SemaOverload.cpp revision abed217d6877aebfd733754adab35d83996b2135
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Expr.h"
18#include "llvm/Support/Compiler.h"
19#include <algorithm>
20
21namespace clang {
22
23/// GetConversionCategory - Retrieve the implicit conversion
24/// category corresponding to the given implicit conversion kind.
25ImplicitConversionCategory
26GetConversionCategory(ImplicitConversionKind Kind) {
27  static const ImplicitConversionCategory
28    Category[(int)ICK_Num_Conversion_Kinds] = {
29    ICC_Identity,
30    ICC_Lvalue_Transformation,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Qualification_Adjustment,
34    ICC_Promotion,
35    ICC_Promotion,
36    ICC_Conversion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion
42  };
43  return Category[(int)Kind];
44}
45
46/// GetConversionRank - Retrieve the implicit conversion rank
47/// corresponding to the given implicit conversion kind.
48ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
49  static const ImplicitConversionRank
50    Rank[(int)ICK_Num_Conversion_Kinds] = {
51    ICR_Exact_Match,
52    ICR_Exact_Match,
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Promotion,
57    ICR_Promotion,
58    ICR_Conversion,
59    ICR_Conversion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion
64  };
65  return Rank[(int)Kind];
66}
67
68/// GetImplicitConversionName - Return the name of this kind of
69/// implicit conversion.
70const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
71  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
72    "No conversion",
73    "Lvalue-to-rvalue",
74    "Array-to-pointer",
75    "Function-to-pointer",
76    "Qualification",
77    "Integral promotion",
78    "Floating point promotion",
79    "Integral conversion",
80    "Floating conversion",
81    "Floating-integral conversion",
82    "Pointer conversion",
83    "Pointer-to-member conversion",
84    "Boolean conversion"
85  };
86  return Name[Kind];
87}
88
89/// getRank - Retrieve the rank of this standard conversion sequence
90/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
91/// implicit conversions.
92ImplicitConversionRank StandardConversionSequence::getRank() const {
93  ImplicitConversionRank Rank = ICR_Exact_Match;
94  if  (GetConversionRank(First) > Rank)
95    Rank = GetConversionRank(First);
96  if  (GetConversionRank(Second) > Rank)
97    Rank = GetConversionRank(Second);
98  if  (GetConversionRank(Third) > Rank)
99    Rank = GetConversionRank(Third);
100  return Rank;
101}
102
103/// isPointerConversionToBool - Determines whether this conversion is
104/// a conversion of a pointer or pointer-to-member to bool. This is
105/// used as part of the ranking of standard conversion sequences
106/// (C++ 13.3.3.2p4).
107bool StandardConversionSequence::isPointerConversionToBool() const
108{
109  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
110  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
111
112  // Note that FromType has not necessarily been transformed by the
113  // array-to-pointer or function-to-pointer implicit conversions, so
114  // check for their presence as well as checking whether FromType is
115  // a pointer.
116  if (ToType->isBooleanType() &&
117      (FromType->isPointerType() ||
118       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
119    return true;
120
121  return false;
122}
123
124/// DebugPrint - Print this standard conversion sequence to standard
125/// error. Useful for debugging overloading issues.
126void StandardConversionSequence::DebugPrint() const {
127  bool PrintedSomething = false;
128  if (First != ICK_Identity) {
129    fprintf(stderr, "%s", GetImplicitConversionName(First));
130    PrintedSomething = true;
131  }
132
133  if (Second != ICK_Identity) {
134    if (PrintedSomething) {
135      fprintf(stderr, " -> ");
136    }
137    fprintf(stderr, "%s", GetImplicitConversionName(Second));
138    PrintedSomething = true;
139  }
140
141  if (Third != ICK_Identity) {
142    if (PrintedSomething) {
143      fprintf(stderr, " -> ");
144    }
145    fprintf(stderr, "%s", GetImplicitConversionName(Third));
146    PrintedSomething = true;
147  }
148
149  if (!PrintedSomething) {
150    fprintf(stderr, "No conversions required");
151  }
152}
153
154/// DebugPrint - Print this user-defined conversion sequence to standard
155/// error. Useful for debugging overloading issues.
156void UserDefinedConversionSequence::DebugPrint() const {
157  if (Before.First || Before.Second || Before.Third) {
158    Before.DebugPrint();
159    fprintf(stderr, " -> ");
160  }
161  fprintf(stderr, "'%s'", ConversionFunction->getName());
162  if (After.First || After.Second || After.Third) {
163    fprintf(stderr, " -> ");
164    After.DebugPrint();
165  }
166}
167
168/// DebugPrint - Print this implicit conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void ImplicitConversionSequence::DebugPrint() const {
171  switch (ConversionKind) {
172  case StandardConversion:
173    fprintf(stderr, "Standard conversion: ");
174    Standard.DebugPrint();
175    break;
176  case UserDefinedConversion:
177    fprintf(stderr, "User-defined conversion: ");
178    UserDefined.DebugPrint();
179    break;
180  case EllipsisConversion:
181    fprintf(stderr, "Ellipsis conversion");
182    break;
183  case BadConversion:
184    fprintf(stderr, "Bad conversion");
185    break;
186  }
187
188  fprintf(stderr, "\n");
189}
190
191// IsOverload - Determine whether the given New declaration is an
192// overload of the Old declaration. This routine returns false if New
193// and Old cannot be overloaded, e.g., if they are functions with the
194// same signature (C++ 1.3.10) or if the Old declaration isn't a
195// function (or overload set). When it does return false and Old is an
196// OverloadedFunctionDecl, MatchedDecl will be set to point to the
197// FunctionDecl that New cannot be overloaded with.
198//
199// Example: Given the following input:
200//
201//   void f(int, float); // #1
202//   void f(int, int); // #2
203//   int f(int, int); // #3
204//
205// When we process #1, there is no previous declaration of "f",
206// so IsOverload will not be used.
207//
208// When we process #2, Old is a FunctionDecl for #1.  By comparing the
209// parameter types, we see that #1 and #2 are overloaded (since they
210// have different signatures), so this routine returns false;
211// MatchedDecl is unchanged.
212//
213// When we process #3, Old is an OverloadedFunctionDecl containing #1
214// and #2. We compare the signatures of #3 to #1 (they're overloaded,
215// so we do nothing) and then #3 to #2. Since the signatures of #3 and
216// #2 are identical (return types of functions are not part of the
217// signature), IsOverload returns false and MatchedDecl will be set to
218// point to the FunctionDecl for #2.
219bool
220Sema::IsOverload(FunctionDecl *New, Decl* OldD,
221                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
222{
223  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
224    // Is this new function an overload of every function in the
225    // overload set?
226    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
227                                           FuncEnd = Ovl->function_end();
228    for (; Func != FuncEnd; ++Func) {
229      if (!IsOverload(New, *Func, MatchedDecl)) {
230        MatchedDecl = Func;
231        return false;
232      }
233    }
234
235    // This function overloads every function in the overload set.
236    return true;
237  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
238    // Is the function New an overload of the function Old?
239    QualType OldQType = Context.getCanonicalType(Old->getType());
240    QualType NewQType = Context.getCanonicalType(New->getType());
241
242    // Compare the signatures (C++ 1.3.10) of the two functions to
243    // determine whether they are overloads. If we find any mismatch
244    // in the signature, they are overloads.
245
246    // If either of these functions is a K&R-style function (no
247    // prototype), then we consider them to have matching signatures.
248    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
249        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
250      return false;
251
252    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
253    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
254
255    // The signature of a function includes the types of its
256    // parameters (C++ 1.3.10), which includes the presence or absence
257    // of the ellipsis; see C++ DR 357).
258    if (OldQType != NewQType &&
259        (OldType->getNumArgs() != NewType->getNumArgs() ||
260         OldType->isVariadic() != NewType->isVariadic() ||
261         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
262                     NewType->arg_type_begin())))
263      return true;
264
265    // If the function is a class member, its signature includes the
266    // cv-qualifiers (if any) on the function itself.
267    //
268    // As part of this, also check whether one of the member functions
269    // is static, in which case they are not overloads (C++
270    // 13.1p2). While not part of the definition of the signature,
271    // this check is important to determine whether these functions
272    // can be overloaded.
273    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
274    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
275    if (OldMethod && NewMethod &&
276        !OldMethod->isStatic() && !NewMethod->isStatic() &&
277        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
278      return true;
279
280    // The signatures match; this is not an overload.
281    return false;
282  } else {
283    // (C++ 13p1):
284    //   Only function declarations can be overloaded; object and type
285    //   declarations cannot be overloaded.
286    return false;
287  }
288}
289
290/// TryCopyInitialization - Attempt to copy-initialize a value of the
291/// given type (ToType) from the given expression (Expr), as one would
292/// do when copy-initializing a function parameter. This function
293/// returns an implicit conversion sequence that can be used to
294/// perform the initialization. Given
295///
296///   void f(float f);
297///   void g(int i) { f(i); }
298///
299/// this routine would produce an implicit conversion sequence to
300/// describe the initialization of f from i, which will be a standard
301/// conversion sequence containing an lvalue-to-rvalue conversion (C++
302/// 4.1) followed by a floating-integral conversion (C++ 4.9).
303//
304/// Note that this routine only determines how the conversion can be
305/// performed; it does not actually perform the conversion. As such,
306/// it will not produce any diagnostics if no conversion is available,
307/// but will instead return an implicit conversion sequence of kind
308/// "BadConversion".
309ImplicitConversionSequence
310Sema::TryCopyInitialization(Expr* From, QualType ToType)
311{
312  ImplicitConversionSequence ICS;
313
314  QualType FromType = From->getType();
315
316  // Standard conversions (C++ 4)
317  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
318  ICS.Standard.Deprecated = false;
319  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
320
321  if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType()) {
322    // FIXME: This is a hack to deal with the initialization of
323    // references the way that the C-centric code elsewhere deals with
324    // references, by only allowing them if the referred-to type is
325    // exactly the same. This means that we're only handling the
326    // direct-binding case. The code will be replaced by an
327    // implementation of C++ 13.3.3.1.4 once we have the
328    // initialization of references implemented.
329    QualType ToPointee = Context.getCanonicalType(ToTypeRef->getPointeeType());
330
331    // Get down to the canonical type that we're converting from.
332    if (const ReferenceType *FromTypeRef = FromType->getAsReferenceType())
333      FromType = FromTypeRef->getPointeeType();
334    FromType = Context.getCanonicalType(FromType);
335
336    ICS.Standard.First = ICK_Identity;
337    ICS.Standard.Second = ICK_Identity;
338    ICS.Standard.Third = ICK_Identity;
339    ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
340
341    if (FromType != ToPointee)
342      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
343
344    return ICS;
345  }
346
347  // The first conversion can be an lvalue-to-rvalue conversion,
348  // array-to-pointer conversion, or function-to-pointer conversion
349  // (C++ 4p1).
350
351  // Lvalue-to-rvalue conversion (C++ 4.1):
352  //   An lvalue (3.10) of a non-function, non-array type T can be
353  //   converted to an rvalue.
354  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
355  if (argIsLvalue == Expr::LV_Valid &&
356      !FromType->isFunctionType() && !FromType->isArrayType()) {
357    ICS.Standard.First = ICK_Lvalue_To_Rvalue;
358
359    // If T is a non-class type, the type of the rvalue is the
360    // cv-unqualified version of T. Otherwise, the type of the rvalue
361    // is T (C++ 4.1p1).
362    if (!FromType->isRecordType())
363      FromType = FromType.getUnqualifiedType();
364  }
365  // Array-to-pointer conversion (C++ 4.2)
366  else if (FromType->isArrayType()) {
367    ICS.Standard.First = ICK_Array_To_Pointer;
368
369    // An lvalue or rvalue of type "array of N T" or "array of unknown
370    // bound of T" can be converted to an rvalue of type "pointer to
371    // T" (C++ 4.2p1).
372    FromType = Context.getArrayDecayedType(FromType);
373
374    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
375      // This conversion is deprecated. (C++ D.4).
376      ICS.Standard.Deprecated = true;
377
378      // For the purpose of ranking in overload resolution
379      // (13.3.3.1.1), this conversion is considered an
380      // array-to-pointer conversion followed by a qualification
381      // conversion (4.4). (C++ 4.2p2)
382      ICS.Standard.Second = ICK_Identity;
383      ICS.Standard.Third = ICK_Qualification;
384      ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
385      return ICS;
386    }
387  }
388  // Function-to-pointer conversion (C++ 4.3).
389  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
390    ICS.Standard.First = ICK_Function_To_Pointer;
391
392    // An lvalue of function type T can be converted to an rvalue of
393    // type "pointer to T." The result is a pointer to the
394    // function. (C++ 4.3p1).
395    FromType = Context.getPointerType(FromType);
396
397    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
398  }
399  // We don't require any conversions for the first step.
400  else {
401    ICS.Standard.First = ICK_Identity;
402  }
403
404  // The second conversion can be an integral promotion, floating
405  // point promotion, integral conversion, floating point conversion,
406  // floating-integral conversion, pointer conversion,
407  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
408  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
409      Context.getCanonicalType(ToType).getUnqualifiedType()) {
410    // The unqualified versions of the types are the same: there's no
411    // conversion to do.
412    ICS.Standard.Second = ICK_Identity;
413  }
414  // Integral promotion (C++ 4.5).
415  else if (IsIntegralPromotion(From, FromType, ToType)) {
416    ICS.Standard.Second = ICK_Integral_Promotion;
417    FromType = ToType.getUnqualifiedType();
418  }
419  // Floating point promotion (C++ 4.6).
420  else if (IsFloatingPointPromotion(FromType, ToType)) {
421    ICS.Standard.Second = ICK_Floating_Promotion;
422    FromType = ToType.getUnqualifiedType();
423  }
424  // Integral conversions (C++ 4.7).
425  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
426           (ToType->isIntegralType() || ToType->isEnumeralType())) {
427    ICS.Standard.Second = ICK_Integral_Conversion;
428    FromType = ToType.getUnqualifiedType();
429  }
430  // Floating point conversions (C++ 4.8).
431  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
432    ICS.Standard.Second = ICK_Floating_Conversion;
433    FromType = ToType.getUnqualifiedType();
434  }
435  // Floating-integral conversions (C++ 4.9).
436  else if ((FromType->isFloatingType() &&
437            ToType->isIntegralType() && !ToType->isBooleanType()) ||
438           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
439            ToType->isFloatingType())) {
440    ICS.Standard.Second = ICK_Floating_Integral;
441    FromType = ToType.getUnqualifiedType();
442  }
443  // Pointer conversions (C++ 4.10).
444  else if (IsPointerConversion(From, FromType, ToType, FromType))
445    ICS.Standard.Second = ICK_Pointer_Conversion;
446  // FIXME: Pointer to member conversions (4.11).
447  // Boolean conversions (C++ 4.12).
448  // FIXME: pointer-to-member type
449  else if (ToType->isBooleanType() &&
450           (FromType->isArithmeticType() ||
451            FromType->isEnumeralType() ||
452            FromType->isPointerType())) {
453    ICS.Standard.Second = ICK_Boolean_Conversion;
454    FromType = Context.BoolTy;
455  } else {
456    // No second conversion required.
457    ICS.Standard.Second = ICK_Identity;
458  }
459
460  // The third conversion can be a qualification conversion (C++ 4p1).
461  if (IsQualificationConversion(FromType, ToType)) {
462    ICS.Standard.Third = ICK_Qualification;
463    FromType = ToType;
464  } else {
465    // No conversion required
466    ICS.Standard.Third = ICK_Identity;
467  }
468
469  // If we have not converted the argument type to the parameter type,
470  // this is a bad conversion sequence.
471  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType))
472    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
473
474  ICS.Standard.ToTypePtr = FromType.getAsOpaquePtr();
475  return ICS;
476}
477
478/// IsIntegralPromotion - Determines whether the conversion from the
479/// expression From (whose potentially-adjusted type is FromType) to
480/// ToType is an integral promotion (C++ 4.5). If so, returns true and
481/// sets PromotedType to the promoted type.
482bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
483{
484  const BuiltinType *To = ToType->getAsBuiltinType();
485
486  // An rvalue of type char, signed char, unsigned char, short int, or
487  // unsigned short int can be converted to an rvalue of type int if
488  // int can represent all the values of the source type; otherwise,
489  // the source rvalue can be converted to an rvalue of type unsigned
490  // int (C++ 4.5p1).
491  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && To) {
492    if (// We can promote any signed, promotable integer type to an int
493        (FromType->isSignedIntegerType() ||
494         // We can promote any unsigned integer type whose size is
495         // less than int to an int.
496         (!FromType->isSignedIntegerType() &&
497          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))))
498      return To->getKind() == BuiltinType::Int;
499
500    return To->getKind() == BuiltinType::UInt;
501  }
502
503  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
504  // can be converted to an rvalue of the first of the following types
505  // that can represent all the values of its underlying type: int,
506  // unsigned int, long, or unsigned long (C++ 4.5p2).
507  if ((FromType->isEnumeralType() || FromType->isWideCharType())
508      && ToType->isIntegerType()) {
509    // Determine whether the type we're converting from is signed or
510    // unsigned.
511    bool FromIsSigned;
512    uint64_t FromSize = Context.getTypeSize(FromType);
513    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
514      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
515      FromIsSigned = UnderlyingType->isSignedIntegerType();
516    } else {
517      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
518      FromIsSigned = true;
519    }
520
521    // The types we'll try to promote to, in the appropriate
522    // order. Try each of these types.
523    QualType PromoteTypes[4] = {
524      Context.IntTy, Context.UnsignedIntTy,
525      Context.LongTy, Context.UnsignedLongTy
526    };
527    for (int Idx = 0; Idx < 0; ++Idx) {
528      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
529      if (FromSize < ToSize ||
530          (FromSize == ToSize &&
531           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
532        // We found the type that we can promote to. If this is the
533        // type we wanted, we have a promotion. Otherwise, no
534        // promotion.
535        return Context.getCanonicalType(FromType).getUnqualifiedType()
536          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
537      }
538    }
539  }
540
541  // An rvalue for an integral bit-field (9.6) can be converted to an
542  // rvalue of type int if int can represent all the values of the
543  // bit-field; otherwise, it can be converted to unsigned int if
544  // unsigned int can represent all the values of the bit-field. If
545  // the bit-field is larger yet, no integral promotion applies to
546  // it. If the bit-field has an enumerated type, it is treated as any
547  // other value of that type for promotion purposes (C++ 4.5p3).
548  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
549    using llvm::APSInt;
550    FieldDecl *MemberDecl = MemRef->getMemberDecl();
551    APSInt BitWidth;
552    if (MemberDecl->isBitField() &&
553        FromType->isIntegralType() && !FromType->isEnumeralType() &&
554        From->isIntegerConstantExpr(BitWidth, Context)) {
555      APSInt ToSize(Context.getTypeSize(ToType));
556
557      // Are we promoting to an int from a bitfield that fits in an int?
558      if (BitWidth < ToSize ||
559          (FromType->isSignedIntegerType() && BitWidth <= ToSize))
560        return To->getKind() == BuiltinType::Int;
561
562      // Are we promoting to an unsigned int from an unsigned bitfield
563      // that fits into an unsigned int?
564      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize)
565        return To->getKind() == BuiltinType::UInt;
566
567      return false;
568    }
569  }
570
571  // An rvalue of type bool can be converted to an rvalue of type int,
572  // with false becoming zero and true becoming one (C++ 4.5p4).
573  if (FromType->isBooleanType() && To && To->getKind() == BuiltinType::Int)
574    return true;
575
576  return false;
577}
578
579/// IsFloatingPointPromotion - Determines whether the conversion from
580/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
581/// returns true and sets PromotedType to the promoted type.
582bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
583{
584  /// An rvalue of type float can be converted to an rvalue of type
585  /// double. (C++ 4.6p1).
586  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
587    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
588      if (FromBuiltin->getKind() == BuiltinType::Float &&
589          ToBuiltin->getKind() == BuiltinType::Double)
590        return true;
591
592  return false;
593}
594
595/// IsPointerConversion - Determines whether the conversion of the
596/// expression From, which has the (possibly adjusted) type FromType,
597/// can be converted to the type ToType via a pointer conversion (C++
598/// 4.10). If so, returns true and places the converted type (that
599/// might differ from ToType in its cv-qualifiers at some level) into
600/// ConvertedType.
601bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
602                               QualType& ConvertedType)
603{
604  const PointerType* ToTypePtr = ToType->getAsPointerType();
605  if (!ToTypePtr)
606    return false;
607
608  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
609  if (From->isNullPointerConstant(Context)) {
610    ConvertedType = ToType;
611    return true;
612  }
613
614  // An rvalue of type "pointer to cv T," where T is an object type,
615  // can be converted to an rvalue of type "pointer to cv void" (C++
616  // 4.10p2).
617  if (FromType->isPointerType() &&
618      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
619      ToTypePtr->getPointeeType()->isVoidType()) {
620    // We need to produce a pointer to cv void, where cv is the same
621    // set of cv-qualifiers as we had on the incoming pointee type.
622    QualType toPointee = ToTypePtr->getPointeeType();
623    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
624                   ->getPointeeType().getCVRQualifiers();
625
626    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
627	  == Quals) {
628      // ToType is exactly the type we want. Use it.
629      ConvertedType = ToType;
630    } else {
631      // Build a new type with the right qualifiers.
632      ConvertedType
633	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
634    }
635    return true;
636  }
637
638  // FIXME: An rvalue of type "pointer to cv D," where D is a class
639  // type, can be converted to an rvalue of type "pointer to cv B,"
640  // where B is a base class (clause 10) of D (C++ 4.10p3).
641  return false;
642}
643
644/// IsQualificationConversion - Determines whether the conversion from
645/// an rvalue of type FromType to ToType is a qualification conversion
646/// (C++ 4.4).
647bool
648Sema::IsQualificationConversion(QualType FromType, QualType ToType)
649{
650  FromType = Context.getCanonicalType(FromType);
651  ToType = Context.getCanonicalType(ToType);
652
653  // If FromType and ToType are the same type, this is not a
654  // qualification conversion.
655  if (FromType == ToType)
656    return false;
657
658  // (C++ 4.4p4):
659  //   A conversion can add cv-qualifiers at levels other than the first
660  //   in multi-level pointers, subject to the following rules: [...]
661  bool PreviousToQualsIncludeConst = true;
662  bool UnwrappedAnyPointer = false;
663  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
664    // Within each iteration of the loop, we check the qualifiers to
665    // determine if this still looks like a qualification
666    // conversion. Then, if all is well, we unwrap one more level of
667    // pointers or pointers-to-members and do it all again
668    // until there are no more pointers or pointers-to-members left to
669    // unwrap.
670    UnwrappedAnyPointer = true;
671
672    //   -- for every j > 0, if const is in cv 1,j then const is in cv
673    //      2,j, and similarly for volatile.
674    if (!ToType.isAtLeastAsQualifiedAs(FromType))
675      return false;
676
677    //   -- if the cv 1,j and cv 2,j are different, then const is in
678    //      every cv for 0 < k < j.
679    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
680        && !PreviousToQualsIncludeConst)
681      return false;
682
683    // Keep track of whether all prior cv-qualifiers in the "to" type
684    // include const.
685    PreviousToQualsIncludeConst
686      = PreviousToQualsIncludeConst && ToType.isConstQualified();
687  }
688
689  // We are left with FromType and ToType being the pointee types
690  // after unwrapping the original FromType and ToType the same number
691  // of types. If we unwrapped any pointers, and if FromType and
692  // ToType have the same unqualified type (since we checked
693  // qualifiers above), then this is a qualification conversion.
694  return UnwrappedAnyPointer &&
695    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
696}
697
698/// CompareImplicitConversionSequences - Compare two implicit
699/// conversion sequences to determine whether one is better than the
700/// other or if they are indistinguishable (C++ 13.3.3.2).
701ImplicitConversionSequence::CompareKind
702Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
703                                         const ImplicitConversionSequence& ICS2)
704{
705  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
706  // conversion sequences (as defined in 13.3.3.1)
707  //   -- a standard conversion sequence (13.3.3.1.1) is a better
708  //      conversion sequence than a user-defined conversion sequence or
709  //      an ellipsis conversion sequence, and
710  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
711  //      conversion sequence than an ellipsis conversion sequence
712  //      (13.3.3.1.3).
713  //
714  if (ICS1.ConversionKind < ICS2.ConversionKind)
715    return ImplicitConversionSequence::Better;
716  else if (ICS2.ConversionKind < ICS1.ConversionKind)
717    return ImplicitConversionSequence::Worse;
718
719  // Two implicit conversion sequences of the same form are
720  // indistinguishable conversion sequences unless one of the
721  // following rules apply: (C++ 13.3.3.2p3):
722  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
723    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
724  else if (ICS1.ConversionKind ==
725             ImplicitConversionSequence::UserDefinedConversion) {
726    // User-defined conversion sequence U1 is a better conversion
727    // sequence than another user-defined conversion sequence U2 if
728    // they contain the same user-defined conversion function or
729    // constructor and if the second standard conversion sequence of
730    // U1 is better than the second standard conversion sequence of
731    // U2 (C++ 13.3.3.2p3).
732    if (ICS1.UserDefined.ConversionFunction ==
733          ICS2.UserDefined.ConversionFunction)
734      return CompareStandardConversionSequences(ICS1.UserDefined.After,
735                                                ICS2.UserDefined.After);
736  }
737
738  return ImplicitConversionSequence::Indistinguishable;
739}
740
741/// CompareStandardConversionSequences - Compare two standard
742/// conversion sequences to determine whether one is better than the
743/// other or if they are indistinguishable (C++ 13.3.3.2p3).
744ImplicitConversionSequence::CompareKind
745Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
746                                         const StandardConversionSequence& SCS2)
747{
748  // Standard conversion sequence S1 is a better conversion sequence
749  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
750
751  //  -- S1 is a proper subsequence of S2 (comparing the conversion
752  //     sequences in the canonical form defined by 13.3.3.1.1,
753  //     excluding any Lvalue Transformation; the identity conversion
754  //     sequence is considered to be a subsequence of any
755  //     non-identity conversion sequence) or, if not that,
756  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
757    // Neither is a proper subsequence of the other. Do nothing.
758    ;
759  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
760           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
761           (SCS1.Second == ICK_Identity &&
762            SCS1.Third == ICK_Identity))
763    // SCS1 is a proper subsequence of SCS2.
764    return ImplicitConversionSequence::Better;
765  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
766           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
767           (SCS2.Second == ICK_Identity &&
768            SCS2.Third == ICK_Identity))
769    // SCS2 is a proper subsequence of SCS1.
770    return ImplicitConversionSequence::Worse;
771
772  //  -- the rank of S1 is better than the rank of S2 (by the rules
773  //     defined below), or, if not that,
774  ImplicitConversionRank Rank1 = SCS1.getRank();
775  ImplicitConversionRank Rank2 = SCS2.getRank();
776  if (Rank1 < Rank2)
777    return ImplicitConversionSequence::Better;
778  else if (Rank2 < Rank1)
779    return ImplicitConversionSequence::Worse;
780
781  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
782  // are indistinguishable unless one of the following rules
783  // applies:
784
785  //   A conversion that is not a conversion of a pointer, or
786  //   pointer to member, to bool is better than another conversion
787  //   that is such a conversion.
788  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
789    return SCS2.isPointerConversionToBool()
790             ? ImplicitConversionSequence::Better
791             : ImplicitConversionSequence::Worse;
792
793  // FIXME: The other bullets in (C++ 13.3.3.2p4) require support
794  // for derived classes.
795
796  // Compare based on qualification conversions (C++ 13.3.3.2p3,
797  // bullet 3).
798  if (ImplicitConversionSequence::CompareKind CK
799        = CompareQualificationConversions(SCS1, SCS2))
800    return CK;
801
802  // FIXME: Handle comparison of reference bindings.
803
804  return ImplicitConversionSequence::Indistinguishable;
805}
806
807/// CompareQualificationConversions - Compares two standard conversion
808/// sequences to determine whether they can be ranked based on their
809/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
810ImplicitConversionSequence::CompareKind
811Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
812                                      const StandardConversionSequence& SCS2)
813{
814  // C++ 13.3.3.2p3:
815  //  -- S1 and S2 differ only in their qualification conversion and
816  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
817  //     cv-qualification signature of type T1 is a proper subset of
818  //     the cv-qualification signature of type T2, and S1 is not the
819  //     deprecated string literal array-to-pointer conversion (4.2).
820  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
821      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
822    return ImplicitConversionSequence::Indistinguishable;
823
824  // FIXME: the example in the standard doesn't use a qualification
825  // conversion (!)
826  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
827  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
828  T1 = Context.getCanonicalType(T1);
829  T2 = Context.getCanonicalType(T2);
830
831  // If the types are the same, we won't learn anything by unwrapped
832  // them.
833  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
834    return ImplicitConversionSequence::Indistinguishable;
835
836  ImplicitConversionSequence::CompareKind Result
837    = ImplicitConversionSequence::Indistinguishable;
838  while (UnwrapSimilarPointerTypes(T1, T2)) {
839    // Within each iteration of the loop, we check the qualifiers to
840    // determine if this still looks like a qualification
841    // conversion. Then, if all is well, we unwrap one more level of
842    // pointers or pointers-to-members and do it all again
843    // until there are no more pointers or pointers-to-members left
844    // to unwrap. This essentially mimics what
845    // IsQualificationConversion does, but here we're checking for a
846    // strict subset of qualifiers.
847    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
848      // The qualifiers are the same, so this doesn't tell us anything
849      // about how the sequences rank.
850      ;
851    else if (T2.isMoreQualifiedThan(T1)) {
852      // T1 has fewer qualifiers, so it could be the better sequence.
853      if (Result == ImplicitConversionSequence::Worse)
854        // Neither has qualifiers that are a subset of the other's
855        // qualifiers.
856        return ImplicitConversionSequence::Indistinguishable;
857
858      Result = ImplicitConversionSequence::Better;
859    } else if (T1.isMoreQualifiedThan(T2)) {
860      // T2 has fewer qualifiers, so it could be the better sequence.
861      if (Result == ImplicitConversionSequence::Better)
862        // Neither has qualifiers that are a subset of the other's
863        // qualifiers.
864        return ImplicitConversionSequence::Indistinguishable;
865
866      Result = ImplicitConversionSequence::Worse;
867    } else {
868      // Qualifiers are disjoint.
869      return ImplicitConversionSequence::Indistinguishable;
870    }
871
872    // If the types after this point are equivalent, we're done.
873    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
874      break;
875  }
876
877  // Check that the winning standard conversion sequence isn't using
878  // the deprecated string literal array to pointer conversion.
879  switch (Result) {
880  case ImplicitConversionSequence::Better:
881    if (SCS1.Deprecated)
882      Result = ImplicitConversionSequence::Indistinguishable;
883    break;
884
885  case ImplicitConversionSequence::Indistinguishable:
886    break;
887
888  case ImplicitConversionSequence::Worse:
889    if (SCS2.Deprecated)
890      Result = ImplicitConversionSequence::Indistinguishable;
891    break;
892  }
893
894  return Result;
895}
896
897/// AddOverloadCandidate - Adds the given function to the set of
898/// candidate functions, using the given function call arguments.
899void
900Sema::AddOverloadCandidate(FunctionDecl *Function,
901                           Expr **Args, unsigned NumArgs,
902                           OverloadCandidateSet& CandidateSet)
903{
904  const FunctionTypeProto* Proto
905    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
906  assert(Proto && "Functions without a prototype cannot be overloaded");
907
908  // Add this candidate
909  CandidateSet.push_back(OverloadCandidate());
910  OverloadCandidate& Candidate = CandidateSet.back();
911  Candidate.Function = Function;
912
913  unsigned NumArgsInProto = Proto->getNumArgs();
914
915  // (C++ 13.3.2p2): A candidate function having fewer than m
916  // parameters is viable only if it has an ellipsis in its parameter
917  // list (8.3.5).
918  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
919    Candidate.Viable = false;
920    return;
921  }
922
923  // (C++ 13.3.2p2): A candidate function having more than m parameters
924  // is viable only if the (m+1)st parameter has a default argument
925  // (8.3.6). For the purposes of overload resolution, the
926  // parameter list is truncated on the right, so that there are
927  // exactly m parameters.
928  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
929  if (NumArgs < MinRequiredArgs) {
930    // Not enough arguments.
931    Candidate.Viable = false;
932    return;
933  }
934
935  // Determine the implicit conversion sequences for each of the
936  // arguments.
937  Candidate.Viable = true;
938  Candidate.Conversions.resize(NumArgs);
939  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
940    if (ArgIdx < NumArgsInProto) {
941      // (C++ 13.3.2p3): for F to be a viable function, there shall
942      // exist for each argument an implicit conversion sequence
943      // (13.3.3.1) that converts that argument to the corresponding
944      // parameter of F.
945      QualType ParamType = Proto->getArgType(ArgIdx);
946      Candidate.Conversions[ArgIdx]
947        = TryCopyInitialization(Args[ArgIdx], ParamType);
948      if (Candidate.Conversions[ArgIdx].ConversionKind
949            == ImplicitConversionSequence::BadConversion)
950        Candidate.Viable = false;
951    } else {
952      // (C++ 13.3.2p2): For the purposes of overload resolution, any
953      // argument for which there is no corresponding parameter is
954      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
955      Candidate.Conversions[ArgIdx].ConversionKind
956        = ImplicitConversionSequence::EllipsisConversion;
957    }
958  }
959}
960
961/// AddOverloadCandidates - Add all of the function overloads in Ovl
962/// to the candidate set.
963void
964Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl,
965                            Expr **Args, unsigned NumArgs,
966                            OverloadCandidateSet& CandidateSet)
967{
968  for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
969       Func != Ovl->function_end(); ++Func)
970    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
971}
972
973/// isBetterOverloadCandidate - Determines whether the first overload
974/// candidate is a better candidate than the second (C++ 13.3.3p1).
975bool
976Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
977                                const OverloadCandidate& Cand2)
978{
979  // Define viable functions to be better candidates than non-viable
980  // functions.
981  if (!Cand2.Viable)
982    return Cand1.Viable;
983  else if (!Cand1.Viable)
984    return false;
985
986  // FIXME: Deal with the implicit object parameter for static member
987  // functions. (C++ 13.3.3p1).
988
989  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
990  // function than another viable function F2 if for all arguments i,
991  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
992  // then...
993  unsigned NumArgs = Cand1.Conversions.size();
994  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
995  bool HasBetterConversion = false;
996  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
997    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
998                                               Cand2.Conversions[ArgIdx])) {
999    case ImplicitConversionSequence::Better:
1000      // Cand1 has a better conversion sequence.
1001      HasBetterConversion = true;
1002      break;
1003
1004    case ImplicitConversionSequence::Worse:
1005      // Cand1 can't be better than Cand2.
1006      return false;
1007
1008    case ImplicitConversionSequence::Indistinguishable:
1009      // Do nothing.
1010      break;
1011    }
1012  }
1013
1014  if (HasBetterConversion)
1015    return true;
1016
1017  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1018
1019  return false;
1020}
1021
1022/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1023/// within an overload candidate set. If overloading is successful,
1024/// the result will be OR_Success and Best will be set to point to the
1025/// best viable function within the candidate set. Otherwise, one of
1026/// several kinds of errors will be returned; see
1027/// Sema::OverloadingResult.
1028Sema::OverloadingResult
1029Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1030                         OverloadCandidateSet::iterator& Best)
1031{
1032  // Find the best viable function.
1033  Best = CandidateSet.end();
1034  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1035       Cand != CandidateSet.end(); ++Cand) {
1036    if (Cand->Viable) {
1037      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1038        Best = Cand;
1039    }
1040  }
1041
1042  // If we didn't find any viable functions, abort.
1043  if (Best == CandidateSet.end())
1044    return OR_No_Viable_Function;
1045
1046  // Make sure that this function is better than every other viable
1047  // function. If not, we have an ambiguity.
1048  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1049       Cand != CandidateSet.end(); ++Cand) {
1050    if (Cand->Viable &&
1051        Cand != Best &&
1052        !isBetterOverloadCandidate(*Best, *Cand))
1053      return OR_Ambiguous;
1054  }
1055
1056  // Best is the best viable function.
1057  return OR_Success;
1058}
1059
1060/// PrintOverloadCandidates - When overload resolution fails, prints
1061/// diagnostic messages containing the candidates in the candidate
1062/// set. If OnlyViable is true, only viable candidates will be printed.
1063void
1064Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1065                              bool OnlyViable)
1066{
1067  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1068                             LastCand = CandidateSet.end();
1069  for (; Cand != LastCand; ++Cand) {
1070    if (Cand->Viable ||!OnlyViable)
1071      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1072  }
1073}
1074
1075} // end namespace clang
1076