                              : ImplicitConversionSequence::Worse;
1828  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1829    // Neither conversion sequence converts to a void pointer; compare
1830    // their derived-to-base conversions.
1831    if (ImplicitConversionSequence::CompareKind DerivedCK
1832          = CompareDerivedToBaseConversions(SCS1, SCS2))
1833      return DerivedCK;
1834  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1835    // Both conversion sequences are conversions to void
1836    // pointers. Compare the source types to determine if there's an
1837    // inheritance relationship in their sources.
1838    QualType FromType1 = SCS1.getFromType();
1839    QualType FromType2 = SCS2.getFromType();
1840
1841    // Adjust the types we're converting from via the array-to-pointer
1842    // conversion, if we need to.
1843    if (SCS1.First == ICK_Array_To_Pointer)
1844      FromType1 = Context.getArrayDecayedType(FromType1);
1845    if (SCS2.First == ICK_Array_To_Pointer)
1846      FromType2 = Context.getArrayDecayedType(FromType2);
1847
1848    QualType FromPointee1
1849      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1850    QualType FromPointee2
1851      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1852
1853    if (IsDerivedFrom(FromPointee2, FromPointee1))
1854      return ImplicitConversionSequence::Better;
1855    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1856      return ImplicitConversionSequence::Worse;
1857
1858    // Objective-C++: If one interface is more specific than the
1859    // other, it is the better one.
1860    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1861    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1862    if (FromIface1 && FromIface1) {
1863      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1864        return ImplicitConversionSequence::Better;
1865      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1866        return ImplicitConversionSequence::Worse;
1867    }
1868  }
1869
1870  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1871  // bullet 3).
1872  if (ImplicitConversionSequence::CompareKind QualCK
1873        = CompareQualificationConversions(SCS1, SCS2))
1874    return QualCK;
1875
1876  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1877    // C++0x [over.ics.rank]p3b4:
1878    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1879    //      implicit object parameter of a non-static member function declared
1880    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1881    //      rvalue and S2 binds an lvalue reference.
1882    // FIXME: We don't know if we're dealing with the implicit object parameter,
1883    // or if the member function in this case has a ref qualifier.
1884    // (Of course, we don't have ref qualifiers yet.)
1885    if (SCS1.RRefBinding != SCS2.RRefBinding)
1886      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1887                              : ImplicitConversionSequence::Worse;
1888
1889    // C++ [over.ics.rank]p3b4:
1890    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1891    //      which the references refer are the same type except for
1892    //      top-level cv-qualifiers, and the type to which the reference
1893    //      initialized by S2 refers is more cv-qualified than the type
1894    //      to which the reference initialized by S1 refers.
1895    QualType T1 = SCS1.getToType(2);
1896    QualType T2 = SCS2.getToType(2);
1897    T1 = Context.getCanonicalType(T1);
1898    T2 = Context.getCanonicalType(T2);
1899    Qualifiers T1Quals, T2Quals;
1900    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1901    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1902    if (UnqualT1 == UnqualT2) {
1903      // If the type is an array type, promote the element qualifiers to the type
1904      // for comparison.
1905      if (isa<ArrayType>(T1) && T1Quals)
1906        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1907      if (isa<ArrayType>(T2) && T2Quals)
1908        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1909      if (T2.isMoreQualifiedThan(T1))
1910        return ImplicitConversionSequence::Better;
1911      else if (T1.isMoreQualifiedThan(T2))
1912        return ImplicitConversionSequence::Worse;
1913    }
1914  }
1915
1916  return ImplicitConversionSequence::Indistinguishable;
1917}
1918
1919/// CompareQualificationConversions - Compares two standard conversion
1920/// sequences to determine whether they can be ranked based on their
1921/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1922ImplicitConversionSequence::CompareKind
1923Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1924                                      const StandardConversionSequence& SCS2) {
1925  // C++ 13.3.3.2p3:
1926  //  -- S1 and S2 differ only in their qualification conversion and
1927  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1928  //     cv-qualification signature of type T1 is a proper subset of
1929  //     the cv-qualification signature of type T2, and S1 is not the
1930  //     deprecated string literal array-to-pointer conversion (4.2).
1931  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1932      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1933    return ImplicitConversionSequence::Indistinguishable;
1934
1935  // FIXME: the example in the standard doesn't use a qualification
1936  // conversion (!)
1937  QualType T1 = SCS1.getToType(2);
1938  QualType T2 = SCS2.getToType(2);
1939  T1 = Context.getCanonicalType(T1);
1940  T2 = Context.getCanonicalType(T2);
1941  Qualifiers T1Quals, T2Quals;
1942  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1943  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1944
1945  // If the types are the same, we won't learn anything by unwrapped
1946  // them.
1947  if (UnqualT1 == UnqualT2)
1948    return ImplicitConversionSequence::Indistinguishable;
1949
1950  // If the type is an array type, promote the element qualifiers to the type
1951  // for comparison.
1952  if (isa<ArrayType>(T1) && T1Quals)
1953    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1954  if (isa<ArrayType>(T2) && T2Quals)
1955    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1956
1957  ImplicitConversionSequence::CompareKind Result
1958    = ImplicitConversionSequence::Indistinguishable;
1959  while (UnwrapSimilarPointerTypes(T1, T2)) {
1960    // Within each iteration of the loop, we check the qualifiers to
1961    // determine if this still looks like a qualification
1962    // conversion. Then, if all is well, we unwrap one more level of
1963    // pointers or pointers-to-members and do it all again
1964    // until there are no more pointers or pointers-to-members left
1965    // to unwrap. This essentially mimics what
1966    // IsQualificationConversion does, but here we're checking for a
1967    // strict subset of qualifiers.
1968    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1969      // The qualifiers are the same, so this doesn't tell us anything
1970      // about how the sequences rank.
1971      ;
1972    else if (T2.isMoreQualifiedThan(T1)) {
1973      // T1 has fewer qualifiers, so it could be the better sequence.
1974      if (Result == ImplicitConversionSequence::Worse)
1975        // Neither has qualifiers that are a subset of the other's
1976        // qualifiers.
1977        return ImplicitConversionSequence::Indistinguishable;
1978
1979      Result = ImplicitConversionSequence::Better;
1980    } else if (T1.isMoreQualifiedThan(T2)) {
1981      // T2 has fewer qualifiers, so it could be the better sequence.
1982      if (Result == ImplicitConversionSequence::Better)
1983        // Neither has qualifiers that are a subset of the other's
1984        // qualifiers.
1985        return ImplicitConversionSequence::Indistinguishable;
1986
1987      Result = ImplicitConversionSequence::Worse;
1988    } else {
1989      // Qualifiers are disjoint.
1990      return ImplicitConversionSequence::Indistinguishable;
1991    }
1992
1993    // If the types after this point are equivalent, we're done.
1994    if (Context.hasSameUnqualifiedType(T1, T2))
1995      break;
1996  }
1997
1998  // Check that the winning standard conversion sequence isn't using
1999  // the deprecated string literal array to pointer conversion.
2000  switch (Result) {
2001  case ImplicitConversionSequence::Better:
2002    if (SCS1.Deprecated)
2003      Result = ImplicitConversionSequence::Indistinguishable;
2004    break;
2005
2006  case ImplicitConversionSequence::Indistinguishable:
2007    break;
2008
2009  case ImplicitConversionSequence::Worse:
2010    if (SCS2.Deprecated)
2011      Result = ImplicitConversionSequence::Indistinguishable;
2012    break;
2013  }
2014
2015  return Result;
2016}
2017
2018/// CompareDerivedToBaseConversions - Compares two standard conversion
2019/// sequences to determine whether they can be ranked based on their
2020/// various kinds of derived-to-base conversions (C++
2021/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2022/// conversions between Objective-C interface types.
2023ImplicitConversionSequence::CompareKind
2024Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2025                                      const StandardConversionSequence& SCS2) {
2026  QualType FromType1 = SCS1.getFromType();
2027  QualType ToType1 = SCS1.getToType(1);
2028  QualType FromType2 = SCS2.getFromType();
2029  QualType ToType2 = SCS2.getToType(1);
2030
2031  // Adjust the types we're converting from via the array-to-pointer
2032  // conversion, if we need to.
2033  if (SCS1.First == ICK_Array_To_Pointer)
2034    FromType1 = Context.getArrayDecayedType(FromType1);
2035  if (SCS2.First == ICK_Array_To_Pointer)
2036    FromType2 = Context.getArrayDecayedType(FromType2);
2037
2038  // Canonicalize all of the types.
2039  FromType1 = Context.getCanonicalType(FromType1);
2040  ToType1 = Context.getCanonicalType(ToType1);
2041  FromType2 = Context.getCanonicalType(FromType2);
2042  ToType2 = Context.getCanonicalType(ToType2);
2043
2044  // C++ [over.ics.rank]p4b3:
2045  //
2046  //   If class B is derived directly or indirectly from class A and
2047  //   class C is derived directly or indirectly from B,
2048  //
2049  // For Objective-C, we let A, B, and C also be Objective-C
2050  // interfaces.
2051
2052  // Compare based on pointer conversions.
2053  if (SCS1.Second == ICK_Pointer_Conversion &&
2054      SCS2.Second == ICK_Pointer_Conversion &&
2055      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2056      FromType1->isPointerType() && FromType2->isPointerType() &&
2057      ToType1->isPointerType() && ToType2->isPointerType()) {
2058    QualType FromPointee1
2059      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2060    QualType ToPointee1
2061      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2062    QualType FromPointee2
2063      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2064    QualType ToPointee2
2065      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2066
2067    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2068    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2069    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2070    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2071
2072    //   -- conversion of C* to B* is better than conversion of C* to A*,
2073    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2074      if (IsDerivedFrom(ToPointee1, ToPointee2))
2075        return ImplicitConversionSequence::Better;
2076      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2077        return ImplicitConversionSequence::Worse;
2078
2079      if (ToIface1 && ToIface2) {
2080        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2081          return ImplicitConversionSequence::Better;
2082        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2083          return ImplicitConversionSequence::Worse;
2084      }
2085    }
2086
2087    //   -- conversion of B* to A* is better than conversion of C* to A*,
2088    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2089      if (IsDerivedFrom(FromPointee2, FromPointee1))
2090        return ImplicitConversionSequence::Better;
2091      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2092        return ImplicitConversionSequence::Worse;
2093
2094      if (FromIface1 && FromIface2) {
2095        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2096          return ImplicitConversionSequence::Better;
2097        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2098          return ImplicitConversionSequence::Worse;
2099      }
2100    }
2101  }
2102
2103  // Compare based on reference bindings.
2104  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
2105      SCS1.Second == ICK_Derived_To_Base) {
2106    //   -- binding of an expression of type C to a reference of type
2107    //      B& is better than binding an expression of type C to a
2108    //      reference of type A&,
2109    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2110        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2111      if (IsDerivedFrom(ToType1, ToType2))
2112        return ImplicitConversionSequence::Better;
2113      else if (IsDerivedFrom(ToType2, ToType1))
2114        return ImplicitConversionSequence::Worse;
2115    }
2116
2117    //   -- binding of an expression of type B to a reference of type
2118    //      A& is better than binding an expression of type C to a
2119    //      reference of type A&,
2120    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2121        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2122      if (IsDerivedFrom(FromType2, FromType1))
2123        return ImplicitConversionSequence::Better;
2124      else if (IsDerivedFrom(FromType1, FromType2))
2125        return ImplicitConversionSequence::Worse;
2126    }
2127  }
2128
2129  // Ranking of member-pointer types.
2130  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2131      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2132      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2133    const MemberPointerType * FromMemPointer1 =
2134                                        FromType1->getAs<MemberPointerType>();
2135    const MemberPointerType * ToMemPointer1 =
2136                                          ToType1->getAs<MemberPointerType>();
2137    const MemberPointerType * FromMemPointer2 =
2138                                          FromType2->getAs<MemberPointerType>();
2139    const MemberPointerType * ToMemPointer2 =
2140                                          ToType2->getAs<MemberPointerType>();
2141    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2142    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2143    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2144    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2145    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2146    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2147    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2148    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2149    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2150    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2151      if (IsDerivedFrom(ToPointee1, ToPointee2))
2152        return ImplicitConversionSequence::Worse;
2153      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2154        return ImplicitConversionSequence::Better;
2155    }
2156    // conversion of B::* to C::* is better than conversion of A::* to C::*
2157    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2158      if (IsDerivedFrom(FromPointee1, FromPointee2))
2159        return ImplicitConversionSequence::Better;
2160      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2161        return ImplicitConversionSequence::Worse;
2162    }
2163  }
2164
2165  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2166      SCS1.Second == ICK_Derived_To_Base) {
2167    //   -- conversion of C to B is better than conversion of C to A,
2168    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2169        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2170      if (IsDerivedFrom(ToType1, ToType2))
2171        return ImplicitConversionSequence::Better;
2172      else if (IsDerivedFrom(ToType2, ToType1))
2173        return ImplicitConversionSequence::Worse;
2174    }
2175
2176    //   -- conversion of B to A is better than conversion of C to A.
2177    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2178        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2179      if (IsDerivedFrom(FromType2, FromType1))
2180        return ImplicitConversionSequence::Better;
2181      else if (IsDerivedFrom(FromType1, FromType2))
2182        return ImplicitConversionSequence::Worse;
2183    }
2184  }
2185
2186  return ImplicitConversionSequence::Indistinguishable;
2187}
2188
2189/// TryCopyInitialization - Try to copy-initialize a value of type
2190/// ToType from the expression From. Return the implicit conversion
2191/// sequence required to pass this argument, which may be a bad
2192/// conversion sequence (meaning that the argument cannot be passed to
2193/// a parameter of this type). If @p SuppressUserConversions, then we
2194/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2195/// then we treat @p From as an rvalue, even if it is an lvalue.
2196ImplicitConversionSequence
2197Sema::TryCopyInitialization(Expr *From, QualType ToType,
2198                            bool SuppressUserConversions, bool ForceRValue,
2199                            bool InOverloadResolution) {
2200  if (ToType->isReferenceType()) {
2201    ImplicitConversionSequence ICS;
2202    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
2203    CheckReferenceInit(From, ToType,
2204                       /*FIXME:*/From->getLocStart(),
2205                       SuppressUserConversions,
2206                       /*AllowExplicit=*/false,
2207                       ForceRValue,
2208                       &ICS);
2209    return ICS;
2210  } else {
2211    return TryImplicitConversion(From, ToType,
2212                                 SuppressUserConversions,
2213                                 /*AllowExplicit=*/false,
2214                                 ForceRValue,
2215                                 InOverloadResolution);
2216  }
2217}
2218
2219/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2220/// the expression @p From. Returns true (and emits a diagnostic) if there was
2221/// an error, returns false if the initialization succeeded. Elidable should
2222/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2223/// differently in C++0x for this case.
2224bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2225                                     AssignmentAction Action, bool Elidable) {
2226  if (!getLangOptions().CPlusPlus) {
2227    // In C, argument passing is the same as performing an assignment.
2228    QualType FromType = From->getType();
2229
2230    AssignConvertType ConvTy =
2231      CheckSingleAssignmentConstraints(ToType, From);
2232    if (ConvTy != Compatible &&
2233        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2234      ConvTy = Compatible;
2235
2236    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2237                                    FromType, From, Action);
2238  }
2239
2240  if (ToType->isReferenceType())
2241    return CheckReferenceInit(From, ToType,
2242                              /*FIXME:*/From->getLocStart(),
2243                              /*SuppressUserConversions=*/false,
2244                              /*AllowExplicit=*/false,
2245                              /*ForceRValue=*/false);
2246
2247  if (!PerformImplicitConversion(From, ToType, Action,
2248                                 /*AllowExplicit=*/false, Elidable))
2249    return false;
2250  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2251    return Diag(From->getSourceRange().getBegin(),
2252                diag::err_typecheck_convert_incompatible)
2253      << ToType << From->getType() << Action << From->getSourceRange();
2254  return true;
2255}
2256
2257/// TryObjectArgumentInitialization - Try to initialize the object
2258/// parameter of the given member function (@c Method) from the
2259/// expression @p From.
2260ImplicitConversionSequence
2261Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2262                                      CXXMethodDecl *Method,
2263                                      CXXRecordDecl *ActingContext) {
2264  QualType ClassType = Context.getTypeDeclType(ActingContext);
2265  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2266  //                 const volatile object.
2267  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2268    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2269  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2270
2271  // Set up the conversion sequence as a "bad" conversion, to allow us
2272  // to exit early.
2273  ImplicitConversionSequence ICS;
2274  ICS.Standard.setAsIdentityConversion();
2275  ICS.setBad();
2276
2277  // We need to have an object of class type.
2278  QualType FromType = OrigFromType;
2279  if (const PointerType *PT = FromType->getAs<PointerType>())
2280    FromType = PT->getPointeeType();
2281
2282  assert(FromType->isRecordType());
2283
2284  // The implicit object parameter is has the type "reference to cv X",
2285  // where X is the class of which the function is a member
2286  // (C++ [over.match.funcs]p4). However, when finding an implicit
2287  // conversion sequence for the argument, we are not allowed to
2288  // create temporaries or perform user-defined conversions
2289  // (C++ [over.match.funcs]p5). We perform a simplified version of
2290  // reference binding here, that allows class rvalues to bind to
2291  // non-constant references.
2292
2293  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2294  // with the implicit object parameter (C++ [over.match.funcs]p5).
2295  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2296  if (ImplicitParamType.getCVRQualifiers()
2297                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2298      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2299    ICS.Bad.init(BadConversionSequence::bad_qualifiers,
2300                 OrigFromType, ImplicitParamType);
2301    return ICS;
2302  }
2303
2304  // Check that we have either the same type or a derived type. It
2305  // affects the conversion rank.
2306  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2307  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2308    ICS.Standard.Second = ICK_Identity;
2309  else if (IsDerivedFrom(FromType, ClassType))
2310    ICS.Standard.Second = ICK_Derived_To_Base;
2311  else {
2312    ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType);
2313    return ICS;
2314  }
2315
2316  // Success. Mark this as a reference binding.
2317  ICS.setStandard();
2318  ICS.Standard.setFromType(FromType);
2319  ICS.Standard.setAllToTypes(ImplicitParamType);
2320  ICS.Standard.ReferenceBinding = true;
2321  ICS.Standard.DirectBinding = true;
2322  ICS.Standard.RRefBinding = false;
2323  return ICS;
2324}
2325
2326/// PerformObjectArgumentInitialization - Perform initialization of
2327/// the implicit object parameter for the given Method with the given
2328/// expression.
2329bool
2330Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2331  QualType FromRecordType, DestType;
2332  QualType ImplicitParamRecordType  =
2333    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2334
2335  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2336    FromRecordType = PT->getPointeeType();
2337    DestType = Method->getThisType(Context);
2338  } else {
2339    FromRecordType = From->getType();
2340    DestType = ImplicitParamRecordType;
2341  }
2342
2343  // Note that we always use the true parent context when performing
2344  // the actual argument initialization.
2345  ImplicitConversionSequence ICS
2346    = TryObjectArgumentInitialization(From->getType(), Method,
2347                                      Method->getParent());
2348  if (ICS.isBad())
2349    return Diag(From->getSourceRange().getBegin(),
2350                diag::err_implicit_object_parameter_init)
2351       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2352
2353  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2354      CheckDerivedToBaseConversion(FromRecordType,
2355                                   ImplicitParamRecordType,
2356                                   From->getSourceRange().getBegin(),
2357                                   From->getSourceRange()))
2358    return true;
2359
2360  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2361                    /*isLvalue=*/true);
2362  return false;
2363}
2364
2365/// TryContextuallyConvertToBool - Attempt to contextually convert the
2366/// expression From to bool (C++0x [conv]p3).
2367ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2368  return TryImplicitConversion(From, Context.BoolTy,
2369                               // FIXME: Are these flags correct?
2370                               /*SuppressUserConversions=*/false,
2371                               /*AllowExplicit=*/true,
2372                               /*ForceRValue=*/false,
2373                               /*InOverloadResolution=*/false);
2374}
2375
2376/// PerformContextuallyConvertToBool - Perform a contextual conversion
2377/// of the expression From to bool (C++0x [conv]p3).
2378bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2379  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2380  if (!ICS.isBad())
2381    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2382
2383  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2384    return  Diag(From->getSourceRange().getBegin(),
2385                 diag::err_typecheck_bool_condition)
2386                  << From->getType() << From->getSourceRange();
2387  return true;
2388}
2389
2390/// AddOverloadCandidate - Adds the given function to the set of
2391/// candidate functions, using the given function call arguments.  If
2392/// @p SuppressUserConversions, then don't allow user-defined
2393/// conversions via constructors or conversion operators.
2394/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2395/// hacky way to implement the overloading rules for elidable copy
2396/// initialization in C++0x (C++0x 12.8p15).
2397///
2398/// \para PartialOverloading true if we are performing "partial" overloading
2399/// based on an incomplete set of function arguments. This feature is used by
2400/// code completion.
2401void
2402Sema::AddOverloadCandidate(FunctionDecl *Function,
2403                           AccessSpecifier Access,
2404                           Expr **Args, unsigned NumArgs,
2405                           OverloadCandidateSet& CandidateSet,
2406                           bool SuppressUserConversions,
2407                           bool ForceRValue,
2408                           bool PartialOverloading) {
2409  const FunctionProtoType* Proto
2410    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2411  assert(Proto && "Functions without a prototype cannot be overloaded");
2412  assert(!Function->getDescribedFunctionTemplate() &&
2413         "Use AddTemplateOverloadCandidate for function templates");
2414
2415  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2416    if (!isa<CXXConstructorDecl>(Method)) {
2417      // If we get here, it's because we're calling a member function
2418      // that is named without a member access expression (e.g.,
2419      // "this->f") that was either written explicitly or created
2420      // implicitly. This can happen with a qualified call to a member
2421      // function, e.g., X::f(). We use an empty type for the implied
2422      // object argument (C++ [over.call.func]p3), and the acting context
2423      // is irrelevant.
2424      AddMethodCandidate(Method, Access, Method->getParent(),
2425                         QualType(), Args, NumArgs, CandidateSet,
2426                         SuppressUserConversions, ForceRValue);
2427      return;
2428    }
2429    // We treat a constructor like a non-member function, since its object
2430    // argument doesn't participate in overload resolution.
2431  }
2432
2433  if (!CandidateSet.isNewCandidate(Function))
2434    return;
2435
2436  // Overload resolution is always an unevaluated context.
2437  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2438
2439  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2440    // C++ [class.copy]p3:
2441    //   A member function template is never instantiated to perform the copy
2442    //   of a class object to an object of its class type.
2443    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2444    if (NumArgs == 1 &&
2445        Constructor->isCopyConstructorLikeSpecialization() &&
2446        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2447      return;
2448  }
2449
2450  // Add this candidate
2451  CandidateSet.push_back(OverloadCandidate());
2452  OverloadCandidate& Candidate = CandidateSet.back();
2453  Candidate.Function = Function;
2454  Candidate.Access = Access;
2455  Candidate.Viable = true;
2456  Candidate.IsSurrogate = false;
2457  Candidate.IgnoreObjectArgument = false;
2458
2459  unsigned NumArgsInProto = Proto->getNumArgs();
2460
2461  // (C++ 13.3.2p2): A candidate function having fewer than m
2462  // parameters is viable only if it has an ellipsis in its parameter
2463  // list (8.3.5).
2464  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2465      !Proto->isVariadic()) {
2466    Candidate.Viable = false;
2467    Candidate.FailureKind = ovl_fail_too_many_arguments;
2468    return;
2469  }
2470
2471  // (C++ 13.3.2p2): A candidate function having more than m parameters
2472  // is viable only if the (m+1)st parameter has a default argument
2473  // (8.3.6). For the purposes of overload resolution, the
2474  // parameter list is truncated on the right, so that there are
2475  // exactly m parameters.
2476  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2477  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2478    // Not enough arguments.
2479    Candidate.Viable = false;
2480    Candidate.FailureKind = ovl_fail_too_few_arguments;
2481    return;
2482  }
2483
2484  // Determine the implicit conversion sequences for each of the
2485  // arguments.
2486  Candidate.Conversions.resize(NumArgs);
2487  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2488    if (ArgIdx < NumArgsInProto) {
2489      // (C++ 13.3.2p3): for F to be a viable function, there shall
2490      // exist for each argument an implicit conversion sequence
2491      // (13.3.3.1) that converts that argument to the corresponding
2492      // parameter of F.
2493      QualType ParamType = Proto->getArgType(ArgIdx);
2494      Candidate.Conversions[ArgIdx]
2495        = TryCopyInitialization(Args[ArgIdx], ParamType,
2496                                SuppressUserConversions, ForceRValue,
2497                                /*InOverloadResolution=*/true);
2498      if (Candidate.Conversions[ArgIdx].isBad()) {
2499        Candidate.Viable = false;
2500        Candidate.FailureKind = ovl_fail_bad_conversion;
2501        break;
2502      }
2503    } else {
2504      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2505      // argument for which there is no corresponding parameter is
2506      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2507      Candidate.Conversions[ArgIdx].setEllipsis();
2508    }
2509  }
2510}
2511
2512/// \brief Add all of the function declarations in the given function set to
2513/// the overload canddiate set.
2514void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2515                                 Expr **Args, unsigned NumArgs,
2516                                 OverloadCandidateSet& CandidateSet,
2517                                 bool SuppressUserConversions) {
2518  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2519    // FIXME: using declarations
2520    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2521      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2522        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
2523                           cast<CXXMethodDecl>(FD)->getParent(),
2524                           Args[0]->getType(), Args + 1, NumArgs - 1,
2525                           CandidateSet, SuppressUserConversions);
2526      else
2527        AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
2528                             SuppressUserConversions);
2529    } else {
2530      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2531      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2532          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2533        AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
2534                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2535                                   /*FIXME: explicit args */ 0,
2536                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2537                                   CandidateSet,
2538                                   SuppressUserConversions);
2539      else
2540        AddTemplateOverloadCandidate(FunTmpl, AS_none,
2541                                     /*FIXME: explicit args */ 0,
2542                                     Args, NumArgs, CandidateSet,
2543                                     SuppressUserConversions);
2544    }
2545  }
2546}
2547
2548/// AddMethodCandidate - Adds a named decl (which is some kind of
2549/// method) as a method candidate to the given overload set.
2550void Sema::AddMethodCandidate(NamedDecl *Decl,
2551                              AccessSpecifier Access,
2552                              QualType ObjectType,
2553                              Expr **Args, unsigned NumArgs,
2554                              OverloadCandidateSet& CandidateSet,
2555                              bool SuppressUserConversions, bool ForceRValue) {
2556  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2557
2558  if (isa<UsingShadowDecl>(Decl))
2559    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2560
2561  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2562    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2563           "Expected a member function template");
2564    AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
2565                               ObjectType, Args, NumArgs,
2566                               CandidateSet,
2567                               SuppressUserConversions,
2568                               ForceRValue);
2569  } else {
2570    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
2571                       ObjectType, Args, NumArgs,
2572                       CandidateSet, SuppressUserConversions, ForceRValue);
2573  }
2574}
2575
2576/// AddMethodCandidate - Adds the given C++ member function to the set
2577/// of candidate functions, using the given function call arguments
2578/// and the object argument (@c Object). For example, in a call
2579/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2580/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2581/// allow user-defined conversions via constructors or conversion
2582/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2583/// a slightly hacky way to implement the overloading rules for elidable copy
2584/// initialization in C++0x (C++0x 12.8p15).
2585void
2586Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
2587                         CXXRecordDecl *ActingContext, QualType ObjectType,
2588                         Expr **Args, unsigned NumArgs,
2589                         OverloadCandidateSet& CandidateSet,
2590                         bool SuppressUserConversions, bool ForceRValue) {
2591  const FunctionProtoType* Proto
2592    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2593  assert(Proto && "Methods without a prototype cannot be overloaded");
2594  assert(!isa<CXXConstructorDecl>(Method) &&
2595         "Use AddOverloadCandidate for constructors");
2596
2597  if (!CandidateSet.isNewCandidate(Method))
2598    return;
2599
2600  // Overload resolution is always an unevaluated context.
2601  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2602
2603  // Add this candidate
2604  CandidateSet.push_back(OverloadCandidate());
2605  OverloadCandidate& Candidate = CandidateSet.back();
2606  Candidate.Function = Method;
2607  Candidate.Access = Access;
2608  Candidate.IsSurrogate = false;
2609  Candidate.IgnoreObjectArgument = false;
2610
2611  unsigned NumArgsInProto = Proto->getNumArgs();
2612
2613  // (C++ 13.3.2p2): A candidate function having fewer than m
2614  // parameters is viable only if it has an ellipsis in its parameter
2615  // list (8.3.5).
2616  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2617    Candidate.Viable = false;
2618    Candidate.FailureKind = ovl_fail_too_many_arguments;
2619    return;
2620  }
2621
2622  // (C++ 13.3.2p2): A candidate function having more than m parameters
2623  // is viable only if the (m+1)st parameter has a default argument
2624  // (8.3.6). For the purposes of overload resolution, the
2625  // parameter list is truncated on the right, so that there are
2626  // exactly m parameters.
2627  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2628  if (NumArgs < MinRequiredArgs) {
2629    // Not enough arguments.
2630    Candidate.Viable = false;
2631    Candidate.FailureKind = ovl_fail_too_few_arguments;
2632    return;
2633  }
2634
2635  Candidate.Viable = true;
2636  Candidate.Conversions.resize(NumArgs + 1);
2637
2638  if (Method->isStatic() || ObjectType.isNull())
2639    // The implicit object argument is ignored.
2640    Candidate.IgnoreObjectArgument = true;
2641  else {
2642    // Determine the implicit conversion sequence for the object
2643    // parameter.
2644    Candidate.Conversions[0]
2645      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2646    if (Candidate.Conversions[0].isBad()) {
2647      Candidate.Viable = false;
2648      Candidate.FailureKind = ovl_fail_bad_conversion;
2649      return;
2650    }
2651  }
2652
2653  // Determine the implicit conversion sequences for each of the
2654  // arguments.
2655  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2656    if (ArgIdx < NumArgsInProto) {
2657      // (C++ 13.3.2p3): for F to be a viable function, there shall
2658      // exist for each argument an implicit conversion sequence
2659      // (13.3.3.1) that converts that argument to the corresponding
2660      // parameter of F.
2661      QualType ParamType = Proto->getArgType(ArgIdx);
2662      Candidate.Conversions[ArgIdx + 1]
2663        = TryCopyInitialization(Args[ArgIdx], ParamType,
2664                                SuppressUserConversions, ForceRValue,
2665                                /*InOverloadResolution=*/true);
2666      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2667        Candidate.Viable = false;
2668        Candidate.FailureKind = ovl_fail_bad_conversion;
2669        break;
2670      }
2671    } else {
2672      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2673      // argument for which there is no corresponding parameter is
2674      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2675      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2676    }
2677  }
2678}
2679
2680/// \brief Add a C++ member function template as a candidate to the candidate
2681/// set, using template argument deduction to produce an appropriate member
2682/// function template specialization.
2683void
2684Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2685                                 AccessSpecifier Access,
2686                                 CXXRecordDecl *ActingContext,
2687                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2688                                 QualType ObjectType,
2689                                 Expr **Args, unsigned NumArgs,
2690                                 OverloadCandidateSet& CandidateSet,
2691                                 bool SuppressUserConversions,
2692                                 bool ForceRValue) {
2693  if (!CandidateSet.isNewCandidate(MethodTmpl))
2694    return;
2695
2696  // C++ [over.match.funcs]p7:
2697  //   In each case where a candidate is a function template, candidate
2698  //   function template specializations are generated using template argument
2699  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2700  //   candidate functions in the usual way.113) A given name can refer to one
2701  //   or more function templates and also to a set of overloaded non-template
2702  //   functions. In such a case, the candidate functions generated from each
2703  //   function template are combined with the set of non-template candidate
2704  //   functions.
2705  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2706  FunctionDecl *Specialization = 0;
2707  if (TemplateDeductionResult Result
2708      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2709                                Args, NumArgs, Specialization, Info)) {
2710        // FIXME: Record what happened with template argument deduction, so
2711        // that we can give the user a beautiful diagnostic.
2712        (void)Result;
2713        return;
2714      }
2715
2716  // Add the function template specialization produced by template argument
2717  // deduction as a candidate.
2718  assert(Specialization && "Missing member function template specialization?");
2719  assert(isa<CXXMethodDecl>(Specialization) &&
2720         "Specialization is not a member function?");
2721  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
2722                     ActingContext, ObjectType, Args, NumArgs,
2723                     CandidateSet, SuppressUserConversions, ForceRValue);
2724}
2725
2726/// \brief Add a C++ function template specialization as a candidate
2727/// in the candidate set, using template argument deduction to produce
2728/// an appropriate function template specialization.
2729void
2730Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2731                                   AccessSpecifier Access,
2732                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2733                                   Expr **Args, unsigned NumArgs,
2734                                   OverloadCandidateSet& CandidateSet,
2735                                   bool SuppressUserConversions,
2736                                   bool ForceRValue) {
2737  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2738    return;
2739
2740  // C++ [over.match.funcs]p7:
2741  //   In each case where a candidate is a function template, candidate
2742  //   function template specializations are generated using template argument
2743  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2744  //   candidate functions in the usual way.113) A given name can refer to one
2745  //   or more function templates and also to a set of overloaded non-template
2746  //   functions. In such a case, the candidate functions generated from each
2747  //   function template are combined with the set of non-template candidate
2748  //   functions.
2749  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2750  FunctionDecl *Specialization = 0;
2751  if (TemplateDeductionResult Result
2752        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2753                                  Args, NumArgs, Specialization, Info)) {
2754    CandidateSet.push_back(OverloadCandidate());
2755    OverloadCandidate &Candidate = CandidateSet.back();
2756    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2757    Candidate.Access = Access;
2758    Candidate.Viable = false;
2759    Candidate.FailureKind = ovl_fail_bad_deduction;
2760    Candidate.IsSurrogate = false;
2761    Candidate.IgnoreObjectArgument = false;
2762
2763    // TODO: record more information about failed template arguments
2764    Candidate.DeductionFailure.Result = Result;
2765    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2766    return;
2767  }
2768
2769  // Add the function template specialization produced by template argument
2770  // deduction as a candidate.
2771  assert(Specialization && "Missing function template specialization?");
2772  AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
2773                       SuppressUserConversions, ForceRValue);
2774}
2775
2776/// AddConversionCandidate - Add a C++ conversion function as a
2777/// candidate in the candidate set (C++ [over.match.conv],
2778/// C++ [over.match.copy]). From is the expression we're converting from,
2779/// and ToType is the type that we're eventually trying to convert to
2780/// (which may or may not be the same type as the type that the
2781/// conversion function produces).
2782void
2783Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2784                             AccessSpecifier Access,
2785                             CXXRecordDecl *ActingContext,
2786                             Expr *From, QualType ToType,
2787                             OverloadCandidateSet& CandidateSet) {
2788  assert(!Conversion->getDescribedFunctionTemplate() &&
2789         "Conversion function templates use AddTemplateConversionCandidate");
2790
2791  if (!CandidateSet.isNewCandidate(Conversion))
2792    return;
2793
2794  // Overload resolution is always an unevaluated context.
2795  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2796
2797  // Add this candidate
2798  CandidateSet.push_back(OverloadCandidate());
2799  OverloadCandidate& Candidate = CandidateSet.back();
2800  Candidate.Function = Conversion;
2801  Candidate.Access = Access;
2802  Candidate.IsSurrogate = false;
2803  Candidate.IgnoreObjectArgument = false;
2804  Candidate.FinalConversion.setAsIdentityConversion();
2805  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2806  Candidate.FinalConversion.setAllToTypes(ToType);
2807
2808  // Determine the implicit conversion sequence for the implicit
2809  // object parameter.
2810  Candidate.Viable = true;
2811  Candidate.Conversions.resize(1);
2812  Candidate.Conversions[0]
2813    = TryObjectArgumentInitialization(From->getType(), Conversion,
2814                                      ActingContext);
2815  // Conversion functions to a different type in the base class is visible in
2816  // the derived class.  So, a derived to base conversion should not participate
2817  // in overload resolution.
2818  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2819    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2820  if (Candidate.Conversions[0].isBad()) {
2821    Candidate.Viable = false;
2822    Candidate.FailureKind = ovl_fail_bad_conversion;
2823    return;
2824  }
2825
2826  // We won't go through a user-define type conversion function to convert a
2827  // derived to base as such conversions are given Conversion Rank. They only
2828  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2829  QualType FromCanon
2830    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2831  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2832  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2833    Candidate.Viable = false;
2834    Candidate.FailureKind = ovl_fail_trivial_conversion;
2835    return;
2836  }
2837
2838
2839  // To determine what the conversion from the result of calling the
2840  // conversion function to the type we're eventually trying to
2841  // convert to (ToType), we need to synthesize a call to the
2842  // conversion function and attempt copy initialization from it. This
2843  // makes sure that we get the right semantics with respect to
2844  // lvalues/rvalues and the type. Fortunately, we can allocate this
2845  // call on the stack and we don't need its arguments to be
2846  // well-formed.
2847  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2848                            From->getLocStart());
2849  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2850                                CastExpr::CK_FunctionToPointerDecay,
2851                                &ConversionRef, false);
2852
2853  // Note that it is safe to allocate CallExpr on the stack here because
2854  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2855  // allocator).
2856  CallExpr Call(Context, &ConversionFn, 0, 0,
2857                Conversion->getConversionType().getNonReferenceType(),
2858                From->getLocStart());
2859  ImplicitConversionSequence ICS =
2860    TryCopyInitialization(&Call, ToType,
2861                          /*SuppressUserConversions=*/true,
2862                          /*ForceRValue=*/false,
2863                          /*InOverloadResolution=*/false);
2864
2865  switch (ICS.getKind()) {
2866  case ImplicitConversionSequence::StandardConversion:
2867    Candidate.FinalConversion = ICS.Standard;
2868    break;
2869
2870  case ImplicitConversionSequence::BadConversion:
2871    Candidate.Viable = false;
2872    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2873    break;
2874
2875  default:
2876    assert(false &&
2877           "Can only end up with a standard conversion sequence or failure");
2878  }
2879}
2880
2881/// \brief Adds a conversion function template specialization
2882/// candidate to the overload set, using template argument deduction
2883/// to deduce the template arguments of the conversion function
2884/// template from the type that we are converting to (C++
2885/// [temp.deduct.conv]).
2886void
2887Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2888                                     AccessSpecifier Access,
2889                                     CXXRecordDecl *ActingDC,
2890                                     Expr *From, QualType ToType,
2891                                     OverloadCandidateSet &CandidateSet) {
2892  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2893         "Only conversion function templates permitted here");
2894
2895  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2896    return;
2897
2898  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2899  CXXConversionDecl *Specialization = 0;
2900  if (TemplateDeductionResult Result
2901        = DeduceTemplateArguments(FunctionTemplate, ToType,
2902                                  Specialization, Info)) {
2903    // FIXME: Record what happened with template argument deduction, so
2904    // that we can give the user a beautiful diagnostic.
2905    (void)Result;
2906    return;
2907  }
2908
2909  // Add the conversion function template specialization produced by
2910  // template argument deduction as a candidate.
2911  assert(Specialization && "Missing function template specialization?");
2912  AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
2913                         CandidateSet);
2914}
2915
2916/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2917/// converts the given @c Object to a function pointer via the
2918/// conversion function @c Conversion, and then attempts to call it
2919/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2920/// the type of function that we'll eventually be calling.
2921void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2922                                 AccessSpecifier Access,
2923                                 CXXRecordDecl *ActingContext,
2924                                 const FunctionProtoType *Proto,
2925                                 QualType ObjectType,
2926                                 Expr **Args, unsigned NumArgs,
2927                                 OverloadCandidateSet& CandidateSet) {
2928  if (!CandidateSet.isNewCandidate(Conversion))
2929    return;
2930
2931  // Overload resolution is always an unevaluated context.
2932  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2933
2934  CandidateSet.push_back(OverloadCandidate());
2935  OverloadCandidate& Candidate = CandidateSet.back();
2936  Candidate.Function = 0;
2937  Candidate.Access = Access;
2938  Candidate.Surrogate = Conversion;
2939  Candidate.Viable = true;
2940  Candidate.IsSurrogate = true;
2941  Candidate.IgnoreObjectArgument = false;
2942  Candidate.Conversions.resize(NumArgs + 1);
2943
2944  // Determine the implicit conversion sequence for the implicit
2945  // object parameter.
2946  ImplicitConversionSequence ObjectInit
2947    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2948  if (ObjectInit.isBad()) {
2949    Candidate.Viable = false;
2950    Candidate.FailureKind = ovl_fail_bad_conversion;
2951    Candidate.Conversions[0] = ObjectInit;
2952    return;
2953  }
2954
2955  // The first conversion is actually a user-defined conversion whose
2956  // first conversion is ObjectInit's standard conversion (which is
2957  // effectively a reference binding). Record it as such.
2958  Candidate.Conversions[0].setUserDefined();
2959  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2960  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2961  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2962  Candidate.Conversions[0].UserDefined.After
2963    = Candidate.Conversions[0].UserDefined.Before;
2964  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2965
2966  // Find the
2967  unsigned NumArgsInProto = Proto->getNumArgs();
2968
2969  // (C++ 13.3.2p2): A candidate function having fewer than m
2970  // parameters is viable only if it has an ellipsis in its parameter
2971  // list (8.3.5).
2972  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2973    Candidate.Viable = false;
2974    Candidate.FailureKind = ovl_fail_too_many_arguments;
2975    return;
2976  }
2977
2978  // Function types don't have any default arguments, so just check if
2979  // we have enough arguments.
2980  if (NumArgs < NumArgsInProto) {
2981    // Not enough arguments.
2982    Candidate.Viable = false;
2983    Candidate.FailureKind = ovl_fail_too_few_arguments;
2984    return;
2985  }
2986
2987  // Determine the implicit conversion sequences for each of the
2988  // arguments.
2989  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2990    if (ArgIdx < NumArgsInProto) {
2991      // (C++ 13.3.2p3): for F to be a viable function, there shall
2992      // exist for each argument an implicit conversion sequence
2993      // (13.3.3.1) that converts that argument to the corresponding
2994      // parameter of F.
2995      QualType ParamType = Proto->getArgType(ArgIdx);
2996      Candidate.Conversions[ArgIdx + 1]
2997        = TryCopyInitialization(Args[ArgIdx], ParamType,
2998                                /*SuppressUserConversions=*/false,
2999                                /*ForceRValue=*/false,
3000                                /*InOverloadResolution=*/false);
3001      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3002        Candidate.Viable = false;
3003        Candidate.FailureKind = ovl_fail_bad_conversion;
3004        break;
3005      }
3006    } else {
3007      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3008      // argument for which there is no corresponding parameter is
3009      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3010      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3011    }
3012  }
3013}
3014
3015// FIXME: This will eventually be removed, once we've migrated all of the
3016// operator overloading logic over to the scheme used by binary operators, which
3017// works for template instantiation.
3018void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3019                                 SourceLocation OpLoc,
3020                                 Expr **Args, unsigned NumArgs,
3021                                 OverloadCandidateSet& CandidateSet,
3022                                 SourceRange OpRange) {
3023  UnresolvedSet<16> Fns;
3024
3025  QualType T1 = Args[0]->getType();
3026  QualType T2;
3027  if (NumArgs > 1)
3028    T2 = Args[1]->getType();
3029
3030  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3031  if (S)
3032    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3033  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3034  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3035                                       CandidateSet);
3036  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3037  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3038}
3039
3040/// \brief Add overload candidates for overloaded operators that are
3041/// member functions.
3042///
3043/// Add the overloaded operator candidates that are member functions
3044/// for the operator Op that was used in an operator expression such
3045/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3046/// CandidateSet will store the added overload candidates. (C++
3047/// [over.match.oper]).
3048void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3049                                       SourceLocation OpLoc,
3050                                       Expr **Args, unsigned NumArgs,
3051                                       OverloadCandidateSet& CandidateSet,
3052                                       SourceRange OpRange) {
3053  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3054
3055  // C++ [over.match.oper]p3:
3056  //   For a unary operator @ with an operand of a type whose
3057  //   cv-unqualified version is T1, and for a binary operator @ with
3058  //   a left operand of a type whose cv-unqualified version is T1 and
3059  //   a right operand of a type whose cv-unqualified version is T2,
3060  //   three sets of candidate functions, designated member
3061  //   candidates, non-member candidates and built-in candidates, are
3062  //   constructed as follows:
3063  QualType T1 = Args[0]->getType();
3064  QualType T2;
3065  if (NumArgs > 1)
3066    T2 = Args[1]->getType();
3067
3068  //     -- If T1 is a class type, the set of member candidates is the
3069  //        result of the qualified lookup of T1::operator@
3070  //        (13.3.1.1.1); otherwise, the set of member candidates is
3071  //        empty.
3072  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3073    // Complete the type if it can be completed. Otherwise, we're done.
3074    if (RequireCompleteType(OpLoc, T1, PDiag()))
3075      return;
3076
3077    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3078    LookupQualifiedName(Operators, T1Rec->getDecl());
3079    Operators.suppressDiagnostics();
3080
3081    for (LookupResult::iterator Oper = Operators.begin(),
3082                             OperEnd = Operators.end();
3083         Oper != OperEnd;
3084         ++Oper)
3085      AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
3086                         Args + 1, NumArgs - 1, CandidateSet,
3087                         /* SuppressUserConversions = */ false);
3088  }
3089}
3090
3091/// AddBuiltinCandidate - Add a candidate for a built-in
3092/// operator. ResultTy and ParamTys are the result and parameter types
3093/// of the built-in candidate, respectively. Args and NumArgs are the
3094/// arguments being passed to the candidate. IsAssignmentOperator
3095/// should be true when this built-in candidate is an assignment
3096/// operator. NumContextualBoolArguments is the number of arguments
3097/// (at the beginning of the argument list) that will be contextually
3098/// converted to bool.
3099void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3100                               Expr **Args, unsigned NumArgs,
3101                               OverloadCandidateSet& CandidateSet,
3102                               bool IsAssignmentOperator,
3103                               unsigned NumContextualBoolArguments) {
3104  // Overload resolution is always an unevaluated context.
3105  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3106
3107  // Add this candidate
3108  CandidateSet.push_back(OverloadCandidate());
3109  OverloadCandidate& Candidate = CandidateSet.back();
3110  Candidate.Function = 0;
3111  Candidate.Access = AS_none;
3112  Candidate.IsSurrogate = false;
3113  Candidate.IgnoreObjectArgument = false;
3114  Candidate.BuiltinTypes.ResultTy = ResultTy;
3115  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3116    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3117
3118  // Determine the implicit conversion sequences for each of the
3119  // arguments.
3120  Candidate.Viable = true;
3121  Candidate.Conversions.resize(NumArgs);
3122  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3123    // C++ [over.match.oper]p4:
3124    //   For the built-in assignment operators, conversions of the
3125    //   left operand are restricted as follows:
3126    //     -- no temporaries are introduced to hold the left operand, and
3127    //     -- no user-defined conversions are applied to the left
3128    //        operand to achieve a type match with the left-most
3129    //        parameter of a built-in candidate.
3130    //
3131    // We block these conversions by turning off user-defined
3132    // conversions, since that is the only way that initialization of
3133    // a reference to a non-class type can occur from something that
3134    // is not of the same type.
3135    if (ArgIdx < NumContextualBoolArguments) {
3136      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3137             "Contextual conversion to bool requires bool type");
3138      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3139    } else {
3140      Candidate.Conversions[ArgIdx]
3141        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3142                                ArgIdx == 0 && IsAssignmentOperator,
3143                                /*ForceRValue=*/false,
3144                                /*InOverloadResolution=*/false);
3145    }
3146    if (Candidate.Conversions[ArgIdx].isBad()) {
3147      Candidate.Viable = false;
3148      Candidate.FailureKind = ovl_fail_bad_conversion;
3149      break;
3150    }
3151  }
3152}
3153
3154/// BuiltinCandidateTypeSet - A set of types that will be used for the
3155/// candidate operator functions for built-in operators (C++
3156/// [over.built]). The types are separated into pointer types and
3157/// enumeration types.
3158class BuiltinCandidateTypeSet  {
3159  /// TypeSet - A set of types.
3160  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3161
3162  /// PointerTypes - The set of pointer types that will be used in the
3163  /// built-in candidates.
3164  TypeSet PointerTypes;
3165
3166  /// MemberPointerTypes - The set of member pointer types that will be
3167  /// used in the built-in candidates.
3168  TypeSet MemberPointerTypes;
3169
3170  /// EnumerationTypes - The set of enumeration types that will be
3171  /// used in the built-in candidates.
3172  TypeSet EnumerationTypes;
3173
3174  /// Sema - The semantic analysis instance where we are building the
3175  /// candidate type set.
3176  Sema &SemaRef;
3177
3178  /// Context - The AST context in which we will build the type sets.
3179  ASTContext &Context;
3180
3181  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3182                                               const Qualifiers &VisibleQuals);
3183  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3184
3185public:
3186  /// iterator - Iterates through the types that are part of the set.
3187  typedef TypeSet::iterator iterator;
3188
3189  BuiltinCandidateTypeSet(Sema &SemaRef)
3190    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3191
3192  void AddTypesConvertedFrom(QualType Ty,
3193                             SourceLocation Loc,
3194                             bool AllowUserConversions,
3195                             bool AllowExplicitConversions,
3196                             const Qualifiers &VisibleTypeConversionsQuals);
3197
3198  /// pointer_begin - First pointer type found;
3199  iterator pointer_begin() { return PointerTypes.begin(); }
3200
3201  /// pointer_end - Past the last pointer type found;
3202  iterator pointer_end() { return PointerTypes.end(); }
3203
3204  /// member_pointer_begin - First member pointer type found;
3205  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3206
3207  /// member_pointer_end - Past the last member pointer type found;
3208  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3209
3210  /// enumeration_begin - First enumeration type found;
3211  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3212
3213  /// enumeration_end - Past the last enumeration type found;
3214  iterator enumeration_end() { return EnumerationTypes.end(); }
3215};
3216
3217/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3218/// the set of pointer types along with any more-qualified variants of
3219/// that type. For example, if @p Ty is "int const *", this routine
3220/// will add "int const *", "int const volatile *", "int const
3221/// restrict *", and "int const volatile restrict *" to the set of
3222/// pointer types. Returns true if the add of @p Ty itself succeeded,
3223/// false otherwise.
3224///
3225/// FIXME: what to do about extended qualifiers?
3226bool
3227BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3228                                             const Qualifiers &VisibleQuals) {
3229
3230  // Insert this type.
3231  if (!PointerTypes.insert(Ty))
3232    return false;
3233
3234  const PointerType *PointerTy = Ty->getAs<PointerType>();
3235  assert(PointerTy && "type was not a pointer type!");
3236
3237  QualType PointeeTy = PointerTy->getPointeeType();
3238  // Don't add qualified variants of arrays. For one, they're not allowed
3239  // (the qualifier would sink to the element type), and for another, the
3240  // only overload situation where it matters is subscript or pointer +- int,
3241  // and those shouldn't have qualifier variants anyway.
3242  if (PointeeTy->isArrayType())
3243    return true;
3244  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3245  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3246    BaseCVR = Array->getElementType().getCVRQualifiers();
3247  bool hasVolatile = VisibleQuals.hasVolatile();
3248  bool hasRestrict = VisibleQuals.hasRestrict();
3249
3250  // Iterate through all strict supersets of BaseCVR.
3251  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3252    if ((CVR | BaseCVR) != CVR) continue;
3253    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3254    // in the types.
3255    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3256    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3257    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3258    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3259  }
3260
3261  return true;
3262}
3263
3264/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3265/// to the set of pointer types along with any more-qualified variants of
3266/// that type. For example, if @p Ty is "int const *", this routine
3267/// will add "int const *", "int const volatile *", "int const
3268/// restrict *", and "int const volatile restrict *" to the set of
3269/// pointer types. Returns true if the add of @p Ty itself succeeded,
3270/// false otherwise.
3271///
3272/// FIXME: what to do about extended qualifiers?
3273bool
3274BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3275    QualType Ty) {
3276  // Insert this type.
3277  if (!MemberPointerTypes.insert(Ty))
3278    return false;
3279
3280  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3281  assert(PointerTy && "type was not a member pointer type!");
3282
3283  QualType PointeeTy = PointerTy->getPointeeType();
3284  // Don't add qualified variants of arrays. For one, they're not allowed
3285  // (the qualifier would sink to the element type), and for another, the
3286  // only overload situation where it matters is subscript or pointer +- int,
3287  // and those shouldn't have qualifier variants anyway.
3288  if (PointeeTy->isArrayType())
3289    return true;
3290  const Type *ClassTy = PointerTy->getClass();
3291
3292  // Iterate through all strict supersets of the pointee type's CVR
3293  // qualifiers.
3294  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3295  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3296    if ((CVR | BaseCVR) != CVR) continue;
3297
3298    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3299    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3300  }
3301
3302  return true;
3303}
3304
3305/// AddTypesConvertedFrom - Add each of the types to which the type @p
3306/// Ty can be implicit converted to the given set of @p Types. We're
3307/// primarily interested in pointer types and enumeration types. We also
3308/// take member pointer types, for the conditional operator.
3309/// AllowUserConversions is true if we should look at the conversion
3310/// functions of a class type, and AllowExplicitConversions if we
3311/// should also include the explicit conversion functions of a class
3312/// type.
3313void
3314BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3315                                               SourceLocation Loc,
3316                                               bool AllowUserConversions,
3317                                               bool AllowExplicitConversions,
3318                                               const Qualifiers &VisibleQuals) {
3319  // Only deal with canonical types.
3320  Ty = Context.getCanonicalType(Ty);
3321
3322  // Look through reference types; they aren't part of the type of an
3323  // expression for the purposes of conversions.
3324  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3325    Ty = RefTy->getPointeeType();
3326
3327  // We don't care about qualifiers on the type.
3328  Ty = Ty.getLocalUnqualifiedType();
3329
3330  // If we're dealing with an array type, decay to the pointer.
3331  if (Ty->isArrayType())
3332    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3333
3334  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3335    QualType PointeeTy = PointerTy->getPointeeType();
3336
3337    // Insert our type, and its more-qualified variants, into the set
3338    // of types.
3339    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3340      return;
3341  } else if (Ty->isMemberPointerType()) {
3342    // Member pointers are far easier, since the pointee can't be converted.
3343    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3344      return;
3345  } else if (Ty->isEnumeralType()) {
3346    EnumerationTypes.insert(Ty);
3347  } else if (AllowUserConversions) {
3348    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3349      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3350        // No conversion functions in incomplete types.
3351        return;
3352      }
3353
3354      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3355      const UnresolvedSetImpl *Conversions
3356        = ClassDecl->getVisibleConversionFunctions();
3357      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3358             E = Conversions->end(); I != E; ++I) {
3359
3360        // Skip conversion function templates; they don't tell us anything
3361        // about which builtin types we can convert to.
3362        if (isa<FunctionTemplateDecl>(*I))
3363          continue;
3364
3365        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3366        if (AllowExplicitConversions || !Conv->isExplicit()) {
3367          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3368                                VisibleQuals);
3369        }
3370      }
3371    }
3372  }
3373}
3374
3375/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3376/// the volatile- and non-volatile-qualified assignment operators for the
3377/// given type to the candidate set.
3378static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3379                                                   QualType T,
3380                                                   Expr **Args,
3381                                                   unsigned NumArgs,
3382                                    OverloadCandidateSet &CandidateSet) {
3383  QualType ParamTypes[2];
3384
3385  // T& operator=(T&, T)
3386  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3387  ParamTypes[1] = T;
3388  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3389                        /*IsAssignmentOperator=*/true);
3390
3391  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3392    // volatile T& operator=(volatile T&, T)
3393    ParamTypes[0]
3394      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3395    ParamTypes[1] = T;
3396    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3397                          /*IsAssignmentOperator=*/true);
3398  }
3399}
3400
3401/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3402/// if any, found in visible type conversion functions found in ArgExpr's type.
3403static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3404    Qualifiers VRQuals;
3405    const RecordType *TyRec;
3406    if (const MemberPointerType *RHSMPType =
3407        ArgExpr->getType()->getAs<MemberPointerType>())
3408      TyRec = cast<RecordType>(RHSMPType->getClass());
3409    else
3410      TyRec = ArgExpr->getType()->getAs<RecordType>();
3411    if (!TyRec) {
3412      // Just to be safe, assume the worst case.
3413      VRQuals.addVolatile();
3414      VRQuals.addRestrict();
3415      return VRQuals;
3416    }
3417
3418    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3419    if (!ClassDecl->hasDefinition())
3420      return VRQuals;
3421
3422    const UnresolvedSetImpl *Conversions =
3423      ClassDecl->getVisibleConversionFunctions();
3424
3425    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3426           E = Conversions->end(); I != E; ++I) {
3427      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3428        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3429        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3430          CanTy = ResTypeRef->getPointeeType();
3431        // Need to go down the pointer/mempointer chain and add qualifiers
3432        // as see them.
3433        bool done = false;
3434        while (!done) {
3435          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3436            CanTy = ResTypePtr->getPointeeType();
3437          else if (const MemberPointerType *ResTypeMPtr =
3438                CanTy->getAs<MemberPointerType>())
3439            CanTy = ResTypeMPtr->getPointeeType();
3440          else
3441            done = true;
3442          if (CanTy.isVolatileQualified())
3443            VRQuals.addVolatile();
3444          if (CanTy.isRestrictQualified())
3445            VRQuals.addRestrict();
3446          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3447            return VRQuals;
3448        }
3449      }
3450    }
3451    return VRQuals;
3452}
3453
3454/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3455/// operator overloads to the candidate set (C++ [over.built]), based
3456/// on the operator @p Op and the arguments given. For example, if the
3457/// operator is a binary '+', this routine might add "int
3458/// operator+(int, int)" to cover integer addition.
3459void
3460Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3461                                   SourceLocation OpLoc,
3462                                   Expr **Args, unsigned NumArgs,
3463                                   OverloadCandidateSet& CandidateSet) {
3464  // The set of "promoted arithmetic types", which are the arithmetic
3465  // types are that preserved by promotion (C++ [over.built]p2). Note
3466  // that the first few of these types are the promoted integral
3467  // types; these types need to be first.
3468  // FIXME: What about complex?
3469  const unsigned FirstIntegralType = 0;
3470  const unsigned LastIntegralType = 13;
3471  const unsigned FirstPromotedIntegralType = 7,
3472                 LastPromotedIntegralType = 13;
3473  const unsigned FirstPromotedArithmeticType = 7,
3474                 LastPromotedArithmeticType = 16;
3475  const unsigned NumArithmeticTypes = 16;
3476  QualType ArithmeticTypes[NumArithmeticTypes] = {
3477    Context.BoolTy, Context.CharTy, Context.WCharTy,
3478// FIXME:   Context.Char16Ty, Context.Char32Ty,
3479    Context.SignedCharTy, Context.ShortTy,
3480    Context.UnsignedCharTy, Context.UnsignedShortTy,
3481    Context.IntTy, Context.LongTy, Context.LongLongTy,
3482    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3483    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3484  };
3485  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3486         "Invalid first promoted integral type");
3487  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3488           == Context.UnsignedLongLongTy &&
3489         "Invalid last promoted integral type");
3490  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3491         "Invalid first promoted arithmetic type");
3492  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3493            == Context.LongDoubleTy &&
3494         "Invalid last promoted arithmetic type");
3495
3496  // Find all of the types that the arguments can convert to, but only
3497  // if the operator we're looking at has built-in operator candidates
3498  // that make use of these types.
3499  Qualifiers VisibleTypeConversionsQuals;
3500  VisibleTypeConversionsQuals.addConst();
3501  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3502    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3503
3504  BuiltinCandidateTypeSet CandidateTypes(*this);
3505  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3506      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3507      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3508      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3509      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3510      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3511    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3512      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3513                                           OpLoc,
3514                                           true,
3515                                           (Op == OO_Exclaim ||
3516                                            Op == OO_AmpAmp ||
3517                                            Op == OO_PipePipe),
3518                                           VisibleTypeConversionsQuals);
3519  }
3520
3521  bool isComparison = false;
3522  switch (Op) {
3523  case OO_None:
3524  case NUM_OVERLOADED_OPERATORS:
3525    assert(false && "Expected an overloaded operator");
3526    break;
3527
3528  case OO_Star: // '*' is either unary or binary
3529    if (NumArgs == 1)
3530      goto UnaryStar;
3531    else
3532      goto BinaryStar;
3533    break;
3534
3535  case OO_Plus: // '+' is either unary or binary
3536    if (NumArgs == 1)
3537      goto UnaryPlus;
3538    else
3539      goto BinaryPlus;
3540    break;
3541
3542  case OO_Minus: // '-' is either unary or binary
3543    if (NumArgs == 1)
3544      goto UnaryMinus;
3545    else
3546      goto BinaryMinus;
3547    break;
3548
3549  case OO_Amp: // '&' is either unary or binary
3550    if (NumArgs == 1)
3551      goto UnaryAmp;
3552    else
3553      goto BinaryAmp;
3554
3555  case OO_PlusPlus:
3556  case OO_MinusMinus:
3557    // C++ [over.built]p3:
3558    //
3559    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3560    //   is either volatile or empty, there exist candidate operator
3561    //   functions of the form
3562    //
3563    //       VQ T&      operator++(VQ T&);
3564    //       T          operator++(VQ T&, int);
3565    //
3566    // C++ [over.built]p4:
3567    //
3568    //   For every pair (T, VQ), where T is an arithmetic type other
3569    //   than bool, and VQ is either volatile or empty, there exist
3570    //   candidate operator functions of the form
3571    //
3572    //       VQ T&      operator--(VQ T&);
3573    //       T          operator--(VQ T&, int);
3574    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3575         Arith < NumArithmeticTypes; ++Arith) {
3576      QualType ArithTy = ArithmeticTypes[Arith];
3577      QualType ParamTypes[2]
3578        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3579
3580      // Non-volatile version.
3581      if (NumArgs == 1)
3582        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3583      else
3584        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3585      // heuristic to reduce number of builtin candidates in the set.
3586      // Add volatile version only if there are conversions to a volatile type.
3587      if (VisibleTypeConversionsQuals.hasVolatile()) {
3588        // Volatile version
3589        ParamTypes[0]
3590          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3591        if (NumArgs == 1)
3592          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3593        else
3594          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3595      }
3596    }
3597
3598    // C++ [over.built]p5:
3599    //
3600    //   For every pair (T, VQ), where T is a cv-qualified or
3601    //   cv-unqualified object type, and VQ is either volatile or
3602    //   empty, there exist candidate operator functions of the form
3603    //
3604    //       T*VQ&      operator++(T*VQ&);
3605    //       T*VQ&      operator--(T*VQ&);
3606    //       T*         operator++(T*VQ&, int);
3607    //       T*         operator--(T*VQ&, int);
3608    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3609         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3610      // Skip pointer types that aren't pointers to object types.
3611      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3612        continue;
3613
3614      QualType ParamTypes[2] = {
3615        Context.getLValueReferenceType(*Ptr), Context.IntTy
3616      };
3617
3618      // Without volatile
3619      if (NumArgs == 1)
3620        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3621      else
3622        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3623
3624      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3625          VisibleTypeConversionsQuals.hasVolatile()) {
3626        // With volatile
3627        ParamTypes[0]
3628          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3629        if (NumArgs == 1)
3630          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3631        else
3632          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3633      }
3634    }
3635    break;
3636
3637  UnaryStar:
3638    // C++ [over.built]p6:
3639    //   For every cv-qualified or cv-unqualified object type T, there
3640    //   exist candidate operator functions of the form
3641    //
3642    //       T&         operator*(T*);
3643    //
3644    // C++ [over.built]p7:
3645    //   For every function type T, there exist candidate operator
3646    //   functions of the form
3647    //       T&         operator*(T*);
3648    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3649         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3650      QualType ParamTy = *Ptr;
3651      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3652      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3653                          &ParamTy, Args, 1, CandidateSet);
3654    }
3655    break;
3656
3657  UnaryPlus:
3658    // C++ [over.built]p8:
3659    //   For every type T, there exist candidate operator functions of
3660    //   the form
3661    //
3662    //       T*         operator+(T*);
3663    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3664         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3665      QualType ParamTy = *Ptr;
3666      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3667    }
3668
3669    // Fall through
3670
3671  UnaryMinus:
3672    // C++ [over.built]p9:
3673    //  For every promoted arithmetic type T, there exist candidate
3674    //  operator functions of the form
3675    //
3676    //       T         operator+(T);
3677    //       T         operator-(T);
3678    for (unsigned Arith = FirstPromotedArithmeticType;
3679         Arith < LastPromotedArithmeticType; ++Arith) {
3680      QualType ArithTy = ArithmeticTypes[Arith];
3681      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3682    }
3683    break;
3684
3685  case OO_Tilde:
3686    // C++ [over.built]p10:
3687    //   For every promoted integral type T, there exist candidate
3688    //   operator functions of the form
3689    //
3690    //        T         operator~(T);
3691    for (unsigned Int = FirstPromotedIntegralType;
3692         Int < LastPromotedIntegralType; ++Int) {
3693      QualType IntTy = ArithmeticTypes[Int];
3694      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3695    }
3696    break;
3697
3698  case OO_New:
3699  case OO_Delete:
3700  case OO_Array_New:
3701  case OO_Array_Delete:
3702  case OO_Call:
3703    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3704    break;
3705
3706  case OO_Comma:
3707  UnaryAmp:
3708  case OO_Arrow:
3709    // C++ [over.match.oper]p3:
3710    //   -- For the operator ',', the unary operator '&', or the
3711    //      operator '->', the built-in candidates set is empty.
3712    break;
3713
3714  case OO_EqualEqual:
3715  case OO_ExclaimEqual:
3716    // C++ [over.match.oper]p16:
3717    //   For every pointer to member type T, there exist candidate operator
3718    //   functions of the form
3719    //
3720    //        bool operator==(T,T);
3721    //        bool operator!=(T,T);
3722    for (BuiltinCandidateTypeSet::iterator
3723           MemPtr = CandidateTypes.member_pointer_begin(),
3724           MemPtrEnd = CandidateTypes.member_pointer_end();
3725         MemPtr != MemPtrEnd;
3726         ++MemPtr) {
3727      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3728      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3729    }
3730
3731    // Fall through
3732
3733  case OO_Less:
3734  case OO_Greater:
3735  case OO_LessEqual:
3736  case OO_GreaterEqual:
3737    // C++ [over.built]p15:
3738    //
3739    //   For every pointer or enumeration type T, there exist
3740    //   candidate operator functions of the form
3741    //
3742    //        bool       operator<(T, T);
3743    //        bool       operator>(T, T);
3744    //        bool       operator<=(T, T);
3745    //        bool       operator>=(T, T);
3746    //        bool       operator==(T, T);
3747    //        bool       operator!=(T, T);
3748    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3749         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3750      QualType ParamTypes[2] = { *Ptr, *Ptr };
3751      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3752    }
3753    for (BuiltinCandidateTypeSet::iterator Enum
3754           = CandidateTypes.enumeration_begin();
3755         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3756      QualType ParamTypes[2] = { *Enum, *Enum };
3757      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3758    }
3759
3760    // Fall through.
3761    isComparison = true;
3762
3763  BinaryPlus:
3764  BinaryMinus:
3765    if (!isComparison) {
3766      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3767
3768      // C++ [over.built]p13:
3769      //
3770      //   For every cv-qualified or cv-unqualified object type T
3771      //   there exist candidate operator functions of the form
3772      //
3773      //      T*         operator+(T*, ptrdiff_t);
3774      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3775      //      T*         operator-(T*, ptrdiff_t);
3776      //      T*         operator+(ptrdiff_t, T*);
3777      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3778      //
3779      // C++ [over.built]p14:
3780      //
3781      //   For every T, where T is a pointer to object type, there
3782      //   exist candidate operator functions of the form
3783      //
3784      //      ptrdiff_t  operator-(T, T);
3785      for (BuiltinCandidateTypeSet::iterator Ptr
3786             = CandidateTypes.pointer_begin();
3787           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3788        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3789
3790        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3791        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3792
3793        if (Op == OO_Plus) {
3794          // T* operator+(ptrdiff_t, T*);
3795          ParamTypes[0] = ParamTypes[1];
3796          ParamTypes[1] = *Ptr;
3797          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3798        } else {
3799          // ptrdiff_t operator-(T, T);
3800          ParamTypes[1] = *Ptr;
3801          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3802                              Args, 2, CandidateSet);
3803        }
3804      }
3805    }
3806    // Fall through
3807
3808  case OO_Slash:
3809  BinaryStar:
3810  Conditional:
3811    // C++ [over.built]p12:
3812    //
3813    //   For every pair of promoted arithmetic types L and R, there
3814    //   exist candidate operator functions of the form
3815    //
3816    //        LR         operator*(L, R);
3817    //        LR         operator/(L, R);
3818    //        LR         operator+(L, R);
3819    //        LR         operator-(L, R);
3820    //        bool       operator<(L, R);
3821    //        bool       operator>(L, R);
3822    //        bool       operator<=(L, R);
3823    //        bool       operator>=(L, R);
3824    //        bool       operator==(L, R);
3825    //        bool       operator!=(L, R);
3826    //
3827    //   where LR is the result of the usual arithmetic conversions
3828    //   between types L and R.
3829    //
3830    // C++ [over.built]p24:
3831    //
3832    //   For every pair of promoted arithmetic types L and R, there exist
3833    //   candidate operator functions of the form
3834    //
3835    //        LR       operator?(bool, L, R);
3836    //
3837    //   where LR is the result of the usual arithmetic conversions
3838    //   between types L and R.
3839    // Our candidates ignore the first parameter.
3840    for (unsigned Left = FirstPromotedArithmeticType;
3841         Left < LastPromotedArithmeticType; ++Left) {
3842      for (unsigned Right = FirstPromotedArithmeticType;
3843           Right < LastPromotedArithmeticType; ++Right) {
3844        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3845        QualType Result
3846          = isComparison
3847          ? Context.BoolTy
3848          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3849        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3850      }
3851    }
3852    break;
3853
3854  case OO_Percent:
3855  BinaryAmp:
3856  case OO_Caret:
3857  case OO_Pipe:
3858  case OO_LessLess:
3859  case OO_GreaterGreater:
3860    // C++ [over.built]p17:
3861    //
3862    //   For every pair of promoted integral types L and R, there
3863    //   exist candidate operator functions of the form
3864    //
3865    //      LR         operator%(L, R);
3866    //      LR         operator&(L, R);
3867    //      LR         operator^(L, R);
3868    //      LR         operator|(L, R);
3869    //      L          operator<<(L, R);
3870    //      L          operator>>(L, R);
3871    //
3872    //   where LR is the result of the usual arithmetic conversions
3873    //   between types L and R.
3874    for (unsigned Left = FirstPromotedIntegralType;
3875         Left < LastPromotedIntegralType; ++Left) {
3876      for (unsigned Right = FirstPromotedIntegralType;
3877           Right < LastPromotedIntegralType; ++Right) {
3878        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3879        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3880            ? LandR[0]
3881            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3882        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3883      }
3884    }
3885    break;
3886
3887  case OO_Equal:
3888    // C++ [over.built]p20:
3889    //
3890    //   For every pair (T, VQ), where T is an enumeration or
3891    //   pointer to member type and VQ is either volatile or
3892    //   empty, there exist candidate operator functions of the form
3893    //
3894    //        VQ T&      operator=(VQ T&, T);
3895    for (BuiltinCandidateTypeSet::iterator
3896           Enum = CandidateTypes.enumeration_begin(),
3897           EnumEnd = CandidateTypes.enumeration_end();
3898         Enum != EnumEnd; ++Enum)
3899      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3900                                             CandidateSet);
3901    for (BuiltinCandidateTypeSet::iterator
3902           MemPtr = CandidateTypes.member_pointer_begin(),
3903         MemPtrEnd = CandidateTypes.member_pointer_end();
3904         MemPtr != MemPtrEnd; ++MemPtr)
3905      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3906                                             CandidateSet);
3907      // Fall through.
3908
3909  case OO_PlusEqual:
3910  case OO_MinusEqual:
3911    // C++ [over.built]p19:
3912    //
3913    //   For every pair (T, VQ), where T is any type and VQ is either
3914    //   volatile or empty, there exist candidate operator functions
3915    //   of the form
3916    //
3917    //        T*VQ&      operator=(T*VQ&, T*);
3918    //
3919    // C++ [over.built]p21:
3920    //
3921    //   For every pair (T, VQ), where T is a cv-qualified or
3922    //   cv-unqualified object type and VQ is either volatile or
3923    //   empty, there exist candidate operator functions of the form
3924    //
3925    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3926    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3927    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3928         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3929      QualType ParamTypes[2];
3930      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3931
3932      // non-volatile version
3933      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3934      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3935                          /*IsAssigmentOperator=*/Op == OO_Equal);
3936
3937      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3938          VisibleTypeConversionsQuals.hasVolatile()) {
3939        // volatile version
3940        ParamTypes[0]
3941          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3942        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3943                            /*IsAssigmentOperator=*/Op == OO_Equal);
3944      }
3945    }
3946    // Fall through.
3947
3948  case OO_StarEqual:
3949  case OO_SlashEqual:
3950    // C++ [over.built]p18:
3951    //
3952    //   For every triple (L, VQ, R), where L is an arithmetic type,
3953    //   VQ is either volatile or empty, and R is a promoted
3954    //   arithmetic type, there exist candidate operator functions of
3955    //   the form
3956    //
3957    //        VQ L&      operator=(VQ L&, R);
3958    //        VQ L&      operator*=(VQ L&, R);
3959    //        VQ L&      operator/=(VQ L&, R);
3960    //        VQ L&      operator+=(VQ L&, R);
3961    //        VQ L&      operator-=(VQ L&, R);
3962    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3963      for (unsigned Right = FirstPromotedArithmeticType;
3964           Right < LastPromotedArithmeticType; ++Right) {
3965        QualType ParamTypes[2];
3966        ParamTypes[1] = ArithmeticTypes[Right];
3967
3968        // Add this built-in operator as a candidate (VQ is empty).
3969        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3970        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3971                            /*IsAssigmentOperator=*/Op == OO_Equal);
3972
3973        // Add this built-in operator as a candidate (VQ is 'volatile').
3974        if (VisibleTypeConversionsQuals.hasVolatile()) {
3975          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3976          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3977          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3978                              /*IsAssigmentOperator=*/Op == OO_Equal);
3979        }
3980      }
3981    }
3982    break;
3983
3984  case OO_PercentEqual:
3985  case OO_LessLessEqual:
3986  case OO_GreaterGreaterEqual:
3987  case OO_AmpEqual:
3988  case OO_CaretEqual:
3989  case OO_PipeEqual:
3990    // C++ [over.built]p22:
3991    //
3992    //   For every triple (L, VQ, R), where L is an integral type, VQ
3993    //   is either volatile or empty, and R is a promoted integral
3994    //   type, there exist candidate operator functions of the form
3995    //
3996    //        VQ L&       operator%=(VQ L&, R);
3997    //        VQ L&       operator<<=(VQ L&, R);
3998    //        VQ L&       operator>>=(VQ L&, R);
3999    //        VQ L&       operator&=(VQ L&, R);
4000    //        VQ L&       operator^=(VQ L&, R);
4001    //        VQ L&       operator|=(VQ L&, R);
4002    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4003      for (unsigned Right = FirstPromotedIntegralType;
4004           Right < LastPromotedIntegralType; ++Right) {
4005        QualType ParamTypes[2];
4006        ParamTypes[1] = ArithmeticTypes[Right];
4007
4008        // Add this built-in operator as a candidate (VQ is empty).
4009        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4010        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4011        if (VisibleTypeConversionsQuals.hasVolatile()) {
4012          // Add this built-in operator as a candidate (VQ is 'volatile').
4013          ParamTypes[0] = ArithmeticTypes[Left];
4014          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4015          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4016          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4017        }
4018      }
4019    }
4020    break;
4021
4022  case OO_Exclaim: {
4023    // C++ [over.operator]p23:
4024    //
4025    //   There also exist candidate operator functions of the form
4026    //
4027    //        bool        operator!(bool);
4028    //        bool        operator&&(bool, bool);     [BELOW]
4029    //        bool        operator||(bool, bool);     [BELOW]
4030    QualType ParamTy = Context.BoolTy;
4031    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4032                        /*IsAssignmentOperator=*/false,
4033                        /*NumContextualBoolArguments=*/1);
4034    break;
4035  }
4036
4037  case OO_AmpAmp:
4038  case OO_PipePipe: {
4039    // C++ [over.operator]p23:
4040    //
4041    //   There also exist candidate operator functions of the form
4042    //
4043    //        bool        operator!(bool);            [ABOVE]
4044    //        bool        operator&&(bool, bool);
4045    //        bool        operator||(bool, bool);
4046    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4047    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4048                        /*IsAssignmentOperator=*/false,
4049                        /*NumContextualBoolArguments=*/2);
4050    break;
4051  }
4052
4053  case OO_Subscript:
4054    // C++ [over.built]p13:
4055    //
4056    //   For every cv-qualified or cv-unqualified object type T there
4057    //   exist candidate operator functions of the form
4058    //
4059    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4060    //        T&         operator[](T*, ptrdiff_t);
4061    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4062    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4063    //        T&         operator[](ptrdiff_t, T*);
4064    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4065         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4066      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4067      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4068      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4069
4070      // T& operator[](T*, ptrdiff_t)
4071      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4072
4073      // T& operator[](ptrdiff_t, T*);
4074      ParamTypes[0] = ParamTypes[1];
4075      ParamTypes[1] = *Ptr;
4076      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4077    }
4078    break;
4079
4080  case OO_ArrowStar:
4081    // C++ [over.built]p11:
4082    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4083    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4084    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4085    //    there exist candidate operator functions of the form
4086    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4087    //    where CV12 is the union of CV1 and CV2.
4088    {
4089      for (BuiltinCandidateTypeSet::iterator Ptr =
4090             CandidateTypes.pointer_begin();
4091           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4092        QualType C1Ty = (*Ptr);
4093        QualType C1;
4094        QualifierCollector Q1;
4095        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4096          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4097          if (!isa<RecordType>(C1))
4098            continue;
4099          // heuristic to reduce number of builtin candidates in the set.
4100          // Add volatile/restrict version only if there are conversions to a
4101          // volatile/restrict type.
4102          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4103            continue;
4104          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4105            continue;
4106        }
4107        for (BuiltinCandidateTypeSet::iterator
4108             MemPtr = CandidateTypes.member_pointer_begin(),
4109             MemPtrEnd = CandidateTypes.member_pointer_end();
4110             MemPtr != MemPtrEnd; ++MemPtr) {
4111          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4112          QualType C2 = QualType(mptr->getClass(), 0);
4113          C2 = C2.getUnqualifiedType();
4114          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4115            break;
4116          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4117          // build CV12 T&
4118          QualType T = mptr->getPointeeType();
4119          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4120              T.isVolatileQualified())
4121            continue;
4122          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4123              T.isRestrictQualified())
4124            continue;
4125          T = Q1.apply(T);
4126          QualType ResultTy = Context.getLValueReferenceType(T);
4127          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4128        }
4129      }
4130    }
4131    break;
4132
4133  case OO_Conditional:
4134    // Note that we don't consider the first argument, since it has been
4135    // contextually converted to bool long ago. The candidates below are
4136    // therefore added as binary.
4137    //
4138    // C++ [over.built]p24:
4139    //   For every type T, where T is a pointer or pointer-to-member type,
4140    //   there exist candidate operator functions of the form
4141    //
4142    //        T        operator?(bool, T, T);
4143    //
4144    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4145         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4146      QualType ParamTypes[2] = { *Ptr, *Ptr };
4147      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4148    }
4149    for (BuiltinCandidateTypeSet::iterator Ptr =
4150           CandidateTypes.member_pointer_begin(),
4151         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4152      QualType ParamTypes[2] = { *Ptr, *Ptr };
4153      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4154    }
4155    goto Conditional;
4156  }
4157}
4158
4159/// \brief Add function candidates found via argument-dependent lookup
4160/// to the set of overloading candidates.
4161///
4162/// This routine performs argument-dependent name lookup based on the
4163/// given function name (which may also be an operator name) and adds
4164/// all of the overload candidates found by ADL to the overload
4165/// candidate set (C++ [basic.lookup.argdep]).
4166void
4167Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4168                                           bool Operator,
4169                                           Expr **Args, unsigned NumArgs,
4170                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4171                                           OverloadCandidateSet& CandidateSet,
4172                                           bool PartialOverloading) {
4173  ADLResult Fns;
4174
4175  // FIXME: This approach for uniquing ADL results (and removing
4176  // redundant candidates from the set) relies on pointer-equality,
4177  // which means we need to key off the canonical decl.  However,
4178  // always going back to the canonical decl might not get us the
4179  // right set of default arguments.  What default arguments are
4180  // we supposed to consider on ADL candidates, anyway?
4181
4182  // FIXME: Pass in the explicit template arguments?
4183  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4184
4185  // Erase all of the candidates we already knew about.
4186  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4187                                   CandEnd = CandidateSet.end();
4188       Cand != CandEnd; ++Cand)
4189    if (Cand->Function) {
4190      Fns.erase(Cand->Function);
4191      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4192        Fns.erase(FunTmpl);
4193    }
4194
4195  // For each of the ADL candidates we found, add it to the overload
4196  // set.
4197  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4198    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4199      if (ExplicitTemplateArgs)
4200        continue;
4201
4202      AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
4203                           false, false, PartialOverloading);
4204    } else
4205      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4206                                   AS_none, ExplicitTemplateArgs,
4207                                   Args, NumArgs, CandidateSet);
4208  }
4209}
4210
4211/// isBetterOverloadCandidate - Determines whether the first overload
4212/// candidate is a better candidate than the second (C++ 13.3.3p1).
4213bool
4214Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4215                                const OverloadCandidate& Cand2,
4216                                SourceLocation Loc) {
4217  // Define viable functions to be better candidates than non-viable
4218  // functions.
4219  if (!Cand2.Viable)
4220    return Cand1.Viable;
4221  else if (!Cand1.Viable)
4222    return false;
4223
4224  // C++ [over.match.best]p1:
4225  //
4226  //   -- if F is a static member function, ICS1(F) is defined such
4227  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4228  //      any function G, and, symmetrically, ICS1(G) is neither
4229  //      better nor worse than ICS1(F).
4230  unsigned StartArg = 0;
4231  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4232    StartArg = 1;
4233
4234  // C++ [over.match.best]p1:
4235  //   A viable function F1 is defined to be a better function than another
4236  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4237  //   conversion sequence than ICSi(F2), and then...
4238  unsigned NumArgs = Cand1.Conversions.size();
4239  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4240  bool HasBetterConversion = false;
4241  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4242    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4243                                               Cand2.Conversions[ArgIdx])) {
4244    case ImplicitConversionSequence::Better:
4245      // Cand1 has a better conversion sequence.
4246      HasBetterConversion = true;
4247      break;
4248
4249    case ImplicitConversionSequence::Worse:
4250      // Cand1 can't be better than Cand2.
4251      return false;
4252
4253    case ImplicitConversionSequence::Indistinguishable:
4254      // Do nothing.
4255      break;
4256    }
4257  }
4258
4259  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4260  //       ICSj(F2), or, if not that,
4261  if (HasBetterConversion)
4262    return true;
4263
4264  //     - F1 is a non-template function and F2 is a function template
4265  //       specialization, or, if not that,
4266  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4267      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4268    return true;
4269
4270  //   -- F1 and F2 are function template specializations, and the function
4271  //      template for F1 is more specialized than the template for F2
4272  //      according to the partial ordering rules described in 14.5.5.2, or,
4273  //      if not that,
4274  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4275      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4276    if (FunctionTemplateDecl *BetterTemplate
4277          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4278                                       Cand2.Function->getPrimaryTemplate(),
4279                                       Loc,
4280                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4281                                                             : TPOC_Call))
4282      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4283
4284  //   -- the context is an initialization by user-defined conversion
4285  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4286  //      from the return type of F1 to the destination type (i.e.,
4287  //      the type of the entity being initialized) is a better
4288  //      conversion sequence than the standard conversion sequence
4289  //      from the return type of F2 to the destination type.
4290  if (Cand1.Function && Cand2.Function &&
4291      isa<CXXConversionDecl>(Cand1.Function) &&
4292      isa<CXXConversionDecl>(Cand2.Function)) {
4293    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4294                                               Cand2.FinalConversion)) {
4295    case ImplicitConversionSequence::Better:
4296      // Cand1 has a better conversion sequence.
4297      return true;
4298
4299    case ImplicitConversionSequence::Worse:
4300      // Cand1 can't be better than Cand2.
4301      return false;
4302
4303    case ImplicitConversionSequence::Indistinguishable:
4304      // Do nothing
4305      break;
4306    }
4307  }
4308
4309  return false;
4310}
4311
4312/// \brief Computes the best viable function (C++ 13.3.3)
4313/// within an overload candidate set.
4314///
4315/// \param CandidateSet the set of candidate functions.
4316///
4317/// \param Loc the location of the function name (or operator symbol) for
4318/// which overload resolution occurs.
4319///
4320/// \param Best f overload resolution was successful or found a deleted
4321/// function, Best points to the candidate function found.
4322///
4323/// \returns The result of overload resolution.
4324OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4325                                           SourceLocation Loc,
4326                                        OverloadCandidateSet::iterator& Best) {
4327  // Find the best viable function.
4328  Best = CandidateSet.end();
4329  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4330       Cand != CandidateSet.end(); ++Cand) {
4331    if (Cand->Viable) {
4332      if (Best == CandidateSet.end() ||
4333          isBetterOverloadCandidate(*Cand, *Best, Loc))
4334        Best = Cand;
4335    }
4336  }
4337
4338  // If we didn't find any viable functions, abort.
4339  if (Best == CandidateSet.end())
4340    return OR_No_Viable_Function;
4341
4342  // Make sure that this function is better than every other viable
4343  // function. If not, we have an ambiguity.
4344  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4345       Cand != CandidateSet.end(); ++Cand) {
4346    if (Cand->Viable &&
4347        Cand != Best &&
4348        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4349      Best = CandidateSet.end();
4350      return OR_Ambiguous;
4351    }
4352  }
4353
4354  // Best is the best viable function.
4355  if (Best->Function &&
4356      (Best->Function->isDeleted() ||
4357       Best->Function->getAttr<UnavailableAttr>()))
4358    return OR_Deleted;
4359
4360  // C++ [basic.def.odr]p2:
4361  //   An overloaded function is used if it is selected by overload resolution
4362  //   when referred to from a potentially-evaluated expression. [Note: this
4363  //   covers calls to named functions (5.2.2), operator overloading
4364  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4365  //   placement new (5.3.4), as well as non-default initialization (8.5).
4366  if (Best->Function)
4367    MarkDeclarationReferenced(Loc, Best->Function);
4368  return OR_Success;
4369}
4370
4371namespace {
4372
4373enum OverloadCandidateKind {
4374  oc_function,
4375  oc_method,
4376  oc_constructor,
4377  oc_function_template,
4378  oc_method_template,
4379  oc_constructor_template,
4380  oc_implicit_default_constructor,
4381  oc_implicit_copy_constructor,
4382  oc_implicit_copy_assignment
4383};
4384
4385OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4386                                                FunctionDecl *Fn,
4387                                                std::string &Description) {
4388  bool isTemplate = false;
4389
4390  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4391    isTemplate = true;
4392    Description = S.getTemplateArgumentBindingsText(
4393      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4394  }
4395
4396  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4397    if (!Ctor->isImplicit())
4398      return isTemplate ? oc_constructor_template : oc_constructor;
4399
4400    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4401                                     : oc_implicit_default_constructor;
4402  }
4403
4404  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4405    // This actually gets spelled 'candidate function' for now, but
4406    // it doesn't hurt to split it out.
4407    if (!Meth->isImplicit())
4408      return isTemplate ? oc_method_template : oc_method;
4409
4410    assert(Meth->isCopyAssignment()
4411           && "implicit method is not copy assignment operator?");
4412    return oc_implicit_copy_assignment;
4413  }
4414
4415  return isTemplate ? oc_function_template : oc_function;
4416}
4417
4418} // end anonymous namespace
4419
4420// Notes the location of an overload candidate.
4421void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4422  std::string FnDesc;
4423  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4424  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4425    << (unsigned) K << FnDesc;
4426}
4427
4428/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4429/// "lead" diagnostic; it will be given two arguments, the source and
4430/// target types of the conversion.
4431void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4432                                       SourceLocation CaretLoc,
4433                                       const PartialDiagnostic &PDiag) {
4434  Diag(CaretLoc, PDiag)
4435    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4436  for (AmbiguousConversionSequence::const_iterator
4437         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4438    NoteOverloadCandidate(*I);
4439  }
4440}
4441
4442namespace {
4443
4444void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4445  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4446  assert(Conv.isBad());
4447  assert(Cand->Function && "for now, candidate must be a function");
4448  FunctionDecl *Fn = Cand->Function;
4449
4450  // There's a conversion slot for the object argument if this is a
4451  // non-constructor method.  Note that 'I' corresponds the
4452  // conversion-slot index.
4453  bool isObjectArgument = false;
4454  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4455    if (I == 0)
4456      isObjectArgument = true;
4457    else
4458      I--;
4459  }
4460
4461  std::string FnDesc;
4462  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4463
4464  Expr *FromExpr = Conv.Bad.FromExpr;
4465  QualType FromTy = Conv.Bad.getFromType();
4466  QualType ToTy = Conv.Bad.getToType();
4467
4468  if (FromTy == S.Context.OverloadTy) {
4469    assert(FromExpr);
4470    Expr *E = FromExpr->IgnoreParens();
4471    if (isa<UnaryOperator>(E))
4472      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4473    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4474
4475    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4476      << (unsigned) FnKind << FnDesc
4477      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4478      << ToTy << Name << I+1;
4479    return;
4480  }
4481
4482  // Do some hand-waving analysis to see if the non-viability is due
4483  // to a qualifier mismatch.
4484  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4485  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4486  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4487    CToTy = RT->getPointeeType();
4488  else {
4489    // TODO: detect and diagnose the full richness of const mismatches.
4490    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4491      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4492        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4493  }
4494
4495  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4496      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4497    // It is dumb that we have to do this here.
4498    while (isa<ArrayType>(CFromTy))
4499      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4500    while (isa<ArrayType>(CToTy))
4501      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4502
4503    Qualifiers FromQs = CFromTy.getQualifiers();
4504    Qualifiers ToQs = CToTy.getQualifiers();
4505
4506    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4507      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4508        << (unsigned) FnKind << FnDesc
4509        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4510        << FromTy
4511        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4512        << (unsigned) isObjectArgument << I+1;
4513      return;
4514    }
4515
4516    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4517    assert(CVR && "unexpected qualifiers mismatch");
4518
4519    if (isObjectArgument) {
4520      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4521        << (unsigned) FnKind << FnDesc
4522        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4523        << FromTy << (CVR - 1);
4524    } else {
4525      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4526        << (unsigned) FnKind << FnDesc
4527        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4528        << FromTy << (CVR - 1) << I+1;
4529    }
4530    return;
4531  }
4532
4533  // Diagnose references or pointers to incomplete types differently,
4534  // since it's far from impossible that the incompleteness triggered
4535  // the failure.
4536  QualType TempFromTy = FromTy.getNonReferenceType();
4537  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4538    TempFromTy = PTy->getPointeeType();
4539  if (TempFromTy->isIncompleteType()) {
4540    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4541      << (unsigned) FnKind << FnDesc
4542      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4543      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4544    return;
4545  }
4546
4547  // TODO: specialize more based on the kind of mismatch
4548  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4549    << (unsigned) FnKind << FnDesc
4550    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4551    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4552}
4553
4554void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4555                           unsigned NumFormalArgs) {
4556  // TODO: treat calls to a missing default constructor as a special case
4557
4558  FunctionDecl *Fn = Cand->Function;
4559  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4560
4561  unsigned MinParams = Fn->getMinRequiredArguments();
4562
4563  // at least / at most / exactly
4564  unsigned mode, modeCount;
4565  if (NumFormalArgs < MinParams) {
4566    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4567    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4568      mode = 0; // "at least"
4569    else
4570      mode = 2; // "exactly"
4571    modeCount = MinParams;
4572  } else {
4573    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4574    if (MinParams != FnTy->getNumArgs())
4575      mode = 1; // "at most"
4576    else
4577      mode = 2; // "exactly"
4578    modeCount = FnTy->getNumArgs();
4579  }
4580
4581  std::string Description;
4582  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4583
4584  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4585    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4586}
4587
4588/// Diagnose a failed template-argument deduction.
4589void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4590                          Expr **Args, unsigned NumArgs) {
4591  FunctionDecl *Fn = Cand->Function; // pattern
4592
4593  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4594                                   Cand->DeductionFailure.TemplateParameter);
4595
4596  switch (Cand->DeductionFailure.Result) {
4597  case Sema::TDK_Success:
4598    llvm_unreachable("TDK_success while diagnosing bad deduction");
4599
4600  case Sema::TDK_Incomplete: {
4601    NamedDecl *ParamD;
4602    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4603    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4604    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4605    assert(ParamD && "no parameter found for incomplete deduction result");
4606    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4607      << ParamD->getDeclName();
4608    return;
4609  }
4610
4611  // TODO: diagnose these individually, then kill off
4612  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4613  case Sema::TDK_InstantiationDepth:
4614  case Sema::TDK_Inconsistent:
4615  case Sema::TDK_InconsistentQuals:
4616  case Sema::TDK_SubstitutionFailure:
4617  case Sema::TDK_NonDeducedMismatch:
4618  case Sema::TDK_TooManyArguments:
4619  case Sema::TDK_TooFewArguments:
4620  case Sema::TDK_InvalidExplicitArguments:
4621  case Sema::TDK_FailedOverloadResolution:
4622    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4623    return;
4624  }
4625}
4626
4627/// Generates a 'note' diagnostic for an overload candidate.  We've
4628/// already generated a primary error at the call site.
4629///
4630/// It really does need to be a single diagnostic with its caret
4631/// pointed at the candidate declaration.  Yes, this creates some
4632/// major challenges of technical writing.  Yes, this makes pointing
4633/// out problems with specific arguments quite awkward.  It's still
4634/// better than generating twenty screens of text for every failed
4635/// overload.
4636///
4637/// It would be great to be able to express per-candidate problems
4638/// more richly for those diagnostic clients that cared, but we'd
4639/// still have to be just as careful with the default diagnostics.
4640void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4641                           Expr **Args, unsigned NumArgs) {
4642  FunctionDecl *Fn = Cand->Function;
4643
4644  // Note deleted candidates, but only if they're viable.
4645  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4646    std::string FnDesc;
4647    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4648
4649    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4650      << FnKind << FnDesc << Fn->isDeleted();
4651    return;
4652  }
4653
4654  // We don't really have anything else to say about viable candidates.
4655  if (Cand->Viable) {
4656    S.NoteOverloadCandidate(Fn);
4657    return;
4658  }
4659
4660  switch (Cand->FailureKind) {
4661  case ovl_fail_too_many_arguments:
4662  case ovl_fail_too_few_arguments:
4663    return DiagnoseArityMismatch(S, Cand, NumArgs);
4664
4665  case ovl_fail_bad_deduction:
4666    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4667
4668  case ovl_fail_trivial_conversion:
4669  case ovl_fail_bad_final_conversion:
4670    return S.NoteOverloadCandidate(Fn);
4671
4672  case ovl_fail_bad_conversion:
4673    for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I)
4674      if (Cand->Conversions[I].isBad())
4675        return DiagnoseBadConversion(S, Cand, I);
4676
4677    // FIXME: this currently happens when we're called from SemaInit
4678    // when user-conversion overload fails.  Figure out how to handle
4679    // those conditions and diagnose them well.
4680    return S.NoteOverloadCandidate(Fn);
4681  }
4682}
4683
4684void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4685  // Desugar the type of the surrogate down to a function type,
4686  // retaining as many typedefs as possible while still showing
4687  // the function type (and, therefore, its parameter types).
4688  QualType FnType = Cand->Surrogate->getConversionType();
4689  bool isLValueReference = false;
4690  bool isRValueReference = false;
4691  bool isPointer = false;
4692  if (const LValueReferenceType *FnTypeRef =
4693        FnType->getAs<LValueReferenceType>()) {
4694    FnType = FnTypeRef->getPointeeType();
4695    isLValueReference = true;
4696  } else if (const RValueReferenceType *FnTypeRef =
4697               FnType->getAs<RValueReferenceType>()) {
4698    FnType = FnTypeRef->getPointeeType();
4699    isRValueReference = true;
4700  }
4701  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4702    FnType = FnTypePtr->getPointeeType();
4703    isPointer = true;
4704  }
4705  // Desugar down to a function type.
4706  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4707  // Reconstruct the pointer/reference as appropriate.
4708  if (isPointer) FnType = S.Context.getPointerType(FnType);
4709  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4710  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4711
4712  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4713    << FnType;
4714}
4715
4716void NoteBuiltinOperatorCandidate(Sema &S,
4717                                  const char *Opc,
4718                                  SourceLocation OpLoc,
4719                                  OverloadCandidate *Cand) {
4720  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4721  std::string TypeStr("operator");
4722  TypeStr += Opc;
4723  TypeStr += "(";
4724  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4725  if (Cand->Conversions.size() == 1) {
4726    TypeStr += ")";
4727    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4728  } else {
4729    TypeStr += ", ";
4730    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4731    TypeStr += ")";
4732    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4733  }
4734}
4735
4736void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4737                                  OverloadCandidate *Cand) {
4738  unsigned NoOperands = Cand->Conversions.size();
4739  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4740    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4741    if (ICS.isBad()) break; // all meaningless after first invalid
4742    if (!ICS.isAmbiguous()) continue;
4743
4744    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4745                              PDiag(diag::note_ambiguous_type_conversion));
4746  }
4747}
4748
4749SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4750  if (Cand->Function)
4751    return Cand->Function->getLocation();
4752  if (Cand->IsSurrogate)
4753    return Cand->Surrogate->getLocation();
4754  return SourceLocation();
4755}
4756
4757struct CompareOverloadCandidatesForDisplay {
4758  Sema &S;
4759  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4760
4761  bool operator()(const OverloadCandidate *L,
4762                  const OverloadCandidate *R) {
4763    // Fast-path this check.
4764    if (L == R) return false;
4765
4766    // Order first by viability.
4767    if (L->Viable) {
4768      if (!R->Viable) return true;
4769
4770      // TODO: introduce a tri-valued comparison for overload
4771      // candidates.  Would be more worthwhile if we had a sort
4772      // that could exploit it.
4773      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4774      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4775    } else if (R->Viable)
4776      return false;
4777
4778    assert(L->Viable == R->Viable);
4779
4780    // Criteria by which we can sort non-viable candidates:
4781    if (!L->Viable) {
4782      // 1. Arity mismatches come after other candidates.
4783      if (L->FailureKind == ovl_fail_too_many_arguments ||
4784          L->FailureKind == ovl_fail_too_few_arguments)
4785        return false;
4786      if (R->FailureKind == ovl_fail_too_many_arguments ||
4787          R->FailureKind == ovl_fail_too_few_arguments)
4788        return true;
4789
4790      // 2. Bad conversions come first and are ordered by the number
4791      // of bad conversions and quality of good conversions.
4792      if (L->FailureKind == ovl_fail_bad_conversion) {
4793        if (R->FailureKind != ovl_fail_bad_conversion)
4794          return true;
4795
4796        // If there's any ordering between the defined conversions...
4797        // FIXME: this might not be transitive.
4798        assert(L->Conversions.size() == R->Conversions.size());
4799
4800        int leftBetter = 0;
4801        for (unsigned I = 0, E = L->Conversions.size(); I != E; ++I) {
4802          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4803                                                       R->Conversions[I])) {
4804          case ImplicitConversionSequence::Better:
4805            leftBetter++;
4806            break;
4807
4808          case ImplicitConversionSequence::Worse:
4809            leftBetter--;
4810            break;
4811
4812          case ImplicitConversionSequence::Indistinguishable:
4813            break;
4814          }
4815        }
4816        if (leftBetter > 0) return true;
4817        if (leftBetter < 0) return false;
4818
4819      } else if (R->FailureKind == ovl_fail_bad_conversion)
4820        return false;
4821
4822      // TODO: others?
4823    }
4824
4825    // Sort everything else by location.
4826    SourceLocation LLoc = GetLocationForCandidate(L);
4827    SourceLocation RLoc = GetLocationForCandidate(R);
4828
4829    // Put candidates without locations (e.g. builtins) at the end.
4830    if (LLoc.isInvalid()) return false;
4831    if (RLoc.isInvalid()) return true;
4832
4833    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4834  }
4835};
4836
4837/// CompleteNonViableCandidate - Normally, overload resolution only
4838/// computes up to the first
4839void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4840                                Expr **Args, unsigned NumArgs) {
4841  assert(!Cand->Viable);
4842
4843  // Don't do anything on failures other than bad conversion.
4844  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4845
4846  // Skip forward to the first bad conversion.
4847  unsigned ConvIdx = 0;
4848  unsigned ConvCount = Cand->Conversions.size();
4849  while (true) {
4850    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4851    ConvIdx++;
4852    if (Cand->Conversions[ConvIdx - 1].isBad())
4853      break;
4854  }
4855
4856  if (ConvIdx == ConvCount)
4857    return;
4858
4859  // FIXME: these should probably be preserved from the overload
4860  // operation somehow.
4861  bool SuppressUserConversions = false;
4862  bool ForceRValue = false;
4863
4864  const FunctionProtoType* Proto;
4865  unsigned ArgIdx = ConvIdx;
4866
4867  if (Cand->IsSurrogate) {
4868    QualType ConvType
4869      = Cand->Surrogate->getConversionType().getNonReferenceType();
4870    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4871      ConvType = ConvPtrType->getPointeeType();
4872    Proto = ConvType->getAs<FunctionProtoType>();
4873    ArgIdx--;
4874  } else if (Cand->Function) {
4875    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4876    if (isa<CXXMethodDecl>(Cand->Function) &&
4877        !isa<CXXConstructorDecl>(Cand->Function))
4878      ArgIdx--;
4879  } else {
4880    // Builtin binary operator with a bad first conversion.
4881    assert(ConvCount <= 3);
4882    for (; ConvIdx != ConvCount; ++ConvIdx)
4883      Cand->Conversions[ConvIdx]
4884        = S.TryCopyInitialization(Args[ConvIdx],
4885                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4886                                  SuppressUserConversions, ForceRValue,
4887                                  /*InOverloadResolution*/ true);
4888    return;
4889  }
4890
4891  // Fill in the rest of the conversions.
4892  unsigned NumArgsInProto = Proto->getNumArgs();
4893  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4894    if (ArgIdx < NumArgsInProto)
4895      Cand->Conversions[ConvIdx]
4896        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4897                                  SuppressUserConversions, ForceRValue,
4898                                  /*InOverloadResolution=*/true);
4899    else
4900      Cand->Conversions[ConvIdx].setEllipsis();
4901  }
4902}
4903
4904} // end anonymous namespace
4905
4906/// PrintOverloadCandidates - When overload resolution fails, prints
4907/// diagnostic messages containing the candidates in the candidate
4908/// set.
4909void
4910Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4911                              OverloadCandidateDisplayKind OCD,
4912                              Expr **Args, unsigned NumArgs,
4913                              const char *Opc,
4914                              SourceLocation OpLoc) {
4915  // Sort the candidates by viability and position.  Sorting directly would
4916  // be prohibitive, so we make a set of pointers and sort those.
4917  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4918  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4919  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4920                                  LastCand = CandidateSet.end();
4921       Cand != LastCand; ++Cand) {
4922    if (Cand->Viable)
4923      Cands.push_back(Cand);
4924    else if (OCD == OCD_AllCandidates) {
4925      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4926      Cands.push_back(Cand);
4927    }
4928  }
4929
4930  std::sort(Cands.begin(), Cands.end(),
4931            CompareOverloadCandidatesForDisplay(*this));
4932
4933  bool ReportedAmbiguousConversions = false;
4934
4935  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4936  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4937    OverloadCandidate *Cand = *I;
4938
4939    if (Cand->Function)
4940      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4941    else if (Cand->IsSurrogate)
4942      NoteSurrogateCandidate(*this, Cand);
4943
4944    // This a builtin candidate.  We do not, in general, want to list
4945    // every possible builtin candidate.
4946    else if (Cand->Viable) {
4947      // Generally we only see ambiguities including viable builtin
4948      // operators if overload resolution got screwed up by an
4949      // ambiguous user-defined conversion.
4950      //
4951      // FIXME: It's quite possible for different conversions to see
4952      // different ambiguities, though.
4953      if (!ReportedAmbiguousConversions) {
4954        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4955        ReportedAmbiguousConversions = true;
4956      }
4957
4958      // If this is a viable builtin, print it.
4959      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4960    }
4961  }
4962}
4963
4964static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D,
4965                                  AccessSpecifier AS) {
4966  if (isa<UnresolvedLookupExpr>(E))
4967    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);
4968
4969  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
4970}
4971
4972/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4973/// an overloaded function (C++ [over.over]), where @p From is an
4974/// expression with overloaded function type and @p ToType is the type
4975/// we're trying to resolve to. For example:
4976///
4977/// @code
4978/// int f(double);
4979/// int f(int);
4980///
4981/// int (*pfd)(double) = f; // selects f(double)
4982/// @endcode
4983///
4984/// This routine returns the resulting FunctionDecl if it could be
4985/// resolved, and NULL otherwise. When @p Complain is true, this
4986/// routine will emit diagnostics if there is an error.
4987FunctionDecl *
4988Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4989                                         bool Complain) {
4990  QualType FunctionType = ToType;
4991  bool IsMember = false;
4992  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4993    FunctionType = ToTypePtr->getPointeeType();
4994  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4995    FunctionType = ToTypeRef->getPointeeType();
4996  else if (const MemberPointerType *MemTypePtr =
4997                    ToType->getAs<MemberPointerType>()) {
4998    FunctionType = MemTypePtr->getPointeeType();
4999    IsMember = true;
5000  }
5001
5002  // We only look at pointers or references to functions.
5003  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5004  if (!FunctionType->isFunctionType())
5005    return 0;
5006
5007  // Find the actual overloaded function declaration.
5008  if (From->getType() != Context.OverloadTy)
5009    return 0;
5010
5011  // C++ [over.over]p1:
5012  //   [...] [Note: any redundant set of parentheses surrounding the
5013  //   overloaded function name is ignored (5.1). ]
5014  // C++ [over.over]p1:
5015  //   [...] The overloaded function name can be preceded by the &
5016  //   operator.
5017  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5018  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5019  if (OvlExpr->hasExplicitTemplateArgs()) {
5020    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5021    ExplicitTemplateArgs = &ETABuffer;
5022  }
5023
5024  // Look through all of the overloaded functions, searching for one
5025  // whose type matches exactly.
5026  UnresolvedSet<4> Matches;  // contains only FunctionDecls
5027  bool FoundNonTemplateFunction = false;
5028  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5029         E = OvlExpr->decls_end(); I != E; ++I) {
5030    // Look through any using declarations to find the underlying function.
5031    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5032
5033    // C++ [over.over]p3:
5034    //   Non-member functions and static member functions match
5035    //   targets of type "pointer-to-function" or "reference-to-function."
5036    //   Nonstatic member functions match targets of
5037    //   type "pointer-to-member-function."
5038    // Note that according to DR 247, the containing class does not matter.
5039
5040    if (FunctionTemplateDecl *FunctionTemplate
5041          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5042      if (CXXMethodDecl *Method
5043            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5044        // Skip non-static function templates when converting to pointer, and
5045        // static when converting to member pointer.
5046        if (Method->isStatic() == IsMember)
5047          continue;
5048      } else if (IsMember)
5049        continue;
5050
5051      // C++ [over.over]p2:
5052      //   If the name is a function template, template argument deduction is
5053      //   done (14.8.2.2), and if the argument deduction succeeds, the
5054      //   resulting template argument list is used to generate a single
5055      //   function template specialization, which is added to the set of
5056      //   overloaded functions considered.
5057      // FIXME: We don't really want to build the specialization here, do we?
5058      FunctionDecl *Specialization = 0;
5059      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5060      if (TemplateDeductionResult Result
5061            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5062                                      FunctionType, Specialization, Info)) {
5063        // FIXME: make a note of the failed deduction for diagnostics.
5064        (void)Result;
5065      } else {
5066        // FIXME: If the match isn't exact, shouldn't we just drop this as
5067        // a candidate? Find a testcase before changing the code.
5068        assert(FunctionType
5069                 == Context.getCanonicalType(Specialization->getType()));
5070        Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
5071                        I.getAccess());
5072      }
5073
5074      continue;
5075    }
5076
5077    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5078      // Skip non-static functions when converting to pointer, and static
5079      // when converting to member pointer.
5080      if (Method->isStatic() == IsMember)
5081        continue;
5082
5083      // If we have explicit template arguments, skip non-templates.
5084      if (OvlExpr->hasExplicitTemplateArgs())
5085        continue;
5086    } else if (IsMember)
5087      continue;
5088
5089    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5090      QualType ResultTy;
5091      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5092          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5093                               ResultTy)) {
5094        Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
5095                        I.getAccess());
5096        FoundNonTemplateFunction = true;
5097      }
5098    }
5099  }
5100
5101  // If there were 0 or 1 matches, we're done.
5102  if (Matches.empty())
5103    return 0;
5104  else if (Matches.size() == 1) {
5105    FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
5106    MarkDeclarationReferenced(From->getLocStart(), Result);
5107    if (Complain)
5108      CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
5109    return Result;
5110  }
5111
5112  // C++ [over.over]p4:
5113  //   If more than one function is selected, [...]
5114  if (!FoundNonTemplateFunction) {
5115    //   [...] and any given function template specialization F1 is
5116    //   eliminated if the set contains a second function template
5117    //   specialization whose function template is more specialized
5118    //   than the function template of F1 according to the partial
5119    //   ordering rules of 14.5.5.2.
5120
5121    // The algorithm specified above is quadratic. We instead use a
5122    // two-pass algorithm (similar to the one used to identify the
5123    // best viable function in an overload set) that identifies the
5124    // best function template (if it exists).
5125
5126    UnresolvedSetIterator Result =
5127        getMostSpecialized(Matches.begin(), Matches.end(),
5128                           TPOC_Other, From->getLocStart(),
5129                           PDiag(),
5130                           PDiag(diag::err_addr_ovl_ambiguous)
5131                               << Matches[0]->getDeclName(),
5132                           PDiag(diag::note_ovl_candidate)
5133                               << (unsigned) oc_function_template);
5134    assert(Result != Matches.end() && "no most-specialized template");
5135    MarkDeclarationReferenced(From->getLocStart(), *Result);
5136    if (Complain)
5137      CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
5138    return cast<FunctionDecl>(*Result);
5139  }
5140
5141  //   [...] any function template specializations in the set are
5142  //   eliminated if the set also contains a non-template function, [...]
5143  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5144    if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
5145      ++I;
5146    else {
5147      Matches.erase(I);
5148      --N;
5149    }
5150  }
5151
5152  // [...] After such eliminations, if any, there shall remain exactly one
5153  // selected function.
5154  if (Matches.size() == 1) {
5155    UnresolvedSetIterator Match = Matches.begin();
5156    MarkDeclarationReferenced(From->getLocStart(), *Match);
5157    if (Complain)
5158      CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
5159    return cast<FunctionDecl>(*Match);
5160  }
5161
5162  // FIXME: We should probably return the same thing that BestViableFunction
5163  // returns (even if we issue the diagnostics here).
5164  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5165    << Matches[0]->getDeclName();
5166  for (UnresolvedSetIterator I = Matches.begin(),
5167         E = Matches.end(); I != E; ++I)
5168    NoteOverloadCandidate(cast<FunctionDecl>(*I));
5169  return 0;
5170}
5171
5172/// \brief Given an expression that refers to an overloaded function, try to
5173/// resolve that overloaded function expression down to a single function.
5174///
5175/// This routine can only resolve template-ids that refer to a single function
5176/// template, where that template-id refers to a single template whose template
5177/// arguments are either provided by the template-id or have defaults,
5178/// as described in C++0x [temp.arg.explicit]p3.
5179FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5180  // C++ [over.over]p1:
5181  //   [...] [Note: any redundant set of parentheses surrounding the
5182  //   overloaded function name is ignored (5.1). ]
5183  // C++ [over.over]p1:
5184  //   [...] The overloaded function name can be preceded by the &
5185  //   operator.
5186
5187  if (From->getType() != Context.OverloadTy)
5188    return 0;
5189
5190  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5191
5192  // If we didn't actually find any template-ids, we're done.
5193  if (!OvlExpr->hasExplicitTemplateArgs())
5194    return 0;
5195
5196  TemplateArgumentListInfo ExplicitTemplateArgs;
5197  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5198
5199  // Look through all of the overloaded functions, searching for one
5200  // whose type matches exactly.
5201  FunctionDecl *Matched = 0;
5202  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5203         E = OvlExpr->decls_end(); I != E; ++I) {
5204    // C++0x [temp.arg.explicit]p3:
5205    //   [...] In contexts where deduction is done and fails, or in contexts
5206    //   where deduction is not done, if a template argument list is
5207    //   specified and it, along with any default template arguments,
5208    //   identifies a single function template specialization, then the
5209    //   template-id is an lvalue for the function template specialization.
5210    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5211
5212    // C++ [over.over]p2:
5213    //   If the name is a function template, template argument deduction is
5214    //   done (14.8.2.2), and if the argument deduction succeeds, the
5215    //   resulting template argument list is used to generate a single
5216    //   function template specialization, which is added to the set of
5217    //   overloaded functions considered.
5218    FunctionDecl *Specialization = 0;
5219    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5220    if (TemplateDeductionResult Result
5221          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5222                                    Specialization, Info)) {
5223      // FIXME: make a note of the failed deduction for diagnostics.
5224      (void)Result;
5225      continue;
5226    }
5227
5228    // Multiple matches; we can't resolve to a single declaration.
5229    if (Matched)
5230      return 0;
5231
5232    Matched = Specialization;
5233  }
5234
5235  return Matched;
5236}
5237
5238/// \brief Add a single candidate to the overload set.
5239static void AddOverloadedCallCandidate(Sema &S,
5240                                       NamedDecl *Callee,
5241                                       AccessSpecifier Access,
5242                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5243                                       Expr **Args, unsigned NumArgs,
5244                                       OverloadCandidateSet &CandidateSet,
5245                                       bool PartialOverloading) {
5246  if (isa<UsingShadowDecl>(Callee))
5247    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5248
5249  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5250    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5251    S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
5252                           false, false, PartialOverloading);
5253    return;
5254  }
5255
5256  if (FunctionTemplateDecl *FuncTemplate
5257      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5258    S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
5259                                   Args, NumArgs, CandidateSet);
5260    return;
5261  }
5262
5263  assert(false && "unhandled case in overloaded call candidate");
5264
5265  // do nothing?
5266}
5267
5268/// \brief Add the overload candidates named by callee and/or found by argument
5269/// dependent lookup to the given overload set.
5270void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5271                                       Expr **Args, unsigned NumArgs,
5272                                       OverloadCandidateSet &CandidateSet,
5273                                       bool PartialOverloading) {
5274
5275#ifndef NDEBUG
5276  // Verify that ArgumentDependentLookup is consistent with the rules
5277  // in C++0x [basic.lookup.argdep]p3:
5278  //
5279  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5280  //   and let Y be the lookup set produced by argument dependent
5281  //   lookup (defined as follows). If X contains
5282  //
5283  //     -- a declaration of a class member, or
5284  //
5285  //     -- a block-scope function declaration that is not a
5286  //        using-declaration, or
5287  //
5288  //     -- a declaration that is neither a function or a function
5289  //        template
5290  //
5291  //   then Y is empty.
5292
5293  if (ULE->requiresADL()) {
5294    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5295           E = ULE->decls_end(); I != E; ++I) {
5296      assert(!(*I)->getDeclContext()->isRecord());
5297      assert(isa<UsingShadowDecl>(*I) ||
5298             !(*I)->getDeclContext()->isFunctionOrMethod());
5299      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5300    }
5301  }
5302#endif
5303
5304  // It would be nice to avoid this copy.
5305  TemplateArgumentListInfo TABuffer;
5306  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5307  if (ULE->hasExplicitTemplateArgs()) {
5308    ULE->copyTemplateArgumentsInto(TABuffer);
5309    ExplicitTemplateArgs = &TABuffer;
5310  }
5311
5312  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5313         E = ULE->decls_end(); I != E; ++I)
5314    AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
5315                               Args, NumArgs, CandidateSet,
5316                               PartialOverloading);
5317
5318  if (ULE->requiresADL())
5319    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5320                                         Args, NumArgs,
5321                                         ExplicitTemplateArgs,
5322                                         CandidateSet,
5323                                         PartialOverloading);
5324}
5325
5326static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5327                                      Expr **Args, unsigned NumArgs) {
5328  Fn->Destroy(SemaRef.Context);
5329  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5330    Args[Arg]->Destroy(SemaRef.Context);
5331  return SemaRef.ExprError();
5332}
5333
5334/// Attempts to recover from a call where no functions were found.
5335///
5336/// Returns true if new candidates were found.
5337static Sema::OwningExprResult
5338BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5339                      UnresolvedLookupExpr *ULE,
5340                      SourceLocation LParenLoc,
5341                      Expr **Args, unsigned NumArgs,
5342                      SourceLocation *CommaLocs,
5343                      SourceLocation RParenLoc) {
5344
5345  CXXScopeSpec SS;
5346  if (ULE->getQualifier()) {
5347    SS.setScopeRep(ULE->getQualifier());
5348    SS.setRange(ULE->getQualifierRange());
5349  }
5350
5351  TemplateArgumentListInfo TABuffer;
5352  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5353  if (ULE->hasExplicitTemplateArgs()) {
5354    ULE->copyTemplateArgumentsInto(TABuffer);
5355    ExplicitTemplateArgs = &TABuffer;
5356  }
5357
5358  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5359                 Sema::LookupOrdinaryName);
5360  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5361    return Destroy(SemaRef, Fn, Args, NumArgs);
5362
5363  assert(!R.empty() && "lookup results empty despite recovery");
5364
5365  // Build an implicit member call if appropriate.  Just drop the
5366  // casts and such from the call, we don't really care.
5367  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5368  if ((*R.begin())->isCXXClassMember())
5369    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5370  else if (ExplicitTemplateArgs)
5371    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5372  else
5373    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5374
5375  if (NewFn.isInvalid())
5376    return Destroy(SemaRef, Fn, Args, NumArgs);
5377
5378  Fn->Destroy(SemaRef.Context);
5379
5380  // This shouldn't cause an infinite loop because we're giving it
5381  // an expression with non-empty lookup results, which should never
5382  // end up here.
5383  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5384                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5385                               CommaLocs, RParenLoc);
5386}
5387
5388/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5389/// (which eventually refers to the declaration Func) and the call
5390/// arguments Args/NumArgs, attempt to resolve the function call down
5391/// to a specific function. If overload resolution succeeds, returns
5392/// the function declaration produced by overload
5393/// resolution. Otherwise, emits diagnostics, deletes all of the
5394/// arguments and Fn, and returns NULL.
5395Sema::OwningExprResult
5396Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5397                              SourceLocation LParenLoc,
5398                              Expr **Args, unsigned NumArgs,
5399                              SourceLocation *CommaLocs,
5400                              SourceLocation RParenLoc) {
5401#ifndef NDEBUG
5402  if (ULE->requiresADL()) {
5403    // To do ADL, we must have found an unqualified name.
5404    assert(!ULE->getQualifier() && "qualified name with ADL");
5405
5406    // We don't perform ADL for implicit declarations of builtins.
5407    // Verify that this was correctly set up.
5408    FunctionDecl *F;
5409    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5410        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5411        F->getBuiltinID() && F->isImplicit())
5412      assert(0 && "performing ADL for builtin");
5413
5414    // We don't perform ADL in C.
5415    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5416  }
5417#endif
5418
5419  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5420
5421  // Add the functions denoted by the callee to the set of candidate
5422  // functions, including those from argument-dependent lookup.
5423  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5424
5425  // If we found nothing, try to recover.
5426  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5427  // bailout out if it fails.
5428  if (CandidateSet.empty())
5429    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5430                                 CommaLocs, RParenLoc);
5431
5432  OverloadCandidateSet::iterator Best;
5433  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5434  case OR_Success: {
5435    FunctionDecl *FDecl = Best->Function;
5436    CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
5437    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5438    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5439  }
5440
5441  case OR_No_Viable_Function:
5442    Diag(Fn->getSourceRange().getBegin(),
5443         diag::err_ovl_no_viable_function_in_call)
5444      << ULE->getName() << Fn->getSourceRange();
5445    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5446    break;
5447
5448  case OR_Ambiguous:
5449    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5450      << ULE->getName() << Fn->getSourceRange();
5451    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5452    break;
5453
5454  case OR_Deleted:
5455    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5456      << Best->Function->isDeleted()
5457      << ULE->getName()
5458      << Fn->getSourceRange();
5459    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5460    break;
5461  }
5462
5463  // Overload resolution failed. Destroy all of the subexpressions and
5464  // return NULL.
5465  Fn->Destroy(Context);
5466  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5467    Args[Arg]->Destroy(Context);
5468  return ExprError();
5469}
5470
5471static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5472  return Functions.size() > 1 ||
5473    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5474}
5475
5476/// \brief Create a unary operation that may resolve to an overloaded
5477/// operator.
5478///
5479/// \param OpLoc The location of the operator itself (e.g., '*').
5480///
5481/// \param OpcIn The UnaryOperator::Opcode that describes this
5482/// operator.
5483///
5484/// \param Functions The set of non-member functions that will be
5485/// considered by overload resolution. The caller needs to build this
5486/// set based on the context using, e.g.,
5487/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5488/// set should not contain any member functions; those will be added
5489/// by CreateOverloadedUnaryOp().
5490///
5491/// \param input The input argument.
5492Sema::OwningExprResult
5493Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5494                              const UnresolvedSetImpl &Fns,
5495                              ExprArg input) {
5496  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5497  Expr *Input = (Expr *)input.get();
5498
5499  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5500  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5501  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5502
5503  Expr *Args[2] = { Input, 0 };
5504  unsigned NumArgs = 1;
5505
5506  // For post-increment and post-decrement, add the implicit '0' as
5507  // the second argument, so that we know this is a post-increment or
5508  // post-decrement.
5509  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5510    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5511    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5512                                           SourceLocation());
5513    NumArgs = 2;
5514  }
5515
5516  if (Input->isTypeDependent()) {
5517    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5518    UnresolvedLookupExpr *Fn
5519      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5520                                     0, SourceRange(), OpName, OpLoc,
5521                                     /*ADL*/ true, IsOverloaded(Fns));
5522    Fn->addDecls(Fns.begin(), Fns.end());
5523
5524    input.release();
5525    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5526                                                   &Args[0], NumArgs,
5527                                                   Context.DependentTy,
5528                                                   OpLoc));
5529  }
5530
5531  // Build an empty overload set.
5532  OverloadCandidateSet CandidateSet(OpLoc);
5533
5534  // Add the candidates from the given function set.
5535  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5536
5537  // Add operator candidates that are member functions.
5538  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5539
5540  // Add candidates from ADL.
5541  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5542                                       Args, NumArgs,
5543                                       /*ExplicitTemplateArgs*/ 0,
5544                                       CandidateSet);
5545
5546  // Add builtin operator candidates.
5547  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5548
5549  // Perform overload resolution.
5550  OverloadCandidateSet::iterator Best;
5551  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5552  case OR_Success: {
5553    // We found a built-in operator or an overloaded operator.
5554    FunctionDecl *FnDecl = Best->Function;
5555
5556    if (FnDecl) {
5557      // We matched an overloaded operator. Build a call to that
5558      // operator.
5559
5560      // Convert the arguments.
5561      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5562        CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5563
5564        if (PerformObjectArgumentInitialization(Input, Method))
5565          return ExprError();
5566      } else {
5567        // Convert the arguments.
5568        OwningExprResult InputInit
5569          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5570                                                      FnDecl->getParamDecl(0)),
5571                                      SourceLocation(),
5572                                      move(input));
5573        if (InputInit.isInvalid())
5574          return ExprError();
5575
5576        input = move(InputInit);
5577        Input = (Expr *)input.get();
5578      }
5579
5580      // Determine the result type
5581      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5582
5583      // Build the actual expression node.
5584      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5585                                               SourceLocation());
5586      UsualUnaryConversions(FnExpr);
5587
5588      input.release();
5589      Args[0] = Input;
5590      ExprOwningPtr<CallExpr> TheCall(this,
5591        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5592                                          Args, NumArgs, ResultTy, OpLoc));
5593
5594      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5595                              FnDecl))
5596        return ExprError();
5597
5598      return MaybeBindToTemporary(TheCall.release());
5599    } else {
5600      // We matched a built-in operator. Convert the arguments, then
5601      // break out so that we will build the appropriate built-in
5602      // operator node.
5603        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5604                                      Best->Conversions[0], AA_Passing))
5605          return ExprError();
5606
5607        break;
5608      }
5609    }
5610
5611    case OR_No_Viable_Function:
5612      // No viable function; fall through to handling this as a
5613      // built-in operator, which will produce an error message for us.
5614      break;
5615
5616    case OR_Ambiguous:
5617      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5618          << UnaryOperator::getOpcodeStr(Opc)
5619          << Input->getSourceRange();
5620      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5621                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5622      return ExprError();
5623
5624    case OR_Deleted:
5625      Diag(OpLoc, diag::err_ovl_deleted_oper)
5626        << Best->Function->isDeleted()
5627        << UnaryOperator::getOpcodeStr(Opc)
5628        << Input->getSourceRange();
5629      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5630      return ExprError();
5631    }
5632
5633  // Either we found no viable overloaded operator or we matched a
5634  // built-in operator. In either case, fall through to trying to
5635  // build a built-in operation.
5636  input.release();
5637  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5638}
5639
5640/// \brief Create a binary operation that may resolve to an overloaded
5641/// operator.
5642///
5643/// \param OpLoc The location of the operator itself (e.g., '+').
5644///
5645/// \param OpcIn The BinaryOperator::Opcode that describes this
5646/// operator.
5647///
5648/// \param Functions The set of non-member functions that will be
5649/// considered by overload resolution. The caller needs to build this
5650/// set based on the context using, e.g.,
5651/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5652/// set should not contain any member functions; those will be added
5653/// by CreateOverloadedBinOp().
5654///
5655/// \param LHS Left-hand argument.
5656/// \param RHS Right-hand argument.
5657Sema::OwningExprResult
5658Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5659                            unsigned OpcIn,
5660                            const UnresolvedSetImpl &Fns,
5661                            Expr *LHS, Expr *RHS) {
5662  Expr *Args[2] = { LHS, RHS };
5663  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5664
5665  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5666  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5667  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5668
5669  // If either side is type-dependent, create an appropriate dependent
5670  // expression.
5671  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5672    if (Fns.empty()) {
5673      // If there are no functions to store, just build a dependent
5674      // BinaryOperator or CompoundAssignment.
5675      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5676        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5677                                                  Context.DependentTy, OpLoc));
5678
5679      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5680                                                        Context.DependentTy,
5681                                                        Context.DependentTy,
5682                                                        Context.DependentTy,
5683                                                        OpLoc));
5684    }
5685
5686    // FIXME: save results of ADL from here?
5687    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5688    UnresolvedLookupExpr *Fn
5689      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5690                                     0, SourceRange(), OpName, OpLoc,
5691                                     /*ADL*/ true, IsOverloaded(Fns));
5692
5693    Fn->addDecls(Fns.begin(), Fns.end());
5694    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5695                                                   Args, 2,
5696                                                   Context.DependentTy,
5697                                                   OpLoc));
5698  }
5699
5700  // If this is the .* operator, which is not overloadable, just
5701  // create a built-in binary operator.
5702  if (Opc == BinaryOperator::PtrMemD)
5703    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5704
5705  // If this is the assignment operator, we only perform overload resolution
5706  // if the left-hand side is a class or enumeration type. This is actually
5707  // a hack. The standard requires that we do overload resolution between the
5708  // various built-in candidates, but as DR507 points out, this can lead to
5709  // problems. So we do it this way, which pretty much follows what GCC does.
5710  // Note that we go the traditional code path for compound assignment forms.
5711  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5712    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5713
5714  // Build an empty overload set.
5715  OverloadCandidateSet CandidateSet(OpLoc);
5716
5717  // Add the candidates from the given function set.
5718  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5719
5720  // Add operator candidates that are member functions.
5721  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5722
5723  // Add candidates from ADL.
5724  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5725                                       Args, 2,
5726                                       /*ExplicitTemplateArgs*/ 0,
5727                                       CandidateSet);
5728
5729  // Add builtin operator candidates.
5730  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5731
5732  // Perform overload resolution.
5733  OverloadCandidateSet::iterator Best;
5734  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5735    case OR_Success: {
5736      // We found a built-in operator or an overloaded operator.
5737      FunctionDecl *FnDecl = Best->Function;
5738
5739      if (FnDecl) {
5740        // We matched an overloaded operator. Build a call to that
5741        // operator.
5742
5743        // Convert the arguments.
5744        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5745          // Best->Access is only meaningful for class members.
5746          CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5747
5748          OwningExprResult Arg1
5749            = PerformCopyInitialization(
5750                                        InitializedEntity::InitializeParameter(
5751                                                        FnDecl->getParamDecl(0)),
5752                                        SourceLocation(),
5753                                        Owned(Args[1]));
5754          if (Arg1.isInvalid())
5755            return ExprError();
5756
5757          if (PerformObjectArgumentInitialization(Args[0], Method))
5758            return ExprError();
5759
5760          Args[1] = RHS = Arg1.takeAs<Expr>();
5761        } else {
5762          // Convert the arguments.
5763          OwningExprResult Arg0
5764            = PerformCopyInitialization(
5765                                        InitializedEntity::InitializeParameter(
5766                                                        FnDecl->getParamDecl(0)),
5767                                        SourceLocation(),
5768                                        Owned(Args[0]));
5769          if (Arg0.isInvalid())
5770            return ExprError();
5771
5772          OwningExprResult Arg1
5773            = PerformCopyInitialization(
5774                                        InitializedEntity::InitializeParameter(
5775                                                        FnDecl->getParamDecl(1)),
5776                                        SourceLocation(),
5777                                        Owned(Args[1]));
5778          if (Arg1.isInvalid())
5779            return ExprError();
5780          Args[0] = LHS = Arg0.takeAs<Expr>();
5781          Args[1] = RHS = Arg1.takeAs<Expr>();
5782        }
5783
5784        // Determine the result type
5785        QualType ResultTy
5786          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5787        ResultTy = ResultTy.getNonReferenceType();
5788
5789        // Build the actual expression node.
5790        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5791                                                 OpLoc);
5792        UsualUnaryConversions(FnExpr);
5793
5794        ExprOwningPtr<CXXOperatorCallExpr>
5795          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5796                                                          Args, 2, ResultTy,
5797                                                          OpLoc));
5798
5799        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5800                                FnDecl))
5801          return ExprError();
5802
5803        return MaybeBindToTemporary(TheCall.release());
5804      } else {
5805        // We matched a built-in operator. Convert the arguments, then
5806        // break out so that we will build the appropriate built-in
5807        // operator node.
5808        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5809                                      Best->Conversions[0], AA_Passing) ||
5810            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5811                                      Best->Conversions[1], AA_Passing))
5812          return ExprError();
5813
5814        break;
5815      }
5816    }
5817
5818    case OR_No_Viable_Function: {
5819      // C++ [over.match.oper]p9:
5820      //   If the operator is the operator , [...] and there are no
5821      //   viable functions, then the operator is assumed to be the
5822      //   built-in operator and interpreted according to clause 5.
5823      if (Opc == BinaryOperator::Comma)
5824        break;
5825
5826      // For class as left operand for assignment or compound assigment operator
5827      // do not fall through to handling in built-in, but report that no overloaded
5828      // assignment operator found
5829      OwningExprResult Result = ExprError();
5830      if (Args[0]->getType()->isRecordType() &&
5831          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5832        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5833             << BinaryOperator::getOpcodeStr(Opc)
5834             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5835      } else {
5836        // No viable function; try to create a built-in operation, which will
5837        // produce an error. Then, show the non-viable candidates.
5838        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5839      }
5840      assert(Result.isInvalid() &&
5841             "C++ binary operator overloading is missing candidates!");
5842      if (Result.isInvalid())
5843        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5844                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5845      return move(Result);
5846    }
5847
5848    case OR_Ambiguous:
5849      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5850          << BinaryOperator::getOpcodeStr(Opc)
5851          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5852      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5853                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5854      return ExprError();
5855
5856    case OR_Deleted:
5857      Diag(OpLoc, diag::err_ovl_deleted_oper)
5858        << Best->Function->isDeleted()
5859        << BinaryOperator::getOpcodeStr(Opc)
5860        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5861      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5862      return ExprError();
5863  }
5864
5865  // We matched a built-in operator; build it.
5866  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5867}
5868
5869Action::OwningExprResult
5870Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5871                                         SourceLocation RLoc,
5872                                         ExprArg Base, ExprArg Idx) {
5873  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5874                    static_cast<Expr*>(Idx.get()) };
5875  DeclarationName OpName =
5876      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5877
5878  // If either side is type-dependent, create an appropriate dependent
5879  // expression.
5880  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5881
5882    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5883    UnresolvedLookupExpr *Fn
5884      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5885                                     0, SourceRange(), OpName, LLoc,
5886                                     /*ADL*/ true, /*Overloaded*/ false);
5887    // Can't add any actual overloads yet
5888
5889    Base.release();
5890    Idx.release();
5891    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5892                                                   Args, 2,
5893                                                   Context.DependentTy,
5894                                                   RLoc));
5895  }
5896
5897  // Build an empty overload set.
5898  OverloadCandidateSet CandidateSet(LLoc);
5899
5900  // Subscript can only be overloaded as a member function.
5901
5902  // Add operator candidates that are member functions.
5903  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5904
5905  // Add builtin operator candidates.
5906  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5907
5908  // Perform overload resolution.
5909  OverloadCandidateSet::iterator Best;
5910  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5911    case OR_Success: {
5912      // We found a built-in operator or an overloaded operator.
5913      FunctionDecl *FnDecl = Best->Function;
5914
5915      if (FnDecl) {
5916        // We matched an overloaded operator. Build a call to that
5917        // operator.
5918
5919        CheckMemberOperatorAccess(LLoc, Args[0], FnDecl, Best->getAccess());
5920
5921        // Convert the arguments.
5922        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5923        if (PerformObjectArgumentInitialization(Args[0], Method))
5924          return ExprError();
5925
5926        // Convert the arguments.
5927        OwningExprResult InputInit
5928          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5929                                                      FnDecl->getParamDecl(0)),
5930                                      SourceLocation(),
5931                                      Owned(Args[1]));
5932        if (InputInit.isInvalid())
5933          return ExprError();
5934
5935        Args[1] = InputInit.takeAs<Expr>();
5936
5937        // Determine the result type
5938        QualType ResultTy
5939          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5940        ResultTy = ResultTy.getNonReferenceType();
5941
5942        // Build the actual expression node.
5943        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5944                                                 LLoc);
5945        UsualUnaryConversions(FnExpr);
5946
5947        Base.release();
5948        Idx.release();
5949        ExprOwningPtr<CXXOperatorCallExpr>
5950          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5951                                                          FnExpr, Args, 2,
5952                                                          ResultTy, RLoc));
5953
5954        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5955                                FnDecl))
5956          return ExprError();
5957
5958        return MaybeBindToTemporary(TheCall.release());
5959      } else {
5960        // We matched a built-in operator. Convert the arguments, then
5961        // break out so that we will build the appropriate built-in
5962        // operator node.
5963        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5964                                      Best->Conversions[0], AA_Passing) ||
5965            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5966                                      Best->Conversions[1], AA_Passing))
5967          return ExprError();
5968
5969        break;
5970      }
5971    }
5972
5973    case OR_No_Viable_Function: {
5974      if (CandidateSet.empty())
5975        Diag(LLoc, diag::err_ovl_no_oper)
5976          << Args[0]->getType() << /*subscript*/ 0
5977          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5978      else
5979        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5980          << Args[0]->getType()
5981          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5982      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5983                              "[]", LLoc);
5984      return ExprError();
5985    }
5986
5987    case OR_Ambiguous:
5988      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5989          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5990      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5991                              "[]", LLoc);
5992      return ExprError();
5993
5994    case OR_Deleted:
5995      Diag(LLoc, diag::err_ovl_deleted_oper)
5996        << Best->Function->isDeleted() << "[]"
5997        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5998      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5999                              "[]", LLoc);
6000      return ExprError();
6001    }
6002
6003  // We matched a built-in operator; build it.
6004  Base.release();
6005  Idx.release();
6006  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6007                                         Owned(Args[1]), RLoc);
6008}
6009
6010/// BuildCallToMemberFunction - Build a call to a member
6011/// function. MemExpr is the expression that refers to the member
6012/// function (and includes the object parameter), Args/NumArgs are the
6013/// arguments to the function call (not including the object
6014/// parameter). The caller needs to validate that the member
6015/// expression refers to a member function or an overloaded member
6016/// function.
6017Sema::OwningExprResult
6018Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6019                                SourceLocation LParenLoc, Expr **Args,
6020                                unsigned NumArgs, SourceLocation *CommaLocs,
6021                                SourceLocation RParenLoc) {
6022  // Dig out the member expression. This holds both the object
6023  // argument and the member function we're referring to.
6024  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6025
6026  MemberExpr *MemExpr;
6027  CXXMethodDecl *Method = 0;
6028  if (isa<MemberExpr>(NakedMemExpr)) {
6029    MemExpr = cast<MemberExpr>(NakedMemExpr);
6030    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6031  } else {
6032    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6033
6034    QualType ObjectType = UnresExpr->getBaseType();
6035
6036    // Add overload candidates
6037    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6038
6039    // FIXME: avoid copy.
6040    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6041    if (UnresExpr->hasExplicitTemplateArgs()) {
6042      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6043      TemplateArgs = &TemplateArgsBuffer;
6044    }
6045
6046    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6047           E = UnresExpr->decls_end(); I != E; ++I) {
6048
6049      NamedDecl *Func = *I;
6050      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6051      if (isa<UsingShadowDecl>(Func))
6052        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6053
6054      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6055        // If explicit template arguments were provided, we can't call a
6056        // non-template member function.
6057        if (TemplateArgs)
6058          continue;
6059
6060        AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
6061                           Args, NumArgs,
6062                           CandidateSet, /*SuppressUserConversions=*/false);
6063      } else {
6064        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6065                                   I.getAccess(), ActingDC, TemplateArgs,
6066                                   ObjectType, Args, NumArgs,
6067                                   CandidateSet,
6068                                   /*SuppressUsedConversions=*/false);
6069      }
6070    }
6071
6072    DeclarationName DeclName = UnresExpr->getMemberName();
6073
6074    OverloadCandidateSet::iterator Best;
6075    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6076    case OR_Success:
6077      Method = cast<CXXMethodDecl>(Best->Function);
6078      CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
6079      break;
6080
6081    case OR_No_Viable_Function:
6082      Diag(UnresExpr->getMemberLoc(),
6083           diag::err_ovl_no_viable_member_function_in_call)
6084        << DeclName << MemExprE->getSourceRange();
6085      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6086      // FIXME: Leaking incoming expressions!
6087      return ExprError();
6088
6089    case OR_Ambiguous:
6090      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6091        << DeclName << MemExprE->getSourceRange();
6092      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6093      // FIXME: Leaking incoming expressions!
6094      return ExprError();
6095
6096    case OR_Deleted:
6097      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6098        << Best->Function->isDeleted()
6099        << DeclName << MemExprE->getSourceRange();
6100      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6101      // FIXME: Leaking incoming expressions!
6102      return ExprError();
6103    }
6104
6105    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6106
6107    // If overload resolution picked a static member, build a
6108    // non-member call based on that function.
6109    if (Method->isStatic()) {
6110      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6111                                   Args, NumArgs, RParenLoc);
6112    }
6113
6114    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6115  }
6116
6117  assert(Method && "Member call to something that isn't a method?");
6118  ExprOwningPtr<CXXMemberCallExpr>
6119    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6120                                                  NumArgs,
6121                                  Method->getResultType().getNonReferenceType(),
6122                                  RParenLoc));
6123
6124  // Check for a valid return type.
6125  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6126                          TheCall.get(), Method))
6127    return ExprError();
6128
6129  // Convert the object argument (for a non-static member function call).
6130  Expr *ObjectArg = MemExpr->getBase();
6131  if (!Method->isStatic() &&
6132      PerformObjectArgumentInitialization(ObjectArg, Method))
6133    return ExprError();
6134  MemExpr->setBase(ObjectArg);
6135
6136  // Convert the rest of the arguments
6137  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6138  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6139                              RParenLoc))
6140    return ExprError();
6141
6142  if (CheckFunctionCall(Method, TheCall.get()))
6143    return ExprError();
6144
6145  return MaybeBindToTemporary(TheCall.release());
6146}
6147
6148/// BuildCallToObjectOfClassType - Build a call to an object of class
6149/// type (C++ [over.call.object]), which can end up invoking an
6150/// overloaded function call operator (@c operator()) or performing a
6151/// user-defined conversion on the object argument.
6152Sema::ExprResult
6153Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6154                                   SourceLocation LParenLoc,
6155                                   Expr **Args, unsigned NumArgs,
6156                                   SourceLocation *CommaLocs,
6157                                   SourceLocation RParenLoc) {
6158  assert(Object->getType()->isRecordType() && "Requires object type argument");
6159  const RecordType *Record = Object->getType()->getAs<RecordType>();
6160
6161  // C++ [over.call.object]p1:
6162  //  If the primary-expression E in the function call syntax
6163  //  evaluates to a class object of type "cv T", then the set of
6164  //  candidate functions includes at least the function call
6165  //  operators of T. The function call operators of T are obtained by
6166  //  ordinary lookup of the name operator() in the context of
6167  //  (E).operator().
6168  OverloadCandidateSet CandidateSet(LParenLoc);
6169  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6170
6171  if (RequireCompleteType(LParenLoc, Object->getType(),
6172                          PartialDiagnostic(diag::err_incomplete_object_call)
6173                          << Object->getSourceRange()))
6174    return true;
6175
6176  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6177  LookupQualifiedName(R, Record->getDecl());
6178  R.suppressDiagnostics();
6179
6180  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6181       Oper != OperEnd; ++Oper) {
6182    AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
6183                       Args, NumArgs, CandidateSet,
6184                       /*SuppressUserConversions=*/ false);
6185  }
6186
6187  // C++ [over.call.object]p2:
6188  //   In addition, for each conversion function declared in T of the
6189  //   form
6190  //
6191  //        operator conversion-type-id () cv-qualifier;
6192  //
6193  //   where cv-qualifier is the same cv-qualification as, or a
6194  //   greater cv-qualification than, cv, and where conversion-type-id
6195  //   denotes the type "pointer to function of (P1,...,Pn) returning
6196  //   R", or the type "reference to pointer to function of
6197  //   (P1,...,Pn) returning R", or the type "reference to function
6198  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6199  //   is also considered as a candidate function. Similarly,
6200  //   surrogate call functions are added to the set of candidate
6201  //   functions for each conversion function declared in an
6202  //   accessible base class provided the function is not hidden
6203  //   within T by another intervening declaration.
6204  const UnresolvedSetImpl *Conversions
6205    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6206  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6207         E = Conversions->end(); I != E; ++I) {
6208    NamedDecl *D = *I;
6209    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6210    if (isa<UsingShadowDecl>(D))
6211      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6212
6213    // Skip over templated conversion functions; they aren't
6214    // surrogates.
6215    if (isa<FunctionTemplateDecl>(D))
6216      continue;
6217
6218    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6219
6220    // Strip the reference type (if any) and then the pointer type (if
6221    // any) to get down to what might be a function type.
6222    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6223    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6224      ConvType = ConvPtrType->getPointeeType();
6225
6226    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6227      AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
6228                            Object->getType(), Args, NumArgs,
6229                            CandidateSet);
6230  }
6231
6232  // Perform overload resolution.
6233  OverloadCandidateSet::iterator Best;
6234  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6235  case OR_Success:
6236    // Overload resolution succeeded; we'll build the appropriate call
6237    // below.
6238    break;
6239
6240  case OR_No_Viable_Function:
6241    if (CandidateSet.empty())
6242      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6243        << Object->getType() << /*call*/ 1
6244        << Object->getSourceRange();
6245    else
6246      Diag(Object->getSourceRange().getBegin(),
6247           diag::err_ovl_no_viable_object_call)
6248        << Object->getType() << Object->getSourceRange();
6249    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6250    break;
6251
6252  case OR_Ambiguous:
6253    Diag(Object->getSourceRange().getBegin(),
6254         diag::err_ovl_ambiguous_object_call)
6255      << Object->getType() << Object->getSourceRange();
6256    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6257    break;
6258
6259  case OR_Deleted:
6260    Diag(Object->getSourceRange().getBegin(),
6261         diag::err_ovl_deleted_object_call)
6262      << Best->Function->isDeleted()
6263      << Object->getType() << Object->getSourceRange();
6264    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6265    break;
6266  }
6267
6268  if (Best == CandidateSet.end()) {
6269    // We had an error; delete all of the subexpressions and return
6270    // the error.
6271    Object->Destroy(Context);
6272    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6273      Args[ArgIdx]->Destroy(Context);
6274    return true;
6275  }
6276
6277  if (Best->Function == 0) {
6278    // Since there is no function declaration, this is one of the
6279    // surrogate candidates. Dig out the conversion function.
6280    CXXConversionDecl *Conv
6281      = cast<CXXConversionDecl>(
6282                         Best->Conversions[0].UserDefined.ConversionFunction);
6283
6284    CheckMemberOperatorAccess(LParenLoc, Object, Conv, Best->getAccess());
6285
6286    // We selected one of the surrogate functions that converts the
6287    // object parameter to a function pointer. Perform the conversion
6288    // on the object argument, then let ActOnCallExpr finish the job.
6289
6290    // Create an implicit member expr to refer to the conversion operator.
6291    // and then call it.
6292    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6293
6294    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6295                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6296                         CommaLocs, RParenLoc).release();
6297  }
6298
6299  CheckMemberOperatorAccess(LParenLoc, Object,
6300                            Best->Function, Best->getAccess());
6301
6302  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6303  // that calls this method, using Object for the implicit object
6304  // parameter and passing along the remaining arguments.
6305  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6306  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6307
6308  unsigned NumArgsInProto = Proto->getNumArgs();
6309  unsigned NumArgsToCheck = NumArgs;
6310
6311  // Build the full argument list for the method call (the
6312  // implicit object parameter is placed at the beginning of the
6313  // list).
6314  Expr **MethodArgs;
6315  if (NumArgs < NumArgsInProto) {
6316    NumArgsToCheck = NumArgsInProto;
6317    MethodArgs = new Expr*[NumArgsInProto + 1];
6318  } else {
6319    MethodArgs = new Expr*[NumArgs + 1];
6320  }
6321  MethodArgs[0] = Object;
6322  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6323    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6324
6325  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6326                                          SourceLocation());
6327  UsualUnaryConversions(NewFn);
6328
6329  // Once we've built TheCall, all of the expressions are properly
6330  // owned.
6331  QualType ResultTy = Method->getResultType().getNonReferenceType();
6332  ExprOwningPtr<CXXOperatorCallExpr>
6333    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6334                                                    MethodArgs, NumArgs + 1,
6335                                                    ResultTy, RParenLoc));
6336  delete [] MethodArgs;
6337
6338  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6339                          Method))
6340    return true;
6341
6342  // We may have default arguments. If so, we need to allocate more
6343  // slots in the call for them.
6344  if (NumArgs < NumArgsInProto)
6345    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6346  else if (NumArgs > NumArgsInProto)
6347    NumArgsToCheck = NumArgsInProto;
6348
6349  bool IsError = false;
6350
6351  // Initialize the implicit object parameter.
6352  IsError |= PerformObjectArgumentInitialization(Object, Method);
6353  TheCall->setArg(0, Object);
6354
6355
6356  // Check the argument types.
6357  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6358    Expr *Arg;
6359    if (i < NumArgs) {
6360      Arg = Args[i];
6361
6362      // Pass the argument.
6363
6364      OwningExprResult InputInit
6365        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6366                                                    Method->getParamDecl(i)),
6367                                    SourceLocation(), Owned(Arg));
6368
6369      IsError |= InputInit.isInvalid();
6370      Arg = InputInit.takeAs<Expr>();
6371    } else {
6372      OwningExprResult DefArg
6373        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6374      if (DefArg.isInvalid()) {
6375        IsError = true;
6376        break;
6377      }
6378
6379      Arg = DefArg.takeAs<Expr>();
6380    }
6381
6382    TheCall->setArg(i + 1, Arg);
6383  }
6384
6385  // If this is a variadic call, handle args passed through "...".
6386  if (Proto->isVariadic()) {
6387    // Promote the arguments (C99 6.5.2.2p7).
6388    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6389      Expr *Arg = Args[i];
6390      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6391      TheCall->setArg(i + 1, Arg);
6392    }
6393  }
6394
6395  if (IsError) return true;
6396
6397  if (CheckFunctionCall(Method, TheCall.get()))
6398    return true;
6399
6400  return MaybeBindToTemporary(TheCall.release()).release();
6401}
6402
6403/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6404///  (if one exists), where @c Base is an expression of class type and
6405/// @c Member is the name of the member we're trying to find.
6406Sema::OwningExprResult
6407Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6408  Expr *Base = static_cast<Expr *>(BaseIn.get());
6409  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6410
6411  SourceLocation Loc = Base->getExprLoc();
6412
6413  // C++ [over.ref]p1:
6414  //
6415  //   [...] An expression x->m is interpreted as (x.operator->())->m
6416  //   for a class object x of type T if T::operator->() exists and if
6417  //   the operator is selected as the best match function by the
6418  //   overload resolution mechanism (13.3).
6419  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6420  OverloadCandidateSet CandidateSet(Loc);
6421  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6422
6423  if (RequireCompleteType(Loc, Base->getType(),
6424                          PDiag(diag::err_typecheck_incomplete_tag)
6425                            << Base->getSourceRange()))
6426    return ExprError();
6427
6428  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6429  LookupQualifiedName(R, BaseRecord->getDecl());
6430  R.suppressDiagnostics();
6431
6432  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6433       Oper != OperEnd; ++Oper) {
6434    NamedDecl *D = *Oper;
6435    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6436    if (isa<UsingShadowDecl>(D))
6437      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6438
6439    AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
6440                       Base->getType(), 0, 0, CandidateSet,
6441                       /*SuppressUserConversions=*/false);
6442  }
6443
6444  // Perform overload resolution.
6445  OverloadCandidateSet::iterator Best;
6446  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6447  case OR_Success:
6448    // Overload resolution succeeded; we'll build the call below.
6449    break;
6450
6451  case OR_No_Viable_Function:
6452    if (CandidateSet.empty())
6453      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6454        << Base->getType() << Base->getSourceRange();
6455    else
6456      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6457        << "operator->" << Base->getSourceRange();
6458    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6459    return ExprError();
6460
6461  case OR_Ambiguous:
6462    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6463      << "->" << Base->getSourceRange();
6464    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6465    return ExprError();
6466
6467  case OR_Deleted:
6468    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6469      << Best->Function->isDeleted()
6470      << "->" << Base->getSourceRange();
6471    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6472    return ExprError();
6473  }
6474
6475  // Convert the object parameter.
6476  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6477  if (PerformObjectArgumentInitialization(Base, Method))
6478    return ExprError();
6479
6480  // No concerns about early exits now.
6481  BaseIn.release();
6482
6483  // Build the operator call.
6484  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6485                                           SourceLocation());
6486  UsualUnaryConversions(FnExpr);
6487
6488  QualType ResultTy = Method->getResultType().getNonReferenceType();
6489  ExprOwningPtr<CXXOperatorCallExpr>
6490    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6491                                                    &Base, 1, ResultTy, OpLoc));
6492
6493  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6494                          Method))
6495          return ExprError();
6496  return move(TheCall);
6497}
6498
6499/// FixOverloadedFunctionReference - E is an expression that refers to
6500/// a C++ overloaded function (possibly with some parentheses and
6501/// perhaps a '&' around it). We have resolved the overloaded function
6502/// to the function declaration Fn, so patch up the expression E to
6503/// refer (possibly indirectly) to Fn. Returns the new expr.
6504Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6505  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6506    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6507    if (SubExpr == PE->getSubExpr())
6508      return PE->Retain();
6509
6510    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6511  }
6512
6513  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6514    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6515    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6516                               SubExpr->getType()) &&
6517           "Implicit cast type cannot be determined from overload");
6518    if (SubExpr == ICE->getSubExpr())
6519      return ICE->Retain();
6520
6521    return new (Context) ImplicitCastExpr(ICE->getType(),
6522                                          ICE->getCastKind(),
6523                                          SubExpr,
6524                                          ICE->isLvalueCast());
6525  }
6526
6527  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6528    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6529           "Can only take the address of an overloaded function");
6530    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6531      if (Method->isStatic()) {
6532        // Do nothing: static member functions aren't any different
6533        // from non-member functions.
6534      } else {
6535        // Fix the sub expression, which really has to be an
6536        // UnresolvedLookupExpr holding an overloaded member function
6537        // or template.
6538        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6539        if (SubExpr == UnOp->getSubExpr())
6540          return UnOp->Retain();
6541
6542        assert(isa<DeclRefExpr>(SubExpr)
6543               && "fixed to something other than a decl ref");
6544        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6545               && "fixed to a member ref with no nested name qualifier");
6546
6547        // We have taken the address of a pointer to member
6548        // function. Perform the computation here so that we get the
6549        // appropriate pointer to member type.
6550        QualType ClassType
6551          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6552        QualType MemPtrType
6553          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6554
6555        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6556                                           MemPtrType, UnOp->getOperatorLoc());
6557      }
6558    }
6559    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6560    if (SubExpr == UnOp->getSubExpr())
6561      return UnOp->Retain();
6562
6563    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6564                                     Context.getPointerType(SubExpr->getType()),
6565                                       UnOp->getOperatorLoc());
6566  }
6567
6568  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6569    // FIXME: avoid copy.
6570    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6571    if (ULE->hasExplicitTemplateArgs()) {
6572      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6573      TemplateArgs = &TemplateArgsBuffer;
6574    }
6575
6576    return DeclRefExpr::Create(Context,
6577                               ULE->getQualifier(),
6578                               ULE->getQualifierRange(),
6579                               Fn,
6580                               ULE->getNameLoc(),
6581                               Fn->getType(),
6582                               TemplateArgs);
6583  }
6584
6585  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6586    // FIXME: avoid copy.
6587    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6588    if (MemExpr->hasExplicitTemplateArgs()) {
6589      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6590      TemplateArgs = &TemplateArgsBuffer;
6591    }
6592
6593    Expr *Base;
6594
6595    // If we're filling in
6596    if (MemExpr->isImplicitAccess()) {
6597      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6598        return DeclRefExpr::Create(Context,
6599                                   MemExpr->getQualifier(),
6600                                   MemExpr->getQualifierRange(),
6601                                   Fn,
6602                                   MemExpr->getMemberLoc(),
6603                                   Fn->getType(),
6604                                   TemplateArgs);
6605      } else {
6606        SourceLocation Loc = MemExpr->getMemberLoc();
6607        if (MemExpr->getQualifier())
6608          Loc = MemExpr->getQualifierRange().getBegin();
6609        Base = new (Context) CXXThisExpr(Loc,
6610                                         MemExpr->getBaseType(),
6611                                         /*isImplicit=*/true);
6612      }
6613    } else
6614      Base = MemExpr->getBase()->Retain();
6615
6616    return MemberExpr::Create(Context, Base,
6617                              MemExpr->isArrow(),
6618                              MemExpr->getQualifier(),
6619                              MemExpr->getQualifierRange(),
6620                              Fn,
6621                              MemExpr->getMemberLoc(),
6622                              TemplateArgs,
6623                              Fn->getType());
6624  }
6625
6626  assert(false && "Invalid reference to overloaded function");
6627  return E->Retain();
6628}
6629
6630Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6631                                                            FunctionDecl *Fn) {
6632  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6633}
6634
6635} // end namespace clang
6636