SemaOverload.cpp revision ace5e76e5c707f4a8447abc01ef540fa6d57ff95
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44                                                     VK_LValue, Loc, LocInfo));
45  E = S.DefaultFunctionArrayConversion(E.take());
46  if (E.isInvalid())
47    return ExprError();
48  return move(E);
49}
50
51static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
52                                 bool InOverloadResolution,
53                                 StandardConversionSequence &SCS,
54                                 bool CStyle,
55                                 bool AllowObjCWritebackConversion);
56
57static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
58                                                 QualType &ToType,
59                                                 bool InOverloadResolution,
60                                                 StandardConversionSequence &SCS,
61                                                 bool CStyle);
62static OverloadingResult
63IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
64                        UserDefinedConversionSequence& User,
65                        OverloadCandidateSet& Conversions,
66                        bool AllowExplicit);
67
68
69static ImplicitConversionSequence::CompareKind
70CompareStandardConversionSequences(Sema &S,
71                                   const StandardConversionSequence& SCS1,
72                                   const StandardConversionSequence& SCS2);
73
74static ImplicitConversionSequence::CompareKind
75CompareQualificationConversions(Sema &S,
76                                const StandardConversionSequence& SCS1,
77                                const StandardConversionSequence& SCS2);
78
79static ImplicitConversionSequence::CompareKind
80CompareDerivedToBaseConversions(Sema &S,
81                                const StandardConversionSequence& SCS1,
82                                const StandardConversionSequence& SCS2);
83
84
85
86/// GetConversionCategory - Retrieve the implicit conversion
87/// category corresponding to the given implicit conversion kind.
88ImplicitConversionCategory
89GetConversionCategory(ImplicitConversionKind Kind) {
90  static const ImplicitConversionCategory
91    Category[(int)ICK_Num_Conversion_Kinds] = {
92    ICC_Identity,
93    ICC_Lvalue_Transformation,
94    ICC_Lvalue_Transformation,
95    ICC_Lvalue_Transformation,
96    ICC_Identity,
97    ICC_Qualification_Adjustment,
98    ICC_Promotion,
99    ICC_Promotion,
100    ICC_Promotion,
101    ICC_Conversion,
102    ICC_Conversion,
103    ICC_Conversion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion
114  };
115  return Category[(int)Kind];
116}
117
118/// GetConversionRank - Retrieve the implicit conversion rank
119/// corresponding to the given implicit conversion kind.
120ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
121  static const ImplicitConversionRank
122    Rank[(int)ICK_Num_Conversion_Kinds] = {
123    ICR_Exact_Match,
124    ICR_Exact_Match,
125    ICR_Exact_Match,
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Promotion,
130    ICR_Promotion,
131    ICR_Promotion,
132    ICR_Conversion,
133    ICR_Conversion,
134    ICR_Conversion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Complex_Real_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Writeback_Conversion
147  };
148  return Rank[(int)Kind];
149}
150
151/// GetImplicitConversionName - Return the name of this kind of
152/// implicit conversion.
153const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
154  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
155    "No conversion",
156    "Lvalue-to-rvalue",
157    "Array-to-pointer",
158    "Function-to-pointer",
159    "Noreturn adjustment",
160    "Qualification",
161    "Integral promotion",
162    "Floating point promotion",
163    "Complex promotion",
164    "Integral conversion",
165    "Floating conversion",
166    "Complex conversion",
167    "Floating-integral conversion",
168    "Pointer conversion",
169    "Pointer-to-member conversion",
170    "Boolean conversion",
171    "Compatible-types conversion",
172    "Derived-to-base conversion",
173    "Vector conversion",
174    "Vector splat",
175    "Complex-real conversion",
176    "Block Pointer conversion",
177    "Transparent Union Conversion"
178    "Writeback conversion"
179  };
180  return Name[Kind];
181}
182
183/// StandardConversionSequence - Set the standard conversion
184/// sequence to the identity conversion.
185void StandardConversionSequence::setAsIdentityConversion() {
186  First = ICK_Identity;
187  Second = ICK_Identity;
188  Third = ICK_Identity;
189  DeprecatedStringLiteralToCharPtr = false;
190  QualificationIncludesObjCLifetime = false;
191  ReferenceBinding = false;
192  DirectBinding = false;
193  IsLvalueReference = true;
194  BindsToFunctionLvalue = false;
195  BindsToRvalue = false;
196  BindsImplicitObjectArgumentWithoutRefQualifier = false;
197  ObjCLifetimeConversionBinding = false;
198  CopyConstructor = 0;
199}
200
201/// getRank - Retrieve the rank of this standard conversion sequence
202/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
203/// implicit conversions.
204ImplicitConversionRank StandardConversionSequence::getRank() const {
205  ImplicitConversionRank Rank = ICR_Exact_Match;
206  if  (GetConversionRank(First) > Rank)
207    Rank = GetConversionRank(First);
208  if  (GetConversionRank(Second) > Rank)
209    Rank = GetConversionRank(Second);
210  if  (GetConversionRank(Third) > Rank)
211    Rank = GetConversionRank(Third);
212  return Rank;
213}
214
215/// isPointerConversionToBool - Determines whether this conversion is
216/// a conversion of a pointer or pointer-to-member to bool. This is
217/// used as part of the ranking of standard conversion sequences
218/// (C++ 13.3.3.2p4).
219bool StandardConversionSequence::isPointerConversionToBool() const {
220  // Note that FromType has not necessarily been transformed by the
221  // array-to-pointer or function-to-pointer implicit conversions, so
222  // check for their presence as well as checking whether FromType is
223  // a pointer.
224  if (getToType(1)->isBooleanType() &&
225      (getFromType()->isPointerType() ||
226       getFromType()->isObjCObjectPointerType() ||
227       getFromType()->isBlockPointerType() ||
228       getFromType()->isNullPtrType() ||
229       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230    return true;
231
232  return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242  QualType FromType = getFromType();
243  QualType ToType = getToType(1);
244
245  // Note that FromType has not necessarily been transformed by the
246  // array-to-pointer implicit conversion, so check for its presence
247  // and redo the conversion to get a pointer.
248  if (First == ICK_Array_To_Pointer)
249    FromType = Context.getArrayDecayedType(FromType);
250
251  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253      return ToPtrType->getPointeeType()->isVoidType();
254
255  return false;
256}
257
258/// DebugPrint - Print this standard conversion sequence to standard
259/// error. Useful for debugging overloading issues.
260void StandardConversionSequence::DebugPrint() const {
261  raw_ostream &OS = llvm::errs();
262  bool PrintedSomething = false;
263  if (First != ICK_Identity) {
264    OS << GetImplicitConversionName(First);
265    PrintedSomething = true;
266  }
267
268  if (Second != ICK_Identity) {
269    if (PrintedSomething) {
270      OS << " -> ";
271    }
272    OS << GetImplicitConversionName(Second);
273
274    if (CopyConstructor) {
275      OS << " (by copy constructor)";
276    } else if (DirectBinding) {
277      OS << " (direct reference binding)";
278    } else if (ReferenceBinding) {
279      OS << " (reference binding)";
280    }
281    PrintedSomething = true;
282  }
283
284  if (Third != ICK_Identity) {
285    if (PrintedSomething) {
286      OS << " -> ";
287    }
288    OS << GetImplicitConversionName(Third);
289    PrintedSomething = true;
290  }
291
292  if (!PrintedSomething) {
293    OS << "No conversions required";
294  }
295}
296
297/// DebugPrint - Print this user-defined conversion sequence to standard
298/// error. Useful for debugging overloading issues.
299void UserDefinedConversionSequence::DebugPrint() const {
300  raw_ostream &OS = llvm::errs();
301  if (Before.First || Before.Second || Before.Third) {
302    Before.DebugPrint();
303    OS << " -> ";
304  }
305  OS << '\'' << ConversionFunction << '\'';
306  if (After.First || After.Second || After.Third) {
307    OS << " -> ";
308    After.DebugPrint();
309  }
310}
311
312/// DebugPrint - Print this implicit conversion sequence to standard
313/// error. Useful for debugging overloading issues.
314void ImplicitConversionSequence::DebugPrint() const {
315  raw_ostream &OS = llvm::errs();
316  switch (ConversionKind) {
317  case StandardConversion:
318    OS << "Standard conversion: ";
319    Standard.DebugPrint();
320    break;
321  case UserDefinedConversion:
322    OS << "User-defined conversion: ";
323    UserDefined.DebugPrint();
324    break;
325  case EllipsisConversion:
326    OS << "Ellipsis conversion";
327    break;
328  case AmbiguousConversion:
329    OS << "Ambiguous conversion";
330    break;
331  case BadConversion:
332    OS << "Bad conversion";
333    break;
334  }
335
336  OS << "\n";
337}
338
339void AmbiguousConversionSequence::construct() {
340  new (&conversions()) ConversionSet();
341}
342
343void AmbiguousConversionSequence::destruct() {
344  conversions().~ConversionSet();
345}
346
347void
348AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
349  FromTypePtr = O.FromTypePtr;
350  ToTypePtr = O.ToTypePtr;
351  new (&conversions()) ConversionSet(O.conversions());
352}
353
354namespace {
355  // Structure used by OverloadCandidate::DeductionFailureInfo to store
356  // template parameter and template argument information.
357  struct DFIParamWithArguments {
358    TemplateParameter Param;
359    TemplateArgument FirstArg;
360    TemplateArgument SecondArg;
361  };
362}
363
364/// \brief Convert from Sema's representation of template deduction information
365/// to the form used in overload-candidate information.
366OverloadCandidate::DeductionFailureInfo
367static MakeDeductionFailureInfo(ASTContext &Context,
368                                Sema::TemplateDeductionResult TDK,
369                                TemplateDeductionInfo &Info) {
370  OverloadCandidate::DeductionFailureInfo Result;
371  Result.Result = static_cast<unsigned>(TDK);
372  Result.Data = 0;
373  switch (TDK) {
374  case Sema::TDK_Success:
375  case Sema::TDK_InstantiationDepth:
376  case Sema::TDK_TooManyArguments:
377  case Sema::TDK_TooFewArguments:
378    break;
379
380  case Sema::TDK_Incomplete:
381  case Sema::TDK_InvalidExplicitArguments:
382    Result.Data = Info.Param.getOpaqueValue();
383    break;
384
385  case Sema::TDK_Inconsistent:
386  case Sema::TDK_Underqualified: {
387    // FIXME: Should allocate from normal heap so that we can free this later.
388    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
389    Saved->Param = Info.Param;
390    Saved->FirstArg = Info.FirstArg;
391    Saved->SecondArg = Info.SecondArg;
392    Result.Data = Saved;
393    break;
394  }
395
396  case Sema::TDK_SubstitutionFailure:
397    Result.Data = Info.take();
398    break;
399
400  case Sema::TDK_NonDeducedMismatch:
401  case Sema::TDK_FailedOverloadResolution:
402    break;
403  }
404
405  return Result;
406}
407
408void OverloadCandidate::DeductionFailureInfo::Destroy() {
409  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
410  case Sema::TDK_Success:
411  case Sema::TDK_InstantiationDepth:
412  case Sema::TDK_Incomplete:
413  case Sema::TDK_TooManyArguments:
414  case Sema::TDK_TooFewArguments:
415  case Sema::TDK_InvalidExplicitArguments:
416    break;
417
418  case Sema::TDK_Inconsistent:
419  case Sema::TDK_Underqualified:
420    // FIXME: Destroy the data?
421    Data = 0;
422    break;
423
424  case Sema::TDK_SubstitutionFailure:
425    // FIXME: Destroy the template arugment list?
426    Data = 0;
427    break;
428
429  // Unhandled
430  case Sema::TDK_NonDeducedMismatch:
431  case Sema::TDK_FailedOverloadResolution:
432    break;
433  }
434}
435
436TemplateParameter
437OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
438  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
439  case Sema::TDK_Success:
440  case Sema::TDK_InstantiationDepth:
441  case Sema::TDK_TooManyArguments:
442  case Sema::TDK_TooFewArguments:
443  case Sema::TDK_SubstitutionFailure:
444    return TemplateParameter();
445
446  case Sema::TDK_Incomplete:
447  case Sema::TDK_InvalidExplicitArguments:
448    return TemplateParameter::getFromOpaqueValue(Data);
449
450  case Sema::TDK_Inconsistent:
451  case Sema::TDK_Underqualified:
452    return static_cast<DFIParamWithArguments*>(Data)->Param;
453
454  // Unhandled
455  case Sema::TDK_NonDeducedMismatch:
456  case Sema::TDK_FailedOverloadResolution:
457    break;
458  }
459
460  return TemplateParameter();
461}
462
463TemplateArgumentList *
464OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
465  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
466    case Sema::TDK_Success:
467    case Sema::TDK_InstantiationDepth:
468    case Sema::TDK_TooManyArguments:
469    case Sema::TDK_TooFewArguments:
470    case Sema::TDK_Incomplete:
471    case Sema::TDK_InvalidExplicitArguments:
472    case Sema::TDK_Inconsistent:
473    case Sema::TDK_Underqualified:
474      return 0;
475
476    case Sema::TDK_SubstitutionFailure:
477      return static_cast<TemplateArgumentList*>(Data);
478
479    // Unhandled
480    case Sema::TDK_NonDeducedMismatch:
481    case Sema::TDK_FailedOverloadResolution:
482      break;
483  }
484
485  return 0;
486}
487
488const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
489  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
490  case Sema::TDK_Success:
491  case Sema::TDK_InstantiationDepth:
492  case Sema::TDK_Incomplete:
493  case Sema::TDK_TooManyArguments:
494  case Sema::TDK_TooFewArguments:
495  case Sema::TDK_InvalidExplicitArguments:
496  case Sema::TDK_SubstitutionFailure:
497    return 0;
498
499  case Sema::TDK_Inconsistent:
500  case Sema::TDK_Underqualified:
501    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
502
503  // Unhandled
504  case Sema::TDK_NonDeducedMismatch:
505  case Sema::TDK_FailedOverloadResolution:
506    break;
507  }
508
509  return 0;
510}
511
512const TemplateArgument *
513OverloadCandidate::DeductionFailureInfo::getSecondArg() {
514  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
515  case Sema::TDK_Success:
516  case Sema::TDK_InstantiationDepth:
517  case Sema::TDK_Incomplete:
518  case Sema::TDK_TooManyArguments:
519  case Sema::TDK_TooFewArguments:
520  case Sema::TDK_InvalidExplicitArguments:
521  case Sema::TDK_SubstitutionFailure:
522    return 0;
523
524  case Sema::TDK_Inconsistent:
525  case Sema::TDK_Underqualified:
526    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
527
528  // Unhandled
529  case Sema::TDK_NonDeducedMismatch:
530  case Sema::TDK_FailedOverloadResolution:
531    break;
532  }
533
534  return 0;
535}
536
537void OverloadCandidateSet::clear() {
538  inherited::clear();
539  Functions.clear();
540}
541
542// IsOverload - Determine whether the given New declaration is an
543// overload of the declarations in Old. This routine returns false if
544// New and Old cannot be overloaded, e.g., if New has the same
545// signature as some function in Old (C++ 1.3.10) or if the Old
546// declarations aren't functions (or function templates) at all. When
547// it does return false, MatchedDecl will point to the decl that New
548// cannot be overloaded with.  This decl may be a UsingShadowDecl on
549// top of the underlying declaration.
550//
551// Example: Given the following input:
552//
553//   void f(int, float); // #1
554//   void f(int, int); // #2
555//   int f(int, int); // #3
556//
557// When we process #1, there is no previous declaration of "f",
558// so IsOverload will not be used.
559//
560// When we process #2, Old contains only the FunctionDecl for #1.  By
561// comparing the parameter types, we see that #1 and #2 are overloaded
562// (since they have different signatures), so this routine returns
563// false; MatchedDecl is unchanged.
564//
565// When we process #3, Old is an overload set containing #1 and #2. We
566// compare the signatures of #3 to #1 (they're overloaded, so we do
567// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
568// identical (return types of functions are not part of the
569// signature), IsOverload returns false and MatchedDecl will be set to
570// point to the FunctionDecl for #2.
571//
572// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
573// into a class by a using declaration.  The rules for whether to hide
574// shadow declarations ignore some properties which otherwise figure
575// into a function template's signature.
576Sema::OverloadKind
577Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
578                    NamedDecl *&Match, bool NewIsUsingDecl) {
579  for (LookupResult::iterator I = Old.begin(), E = Old.end();
580         I != E; ++I) {
581    NamedDecl *OldD = *I;
582
583    bool OldIsUsingDecl = false;
584    if (isa<UsingShadowDecl>(OldD)) {
585      OldIsUsingDecl = true;
586
587      // We can always introduce two using declarations into the same
588      // context, even if they have identical signatures.
589      if (NewIsUsingDecl) continue;
590
591      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
592    }
593
594    // If either declaration was introduced by a using declaration,
595    // we'll need to use slightly different rules for matching.
596    // Essentially, these rules are the normal rules, except that
597    // function templates hide function templates with different
598    // return types or template parameter lists.
599    bool UseMemberUsingDeclRules =
600      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
601
602    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
603      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
604        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
605          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
606          continue;
607        }
608
609        Match = *I;
610        return Ovl_Match;
611      }
612    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
613      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
614        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
615          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
616          continue;
617        }
618
619        Match = *I;
620        return Ovl_Match;
621      }
622    } else if (isa<UsingDecl>(OldD)) {
623      // We can overload with these, which can show up when doing
624      // redeclaration checks for UsingDecls.
625      assert(Old.getLookupKind() == LookupUsingDeclName);
626    } else if (isa<TagDecl>(OldD)) {
627      // We can always overload with tags by hiding them.
628    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
629      // Optimistically assume that an unresolved using decl will
630      // overload; if it doesn't, we'll have to diagnose during
631      // template instantiation.
632    } else {
633      // (C++ 13p1):
634      //   Only function declarations can be overloaded; object and type
635      //   declarations cannot be overloaded.
636      Match = *I;
637      return Ovl_NonFunction;
638    }
639  }
640
641  return Ovl_Overload;
642}
643
644bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
645                      bool UseUsingDeclRules) {
646  // If both of the functions are extern "C", then they are not
647  // overloads.
648  if (Old->isExternC() && New->isExternC())
649    return false;
650
651  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
652  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
653
654  // C++ [temp.fct]p2:
655  //   A function template can be overloaded with other function templates
656  //   and with normal (non-template) functions.
657  if ((OldTemplate == 0) != (NewTemplate == 0))
658    return true;
659
660  // Is the function New an overload of the function Old?
661  QualType OldQType = Context.getCanonicalType(Old->getType());
662  QualType NewQType = Context.getCanonicalType(New->getType());
663
664  // Compare the signatures (C++ 1.3.10) of the two functions to
665  // determine whether they are overloads. If we find any mismatch
666  // in the signature, they are overloads.
667
668  // If either of these functions is a K&R-style function (no
669  // prototype), then we consider them to have matching signatures.
670  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
671      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
672    return false;
673
674  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
675  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
676
677  // The signature of a function includes the types of its
678  // parameters (C++ 1.3.10), which includes the presence or absence
679  // of the ellipsis; see C++ DR 357).
680  if (OldQType != NewQType &&
681      (OldType->getNumArgs() != NewType->getNumArgs() ||
682       OldType->isVariadic() != NewType->isVariadic() ||
683       !FunctionArgTypesAreEqual(OldType, NewType)))
684    return true;
685
686  // C++ [temp.over.link]p4:
687  //   The signature of a function template consists of its function
688  //   signature, its return type and its template parameter list. The names
689  //   of the template parameters are significant only for establishing the
690  //   relationship between the template parameters and the rest of the
691  //   signature.
692  //
693  // We check the return type and template parameter lists for function
694  // templates first; the remaining checks follow.
695  //
696  // However, we don't consider either of these when deciding whether
697  // a member introduced by a shadow declaration is hidden.
698  if (!UseUsingDeclRules && NewTemplate &&
699      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
700                                       OldTemplate->getTemplateParameters(),
701                                       false, TPL_TemplateMatch) ||
702       OldType->getResultType() != NewType->getResultType()))
703    return true;
704
705  // If the function is a class member, its signature includes the
706  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
707  //
708  // As part of this, also check whether one of the member functions
709  // is static, in which case they are not overloads (C++
710  // 13.1p2). While not part of the definition of the signature,
711  // this check is important to determine whether these functions
712  // can be overloaded.
713  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
714  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
715  if (OldMethod && NewMethod &&
716      !OldMethod->isStatic() && !NewMethod->isStatic() &&
717      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
718       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
719    if (!UseUsingDeclRules &&
720        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
721        (OldMethod->getRefQualifier() == RQ_None ||
722         NewMethod->getRefQualifier() == RQ_None)) {
723      // C++0x [over.load]p2:
724      //   - Member function declarations with the same name and the same
725      //     parameter-type-list as well as member function template
726      //     declarations with the same name, the same parameter-type-list, and
727      //     the same template parameter lists cannot be overloaded if any of
728      //     them, but not all, have a ref-qualifier (8.3.5).
729      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
730        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
731      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
732    }
733
734    return true;
735  }
736
737  // The signatures match; this is not an overload.
738  return false;
739}
740
741/// \brief Checks availability of the function depending on the current
742/// function context. Inside an unavailable function, unavailability is ignored.
743///
744/// \returns true if \arg FD is unavailable and current context is inside
745/// an available function, false otherwise.
746bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
747  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
748}
749
750/// TryImplicitConversion - Attempt to perform an implicit conversion
751/// from the given expression (Expr) to the given type (ToType). This
752/// function returns an implicit conversion sequence that can be used
753/// to perform the initialization. Given
754///
755///   void f(float f);
756///   void g(int i) { f(i); }
757///
758/// this routine would produce an implicit conversion sequence to
759/// describe the initialization of f from i, which will be a standard
760/// conversion sequence containing an lvalue-to-rvalue conversion (C++
761/// 4.1) followed by a floating-integral conversion (C++ 4.9).
762//
763/// Note that this routine only determines how the conversion can be
764/// performed; it does not actually perform the conversion. As such,
765/// it will not produce any diagnostics if no conversion is available,
766/// but will instead return an implicit conversion sequence of kind
767/// "BadConversion".
768///
769/// If @p SuppressUserConversions, then user-defined conversions are
770/// not permitted.
771/// If @p AllowExplicit, then explicit user-defined conversions are
772/// permitted.
773///
774/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
775/// writeback conversion, which allows __autoreleasing id* parameters to
776/// be initialized with __strong id* or __weak id* arguments.
777static ImplicitConversionSequence
778TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
779                      bool SuppressUserConversions,
780                      bool AllowExplicit,
781                      bool InOverloadResolution,
782                      bool CStyle,
783                      bool AllowObjCWritebackConversion) {
784  ImplicitConversionSequence ICS;
785  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
786                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
787    ICS.setStandard();
788    return ICS;
789  }
790
791  if (!S.getLangOptions().CPlusPlus) {
792    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
793    return ICS;
794  }
795
796  // C++ [over.ics.user]p4:
797  //   A conversion of an expression of class type to the same class
798  //   type is given Exact Match rank, and a conversion of an
799  //   expression of class type to a base class of that type is
800  //   given Conversion rank, in spite of the fact that a copy/move
801  //   constructor (i.e., a user-defined conversion function) is
802  //   called for those cases.
803  QualType FromType = From->getType();
804  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
805      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
806       S.IsDerivedFrom(FromType, ToType))) {
807    ICS.setStandard();
808    ICS.Standard.setAsIdentityConversion();
809    ICS.Standard.setFromType(FromType);
810    ICS.Standard.setAllToTypes(ToType);
811
812    // We don't actually check at this point whether there is a valid
813    // copy/move constructor, since overloading just assumes that it
814    // exists. When we actually perform initialization, we'll find the
815    // appropriate constructor to copy the returned object, if needed.
816    ICS.Standard.CopyConstructor = 0;
817
818    // Determine whether this is considered a derived-to-base conversion.
819    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
820      ICS.Standard.Second = ICK_Derived_To_Base;
821
822    return ICS;
823  }
824
825  if (SuppressUserConversions) {
826    // We're not in the case above, so there is no conversion that
827    // we can perform.
828    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
829    return ICS;
830  }
831
832  // Attempt user-defined conversion.
833  OverloadCandidateSet Conversions(From->getExprLoc());
834  OverloadingResult UserDefResult
835    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
836                              AllowExplicit);
837
838  if (UserDefResult == OR_Success) {
839    ICS.setUserDefined();
840    // C++ [over.ics.user]p4:
841    //   A conversion of an expression of class type to the same class
842    //   type is given Exact Match rank, and a conversion of an
843    //   expression of class type to a base class of that type is
844    //   given Conversion rank, in spite of the fact that a copy
845    //   constructor (i.e., a user-defined conversion function) is
846    //   called for those cases.
847    if (CXXConstructorDecl *Constructor
848          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
849      QualType FromCanon
850        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
851      QualType ToCanon
852        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
853      if (Constructor->isCopyConstructor() &&
854          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
855        // Turn this into a "standard" conversion sequence, so that it
856        // gets ranked with standard conversion sequences.
857        ICS.setStandard();
858        ICS.Standard.setAsIdentityConversion();
859        ICS.Standard.setFromType(From->getType());
860        ICS.Standard.setAllToTypes(ToType);
861        ICS.Standard.CopyConstructor = Constructor;
862        if (ToCanon != FromCanon)
863          ICS.Standard.Second = ICK_Derived_To_Base;
864      }
865    }
866
867    // C++ [over.best.ics]p4:
868    //   However, when considering the argument of a user-defined
869    //   conversion function that is a candidate by 13.3.1.3 when
870    //   invoked for the copying of the temporary in the second step
871    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
872    //   13.3.1.6 in all cases, only standard conversion sequences and
873    //   ellipsis conversion sequences are allowed.
874    if (SuppressUserConversions && ICS.isUserDefined()) {
875      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
876    }
877  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
878    ICS.setAmbiguous();
879    ICS.Ambiguous.setFromType(From->getType());
880    ICS.Ambiguous.setToType(ToType);
881    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
882         Cand != Conversions.end(); ++Cand)
883      if (Cand->Viable)
884        ICS.Ambiguous.addConversion(Cand->Function);
885  } else {
886    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
887  }
888
889  return ICS;
890}
891
892ImplicitConversionSequence
893Sema::TryImplicitConversion(Expr *From, QualType ToType,
894                            bool SuppressUserConversions,
895                            bool AllowExplicit,
896                            bool InOverloadResolution,
897                            bool CStyle,
898                            bool AllowObjCWritebackConversion) {
899  return clang::TryImplicitConversion(*this, From, ToType,
900                                      SuppressUserConversions, AllowExplicit,
901                                      InOverloadResolution, CStyle,
902                                      AllowObjCWritebackConversion);
903}
904
905/// PerformImplicitConversion - Perform an implicit conversion of the
906/// expression From to the type ToType. Returns the
907/// converted expression. Flavor is the kind of conversion we're
908/// performing, used in the error message. If @p AllowExplicit,
909/// explicit user-defined conversions are permitted.
910ExprResult
911Sema::PerformImplicitConversion(Expr *From, QualType ToType,
912                                AssignmentAction Action, bool AllowExplicit) {
913  ImplicitConversionSequence ICS;
914  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
915}
916
917ExprResult
918Sema::PerformImplicitConversion(Expr *From, QualType ToType,
919                                AssignmentAction Action, bool AllowExplicit,
920                                ImplicitConversionSequence& ICS) {
921  // Objective-C ARC: Determine whether we will allow the writeback conversion.
922  bool AllowObjCWritebackConversion
923    = getLangOptions().ObjCAutoRefCount &&
924      (Action == AA_Passing || Action == AA_Sending);
925
926
927  ICS = clang::TryImplicitConversion(*this, From, ToType,
928                                     /*SuppressUserConversions=*/false,
929                                     AllowExplicit,
930                                     /*InOverloadResolution=*/false,
931                                     /*CStyle=*/false,
932                                     AllowObjCWritebackConversion);
933  return PerformImplicitConversion(From, ToType, ICS, Action);
934}
935
936/// \brief Determine whether the conversion from FromType to ToType is a valid
937/// conversion that strips "noreturn" off the nested function type.
938bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
939                                QualType &ResultTy) {
940  if (Context.hasSameUnqualifiedType(FromType, ToType))
941    return false;
942
943  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
944  // where F adds one of the following at most once:
945  //   - a pointer
946  //   - a member pointer
947  //   - a block pointer
948  CanQualType CanTo = Context.getCanonicalType(ToType);
949  CanQualType CanFrom = Context.getCanonicalType(FromType);
950  Type::TypeClass TyClass = CanTo->getTypeClass();
951  if (TyClass != CanFrom->getTypeClass()) return false;
952  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
953    if (TyClass == Type::Pointer) {
954      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
955      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
956    } else if (TyClass == Type::BlockPointer) {
957      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
958      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
959    } else if (TyClass == Type::MemberPointer) {
960      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
961      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
962    } else {
963      return false;
964    }
965
966    TyClass = CanTo->getTypeClass();
967    if (TyClass != CanFrom->getTypeClass()) return false;
968    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
969      return false;
970  }
971
972  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
973  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
974  if (!EInfo.getNoReturn()) return false;
975
976  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
977  assert(QualType(FromFn, 0).isCanonical());
978  if (QualType(FromFn, 0) != CanTo) return false;
979
980  ResultTy = ToType;
981  return true;
982}
983
984/// \brief Determine whether the conversion from FromType to ToType is a valid
985/// vector conversion.
986///
987/// \param ICK Will be set to the vector conversion kind, if this is a vector
988/// conversion.
989static bool IsVectorConversion(ASTContext &Context, QualType FromType,
990                               QualType ToType, ImplicitConversionKind &ICK) {
991  // We need at least one of these types to be a vector type to have a vector
992  // conversion.
993  if (!ToType->isVectorType() && !FromType->isVectorType())
994    return false;
995
996  // Identical types require no conversions.
997  if (Context.hasSameUnqualifiedType(FromType, ToType))
998    return false;
999
1000  // There are no conversions between extended vector types, only identity.
1001  if (ToType->isExtVectorType()) {
1002    // There are no conversions between extended vector types other than the
1003    // identity conversion.
1004    if (FromType->isExtVectorType())
1005      return false;
1006
1007    // Vector splat from any arithmetic type to a vector.
1008    if (FromType->isArithmeticType()) {
1009      ICK = ICK_Vector_Splat;
1010      return true;
1011    }
1012  }
1013
1014  // We can perform the conversion between vector types in the following cases:
1015  // 1)vector types are equivalent AltiVec and GCC vector types
1016  // 2)lax vector conversions are permitted and the vector types are of the
1017  //   same size
1018  if (ToType->isVectorType() && FromType->isVectorType()) {
1019    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1020        (Context.getLangOptions().LaxVectorConversions &&
1021         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1022      ICK = ICK_Vector_Conversion;
1023      return true;
1024    }
1025  }
1026
1027  return false;
1028}
1029
1030/// IsStandardConversion - Determines whether there is a standard
1031/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1032/// expression From to the type ToType. Standard conversion sequences
1033/// only consider non-class types; for conversions that involve class
1034/// types, use TryImplicitConversion. If a conversion exists, SCS will
1035/// contain the standard conversion sequence required to perform this
1036/// conversion and this routine will return true. Otherwise, this
1037/// routine will return false and the value of SCS is unspecified.
1038static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1039                                 bool InOverloadResolution,
1040                                 StandardConversionSequence &SCS,
1041                                 bool CStyle,
1042                                 bool AllowObjCWritebackConversion) {
1043  QualType FromType = From->getType();
1044
1045  // Standard conversions (C++ [conv])
1046  SCS.setAsIdentityConversion();
1047  SCS.DeprecatedStringLiteralToCharPtr = false;
1048  SCS.IncompatibleObjC = false;
1049  SCS.setFromType(FromType);
1050  SCS.CopyConstructor = 0;
1051
1052  // There are no standard conversions for class types in C++, so
1053  // abort early. When overloading in C, however, we do permit
1054  if (FromType->isRecordType() || ToType->isRecordType()) {
1055    if (S.getLangOptions().CPlusPlus)
1056      return false;
1057
1058    // When we're overloading in C, we allow, as standard conversions,
1059  }
1060
1061  // The first conversion can be an lvalue-to-rvalue conversion,
1062  // array-to-pointer conversion, or function-to-pointer conversion
1063  // (C++ 4p1).
1064
1065  if (FromType == S.Context.OverloadTy) {
1066    DeclAccessPair AccessPair;
1067    if (FunctionDecl *Fn
1068          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1069                                                 AccessPair)) {
1070      // We were able to resolve the address of the overloaded function,
1071      // so we can convert to the type of that function.
1072      FromType = Fn->getType();
1073
1074      // we can sometimes resolve &foo<int> regardless of ToType, so check
1075      // if the type matches (identity) or we are converting to bool
1076      if (!S.Context.hasSameUnqualifiedType(
1077                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1078        QualType resultTy;
1079        // if the function type matches except for [[noreturn]], it's ok
1080        if (!S.IsNoReturnConversion(FromType,
1081              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1082          // otherwise, only a boolean conversion is standard
1083          if (!ToType->isBooleanType())
1084            return false;
1085      }
1086
1087      // Check if the "from" expression is taking the address of an overloaded
1088      // function and recompute the FromType accordingly. Take advantage of the
1089      // fact that non-static member functions *must* have such an address-of
1090      // expression.
1091      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1092      if (Method && !Method->isStatic()) {
1093        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1094               "Non-unary operator on non-static member address");
1095        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1096               == UO_AddrOf &&
1097               "Non-address-of operator on non-static member address");
1098        const Type *ClassType
1099          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1100        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1101      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1102        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1103               UO_AddrOf &&
1104               "Non-address-of operator for overloaded function expression");
1105        FromType = S.Context.getPointerType(FromType);
1106      }
1107
1108      // Check that we've computed the proper type after overload resolution.
1109      assert(S.Context.hasSameType(
1110        FromType,
1111        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1112    } else {
1113      return false;
1114    }
1115  }
1116  // Lvalue-to-rvalue conversion (C++ 4.1):
1117  //   An lvalue (3.10) of a non-function, non-array type T can be
1118  //   converted to an rvalue.
1119  bool argIsLValue = From->isLValue();
1120  if (argIsLValue &&
1121      !FromType->isFunctionType() && !FromType->isArrayType() &&
1122      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1123    SCS.First = ICK_Lvalue_To_Rvalue;
1124
1125    // If T is a non-class type, the type of the rvalue is the
1126    // cv-unqualified version of T. Otherwise, the type of the rvalue
1127    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1128    // just strip the qualifiers because they don't matter.
1129    FromType = FromType.getUnqualifiedType();
1130  } else if (FromType->isArrayType()) {
1131    // Array-to-pointer conversion (C++ 4.2)
1132    SCS.First = ICK_Array_To_Pointer;
1133
1134    // An lvalue or rvalue of type "array of N T" or "array of unknown
1135    // bound of T" can be converted to an rvalue of type "pointer to
1136    // T" (C++ 4.2p1).
1137    FromType = S.Context.getArrayDecayedType(FromType);
1138
1139    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1140      // This conversion is deprecated. (C++ D.4).
1141      SCS.DeprecatedStringLiteralToCharPtr = true;
1142
1143      // For the purpose of ranking in overload resolution
1144      // (13.3.3.1.1), this conversion is considered an
1145      // array-to-pointer conversion followed by a qualification
1146      // conversion (4.4). (C++ 4.2p2)
1147      SCS.Second = ICK_Identity;
1148      SCS.Third = ICK_Qualification;
1149      SCS.QualificationIncludesObjCLifetime = false;
1150      SCS.setAllToTypes(FromType);
1151      return true;
1152    }
1153  } else if (FromType->isFunctionType() && argIsLValue) {
1154    // Function-to-pointer conversion (C++ 4.3).
1155    SCS.First = ICK_Function_To_Pointer;
1156
1157    // An lvalue of function type T can be converted to an rvalue of
1158    // type "pointer to T." The result is a pointer to the
1159    // function. (C++ 4.3p1).
1160    FromType = S.Context.getPointerType(FromType);
1161  } else {
1162    // We don't require any conversions for the first step.
1163    SCS.First = ICK_Identity;
1164  }
1165  SCS.setToType(0, FromType);
1166
1167  // The second conversion can be an integral promotion, floating
1168  // point promotion, integral conversion, floating point conversion,
1169  // floating-integral conversion, pointer conversion,
1170  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1171  // For overloading in C, this can also be a "compatible-type"
1172  // conversion.
1173  bool IncompatibleObjC = false;
1174  ImplicitConversionKind SecondICK = ICK_Identity;
1175  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1176    // The unqualified versions of the types are the same: there's no
1177    // conversion to do.
1178    SCS.Second = ICK_Identity;
1179  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1180    // Integral promotion (C++ 4.5).
1181    SCS.Second = ICK_Integral_Promotion;
1182    FromType = ToType.getUnqualifiedType();
1183  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1184    // Floating point promotion (C++ 4.6).
1185    SCS.Second = ICK_Floating_Promotion;
1186    FromType = ToType.getUnqualifiedType();
1187  } else if (S.IsComplexPromotion(FromType, ToType)) {
1188    // Complex promotion (Clang extension)
1189    SCS.Second = ICK_Complex_Promotion;
1190    FromType = ToType.getUnqualifiedType();
1191  } else if (ToType->isBooleanType() &&
1192             (FromType->isArithmeticType() ||
1193              FromType->isAnyPointerType() ||
1194              FromType->isBlockPointerType() ||
1195              FromType->isMemberPointerType() ||
1196              FromType->isNullPtrType())) {
1197    // Boolean conversions (C++ 4.12).
1198    SCS.Second = ICK_Boolean_Conversion;
1199    FromType = S.Context.BoolTy;
1200  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1201             ToType->isIntegralType(S.Context)) {
1202    // Integral conversions (C++ 4.7).
1203    SCS.Second = ICK_Integral_Conversion;
1204    FromType = ToType.getUnqualifiedType();
1205  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1206    // Complex conversions (C99 6.3.1.6)
1207    SCS.Second = ICK_Complex_Conversion;
1208    FromType = ToType.getUnqualifiedType();
1209  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1210             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1211    // Complex-real conversions (C99 6.3.1.7)
1212    SCS.Second = ICK_Complex_Real;
1213    FromType = ToType.getUnqualifiedType();
1214  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1215    // Floating point conversions (C++ 4.8).
1216    SCS.Second = ICK_Floating_Conversion;
1217    FromType = ToType.getUnqualifiedType();
1218  } else if ((FromType->isRealFloatingType() &&
1219              ToType->isIntegralType(S.Context)) ||
1220             (FromType->isIntegralOrUnscopedEnumerationType() &&
1221              ToType->isRealFloatingType())) {
1222    // Floating-integral conversions (C++ 4.9).
1223    SCS.Second = ICK_Floating_Integral;
1224    FromType = ToType.getUnqualifiedType();
1225  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1226    SCS.Second = ICK_Block_Pointer_Conversion;
1227  } else if (AllowObjCWritebackConversion &&
1228             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1229    SCS.Second = ICK_Writeback_Conversion;
1230  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1231                                   FromType, IncompatibleObjC)) {
1232    // Pointer conversions (C++ 4.10).
1233    SCS.Second = ICK_Pointer_Conversion;
1234    SCS.IncompatibleObjC = IncompatibleObjC;
1235    FromType = FromType.getUnqualifiedType();
1236  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1237                                         InOverloadResolution, FromType)) {
1238    // Pointer to member conversions (4.11).
1239    SCS.Second = ICK_Pointer_Member;
1240  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1241    SCS.Second = SecondICK;
1242    FromType = ToType.getUnqualifiedType();
1243  } else if (!S.getLangOptions().CPlusPlus &&
1244             S.Context.typesAreCompatible(ToType, FromType)) {
1245    // Compatible conversions (Clang extension for C function overloading)
1246    SCS.Second = ICK_Compatible_Conversion;
1247    FromType = ToType.getUnqualifiedType();
1248  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1249    // Treat a conversion that strips "noreturn" as an identity conversion.
1250    SCS.Second = ICK_NoReturn_Adjustment;
1251  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1252                                             InOverloadResolution,
1253                                             SCS, CStyle)) {
1254    SCS.Second = ICK_TransparentUnionConversion;
1255    FromType = ToType;
1256  } else {
1257    // No second conversion required.
1258    SCS.Second = ICK_Identity;
1259  }
1260  SCS.setToType(1, FromType);
1261
1262  QualType CanonFrom;
1263  QualType CanonTo;
1264  // The third conversion can be a qualification conversion (C++ 4p1).
1265  bool ObjCLifetimeConversion;
1266  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1267                                  ObjCLifetimeConversion)) {
1268    SCS.Third = ICK_Qualification;
1269    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1270    FromType = ToType;
1271    CanonFrom = S.Context.getCanonicalType(FromType);
1272    CanonTo = S.Context.getCanonicalType(ToType);
1273  } else {
1274    // No conversion required
1275    SCS.Third = ICK_Identity;
1276
1277    // C++ [over.best.ics]p6:
1278    //   [...] Any difference in top-level cv-qualification is
1279    //   subsumed by the initialization itself and does not constitute
1280    //   a conversion. [...]
1281    CanonFrom = S.Context.getCanonicalType(FromType);
1282    CanonTo = S.Context.getCanonicalType(ToType);
1283    if (CanonFrom.getLocalUnqualifiedType()
1284                                       == CanonTo.getLocalUnqualifiedType() &&
1285        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1286         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1287         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1288      FromType = ToType;
1289      CanonFrom = CanonTo;
1290    }
1291  }
1292  SCS.setToType(2, FromType);
1293
1294  // If we have not converted the argument type to the parameter type,
1295  // this is a bad conversion sequence.
1296  if (CanonFrom != CanonTo)
1297    return false;
1298
1299  return true;
1300}
1301
1302static bool
1303IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1304                                     QualType &ToType,
1305                                     bool InOverloadResolution,
1306                                     StandardConversionSequence &SCS,
1307                                     bool CStyle) {
1308
1309  const RecordType *UT = ToType->getAsUnionType();
1310  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1311    return false;
1312  // The field to initialize within the transparent union.
1313  RecordDecl *UD = UT->getDecl();
1314  // It's compatible if the expression matches any of the fields.
1315  for (RecordDecl::field_iterator it = UD->field_begin(),
1316       itend = UD->field_end();
1317       it != itend; ++it) {
1318    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1319                             CStyle, /*ObjCWritebackConversion=*/false)) {
1320      ToType = it->getType();
1321      return true;
1322    }
1323  }
1324  return false;
1325}
1326
1327/// IsIntegralPromotion - Determines whether the conversion from the
1328/// expression From (whose potentially-adjusted type is FromType) to
1329/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1330/// sets PromotedType to the promoted type.
1331bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1332  const BuiltinType *To = ToType->getAs<BuiltinType>();
1333  // All integers are built-in.
1334  if (!To) {
1335    return false;
1336  }
1337
1338  // An rvalue of type char, signed char, unsigned char, short int, or
1339  // unsigned short int can be converted to an rvalue of type int if
1340  // int can represent all the values of the source type; otherwise,
1341  // the source rvalue can be converted to an rvalue of type unsigned
1342  // int (C++ 4.5p1).
1343  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1344      !FromType->isEnumeralType()) {
1345    if (// We can promote any signed, promotable integer type to an int
1346        (FromType->isSignedIntegerType() ||
1347         // We can promote any unsigned integer type whose size is
1348         // less than int to an int.
1349         (!FromType->isSignedIntegerType() &&
1350          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1351      return To->getKind() == BuiltinType::Int;
1352    }
1353
1354    return To->getKind() == BuiltinType::UInt;
1355  }
1356
1357  // C++0x [conv.prom]p3:
1358  //   A prvalue of an unscoped enumeration type whose underlying type is not
1359  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1360  //   following types that can represent all the values of the enumeration
1361  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1362  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1363  //   long long int. If none of the types in that list can represent all the
1364  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1365  //   type can be converted to an rvalue a prvalue of the extended integer type
1366  //   with lowest integer conversion rank (4.13) greater than the rank of long
1367  //   long in which all the values of the enumeration can be represented. If
1368  //   there are two such extended types, the signed one is chosen.
1369  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1370    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1371    // provided for a scoped enumeration.
1372    if (FromEnumType->getDecl()->isScoped())
1373      return false;
1374
1375    // We have already pre-calculated the promotion type, so this is trivial.
1376    if (ToType->isIntegerType() &&
1377        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1378      return Context.hasSameUnqualifiedType(ToType,
1379                                FromEnumType->getDecl()->getPromotionType());
1380  }
1381
1382  // C++0x [conv.prom]p2:
1383  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1384  //   to an rvalue a prvalue of the first of the following types that can
1385  //   represent all the values of its underlying type: int, unsigned int,
1386  //   long int, unsigned long int, long long int, or unsigned long long int.
1387  //   If none of the types in that list can represent all the values of its
1388  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1389  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1390  //   type.
1391  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1392      ToType->isIntegerType()) {
1393    // Determine whether the type we're converting from is signed or
1394    // unsigned.
1395    bool FromIsSigned = FromType->isSignedIntegerType();
1396    uint64_t FromSize = Context.getTypeSize(FromType);
1397
1398    // The types we'll try to promote to, in the appropriate
1399    // order. Try each of these types.
1400    QualType PromoteTypes[6] = {
1401      Context.IntTy, Context.UnsignedIntTy,
1402      Context.LongTy, Context.UnsignedLongTy ,
1403      Context.LongLongTy, Context.UnsignedLongLongTy
1404    };
1405    for (int Idx = 0; Idx < 6; ++Idx) {
1406      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1407      if (FromSize < ToSize ||
1408          (FromSize == ToSize &&
1409           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1410        // We found the type that we can promote to. If this is the
1411        // type we wanted, we have a promotion. Otherwise, no
1412        // promotion.
1413        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1414      }
1415    }
1416  }
1417
1418  // An rvalue for an integral bit-field (9.6) can be converted to an
1419  // rvalue of type int if int can represent all the values of the
1420  // bit-field; otherwise, it can be converted to unsigned int if
1421  // unsigned int can represent all the values of the bit-field. If
1422  // the bit-field is larger yet, no integral promotion applies to
1423  // it. If the bit-field has an enumerated type, it is treated as any
1424  // other value of that type for promotion purposes (C++ 4.5p3).
1425  // FIXME: We should delay checking of bit-fields until we actually perform the
1426  // conversion.
1427  using llvm::APSInt;
1428  if (From)
1429    if (FieldDecl *MemberDecl = From->getBitField()) {
1430      APSInt BitWidth;
1431      if (FromType->isIntegralType(Context) &&
1432          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1433        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1434        ToSize = Context.getTypeSize(ToType);
1435
1436        // Are we promoting to an int from a bitfield that fits in an int?
1437        if (BitWidth < ToSize ||
1438            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1439          return To->getKind() == BuiltinType::Int;
1440        }
1441
1442        // Are we promoting to an unsigned int from an unsigned bitfield
1443        // that fits into an unsigned int?
1444        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1445          return To->getKind() == BuiltinType::UInt;
1446        }
1447
1448        return false;
1449      }
1450    }
1451
1452  // An rvalue of type bool can be converted to an rvalue of type int,
1453  // with false becoming zero and true becoming one (C++ 4.5p4).
1454  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1455    return true;
1456  }
1457
1458  return false;
1459}
1460
1461/// IsFloatingPointPromotion - Determines whether the conversion from
1462/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1463/// returns true and sets PromotedType to the promoted type.
1464bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1465  /// An rvalue of type float can be converted to an rvalue of type
1466  /// double. (C++ 4.6p1).
1467  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1468    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1469      if (FromBuiltin->getKind() == BuiltinType::Float &&
1470          ToBuiltin->getKind() == BuiltinType::Double)
1471        return true;
1472
1473      // C99 6.3.1.5p1:
1474      //   When a float is promoted to double or long double, or a
1475      //   double is promoted to long double [...].
1476      if (!getLangOptions().CPlusPlus &&
1477          (FromBuiltin->getKind() == BuiltinType::Float ||
1478           FromBuiltin->getKind() == BuiltinType::Double) &&
1479          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1480        return true;
1481    }
1482
1483  return false;
1484}
1485
1486/// \brief Determine if a conversion is a complex promotion.
1487///
1488/// A complex promotion is defined as a complex -> complex conversion
1489/// where the conversion between the underlying real types is a
1490/// floating-point or integral promotion.
1491bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1492  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1493  if (!FromComplex)
1494    return false;
1495
1496  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1497  if (!ToComplex)
1498    return false;
1499
1500  return IsFloatingPointPromotion(FromComplex->getElementType(),
1501                                  ToComplex->getElementType()) ||
1502    IsIntegralPromotion(0, FromComplex->getElementType(),
1503                        ToComplex->getElementType());
1504}
1505
1506/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1507/// the pointer type FromPtr to a pointer to type ToPointee, with the
1508/// same type qualifiers as FromPtr has on its pointee type. ToType,
1509/// if non-empty, will be a pointer to ToType that may or may not have
1510/// the right set of qualifiers on its pointee.
1511///
1512static QualType
1513BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1514                                   QualType ToPointee, QualType ToType,
1515                                   ASTContext &Context,
1516                                   bool StripObjCLifetime = false) {
1517  assert((FromPtr->getTypeClass() == Type::Pointer ||
1518          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1519         "Invalid similarly-qualified pointer type");
1520
1521  /// Conversions to 'id' subsume cv-qualifier conversions.
1522  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1523    return ToType.getUnqualifiedType();
1524
1525  QualType CanonFromPointee
1526    = Context.getCanonicalType(FromPtr->getPointeeType());
1527  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1528  Qualifiers Quals = CanonFromPointee.getQualifiers();
1529
1530  if (StripObjCLifetime)
1531    Quals.removeObjCLifetime();
1532
1533  // Exact qualifier match -> return the pointer type we're converting to.
1534  if (CanonToPointee.getLocalQualifiers() == Quals) {
1535    // ToType is exactly what we need. Return it.
1536    if (!ToType.isNull())
1537      return ToType.getUnqualifiedType();
1538
1539    // Build a pointer to ToPointee. It has the right qualifiers
1540    // already.
1541    if (isa<ObjCObjectPointerType>(ToType))
1542      return Context.getObjCObjectPointerType(ToPointee);
1543    return Context.getPointerType(ToPointee);
1544  }
1545
1546  // Just build a canonical type that has the right qualifiers.
1547  QualType QualifiedCanonToPointee
1548    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1549
1550  if (isa<ObjCObjectPointerType>(ToType))
1551    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1552  return Context.getPointerType(QualifiedCanonToPointee);
1553}
1554
1555static bool isNullPointerConstantForConversion(Expr *Expr,
1556                                               bool InOverloadResolution,
1557                                               ASTContext &Context) {
1558  // Handle value-dependent integral null pointer constants correctly.
1559  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1560  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1561      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1562    return !InOverloadResolution;
1563
1564  return Expr->isNullPointerConstant(Context,
1565                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1566                                        : Expr::NPC_ValueDependentIsNull);
1567}
1568
1569/// IsPointerConversion - Determines whether the conversion of the
1570/// expression From, which has the (possibly adjusted) type FromType,
1571/// can be converted to the type ToType via a pointer conversion (C++
1572/// 4.10). If so, returns true and places the converted type (that
1573/// might differ from ToType in its cv-qualifiers at some level) into
1574/// ConvertedType.
1575///
1576/// This routine also supports conversions to and from block pointers
1577/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1578/// pointers to interfaces. FIXME: Once we've determined the
1579/// appropriate overloading rules for Objective-C, we may want to
1580/// split the Objective-C checks into a different routine; however,
1581/// GCC seems to consider all of these conversions to be pointer
1582/// conversions, so for now they live here. IncompatibleObjC will be
1583/// set if the conversion is an allowed Objective-C conversion that
1584/// should result in a warning.
1585bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1586                               bool InOverloadResolution,
1587                               QualType& ConvertedType,
1588                               bool &IncompatibleObjC) {
1589  IncompatibleObjC = false;
1590  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1591                              IncompatibleObjC))
1592    return true;
1593
1594  // Conversion from a null pointer constant to any Objective-C pointer type.
1595  if (ToType->isObjCObjectPointerType() &&
1596      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1597    ConvertedType = ToType;
1598    return true;
1599  }
1600
1601  // Blocks: Block pointers can be converted to void*.
1602  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1603      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1604    ConvertedType = ToType;
1605    return true;
1606  }
1607  // Blocks: A null pointer constant can be converted to a block
1608  // pointer type.
1609  if (ToType->isBlockPointerType() &&
1610      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1611    ConvertedType = ToType;
1612    return true;
1613  }
1614
1615  // If the left-hand-side is nullptr_t, the right side can be a null
1616  // pointer constant.
1617  if (ToType->isNullPtrType() &&
1618      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1619    ConvertedType = ToType;
1620    return true;
1621  }
1622
1623  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1624  if (!ToTypePtr)
1625    return false;
1626
1627  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1628  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1629    ConvertedType = ToType;
1630    return true;
1631  }
1632
1633  // Beyond this point, both types need to be pointers
1634  // , including objective-c pointers.
1635  QualType ToPointeeType = ToTypePtr->getPointeeType();
1636  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1637      !getLangOptions().ObjCAutoRefCount) {
1638    ConvertedType = BuildSimilarlyQualifiedPointerType(
1639                                      FromType->getAs<ObjCObjectPointerType>(),
1640                                                       ToPointeeType,
1641                                                       ToType, Context);
1642    return true;
1643  }
1644  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1645  if (!FromTypePtr)
1646    return false;
1647
1648  QualType FromPointeeType = FromTypePtr->getPointeeType();
1649
1650  // If the unqualified pointee types are the same, this can't be a
1651  // pointer conversion, so don't do all of the work below.
1652  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1653    return false;
1654
1655  // An rvalue of type "pointer to cv T," where T is an object type,
1656  // can be converted to an rvalue of type "pointer to cv void" (C++
1657  // 4.10p2).
1658  if (FromPointeeType->isIncompleteOrObjectType() &&
1659      ToPointeeType->isVoidType()) {
1660    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1661                                                       ToPointeeType,
1662                                                       ToType, Context,
1663                                                   /*StripObjCLifetime=*/true);
1664    return true;
1665  }
1666
1667  // MSVC allows implicit function to void* type conversion.
1668  if (getLangOptions().Microsoft && FromPointeeType->isFunctionType() &&
1669      ToPointeeType->isVoidType()) {
1670    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1671                                                       ToPointeeType,
1672                                                       ToType, Context);
1673    return true;
1674  }
1675
1676  // When we're overloading in C, we allow a special kind of pointer
1677  // conversion for compatible-but-not-identical pointee types.
1678  if (!getLangOptions().CPlusPlus &&
1679      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1680    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1681                                                       ToPointeeType,
1682                                                       ToType, Context);
1683    return true;
1684  }
1685
1686  // C++ [conv.ptr]p3:
1687  //
1688  //   An rvalue of type "pointer to cv D," where D is a class type,
1689  //   can be converted to an rvalue of type "pointer to cv B," where
1690  //   B is a base class (clause 10) of D. If B is an inaccessible
1691  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1692  //   necessitates this conversion is ill-formed. The result of the
1693  //   conversion is a pointer to the base class sub-object of the
1694  //   derived class object. The null pointer value is converted to
1695  //   the null pointer value of the destination type.
1696  //
1697  // Note that we do not check for ambiguity or inaccessibility
1698  // here. That is handled by CheckPointerConversion.
1699  if (getLangOptions().CPlusPlus &&
1700      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1701      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1702      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1703      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1704    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1705                                                       ToPointeeType,
1706                                                       ToType, Context);
1707    return true;
1708  }
1709
1710  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1711      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1712    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1713                                                       ToPointeeType,
1714                                                       ToType, Context);
1715    return true;
1716  }
1717
1718  return false;
1719}
1720
1721/// \brief Adopt the given qualifiers for the given type.
1722static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1723  Qualifiers TQs = T.getQualifiers();
1724
1725  // Check whether qualifiers already match.
1726  if (TQs == Qs)
1727    return T;
1728
1729  if (Qs.compatiblyIncludes(TQs))
1730    return Context.getQualifiedType(T, Qs);
1731
1732  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1733}
1734
1735/// isObjCPointerConversion - Determines whether this is an
1736/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1737/// with the same arguments and return values.
1738bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1739                                   QualType& ConvertedType,
1740                                   bool &IncompatibleObjC) {
1741  if (!getLangOptions().ObjC1)
1742    return false;
1743
1744  // The set of qualifiers on the type we're converting from.
1745  Qualifiers FromQualifiers = FromType.getQualifiers();
1746
1747  // First, we handle all conversions on ObjC object pointer types.
1748  const ObjCObjectPointerType* ToObjCPtr =
1749    ToType->getAs<ObjCObjectPointerType>();
1750  const ObjCObjectPointerType *FromObjCPtr =
1751    FromType->getAs<ObjCObjectPointerType>();
1752
1753  if (ToObjCPtr && FromObjCPtr) {
1754    // If the pointee types are the same (ignoring qualifications),
1755    // then this is not a pointer conversion.
1756    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1757                                       FromObjCPtr->getPointeeType()))
1758      return false;
1759
1760    // Check for compatible
1761    // Objective C++: We're able to convert between "id" or "Class" and a
1762    // pointer to any interface (in both directions).
1763    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1764      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1765      return true;
1766    }
1767    // Conversions with Objective-C's id<...>.
1768    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1769         ToObjCPtr->isObjCQualifiedIdType()) &&
1770        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1771                                                  /*compare=*/false)) {
1772      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1773      return true;
1774    }
1775    // Objective C++: We're able to convert from a pointer to an
1776    // interface to a pointer to a different interface.
1777    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1778      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1779      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1780      if (getLangOptions().CPlusPlus && LHS && RHS &&
1781          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1782                                                FromObjCPtr->getPointeeType()))
1783        return false;
1784      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1785                                                   ToObjCPtr->getPointeeType(),
1786                                                         ToType, Context);
1787      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1788      return true;
1789    }
1790
1791    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1792      // Okay: this is some kind of implicit downcast of Objective-C
1793      // interfaces, which is permitted. However, we're going to
1794      // complain about it.
1795      IncompatibleObjC = true;
1796      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1797                                                   ToObjCPtr->getPointeeType(),
1798                                                         ToType, Context);
1799      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1800      return true;
1801    }
1802  }
1803  // Beyond this point, both types need to be C pointers or block pointers.
1804  QualType ToPointeeType;
1805  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1806    ToPointeeType = ToCPtr->getPointeeType();
1807  else if (const BlockPointerType *ToBlockPtr =
1808            ToType->getAs<BlockPointerType>()) {
1809    // Objective C++: We're able to convert from a pointer to any object
1810    // to a block pointer type.
1811    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1812      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1813      return true;
1814    }
1815    ToPointeeType = ToBlockPtr->getPointeeType();
1816  }
1817  else if (FromType->getAs<BlockPointerType>() &&
1818           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1819    // Objective C++: We're able to convert from a block pointer type to a
1820    // pointer to any object.
1821    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1822    return true;
1823  }
1824  else
1825    return false;
1826
1827  QualType FromPointeeType;
1828  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1829    FromPointeeType = FromCPtr->getPointeeType();
1830  else if (const BlockPointerType *FromBlockPtr =
1831           FromType->getAs<BlockPointerType>())
1832    FromPointeeType = FromBlockPtr->getPointeeType();
1833  else
1834    return false;
1835
1836  // If we have pointers to pointers, recursively check whether this
1837  // is an Objective-C conversion.
1838  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1839      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1840                              IncompatibleObjC)) {
1841    // We always complain about this conversion.
1842    IncompatibleObjC = true;
1843    ConvertedType = Context.getPointerType(ConvertedType);
1844    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1845    return true;
1846  }
1847  // Allow conversion of pointee being objective-c pointer to another one;
1848  // as in I* to id.
1849  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1850      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1851      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1852                              IncompatibleObjC)) {
1853
1854    ConvertedType = Context.getPointerType(ConvertedType);
1855    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1856    return true;
1857  }
1858
1859  // If we have pointers to functions or blocks, check whether the only
1860  // differences in the argument and result types are in Objective-C
1861  // pointer conversions. If so, we permit the conversion (but
1862  // complain about it).
1863  const FunctionProtoType *FromFunctionType
1864    = FromPointeeType->getAs<FunctionProtoType>();
1865  const FunctionProtoType *ToFunctionType
1866    = ToPointeeType->getAs<FunctionProtoType>();
1867  if (FromFunctionType && ToFunctionType) {
1868    // If the function types are exactly the same, this isn't an
1869    // Objective-C pointer conversion.
1870    if (Context.getCanonicalType(FromPointeeType)
1871          == Context.getCanonicalType(ToPointeeType))
1872      return false;
1873
1874    // Perform the quick checks that will tell us whether these
1875    // function types are obviously different.
1876    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1877        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1878        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1879      return false;
1880
1881    bool HasObjCConversion = false;
1882    if (Context.getCanonicalType(FromFunctionType->getResultType())
1883          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1884      // Okay, the types match exactly. Nothing to do.
1885    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1886                                       ToFunctionType->getResultType(),
1887                                       ConvertedType, IncompatibleObjC)) {
1888      // Okay, we have an Objective-C pointer conversion.
1889      HasObjCConversion = true;
1890    } else {
1891      // Function types are too different. Abort.
1892      return false;
1893    }
1894
1895    // Check argument types.
1896    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1897         ArgIdx != NumArgs; ++ArgIdx) {
1898      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1899      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1900      if (Context.getCanonicalType(FromArgType)
1901            == Context.getCanonicalType(ToArgType)) {
1902        // Okay, the types match exactly. Nothing to do.
1903      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1904                                         ConvertedType, IncompatibleObjC)) {
1905        // Okay, we have an Objective-C pointer conversion.
1906        HasObjCConversion = true;
1907      } else {
1908        // Argument types are too different. Abort.
1909        return false;
1910      }
1911    }
1912
1913    if (HasObjCConversion) {
1914      // We had an Objective-C conversion. Allow this pointer
1915      // conversion, but complain about it.
1916      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1917      IncompatibleObjC = true;
1918      return true;
1919    }
1920  }
1921
1922  return false;
1923}
1924
1925/// \brief Determine whether this is an Objective-C writeback conversion,
1926/// used for parameter passing when performing automatic reference counting.
1927///
1928/// \param FromType The type we're converting form.
1929///
1930/// \param ToType The type we're converting to.
1931///
1932/// \param ConvertedType The type that will be produced after applying
1933/// this conversion.
1934bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
1935                                     QualType &ConvertedType) {
1936  if (!getLangOptions().ObjCAutoRefCount ||
1937      Context.hasSameUnqualifiedType(FromType, ToType))
1938    return false;
1939
1940  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
1941  QualType ToPointee;
1942  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
1943    ToPointee = ToPointer->getPointeeType();
1944  else
1945    return false;
1946
1947  Qualifiers ToQuals = ToPointee.getQualifiers();
1948  if (!ToPointee->isObjCLifetimeType() ||
1949      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
1950      !ToQuals.withoutObjCGLifetime().empty())
1951    return false;
1952
1953  // Argument must be a pointer to __strong to __weak.
1954  QualType FromPointee;
1955  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
1956    FromPointee = FromPointer->getPointeeType();
1957  else
1958    return false;
1959
1960  Qualifiers FromQuals = FromPointee.getQualifiers();
1961  if (!FromPointee->isObjCLifetimeType() ||
1962      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
1963       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
1964    return false;
1965
1966  // Make sure that we have compatible qualifiers.
1967  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
1968  if (!ToQuals.compatiblyIncludes(FromQuals))
1969    return false;
1970
1971  // Remove qualifiers from the pointee type we're converting from; they
1972  // aren't used in the compatibility check belong, and we'll be adding back
1973  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
1974  FromPointee = FromPointee.getUnqualifiedType();
1975
1976  // The unqualified form of the pointee types must be compatible.
1977  ToPointee = ToPointee.getUnqualifiedType();
1978  bool IncompatibleObjC;
1979  if (Context.typesAreCompatible(FromPointee, ToPointee))
1980    FromPointee = ToPointee;
1981  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
1982                                    IncompatibleObjC))
1983    return false;
1984
1985  /// \brief Construct the type we're converting to, which is a pointer to
1986  /// __autoreleasing pointee.
1987  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
1988  ConvertedType = Context.getPointerType(FromPointee);
1989  return true;
1990}
1991
1992bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
1993                                    QualType& ConvertedType) {
1994  QualType ToPointeeType;
1995  if (const BlockPointerType *ToBlockPtr =
1996        ToType->getAs<BlockPointerType>())
1997    ToPointeeType = ToBlockPtr->getPointeeType();
1998  else
1999    return false;
2000
2001  QualType FromPointeeType;
2002  if (const BlockPointerType *FromBlockPtr =
2003      FromType->getAs<BlockPointerType>())
2004    FromPointeeType = FromBlockPtr->getPointeeType();
2005  else
2006    return false;
2007  // We have pointer to blocks, check whether the only
2008  // differences in the argument and result types are in Objective-C
2009  // pointer conversions. If so, we permit the conversion.
2010
2011  const FunctionProtoType *FromFunctionType
2012    = FromPointeeType->getAs<FunctionProtoType>();
2013  const FunctionProtoType *ToFunctionType
2014    = ToPointeeType->getAs<FunctionProtoType>();
2015
2016  if (!FromFunctionType || !ToFunctionType)
2017    return false;
2018
2019  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2020    return true;
2021
2022  // Perform the quick checks that will tell us whether these
2023  // function types are obviously different.
2024  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2025      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2026    return false;
2027
2028  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2029  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2030  if (FromEInfo != ToEInfo)
2031    return false;
2032
2033  bool IncompatibleObjC = false;
2034  if (Context.hasSameType(FromFunctionType->getResultType(),
2035                          ToFunctionType->getResultType())) {
2036    // Okay, the types match exactly. Nothing to do.
2037  } else {
2038    QualType RHS = FromFunctionType->getResultType();
2039    QualType LHS = ToFunctionType->getResultType();
2040    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2041        !RHS.hasQualifiers() && LHS.hasQualifiers())
2042       LHS = LHS.getUnqualifiedType();
2043
2044     if (Context.hasSameType(RHS,LHS)) {
2045       // OK exact match.
2046     } else if (isObjCPointerConversion(RHS, LHS,
2047                                        ConvertedType, IncompatibleObjC)) {
2048     if (IncompatibleObjC)
2049       return false;
2050     // Okay, we have an Objective-C pointer conversion.
2051     }
2052     else
2053       return false;
2054   }
2055
2056   // Check argument types.
2057   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2058        ArgIdx != NumArgs; ++ArgIdx) {
2059     IncompatibleObjC = false;
2060     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2061     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2062     if (Context.hasSameType(FromArgType, ToArgType)) {
2063       // Okay, the types match exactly. Nothing to do.
2064     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2065                                        ConvertedType, IncompatibleObjC)) {
2066       if (IncompatibleObjC)
2067         return false;
2068       // Okay, we have an Objective-C pointer conversion.
2069     } else
2070       // Argument types are too different. Abort.
2071       return false;
2072   }
2073   ConvertedType = ToType;
2074   return true;
2075}
2076
2077/// FunctionArgTypesAreEqual - This routine checks two function proto types
2078/// for equlity of their argument types. Caller has already checked that
2079/// they have same number of arguments. This routine assumes that Objective-C
2080/// pointer types which only differ in their protocol qualifiers are equal.
2081bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2082                                    const FunctionProtoType *NewType) {
2083  if (!getLangOptions().ObjC1)
2084    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
2085                      NewType->arg_type_begin());
2086
2087  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2088       N = NewType->arg_type_begin(),
2089       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2090    QualType ToType = (*O);
2091    QualType FromType = (*N);
2092    if (ToType != FromType) {
2093      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2094        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2095          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2096               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2097              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2098               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2099            continue;
2100      }
2101      else if (const ObjCObjectPointerType *PTTo =
2102                 ToType->getAs<ObjCObjectPointerType>()) {
2103        if (const ObjCObjectPointerType *PTFr =
2104              FromType->getAs<ObjCObjectPointerType>())
2105          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
2106            continue;
2107      }
2108      return false;
2109    }
2110  }
2111  return true;
2112}
2113
2114/// CheckPointerConversion - Check the pointer conversion from the
2115/// expression From to the type ToType. This routine checks for
2116/// ambiguous or inaccessible derived-to-base pointer
2117/// conversions for which IsPointerConversion has already returned
2118/// true. It returns true and produces a diagnostic if there was an
2119/// error, or returns false otherwise.
2120bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2121                                  CastKind &Kind,
2122                                  CXXCastPath& BasePath,
2123                                  bool IgnoreBaseAccess) {
2124  QualType FromType = From->getType();
2125  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2126
2127  Kind = CK_BitCast;
2128
2129  if (!IsCStyleOrFunctionalCast &&
2130      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2131      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2132    DiagRuntimeBehavior(From->getExprLoc(), From,
2133                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2134                          << ToType << From->getSourceRange());
2135
2136  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
2137    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2138      QualType FromPointeeType = FromPtrType->getPointeeType(),
2139               ToPointeeType   = ToPtrType->getPointeeType();
2140
2141      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2142          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2143        // We must have a derived-to-base conversion. Check an
2144        // ambiguous or inaccessible conversion.
2145        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2146                                         From->getExprLoc(),
2147                                         From->getSourceRange(), &BasePath,
2148                                         IgnoreBaseAccess))
2149          return true;
2150
2151        // The conversion was successful.
2152        Kind = CK_DerivedToBase;
2153      }
2154    }
2155  if (const ObjCObjectPointerType *FromPtrType =
2156        FromType->getAs<ObjCObjectPointerType>()) {
2157    if (const ObjCObjectPointerType *ToPtrType =
2158          ToType->getAs<ObjCObjectPointerType>()) {
2159      // Objective-C++ conversions are always okay.
2160      // FIXME: We should have a different class of conversions for the
2161      // Objective-C++ implicit conversions.
2162      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2163        return false;
2164    }
2165  }
2166
2167  // We shouldn't fall into this case unless it's valid for other
2168  // reasons.
2169  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2170    Kind = CK_NullToPointer;
2171
2172  return false;
2173}
2174
2175/// IsMemberPointerConversion - Determines whether the conversion of the
2176/// expression From, which has the (possibly adjusted) type FromType, can be
2177/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2178/// If so, returns true and places the converted type (that might differ from
2179/// ToType in its cv-qualifiers at some level) into ConvertedType.
2180bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2181                                     QualType ToType,
2182                                     bool InOverloadResolution,
2183                                     QualType &ConvertedType) {
2184  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2185  if (!ToTypePtr)
2186    return false;
2187
2188  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2189  if (From->isNullPointerConstant(Context,
2190                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2191                                        : Expr::NPC_ValueDependentIsNull)) {
2192    ConvertedType = ToType;
2193    return true;
2194  }
2195
2196  // Otherwise, both types have to be member pointers.
2197  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2198  if (!FromTypePtr)
2199    return false;
2200
2201  // A pointer to member of B can be converted to a pointer to member of D,
2202  // where D is derived from B (C++ 4.11p2).
2203  QualType FromClass(FromTypePtr->getClass(), 0);
2204  QualType ToClass(ToTypePtr->getClass(), 0);
2205
2206  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2207      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2208      IsDerivedFrom(ToClass, FromClass)) {
2209    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2210                                                 ToClass.getTypePtr());
2211    return true;
2212  }
2213
2214  return false;
2215}
2216
2217/// CheckMemberPointerConversion - Check the member pointer conversion from the
2218/// expression From to the type ToType. This routine checks for ambiguous or
2219/// virtual or inaccessible base-to-derived member pointer conversions
2220/// for which IsMemberPointerConversion has already returned true. It returns
2221/// true and produces a diagnostic if there was an error, or returns false
2222/// otherwise.
2223bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2224                                        CastKind &Kind,
2225                                        CXXCastPath &BasePath,
2226                                        bool IgnoreBaseAccess) {
2227  QualType FromType = From->getType();
2228  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2229  if (!FromPtrType) {
2230    // This must be a null pointer to member pointer conversion
2231    assert(From->isNullPointerConstant(Context,
2232                                       Expr::NPC_ValueDependentIsNull) &&
2233           "Expr must be null pointer constant!");
2234    Kind = CK_NullToMemberPointer;
2235    return false;
2236  }
2237
2238  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2239  assert(ToPtrType && "No member pointer cast has a target type "
2240                      "that is not a member pointer.");
2241
2242  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2243  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2244
2245  // FIXME: What about dependent types?
2246  assert(FromClass->isRecordType() && "Pointer into non-class.");
2247  assert(ToClass->isRecordType() && "Pointer into non-class.");
2248
2249  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2250                     /*DetectVirtual=*/true);
2251  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2252  assert(DerivationOkay &&
2253         "Should not have been called if derivation isn't OK.");
2254  (void)DerivationOkay;
2255
2256  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2257                                  getUnqualifiedType())) {
2258    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2259    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2260      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2261    return true;
2262  }
2263
2264  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2265    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2266      << FromClass << ToClass << QualType(VBase, 0)
2267      << From->getSourceRange();
2268    return true;
2269  }
2270
2271  if (!IgnoreBaseAccess)
2272    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2273                         Paths.front(),
2274                         diag::err_downcast_from_inaccessible_base);
2275
2276  // Must be a base to derived member conversion.
2277  BuildBasePathArray(Paths, BasePath);
2278  Kind = CK_BaseToDerivedMemberPointer;
2279  return false;
2280}
2281
2282/// IsQualificationConversion - Determines whether the conversion from
2283/// an rvalue of type FromType to ToType is a qualification conversion
2284/// (C++ 4.4).
2285///
2286/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2287/// when the qualification conversion involves a change in the Objective-C
2288/// object lifetime.
2289bool
2290Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2291                                bool CStyle, bool &ObjCLifetimeConversion) {
2292  FromType = Context.getCanonicalType(FromType);
2293  ToType = Context.getCanonicalType(ToType);
2294  ObjCLifetimeConversion = false;
2295
2296  // If FromType and ToType are the same type, this is not a
2297  // qualification conversion.
2298  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2299    return false;
2300
2301  // (C++ 4.4p4):
2302  //   A conversion can add cv-qualifiers at levels other than the first
2303  //   in multi-level pointers, subject to the following rules: [...]
2304  bool PreviousToQualsIncludeConst = true;
2305  bool UnwrappedAnyPointer = false;
2306  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2307    // Within each iteration of the loop, we check the qualifiers to
2308    // determine if this still looks like a qualification
2309    // conversion. Then, if all is well, we unwrap one more level of
2310    // pointers or pointers-to-members and do it all again
2311    // until there are no more pointers or pointers-to-members left to
2312    // unwrap.
2313    UnwrappedAnyPointer = true;
2314
2315    Qualifiers FromQuals = FromType.getQualifiers();
2316    Qualifiers ToQuals = ToType.getQualifiers();
2317
2318    // Objective-C ARC:
2319    //   Check Objective-C lifetime conversions.
2320    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2321        UnwrappedAnyPointer) {
2322      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2323        ObjCLifetimeConversion = true;
2324        FromQuals.removeObjCLifetime();
2325        ToQuals.removeObjCLifetime();
2326      } else {
2327        // Qualification conversions cannot cast between different
2328        // Objective-C lifetime qualifiers.
2329        return false;
2330      }
2331    }
2332
2333    // Allow addition/removal of GC attributes but not changing GC attributes.
2334    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2335        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2336      FromQuals.removeObjCGCAttr();
2337      ToQuals.removeObjCGCAttr();
2338    }
2339
2340    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2341    //      2,j, and similarly for volatile.
2342    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2343      return false;
2344
2345    //   -- if the cv 1,j and cv 2,j are different, then const is in
2346    //      every cv for 0 < k < j.
2347    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2348        && !PreviousToQualsIncludeConst)
2349      return false;
2350
2351    // Keep track of whether all prior cv-qualifiers in the "to" type
2352    // include const.
2353    PreviousToQualsIncludeConst
2354      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2355  }
2356
2357  // We are left with FromType and ToType being the pointee types
2358  // after unwrapping the original FromType and ToType the same number
2359  // of types. If we unwrapped any pointers, and if FromType and
2360  // ToType have the same unqualified type (since we checked
2361  // qualifiers above), then this is a qualification conversion.
2362  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2363}
2364
2365/// Determines whether there is a user-defined conversion sequence
2366/// (C++ [over.ics.user]) that converts expression From to the type
2367/// ToType. If such a conversion exists, User will contain the
2368/// user-defined conversion sequence that performs such a conversion
2369/// and this routine will return true. Otherwise, this routine returns
2370/// false and User is unspecified.
2371///
2372/// \param AllowExplicit  true if the conversion should consider C++0x
2373/// "explicit" conversion functions as well as non-explicit conversion
2374/// functions (C++0x [class.conv.fct]p2).
2375static OverloadingResult
2376IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2377                        UserDefinedConversionSequence& User,
2378                        OverloadCandidateSet& CandidateSet,
2379                        bool AllowExplicit) {
2380  // Whether we will only visit constructors.
2381  bool ConstructorsOnly = false;
2382
2383  // If the type we are conversion to is a class type, enumerate its
2384  // constructors.
2385  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2386    // C++ [over.match.ctor]p1:
2387    //   When objects of class type are direct-initialized (8.5), or
2388    //   copy-initialized from an expression of the same or a
2389    //   derived class type (8.5), overload resolution selects the
2390    //   constructor. [...] For copy-initialization, the candidate
2391    //   functions are all the converting constructors (12.3.1) of
2392    //   that class. The argument list is the expression-list within
2393    //   the parentheses of the initializer.
2394    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2395        (From->getType()->getAs<RecordType>() &&
2396         S.IsDerivedFrom(From->getType(), ToType)))
2397      ConstructorsOnly = true;
2398
2399    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2400    // RequireCompleteType may have returned true due to some invalid decl
2401    // during template instantiation, but ToType may be complete enough now
2402    // to try to recover.
2403    if (ToType->isIncompleteType()) {
2404      // We're not going to find any constructors.
2405    } else if (CXXRecordDecl *ToRecordDecl
2406                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2407      DeclContext::lookup_iterator Con, ConEnd;
2408      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2409           Con != ConEnd; ++Con) {
2410        NamedDecl *D = *Con;
2411        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2412
2413        // Find the constructor (which may be a template).
2414        CXXConstructorDecl *Constructor = 0;
2415        FunctionTemplateDecl *ConstructorTmpl
2416          = dyn_cast<FunctionTemplateDecl>(D);
2417        if (ConstructorTmpl)
2418          Constructor
2419            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2420        else
2421          Constructor = cast<CXXConstructorDecl>(D);
2422
2423        if (!Constructor->isInvalidDecl() &&
2424            Constructor->isConvertingConstructor(AllowExplicit)) {
2425          if (ConstructorTmpl)
2426            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2427                                           /*ExplicitArgs*/ 0,
2428                                           &From, 1, CandidateSet,
2429                                           /*SuppressUserConversions=*/
2430                                             !ConstructorsOnly);
2431          else
2432            // Allow one user-defined conversion when user specifies a
2433            // From->ToType conversion via an static cast (c-style, etc).
2434            S.AddOverloadCandidate(Constructor, FoundDecl,
2435                                   &From, 1, CandidateSet,
2436                                   /*SuppressUserConversions=*/
2437                                     !ConstructorsOnly);
2438        }
2439      }
2440    }
2441  }
2442
2443  // Enumerate conversion functions, if we're allowed to.
2444  if (ConstructorsOnly) {
2445  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2446                                   S.PDiag(0) << From->getSourceRange())) {
2447    // No conversion functions from incomplete types.
2448  } else if (const RecordType *FromRecordType
2449                                   = From->getType()->getAs<RecordType>()) {
2450    if (CXXRecordDecl *FromRecordDecl
2451         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2452      // Add all of the conversion functions as candidates.
2453      const UnresolvedSetImpl *Conversions
2454        = FromRecordDecl->getVisibleConversionFunctions();
2455      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2456             E = Conversions->end(); I != E; ++I) {
2457        DeclAccessPair FoundDecl = I.getPair();
2458        NamedDecl *D = FoundDecl.getDecl();
2459        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2460        if (isa<UsingShadowDecl>(D))
2461          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2462
2463        CXXConversionDecl *Conv;
2464        FunctionTemplateDecl *ConvTemplate;
2465        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2466          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2467        else
2468          Conv = cast<CXXConversionDecl>(D);
2469
2470        if (AllowExplicit || !Conv->isExplicit()) {
2471          if (ConvTemplate)
2472            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2473                                             ActingContext, From, ToType,
2474                                             CandidateSet);
2475          else
2476            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2477                                     From, ToType, CandidateSet);
2478        }
2479      }
2480    }
2481  }
2482
2483  OverloadCandidateSet::iterator Best;
2484  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2485  case OR_Success:
2486    // Record the standard conversion we used and the conversion function.
2487    if (CXXConstructorDecl *Constructor
2488          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2489      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2490
2491      // C++ [over.ics.user]p1:
2492      //   If the user-defined conversion is specified by a
2493      //   constructor (12.3.1), the initial standard conversion
2494      //   sequence converts the source type to the type required by
2495      //   the argument of the constructor.
2496      //
2497      QualType ThisType = Constructor->getThisType(S.Context);
2498      if (Best->Conversions[0].isEllipsis())
2499        User.EllipsisConversion = true;
2500      else {
2501        User.Before = Best->Conversions[0].Standard;
2502        User.EllipsisConversion = false;
2503      }
2504      User.ConversionFunction = Constructor;
2505      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2506      User.After.setAsIdentityConversion();
2507      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2508      User.After.setAllToTypes(ToType);
2509      return OR_Success;
2510    } else if (CXXConversionDecl *Conversion
2511                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2512      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2513
2514      // C++ [over.ics.user]p1:
2515      //
2516      //   [...] If the user-defined conversion is specified by a
2517      //   conversion function (12.3.2), the initial standard
2518      //   conversion sequence converts the source type to the
2519      //   implicit object parameter of the conversion function.
2520      User.Before = Best->Conversions[0].Standard;
2521      User.ConversionFunction = Conversion;
2522      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2523      User.EllipsisConversion = false;
2524
2525      // C++ [over.ics.user]p2:
2526      //   The second standard conversion sequence converts the
2527      //   result of the user-defined conversion to the target type
2528      //   for the sequence. Since an implicit conversion sequence
2529      //   is an initialization, the special rules for
2530      //   initialization by user-defined conversion apply when
2531      //   selecting the best user-defined conversion for a
2532      //   user-defined conversion sequence (see 13.3.3 and
2533      //   13.3.3.1).
2534      User.After = Best->FinalConversion;
2535      return OR_Success;
2536    } else {
2537      llvm_unreachable("Not a constructor or conversion function?");
2538      return OR_No_Viable_Function;
2539    }
2540
2541  case OR_No_Viable_Function:
2542    return OR_No_Viable_Function;
2543  case OR_Deleted:
2544    // No conversion here! We're done.
2545    return OR_Deleted;
2546
2547  case OR_Ambiguous:
2548    return OR_Ambiguous;
2549  }
2550
2551  return OR_No_Viable_Function;
2552}
2553
2554bool
2555Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2556  ImplicitConversionSequence ICS;
2557  OverloadCandidateSet CandidateSet(From->getExprLoc());
2558  OverloadingResult OvResult =
2559    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2560                            CandidateSet, false);
2561  if (OvResult == OR_Ambiguous)
2562    Diag(From->getSourceRange().getBegin(),
2563         diag::err_typecheck_ambiguous_condition)
2564          << From->getType() << ToType << From->getSourceRange();
2565  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2566    Diag(From->getSourceRange().getBegin(),
2567         diag::err_typecheck_nonviable_condition)
2568    << From->getType() << ToType << From->getSourceRange();
2569  else
2570    return false;
2571  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2572  return true;
2573}
2574
2575/// CompareImplicitConversionSequences - Compare two implicit
2576/// conversion sequences to determine whether one is better than the
2577/// other or if they are indistinguishable (C++ 13.3.3.2).
2578static ImplicitConversionSequence::CompareKind
2579CompareImplicitConversionSequences(Sema &S,
2580                                   const ImplicitConversionSequence& ICS1,
2581                                   const ImplicitConversionSequence& ICS2)
2582{
2583  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2584  // conversion sequences (as defined in 13.3.3.1)
2585  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2586  //      conversion sequence than a user-defined conversion sequence or
2587  //      an ellipsis conversion sequence, and
2588  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2589  //      conversion sequence than an ellipsis conversion sequence
2590  //      (13.3.3.1.3).
2591  //
2592  // C++0x [over.best.ics]p10:
2593  //   For the purpose of ranking implicit conversion sequences as
2594  //   described in 13.3.3.2, the ambiguous conversion sequence is
2595  //   treated as a user-defined sequence that is indistinguishable
2596  //   from any other user-defined conversion sequence.
2597  if (ICS1.getKindRank() < ICS2.getKindRank())
2598    return ImplicitConversionSequence::Better;
2599  else if (ICS2.getKindRank() < ICS1.getKindRank())
2600    return ImplicitConversionSequence::Worse;
2601
2602  // The following checks require both conversion sequences to be of
2603  // the same kind.
2604  if (ICS1.getKind() != ICS2.getKind())
2605    return ImplicitConversionSequence::Indistinguishable;
2606
2607  // Two implicit conversion sequences of the same form are
2608  // indistinguishable conversion sequences unless one of the
2609  // following rules apply: (C++ 13.3.3.2p3):
2610  if (ICS1.isStandard())
2611    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2612  else if (ICS1.isUserDefined()) {
2613    // User-defined conversion sequence U1 is a better conversion
2614    // sequence than another user-defined conversion sequence U2 if
2615    // they contain the same user-defined conversion function or
2616    // constructor and if the second standard conversion sequence of
2617    // U1 is better than the second standard conversion sequence of
2618    // U2 (C++ 13.3.3.2p3).
2619    if (ICS1.UserDefined.ConversionFunction ==
2620          ICS2.UserDefined.ConversionFunction)
2621      return CompareStandardConversionSequences(S,
2622                                                ICS1.UserDefined.After,
2623                                                ICS2.UserDefined.After);
2624  }
2625
2626  return ImplicitConversionSequence::Indistinguishable;
2627}
2628
2629static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2630  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2631    Qualifiers Quals;
2632    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2633    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2634  }
2635
2636  return Context.hasSameUnqualifiedType(T1, T2);
2637}
2638
2639// Per 13.3.3.2p3, compare the given standard conversion sequences to
2640// determine if one is a proper subset of the other.
2641static ImplicitConversionSequence::CompareKind
2642compareStandardConversionSubsets(ASTContext &Context,
2643                                 const StandardConversionSequence& SCS1,
2644                                 const StandardConversionSequence& SCS2) {
2645  ImplicitConversionSequence::CompareKind Result
2646    = ImplicitConversionSequence::Indistinguishable;
2647
2648  // the identity conversion sequence is considered to be a subsequence of
2649  // any non-identity conversion sequence
2650  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2651    return ImplicitConversionSequence::Better;
2652  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2653    return ImplicitConversionSequence::Worse;
2654
2655  if (SCS1.Second != SCS2.Second) {
2656    if (SCS1.Second == ICK_Identity)
2657      Result = ImplicitConversionSequence::Better;
2658    else if (SCS2.Second == ICK_Identity)
2659      Result = ImplicitConversionSequence::Worse;
2660    else
2661      return ImplicitConversionSequence::Indistinguishable;
2662  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2663    return ImplicitConversionSequence::Indistinguishable;
2664
2665  if (SCS1.Third == SCS2.Third) {
2666    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2667                             : ImplicitConversionSequence::Indistinguishable;
2668  }
2669
2670  if (SCS1.Third == ICK_Identity)
2671    return Result == ImplicitConversionSequence::Worse
2672             ? ImplicitConversionSequence::Indistinguishable
2673             : ImplicitConversionSequence::Better;
2674
2675  if (SCS2.Third == ICK_Identity)
2676    return Result == ImplicitConversionSequence::Better
2677             ? ImplicitConversionSequence::Indistinguishable
2678             : ImplicitConversionSequence::Worse;
2679
2680  return ImplicitConversionSequence::Indistinguishable;
2681}
2682
2683/// \brief Determine whether one of the given reference bindings is better
2684/// than the other based on what kind of bindings they are.
2685static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2686                                       const StandardConversionSequence &SCS2) {
2687  // C++0x [over.ics.rank]p3b4:
2688  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2689  //      implicit object parameter of a non-static member function declared
2690  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2691  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2692  //      lvalue reference to a function lvalue and S2 binds an rvalue
2693  //      reference*.
2694  //
2695  // FIXME: Rvalue references. We're going rogue with the above edits,
2696  // because the semantics in the current C++0x working paper (N3225 at the
2697  // time of this writing) break the standard definition of std::forward
2698  // and std::reference_wrapper when dealing with references to functions.
2699  // Proposed wording changes submitted to CWG for consideration.
2700  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2701      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2702    return false;
2703
2704  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2705          SCS2.IsLvalueReference) ||
2706         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2707          !SCS2.IsLvalueReference);
2708}
2709
2710/// CompareStandardConversionSequences - Compare two standard
2711/// conversion sequences to determine whether one is better than the
2712/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2713static ImplicitConversionSequence::CompareKind
2714CompareStandardConversionSequences(Sema &S,
2715                                   const StandardConversionSequence& SCS1,
2716                                   const StandardConversionSequence& SCS2)
2717{
2718  // Standard conversion sequence S1 is a better conversion sequence
2719  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2720
2721  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2722  //     sequences in the canonical form defined by 13.3.3.1.1,
2723  //     excluding any Lvalue Transformation; the identity conversion
2724  //     sequence is considered to be a subsequence of any
2725  //     non-identity conversion sequence) or, if not that,
2726  if (ImplicitConversionSequence::CompareKind CK
2727        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2728    return CK;
2729
2730  //  -- the rank of S1 is better than the rank of S2 (by the rules
2731  //     defined below), or, if not that,
2732  ImplicitConversionRank Rank1 = SCS1.getRank();
2733  ImplicitConversionRank Rank2 = SCS2.getRank();
2734  if (Rank1 < Rank2)
2735    return ImplicitConversionSequence::Better;
2736  else if (Rank2 < Rank1)
2737    return ImplicitConversionSequence::Worse;
2738
2739  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2740  // are indistinguishable unless one of the following rules
2741  // applies:
2742
2743  //   A conversion that is not a conversion of a pointer, or
2744  //   pointer to member, to bool is better than another conversion
2745  //   that is such a conversion.
2746  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2747    return SCS2.isPointerConversionToBool()
2748             ? ImplicitConversionSequence::Better
2749             : ImplicitConversionSequence::Worse;
2750
2751  // C++ [over.ics.rank]p4b2:
2752  //
2753  //   If class B is derived directly or indirectly from class A,
2754  //   conversion of B* to A* is better than conversion of B* to
2755  //   void*, and conversion of A* to void* is better than conversion
2756  //   of B* to void*.
2757  bool SCS1ConvertsToVoid
2758    = SCS1.isPointerConversionToVoidPointer(S.Context);
2759  bool SCS2ConvertsToVoid
2760    = SCS2.isPointerConversionToVoidPointer(S.Context);
2761  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2762    // Exactly one of the conversion sequences is a conversion to
2763    // a void pointer; it's the worse conversion.
2764    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2765                              : ImplicitConversionSequence::Worse;
2766  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2767    // Neither conversion sequence converts to a void pointer; compare
2768    // their derived-to-base conversions.
2769    if (ImplicitConversionSequence::CompareKind DerivedCK
2770          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2771      return DerivedCK;
2772  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
2773             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
2774    // Both conversion sequences are conversions to void
2775    // pointers. Compare the source types to determine if there's an
2776    // inheritance relationship in their sources.
2777    QualType FromType1 = SCS1.getFromType();
2778    QualType FromType2 = SCS2.getFromType();
2779
2780    // Adjust the types we're converting from via the array-to-pointer
2781    // conversion, if we need to.
2782    if (SCS1.First == ICK_Array_To_Pointer)
2783      FromType1 = S.Context.getArrayDecayedType(FromType1);
2784    if (SCS2.First == ICK_Array_To_Pointer)
2785      FromType2 = S.Context.getArrayDecayedType(FromType2);
2786
2787    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
2788    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
2789
2790    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2791      return ImplicitConversionSequence::Better;
2792    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2793      return ImplicitConversionSequence::Worse;
2794
2795    // Objective-C++: If one interface is more specific than the
2796    // other, it is the better one.
2797    const ObjCObjectPointerType* FromObjCPtr1
2798      = FromType1->getAs<ObjCObjectPointerType>();
2799    const ObjCObjectPointerType* FromObjCPtr2
2800      = FromType2->getAs<ObjCObjectPointerType>();
2801    if (FromObjCPtr1 && FromObjCPtr2) {
2802      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
2803                                                          FromObjCPtr2);
2804      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
2805                                                           FromObjCPtr1);
2806      if (AssignLeft != AssignRight) {
2807        return AssignLeft? ImplicitConversionSequence::Better
2808                         : ImplicitConversionSequence::Worse;
2809      }
2810    }
2811  }
2812
2813  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2814  // bullet 3).
2815  if (ImplicitConversionSequence::CompareKind QualCK
2816        = CompareQualificationConversions(S, SCS1, SCS2))
2817    return QualCK;
2818
2819  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2820    // Check for a better reference binding based on the kind of bindings.
2821    if (isBetterReferenceBindingKind(SCS1, SCS2))
2822      return ImplicitConversionSequence::Better;
2823    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2824      return ImplicitConversionSequence::Worse;
2825
2826    // C++ [over.ics.rank]p3b4:
2827    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2828    //      which the references refer are the same type except for
2829    //      top-level cv-qualifiers, and the type to which the reference
2830    //      initialized by S2 refers is more cv-qualified than the type
2831    //      to which the reference initialized by S1 refers.
2832    QualType T1 = SCS1.getToType(2);
2833    QualType T2 = SCS2.getToType(2);
2834    T1 = S.Context.getCanonicalType(T1);
2835    T2 = S.Context.getCanonicalType(T2);
2836    Qualifiers T1Quals, T2Quals;
2837    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2838    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2839    if (UnqualT1 == UnqualT2) {
2840      // Objective-C++ ARC: If the references refer to objects with different
2841      // lifetimes, prefer bindings that don't change lifetime.
2842      if (SCS1.ObjCLifetimeConversionBinding !=
2843                                          SCS2.ObjCLifetimeConversionBinding) {
2844        return SCS1.ObjCLifetimeConversionBinding
2845                                           ? ImplicitConversionSequence::Worse
2846                                           : ImplicitConversionSequence::Better;
2847      }
2848
2849      // If the type is an array type, promote the element qualifiers to the
2850      // type for comparison.
2851      if (isa<ArrayType>(T1) && T1Quals)
2852        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2853      if (isa<ArrayType>(T2) && T2Quals)
2854        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2855      if (T2.isMoreQualifiedThan(T1))
2856        return ImplicitConversionSequence::Better;
2857      else if (T1.isMoreQualifiedThan(T2))
2858        return ImplicitConversionSequence::Worse;
2859    }
2860  }
2861
2862  return ImplicitConversionSequence::Indistinguishable;
2863}
2864
2865/// CompareQualificationConversions - Compares two standard conversion
2866/// sequences to determine whether they can be ranked based on their
2867/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2868ImplicitConversionSequence::CompareKind
2869CompareQualificationConversions(Sema &S,
2870                                const StandardConversionSequence& SCS1,
2871                                const StandardConversionSequence& SCS2) {
2872  // C++ 13.3.3.2p3:
2873  //  -- S1 and S2 differ only in their qualification conversion and
2874  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2875  //     cv-qualification signature of type T1 is a proper subset of
2876  //     the cv-qualification signature of type T2, and S1 is not the
2877  //     deprecated string literal array-to-pointer conversion (4.2).
2878  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2879      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2880    return ImplicitConversionSequence::Indistinguishable;
2881
2882  // FIXME: the example in the standard doesn't use a qualification
2883  // conversion (!)
2884  QualType T1 = SCS1.getToType(2);
2885  QualType T2 = SCS2.getToType(2);
2886  T1 = S.Context.getCanonicalType(T1);
2887  T2 = S.Context.getCanonicalType(T2);
2888  Qualifiers T1Quals, T2Quals;
2889  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2890  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2891
2892  // If the types are the same, we won't learn anything by unwrapped
2893  // them.
2894  if (UnqualT1 == UnqualT2)
2895    return ImplicitConversionSequence::Indistinguishable;
2896
2897  // If the type is an array type, promote the element qualifiers to the type
2898  // for comparison.
2899  if (isa<ArrayType>(T1) && T1Quals)
2900    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2901  if (isa<ArrayType>(T2) && T2Quals)
2902    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2903
2904  ImplicitConversionSequence::CompareKind Result
2905    = ImplicitConversionSequence::Indistinguishable;
2906
2907  // Objective-C++ ARC:
2908  //   Prefer qualification conversions not involving a change in lifetime
2909  //   to qualification conversions that do not change lifetime.
2910  if (SCS1.QualificationIncludesObjCLifetime !=
2911                                      SCS2.QualificationIncludesObjCLifetime) {
2912    Result = SCS1.QualificationIncludesObjCLifetime
2913               ? ImplicitConversionSequence::Worse
2914               : ImplicitConversionSequence::Better;
2915  }
2916
2917  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2918    // Within each iteration of the loop, we check the qualifiers to
2919    // determine if this still looks like a qualification
2920    // conversion. Then, if all is well, we unwrap one more level of
2921    // pointers or pointers-to-members and do it all again
2922    // until there are no more pointers or pointers-to-members left
2923    // to unwrap. This essentially mimics what
2924    // IsQualificationConversion does, but here we're checking for a
2925    // strict subset of qualifiers.
2926    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2927      // The qualifiers are the same, so this doesn't tell us anything
2928      // about how the sequences rank.
2929      ;
2930    else if (T2.isMoreQualifiedThan(T1)) {
2931      // T1 has fewer qualifiers, so it could be the better sequence.
2932      if (Result == ImplicitConversionSequence::Worse)
2933        // Neither has qualifiers that are a subset of the other's
2934        // qualifiers.
2935        return ImplicitConversionSequence::Indistinguishable;
2936
2937      Result = ImplicitConversionSequence::Better;
2938    } else if (T1.isMoreQualifiedThan(T2)) {
2939      // T2 has fewer qualifiers, so it could be the better sequence.
2940      if (Result == ImplicitConversionSequence::Better)
2941        // Neither has qualifiers that are a subset of the other's
2942        // qualifiers.
2943        return ImplicitConversionSequence::Indistinguishable;
2944
2945      Result = ImplicitConversionSequence::Worse;
2946    } else {
2947      // Qualifiers are disjoint.
2948      return ImplicitConversionSequence::Indistinguishable;
2949    }
2950
2951    // If the types after this point are equivalent, we're done.
2952    if (S.Context.hasSameUnqualifiedType(T1, T2))
2953      break;
2954  }
2955
2956  // Check that the winning standard conversion sequence isn't using
2957  // the deprecated string literal array to pointer conversion.
2958  switch (Result) {
2959  case ImplicitConversionSequence::Better:
2960    if (SCS1.DeprecatedStringLiteralToCharPtr)
2961      Result = ImplicitConversionSequence::Indistinguishable;
2962    break;
2963
2964  case ImplicitConversionSequence::Indistinguishable:
2965    break;
2966
2967  case ImplicitConversionSequence::Worse:
2968    if (SCS2.DeprecatedStringLiteralToCharPtr)
2969      Result = ImplicitConversionSequence::Indistinguishable;
2970    break;
2971  }
2972
2973  return Result;
2974}
2975
2976/// CompareDerivedToBaseConversions - Compares two standard conversion
2977/// sequences to determine whether they can be ranked based on their
2978/// various kinds of derived-to-base conversions (C++
2979/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2980/// conversions between Objective-C interface types.
2981ImplicitConversionSequence::CompareKind
2982CompareDerivedToBaseConversions(Sema &S,
2983                                const StandardConversionSequence& SCS1,
2984                                const StandardConversionSequence& SCS2) {
2985  QualType FromType1 = SCS1.getFromType();
2986  QualType ToType1 = SCS1.getToType(1);
2987  QualType FromType2 = SCS2.getFromType();
2988  QualType ToType2 = SCS2.getToType(1);
2989
2990  // Adjust the types we're converting from via the array-to-pointer
2991  // conversion, if we need to.
2992  if (SCS1.First == ICK_Array_To_Pointer)
2993    FromType1 = S.Context.getArrayDecayedType(FromType1);
2994  if (SCS2.First == ICK_Array_To_Pointer)
2995    FromType2 = S.Context.getArrayDecayedType(FromType2);
2996
2997  // Canonicalize all of the types.
2998  FromType1 = S.Context.getCanonicalType(FromType1);
2999  ToType1 = S.Context.getCanonicalType(ToType1);
3000  FromType2 = S.Context.getCanonicalType(FromType2);
3001  ToType2 = S.Context.getCanonicalType(ToType2);
3002
3003  // C++ [over.ics.rank]p4b3:
3004  //
3005  //   If class B is derived directly or indirectly from class A and
3006  //   class C is derived directly or indirectly from B,
3007  //
3008  // Compare based on pointer conversions.
3009  if (SCS1.Second == ICK_Pointer_Conversion &&
3010      SCS2.Second == ICK_Pointer_Conversion &&
3011      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3012      FromType1->isPointerType() && FromType2->isPointerType() &&
3013      ToType1->isPointerType() && ToType2->isPointerType()) {
3014    QualType FromPointee1
3015      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3016    QualType ToPointee1
3017      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3018    QualType FromPointee2
3019      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3020    QualType ToPointee2
3021      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3022
3023    //   -- conversion of C* to B* is better than conversion of C* to A*,
3024    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3025      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3026        return ImplicitConversionSequence::Better;
3027      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3028        return ImplicitConversionSequence::Worse;
3029    }
3030
3031    //   -- conversion of B* to A* is better than conversion of C* to A*,
3032    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3033      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3034        return ImplicitConversionSequence::Better;
3035      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3036        return ImplicitConversionSequence::Worse;
3037    }
3038  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3039             SCS2.Second == ICK_Pointer_Conversion) {
3040    const ObjCObjectPointerType *FromPtr1
3041      = FromType1->getAs<ObjCObjectPointerType>();
3042    const ObjCObjectPointerType *FromPtr2
3043      = FromType2->getAs<ObjCObjectPointerType>();
3044    const ObjCObjectPointerType *ToPtr1
3045      = ToType1->getAs<ObjCObjectPointerType>();
3046    const ObjCObjectPointerType *ToPtr2
3047      = ToType2->getAs<ObjCObjectPointerType>();
3048
3049    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3050      // Apply the same conversion ranking rules for Objective-C pointer types
3051      // that we do for C++ pointers to class types. However, we employ the
3052      // Objective-C pseudo-subtyping relationship used for assignment of
3053      // Objective-C pointer types.
3054      bool FromAssignLeft
3055        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3056      bool FromAssignRight
3057        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3058      bool ToAssignLeft
3059        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3060      bool ToAssignRight
3061        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3062
3063      // A conversion to an a non-id object pointer type or qualified 'id'
3064      // type is better than a conversion to 'id'.
3065      if (ToPtr1->isObjCIdType() &&
3066          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3067        return ImplicitConversionSequence::Worse;
3068      if (ToPtr2->isObjCIdType() &&
3069          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3070        return ImplicitConversionSequence::Better;
3071
3072      // A conversion to a non-id object pointer type is better than a
3073      // conversion to a qualified 'id' type
3074      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3075        return ImplicitConversionSequence::Worse;
3076      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3077        return ImplicitConversionSequence::Better;
3078
3079      // A conversion to an a non-Class object pointer type or qualified 'Class'
3080      // type is better than a conversion to 'Class'.
3081      if (ToPtr1->isObjCClassType() &&
3082          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3083        return ImplicitConversionSequence::Worse;
3084      if (ToPtr2->isObjCClassType() &&
3085          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3086        return ImplicitConversionSequence::Better;
3087
3088      // A conversion to a non-Class object pointer type is better than a
3089      // conversion to a qualified 'Class' type.
3090      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3091        return ImplicitConversionSequence::Worse;
3092      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3093        return ImplicitConversionSequence::Better;
3094
3095      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3096      if (S.Context.hasSameType(FromType1, FromType2) &&
3097          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3098          (ToAssignLeft != ToAssignRight))
3099        return ToAssignLeft? ImplicitConversionSequence::Worse
3100                           : ImplicitConversionSequence::Better;
3101
3102      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3103      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3104          (FromAssignLeft != FromAssignRight))
3105        return FromAssignLeft? ImplicitConversionSequence::Better
3106        : ImplicitConversionSequence::Worse;
3107    }
3108  }
3109
3110  // Ranking of member-pointer types.
3111  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3112      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3113      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3114    const MemberPointerType * FromMemPointer1 =
3115                                        FromType1->getAs<MemberPointerType>();
3116    const MemberPointerType * ToMemPointer1 =
3117                                          ToType1->getAs<MemberPointerType>();
3118    const MemberPointerType * FromMemPointer2 =
3119                                          FromType2->getAs<MemberPointerType>();
3120    const MemberPointerType * ToMemPointer2 =
3121                                          ToType2->getAs<MemberPointerType>();
3122    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3123    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3124    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3125    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3126    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3127    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3128    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3129    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3130    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3131    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3132      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3133        return ImplicitConversionSequence::Worse;
3134      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3135        return ImplicitConversionSequence::Better;
3136    }
3137    // conversion of B::* to C::* is better than conversion of A::* to C::*
3138    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3139      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3140        return ImplicitConversionSequence::Better;
3141      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3142        return ImplicitConversionSequence::Worse;
3143    }
3144  }
3145
3146  if (SCS1.Second == ICK_Derived_To_Base) {
3147    //   -- conversion of C to B is better than conversion of C to A,
3148    //   -- binding of an expression of type C to a reference of type
3149    //      B& is better than binding an expression of type C to a
3150    //      reference of type A&,
3151    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3152        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3153      if (S.IsDerivedFrom(ToType1, ToType2))
3154        return ImplicitConversionSequence::Better;
3155      else if (S.IsDerivedFrom(ToType2, ToType1))
3156        return ImplicitConversionSequence::Worse;
3157    }
3158
3159    //   -- conversion of B to A is better than conversion of C to A.
3160    //   -- binding of an expression of type B to a reference of type
3161    //      A& is better than binding an expression of type C to a
3162    //      reference of type A&,
3163    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3164        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3165      if (S.IsDerivedFrom(FromType2, FromType1))
3166        return ImplicitConversionSequence::Better;
3167      else if (S.IsDerivedFrom(FromType1, FromType2))
3168        return ImplicitConversionSequence::Worse;
3169    }
3170  }
3171
3172  return ImplicitConversionSequence::Indistinguishable;
3173}
3174
3175/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3176/// determine whether they are reference-related,
3177/// reference-compatible, reference-compatible with added
3178/// qualification, or incompatible, for use in C++ initialization by
3179/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3180/// type, and the first type (T1) is the pointee type of the reference
3181/// type being initialized.
3182Sema::ReferenceCompareResult
3183Sema::CompareReferenceRelationship(SourceLocation Loc,
3184                                   QualType OrigT1, QualType OrigT2,
3185                                   bool &DerivedToBase,
3186                                   bool &ObjCConversion,
3187                                   bool &ObjCLifetimeConversion) {
3188  assert(!OrigT1->isReferenceType() &&
3189    "T1 must be the pointee type of the reference type");
3190  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3191
3192  QualType T1 = Context.getCanonicalType(OrigT1);
3193  QualType T2 = Context.getCanonicalType(OrigT2);
3194  Qualifiers T1Quals, T2Quals;
3195  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3196  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3197
3198  // C++ [dcl.init.ref]p4:
3199  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3200  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3201  //   T1 is a base class of T2.
3202  DerivedToBase = false;
3203  ObjCConversion = false;
3204  ObjCLifetimeConversion = false;
3205  if (UnqualT1 == UnqualT2) {
3206    // Nothing to do.
3207  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3208           IsDerivedFrom(UnqualT2, UnqualT1))
3209    DerivedToBase = true;
3210  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3211           UnqualT2->isObjCObjectOrInterfaceType() &&
3212           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3213    ObjCConversion = true;
3214  else
3215    return Ref_Incompatible;
3216
3217  // At this point, we know that T1 and T2 are reference-related (at
3218  // least).
3219
3220  // If the type is an array type, promote the element qualifiers to the type
3221  // for comparison.
3222  if (isa<ArrayType>(T1) && T1Quals)
3223    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3224  if (isa<ArrayType>(T2) && T2Quals)
3225    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3226
3227  // C++ [dcl.init.ref]p4:
3228  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3229  //   reference-related to T2 and cv1 is the same cv-qualification
3230  //   as, or greater cv-qualification than, cv2. For purposes of
3231  //   overload resolution, cases for which cv1 is greater
3232  //   cv-qualification than cv2 are identified as
3233  //   reference-compatible with added qualification (see 13.3.3.2).
3234  //
3235  // Note that we also require equivalence of Objective-C GC and address-space
3236  // qualifiers when performing these computations, so that e.g., an int in
3237  // address space 1 is not reference-compatible with an int in address
3238  // space 2.
3239  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3240      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3241    T1Quals.removeObjCLifetime();
3242    T2Quals.removeObjCLifetime();
3243    ObjCLifetimeConversion = true;
3244  }
3245
3246  if (T1Quals == T2Quals)
3247    return Ref_Compatible;
3248  else if (T1Quals.compatiblyIncludes(T2Quals))
3249    return Ref_Compatible_With_Added_Qualification;
3250  else
3251    return Ref_Related;
3252}
3253
3254/// \brief Look for a user-defined conversion to an value reference-compatible
3255///        with DeclType. Return true if something definite is found.
3256static bool
3257FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3258                         QualType DeclType, SourceLocation DeclLoc,
3259                         Expr *Init, QualType T2, bool AllowRvalues,
3260                         bool AllowExplicit) {
3261  assert(T2->isRecordType() && "Can only find conversions of record types.");
3262  CXXRecordDecl *T2RecordDecl
3263    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3264
3265  OverloadCandidateSet CandidateSet(DeclLoc);
3266  const UnresolvedSetImpl *Conversions
3267    = T2RecordDecl->getVisibleConversionFunctions();
3268  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3269         E = Conversions->end(); I != E; ++I) {
3270    NamedDecl *D = *I;
3271    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3272    if (isa<UsingShadowDecl>(D))
3273      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3274
3275    FunctionTemplateDecl *ConvTemplate
3276      = dyn_cast<FunctionTemplateDecl>(D);
3277    CXXConversionDecl *Conv;
3278    if (ConvTemplate)
3279      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3280    else
3281      Conv = cast<CXXConversionDecl>(D);
3282
3283    // If this is an explicit conversion, and we're not allowed to consider
3284    // explicit conversions, skip it.
3285    if (!AllowExplicit && Conv->isExplicit())
3286      continue;
3287
3288    if (AllowRvalues) {
3289      bool DerivedToBase = false;
3290      bool ObjCConversion = false;
3291      bool ObjCLifetimeConversion = false;
3292      if (!ConvTemplate &&
3293          S.CompareReferenceRelationship(
3294            DeclLoc,
3295            Conv->getConversionType().getNonReferenceType()
3296              .getUnqualifiedType(),
3297            DeclType.getNonReferenceType().getUnqualifiedType(),
3298            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3299          Sema::Ref_Incompatible)
3300        continue;
3301    } else {
3302      // If the conversion function doesn't return a reference type,
3303      // it can't be considered for this conversion. An rvalue reference
3304      // is only acceptable if its referencee is a function type.
3305
3306      const ReferenceType *RefType =
3307        Conv->getConversionType()->getAs<ReferenceType>();
3308      if (!RefType ||
3309          (!RefType->isLValueReferenceType() &&
3310           !RefType->getPointeeType()->isFunctionType()))
3311        continue;
3312    }
3313
3314    if (ConvTemplate)
3315      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3316                                       Init, DeclType, CandidateSet);
3317    else
3318      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3319                               DeclType, CandidateSet);
3320  }
3321
3322  OverloadCandidateSet::iterator Best;
3323  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3324  case OR_Success:
3325    // C++ [over.ics.ref]p1:
3326    //
3327    //   [...] If the parameter binds directly to the result of
3328    //   applying a conversion function to the argument
3329    //   expression, the implicit conversion sequence is a
3330    //   user-defined conversion sequence (13.3.3.1.2), with the
3331    //   second standard conversion sequence either an identity
3332    //   conversion or, if the conversion function returns an
3333    //   entity of a type that is a derived class of the parameter
3334    //   type, a derived-to-base Conversion.
3335    if (!Best->FinalConversion.DirectBinding)
3336      return false;
3337
3338    if (Best->Function)
3339      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3340    ICS.setUserDefined();
3341    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3342    ICS.UserDefined.After = Best->FinalConversion;
3343    ICS.UserDefined.ConversionFunction = Best->Function;
3344    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
3345    ICS.UserDefined.EllipsisConversion = false;
3346    assert(ICS.UserDefined.After.ReferenceBinding &&
3347           ICS.UserDefined.After.DirectBinding &&
3348           "Expected a direct reference binding!");
3349    return true;
3350
3351  case OR_Ambiguous:
3352    ICS.setAmbiguous();
3353    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3354         Cand != CandidateSet.end(); ++Cand)
3355      if (Cand->Viable)
3356        ICS.Ambiguous.addConversion(Cand->Function);
3357    return true;
3358
3359  case OR_No_Viable_Function:
3360  case OR_Deleted:
3361    // There was no suitable conversion, or we found a deleted
3362    // conversion; continue with other checks.
3363    return false;
3364  }
3365
3366  return false;
3367}
3368
3369/// \brief Compute an implicit conversion sequence for reference
3370/// initialization.
3371static ImplicitConversionSequence
3372TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3373                 SourceLocation DeclLoc,
3374                 bool SuppressUserConversions,
3375                 bool AllowExplicit) {
3376  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3377
3378  // Most paths end in a failed conversion.
3379  ImplicitConversionSequence ICS;
3380  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3381
3382  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3383  QualType T2 = Init->getType();
3384
3385  // If the initializer is the address of an overloaded function, try
3386  // to resolve the overloaded function. If all goes well, T2 is the
3387  // type of the resulting function.
3388  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3389    DeclAccessPair Found;
3390    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3391                                                                false, Found))
3392      T2 = Fn->getType();
3393  }
3394
3395  // Compute some basic properties of the types and the initializer.
3396  bool isRValRef = DeclType->isRValueReferenceType();
3397  bool DerivedToBase = false;
3398  bool ObjCConversion = false;
3399  bool ObjCLifetimeConversion = false;
3400  Expr::Classification InitCategory = Init->Classify(S.Context);
3401  Sema::ReferenceCompareResult RefRelationship
3402    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3403                                     ObjCConversion, ObjCLifetimeConversion);
3404
3405
3406  // C++0x [dcl.init.ref]p5:
3407  //   A reference to type "cv1 T1" is initialized by an expression
3408  //   of type "cv2 T2" as follows:
3409
3410  //     -- If reference is an lvalue reference and the initializer expression
3411  if (!isRValRef) {
3412    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3413    //        reference-compatible with "cv2 T2," or
3414    //
3415    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3416    if (InitCategory.isLValue() &&
3417        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3418      // C++ [over.ics.ref]p1:
3419      //   When a parameter of reference type binds directly (8.5.3)
3420      //   to an argument expression, the implicit conversion sequence
3421      //   is the identity conversion, unless the argument expression
3422      //   has a type that is a derived class of the parameter type,
3423      //   in which case the implicit conversion sequence is a
3424      //   derived-to-base Conversion (13.3.3.1).
3425      ICS.setStandard();
3426      ICS.Standard.First = ICK_Identity;
3427      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3428                         : ObjCConversion? ICK_Compatible_Conversion
3429                         : ICK_Identity;
3430      ICS.Standard.Third = ICK_Identity;
3431      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3432      ICS.Standard.setToType(0, T2);
3433      ICS.Standard.setToType(1, T1);
3434      ICS.Standard.setToType(2, T1);
3435      ICS.Standard.ReferenceBinding = true;
3436      ICS.Standard.DirectBinding = true;
3437      ICS.Standard.IsLvalueReference = !isRValRef;
3438      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3439      ICS.Standard.BindsToRvalue = false;
3440      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3441      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3442      ICS.Standard.CopyConstructor = 0;
3443
3444      // Nothing more to do: the inaccessibility/ambiguity check for
3445      // derived-to-base conversions is suppressed when we're
3446      // computing the implicit conversion sequence (C++
3447      // [over.best.ics]p2).
3448      return ICS;
3449    }
3450
3451    //       -- has a class type (i.e., T2 is a class type), where T1 is
3452    //          not reference-related to T2, and can be implicitly
3453    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3454    //          is reference-compatible with "cv3 T3" 92) (this
3455    //          conversion is selected by enumerating the applicable
3456    //          conversion functions (13.3.1.6) and choosing the best
3457    //          one through overload resolution (13.3)),
3458    if (!SuppressUserConversions && T2->isRecordType() &&
3459        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3460        RefRelationship == Sema::Ref_Incompatible) {
3461      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3462                                   Init, T2, /*AllowRvalues=*/false,
3463                                   AllowExplicit))
3464        return ICS;
3465    }
3466  }
3467
3468  //     -- Otherwise, the reference shall be an lvalue reference to a
3469  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3470  //        shall be an rvalue reference.
3471  //
3472  // We actually handle one oddity of C++ [over.ics.ref] at this
3473  // point, which is that, due to p2 (which short-circuits reference
3474  // binding by only attempting a simple conversion for non-direct
3475  // bindings) and p3's strange wording, we allow a const volatile
3476  // reference to bind to an rvalue. Hence the check for the presence
3477  // of "const" rather than checking for "const" being the only
3478  // qualifier.
3479  // This is also the point where rvalue references and lvalue inits no longer
3480  // go together.
3481  if (!isRValRef && !T1.isConstQualified())
3482    return ICS;
3483
3484  //       -- If the initializer expression
3485  //
3486  //            -- is an xvalue, class prvalue, array prvalue or function
3487  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3488  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3489      (InitCategory.isXValue() ||
3490      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3491      (InitCategory.isLValue() && T2->isFunctionType()))) {
3492    ICS.setStandard();
3493    ICS.Standard.First = ICK_Identity;
3494    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3495                      : ObjCConversion? ICK_Compatible_Conversion
3496                      : ICK_Identity;
3497    ICS.Standard.Third = ICK_Identity;
3498    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3499    ICS.Standard.setToType(0, T2);
3500    ICS.Standard.setToType(1, T1);
3501    ICS.Standard.setToType(2, T1);
3502    ICS.Standard.ReferenceBinding = true;
3503    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3504    // binding unless we're binding to a class prvalue.
3505    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3506    // allow the use of rvalue references in C++98/03 for the benefit of
3507    // standard library implementors; therefore, we need the xvalue check here.
3508    ICS.Standard.DirectBinding =
3509      S.getLangOptions().CPlusPlus0x ||
3510      (InitCategory.isPRValue() && !T2->isRecordType());
3511    ICS.Standard.IsLvalueReference = !isRValRef;
3512    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3513    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3514    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3515    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3516    ICS.Standard.CopyConstructor = 0;
3517    return ICS;
3518  }
3519
3520  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3521  //               reference-related to T2, and can be implicitly converted to
3522  //               an xvalue, class prvalue, or function lvalue of type
3523  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3524  //               "cv3 T3",
3525  //
3526  //          then the reference is bound to the value of the initializer
3527  //          expression in the first case and to the result of the conversion
3528  //          in the second case (or, in either case, to an appropriate base
3529  //          class subobject).
3530  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3531      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3532      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3533                               Init, T2, /*AllowRvalues=*/true,
3534                               AllowExplicit)) {
3535    // In the second case, if the reference is an rvalue reference
3536    // and the second standard conversion sequence of the
3537    // user-defined conversion sequence includes an lvalue-to-rvalue
3538    // conversion, the program is ill-formed.
3539    if (ICS.isUserDefined() && isRValRef &&
3540        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3541      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3542
3543    return ICS;
3544  }
3545
3546  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3547  //          initialized from the initializer expression using the
3548  //          rules for a non-reference copy initialization (8.5). The
3549  //          reference is then bound to the temporary. If T1 is
3550  //          reference-related to T2, cv1 must be the same
3551  //          cv-qualification as, or greater cv-qualification than,
3552  //          cv2; otherwise, the program is ill-formed.
3553  if (RefRelationship == Sema::Ref_Related) {
3554    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3555    // we would be reference-compatible or reference-compatible with
3556    // added qualification. But that wasn't the case, so the reference
3557    // initialization fails.
3558    //
3559    // Note that we only want to check address spaces and cvr-qualifiers here.
3560    // ObjC GC and lifetime qualifiers aren't important.
3561    Qualifiers T1Quals = T1.getQualifiers();
3562    Qualifiers T2Quals = T2.getQualifiers();
3563    T1Quals.removeObjCGCAttr();
3564    T1Quals.removeObjCLifetime();
3565    T2Quals.removeObjCGCAttr();
3566    T2Quals.removeObjCLifetime();
3567    if (!T1Quals.compatiblyIncludes(T2Quals))
3568      return ICS;
3569  }
3570
3571  // If at least one of the types is a class type, the types are not
3572  // related, and we aren't allowed any user conversions, the
3573  // reference binding fails. This case is important for breaking
3574  // recursion, since TryImplicitConversion below will attempt to
3575  // create a temporary through the use of a copy constructor.
3576  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3577      (T1->isRecordType() || T2->isRecordType()))
3578    return ICS;
3579
3580  // If T1 is reference-related to T2 and the reference is an rvalue
3581  // reference, the initializer expression shall not be an lvalue.
3582  if (RefRelationship >= Sema::Ref_Related &&
3583      isRValRef && Init->Classify(S.Context).isLValue())
3584    return ICS;
3585
3586  // C++ [over.ics.ref]p2:
3587  //   When a parameter of reference type is not bound directly to
3588  //   an argument expression, the conversion sequence is the one
3589  //   required to convert the argument expression to the
3590  //   underlying type of the reference according to
3591  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3592  //   to copy-initializing a temporary of the underlying type with
3593  //   the argument expression. Any difference in top-level
3594  //   cv-qualification is subsumed by the initialization itself
3595  //   and does not constitute a conversion.
3596  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3597                              /*AllowExplicit=*/false,
3598                              /*InOverloadResolution=*/false,
3599                              /*CStyle=*/false,
3600                              /*AllowObjCWritebackConversion=*/false);
3601
3602  // Of course, that's still a reference binding.
3603  if (ICS.isStandard()) {
3604    ICS.Standard.ReferenceBinding = true;
3605    ICS.Standard.IsLvalueReference = !isRValRef;
3606    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3607    ICS.Standard.BindsToRvalue = true;
3608    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3609    ICS.Standard.ObjCLifetimeConversionBinding = false;
3610  } else if (ICS.isUserDefined()) {
3611    ICS.UserDefined.After.ReferenceBinding = true;
3612    ICS.Standard.IsLvalueReference = !isRValRef;
3613    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3614    ICS.Standard.BindsToRvalue = true;
3615    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3616    ICS.Standard.ObjCLifetimeConversionBinding = false;
3617  }
3618
3619  return ICS;
3620}
3621
3622/// TryCopyInitialization - Try to copy-initialize a value of type
3623/// ToType from the expression From. Return the implicit conversion
3624/// sequence required to pass this argument, which may be a bad
3625/// conversion sequence (meaning that the argument cannot be passed to
3626/// a parameter of this type). If @p SuppressUserConversions, then we
3627/// do not permit any user-defined conversion sequences.
3628static ImplicitConversionSequence
3629TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3630                      bool SuppressUserConversions,
3631                      bool InOverloadResolution,
3632                      bool AllowObjCWritebackConversion) {
3633  if (ToType->isReferenceType())
3634    return TryReferenceInit(S, From, ToType,
3635                            /*FIXME:*/From->getLocStart(),
3636                            SuppressUserConversions,
3637                            /*AllowExplicit=*/false);
3638
3639  return TryImplicitConversion(S, From, ToType,
3640                               SuppressUserConversions,
3641                               /*AllowExplicit=*/false,
3642                               InOverloadResolution,
3643                               /*CStyle=*/false,
3644                               AllowObjCWritebackConversion);
3645}
3646
3647static bool TryCopyInitialization(const CanQualType FromQTy,
3648                                  const CanQualType ToQTy,
3649                                  Sema &S,
3650                                  SourceLocation Loc,
3651                                  ExprValueKind FromVK) {
3652  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
3653  ImplicitConversionSequence ICS =
3654    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
3655
3656  return !ICS.isBad();
3657}
3658
3659/// TryObjectArgumentInitialization - Try to initialize the object
3660/// parameter of the given member function (@c Method) from the
3661/// expression @p From.
3662static ImplicitConversionSequence
3663TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3664                                Expr::Classification FromClassification,
3665                                CXXMethodDecl *Method,
3666                                CXXRecordDecl *ActingContext) {
3667  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3668  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3669  //                 const volatile object.
3670  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3671    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3672  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3673
3674  // Set up the conversion sequence as a "bad" conversion, to allow us
3675  // to exit early.
3676  ImplicitConversionSequence ICS;
3677
3678  // We need to have an object of class type.
3679  QualType FromType = OrigFromType;
3680  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3681    FromType = PT->getPointeeType();
3682
3683    // When we had a pointer, it's implicitly dereferenced, so we
3684    // better have an lvalue.
3685    assert(FromClassification.isLValue());
3686  }
3687
3688  assert(FromType->isRecordType());
3689
3690  // C++0x [over.match.funcs]p4:
3691  //   For non-static member functions, the type of the implicit object
3692  //   parameter is
3693  //
3694  //     - "lvalue reference to cv X" for functions declared without a
3695  //        ref-qualifier or with the & ref-qualifier
3696  //     - "rvalue reference to cv X" for functions declared with the &&
3697  //        ref-qualifier
3698  //
3699  // where X is the class of which the function is a member and cv is the
3700  // cv-qualification on the member function declaration.
3701  //
3702  // However, when finding an implicit conversion sequence for the argument, we
3703  // are not allowed to create temporaries or perform user-defined conversions
3704  // (C++ [over.match.funcs]p5). We perform a simplified version of
3705  // reference binding here, that allows class rvalues to bind to
3706  // non-constant references.
3707
3708  // First check the qualifiers.
3709  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3710  if (ImplicitParamType.getCVRQualifiers()
3711                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3712      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3713    ICS.setBad(BadConversionSequence::bad_qualifiers,
3714               OrigFromType, ImplicitParamType);
3715    return ICS;
3716  }
3717
3718  // Check that we have either the same type or a derived type. It
3719  // affects the conversion rank.
3720  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3721  ImplicitConversionKind SecondKind;
3722  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3723    SecondKind = ICK_Identity;
3724  } else if (S.IsDerivedFrom(FromType, ClassType))
3725    SecondKind = ICK_Derived_To_Base;
3726  else {
3727    ICS.setBad(BadConversionSequence::unrelated_class,
3728               FromType, ImplicitParamType);
3729    return ICS;
3730  }
3731
3732  // Check the ref-qualifier.
3733  switch (Method->getRefQualifier()) {
3734  case RQ_None:
3735    // Do nothing; we don't care about lvalueness or rvalueness.
3736    break;
3737
3738  case RQ_LValue:
3739    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3740      // non-const lvalue reference cannot bind to an rvalue
3741      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3742                 ImplicitParamType);
3743      return ICS;
3744    }
3745    break;
3746
3747  case RQ_RValue:
3748    if (!FromClassification.isRValue()) {
3749      // rvalue reference cannot bind to an lvalue
3750      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3751                 ImplicitParamType);
3752      return ICS;
3753    }
3754    break;
3755  }
3756
3757  // Success. Mark this as a reference binding.
3758  ICS.setStandard();
3759  ICS.Standard.setAsIdentityConversion();
3760  ICS.Standard.Second = SecondKind;
3761  ICS.Standard.setFromType(FromType);
3762  ICS.Standard.setAllToTypes(ImplicitParamType);
3763  ICS.Standard.ReferenceBinding = true;
3764  ICS.Standard.DirectBinding = true;
3765  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3766  ICS.Standard.BindsToFunctionLvalue = false;
3767  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
3768  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
3769    = (Method->getRefQualifier() == RQ_None);
3770  return ICS;
3771}
3772
3773/// PerformObjectArgumentInitialization - Perform initialization of
3774/// the implicit object parameter for the given Method with the given
3775/// expression.
3776ExprResult
3777Sema::PerformObjectArgumentInitialization(Expr *From,
3778                                          NestedNameSpecifier *Qualifier,
3779                                          NamedDecl *FoundDecl,
3780                                          CXXMethodDecl *Method) {
3781  QualType FromRecordType, DestType;
3782  QualType ImplicitParamRecordType  =
3783    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3784
3785  Expr::Classification FromClassification;
3786  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3787    FromRecordType = PT->getPointeeType();
3788    DestType = Method->getThisType(Context);
3789    FromClassification = Expr::Classification::makeSimpleLValue();
3790  } else {
3791    FromRecordType = From->getType();
3792    DestType = ImplicitParamRecordType;
3793    FromClassification = From->Classify(Context);
3794  }
3795
3796  // Note that we always use the true parent context when performing
3797  // the actual argument initialization.
3798  ImplicitConversionSequence ICS
3799    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3800                                      Method, Method->getParent());
3801  if (ICS.isBad()) {
3802    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3803      Qualifiers FromQs = FromRecordType.getQualifiers();
3804      Qualifiers ToQs = DestType.getQualifiers();
3805      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3806      if (CVR) {
3807        Diag(From->getSourceRange().getBegin(),
3808             diag::err_member_function_call_bad_cvr)
3809          << Method->getDeclName() << FromRecordType << (CVR - 1)
3810          << From->getSourceRange();
3811        Diag(Method->getLocation(), diag::note_previous_decl)
3812          << Method->getDeclName();
3813        return ExprError();
3814      }
3815    }
3816
3817    return Diag(From->getSourceRange().getBegin(),
3818                diag::err_implicit_object_parameter_init)
3819       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3820  }
3821
3822  if (ICS.Standard.Second == ICK_Derived_To_Base) {
3823    ExprResult FromRes =
3824      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3825    if (FromRes.isInvalid())
3826      return ExprError();
3827    From = FromRes.take();
3828  }
3829
3830  if (!Context.hasSameType(From->getType(), DestType))
3831    From = ImpCastExprToType(From, DestType, CK_NoOp,
3832                      From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
3833  return Owned(From);
3834}
3835
3836/// TryContextuallyConvertToBool - Attempt to contextually convert the
3837/// expression From to bool (C++0x [conv]p3).
3838static ImplicitConversionSequence
3839TryContextuallyConvertToBool(Sema &S, Expr *From) {
3840  // FIXME: This is pretty broken.
3841  return TryImplicitConversion(S, From, S.Context.BoolTy,
3842                               // FIXME: Are these flags correct?
3843                               /*SuppressUserConversions=*/false,
3844                               /*AllowExplicit=*/true,
3845                               /*InOverloadResolution=*/false,
3846                               /*CStyle=*/false,
3847                               /*AllowObjCWritebackConversion=*/false);
3848}
3849
3850/// PerformContextuallyConvertToBool - Perform a contextual conversion
3851/// of the expression From to bool (C++0x [conv]p3).
3852ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
3853  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3854  if (!ICS.isBad())
3855    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3856
3857  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3858    return Diag(From->getSourceRange().getBegin(),
3859                diag::err_typecheck_bool_condition)
3860                  << From->getType() << From->getSourceRange();
3861  return ExprError();
3862}
3863
3864/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3865/// expression From to 'id'.
3866static ImplicitConversionSequence
3867TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3868  QualType Ty = S.Context.getObjCIdType();
3869  return TryImplicitConversion(S, From, Ty,
3870                               // FIXME: Are these flags correct?
3871                               /*SuppressUserConversions=*/false,
3872                               /*AllowExplicit=*/true,
3873                               /*InOverloadResolution=*/false,
3874                               /*CStyle=*/false,
3875                               /*AllowObjCWritebackConversion=*/false);
3876}
3877
3878/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3879/// of the expression From to 'id'.
3880ExprResult Sema::PerformContextuallyConvertToObjCId(Expr *From) {
3881  QualType Ty = Context.getObjCIdType();
3882  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3883  if (!ICS.isBad())
3884    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3885  return ExprError();
3886}
3887
3888/// \brief Attempt to convert the given expression to an integral or
3889/// enumeration type.
3890///
3891/// This routine will attempt to convert an expression of class type to an
3892/// integral or enumeration type, if that class type only has a single
3893/// conversion to an integral or enumeration type.
3894///
3895/// \param Loc The source location of the construct that requires the
3896/// conversion.
3897///
3898/// \param FromE The expression we're converting from.
3899///
3900/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3901/// have integral or enumeration type.
3902///
3903/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3904/// incomplete class type.
3905///
3906/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3907/// explicit conversion function (because no implicit conversion functions
3908/// were available). This is a recovery mode.
3909///
3910/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3911/// showing which conversion was picked.
3912///
3913/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3914/// conversion function that could convert to integral or enumeration type.
3915///
3916/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3917/// usable conversion function.
3918///
3919/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3920/// function, which may be an extension in this case.
3921///
3922/// \returns The expression, converted to an integral or enumeration type if
3923/// successful.
3924ExprResult
3925Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3926                                         const PartialDiagnostic &NotIntDiag,
3927                                       const PartialDiagnostic &IncompleteDiag,
3928                                     const PartialDiagnostic &ExplicitConvDiag,
3929                                     const PartialDiagnostic &ExplicitConvNote,
3930                                         const PartialDiagnostic &AmbigDiag,
3931                                         const PartialDiagnostic &AmbigNote,
3932                                         const PartialDiagnostic &ConvDiag) {
3933  // We can't perform any more checking for type-dependent expressions.
3934  if (From->isTypeDependent())
3935    return Owned(From);
3936
3937  // If the expression already has integral or enumeration type, we're golden.
3938  QualType T = From->getType();
3939  if (T->isIntegralOrEnumerationType())
3940    return Owned(From);
3941
3942  // FIXME: Check for missing '()' if T is a function type?
3943
3944  // If we don't have a class type in C++, there's no way we can get an
3945  // expression of integral or enumeration type.
3946  const RecordType *RecordTy = T->getAs<RecordType>();
3947  if (!RecordTy || !getLangOptions().CPlusPlus) {
3948    Diag(Loc, NotIntDiag)
3949      << T << From->getSourceRange();
3950    return Owned(From);
3951  }
3952
3953  // We must have a complete class type.
3954  if (RequireCompleteType(Loc, T, IncompleteDiag))
3955    return Owned(From);
3956
3957  // Look for a conversion to an integral or enumeration type.
3958  UnresolvedSet<4> ViableConversions;
3959  UnresolvedSet<4> ExplicitConversions;
3960  const UnresolvedSetImpl *Conversions
3961    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3962
3963  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3964                                   E = Conversions->end();
3965       I != E;
3966       ++I) {
3967    if (CXXConversionDecl *Conversion
3968          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3969      if (Conversion->getConversionType().getNonReferenceType()
3970            ->isIntegralOrEnumerationType()) {
3971        if (Conversion->isExplicit())
3972          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3973        else
3974          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3975      }
3976  }
3977
3978  switch (ViableConversions.size()) {
3979  case 0:
3980    if (ExplicitConversions.size() == 1) {
3981      DeclAccessPair Found = ExplicitConversions[0];
3982      CXXConversionDecl *Conversion
3983        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3984
3985      // The user probably meant to invoke the given explicit
3986      // conversion; use it.
3987      QualType ConvTy
3988        = Conversion->getConversionType().getNonReferenceType();
3989      std::string TypeStr;
3990      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3991
3992      Diag(Loc, ExplicitConvDiag)
3993        << T << ConvTy
3994        << FixItHint::CreateInsertion(From->getLocStart(),
3995                                      "static_cast<" + TypeStr + ">(")
3996        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3997                                      ")");
3998      Diag(Conversion->getLocation(), ExplicitConvNote)
3999        << ConvTy->isEnumeralType() << ConvTy;
4000
4001      // If we aren't in a SFINAE context, build a call to the
4002      // explicit conversion function.
4003      if (isSFINAEContext())
4004        return ExprError();
4005
4006      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4007      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
4008      if (Result.isInvalid())
4009        return ExprError();
4010
4011      From = Result.get();
4012    }
4013
4014    // We'll complain below about a non-integral condition type.
4015    break;
4016
4017  case 1: {
4018    // Apply this conversion.
4019    DeclAccessPair Found = ViableConversions[0];
4020    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4021
4022    CXXConversionDecl *Conversion
4023      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4024    QualType ConvTy
4025      = Conversion->getConversionType().getNonReferenceType();
4026    if (ConvDiag.getDiagID()) {
4027      if (isSFINAEContext())
4028        return ExprError();
4029
4030      Diag(Loc, ConvDiag)
4031        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4032    }
4033
4034    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
4035                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
4036    if (Result.isInvalid())
4037      return ExprError();
4038
4039    From = Result.get();
4040    break;
4041  }
4042
4043  default:
4044    Diag(Loc, AmbigDiag)
4045      << T << From->getSourceRange();
4046    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4047      CXXConversionDecl *Conv
4048        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4049      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4050      Diag(Conv->getLocation(), AmbigNote)
4051        << ConvTy->isEnumeralType() << ConvTy;
4052    }
4053    return Owned(From);
4054  }
4055
4056  if (!From->getType()->isIntegralOrEnumerationType())
4057    Diag(Loc, NotIntDiag)
4058      << From->getType() << From->getSourceRange();
4059
4060  return Owned(From);
4061}
4062
4063/// AddOverloadCandidate - Adds the given function to the set of
4064/// candidate functions, using the given function call arguments.  If
4065/// @p SuppressUserConversions, then don't allow user-defined
4066/// conversions via constructors or conversion operators.
4067///
4068/// \para PartialOverloading true if we are performing "partial" overloading
4069/// based on an incomplete set of function arguments. This feature is used by
4070/// code completion.
4071void
4072Sema::AddOverloadCandidate(FunctionDecl *Function,
4073                           DeclAccessPair FoundDecl,
4074                           Expr **Args, unsigned NumArgs,
4075                           OverloadCandidateSet& CandidateSet,
4076                           bool SuppressUserConversions,
4077                           bool PartialOverloading) {
4078  const FunctionProtoType* Proto
4079    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4080  assert(Proto && "Functions without a prototype cannot be overloaded");
4081  assert(!Function->getDescribedFunctionTemplate() &&
4082         "Use AddTemplateOverloadCandidate for function templates");
4083
4084  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4085    if (!isa<CXXConstructorDecl>(Method)) {
4086      // If we get here, it's because we're calling a member function
4087      // that is named without a member access expression (e.g.,
4088      // "this->f") that was either written explicitly or created
4089      // implicitly. This can happen with a qualified call to a member
4090      // function, e.g., X::f(). We use an empty type for the implied
4091      // object argument (C++ [over.call.func]p3), and the acting context
4092      // is irrelevant.
4093      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
4094                         QualType(), Expr::Classification::makeSimpleLValue(),
4095                         Args, NumArgs, CandidateSet,
4096                         SuppressUserConversions);
4097      return;
4098    }
4099    // We treat a constructor like a non-member function, since its object
4100    // argument doesn't participate in overload resolution.
4101  }
4102
4103  if (!CandidateSet.isNewCandidate(Function))
4104    return;
4105
4106  // Overload resolution is always an unevaluated context.
4107  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4108
4109  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
4110    // C++ [class.copy]p3:
4111    //   A member function template is never instantiated to perform the copy
4112    //   of a class object to an object of its class type.
4113    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
4114    if (NumArgs == 1 &&
4115        Constructor->isSpecializationCopyingObject() &&
4116        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
4117         IsDerivedFrom(Args[0]->getType(), ClassType)))
4118      return;
4119  }
4120
4121  // Add this candidate
4122  CandidateSet.push_back(OverloadCandidate());
4123  OverloadCandidate& Candidate = CandidateSet.back();
4124  Candidate.FoundDecl = FoundDecl;
4125  Candidate.Function = Function;
4126  Candidate.Viable = true;
4127  Candidate.IsSurrogate = false;
4128  Candidate.IgnoreObjectArgument = false;
4129  Candidate.ExplicitCallArguments = NumArgs;
4130
4131  unsigned NumArgsInProto = Proto->getNumArgs();
4132
4133  // (C++ 13.3.2p2): A candidate function having fewer than m
4134  // parameters is viable only if it has an ellipsis in its parameter
4135  // list (8.3.5).
4136  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
4137      !Proto->isVariadic()) {
4138    Candidate.Viable = false;
4139    Candidate.FailureKind = ovl_fail_too_many_arguments;
4140    return;
4141  }
4142
4143  // (C++ 13.3.2p2): A candidate function having more than m parameters
4144  // is viable only if the (m+1)st parameter has a default argument
4145  // (8.3.6). For the purposes of overload resolution, the
4146  // parameter list is truncated on the right, so that there are
4147  // exactly m parameters.
4148  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
4149  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
4150    // Not enough arguments.
4151    Candidate.Viable = false;
4152    Candidate.FailureKind = ovl_fail_too_few_arguments;
4153    return;
4154  }
4155
4156  // Determine the implicit conversion sequences for each of the
4157  // arguments.
4158  Candidate.Conversions.resize(NumArgs);
4159  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4160    if (ArgIdx < NumArgsInProto) {
4161      // (C++ 13.3.2p3): for F to be a viable function, there shall
4162      // exist for each argument an implicit conversion sequence
4163      // (13.3.3.1) that converts that argument to the corresponding
4164      // parameter of F.
4165      QualType ParamType = Proto->getArgType(ArgIdx);
4166      Candidate.Conversions[ArgIdx]
4167        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4168                                SuppressUserConversions,
4169                                /*InOverloadResolution=*/true,
4170                                /*AllowObjCWritebackConversion=*/
4171                                  getLangOptions().ObjCAutoRefCount);
4172      if (Candidate.Conversions[ArgIdx].isBad()) {
4173        Candidate.Viable = false;
4174        Candidate.FailureKind = ovl_fail_bad_conversion;
4175        break;
4176      }
4177    } else {
4178      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4179      // argument for which there is no corresponding parameter is
4180      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4181      Candidate.Conversions[ArgIdx].setEllipsis();
4182    }
4183  }
4184}
4185
4186/// \brief Add all of the function declarations in the given function set to
4187/// the overload canddiate set.
4188void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
4189                                 Expr **Args, unsigned NumArgs,
4190                                 OverloadCandidateSet& CandidateSet,
4191                                 bool SuppressUserConversions) {
4192  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
4193    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
4194    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4195      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
4196        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
4197                           cast<CXXMethodDecl>(FD)->getParent(),
4198                           Args[0]->getType(), Args[0]->Classify(Context),
4199                           Args + 1, NumArgs - 1,
4200                           CandidateSet, SuppressUserConversions);
4201      else
4202        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
4203                             SuppressUserConversions);
4204    } else {
4205      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
4206      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
4207          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
4208        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
4209                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
4210                                   /*FIXME: explicit args */ 0,
4211                                   Args[0]->getType(),
4212                                   Args[0]->Classify(Context),
4213                                   Args + 1, NumArgs - 1,
4214                                   CandidateSet,
4215                                   SuppressUserConversions);
4216      else
4217        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
4218                                     /*FIXME: explicit args */ 0,
4219                                     Args, NumArgs, CandidateSet,
4220                                     SuppressUserConversions);
4221    }
4222  }
4223}
4224
4225/// AddMethodCandidate - Adds a named decl (which is some kind of
4226/// method) as a method candidate to the given overload set.
4227void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
4228                              QualType ObjectType,
4229                              Expr::Classification ObjectClassification,
4230                              Expr **Args, unsigned NumArgs,
4231                              OverloadCandidateSet& CandidateSet,
4232                              bool SuppressUserConversions) {
4233  NamedDecl *Decl = FoundDecl.getDecl();
4234  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4235
4236  if (isa<UsingShadowDecl>(Decl))
4237    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4238
4239  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4240    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4241           "Expected a member function template");
4242    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4243                               /*ExplicitArgs*/ 0,
4244                               ObjectType, ObjectClassification, Args, NumArgs,
4245                               CandidateSet,
4246                               SuppressUserConversions);
4247  } else {
4248    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4249                       ObjectType, ObjectClassification, Args, NumArgs,
4250                       CandidateSet, SuppressUserConversions);
4251  }
4252}
4253
4254/// AddMethodCandidate - Adds the given C++ member function to the set
4255/// of candidate functions, using the given function call arguments
4256/// and the object argument (@c Object). For example, in a call
4257/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4258/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4259/// allow user-defined conversions via constructors or conversion
4260/// operators.
4261void
4262Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4263                         CXXRecordDecl *ActingContext, QualType ObjectType,
4264                         Expr::Classification ObjectClassification,
4265                         Expr **Args, unsigned NumArgs,
4266                         OverloadCandidateSet& CandidateSet,
4267                         bool SuppressUserConversions) {
4268  const FunctionProtoType* Proto
4269    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4270  assert(Proto && "Methods without a prototype cannot be overloaded");
4271  assert(!isa<CXXConstructorDecl>(Method) &&
4272         "Use AddOverloadCandidate for constructors");
4273
4274  if (!CandidateSet.isNewCandidate(Method))
4275    return;
4276
4277  // Overload resolution is always an unevaluated context.
4278  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4279
4280  // Add this candidate
4281  CandidateSet.push_back(OverloadCandidate());
4282  OverloadCandidate& Candidate = CandidateSet.back();
4283  Candidate.FoundDecl = FoundDecl;
4284  Candidate.Function = Method;
4285  Candidate.IsSurrogate = false;
4286  Candidate.IgnoreObjectArgument = false;
4287  Candidate.ExplicitCallArguments = NumArgs;
4288
4289  unsigned NumArgsInProto = Proto->getNumArgs();
4290
4291  // (C++ 13.3.2p2): A candidate function having fewer than m
4292  // parameters is viable only if it has an ellipsis in its parameter
4293  // list (8.3.5).
4294  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4295    Candidate.Viable = false;
4296    Candidate.FailureKind = ovl_fail_too_many_arguments;
4297    return;
4298  }
4299
4300  // (C++ 13.3.2p2): A candidate function having more than m parameters
4301  // is viable only if the (m+1)st parameter has a default argument
4302  // (8.3.6). For the purposes of overload resolution, the
4303  // parameter list is truncated on the right, so that there are
4304  // exactly m parameters.
4305  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4306  if (NumArgs < MinRequiredArgs) {
4307    // Not enough arguments.
4308    Candidate.Viable = false;
4309    Candidate.FailureKind = ovl_fail_too_few_arguments;
4310    return;
4311  }
4312
4313  Candidate.Viable = true;
4314  Candidate.Conversions.resize(NumArgs + 1);
4315
4316  if (Method->isStatic() || ObjectType.isNull())
4317    // The implicit object argument is ignored.
4318    Candidate.IgnoreObjectArgument = true;
4319  else {
4320    // Determine the implicit conversion sequence for the object
4321    // parameter.
4322    Candidate.Conversions[0]
4323      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4324                                        Method, ActingContext);
4325    if (Candidate.Conversions[0].isBad()) {
4326      Candidate.Viable = false;
4327      Candidate.FailureKind = ovl_fail_bad_conversion;
4328      return;
4329    }
4330  }
4331
4332  // Determine the implicit conversion sequences for each of the
4333  // arguments.
4334  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4335    if (ArgIdx < NumArgsInProto) {
4336      // (C++ 13.3.2p3): for F to be a viable function, there shall
4337      // exist for each argument an implicit conversion sequence
4338      // (13.3.3.1) that converts that argument to the corresponding
4339      // parameter of F.
4340      QualType ParamType = Proto->getArgType(ArgIdx);
4341      Candidate.Conversions[ArgIdx + 1]
4342        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4343                                SuppressUserConversions,
4344                                /*InOverloadResolution=*/true,
4345                                /*AllowObjCWritebackConversion=*/
4346                                  getLangOptions().ObjCAutoRefCount);
4347      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4348        Candidate.Viable = false;
4349        Candidate.FailureKind = ovl_fail_bad_conversion;
4350        break;
4351      }
4352    } else {
4353      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4354      // argument for which there is no corresponding parameter is
4355      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4356      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4357    }
4358  }
4359}
4360
4361/// \brief Add a C++ member function template as a candidate to the candidate
4362/// set, using template argument deduction to produce an appropriate member
4363/// function template specialization.
4364void
4365Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4366                                 DeclAccessPair FoundDecl,
4367                                 CXXRecordDecl *ActingContext,
4368                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4369                                 QualType ObjectType,
4370                                 Expr::Classification ObjectClassification,
4371                                 Expr **Args, unsigned NumArgs,
4372                                 OverloadCandidateSet& CandidateSet,
4373                                 bool SuppressUserConversions) {
4374  if (!CandidateSet.isNewCandidate(MethodTmpl))
4375    return;
4376
4377  // C++ [over.match.funcs]p7:
4378  //   In each case where a candidate is a function template, candidate
4379  //   function template specializations are generated using template argument
4380  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4381  //   candidate functions in the usual way.113) A given name can refer to one
4382  //   or more function templates and also to a set of overloaded non-template
4383  //   functions. In such a case, the candidate functions generated from each
4384  //   function template are combined with the set of non-template candidate
4385  //   functions.
4386  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4387  FunctionDecl *Specialization = 0;
4388  if (TemplateDeductionResult Result
4389      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4390                                Args, NumArgs, Specialization, Info)) {
4391    CandidateSet.push_back(OverloadCandidate());
4392    OverloadCandidate &Candidate = CandidateSet.back();
4393    Candidate.FoundDecl = FoundDecl;
4394    Candidate.Function = MethodTmpl->getTemplatedDecl();
4395    Candidate.Viable = false;
4396    Candidate.FailureKind = ovl_fail_bad_deduction;
4397    Candidate.IsSurrogate = false;
4398    Candidate.IgnoreObjectArgument = false;
4399    Candidate.ExplicitCallArguments = NumArgs;
4400    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4401                                                          Info);
4402    return;
4403  }
4404
4405  // Add the function template specialization produced by template argument
4406  // deduction as a candidate.
4407  assert(Specialization && "Missing member function template specialization?");
4408  assert(isa<CXXMethodDecl>(Specialization) &&
4409         "Specialization is not a member function?");
4410  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4411                     ActingContext, ObjectType, ObjectClassification,
4412                     Args, NumArgs, CandidateSet, SuppressUserConversions);
4413}
4414
4415/// \brief Add a C++ function template specialization as a candidate
4416/// in the candidate set, using template argument deduction to produce
4417/// an appropriate function template specialization.
4418void
4419Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4420                                   DeclAccessPair FoundDecl,
4421                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4422                                   Expr **Args, unsigned NumArgs,
4423                                   OverloadCandidateSet& CandidateSet,
4424                                   bool SuppressUserConversions) {
4425  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4426    return;
4427
4428  // C++ [over.match.funcs]p7:
4429  //   In each case where a candidate is a function template, candidate
4430  //   function template specializations are generated using template argument
4431  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4432  //   candidate functions in the usual way.113) A given name can refer to one
4433  //   or more function templates and also to a set of overloaded non-template
4434  //   functions. In such a case, the candidate functions generated from each
4435  //   function template are combined with the set of non-template candidate
4436  //   functions.
4437  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4438  FunctionDecl *Specialization = 0;
4439  if (TemplateDeductionResult Result
4440        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4441                                  Args, NumArgs, Specialization, Info)) {
4442    CandidateSet.push_back(OverloadCandidate());
4443    OverloadCandidate &Candidate = CandidateSet.back();
4444    Candidate.FoundDecl = FoundDecl;
4445    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4446    Candidate.Viable = false;
4447    Candidate.FailureKind = ovl_fail_bad_deduction;
4448    Candidate.IsSurrogate = false;
4449    Candidate.IgnoreObjectArgument = false;
4450    Candidate.ExplicitCallArguments = NumArgs;
4451    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4452                                                          Info);
4453    return;
4454  }
4455
4456  // Add the function template specialization produced by template argument
4457  // deduction as a candidate.
4458  assert(Specialization && "Missing function template specialization?");
4459  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4460                       SuppressUserConversions);
4461}
4462
4463/// AddConversionCandidate - Add a C++ conversion function as a
4464/// candidate in the candidate set (C++ [over.match.conv],
4465/// C++ [over.match.copy]). From is the expression we're converting from,
4466/// and ToType is the type that we're eventually trying to convert to
4467/// (which may or may not be the same type as the type that the
4468/// conversion function produces).
4469void
4470Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4471                             DeclAccessPair FoundDecl,
4472                             CXXRecordDecl *ActingContext,
4473                             Expr *From, QualType ToType,
4474                             OverloadCandidateSet& CandidateSet) {
4475  assert(!Conversion->getDescribedFunctionTemplate() &&
4476         "Conversion function templates use AddTemplateConversionCandidate");
4477  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4478  if (!CandidateSet.isNewCandidate(Conversion))
4479    return;
4480
4481  // Overload resolution is always an unevaluated context.
4482  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4483
4484  // Add this candidate
4485  CandidateSet.push_back(OverloadCandidate());
4486  OverloadCandidate& Candidate = CandidateSet.back();
4487  Candidate.FoundDecl = FoundDecl;
4488  Candidate.Function = Conversion;
4489  Candidate.IsSurrogate = false;
4490  Candidate.IgnoreObjectArgument = false;
4491  Candidate.FinalConversion.setAsIdentityConversion();
4492  Candidate.FinalConversion.setFromType(ConvType);
4493  Candidate.FinalConversion.setAllToTypes(ToType);
4494  Candidate.Viable = true;
4495  Candidate.Conversions.resize(1);
4496  Candidate.ExplicitCallArguments = 1;
4497
4498  // C++ [over.match.funcs]p4:
4499  //   For conversion functions, the function is considered to be a member of
4500  //   the class of the implicit implied object argument for the purpose of
4501  //   defining the type of the implicit object parameter.
4502  //
4503  // Determine the implicit conversion sequence for the implicit
4504  // object parameter.
4505  QualType ImplicitParamType = From->getType();
4506  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4507    ImplicitParamType = FromPtrType->getPointeeType();
4508  CXXRecordDecl *ConversionContext
4509    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4510
4511  Candidate.Conversions[0]
4512    = TryObjectArgumentInitialization(*this, From->getType(),
4513                                      From->Classify(Context),
4514                                      Conversion, ConversionContext);
4515
4516  if (Candidate.Conversions[0].isBad()) {
4517    Candidate.Viable = false;
4518    Candidate.FailureKind = ovl_fail_bad_conversion;
4519    return;
4520  }
4521
4522  // We won't go through a user-define type conversion function to convert a
4523  // derived to base as such conversions are given Conversion Rank. They only
4524  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4525  QualType FromCanon
4526    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4527  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4528  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4529    Candidate.Viable = false;
4530    Candidate.FailureKind = ovl_fail_trivial_conversion;
4531    return;
4532  }
4533
4534  // To determine what the conversion from the result of calling the
4535  // conversion function to the type we're eventually trying to
4536  // convert to (ToType), we need to synthesize a call to the
4537  // conversion function and attempt copy initialization from it. This
4538  // makes sure that we get the right semantics with respect to
4539  // lvalues/rvalues and the type. Fortunately, we can allocate this
4540  // call on the stack and we don't need its arguments to be
4541  // well-formed.
4542  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4543                            VK_LValue, From->getLocStart());
4544  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4545                                Context.getPointerType(Conversion->getType()),
4546                                CK_FunctionToPointerDecay,
4547                                &ConversionRef, VK_RValue);
4548
4549  QualType ConversionType = Conversion->getConversionType();
4550  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
4551    Candidate.Viable = false;
4552    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4553    return;
4554  }
4555
4556  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
4557
4558  // Note that it is safe to allocate CallExpr on the stack here because
4559  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4560  // allocator).
4561  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
4562  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4563                From->getLocStart());
4564  ImplicitConversionSequence ICS =
4565    TryCopyInitialization(*this, &Call, ToType,
4566                          /*SuppressUserConversions=*/true,
4567                          /*InOverloadResolution=*/false,
4568                          /*AllowObjCWritebackConversion=*/false);
4569
4570  switch (ICS.getKind()) {
4571  case ImplicitConversionSequence::StandardConversion:
4572    Candidate.FinalConversion = ICS.Standard;
4573
4574    // C++ [over.ics.user]p3:
4575    //   If the user-defined conversion is specified by a specialization of a
4576    //   conversion function template, the second standard conversion sequence
4577    //   shall have exact match rank.
4578    if (Conversion->getPrimaryTemplate() &&
4579        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4580      Candidate.Viable = false;
4581      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4582    }
4583
4584    // C++0x [dcl.init.ref]p5:
4585    //    In the second case, if the reference is an rvalue reference and
4586    //    the second standard conversion sequence of the user-defined
4587    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4588    //    program is ill-formed.
4589    if (ToType->isRValueReferenceType() &&
4590        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4591      Candidate.Viable = false;
4592      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4593    }
4594    break;
4595
4596  case ImplicitConversionSequence::BadConversion:
4597    Candidate.Viable = false;
4598    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4599    break;
4600
4601  default:
4602    assert(false &&
4603           "Can only end up with a standard conversion sequence or failure");
4604  }
4605}
4606
4607/// \brief Adds a conversion function template specialization
4608/// candidate to the overload set, using template argument deduction
4609/// to deduce the template arguments of the conversion function
4610/// template from the type that we are converting to (C++
4611/// [temp.deduct.conv]).
4612void
4613Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4614                                     DeclAccessPair FoundDecl,
4615                                     CXXRecordDecl *ActingDC,
4616                                     Expr *From, QualType ToType,
4617                                     OverloadCandidateSet &CandidateSet) {
4618  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4619         "Only conversion function templates permitted here");
4620
4621  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4622    return;
4623
4624  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4625  CXXConversionDecl *Specialization = 0;
4626  if (TemplateDeductionResult Result
4627        = DeduceTemplateArguments(FunctionTemplate, ToType,
4628                                  Specialization, Info)) {
4629    CandidateSet.push_back(OverloadCandidate());
4630    OverloadCandidate &Candidate = CandidateSet.back();
4631    Candidate.FoundDecl = FoundDecl;
4632    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4633    Candidate.Viable = false;
4634    Candidate.FailureKind = ovl_fail_bad_deduction;
4635    Candidate.IsSurrogate = false;
4636    Candidate.IgnoreObjectArgument = false;
4637    Candidate.ExplicitCallArguments = 1;
4638    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4639                                                          Info);
4640    return;
4641  }
4642
4643  // Add the conversion function template specialization produced by
4644  // template argument deduction as a candidate.
4645  assert(Specialization && "Missing function template specialization?");
4646  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4647                         CandidateSet);
4648}
4649
4650/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4651/// converts the given @c Object to a function pointer via the
4652/// conversion function @c Conversion, and then attempts to call it
4653/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4654/// the type of function that we'll eventually be calling.
4655void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4656                                 DeclAccessPair FoundDecl,
4657                                 CXXRecordDecl *ActingContext,
4658                                 const FunctionProtoType *Proto,
4659                                 Expr *Object,
4660                                 Expr **Args, unsigned NumArgs,
4661                                 OverloadCandidateSet& CandidateSet) {
4662  if (!CandidateSet.isNewCandidate(Conversion))
4663    return;
4664
4665  // Overload resolution is always an unevaluated context.
4666  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4667
4668  CandidateSet.push_back(OverloadCandidate());
4669  OverloadCandidate& Candidate = CandidateSet.back();
4670  Candidate.FoundDecl = FoundDecl;
4671  Candidate.Function = 0;
4672  Candidate.Surrogate = Conversion;
4673  Candidate.Viable = true;
4674  Candidate.IsSurrogate = true;
4675  Candidate.IgnoreObjectArgument = false;
4676  Candidate.Conversions.resize(NumArgs + 1);
4677  Candidate.ExplicitCallArguments = NumArgs;
4678
4679  // Determine the implicit conversion sequence for the implicit
4680  // object parameter.
4681  ImplicitConversionSequence ObjectInit
4682    = TryObjectArgumentInitialization(*this, Object->getType(),
4683                                      Object->Classify(Context),
4684                                      Conversion, ActingContext);
4685  if (ObjectInit.isBad()) {
4686    Candidate.Viable = false;
4687    Candidate.FailureKind = ovl_fail_bad_conversion;
4688    Candidate.Conversions[0] = ObjectInit;
4689    return;
4690  }
4691
4692  // The first conversion is actually a user-defined conversion whose
4693  // first conversion is ObjectInit's standard conversion (which is
4694  // effectively a reference binding). Record it as such.
4695  Candidate.Conversions[0].setUserDefined();
4696  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4697  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4698  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4699  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4700    = FoundDecl.getDecl();
4701  Candidate.Conversions[0].UserDefined.After
4702    = Candidate.Conversions[0].UserDefined.Before;
4703  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4704
4705  // Find the
4706  unsigned NumArgsInProto = Proto->getNumArgs();
4707
4708  // (C++ 13.3.2p2): A candidate function having fewer than m
4709  // parameters is viable only if it has an ellipsis in its parameter
4710  // list (8.3.5).
4711  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4712    Candidate.Viable = false;
4713    Candidate.FailureKind = ovl_fail_too_many_arguments;
4714    return;
4715  }
4716
4717  // Function types don't have any default arguments, so just check if
4718  // we have enough arguments.
4719  if (NumArgs < NumArgsInProto) {
4720    // Not enough arguments.
4721    Candidate.Viable = false;
4722    Candidate.FailureKind = ovl_fail_too_few_arguments;
4723    return;
4724  }
4725
4726  // Determine the implicit conversion sequences for each of the
4727  // arguments.
4728  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4729    if (ArgIdx < NumArgsInProto) {
4730      // (C++ 13.3.2p3): for F to be a viable function, there shall
4731      // exist for each argument an implicit conversion sequence
4732      // (13.3.3.1) that converts that argument to the corresponding
4733      // parameter of F.
4734      QualType ParamType = Proto->getArgType(ArgIdx);
4735      Candidate.Conversions[ArgIdx + 1]
4736        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4737                                /*SuppressUserConversions=*/false,
4738                                /*InOverloadResolution=*/false,
4739                                /*AllowObjCWritebackConversion=*/
4740                                  getLangOptions().ObjCAutoRefCount);
4741      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4742        Candidate.Viable = false;
4743        Candidate.FailureKind = ovl_fail_bad_conversion;
4744        break;
4745      }
4746    } else {
4747      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4748      // argument for which there is no corresponding parameter is
4749      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4750      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4751    }
4752  }
4753}
4754
4755/// \brief Add overload candidates for overloaded operators that are
4756/// member functions.
4757///
4758/// Add the overloaded operator candidates that are member functions
4759/// for the operator Op that was used in an operator expression such
4760/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4761/// CandidateSet will store the added overload candidates. (C++
4762/// [over.match.oper]).
4763void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4764                                       SourceLocation OpLoc,
4765                                       Expr **Args, unsigned NumArgs,
4766                                       OverloadCandidateSet& CandidateSet,
4767                                       SourceRange OpRange) {
4768  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4769
4770  // C++ [over.match.oper]p3:
4771  //   For a unary operator @ with an operand of a type whose
4772  //   cv-unqualified version is T1, and for a binary operator @ with
4773  //   a left operand of a type whose cv-unqualified version is T1 and
4774  //   a right operand of a type whose cv-unqualified version is T2,
4775  //   three sets of candidate functions, designated member
4776  //   candidates, non-member candidates and built-in candidates, are
4777  //   constructed as follows:
4778  QualType T1 = Args[0]->getType();
4779
4780  //     -- If T1 is a class type, the set of member candidates is the
4781  //        result of the qualified lookup of T1::operator@
4782  //        (13.3.1.1.1); otherwise, the set of member candidates is
4783  //        empty.
4784  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4785    // Complete the type if it can be completed. Otherwise, we're done.
4786    if (RequireCompleteType(OpLoc, T1, PDiag()))
4787      return;
4788
4789    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4790    LookupQualifiedName(Operators, T1Rec->getDecl());
4791    Operators.suppressDiagnostics();
4792
4793    for (LookupResult::iterator Oper = Operators.begin(),
4794                             OperEnd = Operators.end();
4795         Oper != OperEnd;
4796         ++Oper)
4797      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4798                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4799                         CandidateSet,
4800                         /* SuppressUserConversions = */ false);
4801  }
4802}
4803
4804/// AddBuiltinCandidate - Add a candidate for a built-in
4805/// operator. ResultTy and ParamTys are the result and parameter types
4806/// of the built-in candidate, respectively. Args and NumArgs are the
4807/// arguments being passed to the candidate. IsAssignmentOperator
4808/// should be true when this built-in candidate is an assignment
4809/// operator. NumContextualBoolArguments is the number of arguments
4810/// (at the beginning of the argument list) that will be contextually
4811/// converted to bool.
4812void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4813                               Expr **Args, unsigned NumArgs,
4814                               OverloadCandidateSet& CandidateSet,
4815                               bool IsAssignmentOperator,
4816                               unsigned NumContextualBoolArguments) {
4817  // Overload resolution is always an unevaluated context.
4818  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4819
4820  // Add this candidate
4821  CandidateSet.push_back(OverloadCandidate());
4822  OverloadCandidate& Candidate = CandidateSet.back();
4823  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4824  Candidate.Function = 0;
4825  Candidate.IsSurrogate = false;
4826  Candidate.IgnoreObjectArgument = false;
4827  Candidate.BuiltinTypes.ResultTy = ResultTy;
4828  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4829    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4830
4831  // Determine the implicit conversion sequences for each of the
4832  // arguments.
4833  Candidate.Viable = true;
4834  Candidate.Conversions.resize(NumArgs);
4835  Candidate.ExplicitCallArguments = NumArgs;
4836  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4837    // C++ [over.match.oper]p4:
4838    //   For the built-in assignment operators, conversions of the
4839    //   left operand are restricted as follows:
4840    //     -- no temporaries are introduced to hold the left operand, and
4841    //     -- no user-defined conversions are applied to the left
4842    //        operand to achieve a type match with the left-most
4843    //        parameter of a built-in candidate.
4844    //
4845    // We block these conversions by turning off user-defined
4846    // conversions, since that is the only way that initialization of
4847    // a reference to a non-class type can occur from something that
4848    // is not of the same type.
4849    if (ArgIdx < NumContextualBoolArguments) {
4850      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4851             "Contextual conversion to bool requires bool type");
4852      Candidate.Conversions[ArgIdx]
4853        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4854    } else {
4855      Candidate.Conversions[ArgIdx]
4856        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4857                                ArgIdx == 0 && IsAssignmentOperator,
4858                                /*InOverloadResolution=*/false,
4859                                /*AllowObjCWritebackConversion=*/
4860                                  getLangOptions().ObjCAutoRefCount);
4861    }
4862    if (Candidate.Conversions[ArgIdx].isBad()) {
4863      Candidate.Viable = false;
4864      Candidate.FailureKind = ovl_fail_bad_conversion;
4865      break;
4866    }
4867  }
4868}
4869
4870/// BuiltinCandidateTypeSet - A set of types that will be used for the
4871/// candidate operator functions for built-in operators (C++
4872/// [over.built]). The types are separated into pointer types and
4873/// enumeration types.
4874class BuiltinCandidateTypeSet  {
4875  /// TypeSet - A set of types.
4876  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4877
4878  /// PointerTypes - The set of pointer types that will be used in the
4879  /// built-in candidates.
4880  TypeSet PointerTypes;
4881
4882  /// MemberPointerTypes - The set of member pointer types that will be
4883  /// used in the built-in candidates.
4884  TypeSet MemberPointerTypes;
4885
4886  /// EnumerationTypes - The set of enumeration types that will be
4887  /// used in the built-in candidates.
4888  TypeSet EnumerationTypes;
4889
4890  /// \brief The set of vector types that will be used in the built-in
4891  /// candidates.
4892  TypeSet VectorTypes;
4893
4894  /// \brief A flag indicating non-record types are viable candidates
4895  bool HasNonRecordTypes;
4896
4897  /// \brief A flag indicating whether either arithmetic or enumeration types
4898  /// were present in the candidate set.
4899  bool HasArithmeticOrEnumeralTypes;
4900
4901  /// \brief A flag indicating whether the nullptr type was present in the
4902  /// candidate set.
4903  bool HasNullPtrType;
4904
4905  /// Sema - The semantic analysis instance where we are building the
4906  /// candidate type set.
4907  Sema &SemaRef;
4908
4909  /// Context - The AST context in which we will build the type sets.
4910  ASTContext &Context;
4911
4912  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4913                                               const Qualifiers &VisibleQuals);
4914  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4915
4916public:
4917  /// iterator - Iterates through the types that are part of the set.
4918  typedef TypeSet::iterator iterator;
4919
4920  BuiltinCandidateTypeSet(Sema &SemaRef)
4921    : HasNonRecordTypes(false),
4922      HasArithmeticOrEnumeralTypes(false),
4923      HasNullPtrType(false),
4924      SemaRef(SemaRef),
4925      Context(SemaRef.Context) { }
4926
4927  void AddTypesConvertedFrom(QualType Ty,
4928                             SourceLocation Loc,
4929                             bool AllowUserConversions,
4930                             bool AllowExplicitConversions,
4931                             const Qualifiers &VisibleTypeConversionsQuals);
4932
4933  /// pointer_begin - First pointer type found;
4934  iterator pointer_begin() { return PointerTypes.begin(); }
4935
4936  /// pointer_end - Past the last pointer type found;
4937  iterator pointer_end() { return PointerTypes.end(); }
4938
4939  /// member_pointer_begin - First member pointer type found;
4940  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4941
4942  /// member_pointer_end - Past the last member pointer type found;
4943  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4944
4945  /// enumeration_begin - First enumeration type found;
4946  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4947
4948  /// enumeration_end - Past the last enumeration type found;
4949  iterator enumeration_end() { return EnumerationTypes.end(); }
4950
4951  iterator vector_begin() { return VectorTypes.begin(); }
4952  iterator vector_end() { return VectorTypes.end(); }
4953
4954  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4955  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4956  bool hasNullPtrType() const { return HasNullPtrType; }
4957};
4958
4959/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4960/// the set of pointer types along with any more-qualified variants of
4961/// that type. For example, if @p Ty is "int const *", this routine
4962/// will add "int const *", "int const volatile *", "int const
4963/// restrict *", and "int const volatile restrict *" to the set of
4964/// pointer types. Returns true if the add of @p Ty itself succeeded,
4965/// false otherwise.
4966///
4967/// FIXME: what to do about extended qualifiers?
4968bool
4969BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4970                                             const Qualifiers &VisibleQuals) {
4971
4972  // Insert this type.
4973  if (!PointerTypes.insert(Ty))
4974    return false;
4975
4976  QualType PointeeTy;
4977  const PointerType *PointerTy = Ty->getAs<PointerType>();
4978  bool buildObjCPtr = false;
4979  if (!PointerTy) {
4980    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4981      PointeeTy = PTy->getPointeeType();
4982      buildObjCPtr = true;
4983    }
4984    else
4985      assert(false && "type was not a pointer type!");
4986  }
4987  else
4988    PointeeTy = PointerTy->getPointeeType();
4989
4990  // Don't add qualified variants of arrays. For one, they're not allowed
4991  // (the qualifier would sink to the element type), and for another, the
4992  // only overload situation where it matters is subscript or pointer +- int,
4993  // and those shouldn't have qualifier variants anyway.
4994  if (PointeeTy->isArrayType())
4995    return true;
4996  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4997  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4998    BaseCVR = Array->getElementType().getCVRQualifiers();
4999  bool hasVolatile = VisibleQuals.hasVolatile();
5000  bool hasRestrict = VisibleQuals.hasRestrict();
5001
5002  // Iterate through all strict supersets of BaseCVR.
5003  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5004    if ((CVR | BaseCVR) != CVR) continue;
5005    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
5006    // in the types.
5007    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
5008    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5009    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5010    if (!buildObjCPtr)
5011      PointerTypes.insert(Context.getPointerType(QPointeeTy));
5012    else
5013      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5014  }
5015
5016  return true;
5017}
5018
5019/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5020/// to the set of pointer types along with any more-qualified variants of
5021/// that type. For example, if @p Ty is "int const *", this routine
5022/// will add "int const *", "int const volatile *", "int const
5023/// restrict *", and "int const volatile restrict *" to the set of
5024/// pointer types. Returns true if the add of @p Ty itself succeeded,
5025/// false otherwise.
5026///
5027/// FIXME: what to do about extended qualifiers?
5028bool
5029BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5030    QualType Ty) {
5031  // Insert this type.
5032  if (!MemberPointerTypes.insert(Ty))
5033    return false;
5034
5035  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5036  assert(PointerTy && "type was not a member pointer type!");
5037
5038  QualType PointeeTy = PointerTy->getPointeeType();
5039  // Don't add qualified variants of arrays. For one, they're not allowed
5040  // (the qualifier would sink to the element type), and for another, the
5041  // only overload situation where it matters is subscript or pointer +- int,
5042  // and those shouldn't have qualifier variants anyway.
5043  if (PointeeTy->isArrayType())
5044    return true;
5045  const Type *ClassTy = PointerTy->getClass();
5046
5047  // Iterate through all strict supersets of the pointee type's CVR
5048  // qualifiers.
5049  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5050  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5051    if ((CVR | BaseCVR) != CVR) continue;
5052
5053    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5054    MemberPointerTypes.insert(
5055      Context.getMemberPointerType(QPointeeTy, ClassTy));
5056  }
5057
5058  return true;
5059}
5060
5061/// AddTypesConvertedFrom - Add each of the types to which the type @p
5062/// Ty can be implicit converted to the given set of @p Types. We're
5063/// primarily interested in pointer types and enumeration types. We also
5064/// take member pointer types, for the conditional operator.
5065/// AllowUserConversions is true if we should look at the conversion
5066/// functions of a class type, and AllowExplicitConversions if we
5067/// should also include the explicit conversion functions of a class
5068/// type.
5069void
5070BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5071                                               SourceLocation Loc,
5072                                               bool AllowUserConversions,
5073                                               bool AllowExplicitConversions,
5074                                               const Qualifiers &VisibleQuals) {
5075  // Only deal with canonical types.
5076  Ty = Context.getCanonicalType(Ty);
5077
5078  // Look through reference types; they aren't part of the type of an
5079  // expression for the purposes of conversions.
5080  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5081    Ty = RefTy->getPointeeType();
5082
5083  // If we're dealing with an array type, decay to the pointer.
5084  if (Ty->isArrayType())
5085    Ty = SemaRef.Context.getArrayDecayedType(Ty);
5086
5087  // Otherwise, we don't care about qualifiers on the type.
5088  Ty = Ty.getLocalUnqualifiedType();
5089
5090  // Flag if we ever add a non-record type.
5091  const RecordType *TyRec = Ty->getAs<RecordType>();
5092  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5093
5094  // Flag if we encounter an arithmetic type.
5095  HasArithmeticOrEnumeralTypes =
5096    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
5097
5098  if (Ty->isObjCIdType() || Ty->isObjCClassType())
5099    PointerTypes.insert(Ty);
5100  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
5101    // Insert our type, and its more-qualified variants, into the set
5102    // of types.
5103    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
5104      return;
5105  } else if (Ty->isMemberPointerType()) {
5106    // Member pointers are far easier, since the pointee can't be converted.
5107    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
5108      return;
5109  } else if (Ty->isEnumeralType()) {
5110    HasArithmeticOrEnumeralTypes = true;
5111    EnumerationTypes.insert(Ty);
5112  } else if (Ty->isVectorType()) {
5113    // We treat vector types as arithmetic types in many contexts as an
5114    // extension.
5115    HasArithmeticOrEnumeralTypes = true;
5116    VectorTypes.insert(Ty);
5117  } else if (Ty->isNullPtrType()) {
5118    HasNullPtrType = true;
5119  } else if (AllowUserConversions && TyRec) {
5120    // No conversion functions in incomplete types.
5121    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
5122      return;
5123
5124    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5125    const UnresolvedSetImpl *Conversions
5126      = ClassDecl->getVisibleConversionFunctions();
5127    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5128           E = Conversions->end(); I != E; ++I) {
5129      NamedDecl *D = I.getDecl();
5130      if (isa<UsingShadowDecl>(D))
5131        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5132
5133      // Skip conversion function templates; they don't tell us anything
5134      // about which builtin types we can convert to.
5135      if (isa<FunctionTemplateDecl>(D))
5136        continue;
5137
5138      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5139      if (AllowExplicitConversions || !Conv->isExplicit()) {
5140        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
5141                              VisibleQuals);
5142      }
5143    }
5144  }
5145}
5146
5147/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
5148/// the volatile- and non-volatile-qualified assignment operators for the
5149/// given type to the candidate set.
5150static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
5151                                                   QualType T,
5152                                                   Expr **Args,
5153                                                   unsigned NumArgs,
5154                                    OverloadCandidateSet &CandidateSet) {
5155  QualType ParamTypes[2];
5156
5157  // T& operator=(T&, T)
5158  ParamTypes[0] = S.Context.getLValueReferenceType(T);
5159  ParamTypes[1] = T;
5160  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5161                        /*IsAssignmentOperator=*/true);
5162
5163  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
5164    // volatile T& operator=(volatile T&, T)
5165    ParamTypes[0]
5166      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
5167    ParamTypes[1] = T;
5168    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5169                          /*IsAssignmentOperator=*/true);
5170  }
5171}
5172
5173/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
5174/// if any, found in visible type conversion functions found in ArgExpr's type.
5175static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
5176    Qualifiers VRQuals;
5177    const RecordType *TyRec;
5178    if (const MemberPointerType *RHSMPType =
5179        ArgExpr->getType()->getAs<MemberPointerType>())
5180      TyRec = RHSMPType->getClass()->getAs<RecordType>();
5181    else
5182      TyRec = ArgExpr->getType()->getAs<RecordType>();
5183    if (!TyRec) {
5184      // Just to be safe, assume the worst case.
5185      VRQuals.addVolatile();
5186      VRQuals.addRestrict();
5187      return VRQuals;
5188    }
5189
5190    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5191    if (!ClassDecl->hasDefinition())
5192      return VRQuals;
5193
5194    const UnresolvedSetImpl *Conversions =
5195      ClassDecl->getVisibleConversionFunctions();
5196
5197    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5198           E = Conversions->end(); I != E; ++I) {
5199      NamedDecl *D = I.getDecl();
5200      if (isa<UsingShadowDecl>(D))
5201        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5202      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
5203        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
5204        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
5205          CanTy = ResTypeRef->getPointeeType();
5206        // Need to go down the pointer/mempointer chain and add qualifiers
5207        // as see them.
5208        bool done = false;
5209        while (!done) {
5210          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
5211            CanTy = ResTypePtr->getPointeeType();
5212          else if (const MemberPointerType *ResTypeMPtr =
5213                CanTy->getAs<MemberPointerType>())
5214            CanTy = ResTypeMPtr->getPointeeType();
5215          else
5216            done = true;
5217          if (CanTy.isVolatileQualified())
5218            VRQuals.addVolatile();
5219          if (CanTy.isRestrictQualified())
5220            VRQuals.addRestrict();
5221          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
5222            return VRQuals;
5223        }
5224      }
5225    }
5226    return VRQuals;
5227}
5228
5229namespace {
5230
5231/// \brief Helper class to manage the addition of builtin operator overload
5232/// candidates. It provides shared state and utility methods used throughout
5233/// the process, as well as a helper method to add each group of builtin
5234/// operator overloads from the standard to a candidate set.
5235class BuiltinOperatorOverloadBuilder {
5236  // Common instance state available to all overload candidate addition methods.
5237  Sema &S;
5238  Expr **Args;
5239  unsigned NumArgs;
5240  Qualifiers VisibleTypeConversionsQuals;
5241  bool HasArithmeticOrEnumeralCandidateType;
5242  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
5243  OverloadCandidateSet &CandidateSet;
5244
5245  // Define some constants used to index and iterate over the arithemetic types
5246  // provided via the getArithmeticType() method below.
5247  // The "promoted arithmetic types" are the arithmetic
5248  // types are that preserved by promotion (C++ [over.built]p2).
5249  static const unsigned FirstIntegralType = 3;
5250  static const unsigned LastIntegralType = 18;
5251  static const unsigned FirstPromotedIntegralType = 3,
5252                        LastPromotedIntegralType = 9;
5253  static const unsigned FirstPromotedArithmeticType = 0,
5254                        LastPromotedArithmeticType = 9;
5255  static const unsigned NumArithmeticTypes = 18;
5256
5257  /// \brief Get the canonical type for a given arithmetic type index.
5258  CanQualType getArithmeticType(unsigned index) {
5259    assert(index < NumArithmeticTypes);
5260    static CanQualType ASTContext::* const
5261      ArithmeticTypes[NumArithmeticTypes] = {
5262      // Start of promoted types.
5263      &ASTContext::FloatTy,
5264      &ASTContext::DoubleTy,
5265      &ASTContext::LongDoubleTy,
5266
5267      // Start of integral types.
5268      &ASTContext::IntTy,
5269      &ASTContext::LongTy,
5270      &ASTContext::LongLongTy,
5271      &ASTContext::UnsignedIntTy,
5272      &ASTContext::UnsignedLongTy,
5273      &ASTContext::UnsignedLongLongTy,
5274      // End of promoted types.
5275
5276      &ASTContext::BoolTy,
5277      &ASTContext::CharTy,
5278      &ASTContext::WCharTy,
5279      &ASTContext::Char16Ty,
5280      &ASTContext::Char32Ty,
5281      &ASTContext::SignedCharTy,
5282      &ASTContext::ShortTy,
5283      &ASTContext::UnsignedCharTy,
5284      &ASTContext::UnsignedShortTy,
5285      // End of integral types.
5286      // FIXME: What about complex?
5287    };
5288    return S.Context.*ArithmeticTypes[index];
5289  }
5290
5291  /// \brief Gets the canonical type resulting from the usual arithemetic
5292  /// converions for the given arithmetic types.
5293  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5294    // Accelerator table for performing the usual arithmetic conversions.
5295    // The rules are basically:
5296    //   - if either is floating-point, use the wider floating-point
5297    //   - if same signedness, use the higher rank
5298    //   - if same size, use unsigned of the higher rank
5299    //   - use the larger type
5300    // These rules, together with the axiom that higher ranks are
5301    // never smaller, are sufficient to precompute all of these results
5302    // *except* when dealing with signed types of higher rank.
5303    // (we could precompute SLL x UI for all known platforms, but it's
5304    // better not to make any assumptions).
5305    enum PromotedType {
5306                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
5307    };
5308    static PromotedType ConversionsTable[LastPromotedArithmeticType]
5309                                        [LastPromotedArithmeticType] = {
5310      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
5311      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
5312      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5313      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
5314      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
5315      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
5316      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
5317      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
5318      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
5319    };
5320
5321    assert(L < LastPromotedArithmeticType);
5322    assert(R < LastPromotedArithmeticType);
5323    int Idx = ConversionsTable[L][R];
5324
5325    // Fast path: the table gives us a concrete answer.
5326    if (Idx != Dep) return getArithmeticType(Idx);
5327
5328    // Slow path: we need to compare widths.
5329    // An invariant is that the signed type has higher rank.
5330    CanQualType LT = getArithmeticType(L),
5331                RT = getArithmeticType(R);
5332    unsigned LW = S.Context.getIntWidth(LT),
5333             RW = S.Context.getIntWidth(RT);
5334
5335    // If they're different widths, use the signed type.
5336    if (LW > RW) return LT;
5337    else if (LW < RW) return RT;
5338
5339    // Otherwise, use the unsigned type of the signed type's rank.
5340    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5341    assert(L == SLL || R == SLL);
5342    return S.Context.UnsignedLongLongTy;
5343  }
5344
5345  /// \brief Helper method to factor out the common pattern of adding overloads
5346  /// for '++' and '--' builtin operators.
5347  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5348                                           bool HasVolatile) {
5349    QualType ParamTypes[2] = {
5350      S.Context.getLValueReferenceType(CandidateTy),
5351      S.Context.IntTy
5352    };
5353
5354    // Non-volatile version.
5355    if (NumArgs == 1)
5356      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5357    else
5358      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5359
5360    // Use a heuristic to reduce number of builtin candidates in the set:
5361    // add volatile version only if there are conversions to a volatile type.
5362    if (HasVolatile) {
5363      ParamTypes[0] =
5364        S.Context.getLValueReferenceType(
5365          S.Context.getVolatileType(CandidateTy));
5366      if (NumArgs == 1)
5367        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5368      else
5369        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5370    }
5371  }
5372
5373public:
5374  BuiltinOperatorOverloadBuilder(
5375    Sema &S, Expr **Args, unsigned NumArgs,
5376    Qualifiers VisibleTypeConversionsQuals,
5377    bool HasArithmeticOrEnumeralCandidateType,
5378    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5379    OverloadCandidateSet &CandidateSet)
5380    : S(S), Args(Args), NumArgs(NumArgs),
5381      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5382      HasArithmeticOrEnumeralCandidateType(
5383        HasArithmeticOrEnumeralCandidateType),
5384      CandidateTypes(CandidateTypes),
5385      CandidateSet(CandidateSet) {
5386    // Validate some of our static helper constants in debug builds.
5387    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5388           "Invalid first promoted integral type");
5389    assert(getArithmeticType(LastPromotedIntegralType - 1)
5390             == S.Context.UnsignedLongLongTy &&
5391           "Invalid last promoted integral type");
5392    assert(getArithmeticType(FirstPromotedArithmeticType)
5393             == S.Context.FloatTy &&
5394           "Invalid first promoted arithmetic type");
5395    assert(getArithmeticType(LastPromotedArithmeticType - 1)
5396             == S.Context.UnsignedLongLongTy &&
5397           "Invalid last promoted arithmetic type");
5398  }
5399
5400  // C++ [over.built]p3:
5401  //
5402  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
5403  //   is either volatile or empty, there exist candidate operator
5404  //   functions of the form
5405  //
5406  //       VQ T&      operator++(VQ T&);
5407  //       T          operator++(VQ T&, int);
5408  //
5409  // C++ [over.built]p4:
5410  //
5411  //   For every pair (T, VQ), where T is an arithmetic type other
5412  //   than bool, and VQ is either volatile or empty, there exist
5413  //   candidate operator functions of the form
5414  //
5415  //       VQ T&      operator--(VQ T&);
5416  //       T          operator--(VQ T&, int);
5417  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5418    if (!HasArithmeticOrEnumeralCandidateType)
5419      return;
5420
5421    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5422         Arith < NumArithmeticTypes; ++Arith) {
5423      addPlusPlusMinusMinusStyleOverloads(
5424        getArithmeticType(Arith),
5425        VisibleTypeConversionsQuals.hasVolatile());
5426    }
5427  }
5428
5429  // C++ [over.built]p5:
5430  //
5431  //   For every pair (T, VQ), where T is a cv-qualified or
5432  //   cv-unqualified object type, and VQ is either volatile or
5433  //   empty, there exist candidate operator functions of the form
5434  //
5435  //       T*VQ&      operator++(T*VQ&);
5436  //       T*VQ&      operator--(T*VQ&);
5437  //       T*         operator++(T*VQ&, int);
5438  //       T*         operator--(T*VQ&, int);
5439  void addPlusPlusMinusMinusPointerOverloads() {
5440    for (BuiltinCandidateTypeSet::iterator
5441              Ptr = CandidateTypes[0].pointer_begin(),
5442           PtrEnd = CandidateTypes[0].pointer_end();
5443         Ptr != PtrEnd; ++Ptr) {
5444      // Skip pointer types that aren't pointers to object types.
5445      if (!(*Ptr)->getPointeeType()->isObjectType())
5446        continue;
5447
5448      addPlusPlusMinusMinusStyleOverloads(*Ptr,
5449        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5450         VisibleTypeConversionsQuals.hasVolatile()));
5451    }
5452  }
5453
5454  // C++ [over.built]p6:
5455  //   For every cv-qualified or cv-unqualified object type T, there
5456  //   exist candidate operator functions of the form
5457  //
5458  //       T&         operator*(T*);
5459  //
5460  // C++ [over.built]p7:
5461  //   For every function type T that does not have cv-qualifiers or a
5462  //   ref-qualifier, there exist candidate operator functions of the form
5463  //       T&         operator*(T*);
5464  void addUnaryStarPointerOverloads() {
5465    for (BuiltinCandidateTypeSet::iterator
5466              Ptr = CandidateTypes[0].pointer_begin(),
5467           PtrEnd = CandidateTypes[0].pointer_end();
5468         Ptr != PtrEnd; ++Ptr) {
5469      QualType ParamTy = *Ptr;
5470      QualType PointeeTy = ParamTy->getPointeeType();
5471      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5472        continue;
5473
5474      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5475        if (Proto->getTypeQuals() || Proto->getRefQualifier())
5476          continue;
5477
5478      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5479                            &ParamTy, Args, 1, CandidateSet);
5480    }
5481  }
5482
5483  // C++ [over.built]p9:
5484  //  For every promoted arithmetic type T, there exist candidate
5485  //  operator functions of the form
5486  //
5487  //       T         operator+(T);
5488  //       T         operator-(T);
5489  void addUnaryPlusOrMinusArithmeticOverloads() {
5490    if (!HasArithmeticOrEnumeralCandidateType)
5491      return;
5492
5493    for (unsigned Arith = FirstPromotedArithmeticType;
5494         Arith < LastPromotedArithmeticType; ++Arith) {
5495      QualType ArithTy = getArithmeticType(Arith);
5496      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5497    }
5498
5499    // Extension: We also add these operators for vector types.
5500    for (BuiltinCandidateTypeSet::iterator
5501              Vec = CandidateTypes[0].vector_begin(),
5502           VecEnd = CandidateTypes[0].vector_end();
5503         Vec != VecEnd; ++Vec) {
5504      QualType VecTy = *Vec;
5505      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5506    }
5507  }
5508
5509  // C++ [over.built]p8:
5510  //   For every type T, there exist candidate operator functions of
5511  //   the form
5512  //
5513  //       T*         operator+(T*);
5514  void addUnaryPlusPointerOverloads() {
5515    for (BuiltinCandidateTypeSet::iterator
5516              Ptr = CandidateTypes[0].pointer_begin(),
5517           PtrEnd = CandidateTypes[0].pointer_end();
5518         Ptr != PtrEnd; ++Ptr) {
5519      QualType ParamTy = *Ptr;
5520      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5521    }
5522  }
5523
5524  // C++ [over.built]p10:
5525  //   For every promoted integral type T, there exist candidate
5526  //   operator functions of the form
5527  //
5528  //        T         operator~(T);
5529  void addUnaryTildePromotedIntegralOverloads() {
5530    if (!HasArithmeticOrEnumeralCandidateType)
5531      return;
5532
5533    for (unsigned Int = FirstPromotedIntegralType;
5534         Int < LastPromotedIntegralType; ++Int) {
5535      QualType IntTy = getArithmeticType(Int);
5536      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5537    }
5538
5539    // Extension: We also add this operator for vector types.
5540    for (BuiltinCandidateTypeSet::iterator
5541              Vec = CandidateTypes[0].vector_begin(),
5542           VecEnd = CandidateTypes[0].vector_end();
5543         Vec != VecEnd; ++Vec) {
5544      QualType VecTy = *Vec;
5545      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5546    }
5547  }
5548
5549  // C++ [over.match.oper]p16:
5550  //   For every pointer to member type T, there exist candidate operator
5551  //   functions of the form
5552  //
5553  //        bool operator==(T,T);
5554  //        bool operator!=(T,T);
5555  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5556    /// Set of (canonical) types that we've already handled.
5557    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5558
5559    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5560      for (BuiltinCandidateTypeSet::iterator
5561                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5562             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5563           MemPtr != MemPtrEnd;
5564           ++MemPtr) {
5565        // Don't add the same builtin candidate twice.
5566        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5567          continue;
5568
5569        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5570        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5571                              CandidateSet);
5572      }
5573    }
5574  }
5575
5576  // C++ [over.built]p15:
5577  //
5578  //   For every T, where T is an enumeration type, a pointer type, or
5579  //   std::nullptr_t, there exist candidate operator functions of the form
5580  //
5581  //        bool       operator<(T, T);
5582  //        bool       operator>(T, T);
5583  //        bool       operator<=(T, T);
5584  //        bool       operator>=(T, T);
5585  //        bool       operator==(T, T);
5586  //        bool       operator!=(T, T);
5587  void addRelationalPointerOrEnumeralOverloads() {
5588    // C++ [over.built]p1:
5589    //   If there is a user-written candidate with the same name and parameter
5590    //   types as a built-in candidate operator function, the built-in operator
5591    //   function is hidden and is not included in the set of candidate
5592    //   functions.
5593    //
5594    // The text is actually in a note, but if we don't implement it then we end
5595    // up with ambiguities when the user provides an overloaded operator for
5596    // an enumeration type. Note that only enumeration types have this problem,
5597    // so we track which enumeration types we've seen operators for. Also, the
5598    // only other overloaded operator with enumeration argumenst, operator=,
5599    // cannot be overloaded for enumeration types, so this is the only place
5600    // where we must suppress candidates like this.
5601    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5602      UserDefinedBinaryOperators;
5603
5604    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5605      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5606          CandidateTypes[ArgIdx].enumeration_end()) {
5607        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5608                                         CEnd = CandidateSet.end();
5609             C != CEnd; ++C) {
5610          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5611            continue;
5612
5613          QualType FirstParamType =
5614            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5615          QualType SecondParamType =
5616            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5617
5618          // Skip if either parameter isn't of enumeral type.
5619          if (!FirstParamType->isEnumeralType() ||
5620              !SecondParamType->isEnumeralType())
5621            continue;
5622
5623          // Add this operator to the set of known user-defined operators.
5624          UserDefinedBinaryOperators.insert(
5625            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5626                           S.Context.getCanonicalType(SecondParamType)));
5627        }
5628      }
5629    }
5630
5631    /// Set of (canonical) types that we've already handled.
5632    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5633
5634    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5635      for (BuiltinCandidateTypeSet::iterator
5636                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5637             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5638           Ptr != PtrEnd; ++Ptr) {
5639        // Don't add the same builtin candidate twice.
5640        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5641          continue;
5642
5643        QualType ParamTypes[2] = { *Ptr, *Ptr };
5644        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5645                              CandidateSet);
5646      }
5647      for (BuiltinCandidateTypeSet::iterator
5648                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5649             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5650           Enum != EnumEnd; ++Enum) {
5651        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5652
5653        // Don't add the same builtin candidate twice, or if a user defined
5654        // candidate exists.
5655        if (!AddedTypes.insert(CanonType) ||
5656            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5657                                                            CanonType)))
5658          continue;
5659
5660        QualType ParamTypes[2] = { *Enum, *Enum };
5661        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5662                              CandidateSet);
5663      }
5664
5665      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
5666        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
5667        if (AddedTypes.insert(NullPtrTy) &&
5668            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
5669                                                             NullPtrTy))) {
5670          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
5671          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5672                                CandidateSet);
5673        }
5674      }
5675    }
5676  }
5677
5678  // C++ [over.built]p13:
5679  //
5680  //   For every cv-qualified or cv-unqualified object type T
5681  //   there exist candidate operator functions of the form
5682  //
5683  //      T*         operator+(T*, ptrdiff_t);
5684  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5685  //      T*         operator-(T*, ptrdiff_t);
5686  //      T*         operator+(ptrdiff_t, T*);
5687  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5688  //
5689  // C++ [over.built]p14:
5690  //
5691  //   For every T, where T is a pointer to object type, there
5692  //   exist candidate operator functions of the form
5693  //
5694  //      ptrdiff_t  operator-(T, T);
5695  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5696    /// Set of (canonical) types that we've already handled.
5697    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5698
5699    for (int Arg = 0; Arg < 2; ++Arg) {
5700      QualType AsymetricParamTypes[2] = {
5701        S.Context.getPointerDiffType(),
5702        S.Context.getPointerDiffType(),
5703      };
5704      for (BuiltinCandidateTypeSet::iterator
5705                Ptr = CandidateTypes[Arg].pointer_begin(),
5706             PtrEnd = CandidateTypes[Arg].pointer_end();
5707           Ptr != PtrEnd; ++Ptr) {
5708        QualType PointeeTy = (*Ptr)->getPointeeType();
5709        if (!PointeeTy->isObjectType())
5710          continue;
5711
5712        AsymetricParamTypes[Arg] = *Ptr;
5713        if (Arg == 0 || Op == OO_Plus) {
5714          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5715          // T* operator+(ptrdiff_t, T*);
5716          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5717                                CandidateSet);
5718        }
5719        if (Op == OO_Minus) {
5720          // ptrdiff_t operator-(T, T);
5721          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5722            continue;
5723
5724          QualType ParamTypes[2] = { *Ptr, *Ptr };
5725          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5726                                Args, 2, CandidateSet);
5727        }
5728      }
5729    }
5730  }
5731
5732  // C++ [over.built]p12:
5733  //
5734  //   For every pair of promoted arithmetic types L and R, there
5735  //   exist candidate operator functions of the form
5736  //
5737  //        LR         operator*(L, R);
5738  //        LR         operator/(L, R);
5739  //        LR         operator+(L, R);
5740  //        LR         operator-(L, R);
5741  //        bool       operator<(L, R);
5742  //        bool       operator>(L, R);
5743  //        bool       operator<=(L, R);
5744  //        bool       operator>=(L, R);
5745  //        bool       operator==(L, R);
5746  //        bool       operator!=(L, R);
5747  //
5748  //   where LR is the result of the usual arithmetic conversions
5749  //   between types L and R.
5750  //
5751  // C++ [over.built]p24:
5752  //
5753  //   For every pair of promoted arithmetic types L and R, there exist
5754  //   candidate operator functions of the form
5755  //
5756  //        LR       operator?(bool, L, R);
5757  //
5758  //   where LR is the result of the usual arithmetic conversions
5759  //   between types L and R.
5760  // Our candidates ignore the first parameter.
5761  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5762    if (!HasArithmeticOrEnumeralCandidateType)
5763      return;
5764
5765    for (unsigned Left = FirstPromotedArithmeticType;
5766         Left < LastPromotedArithmeticType; ++Left) {
5767      for (unsigned Right = FirstPromotedArithmeticType;
5768           Right < LastPromotedArithmeticType; ++Right) {
5769        QualType LandR[2] = { getArithmeticType(Left),
5770                              getArithmeticType(Right) };
5771        QualType Result =
5772          isComparison ? S.Context.BoolTy
5773                       : getUsualArithmeticConversions(Left, Right);
5774        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5775      }
5776    }
5777
5778    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5779    // conditional operator for vector types.
5780    for (BuiltinCandidateTypeSet::iterator
5781              Vec1 = CandidateTypes[0].vector_begin(),
5782           Vec1End = CandidateTypes[0].vector_end();
5783         Vec1 != Vec1End; ++Vec1) {
5784      for (BuiltinCandidateTypeSet::iterator
5785                Vec2 = CandidateTypes[1].vector_begin(),
5786             Vec2End = CandidateTypes[1].vector_end();
5787           Vec2 != Vec2End; ++Vec2) {
5788        QualType LandR[2] = { *Vec1, *Vec2 };
5789        QualType Result = S.Context.BoolTy;
5790        if (!isComparison) {
5791          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5792            Result = *Vec1;
5793          else
5794            Result = *Vec2;
5795        }
5796
5797        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5798      }
5799    }
5800  }
5801
5802  // C++ [over.built]p17:
5803  //
5804  //   For every pair of promoted integral types L and R, there
5805  //   exist candidate operator functions of the form
5806  //
5807  //      LR         operator%(L, R);
5808  //      LR         operator&(L, R);
5809  //      LR         operator^(L, R);
5810  //      LR         operator|(L, R);
5811  //      L          operator<<(L, R);
5812  //      L          operator>>(L, R);
5813  //
5814  //   where LR is the result of the usual arithmetic conversions
5815  //   between types L and R.
5816  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5817    if (!HasArithmeticOrEnumeralCandidateType)
5818      return;
5819
5820    for (unsigned Left = FirstPromotedIntegralType;
5821         Left < LastPromotedIntegralType; ++Left) {
5822      for (unsigned Right = FirstPromotedIntegralType;
5823           Right < LastPromotedIntegralType; ++Right) {
5824        QualType LandR[2] = { getArithmeticType(Left),
5825                              getArithmeticType(Right) };
5826        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5827            ? LandR[0]
5828            : getUsualArithmeticConversions(Left, Right);
5829        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5830      }
5831    }
5832  }
5833
5834  // C++ [over.built]p20:
5835  //
5836  //   For every pair (T, VQ), where T is an enumeration or
5837  //   pointer to member type and VQ is either volatile or
5838  //   empty, there exist candidate operator functions of the form
5839  //
5840  //        VQ T&      operator=(VQ T&, T);
5841  void addAssignmentMemberPointerOrEnumeralOverloads() {
5842    /// Set of (canonical) types that we've already handled.
5843    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5844
5845    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5846      for (BuiltinCandidateTypeSet::iterator
5847                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5848             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5849           Enum != EnumEnd; ++Enum) {
5850        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5851          continue;
5852
5853        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5854                                               CandidateSet);
5855      }
5856
5857      for (BuiltinCandidateTypeSet::iterator
5858                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5859             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5860           MemPtr != MemPtrEnd; ++MemPtr) {
5861        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5862          continue;
5863
5864        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5865                                               CandidateSet);
5866      }
5867    }
5868  }
5869
5870  // C++ [over.built]p19:
5871  //
5872  //   For every pair (T, VQ), where T is any type and VQ is either
5873  //   volatile or empty, there exist candidate operator functions
5874  //   of the form
5875  //
5876  //        T*VQ&      operator=(T*VQ&, T*);
5877  //
5878  // C++ [over.built]p21:
5879  //
5880  //   For every pair (T, VQ), where T is a cv-qualified or
5881  //   cv-unqualified object type and VQ is either volatile or
5882  //   empty, there exist candidate operator functions of the form
5883  //
5884  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5885  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5886  void addAssignmentPointerOverloads(bool isEqualOp) {
5887    /// Set of (canonical) types that we've already handled.
5888    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5889
5890    for (BuiltinCandidateTypeSet::iterator
5891              Ptr = CandidateTypes[0].pointer_begin(),
5892           PtrEnd = CandidateTypes[0].pointer_end();
5893         Ptr != PtrEnd; ++Ptr) {
5894      // If this is operator=, keep track of the builtin candidates we added.
5895      if (isEqualOp)
5896        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5897      else if (!(*Ptr)->getPointeeType()->isObjectType())
5898        continue;
5899
5900      // non-volatile version
5901      QualType ParamTypes[2] = {
5902        S.Context.getLValueReferenceType(*Ptr),
5903        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5904      };
5905      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5906                            /*IsAssigmentOperator=*/ isEqualOp);
5907
5908      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5909          VisibleTypeConversionsQuals.hasVolatile()) {
5910        // volatile version
5911        ParamTypes[0] =
5912          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5913        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5914                              /*IsAssigmentOperator=*/isEqualOp);
5915      }
5916    }
5917
5918    if (isEqualOp) {
5919      for (BuiltinCandidateTypeSet::iterator
5920                Ptr = CandidateTypes[1].pointer_begin(),
5921             PtrEnd = CandidateTypes[1].pointer_end();
5922           Ptr != PtrEnd; ++Ptr) {
5923        // Make sure we don't add the same candidate twice.
5924        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5925          continue;
5926
5927        QualType ParamTypes[2] = {
5928          S.Context.getLValueReferenceType(*Ptr),
5929          *Ptr,
5930        };
5931
5932        // non-volatile version
5933        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5934                              /*IsAssigmentOperator=*/true);
5935
5936        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5937            VisibleTypeConversionsQuals.hasVolatile()) {
5938          // volatile version
5939          ParamTypes[0] =
5940            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5941          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5942                                CandidateSet, /*IsAssigmentOperator=*/true);
5943        }
5944      }
5945    }
5946  }
5947
5948  // C++ [over.built]p18:
5949  //
5950  //   For every triple (L, VQ, R), where L is an arithmetic type,
5951  //   VQ is either volatile or empty, and R is a promoted
5952  //   arithmetic type, there exist candidate operator functions of
5953  //   the form
5954  //
5955  //        VQ L&      operator=(VQ L&, R);
5956  //        VQ L&      operator*=(VQ L&, R);
5957  //        VQ L&      operator/=(VQ L&, R);
5958  //        VQ L&      operator+=(VQ L&, R);
5959  //        VQ L&      operator-=(VQ L&, R);
5960  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5961    if (!HasArithmeticOrEnumeralCandidateType)
5962      return;
5963
5964    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5965      for (unsigned Right = FirstPromotedArithmeticType;
5966           Right < LastPromotedArithmeticType; ++Right) {
5967        QualType ParamTypes[2];
5968        ParamTypes[1] = getArithmeticType(Right);
5969
5970        // Add this built-in operator as a candidate (VQ is empty).
5971        ParamTypes[0] =
5972          S.Context.getLValueReferenceType(getArithmeticType(Left));
5973        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5974                              /*IsAssigmentOperator=*/isEqualOp);
5975
5976        // Add this built-in operator as a candidate (VQ is 'volatile').
5977        if (VisibleTypeConversionsQuals.hasVolatile()) {
5978          ParamTypes[0] =
5979            S.Context.getVolatileType(getArithmeticType(Left));
5980          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5981          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5982                                CandidateSet,
5983                                /*IsAssigmentOperator=*/isEqualOp);
5984        }
5985      }
5986    }
5987
5988    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5989    for (BuiltinCandidateTypeSet::iterator
5990              Vec1 = CandidateTypes[0].vector_begin(),
5991           Vec1End = CandidateTypes[0].vector_end();
5992         Vec1 != Vec1End; ++Vec1) {
5993      for (BuiltinCandidateTypeSet::iterator
5994                Vec2 = CandidateTypes[1].vector_begin(),
5995             Vec2End = CandidateTypes[1].vector_end();
5996           Vec2 != Vec2End; ++Vec2) {
5997        QualType ParamTypes[2];
5998        ParamTypes[1] = *Vec2;
5999        // Add this built-in operator as a candidate (VQ is empty).
6000        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
6001        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6002                              /*IsAssigmentOperator=*/isEqualOp);
6003
6004        // Add this built-in operator as a candidate (VQ is 'volatile').
6005        if (VisibleTypeConversionsQuals.hasVolatile()) {
6006          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
6007          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6008          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6009                                CandidateSet,
6010                                /*IsAssigmentOperator=*/isEqualOp);
6011        }
6012      }
6013    }
6014  }
6015
6016  // C++ [over.built]p22:
6017  //
6018  //   For every triple (L, VQ, R), where L is an integral type, VQ
6019  //   is either volatile or empty, and R is a promoted integral
6020  //   type, there exist candidate operator functions of the form
6021  //
6022  //        VQ L&       operator%=(VQ L&, R);
6023  //        VQ L&       operator<<=(VQ L&, R);
6024  //        VQ L&       operator>>=(VQ L&, R);
6025  //        VQ L&       operator&=(VQ L&, R);
6026  //        VQ L&       operator^=(VQ L&, R);
6027  //        VQ L&       operator|=(VQ L&, R);
6028  void addAssignmentIntegralOverloads() {
6029    if (!HasArithmeticOrEnumeralCandidateType)
6030      return;
6031
6032    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6033      for (unsigned Right = FirstPromotedIntegralType;
6034           Right < LastPromotedIntegralType; ++Right) {
6035        QualType ParamTypes[2];
6036        ParamTypes[1] = getArithmeticType(Right);
6037
6038        // Add this built-in operator as a candidate (VQ is empty).
6039        ParamTypes[0] =
6040          S.Context.getLValueReferenceType(getArithmeticType(Left));
6041        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6042        if (VisibleTypeConversionsQuals.hasVolatile()) {
6043          // Add this built-in operator as a candidate (VQ is 'volatile').
6044          ParamTypes[0] = getArithmeticType(Left);
6045          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6046          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6047          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6048                                CandidateSet);
6049        }
6050      }
6051    }
6052  }
6053
6054  // C++ [over.operator]p23:
6055  //
6056  //   There also exist candidate operator functions of the form
6057  //
6058  //        bool        operator!(bool);
6059  //        bool        operator&&(bool, bool);
6060  //        bool        operator||(bool, bool);
6061  void addExclaimOverload() {
6062    QualType ParamTy = S.Context.BoolTy;
6063    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6064                          /*IsAssignmentOperator=*/false,
6065                          /*NumContextualBoolArguments=*/1);
6066  }
6067  void addAmpAmpOrPipePipeOverload() {
6068    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6069    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6070                          /*IsAssignmentOperator=*/false,
6071                          /*NumContextualBoolArguments=*/2);
6072  }
6073
6074  // C++ [over.built]p13:
6075  //
6076  //   For every cv-qualified or cv-unqualified object type T there
6077  //   exist candidate operator functions of the form
6078  //
6079  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
6080  //        T&         operator[](T*, ptrdiff_t);
6081  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
6082  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
6083  //        T&         operator[](ptrdiff_t, T*);
6084  void addSubscriptOverloads() {
6085    for (BuiltinCandidateTypeSet::iterator
6086              Ptr = CandidateTypes[0].pointer_begin(),
6087           PtrEnd = CandidateTypes[0].pointer_end();
6088         Ptr != PtrEnd; ++Ptr) {
6089      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6090      QualType PointeeType = (*Ptr)->getPointeeType();
6091      if (!PointeeType->isObjectType())
6092        continue;
6093
6094      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6095
6096      // T& operator[](T*, ptrdiff_t)
6097      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6098    }
6099
6100    for (BuiltinCandidateTypeSet::iterator
6101              Ptr = CandidateTypes[1].pointer_begin(),
6102           PtrEnd = CandidateTypes[1].pointer_end();
6103         Ptr != PtrEnd; ++Ptr) {
6104      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
6105      QualType PointeeType = (*Ptr)->getPointeeType();
6106      if (!PointeeType->isObjectType())
6107        continue;
6108
6109      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6110
6111      // T& operator[](ptrdiff_t, T*)
6112      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6113    }
6114  }
6115
6116  // C++ [over.built]p11:
6117  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
6118  //    C1 is the same type as C2 or is a derived class of C2, T is an object
6119  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
6120  //    there exist candidate operator functions of the form
6121  //
6122  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
6123  //
6124  //    where CV12 is the union of CV1 and CV2.
6125  void addArrowStarOverloads() {
6126    for (BuiltinCandidateTypeSet::iterator
6127             Ptr = CandidateTypes[0].pointer_begin(),
6128           PtrEnd = CandidateTypes[0].pointer_end();
6129         Ptr != PtrEnd; ++Ptr) {
6130      QualType C1Ty = (*Ptr);
6131      QualType C1;
6132      QualifierCollector Q1;
6133      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
6134      if (!isa<RecordType>(C1))
6135        continue;
6136      // heuristic to reduce number of builtin candidates in the set.
6137      // Add volatile/restrict version only if there are conversions to a
6138      // volatile/restrict type.
6139      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
6140        continue;
6141      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
6142        continue;
6143      for (BuiltinCandidateTypeSet::iterator
6144                MemPtr = CandidateTypes[1].member_pointer_begin(),
6145             MemPtrEnd = CandidateTypes[1].member_pointer_end();
6146           MemPtr != MemPtrEnd; ++MemPtr) {
6147        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
6148        QualType C2 = QualType(mptr->getClass(), 0);
6149        C2 = C2.getUnqualifiedType();
6150        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
6151          break;
6152        QualType ParamTypes[2] = { *Ptr, *MemPtr };
6153        // build CV12 T&
6154        QualType T = mptr->getPointeeType();
6155        if (!VisibleTypeConversionsQuals.hasVolatile() &&
6156            T.isVolatileQualified())
6157          continue;
6158        if (!VisibleTypeConversionsQuals.hasRestrict() &&
6159            T.isRestrictQualified())
6160          continue;
6161        T = Q1.apply(S.Context, T);
6162        QualType ResultTy = S.Context.getLValueReferenceType(T);
6163        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6164      }
6165    }
6166  }
6167
6168  // Note that we don't consider the first argument, since it has been
6169  // contextually converted to bool long ago. The candidates below are
6170  // therefore added as binary.
6171  //
6172  // C++ [over.built]p25:
6173  //   For every type T, where T is a pointer, pointer-to-member, or scoped
6174  //   enumeration type, there exist candidate operator functions of the form
6175  //
6176  //        T        operator?(bool, T, T);
6177  //
6178  void addConditionalOperatorOverloads() {
6179    /// Set of (canonical) types that we've already handled.
6180    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6181
6182    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6183      for (BuiltinCandidateTypeSet::iterator
6184                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6185             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6186           Ptr != PtrEnd; ++Ptr) {
6187        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6188          continue;
6189
6190        QualType ParamTypes[2] = { *Ptr, *Ptr };
6191        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
6192      }
6193
6194      for (BuiltinCandidateTypeSet::iterator
6195                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6196             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6197           MemPtr != MemPtrEnd; ++MemPtr) {
6198        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6199          continue;
6200
6201        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6202        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
6203      }
6204
6205      if (S.getLangOptions().CPlusPlus0x) {
6206        for (BuiltinCandidateTypeSet::iterator
6207                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6208               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6209             Enum != EnumEnd; ++Enum) {
6210          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
6211            continue;
6212
6213          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6214            continue;
6215
6216          QualType ParamTypes[2] = { *Enum, *Enum };
6217          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
6218        }
6219      }
6220    }
6221  }
6222};
6223
6224} // end anonymous namespace
6225
6226/// AddBuiltinOperatorCandidates - Add the appropriate built-in
6227/// operator overloads to the candidate set (C++ [over.built]), based
6228/// on the operator @p Op and the arguments given. For example, if the
6229/// operator is a binary '+', this routine might add "int
6230/// operator+(int, int)" to cover integer addition.
6231void
6232Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
6233                                   SourceLocation OpLoc,
6234                                   Expr **Args, unsigned NumArgs,
6235                                   OverloadCandidateSet& CandidateSet) {
6236  // Find all of the types that the arguments can convert to, but only
6237  // if the operator we're looking at has built-in operator candidates
6238  // that make use of these types. Also record whether we encounter non-record
6239  // candidate types or either arithmetic or enumeral candidate types.
6240  Qualifiers VisibleTypeConversionsQuals;
6241  VisibleTypeConversionsQuals.addConst();
6242  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6243    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
6244
6245  bool HasNonRecordCandidateType = false;
6246  bool HasArithmeticOrEnumeralCandidateType = false;
6247  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
6248  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6249    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
6250    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
6251                                                 OpLoc,
6252                                                 true,
6253                                                 (Op == OO_Exclaim ||
6254                                                  Op == OO_AmpAmp ||
6255                                                  Op == OO_PipePipe),
6256                                                 VisibleTypeConversionsQuals);
6257    HasNonRecordCandidateType = HasNonRecordCandidateType ||
6258        CandidateTypes[ArgIdx].hasNonRecordTypes();
6259    HasArithmeticOrEnumeralCandidateType =
6260        HasArithmeticOrEnumeralCandidateType ||
6261        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6262  }
6263
6264  // Exit early when no non-record types have been added to the candidate set
6265  // for any of the arguments to the operator.
6266  if (!HasNonRecordCandidateType)
6267    return;
6268
6269  // Setup an object to manage the common state for building overloads.
6270  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6271                                           VisibleTypeConversionsQuals,
6272                                           HasArithmeticOrEnumeralCandidateType,
6273                                           CandidateTypes, CandidateSet);
6274
6275  // Dispatch over the operation to add in only those overloads which apply.
6276  switch (Op) {
6277  case OO_None:
6278  case NUM_OVERLOADED_OPERATORS:
6279    assert(false && "Expected an overloaded operator");
6280    break;
6281
6282  case OO_New:
6283  case OO_Delete:
6284  case OO_Array_New:
6285  case OO_Array_Delete:
6286  case OO_Call:
6287    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
6288    break;
6289
6290  case OO_Comma:
6291  case OO_Arrow:
6292    // C++ [over.match.oper]p3:
6293    //   -- For the operator ',', the unary operator '&', or the
6294    //      operator '->', the built-in candidates set is empty.
6295    break;
6296
6297  case OO_Plus: // '+' is either unary or binary
6298    if (NumArgs == 1)
6299      OpBuilder.addUnaryPlusPointerOverloads();
6300    // Fall through.
6301
6302  case OO_Minus: // '-' is either unary or binary
6303    if (NumArgs == 1) {
6304      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6305    } else {
6306      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6307      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6308    }
6309    break;
6310
6311  case OO_Star: // '*' is either unary or binary
6312    if (NumArgs == 1)
6313      OpBuilder.addUnaryStarPointerOverloads();
6314    else
6315      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6316    break;
6317
6318  case OO_Slash:
6319    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6320    break;
6321
6322  case OO_PlusPlus:
6323  case OO_MinusMinus:
6324    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6325    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6326    break;
6327
6328  case OO_EqualEqual:
6329  case OO_ExclaimEqual:
6330    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6331    // Fall through.
6332
6333  case OO_Less:
6334  case OO_Greater:
6335  case OO_LessEqual:
6336  case OO_GreaterEqual:
6337    OpBuilder.addRelationalPointerOrEnumeralOverloads();
6338    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6339    break;
6340
6341  case OO_Percent:
6342  case OO_Caret:
6343  case OO_Pipe:
6344  case OO_LessLess:
6345  case OO_GreaterGreater:
6346    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6347    break;
6348
6349  case OO_Amp: // '&' is either unary or binary
6350    if (NumArgs == 1)
6351      // C++ [over.match.oper]p3:
6352      //   -- For the operator ',', the unary operator '&', or the
6353      //      operator '->', the built-in candidates set is empty.
6354      break;
6355
6356    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6357    break;
6358
6359  case OO_Tilde:
6360    OpBuilder.addUnaryTildePromotedIntegralOverloads();
6361    break;
6362
6363  case OO_Equal:
6364    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6365    // Fall through.
6366
6367  case OO_PlusEqual:
6368  case OO_MinusEqual:
6369    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6370    // Fall through.
6371
6372  case OO_StarEqual:
6373  case OO_SlashEqual:
6374    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6375    break;
6376
6377  case OO_PercentEqual:
6378  case OO_LessLessEqual:
6379  case OO_GreaterGreaterEqual:
6380  case OO_AmpEqual:
6381  case OO_CaretEqual:
6382  case OO_PipeEqual:
6383    OpBuilder.addAssignmentIntegralOverloads();
6384    break;
6385
6386  case OO_Exclaim:
6387    OpBuilder.addExclaimOverload();
6388    break;
6389
6390  case OO_AmpAmp:
6391  case OO_PipePipe:
6392    OpBuilder.addAmpAmpOrPipePipeOverload();
6393    break;
6394
6395  case OO_Subscript:
6396    OpBuilder.addSubscriptOverloads();
6397    break;
6398
6399  case OO_ArrowStar:
6400    OpBuilder.addArrowStarOverloads();
6401    break;
6402
6403  case OO_Conditional:
6404    OpBuilder.addConditionalOperatorOverloads();
6405    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6406    break;
6407  }
6408}
6409
6410/// \brief Add function candidates found via argument-dependent lookup
6411/// to the set of overloading candidates.
6412///
6413/// This routine performs argument-dependent name lookup based on the
6414/// given function name (which may also be an operator name) and adds
6415/// all of the overload candidates found by ADL to the overload
6416/// candidate set (C++ [basic.lookup.argdep]).
6417void
6418Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6419                                           bool Operator,
6420                                           Expr **Args, unsigned NumArgs,
6421                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
6422                                           OverloadCandidateSet& CandidateSet,
6423                                           bool PartialOverloading,
6424                                           bool StdNamespaceIsAssociated) {
6425  ADLResult Fns;
6426
6427  // FIXME: This approach for uniquing ADL results (and removing
6428  // redundant candidates from the set) relies on pointer-equality,
6429  // which means we need to key off the canonical decl.  However,
6430  // always going back to the canonical decl might not get us the
6431  // right set of default arguments.  What default arguments are
6432  // we supposed to consider on ADL candidates, anyway?
6433
6434  // FIXME: Pass in the explicit template arguments?
6435  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6436                          StdNamespaceIsAssociated);
6437
6438  // Erase all of the candidates we already knew about.
6439  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6440                                   CandEnd = CandidateSet.end();
6441       Cand != CandEnd; ++Cand)
6442    if (Cand->Function) {
6443      Fns.erase(Cand->Function);
6444      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6445        Fns.erase(FunTmpl);
6446    }
6447
6448  // For each of the ADL candidates we found, add it to the overload
6449  // set.
6450  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6451    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6452    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6453      if (ExplicitTemplateArgs)
6454        continue;
6455
6456      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6457                           false, PartialOverloading);
6458    } else
6459      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6460                                   FoundDecl, ExplicitTemplateArgs,
6461                                   Args, NumArgs, CandidateSet);
6462  }
6463}
6464
6465/// isBetterOverloadCandidate - Determines whether the first overload
6466/// candidate is a better candidate than the second (C++ 13.3.3p1).
6467bool
6468isBetterOverloadCandidate(Sema &S,
6469                          const OverloadCandidate &Cand1,
6470                          const OverloadCandidate &Cand2,
6471                          SourceLocation Loc,
6472                          bool UserDefinedConversion) {
6473  // Define viable functions to be better candidates than non-viable
6474  // functions.
6475  if (!Cand2.Viable)
6476    return Cand1.Viable;
6477  else if (!Cand1.Viable)
6478    return false;
6479
6480  // C++ [over.match.best]p1:
6481  //
6482  //   -- if F is a static member function, ICS1(F) is defined such
6483  //      that ICS1(F) is neither better nor worse than ICS1(G) for
6484  //      any function G, and, symmetrically, ICS1(G) is neither
6485  //      better nor worse than ICS1(F).
6486  unsigned StartArg = 0;
6487  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6488    StartArg = 1;
6489
6490  // C++ [over.match.best]p1:
6491  //   A viable function F1 is defined to be a better function than another
6492  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
6493  //   conversion sequence than ICSi(F2), and then...
6494  unsigned NumArgs = Cand1.Conversions.size();
6495  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6496  bool HasBetterConversion = false;
6497  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6498    switch (CompareImplicitConversionSequences(S,
6499                                               Cand1.Conversions[ArgIdx],
6500                                               Cand2.Conversions[ArgIdx])) {
6501    case ImplicitConversionSequence::Better:
6502      // Cand1 has a better conversion sequence.
6503      HasBetterConversion = true;
6504      break;
6505
6506    case ImplicitConversionSequence::Worse:
6507      // Cand1 can't be better than Cand2.
6508      return false;
6509
6510    case ImplicitConversionSequence::Indistinguishable:
6511      // Do nothing.
6512      break;
6513    }
6514  }
6515
6516  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6517  //       ICSj(F2), or, if not that,
6518  if (HasBetterConversion)
6519    return true;
6520
6521  //     - F1 is a non-template function and F2 is a function template
6522  //       specialization, or, if not that,
6523  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6524      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6525    return true;
6526
6527  //   -- F1 and F2 are function template specializations, and the function
6528  //      template for F1 is more specialized than the template for F2
6529  //      according to the partial ordering rules described in 14.5.5.2, or,
6530  //      if not that,
6531  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6532      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6533    if (FunctionTemplateDecl *BetterTemplate
6534          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6535                                         Cand2.Function->getPrimaryTemplate(),
6536                                         Loc,
6537                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6538                                                             : TPOC_Call,
6539                                         Cand1.ExplicitCallArguments))
6540      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6541  }
6542
6543  //   -- the context is an initialization by user-defined conversion
6544  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6545  //      from the return type of F1 to the destination type (i.e.,
6546  //      the type of the entity being initialized) is a better
6547  //      conversion sequence than the standard conversion sequence
6548  //      from the return type of F2 to the destination type.
6549  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6550      isa<CXXConversionDecl>(Cand1.Function) &&
6551      isa<CXXConversionDecl>(Cand2.Function)) {
6552    switch (CompareStandardConversionSequences(S,
6553                                               Cand1.FinalConversion,
6554                                               Cand2.FinalConversion)) {
6555    case ImplicitConversionSequence::Better:
6556      // Cand1 has a better conversion sequence.
6557      return true;
6558
6559    case ImplicitConversionSequence::Worse:
6560      // Cand1 can't be better than Cand2.
6561      return false;
6562
6563    case ImplicitConversionSequence::Indistinguishable:
6564      // Do nothing
6565      break;
6566    }
6567  }
6568
6569  return false;
6570}
6571
6572/// \brief Computes the best viable function (C++ 13.3.3)
6573/// within an overload candidate set.
6574///
6575/// \param CandidateSet the set of candidate functions.
6576///
6577/// \param Loc the location of the function name (or operator symbol) for
6578/// which overload resolution occurs.
6579///
6580/// \param Best f overload resolution was successful or found a deleted
6581/// function, Best points to the candidate function found.
6582///
6583/// \returns The result of overload resolution.
6584OverloadingResult
6585OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6586                                         iterator &Best,
6587                                         bool UserDefinedConversion) {
6588  // Find the best viable function.
6589  Best = end();
6590  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6591    if (Cand->Viable)
6592      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6593                                                     UserDefinedConversion))
6594        Best = Cand;
6595  }
6596
6597  // If we didn't find any viable functions, abort.
6598  if (Best == end())
6599    return OR_No_Viable_Function;
6600
6601  // Make sure that this function is better than every other viable
6602  // function. If not, we have an ambiguity.
6603  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6604    if (Cand->Viable &&
6605        Cand != Best &&
6606        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6607                                   UserDefinedConversion)) {
6608      Best = end();
6609      return OR_Ambiguous;
6610    }
6611  }
6612
6613  // Best is the best viable function.
6614  if (Best->Function &&
6615      (Best->Function->isDeleted() ||
6616       S.isFunctionConsideredUnavailable(Best->Function)))
6617    return OR_Deleted;
6618
6619  return OR_Success;
6620}
6621
6622namespace {
6623
6624enum OverloadCandidateKind {
6625  oc_function,
6626  oc_method,
6627  oc_constructor,
6628  oc_function_template,
6629  oc_method_template,
6630  oc_constructor_template,
6631  oc_implicit_default_constructor,
6632  oc_implicit_copy_constructor,
6633  oc_implicit_move_constructor,
6634  oc_implicit_copy_assignment,
6635  oc_implicit_move_assignment,
6636  oc_implicit_inherited_constructor
6637};
6638
6639OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6640                                                FunctionDecl *Fn,
6641                                                std::string &Description) {
6642  bool isTemplate = false;
6643
6644  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6645    isTemplate = true;
6646    Description = S.getTemplateArgumentBindingsText(
6647      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6648  }
6649
6650  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6651    if (!Ctor->isImplicit())
6652      return isTemplate ? oc_constructor_template : oc_constructor;
6653
6654    if (Ctor->getInheritedConstructor())
6655      return oc_implicit_inherited_constructor;
6656
6657    if (Ctor->isDefaultConstructor())
6658      return oc_implicit_default_constructor;
6659
6660    if (Ctor->isMoveConstructor())
6661      return oc_implicit_move_constructor;
6662
6663    assert(Ctor->isCopyConstructor() &&
6664           "unexpected sort of implicit constructor");
6665    return oc_implicit_copy_constructor;
6666  }
6667
6668  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6669    // This actually gets spelled 'candidate function' for now, but
6670    // it doesn't hurt to split it out.
6671    if (!Meth->isImplicit())
6672      return isTemplate ? oc_method_template : oc_method;
6673
6674    if (Meth->isMoveAssignmentOperator())
6675      return oc_implicit_move_assignment;
6676
6677    assert(Meth->isCopyAssignmentOperator()
6678           && "implicit method is not copy assignment operator?");
6679    return oc_implicit_copy_assignment;
6680  }
6681
6682  return isTemplate ? oc_function_template : oc_function;
6683}
6684
6685void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
6686  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
6687  if (!Ctor) return;
6688
6689  Ctor = Ctor->getInheritedConstructor();
6690  if (!Ctor) return;
6691
6692  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
6693}
6694
6695} // end anonymous namespace
6696
6697// Notes the location of an overload candidate.
6698void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6699  std::string FnDesc;
6700  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6701  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6702    << (unsigned) K << FnDesc;
6703  MaybeEmitInheritedConstructorNote(*this, Fn);
6704}
6705
6706//Notes the location of all overload candidates designated through
6707// OverloadedExpr
6708void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
6709  assert(OverloadedExpr->getType() == Context.OverloadTy);
6710
6711  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
6712  OverloadExpr *OvlExpr = Ovl.Expression;
6713
6714  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6715                            IEnd = OvlExpr->decls_end();
6716       I != IEnd; ++I) {
6717    if (FunctionTemplateDecl *FunTmpl =
6718                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6719      NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
6720    } else if (FunctionDecl *Fun
6721                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
6722      NoteOverloadCandidate(Fun);
6723    }
6724  }
6725}
6726
6727/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6728/// "lead" diagnostic; it will be given two arguments, the source and
6729/// target types of the conversion.
6730void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6731                                 Sema &S,
6732                                 SourceLocation CaretLoc,
6733                                 const PartialDiagnostic &PDiag) const {
6734  S.Diag(CaretLoc, PDiag)
6735    << Ambiguous.getFromType() << Ambiguous.getToType();
6736  for (AmbiguousConversionSequence::const_iterator
6737         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6738    S.NoteOverloadCandidate(*I);
6739  }
6740}
6741
6742namespace {
6743
6744void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6745  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6746  assert(Conv.isBad());
6747  assert(Cand->Function && "for now, candidate must be a function");
6748  FunctionDecl *Fn = Cand->Function;
6749
6750  // There's a conversion slot for the object argument if this is a
6751  // non-constructor method.  Note that 'I' corresponds the
6752  // conversion-slot index.
6753  bool isObjectArgument = false;
6754  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6755    if (I == 0)
6756      isObjectArgument = true;
6757    else
6758      I--;
6759  }
6760
6761  std::string FnDesc;
6762  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6763
6764  Expr *FromExpr = Conv.Bad.FromExpr;
6765  QualType FromTy = Conv.Bad.getFromType();
6766  QualType ToTy = Conv.Bad.getToType();
6767
6768  if (FromTy == S.Context.OverloadTy) {
6769    assert(FromExpr && "overload set argument came from implicit argument?");
6770    Expr *E = FromExpr->IgnoreParens();
6771    if (isa<UnaryOperator>(E))
6772      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6773    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6774
6775    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6776      << (unsigned) FnKind << FnDesc
6777      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6778      << ToTy << Name << I+1;
6779    MaybeEmitInheritedConstructorNote(S, Fn);
6780    return;
6781  }
6782
6783  // Do some hand-waving analysis to see if the non-viability is due
6784  // to a qualifier mismatch.
6785  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6786  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6787  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6788    CToTy = RT->getPointeeType();
6789  else {
6790    // TODO: detect and diagnose the full richness of const mismatches.
6791    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6792      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6793        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6794  }
6795
6796  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6797      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6798    // It is dumb that we have to do this here.
6799    while (isa<ArrayType>(CFromTy))
6800      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6801    while (isa<ArrayType>(CToTy))
6802      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6803
6804    Qualifiers FromQs = CFromTy.getQualifiers();
6805    Qualifiers ToQs = CToTy.getQualifiers();
6806
6807    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6808      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6809        << (unsigned) FnKind << FnDesc
6810        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6811        << FromTy
6812        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6813        << (unsigned) isObjectArgument << I+1;
6814      MaybeEmitInheritedConstructorNote(S, Fn);
6815      return;
6816    }
6817
6818    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
6819      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
6820        << (unsigned) FnKind << FnDesc
6821        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6822        << FromTy
6823        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
6824        << (unsigned) isObjectArgument << I+1;
6825      MaybeEmitInheritedConstructorNote(S, Fn);
6826      return;
6827    }
6828
6829    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
6830      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
6831      << (unsigned) FnKind << FnDesc
6832      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6833      << FromTy
6834      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
6835      << (unsigned) isObjectArgument << I+1;
6836      MaybeEmitInheritedConstructorNote(S, Fn);
6837      return;
6838    }
6839
6840    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6841    assert(CVR && "unexpected qualifiers mismatch");
6842
6843    if (isObjectArgument) {
6844      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6845        << (unsigned) FnKind << FnDesc
6846        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6847        << FromTy << (CVR - 1);
6848    } else {
6849      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6850        << (unsigned) FnKind << FnDesc
6851        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6852        << FromTy << (CVR - 1) << I+1;
6853    }
6854    MaybeEmitInheritedConstructorNote(S, Fn);
6855    return;
6856  }
6857
6858  // Diagnose references or pointers to incomplete types differently,
6859  // since it's far from impossible that the incompleteness triggered
6860  // the failure.
6861  QualType TempFromTy = FromTy.getNonReferenceType();
6862  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6863    TempFromTy = PTy->getPointeeType();
6864  if (TempFromTy->isIncompleteType()) {
6865    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6866      << (unsigned) FnKind << FnDesc
6867      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6868      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6869    MaybeEmitInheritedConstructorNote(S, Fn);
6870    return;
6871  }
6872
6873  // Diagnose base -> derived pointer conversions.
6874  unsigned BaseToDerivedConversion = 0;
6875  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6876    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6877      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6878                                               FromPtrTy->getPointeeType()) &&
6879          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6880          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6881          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6882                          FromPtrTy->getPointeeType()))
6883        BaseToDerivedConversion = 1;
6884    }
6885  } else if (const ObjCObjectPointerType *FromPtrTy
6886                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6887    if (const ObjCObjectPointerType *ToPtrTy
6888                                        = ToTy->getAs<ObjCObjectPointerType>())
6889      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6890        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6891          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6892                                                FromPtrTy->getPointeeType()) &&
6893              FromIface->isSuperClassOf(ToIface))
6894            BaseToDerivedConversion = 2;
6895  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6896      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6897          !FromTy->isIncompleteType() &&
6898          !ToRefTy->getPointeeType()->isIncompleteType() &&
6899          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6900        BaseToDerivedConversion = 3;
6901    }
6902
6903  if (BaseToDerivedConversion) {
6904    S.Diag(Fn->getLocation(),
6905           diag::note_ovl_candidate_bad_base_to_derived_conv)
6906      << (unsigned) FnKind << FnDesc
6907      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6908      << (BaseToDerivedConversion - 1)
6909      << FromTy << ToTy << I+1;
6910    MaybeEmitInheritedConstructorNote(S, Fn);
6911    return;
6912  }
6913
6914  if (isa<ObjCObjectPointerType>(CFromTy) &&
6915      isa<PointerType>(CToTy)) {
6916      Qualifiers FromQs = CFromTy.getQualifiers();
6917      Qualifiers ToQs = CToTy.getQualifiers();
6918      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
6919        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
6920        << (unsigned) FnKind << FnDesc
6921        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6922        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6923        MaybeEmitInheritedConstructorNote(S, Fn);
6924        return;
6925      }
6926  }
6927
6928  // Emit the generic diagnostic and, optionally, add the hints to it.
6929  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
6930  FDiag << (unsigned) FnKind << FnDesc
6931    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6932    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
6933    << (unsigned) (Cand->Fix.Kind);
6934
6935  // If we can fix the conversion, suggest the FixIts.
6936  for (SmallVector<FixItHint, 1>::iterator
6937      HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end();
6938      HI != HE; ++HI)
6939    FDiag << *HI;
6940  S.Diag(Fn->getLocation(), FDiag);
6941
6942  MaybeEmitInheritedConstructorNote(S, Fn);
6943}
6944
6945void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
6946                           unsigned NumFormalArgs) {
6947  // TODO: treat calls to a missing default constructor as a special case
6948
6949  FunctionDecl *Fn = Cand->Function;
6950  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
6951
6952  unsigned MinParams = Fn->getMinRequiredArguments();
6953
6954  // With invalid overloaded operators, it's possible that we think we
6955  // have an arity mismatch when it fact it looks like we have the
6956  // right number of arguments, because only overloaded operators have
6957  // the weird behavior of overloading member and non-member functions.
6958  // Just don't report anything.
6959  if (Fn->isInvalidDecl() &&
6960      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
6961    return;
6962
6963  // at least / at most / exactly
6964  unsigned mode, modeCount;
6965  if (NumFormalArgs < MinParams) {
6966    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
6967           (Cand->FailureKind == ovl_fail_bad_deduction &&
6968            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
6969    if (MinParams != FnTy->getNumArgs() ||
6970        FnTy->isVariadic() || FnTy->isTemplateVariadic())
6971      mode = 0; // "at least"
6972    else
6973      mode = 2; // "exactly"
6974    modeCount = MinParams;
6975  } else {
6976    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
6977           (Cand->FailureKind == ovl_fail_bad_deduction &&
6978            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
6979    if (MinParams != FnTy->getNumArgs())
6980      mode = 1; // "at most"
6981    else
6982      mode = 2; // "exactly"
6983    modeCount = FnTy->getNumArgs();
6984  }
6985
6986  std::string Description;
6987  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
6988
6989  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
6990    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
6991    << modeCount << NumFormalArgs;
6992  MaybeEmitInheritedConstructorNote(S, Fn);
6993}
6994
6995/// Diagnose a failed template-argument deduction.
6996void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
6997                          Expr **Args, unsigned NumArgs) {
6998  FunctionDecl *Fn = Cand->Function; // pattern
6999
7000  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7001  NamedDecl *ParamD;
7002  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7003  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7004  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7005  switch (Cand->DeductionFailure.Result) {
7006  case Sema::TDK_Success:
7007    llvm_unreachable("TDK_success while diagnosing bad deduction");
7008
7009  case Sema::TDK_Incomplete: {
7010    assert(ParamD && "no parameter found for incomplete deduction result");
7011    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7012      << ParamD->getDeclName();
7013    MaybeEmitInheritedConstructorNote(S, Fn);
7014    return;
7015  }
7016
7017  case Sema::TDK_Underqualified: {
7018    assert(ParamD && "no parameter found for bad qualifiers deduction result");
7019    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7020
7021    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7022
7023    // Param will have been canonicalized, but it should just be a
7024    // qualified version of ParamD, so move the qualifiers to that.
7025    QualifierCollector Qs;
7026    Qs.strip(Param);
7027    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7028    assert(S.Context.hasSameType(Param, NonCanonParam));
7029
7030    // Arg has also been canonicalized, but there's nothing we can do
7031    // about that.  It also doesn't matter as much, because it won't
7032    // have any template parameters in it (because deduction isn't
7033    // done on dependent types).
7034    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7035
7036    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7037      << ParamD->getDeclName() << Arg << NonCanonParam;
7038    MaybeEmitInheritedConstructorNote(S, Fn);
7039    return;
7040  }
7041
7042  case Sema::TDK_Inconsistent: {
7043    assert(ParamD && "no parameter found for inconsistent deduction result");
7044    int which = 0;
7045    if (isa<TemplateTypeParmDecl>(ParamD))
7046      which = 0;
7047    else if (isa<NonTypeTemplateParmDecl>(ParamD))
7048      which = 1;
7049    else {
7050      which = 2;
7051    }
7052
7053    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7054      << which << ParamD->getDeclName()
7055      << *Cand->DeductionFailure.getFirstArg()
7056      << *Cand->DeductionFailure.getSecondArg();
7057    MaybeEmitInheritedConstructorNote(S, Fn);
7058    return;
7059  }
7060
7061  case Sema::TDK_InvalidExplicitArguments:
7062    assert(ParamD && "no parameter found for invalid explicit arguments");
7063    if (ParamD->getDeclName())
7064      S.Diag(Fn->getLocation(),
7065             diag::note_ovl_candidate_explicit_arg_mismatch_named)
7066        << ParamD->getDeclName();
7067    else {
7068      int index = 0;
7069      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7070        index = TTP->getIndex();
7071      else if (NonTypeTemplateParmDecl *NTTP
7072                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7073        index = NTTP->getIndex();
7074      else
7075        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7076      S.Diag(Fn->getLocation(),
7077             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7078        << (index + 1);
7079    }
7080    MaybeEmitInheritedConstructorNote(S, Fn);
7081    return;
7082
7083  case Sema::TDK_TooManyArguments:
7084  case Sema::TDK_TooFewArguments:
7085    DiagnoseArityMismatch(S, Cand, NumArgs);
7086    return;
7087
7088  case Sema::TDK_InstantiationDepth:
7089    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
7090    MaybeEmitInheritedConstructorNote(S, Fn);
7091    return;
7092
7093  case Sema::TDK_SubstitutionFailure: {
7094    std::string ArgString;
7095    if (TemplateArgumentList *Args
7096                            = Cand->DeductionFailure.getTemplateArgumentList())
7097      ArgString = S.getTemplateArgumentBindingsText(
7098                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
7099                                                    *Args);
7100    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
7101      << ArgString;
7102    MaybeEmitInheritedConstructorNote(S, Fn);
7103    return;
7104  }
7105
7106  // TODO: diagnose these individually, then kill off
7107  // note_ovl_candidate_bad_deduction, which is uselessly vague.
7108  case Sema::TDK_NonDeducedMismatch:
7109  case Sema::TDK_FailedOverloadResolution:
7110    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
7111    MaybeEmitInheritedConstructorNote(S, Fn);
7112    return;
7113  }
7114}
7115
7116/// Generates a 'note' diagnostic for an overload candidate.  We've
7117/// already generated a primary error at the call site.
7118///
7119/// It really does need to be a single diagnostic with its caret
7120/// pointed at the candidate declaration.  Yes, this creates some
7121/// major challenges of technical writing.  Yes, this makes pointing
7122/// out problems with specific arguments quite awkward.  It's still
7123/// better than generating twenty screens of text for every failed
7124/// overload.
7125///
7126/// It would be great to be able to express per-candidate problems
7127/// more richly for those diagnostic clients that cared, but we'd
7128/// still have to be just as careful with the default diagnostics.
7129void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
7130                           Expr **Args, unsigned NumArgs) {
7131  FunctionDecl *Fn = Cand->Function;
7132
7133  // Note deleted candidates, but only if they're viable.
7134  if (Cand->Viable && (Fn->isDeleted() ||
7135      S.isFunctionConsideredUnavailable(Fn))) {
7136    std::string FnDesc;
7137    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7138
7139    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
7140      << FnKind << FnDesc << Fn->isDeleted();
7141    MaybeEmitInheritedConstructorNote(S, Fn);
7142    return;
7143  }
7144
7145  // We don't really have anything else to say about viable candidates.
7146  if (Cand->Viable) {
7147    S.NoteOverloadCandidate(Fn);
7148    return;
7149  }
7150
7151  switch (Cand->FailureKind) {
7152  case ovl_fail_too_many_arguments:
7153  case ovl_fail_too_few_arguments:
7154    return DiagnoseArityMismatch(S, Cand, NumArgs);
7155
7156  case ovl_fail_bad_deduction:
7157    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
7158
7159  case ovl_fail_trivial_conversion:
7160  case ovl_fail_bad_final_conversion:
7161  case ovl_fail_final_conversion_not_exact:
7162    return S.NoteOverloadCandidate(Fn);
7163
7164  case ovl_fail_bad_conversion: {
7165    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
7166    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
7167      if (Cand->Conversions[I].isBad())
7168        return DiagnoseBadConversion(S, Cand, I);
7169
7170    // FIXME: this currently happens when we're called from SemaInit
7171    // when user-conversion overload fails.  Figure out how to handle
7172    // those conditions and diagnose them well.
7173    return S.NoteOverloadCandidate(Fn);
7174  }
7175  }
7176}
7177
7178void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
7179  // Desugar the type of the surrogate down to a function type,
7180  // retaining as many typedefs as possible while still showing
7181  // the function type (and, therefore, its parameter types).
7182  QualType FnType = Cand->Surrogate->getConversionType();
7183  bool isLValueReference = false;
7184  bool isRValueReference = false;
7185  bool isPointer = false;
7186  if (const LValueReferenceType *FnTypeRef =
7187        FnType->getAs<LValueReferenceType>()) {
7188    FnType = FnTypeRef->getPointeeType();
7189    isLValueReference = true;
7190  } else if (const RValueReferenceType *FnTypeRef =
7191               FnType->getAs<RValueReferenceType>()) {
7192    FnType = FnTypeRef->getPointeeType();
7193    isRValueReference = true;
7194  }
7195  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
7196    FnType = FnTypePtr->getPointeeType();
7197    isPointer = true;
7198  }
7199  // Desugar down to a function type.
7200  FnType = QualType(FnType->getAs<FunctionType>(), 0);
7201  // Reconstruct the pointer/reference as appropriate.
7202  if (isPointer) FnType = S.Context.getPointerType(FnType);
7203  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
7204  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
7205
7206  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
7207    << FnType;
7208  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
7209}
7210
7211void NoteBuiltinOperatorCandidate(Sema &S,
7212                                  const char *Opc,
7213                                  SourceLocation OpLoc,
7214                                  OverloadCandidate *Cand) {
7215  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
7216  std::string TypeStr("operator");
7217  TypeStr += Opc;
7218  TypeStr += "(";
7219  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
7220  if (Cand->Conversions.size() == 1) {
7221    TypeStr += ")";
7222    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
7223  } else {
7224    TypeStr += ", ";
7225    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
7226    TypeStr += ")";
7227    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
7228  }
7229}
7230
7231void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
7232                                  OverloadCandidate *Cand) {
7233  unsigned NoOperands = Cand->Conversions.size();
7234  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
7235    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
7236    if (ICS.isBad()) break; // all meaningless after first invalid
7237    if (!ICS.isAmbiguous()) continue;
7238
7239    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
7240                              S.PDiag(diag::note_ambiguous_type_conversion));
7241  }
7242}
7243
7244SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
7245  if (Cand->Function)
7246    return Cand->Function->getLocation();
7247  if (Cand->IsSurrogate)
7248    return Cand->Surrogate->getLocation();
7249  return SourceLocation();
7250}
7251
7252struct CompareOverloadCandidatesForDisplay {
7253  Sema &S;
7254  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
7255
7256  bool operator()(const OverloadCandidate *L,
7257                  const OverloadCandidate *R) {
7258    // Fast-path this check.
7259    if (L == R) return false;
7260
7261    // Order first by viability.
7262    if (L->Viable) {
7263      if (!R->Viable) return true;
7264
7265      // TODO: introduce a tri-valued comparison for overload
7266      // candidates.  Would be more worthwhile if we had a sort
7267      // that could exploit it.
7268      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
7269      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
7270    } else if (R->Viable)
7271      return false;
7272
7273    assert(L->Viable == R->Viable);
7274
7275    // Criteria by which we can sort non-viable candidates:
7276    if (!L->Viable) {
7277      // 1. Arity mismatches come after other candidates.
7278      if (L->FailureKind == ovl_fail_too_many_arguments ||
7279          L->FailureKind == ovl_fail_too_few_arguments)
7280        return false;
7281      if (R->FailureKind == ovl_fail_too_many_arguments ||
7282          R->FailureKind == ovl_fail_too_few_arguments)
7283        return true;
7284
7285      // 2. Bad conversions come first and are ordered by the number
7286      // of bad conversions and quality of good conversions.
7287      if (L->FailureKind == ovl_fail_bad_conversion) {
7288        if (R->FailureKind != ovl_fail_bad_conversion)
7289          return true;
7290
7291        // The conversion that can be fixed with a smaller number of changes,
7292        // comes first.
7293        unsigned numLFixes = L->Fix.NumConversionsFixed;
7294        unsigned numRFixes = R->Fix.NumConversionsFixed;
7295        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
7296        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
7297        if (numLFixes != numRFixes) {
7298          if (numLFixes < numRFixes)
7299            return true;
7300          else
7301            return false;
7302        }
7303
7304        // If there's any ordering between the defined conversions...
7305        // FIXME: this might not be transitive.
7306        assert(L->Conversions.size() == R->Conversions.size());
7307
7308        int leftBetter = 0;
7309        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
7310        for (unsigned E = L->Conversions.size(); I != E; ++I) {
7311          switch (CompareImplicitConversionSequences(S,
7312                                                     L->Conversions[I],
7313                                                     R->Conversions[I])) {
7314          case ImplicitConversionSequence::Better:
7315            leftBetter++;
7316            break;
7317
7318          case ImplicitConversionSequence::Worse:
7319            leftBetter--;
7320            break;
7321
7322          case ImplicitConversionSequence::Indistinguishable:
7323            break;
7324          }
7325        }
7326        if (leftBetter > 0) return true;
7327        if (leftBetter < 0) return false;
7328
7329      } else if (R->FailureKind == ovl_fail_bad_conversion)
7330        return false;
7331
7332      // TODO: others?
7333    }
7334
7335    // Sort everything else by location.
7336    SourceLocation LLoc = GetLocationForCandidate(L);
7337    SourceLocation RLoc = GetLocationForCandidate(R);
7338
7339    // Put candidates without locations (e.g. builtins) at the end.
7340    if (LLoc.isInvalid()) return false;
7341    if (RLoc.isInvalid()) return true;
7342
7343    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7344  }
7345};
7346
7347/// CompleteNonViableCandidate - Normally, overload resolution only
7348/// computes up to the first. Produces the FixIt set if possible.
7349void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7350                                Expr **Args, unsigned NumArgs) {
7351  assert(!Cand->Viable);
7352
7353  // Don't do anything on failures other than bad conversion.
7354  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7355
7356  // We only want the FixIts if all the arguments can be corrected.
7357  bool Unfixable = false;
7358  // Use a implicit copy initialization to check conversion fixes.
7359  Cand->Fix.setConversionChecker(TryCopyInitialization);
7360
7361  // Skip forward to the first bad conversion.
7362  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7363  unsigned ConvCount = Cand->Conversions.size();
7364  while (true) {
7365    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7366    ConvIdx++;
7367    if (Cand->Conversions[ConvIdx - 1].isBad()) {
7368      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
7369      break;
7370    }
7371  }
7372
7373  if (ConvIdx == ConvCount)
7374    return;
7375
7376  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7377         "remaining conversion is initialized?");
7378
7379  // FIXME: this should probably be preserved from the overload
7380  // operation somehow.
7381  bool SuppressUserConversions = false;
7382
7383  const FunctionProtoType* Proto;
7384  unsigned ArgIdx = ConvIdx;
7385
7386  if (Cand->IsSurrogate) {
7387    QualType ConvType
7388      = Cand->Surrogate->getConversionType().getNonReferenceType();
7389    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7390      ConvType = ConvPtrType->getPointeeType();
7391    Proto = ConvType->getAs<FunctionProtoType>();
7392    ArgIdx--;
7393  } else if (Cand->Function) {
7394    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7395    if (isa<CXXMethodDecl>(Cand->Function) &&
7396        !isa<CXXConstructorDecl>(Cand->Function))
7397      ArgIdx--;
7398  } else {
7399    // Builtin binary operator with a bad first conversion.
7400    assert(ConvCount <= 3);
7401    for (; ConvIdx != ConvCount; ++ConvIdx)
7402      Cand->Conversions[ConvIdx]
7403        = TryCopyInitialization(S, Args[ConvIdx],
7404                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
7405                                SuppressUserConversions,
7406                                /*InOverloadResolution*/ true,
7407                                /*AllowObjCWritebackConversion=*/
7408                                  S.getLangOptions().ObjCAutoRefCount);
7409    return;
7410  }
7411
7412  // Fill in the rest of the conversions.
7413  unsigned NumArgsInProto = Proto->getNumArgs();
7414  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7415    if (ArgIdx < NumArgsInProto) {
7416      Cand->Conversions[ConvIdx]
7417        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7418                                SuppressUserConversions,
7419                                /*InOverloadResolution=*/true,
7420                                /*AllowObjCWritebackConversion=*/
7421                                  S.getLangOptions().ObjCAutoRefCount);
7422      // Store the FixIt in the candidate if it exists.
7423      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
7424        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
7425    }
7426    else
7427      Cand->Conversions[ConvIdx].setEllipsis();
7428  }
7429}
7430
7431} // end anonymous namespace
7432
7433/// PrintOverloadCandidates - When overload resolution fails, prints
7434/// diagnostic messages containing the candidates in the candidate
7435/// set.
7436void OverloadCandidateSet::NoteCandidates(Sema &S,
7437                                          OverloadCandidateDisplayKind OCD,
7438                                          Expr **Args, unsigned NumArgs,
7439                                          const char *Opc,
7440                                          SourceLocation OpLoc) {
7441  // Sort the candidates by viability and position.  Sorting directly would
7442  // be prohibitive, so we make a set of pointers and sort those.
7443  SmallVector<OverloadCandidate*, 32> Cands;
7444  if (OCD == OCD_AllCandidates) Cands.reserve(size());
7445  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7446    if (Cand->Viable)
7447      Cands.push_back(Cand);
7448    else if (OCD == OCD_AllCandidates) {
7449      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7450      if (Cand->Function || Cand->IsSurrogate)
7451        Cands.push_back(Cand);
7452      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
7453      // want to list every possible builtin candidate.
7454    }
7455  }
7456
7457  std::sort(Cands.begin(), Cands.end(),
7458            CompareOverloadCandidatesForDisplay(S));
7459
7460  bool ReportedAmbiguousConversions = false;
7461
7462  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7463  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
7464  unsigned CandsShown = 0;
7465  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7466    OverloadCandidate *Cand = *I;
7467
7468    // Set an arbitrary limit on the number of candidate functions we'll spam
7469    // the user with.  FIXME: This limit should depend on details of the
7470    // candidate list.
7471    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
7472      break;
7473    }
7474    ++CandsShown;
7475
7476    if (Cand->Function)
7477      NoteFunctionCandidate(S, Cand, Args, NumArgs);
7478    else if (Cand->IsSurrogate)
7479      NoteSurrogateCandidate(S, Cand);
7480    else {
7481      assert(Cand->Viable &&
7482             "Non-viable built-in candidates are not added to Cands.");
7483      // Generally we only see ambiguities including viable builtin
7484      // operators if overload resolution got screwed up by an
7485      // ambiguous user-defined conversion.
7486      //
7487      // FIXME: It's quite possible for different conversions to see
7488      // different ambiguities, though.
7489      if (!ReportedAmbiguousConversions) {
7490        NoteAmbiguousUserConversions(S, OpLoc, Cand);
7491        ReportedAmbiguousConversions = true;
7492      }
7493
7494      // If this is a viable builtin, print it.
7495      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7496    }
7497  }
7498
7499  if (I != E)
7500    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7501}
7502
7503// [PossiblyAFunctionType]  -->   [Return]
7504// NonFunctionType --> NonFunctionType
7505// R (A) --> R(A)
7506// R (*)(A) --> R (A)
7507// R (&)(A) --> R (A)
7508// R (S::*)(A) --> R (A)
7509QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7510  QualType Ret = PossiblyAFunctionType;
7511  if (const PointerType *ToTypePtr =
7512    PossiblyAFunctionType->getAs<PointerType>())
7513    Ret = ToTypePtr->getPointeeType();
7514  else if (const ReferenceType *ToTypeRef =
7515    PossiblyAFunctionType->getAs<ReferenceType>())
7516    Ret = ToTypeRef->getPointeeType();
7517  else if (const MemberPointerType *MemTypePtr =
7518    PossiblyAFunctionType->getAs<MemberPointerType>())
7519    Ret = MemTypePtr->getPointeeType();
7520  Ret =
7521    Context.getCanonicalType(Ret).getUnqualifiedType();
7522  return Ret;
7523}
7524
7525// A helper class to help with address of function resolution
7526// - allows us to avoid passing around all those ugly parameters
7527class AddressOfFunctionResolver
7528{
7529  Sema& S;
7530  Expr* SourceExpr;
7531  const QualType& TargetType;
7532  QualType TargetFunctionType; // Extracted function type from target type
7533
7534  bool Complain;
7535  //DeclAccessPair& ResultFunctionAccessPair;
7536  ASTContext& Context;
7537
7538  bool TargetTypeIsNonStaticMemberFunction;
7539  bool FoundNonTemplateFunction;
7540
7541  OverloadExpr::FindResult OvlExprInfo;
7542  OverloadExpr *OvlExpr;
7543  TemplateArgumentListInfo OvlExplicitTemplateArgs;
7544  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7545
7546public:
7547  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7548                            const QualType& TargetType, bool Complain)
7549    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7550      Complain(Complain), Context(S.getASTContext()),
7551      TargetTypeIsNonStaticMemberFunction(
7552                                    !!TargetType->getAs<MemberPointerType>()),
7553      FoundNonTemplateFunction(false),
7554      OvlExprInfo(OverloadExpr::find(SourceExpr)),
7555      OvlExpr(OvlExprInfo.Expression)
7556  {
7557    ExtractUnqualifiedFunctionTypeFromTargetType();
7558
7559    if (!TargetFunctionType->isFunctionType()) {
7560      if (OvlExpr->hasExplicitTemplateArgs()) {
7561        DeclAccessPair dap;
7562        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7563                                            OvlExpr, false, &dap) ) {
7564
7565          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7566            if (!Method->isStatic()) {
7567              // If the target type is a non-function type and the function
7568              // found is a non-static member function, pretend as if that was
7569              // the target, it's the only possible type to end up with.
7570              TargetTypeIsNonStaticMemberFunction = true;
7571
7572              // And skip adding the function if its not in the proper form.
7573              // We'll diagnose this due to an empty set of functions.
7574              if (!OvlExprInfo.HasFormOfMemberPointer)
7575                return;
7576            }
7577          }
7578
7579          Matches.push_back(std::make_pair(dap,Fn));
7580        }
7581      }
7582      return;
7583    }
7584
7585    if (OvlExpr->hasExplicitTemplateArgs())
7586      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7587
7588    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7589      // C++ [over.over]p4:
7590      //   If more than one function is selected, [...]
7591      if (Matches.size() > 1) {
7592        if (FoundNonTemplateFunction)
7593          EliminateAllTemplateMatches();
7594        else
7595          EliminateAllExceptMostSpecializedTemplate();
7596      }
7597    }
7598  }
7599
7600private:
7601  bool isTargetTypeAFunction() const {
7602    return TargetFunctionType->isFunctionType();
7603  }
7604
7605  // [ToType]     [Return]
7606
7607  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7608  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7609  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
7610  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7611    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7612  }
7613
7614  // return true if any matching specializations were found
7615  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
7616                                   const DeclAccessPair& CurAccessFunPair) {
7617    if (CXXMethodDecl *Method
7618              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
7619      // Skip non-static function templates when converting to pointer, and
7620      // static when converting to member pointer.
7621      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7622        return false;
7623    }
7624    else if (TargetTypeIsNonStaticMemberFunction)
7625      return false;
7626
7627    // C++ [over.over]p2:
7628    //   If the name is a function template, template argument deduction is
7629    //   done (14.8.2.2), and if the argument deduction succeeds, the
7630    //   resulting template argument list is used to generate a single
7631    //   function template specialization, which is added to the set of
7632    //   overloaded functions considered.
7633    FunctionDecl *Specialization = 0;
7634    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7635    if (Sema::TemplateDeductionResult Result
7636          = S.DeduceTemplateArguments(FunctionTemplate,
7637                                      &OvlExplicitTemplateArgs,
7638                                      TargetFunctionType, Specialization,
7639                                      Info)) {
7640      // FIXME: make a note of the failed deduction for diagnostics.
7641      (void)Result;
7642      return false;
7643    }
7644
7645    // Template argument deduction ensures that we have an exact match.
7646    // This function template specicalization works.
7647    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
7648    assert(TargetFunctionType
7649                      == Context.getCanonicalType(Specialization->getType()));
7650    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
7651    return true;
7652  }
7653
7654  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
7655                                      const DeclAccessPair& CurAccessFunPair) {
7656    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7657      // Skip non-static functions when converting to pointer, and static
7658      // when converting to member pointer.
7659      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
7660        return false;
7661    }
7662    else if (TargetTypeIsNonStaticMemberFunction)
7663      return false;
7664
7665    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
7666      QualType ResultTy;
7667      if (Context.hasSameUnqualifiedType(TargetFunctionType,
7668                                         FunDecl->getType()) ||
7669          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
7670                                 ResultTy)) {
7671        Matches.push_back(std::make_pair(CurAccessFunPair,
7672          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7673        FoundNonTemplateFunction = true;
7674        return true;
7675      }
7676    }
7677
7678    return false;
7679  }
7680
7681  bool FindAllFunctionsThatMatchTargetTypeExactly() {
7682    bool Ret = false;
7683
7684    // If the overload expression doesn't have the form of a pointer to
7685    // member, don't try to convert it to a pointer-to-member type.
7686    if (IsInvalidFormOfPointerToMemberFunction())
7687      return false;
7688
7689    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7690                               E = OvlExpr->decls_end();
7691         I != E; ++I) {
7692      // Look through any using declarations to find the underlying function.
7693      NamedDecl *Fn = (*I)->getUnderlyingDecl();
7694
7695      // C++ [over.over]p3:
7696      //   Non-member functions and static member functions match
7697      //   targets of type "pointer-to-function" or "reference-to-function."
7698      //   Nonstatic member functions match targets of
7699      //   type "pointer-to-member-function."
7700      // Note that according to DR 247, the containing class does not matter.
7701      if (FunctionTemplateDecl *FunctionTemplate
7702                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
7703        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
7704          Ret = true;
7705      }
7706      // If we have explicit template arguments supplied, skip non-templates.
7707      else if (!OvlExpr->hasExplicitTemplateArgs() &&
7708               AddMatchingNonTemplateFunction(Fn, I.getPair()))
7709        Ret = true;
7710    }
7711    assert(Ret || Matches.empty());
7712    return Ret;
7713  }
7714
7715  void EliminateAllExceptMostSpecializedTemplate() {
7716    //   [...] and any given function template specialization F1 is
7717    //   eliminated if the set contains a second function template
7718    //   specialization whose function template is more specialized
7719    //   than the function template of F1 according to the partial
7720    //   ordering rules of 14.5.5.2.
7721
7722    // The algorithm specified above is quadratic. We instead use a
7723    // two-pass algorithm (similar to the one used to identify the
7724    // best viable function in an overload set) that identifies the
7725    // best function template (if it exists).
7726
7727    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7728    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7729      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7730
7731    UnresolvedSetIterator Result =
7732      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7733                           TPOC_Other, 0, SourceExpr->getLocStart(),
7734                           S.PDiag(),
7735                           S.PDiag(diag::err_addr_ovl_ambiguous)
7736                             << Matches[0].second->getDeclName(),
7737                           S.PDiag(diag::note_ovl_candidate)
7738                             << (unsigned) oc_function_template,
7739                           Complain);
7740
7741    if (Result != MatchesCopy.end()) {
7742      // Make it the first and only element
7743      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
7744      Matches[0].second = cast<FunctionDecl>(*Result);
7745      Matches.resize(1);
7746    }
7747  }
7748
7749  void EliminateAllTemplateMatches() {
7750    //   [...] any function template specializations in the set are
7751    //   eliminated if the set also contains a non-template function, [...]
7752    for (unsigned I = 0, N = Matches.size(); I != N; ) {
7753      if (Matches[I].second->getPrimaryTemplate() == 0)
7754        ++I;
7755      else {
7756        Matches[I] = Matches[--N];
7757        Matches.set_size(N);
7758      }
7759    }
7760  }
7761
7762public:
7763  void ComplainNoMatchesFound() const {
7764    assert(Matches.empty());
7765    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
7766        << OvlExpr->getName() << TargetFunctionType
7767        << OvlExpr->getSourceRange();
7768    S.NoteAllOverloadCandidates(OvlExpr);
7769  }
7770
7771  bool IsInvalidFormOfPointerToMemberFunction() const {
7772    return TargetTypeIsNonStaticMemberFunction &&
7773      !OvlExprInfo.HasFormOfMemberPointer;
7774  }
7775
7776  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
7777      // TODO: Should we condition this on whether any functions might
7778      // have matched, or is it more appropriate to do that in callers?
7779      // TODO: a fixit wouldn't hurt.
7780      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
7781        << TargetType << OvlExpr->getSourceRange();
7782  }
7783
7784  void ComplainOfInvalidConversion() const {
7785    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
7786      << OvlExpr->getName() << TargetType;
7787  }
7788
7789  void ComplainMultipleMatchesFound() const {
7790    assert(Matches.size() > 1);
7791    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
7792      << OvlExpr->getName()
7793      << OvlExpr->getSourceRange();
7794    S.NoteAllOverloadCandidates(OvlExpr);
7795  }
7796
7797  int getNumMatches() const { return Matches.size(); }
7798
7799  FunctionDecl* getMatchingFunctionDecl() const {
7800    if (Matches.size() != 1) return 0;
7801    return Matches[0].second;
7802  }
7803
7804  const DeclAccessPair* getMatchingFunctionAccessPair() const {
7805    if (Matches.size() != 1) return 0;
7806    return &Matches[0].first;
7807  }
7808};
7809
7810/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
7811/// an overloaded function (C++ [over.over]), where @p From is an
7812/// expression with overloaded function type and @p ToType is the type
7813/// we're trying to resolve to. For example:
7814///
7815/// @code
7816/// int f(double);
7817/// int f(int);
7818///
7819/// int (*pfd)(double) = f; // selects f(double)
7820/// @endcode
7821///
7822/// This routine returns the resulting FunctionDecl if it could be
7823/// resolved, and NULL otherwise. When @p Complain is true, this
7824/// routine will emit diagnostics if there is an error.
7825FunctionDecl *
7826Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
7827                                    bool Complain,
7828                                    DeclAccessPair &FoundResult) {
7829
7830  assert(AddressOfExpr->getType() == Context.OverloadTy);
7831
7832  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
7833  int NumMatches = Resolver.getNumMatches();
7834  FunctionDecl* Fn = 0;
7835  if ( NumMatches == 0 && Complain) {
7836    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
7837      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
7838    else
7839      Resolver.ComplainNoMatchesFound();
7840  }
7841  else if (NumMatches > 1 && Complain)
7842    Resolver.ComplainMultipleMatchesFound();
7843  else if (NumMatches == 1) {
7844    Fn = Resolver.getMatchingFunctionDecl();
7845    assert(Fn);
7846    FoundResult = *Resolver.getMatchingFunctionAccessPair();
7847    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
7848    if (Complain)
7849      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
7850  }
7851
7852  return Fn;
7853}
7854
7855/// \brief Given an expression that refers to an overloaded function, try to
7856/// resolve that overloaded function expression down to a single function.
7857///
7858/// This routine can only resolve template-ids that refer to a single function
7859/// template, where that template-id refers to a single template whose template
7860/// arguments are either provided by the template-id or have defaults,
7861/// as described in C++0x [temp.arg.explicit]p3.
7862FunctionDecl *
7863Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
7864                                                  bool Complain,
7865                                                  DeclAccessPair *FoundResult) {
7866  // C++ [over.over]p1:
7867  //   [...] [Note: any redundant set of parentheses surrounding the
7868  //   overloaded function name is ignored (5.1). ]
7869  // C++ [over.over]p1:
7870  //   [...] The overloaded function name can be preceded by the &
7871  //   operator.
7872
7873  // If we didn't actually find any template-ids, we're done.
7874  if (!ovl->hasExplicitTemplateArgs())
7875    return 0;
7876
7877  TemplateArgumentListInfo ExplicitTemplateArgs;
7878  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7879
7880  // Look through all of the overloaded functions, searching for one
7881  // whose type matches exactly.
7882  FunctionDecl *Matched = 0;
7883  for (UnresolvedSetIterator I = ovl->decls_begin(),
7884         E = ovl->decls_end(); I != E; ++I) {
7885    // C++0x [temp.arg.explicit]p3:
7886    //   [...] In contexts where deduction is done and fails, or in contexts
7887    //   where deduction is not done, if a template argument list is
7888    //   specified and it, along with any default template arguments,
7889    //   identifies a single function template specialization, then the
7890    //   template-id is an lvalue for the function template specialization.
7891    FunctionTemplateDecl *FunctionTemplate
7892      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7893
7894    // C++ [over.over]p2:
7895    //   If the name is a function template, template argument deduction is
7896    //   done (14.8.2.2), and if the argument deduction succeeds, the
7897    //   resulting template argument list is used to generate a single
7898    //   function template specialization, which is added to the set of
7899    //   overloaded functions considered.
7900    FunctionDecl *Specialization = 0;
7901    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
7902    if (TemplateDeductionResult Result
7903          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7904                                    Specialization, Info)) {
7905      // FIXME: make a note of the failed deduction for diagnostics.
7906      (void)Result;
7907      continue;
7908    }
7909
7910    assert(Specialization && "no specialization and no error?");
7911
7912    // Multiple matches; we can't resolve to a single declaration.
7913    if (Matched) {
7914      if (Complain) {
7915        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
7916          << ovl->getName();
7917        NoteAllOverloadCandidates(ovl);
7918      }
7919      return 0;
7920    }
7921
7922    Matched = Specialization;
7923    if (FoundResult) *FoundResult = I.getPair();
7924  }
7925
7926  return Matched;
7927}
7928
7929
7930
7931
7932// Resolve and fix an overloaded expression that
7933// can be resolved because it identifies a single function
7934// template specialization
7935// Last three arguments should only be supplied if Complain = true
7936ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
7937             Expr *SrcExpr, bool doFunctionPointerConverion, bool complain,
7938                                  const SourceRange& OpRangeForComplaining,
7939                                           QualType DestTypeForComplaining,
7940                                            unsigned DiagIDForComplaining) {
7941  assert(SrcExpr->getType() == Context.OverloadTy);
7942
7943  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr);
7944
7945  DeclAccessPair found;
7946  ExprResult SingleFunctionExpression;
7947  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
7948                           ovl.Expression, /*complain*/ false, &found)) {
7949    if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin()))
7950      return ExprError();
7951
7952    // It is only correct to resolve to an instance method if we're
7953    // resolving a form that's permitted to be a pointer to member.
7954    // Otherwise we'll end up making a bound member expression, which
7955    // is illegal in all the contexts we resolve like this.
7956    if (!ovl.HasFormOfMemberPointer &&
7957        isa<CXXMethodDecl>(fn) &&
7958        cast<CXXMethodDecl>(fn)->isInstance()) {
7959      if (complain) {
7960        Diag(ovl.Expression->getExprLoc(),
7961             diag::err_invalid_use_of_bound_member_func)
7962          << ovl.Expression->getSourceRange();
7963        // TODO: I believe we only end up here if there's a mix of
7964        // static and non-static candidates (otherwise the expression
7965        // would have 'bound member' type, not 'overload' type).
7966        // Ideally we would note which candidate was chosen and why
7967        // the static candidates were rejected.
7968      }
7969
7970      return ExprError();
7971    }
7972
7973    // Fix the expresion to refer to 'fn'.
7974    SingleFunctionExpression =
7975      Owned(FixOverloadedFunctionReference(SrcExpr, found, fn));
7976
7977    // If desired, do function-to-pointer decay.
7978    if (doFunctionPointerConverion)
7979      SingleFunctionExpression =
7980        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
7981  }
7982
7983  if (!SingleFunctionExpression.isUsable()) {
7984    if (complain) {
7985      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
7986        << ovl.Expression->getName()
7987        << DestTypeForComplaining
7988        << OpRangeForComplaining
7989        << ovl.Expression->getQualifierLoc().getSourceRange();
7990      NoteAllOverloadCandidates(SrcExpr);
7991    }
7992    return ExprError();
7993  }
7994
7995  return SingleFunctionExpression;
7996}
7997
7998/// \brief Add a single candidate to the overload set.
7999static void AddOverloadedCallCandidate(Sema &S,
8000                                       DeclAccessPair FoundDecl,
8001                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
8002                                       Expr **Args, unsigned NumArgs,
8003                                       OverloadCandidateSet &CandidateSet,
8004                                       bool PartialOverloading,
8005                                       bool KnownValid) {
8006  NamedDecl *Callee = FoundDecl.getDecl();
8007  if (isa<UsingShadowDecl>(Callee))
8008    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
8009
8010  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
8011    if (ExplicitTemplateArgs) {
8012      assert(!KnownValid && "Explicit template arguments?");
8013      return;
8014    }
8015    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
8016                           false, PartialOverloading);
8017    return;
8018  }
8019
8020  if (FunctionTemplateDecl *FuncTemplate
8021      = dyn_cast<FunctionTemplateDecl>(Callee)) {
8022    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
8023                                   ExplicitTemplateArgs,
8024                                   Args, NumArgs, CandidateSet);
8025    return;
8026  }
8027
8028  assert(!KnownValid && "unhandled case in overloaded call candidate");
8029}
8030
8031/// \brief Add the overload candidates named by callee and/or found by argument
8032/// dependent lookup to the given overload set.
8033void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
8034                                       Expr **Args, unsigned NumArgs,
8035                                       OverloadCandidateSet &CandidateSet,
8036                                       bool PartialOverloading) {
8037
8038#ifndef NDEBUG
8039  // Verify that ArgumentDependentLookup is consistent with the rules
8040  // in C++0x [basic.lookup.argdep]p3:
8041  //
8042  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
8043  //   and let Y be the lookup set produced by argument dependent
8044  //   lookup (defined as follows). If X contains
8045  //
8046  //     -- a declaration of a class member, or
8047  //
8048  //     -- a block-scope function declaration that is not a
8049  //        using-declaration, or
8050  //
8051  //     -- a declaration that is neither a function or a function
8052  //        template
8053  //
8054  //   then Y is empty.
8055
8056  if (ULE->requiresADL()) {
8057    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8058           E = ULE->decls_end(); I != E; ++I) {
8059      assert(!(*I)->getDeclContext()->isRecord());
8060      assert(isa<UsingShadowDecl>(*I) ||
8061             !(*I)->getDeclContext()->isFunctionOrMethod());
8062      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
8063    }
8064  }
8065#endif
8066
8067  // It would be nice to avoid this copy.
8068  TemplateArgumentListInfo TABuffer;
8069  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8070  if (ULE->hasExplicitTemplateArgs()) {
8071    ULE->copyTemplateArgumentsInto(TABuffer);
8072    ExplicitTemplateArgs = &TABuffer;
8073  }
8074
8075  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8076         E = ULE->decls_end(); I != E; ++I)
8077    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
8078                               Args, NumArgs, CandidateSet,
8079                               PartialOverloading, /*KnownValid*/ true);
8080
8081  if (ULE->requiresADL())
8082    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
8083                                         Args, NumArgs,
8084                                         ExplicitTemplateArgs,
8085                                         CandidateSet,
8086                                         PartialOverloading,
8087                                         ULE->isStdAssociatedNamespace());
8088}
8089
8090/// Attempt to recover from an ill-formed use of a non-dependent name in a
8091/// template, where the non-dependent name was declared after the template
8092/// was defined. This is common in code written for a compilers which do not
8093/// correctly implement two-stage name lookup.
8094///
8095/// Returns true if a viable candidate was found and a diagnostic was issued.
8096static bool
8097DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
8098                       const CXXScopeSpec &SS, LookupResult &R,
8099                       TemplateArgumentListInfo *ExplicitTemplateArgs,
8100                       Expr **Args, unsigned NumArgs) {
8101  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
8102    return false;
8103
8104  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
8105    SemaRef.LookupQualifiedName(R, DC);
8106
8107    if (!R.empty()) {
8108      R.suppressDiagnostics();
8109
8110      if (isa<CXXRecordDecl>(DC)) {
8111        // Don't diagnose names we find in classes; we get much better
8112        // diagnostics for these from DiagnoseEmptyLookup.
8113        R.clear();
8114        return false;
8115      }
8116
8117      OverloadCandidateSet Candidates(FnLoc);
8118      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8119        AddOverloadedCallCandidate(SemaRef, I.getPair(),
8120                                   ExplicitTemplateArgs, Args, NumArgs,
8121                                   Candidates, false, /*KnownValid*/ false);
8122
8123      OverloadCandidateSet::iterator Best;
8124      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
8125        // No viable functions. Don't bother the user with notes for functions
8126        // which don't work and shouldn't be found anyway.
8127        R.clear();
8128        return false;
8129      }
8130
8131      // Find the namespaces where ADL would have looked, and suggest
8132      // declaring the function there instead.
8133      Sema::AssociatedNamespaceSet AssociatedNamespaces;
8134      Sema::AssociatedClassSet AssociatedClasses;
8135      SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
8136                                                 AssociatedNamespaces,
8137                                                 AssociatedClasses);
8138      // Never suggest declaring a function within namespace 'std'.
8139      Sema::AssociatedNamespaceSet SuggestedNamespaces;
8140      if (DeclContext *Std = SemaRef.getStdNamespace()) {
8141        for (Sema::AssociatedNamespaceSet::iterator
8142               it = AssociatedNamespaces.begin(),
8143               end = AssociatedNamespaces.end(); it != end; ++it) {
8144          if (!Std->Encloses(*it))
8145            SuggestedNamespaces.insert(*it);
8146        }
8147      } else {
8148        // Lacking the 'std::' namespace, use all of the associated namespaces.
8149        SuggestedNamespaces = AssociatedNamespaces;
8150      }
8151
8152      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
8153        << R.getLookupName();
8154      if (SuggestedNamespaces.empty()) {
8155        SemaRef.Diag(Best->Function->getLocation(),
8156                     diag::note_not_found_by_two_phase_lookup)
8157          << R.getLookupName() << 0;
8158      } else if (SuggestedNamespaces.size() == 1) {
8159        SemaRef.Diag(Best->Function->getLocation(),
8160                     diag::note_not_found_by_two_phase_lookup)
8161          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
8162      } else {
8163        // FIXME: It would be useful to list the associated namespaces here,
8164        // but the diagnostics infrastructure doesn't provide a way to produce
8165        // a localized representation of a list of items.
8166        SemaRef.Diag(Best->Function->getLocation(),
8167                     diag::note_not_found_by_two_phase_lookup)
8168          << R.getLookupName() << 2;
8169      }
8170
8171      // Try to recover by calling this function.
8172      return true;
8173    }
8174
8175    R.clear();
8176  }
8177
8178  return false;
8179}
8180
8181/// Attempt to recover from ill-formed use of a non-dependent operator in a
8182/// template, where the non-dependent operator was declared after the template
8183/// was defined.
8184///
8185/// Returns true if a viable candidate was found and a diagnostic was issued.
8186static bool
8187DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
8188                               SourceLocation OpLoc,
8189                               Expr **Args, unsigned NumArgs) {
8190  DeclarationName OpName =
8191    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
8192  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
8193  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
8194                                /*ExplicitTemplateArgs=*/0, Args, NumArgs);
8195}
8196
8197/// Attempts to recover from a call where no functions were found.
8198///
8199/// Returns true if new candidates were found.
8200static ExprResult
8201BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
8202                      UnresolvedLookupExpr *ULE,
8203                      SourceLocation LParenLoc,
8204                      Expr **Args, unsigned NumArgs,
8205                      SourceLocation RParenLoc,
8206                      bool EmptyLookup) {
8207
8208  CXXScopeSpec SS;
8209  SS.Adopt(ULE->getQualifierLoc());
8210
8211  TemplateArgumentListInfo TABuffer;
8212  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8213  if (ULE->hasExplicitTemplateArgs()) {
8214    ULE->copyTemplateArgumentsInto(TABuffer);
8215    ExplicitTemplateArgs = &TABuffer;
8216  }
8217
8218  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
8219                 Sema::LookupOrdinaryName);
8220  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
8221                              ExplicitTemplateArgs, Args, NumArgs) &&
8222      (!EmptyLookup ||
8223       SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression,
8224                                   ExplicitTemplateArgs, Args, NumArgs)))
8225    return ExprError();
8226
8227  assert(!R.empty() && "lookup results empty despite recovery");
8228
8229  // Build an implicit member call if appropriate.  Just drop the
8230  // casts and such from the call, we don't really care.
8231  ExprResult NewFn = ExprError();
8232  if ((*R.begin())->isCXXClassMember())
8233    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
8234                                                    ExplicitTemplateArgs);
8235  else if (ExplicitTemplateArgs)
8236    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
8237  else
8238    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
8239
8240  if (NewFn.isInvalid())
8241    return ExprError();
8242
8243  // This shouldn't cause an infinite loop because we're giving it
8244  // an expression with viable lookup results, which should never
8245  // end up here.
8246  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
8247                               MultiExprArg(Args, NumArgs), RParenLoc);
8248}
8249
8250/// ResolveOverloadedCallFn - Given the call expression that calls Fn
8251/// (which eventually refers to the declaration Func) and the call
8252/// arguments Args/NumArgs, attempt to resolve the function call down
8253/// to a specific function. If overload resolution succeeds, returns
8254/// the function declaration produced by overload
8255/// resolution. Otherwise, emits diagnostics, deletes all of the
8256/// arguments and Fn, and returns NULL.
8257ExprResult
8258Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
8259                              SourceLocation LParenLoc,
8260                              Expr **Args, unsigned NumArgs,
8261                              SourceLocation RParenLoc,
8262                              Expr *ExecConfig) {
8263#ifndef NDEBUG
8264  if (ULE->requiresADL()) {
8265    // To do ADL, we must have found an unqualified name.
8266    assert(!ULE->getQualifier() && "qualified name with ADL");
8267
8268    // We don't perform ADL for implicit declarations of builtins.
8269    // Verify that this was correctly set up.
8270    FunctionDecl *F;
8271    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
8272        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
8273        F->getBuiltinID() && F->isImplicit())
8274      assert(0 && "performing ADL for builtin");
8275
8276    // We don't perform ADL in C.
8277    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
8278  } else
8279    assert(!ULE->isStdAssociatedNamespace() &&
8280           "std is associated namespace but not doing ADL");
8281#endif
8282
8283  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
8284
8285  // Add the functions denoted by the callee to the set of candidate
8286  // functions, including those from argument-dependent lookup.
8287  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
8288
8289  // If we found nothing, try to recover.
8290  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
8291  // out if it fails.
8292  if (CandidateSet.empty())
8293    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
8294                                 RParenLoc, /*EmptyLookup=*/true);
8295
8296  OverloadCandidateSet::iterator Best;
8297  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
8298  case OR_Success: {
8299    FunctionDecl *FDecl = Best->Function;
8300    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
8301    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
8302    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
8303                      ULE->getNameLoc());
8304    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
8305    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
8306                                 ExecConfig);
8307  }
8308
8309  case OR_No_Viable_Function: {
8310    // Try to recover by looking for viable functions which the user might
8311    // have meant to call.
8312    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
8313                                                Args, NumArgs, RParenLoc,
8314                                                /*EmptyLookup=*/false);
8315    if (!Recovery.isInvalid())
8316      return Recovery;
8317
8318    Diag(Fn->getSourceRange().getBegin(),
8319         diag::err_ovl_no_viable_function_in_call)
8320      << ULE->getName() << Fn->getSourceRange();
8321    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8322    break;
8323  }
8324
8325  case OR_Ambiguous:
8326    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
8327      << ULE->getName() << Fn->getSourceRange();
8328    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8329    break;
8330
8331  case OR_Deleted:
8332    {
8333      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
8334        << Best->Function->isDeleted()
8335        << ULE->getName()
8336        << getDeletedOrUnavailableSuffix(Best->Function)
8337        << Fn->getSourceRange();
8338      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8339    }
8340    break;
8341  }
8342
8343  // Overload resolution failed.
8344  return ExprError();
8345}
8346
8347static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
8348  return Functions.size() > 1 ||
8349    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
8350}
8351
8352/// \brief Create a unary operation that may resolve to an overloaded
8353/// operator.
8354///
8355/// \param OpLoc The location of the operator itself (e.g., '*').
8356///
8357/// \param OpcIn The UnaryOperator::Opcode that describes this
8358/// operator.
8359///
8360/// \param Functions The set of non-member functions that will be
8361/// considered by overload resolution. The caller needs to build this
8362/// set based on the context using, e.g.,
8363/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8364/// set should not contain any member functions; those will be added
8365/// by CreateOverloadedUnaryOp().
8366///
8367/// \param input The input argument.
8368ExprResult
8369Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
8370                              const UnresolvedSetImpl &Fns,
8371                              Expr *Input) {
8372  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
8373
8374  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
8375  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
8376  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8377  // TODO: provide better source location info.
8378  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8379
8380  if (Input->getObjectKind() == OK_ObjCProperty) {
8381    ExprResult Result = ConvertPropertyForRValue(Input);
8382    if (Result.isInvalid())
8383      return ExprError();
8384    Input = Result.take();
8385  }
8386
8387  Expr *Args[2] = { Input, 0 };
8388  unsigned NumArgs = 1;
8389
8390  // For post-increment and post-decrement, add the implicit '0' as
8391  // the second argument, so that we know this is a post-increment or
8392  // post-decrement.
8393  if (Opc == UO_PostInc || Opc == UO_PostDec) {
8394    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
8395    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
8396                                     SourceLocation());
8397    NumArgs = 2;
8398  }
8399
8400  if (Input->isTypeDependent()) {
8401    if (Fns.empty())
8402      return Owned(new (Context) UnaryOperator(Input,
8403                                               Opc,
8404                                               Context.DependentTy,
8405                                               VK_RValue, OK_Ordinary,
8406                                               OpLoc));
8407
8408    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8409    UnresolvedLookupExpr *Fn
8410      = UnresolvedLookupExpr::Create(Context, NamingClass,
8411                                     NestedNameSpecifierLoc(), OpNameInfo,
8412                                     /*ADL*/ true, IsOverloaded(Fns),
8413                                     Fns.begin(), Fns.end());
8414    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8415                                                  &Args[0], NumArgs,
8416                                                   Context.DependentTy,
8417                                                   VK_RValue,
8418                                                   OpLoc));
8419  }
8420
8421  // Build an empty overload set.
8422  OverloadCandidateSet CandidateSet(OpLoc);
8423
8424  // Add the candidates from the given function set.
8425  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
8426
8427  // Add operator candidates that are member functions.
8428  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8429
8430  // Add candidates from ADL.
8431  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8432                                       Args, NumArgs,
8433                                       /*ExplicitTemplateArgs*/ 0,
8434                                       CandidateSet);
8435
8436  // Add builtin operator candidates.
8437  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8438
8439  // Perform overload resolution.
8440  OverloadCandidateSet::iterator Best;
8441  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8442  case OR_Success: {
8443    // We found a built-in operator or an overloaded operator.
8444    FunctionDecl *FnDecl = Best->Function;
8445
8446    if (FnDecl) {
8447      // We matched an overloaded operator. Build a call to that
8448      // operator.
8449
8450      MarkDeclarationReferenced(OpLoc, FnDecl);
8451
8452      // Convert the arguments.
8453      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8454        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
8455
8456        ExprResult InputRes =
8457          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
8458                                              Best->FoundDecl, Method);
8459        if (InputRes.isInvalid())
8460          return ExprError();
8461        Input = InputRes.take();
8462      } else {
8463        // Convert the arguments.
8464        ExprResult InputInit
8465          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8466                                                      Context,
8467                                                      FnDecl->getParamDecl(0)),
8468                                      SourceLocation(),
8469                                      Input);
8470        if (InputInit.isInvalid())
8471          return ExprError();
8472        Input = InputInit.take();
8473      }
8474
8475      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8476
8477      // Determine the result type.
8478      QualType ResultTy = FnDecl->getResultType();
8479      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8480      ResultTy = ResultTy.getNonLValueExprType(Context);
8481
8482      // Build the actual expression node.
8483      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl);
8484      if (FnExpr.isInvalid())
8485        return ExprError();
8486
8487      Args[0] = Input;
8488      CallExpr *TheCall =
8489        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8490                                          Args, NumArgs, ResultTy, VK, OpLoc);
8491
8492      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8493                              FnDecl))
8494        return ExprError();
8495
8496      return MaybeBindToTemporary(TheCall);
8497    } else {
8498      // We matched a built-in operator. Convert the arguments, then
8499      // break out so that we will build the appropriate built-in
8500      // operator node.
8501      ExprResult InputRes =
8502        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8503                                  Best->Conversions[0], AA_Passing);
8504      if (InputRes.isInvalid())
8505        return ExprError();
8506      Input = InputRes.take();
8507      break;
8508    }
8509  }
8510
8511  case OR_No_Viable_Function:
8512    // This is an erroneous use of an operator which can be overloaded by
8513    // a non-member function. Check for non-member operators which were
8514    // defined too late to be candidates.
8515    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
8516      // FIXME: Recover by calling the found function.
8517      return ExprError();
8518
8519    // No viable function; fall through to handling this as a
8520    // built-in operator, which will produce an error message for us.
8521    break;
8522
8523  case OR_Ambiguous:
8524    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8525        << UnaryOperator::getOpcodeStr(Opc)
8526        << Input->getType()
8527        << Input->getSourceRange();
8528    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
8529                                Args, NumArgs,
8530                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8531    return ExprError();
8532
8533  case OR_Deleted:
8534    Diag(OpLoc, diag::err_ovl_deleted_oper)
8535      << Best->Function->isDeleted()
8536      << UnaryOperator::getOpcodeStr(Opc)
8537      << getDeletedOrUnavailableSuffix(Best->Function)
8538      << Input->getSourceRange();
8539    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8540    return ExprError();
8541  }
8542
8543  // Either we found no viable overloaded operator or we matched a
8544  // built-in operator. In either case, fall through to trying to
8545  // build a built-in operation.
8546  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8547}
8548
8549/// \brief Create a binary operation that may resolve to an overloaded
8550/// operator.
8551///
8552/// \param OpLoc The location of the operator itself (e.g., '+').
8553///
8554/// \param OpcIn The BinaryOperator::Opcode that describes this
8555/// operator.
8556///
8557/// \param Functions The set of non-member functions that will be
8558/// considered by overload resolution. The caller needs to build this
8559/// set based on the context using, e.g.,
8560/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8561/// set should not contain any member functions; those will be added
8562/// by CreateOverloadedBinOp().
8563///
8564/// \param LHS Left-hand argument.
8565/// \param RHS Right-hand argument.
8566ExprResult
8567Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8568                            unsigned OpcIn,
8569                            const UnresolvedSetImpl &Fns,
8570                            Expr *LHS, Expr *RHS) {
8571  Expr *Args[2] = { LHS, RHS };
8572  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
8573
8574  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
8575  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
8576  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8577
8578  // If either side is type-dependent, create an appropriate dependent
8579  // expression.
8580  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8581    if (Fns.empty()) {
8582      // If there are no functions to store, just build a dependent
8583      // BinaryOperator or CompoundAssignment.
8584      if (Opc <= BO_Assign || Opc > BO_OrAssign)
8585        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
8586                                                  Context.DependentTy,
8587                                                  VK_RValue, OK_Ordinary,
8588                                                  OpLoc));
8589
8590      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
8591                                                        Context.DependentTy,
8592                                                        VK_LValue,
8593                                                        OK_Ordinary,
8594                                                        Context.DependentTy,
8595                                                        Context.DependentTy,
8596                                                        OpLoc));
8597    }
8598
8599    // FIXME: save results of ADL from here?
8600    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8601    // TODO: provide better source location info in DNLoc component.
8602    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8603    UnresolvedLookupExpr *Fn
8604      = UnresolvedLookupExpr::Create(Context, NamingClass,
8605                                     NestedNameSpecifierLoc(), OpNameInfo,
8606                                     /*ADL*/ true, IsOverloaded(Fns),
8607                                     Fns.begin(), Fns.end());
8608    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8609                                                   Args, 2,
8610                                                   Context.DependentTy,
8611                                                   VK_RValue,
8612                                                   OpLoc));
8613  }
8614
8615  // Always do property rvalue conversions on the RHS.
8616  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8617    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8618    if (Result.isInvalid())
8619      return ExprError();
8620    Args[1] = Result.take();
8621  }
8622
8623  // The LHS is more complicated.
8624  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8625
8626    // There's a tension for assignment operators between primitive
8627    // property assignment and the overloaded operators.
8628    if (BinaryOperator::isAssignmentOp(Opc)) {
8629      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
8630
8631      // Is the property "logically" settable?
8632      bool Settable = (PRE->isExplicitProperty() ||
8633                       PRE->getImplicitPropertySetter());
8634
8635      // To avoid gratuitously inventing semantics, use the primitive
8636      // unless it isn't.  Thoughts in case we ever really care:
8637      // - If the property isn't logically settable, we have to
8638      //   load and hope.
8639      // - If the property is settable and this is simple assignment,
8640      //   we really should use the primitive.
8641      // - If the property is settable, then we could try overloading
8642      //   on a generic lvalue of the appropriate type;  if it works
8643      //   out to a builtin candidate, we would do that same operation
8644      //   on the property, and otherwise just error.
8645      if (Settable)
8646        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8647    }
8648
8649    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8650    if (Result.isInvalid())
8651      return ExprError();
8652    Args[0] = Result.take();
8653  }
8654
8655  // If this is the assignment operator, we only perform overload resolution
8656  // if the left-hand side is a class or enumeration type. This is actually
8657  // a hack. The standard requires that we do overload resolution between the
8658  // various built-in candidates, but as DR507 points out, this can lead to
8659  // problems. So we do it this way, which pretty much follows what GCC does.
8660  // Note that we go the traditional code path for compound assignment forms.
8661  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
8662    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8663
8664  // If this is the .* operator, which is not overloadable, just
8665  // create a built-in binary operator.
8666  if (Opc == BO_PtrMemD)
8667    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8668
8669  // Build an empty overload set.
8670  OverloadCandidateSet CandidateSet(OpLoc);
8671
8672  // Add the candidates from the given function set.
8673  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
8674
8675  // Add operator candidates that are member functions.
8676  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8677
8678  // Add candidates from ADL.
8679  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8680                                       Args, 2,
8681                                       /*ExplicitTemplateArgs*/ 0,
8682                                       CandidateSet);
8683
8684  // Add builtin operator candidates.
8685  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
8686
8687  // Perform overload resolution.
8688  OverloadCandidateSet::iterator Best;
8689  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8690    case OR_Success: {
8691      // We found a built-in operator or an overloaded operator.
8692      FunctionDecl *FnDecl = Best->Function;
8693
8694      if (FnDecl) {
8695        // We matched an overloaded operator. Build a call to that
8696        // operator.
8697
8698        MarkDeclarationReferenced(OpLoc, FnDecl);
8699
8700        // Convert the arguments.
8701        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8702          // Best->Access is only meaningful for class members.
8703          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
8704
8705          ExprResult Arg1 =
8706            PerformCopyInitialization(
8707              InitializedEntity::InitializeParameter(Context,
8708                                                     FnDecl->getParamDecl(0)),
8709              SourceLocation(), Owned(Args[1]));
8710          if (Arg1.isInvalid())
8711            return ExprError();
8712
8713          ExprResult Arg0 =
8714            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8715                                                Best->FoundDecl, Method);
8716          if (Arg0.isInvalid())
8717            return ExprError();
8718          Args[0] = Arg0.takeAs<Expr>();
8719          Args[1] = RHS = Arg1.takeAs<Expr>();
8720        } else {
8721          // Convert the arguments.
8722          ExprResult Arg0 = PerformCopyInitialization(
8723            InitializedEntity::InitializeParameter(Context,
8724                                                   FnDecl->getParamDecl(0)),
8725            SourceLocation(), Owned(Args[0]));
8726          if (Arg0.isInvalid())
8727            return ExprError();
8728
8729          ExprResult Arg1 =
8730            PerformCopyInitialization(
8731              InitializedEntity::InitializeParameter(Context,
8732                                                     FnDecl->getParamDecl(1)),
8733              SourceLocation(), Owned(Args[1]));
8734          if (Arg1.isInvalid())
8735            return ExprError();
8736          Args[0] = LHS = Arg0.takeAs<Expr>();
8737          Args[1] = RHS = Arg1.takeAs<Expr>();
8738        }
8739
8740        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8741
8742        // Determine the result type.
8743        QualType ResultTy = FnDecl->getResultType();
8744        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8745        ResultTy = ResultTy.getNonLValueExprType(Context);
8746
8747        // Build the actual expression node.
8748        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
8749        if (FnExpr.isInvalid())
8750          return ExprError();
8751
8752        CXXOperatorCallExpr *TheCall =
8753          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8754                                            Args, 2, ResultTy, VK, OpLoc);
8755
8756        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8757                                FnDecl))
8758          return ExprError();
8759
8760        return MaybeBindToTemporary(TheCall);
8761      } else {
8762        // We matched a built-in operator. Convert the arguments, then
8763        // break out so that we will build the appropriate built-in
8764        // operator node.
8765        ExprResult ArgsRes0 =
8766          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8767                                    Best->Conversions[0], AA_Passing);
8768        if (ArgsRes0.isInvalid())
8769          return ExprError();
8770        Args[0] = ArgsRes0.take();
8771
8772        ExprResult ArgsRes1 =
8773          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8774                                    Best->Conversions[1], AA_Passing);
8775        if (ArgsRes1.isInvalid())
8776          return ExprError();
8777        Args[1] = ArgsRes1.take();
8778        break;
8779      }
8780    }
8781
8782    case OR_No_Viable_Function: {
8783      // C++ [over.match.oper]p9:
8784      //   If the operator is the operator , [...] and there are no
8785      //   viable functions, then the operator is assumed to be the
8786      //   built-in operator and interpreted according to clause 5.
8787      if (Opc == BO_Comma)
8788        break;
8789
8790      // For class as left operand for assignment or compound assigment
8791      // operator do not fall through to handling in built-in, but report that
8792      // no overloaded assignment operator found
8793      ExprResult Result = ExprError();
8794      if (Args[0]->getType()->isRecordType() &&
8795          Opc >= BO_Assign && Opc <= BO_OrAssign) {
8796        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
8797             << BinaryOperator::getOpcodeStr(Opc)
8798             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8799      } else {
8800        // This is an erroneous use of an operator which can be overloaded by
8801        // a non-member function. Check for non-member operators which were
8802        // defined too late to be candidates.
8803        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
8804          // FIXME: Recover by calling the found function.
8805          return ExprError();
8806
8807        // No viable function; try to create a built-in operation, which will
8808        // produce an error. Then, show the non-viable candidates.
8809        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8810      }
8811      assert(Result.isInvalid() &&
8812             "C++ binary operator overloading is missing candidates!");
8813      if (Result.isInvalid())
8814        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8815                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
8816      return move(Result);
8817    }
8818
8819    case OR_Ambiguous:
8820      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
8821          << BinaryOperator::getOpcodeStr(Opc)
8822          << Args[0]->getType() << Args[1]->getType()
8823          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8824      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8825                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
8826      return ExprError();
8827
8828    case OR_Deleted:
8829      Diag(OpLoc, diag::err_ovl_deleted_oper)
8830        << Best->Function->isDeleted()
8831        << BinaryOperator::getOpcodeStr(Opc)
8832        << getDeletedOrUnavailableSuffix(Best->Function)
8833        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8834      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
8835      return ExprError();
8836  }
8837
8838  // We matched a built-in operator; build it.
8839  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
8840}
8841
8842ExprResult
8843Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
8844                                         SourceLocation RLoc,
8845                                         Expr *Base, Expr *Idx) {
8846  Expr *Args[2] = { Base, Idx };
8847  DeclarationName OpName =
8848      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
8849
8850  // If either side is type-dependent, create an appropriate dependent
8851  // expression.
8852  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
8853
8854    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8855    // CHECKME: no 'operator' keyword?
8856    DeclarationNameInfo OpNameInfo(OpName, LLoc);
8857    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
8858    UnresolvedLookupExpr *Fn
8859      = UnresolvedLookupExpr::Create(Context, NamingClass,
8860                                     NestedNameSpecifierLoc(), OpNameInfo,
8861                                     /*ADL*/ true, /*Overloaded*/ false,
8862                                     UnresolvedSetIterator(),
8863                                     UnresolvedSetIterator());
8864    // Can't add any actual overloads yet
8865
8866    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
8867                                                   Args, 2,
8868                                                   Context.DependentTy,
8869                                                   VK_RValue,
8870                                                   RLoc));
8871  }
8872
8873  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
8874    ExprResult Result = ConvertPropertyForRValue(Args[0]);
8875    if (Result.isInvalid())
8876      return ExprError();
8877    Args[0] = Result.take();
8878  }
8879  if (Args[1]->getObjectKind() == OK_ObjCProperty) {
8880    ExprResult Result = ConvertPropertyForRValue(Args[1]);
8881    if (Result.isInvalid())
8882      return ExprError();
8883    Args[1] = Result.take();
8884  }
8885
8886  // Build an empty overload set.
8887  OverloadCandidateSet CandidateSet(LLoc);
8888
8889  // Subscript can only be overloaded as a member function.
8890
8891  // Add operator candidates that are member functions.
8892  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8893
8894  // Add builtin operator candidates.
8895  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
8896
8897  // Perform overload resolution.
8898  OverloadCandidateSet::iterator Best;
8899  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
8900    case OR_Success: {
8901      // We found a built-in operator or an overloaded operator.
8902      FunctionDecl *FnDecl = Best->Function;
8903
8904      if (FnDecl) {
8905        // We matched an overloaded operator. Build a call to that
8906        // operator.
8907
8908        MarkDeclarationReferenced(LLoc, FnDecl);
8909
8910        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
8911        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
8912
8913        // Convert the arguments.
8914        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
8915        ExprResult Arg0 =
8916          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
8917                                              Best->FoundDecl, Method);
8918        if (Arg0.isInvalid())
8919          return ExprError();
8920        Args[0] = Arg0.take();
8921
8922        // Convert the arguments.
8923        ExprResult InputInit
8924          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8925                                                      Context,
8926                                                      FnDecl->getParamDecl(0)),
8927                                      SourceLocation(),
8928                                      Owned(Args[1]));
8929        if (InputInit.isInvalid())
8930          return ExprError();
8931
8932        Args[1] = InputInit.takeAs<Expr>();
8933
8934        // Determine the result type
8935        QualType ResultTy = FnDecl->getResultType();
8936        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8937        ResultTy = ResultTy.getNonLValueExprType(Context);
8938
8939        // Build the actual expression node.
8940        DeclarationNameLoc LocInfo;
8941        LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
8942        LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
8943        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc, LocInfo);
8944        if (FnExpr.isInvalid())
8945          return ExprError();
8946
8947        CXXOperatorCallExpr *TheCall =
8948          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
8949                                            FnExpr.take(), Args, 2,
8950                                            ResultTy, VK, RLoc);
8951
8952        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
8953                                FnDecl))
8954          return ExprError();
8955
8956        return MaybeBindToTemporary(TheCall);
8957      } else {
8958        // We matched a built-in operator. Convert the arguments, then
8959        // break out so that we will build the appropriate built-in
8960        // operator node.
8961        ExprResult ArgsRes0 =
8962          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
8963                                    Best->Conversions[0], AA_Passing);
8964        if (ArgsRes0.isInvalid())
8965          return ExprError();
8966        Args[0] = ArgsRes0.take();
8967
8968        ExprResult ArgsRes1 =
8969          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
8970                                    Best->Conversions[1], AA_Passing);
8971        if (ArgsRes1.isInvalid())
8972          return ExprError();
8973        Args[1] = ArgsRes1.take();
8974
8975        break;
8976      }
8977    }
8978
8979    case OR_No_Viable_Function: {
8980      if (CandidateSet.empty())
8981        Diag(LLoc, diag::err_ovl_no_oper)
8982          << Args[0]->getType() << /*subscript*/ 0
8983          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8984      else
8985        Diag(LLoc, diag::err_ovl_no_viable_subscript)
8986          << Args[0]->getType()
8987          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8988      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
8989                                  "[]", LLoc);
8990      return ExprError();
8991    }
8992
8993    case OR_Ambiguous:
8994      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
8995          << "[]"
8996          << Args[0]->getType() << Args[1]->getType()
8997          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
8998      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
8999                                  "[]", LLoc);
9000      return ExprError();
9001
9002    case OR_Deleted:
9003      Diag(LLoc, diag::err_ovl_deleted_oper)
9004        << Best->Function->isDeleted() << "[]"
9005        << getDeletedOrUnavailableSuffix(Best->Function)
9006        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9007      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9008                                  "[]", LLoc);
9009      return ExprError();
9010    }
9011
9012  // We matched a built-in operator; build it.
9013  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
9014}
9015
9016/// BuildCallToMemberFunction - Build a call to a member
9017/// function. MemExpr is the expression that refers to the member
9018/// function (and includes the object parameter), Args/NumArgs are the
9019/// arguments to the function call (not including the object
9020/// parameter). The caller needs to validate that the member
9021/// expression refers to a non-static member function or an overloaded
9022/// member function.
9023ExprResult
9024Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
9025                                SourceLocation LParenLoc, Expr **Args,
9026                                unsigned NumArgs, SourceLocation RParenLoc) {
9027  assert(MemExprE->getType() == Context.BoundMemberTy ||
9028         MemExprE->getType() == Context.OverloadTy);
9029
9030  // Dig out the member expression. This holds both the object
9031  // argument and the member function we're referring to.
9032  Expr *NakedMemExpr = MemExprE->IgnoreParens();
9033
9034  // Determine whether this is a call to a pointer-to-member function.
9035  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
9036    assert(op->getType() == Context.BoundMemberTy);
9037    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
9038
9039    QualType fnType =
9040      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
9041
9042    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
9043    QualType resultType = proto->getCallResultType(Context);
9044    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
9045
9046    // Check that the object type isn't more qualified than the
9047    // member function we're calling.
9048    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
9049
9050    QualType objectType = op->getLHS()->getType();
9051    if (op->getOpcode() == BO_PtrMemI)
9052      objectType = objectType->castAs<PointerType>()->getPointeeType();
9053    Qualifiers objectQuals = objectType.getQualifiers();
9054
9055    Qualifiers difference = objectQuals - funcQuals;
9056    difference.removeObjCGCAttr();
9057    difference.removeAddressSpace();
9058    if (difference) {
9059      std::string qualsString = difference.getAsString();
9060      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
9061        << fnType.getUnqualifiedType()
9062        << qualsString
9063        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
9064    }
9065
9066    CXXMemberCallExpr *call
9067      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9068                                        resultType, valueKind, RParenLoc);
9069
9070    if (CheckCallReturnType(proto->getResultType(),
9071                            op->getRHS()->getSourceRange().getBegin(),
9072                            call, 0))
9073      return ExprError();
9074
9075    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
9076      return ExprError();
9077
9078    return MaybeBindToTemporary(call);
9079  }
9080
9081  MemberExpr *MemExpr;
9082  CXXMethodDecl *Method = 0;
9083  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
9084  NestedNameSpecifier *Qualifier = 0;
9085  if (isa<MemberExpr>(NakedMemExpr)) {
9086    MemExpr = cast<MemberExpr>(NakedMemExpr);
9087    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
9088    FoundDecl = MemExpr->getFoundDecl();
9089    Qualifier = MemExpr->getQualifier();
9090  } else {
9091    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
9092    Qualifier = UnresExpr->getQualifier();
9093
9094    QualType ObjectType = UnresExpr->getBaseType();
9095    Expr::Classification ObjectClassification
9096      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
9097                            : UnresExpr->getBase()->Classify(Context);
9098
9099    // Add overload candidates
9100    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
9101
9102    // FIXME: avoid copy.
9103    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9104    if (UnresExpr->hasExplicitTemplateArgs()) {
9105      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9106      TemplateArgs = &TemplateArgsBuffer;
9107    }
9108
9109    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
9110           E = UnresExpr->decls_end(); I != E; ++I) {
9111
9112      NamedDecl *Func = *I;
9113      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
9114      if (isa<UsingShadowDecl>(Func))
9115        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
9116
9117
9118      // Microsoft supports direct constructor calls.
9119      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
9120        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
9121                             CandidateSet);
9122      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
9123        // If explicit template arguments were provided, we can't call a
9124        // non-template member function.
9125        if (TemplateArgs)
9126          continue;
9127
9128        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
9129                           ObjectClassification,
9130                           Args, NumArgs, CandidateSet,
9131                           /*SuppressUserConversions=*/false);
9132      } else {
9133        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
9134                                   I.getPair(), ActingDC, TemplateArgs,
9135                                   ObjectType,  ObjectClassification,
9136                                   Args, NumArgs, CandidateSet,
9137                                   /*SuppressUsedConversions=*/false);
9138      }
9139    }
9140
9141    DeclarationName DeclName = UnresExpr->getMemberName();
9142
9143    OverloadCandidateSet::iterator Best;
9144    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
9145                                            Best)) {
9146    case OR_Success:
9147      Method = cast<CXXMethodDecl>(Best->Function);
9148      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
9149      FoundDecl = Best->FoundDecl;
9150      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
9151      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
9152      break;
9153
9154    case OR_No_Viable_Function:
9155      Diag(UnresExpr->getMemberLoc(),
9156           diag::err_ovl_no_viable_member_function_in_call)
9157        << DeclName << MemExprE->getSourceRange();
9158      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9159      // FIXME: Leaking incoming expressions!
9160      return ExprError();
9161
9162    case OR_Ambiguous:
9163      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
9164        << DeclName << MemExprE->getSourceRange();
9165      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9166      // FIXME: Leaking incoming expressions!
9167      return ExprError();
9168
9169    case OR_Deleted:
9170      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
9171        << Best->Function->isDeleted()
9172        << DeclName
9173        << getDeletedOrUnavailableSuffix(Best->Function)
9174        << MemExprE->getSourceRange();
9175      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9176      // FIXME: Leaking incoming expressions!
9177      return ExprError();
9178    }
9179
9180    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
9181
9182    // If overload resolution picked a static member, build a
9183    // non-member call based on that function.
9184    if (Method->isStatic()) {
9185      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
9186                                   Args, NumArgs, RParenLoc);
9187    }
9188
9189    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
9190  }
9191
9192  QualType ResultType = Method->getResultType();
9193  ExprValueKind VK = Expr::getValueKindForType(ResultType);
9194  ResultType = ResultType.getNonLValueExprType(Context);
9195
9196  assert(Method && "Member call to something that isn't a method?");
9197  CXXMemberCallExpr *TheCall =
9198    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9199                                    ResultType, VK, RParenLoc);
9200
9201  // Check for a valid return type.
9202  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
9203                          TheCall, Method))
9204    return ExprError();
9205
9206  // Convert the object argument (for a non-static member function call).
9207  // We only need to do this if there was actually an overload; otherwise
9208  // it was done at lookup.
9209  if (!Method->isStatic()) {
9210    ExprResult ObjectArg =
9211      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
9212                                          FoundDecl, Method);
9213    if (ObjectArg.isInvalid())
9214      return ExprError();
9215    MemExpr->setBase(ObjectArg.take());
9216  }
9217
9218  // Convert the rest of the arguments
9219  const FunctionProtoType *Proto =
9220    Method->getType()->getAs<FunctionProtoType>();
9221  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
9222                              RParenLoc))
9223    return ExprError();
9224
9225  if (CheckFunctionCall(Method, TheCall))
9226    return ExprError();
9227
9228  if ((isa<CXXConstructorDecl>(CurContext) ||
9229       isa<CXXDestructorDecl>(CurContext)) &&
9230      TheCall->getMethodDecl()->isPure()) {
9231    const CXXMethodDecl *MD = TheCall->getMethodDecl();
9232
9233    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
9234      Diag(MemExpr->getLocStart(),
9235           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
9236        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
9237        << MD->getParent()->getDeclName();
9238
9239      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
9240    }
9241  }
9242  return MaybeBindToTemporary(TheCall);
9243}
9244
9245/// BuildCallToObjectOfClassType - Build a call to an object of class
9246/// type (C++ [over.call.object]), which can end up invoking an
9247/// overloaded function call operator (@c operator()) or performing a
9248/// user-defined conversion on the object argument.
9249ExprResult
9250Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
9251                                   SourceLocation LParenLoc,
9252                                   Expr **Args, unsigned NumArgs,
9253                                   SourceLocation RParenLoc) {
9254  ExprResult Object = Owned(Obj);
9255  if (Object.get()->getObjectKind() == OK_ObjCProperty) {
9256    Object = ConvertPropertyForRValue(Object.take());
9257    if (Object.isInvalid())
9258      return ExprError();
9259  }
9260
9261  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
9262  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
9263
9264  // C++ [over.call.object]p1:
9265  //  If the primary-expression E in the function call syntax
9266  //  evaluates to a class object of type "cv T", then the set of
9267  //  candidate functions includes at least the function call
9268  //  operators of T. The function call operators of T are obtained by
9269  //  ordinary lookup of the name operator() in the context of
9270  //  (E).operator().
9271  OverloadCandidateSet CandidateSet(LParenLoc);
9272  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
9273
9274  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
9275                          PDiag(diag::err_incomplete_object_call)
9276                          << Object.get()->getSourceRange()))
9277    return true;
9278
9279  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
9280  LookupQualifiedName(R, Record->getDecl());
9281  R.suppressDiagnostics();
9282
9283  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9284       Oper != OperEnd; ++Oper) {
9285    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
9286                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
9287                       /*SuppressUserConversions=*/ false);
9288  }
9289
9290  // C++ [over.call.object]p2:
9291  //   In addition, for each (non-explicit in C++0x) conversion function
9292  //   declared in T of the form
9293  //
9294  //        operator conversion-type-id () cv-qualifier;
9295  //
9296  //   where cv-qualifier is the same cv-qualification as, or a
9297  //   greater cv-qualification than, cv, and where conversion-type-id
9298  //   denotes the type "pointer to function of (P1,...,Pn) returning
9299  //   R", or the type "reference to pointer to function of
9300  //   (P1,...,Pn) returning R", or the type "reference to function
9301  //   of (P1,...,Pn) returning R", a surrogate call function [...]
9302  //   is also considered as a candidate function. Similarly,
9303  //   surrogate call functions are added to the set of candidate
9304  //   functions for each conversion function declared in an
9305  //   accessible base class provided the function is not hidden
9306  //   within T by another intervening declaration.
9307  const UnresolvedSetImpl *Conversions
9308    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
9309  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
9310         E = Conversions->end(); I != E; ++I) {
9311    NamedDecl *D = *I;
9312    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
9313    if (isa<UsingShadowDecl>(D))
9314      D = cast<UsingShadowDecl>(D)->getTargetDecl();
9315
9316    // Skip over templated conversion functions; they aren't
9317    // surrogates.
9318    if (isa<FunctionTemplateDecl>(D))
9319      continue;
9320
9321    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
9322    if (!Conv->isExplicit()) {
9323      // Strip the reference type (if any) and then the pointer type (if
9324      // any) to get down to what might be a function type.
9325      QualType ConvType = Conv->getConversionType().getNonReferenceType();
9326      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9327        ConvType = ConvPtrType->getPointeeType();
9328
9329      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
9330      {
9331        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
9332                              Object.get(), Args, NumArgs, CandidateSet);
9333      }
9334    }
9335  }
9336
9337  // Perform overload resolution.
9338  OverloadCandidateSet::iterator Best;
9339  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
9340                             Best)) {
9341  case OR_Success:
9342    // Overload resolution succeeded; we'll build the appropriate call
9343    // below.
9344    break;
9345
9346  case OR_No_Viable_Function:
9347    if (CandidateSet.empty())
9348      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
9349        << Object.get()->getType() << /*call*/ 1
9350        << Object.get()->getSourceRange();
9351    else
9352      Diag(Object.get()->getSourceRange().getBegin(),
9353           diag::err_ovl_no_viable_object_call)
9354        << Object.get()->getType() << Object.get()->getSourceRange();
9355    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9356    break;
9357
9358  case OR_Ambiguous:
9359    Diag(Object.get()->getSourceRange().getBegin(),
9360         diag::err_ovl_ambiguous_object_call)
9361      << Object.get()->getType() << Object.get()->getSourceRange();
9362    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9363    break;
9364
9365  case OR_Deleted:
9366    Diag(Object.get()->getSourceRange().getBegin(),
9367         diag::err_ovl_deleted_object_call)
9368      << Best->Function->isDeleted()
9369      << Object.get()->getType()
9370      << getDeletedOrUnavailableSuffix(Best->Function)
9371      << Object.get()->getSourceRange();
9372    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9373    break;
9374  }
9375
9376  if (Best == CandidateSet.end())
9377    return true;
9378
9379  if (Best->Function == 0) {
9380    // Since there is no function declaration, this is one of the
9381    // surrogate candidates. Dig out the conversion function.
9382    CXXConversionDecl *Conv
9383      = cast<CXXConversionDecl>(
9384                         Best->Conversions[0].UserDefined.ConversionFunction);
9385
9386    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9387    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9388
9389    // We selected one of the surrogate functions that converts the
9390    // object parameter to a function pointer. Perform the conversion
9391    // on the object argument, then let ActOnCallExpr finish the job.
9392
9393    // Create an implicit member expr to refer to the conversion operator.
9394    // and then call it.
9395    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv);
9396    if (Call.isInvalid())
9397      return ExprError();
9398
9399    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
9400                         RParenLoc);
9401  }
9402
9403  MarkDeclarationReferenced(LParenLoc, Best->Function);
9404  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9405  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9406
9407  // We found an overloaded operator(). Build a CXXOperatorCallExpr
9408  // that calls this method, using Object for the implicit object
9409  // parameter and passing along the remaining arguments.
9410  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9411  const FunctionProtoType *Proto =
9412    Method->getType()->getAs<FunctionProtoType>();
9413
9414  unsigned NumArgsInProto = Proto->getNumArgs();
9415  unsigned NumArgsToCheck = NumArgs;
9416
9417  // Build the full argument list for the method call (the
9418  // implicit object parameter is placed at the beginning of the
9419  // list).
9420  Expr **MethodArgs;
9421  if (NumArgs < NumArgsInProto) {
9422    NumArgsToCheck = NumArgsInProto;
9423    MethodArgs = new Expr*[NumArgsInProto + 1];
9424  } else {
9425    MethodArgs = new Expr*[NumArgs + 1];
9426  }
9427  MethodArgs[0] = Object.get();
9428  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
9429    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
9430
9431  ExprResult NewFn = CreateFunctionRefExpr(*this, Method);
9432  if (NewFn.isInvalid())
9433    return true;
9434
9435  // Once we've built TheCall, all of the expressions are properly
9436  // owned.
9437  QualType ResultTy = Method->getResultType();
9438  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9439  ResultTy = ResultTy.getNonLValueExprType(Context);
9440
9441  CXXOperatorCallExpr *TheCall =
9442    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
9443                                      MethodArgs, NumArgs + 1,
9444                                      ResultTy, VK, RParenLoc);
9445  delete [] MethodArgs;
9446
9447  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
9448                          Method))
9449    return true;
9450
9451  // We may have default arguments. If so, we need to allocate more
9452  // slots in the call for them.
9453  if (NumArgs < NumArgsInProto)
9454    TheCall->setNumArgs(Context, NumArgsInProto + 1);
9455  else if (NumArgs > NumArgsInProto)
9456    NumArgsToCheck = NumArgsInProto;
9457
9458  bool IsError = false;
9459
9460  // Initialize the implicit object parameter.
9461  ExprResult ObjRes =
9462    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
9463                                        Best->FoundDecl, Method);
9464  if (ObjRes.isInvalid())
9465    IsError = true;
9466  else
9467    Object = move(ObjRes);
9468  TheCall->setArg(0, Object.take());
9469
9470  // Check the argument types.
9471  for (unsigned i = 0; i != NumArgsToCheck; i++) {
9472    Expr *Arg;
9473    if (i < NumArgs) {
9474      Arg = Args[i];
9475
9476      // Pass the argument.
9477
9478      ExprResult InputInit
9479        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9480                                                    Context,
9481                                                    Method->getParamDecl(i)),
9482                                    SourceLocation(), Arg);
9483
9484      IsError |= InputInit.isInvalid();
9485      Arg = InputInit.takeAs<Expr>();
9486    } else {
9487      ExprResult DefArg
9488        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
9489      if (DefArg.isInvalid()) {
9490        IsError = true;
9491        break;
9492      }
9493
9494      Arg = DefArg.takeAs<Expr>();
9495    }
9496
9497    TheCall->setArg(i + 1, Arg);
9498  }
9499
9500  // If this is a variadic call, handle args passed through "...".
9501  if (Proto->isVariadic()) {
9502    // Promote the arguments (C99 6.5.2.2p7).
9503    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
9504      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
9505      IsError |= Arg.isInvalid();
9506      TheCall->setArg(i + 1, Arg.take());
9507    }
9508  }
9509
9510  if (IsError) return true;
9511
9512  if (CheckFunctionCall(Method, TheCall))
9513    return true;
9514
9515  return MaybeBindToTemporary(TheCall);
9516}
9517
9518/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
9519///  (if one exists), where @c Base is an expression of class type and
9520/// @c Member is the name of the member we're trying to find.
9521ExprResult
9522Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
9523  assert(Base->getType()->isRecordType() &&
9524         "left-hand side must have class type");
9525
9526  if (Base->getObjectKind() == OK_ObjCProperty) {
9527    ExprResult Result = ConvertPropertyForRValue(Base);
9528    if (Result.isInvalid())
9529      return ExprError();
9530    Base = Result.take();
9531  }
9532
9533  SourceLocation Loc = Base->getExprLoc();
9534
9535  // C++ [over.ref]p1:
9536  //
9537  //   [...] An expression x->m is interpreted as (x.operator->())->m
9538  //   for a class object x of type T if T::operator->() exists and if
9539  //   the operator is selected as the best match function by the
9540  //   overload resolution mechanism (13.3).
9541  DeclarationName OpName =
9542    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
9543  OverloadCandidateSet CandidateSet(Loc);
9544  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
9545
9546  if (RequireCompleteType(Loc, Base->getType(),
9547                          PDiag(diag::err_typecheck_incomplete_tag)
9548                            << Base->getSourceRange()))
9549    return ExprError();
9550
9551  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
9552  LookupQualifiedName(R, BaseRecord->getDecl());
9553  R.suppressDiagnostics();
9554
9555  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9556       Oper != OperEnd; ++Oper) {
9557    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
9558                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
9559  }
9560
9561  // Perform overload resolution.
9562  OverloadCandidateSet::iterator Best;
9563  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9564  case OR_Success:
9565    // Overload resolution succeeded; we'll build the call below.
9566    break;
9567
9568  case OR_No_Viable_Function:
9569    if (CandidateSet.empty())
9570      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
9571        << Base->getType() << Base->getSourceRange();
9572    else
9573      Diag(OpLoc, diag::err_ovl_no_viable_oper)
9574        << "operator->" << Base->getSourceRange();
9575    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9576    return ExprError();
9577
9578  case OR_Ambiguous:
9579    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9580      << "->" << Base->getType() << Base->getSourceRange();
9581    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
9582    return ExprError();
9583
9584  case OR_Deleted:
9585    Diag(OpLoc,  diag::err_ovl_deleted_oper)
9586      << Best->Function->isDeleted()
9587      << "->"
9588      << getDeletedOrUnavailableSuffix(Best->Function)
9589      << Base->getSourceRange();
9590    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9591    return ExprError();
9592  }
9593
9594  MarkDeclarationReferenced(OpLoc, Best->Function);
9595  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
9596  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9597
9598  // Convert the object parameter.
9599  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9600  ExprResult BaseResult =
9601    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
9602                                        Best->FoundDecl, Method);
9603  if (BaseResult.isInvalid())
9604    return ExprError();
9605  Base = BaseResult.take();
9606
9607  // Build the operator call.
9608  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method);
9609  if (FnExpr.isInvalid())
9610    return ExprError();
9611
9612  QualType ResultTy = Method->getResultType();
9613  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9614  ResultTy = ResultTy.getNonLValueExprType(Context);
9615  CXXOperatorCallExpr *TheCall =
9616    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
9617                                      &Base, 1, ResultTy, VK, OpLoc);
9618
9619  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
9620                          Method))
9621          return ExprError();
9622
9623  return MaybeBindToTemporary(TheCall);
9624}
9625
9626/// FixOverloadedFunctionReference - E is an expression that refers to
9627/// a C++ overloaded function (possibly with some parentheses and
9628/// perhaps a '&' around it). We have resolved the overloaded function
9629/// to the function declaration Fn, so patch up the expression E to
9630/// refer (possibly indirectly) to Fn. Returns the new expr.
9631Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
9632                                           FunctionDecl *Fn) {
9633  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
9634    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
9635                                                   Found, Fn);
9636    if (SubExpr == PE->getSubExpr())
9637      return PE;
9638
9639    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
9640  }
9641
9642  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
9643    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
9644                                                   Found, Fn);
9645    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
9646                               SubExpr->getType()) &&
9647           "Implicit cast type cannot be determined from overload");
9648    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
9649    if (SubExpr == ICE->getSubExpr())
9650      return ICE;
9651
9652    return ImplicitCastExpr::Create(Context, ICE->getType(),
9653                                    ICE->getCastKind(),
9654                                    SubExpr, 0,
9655                                    ICE->getValueKind());
9656  }
9657
9658  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
9659    assert(UnOp->getOpcode() == UO_AddrOf &&
9660           "Can only take the address of an overloaded function");
9661    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
9662      if (Method->isStatic()) {
9663        // Do nothing: static member functions aren't any different
9664        // from non-member functions.
9665      } else {
9666        // Fix the sub expression, which really has to be an
9667        // UnresolvedLookupExpr holding an overloaded member function
9668        // or template.
9669        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9670                                                       Found, Fn);
9671        if (SubExpr == UnOp->getSubExpr())
9672          return UnOp;
9673
9674        assert(isa<DeclRefExpr>(SubExpr)
9675               && "fixed to something other than a decl ref");
9676        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
9677               && "fixed to a member ref with no nested name qualifier");
9678
9679        // We have taken the address of a pointer to member
9680        // function. Perform the computation here so that we get the
9681        // appropriate pointer to member type.
9682        QualType ClassType
9683          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
9684        QualType MemPtrType
9685          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
9686
9687        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
9688                                           VK_RValue, OK_Ordinary,
9689                                           UnOp->getOperatorLoc());
9690      }
9691    }
9692    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
9693                                                   Found, Fn);
9694    if (SubExpr == UnOp->getSubExpr())
9695      return UnOp;
9696
9697    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
9698                                     Context.getPointerType(SubExpr->getType()),
9699                                       VK_RValue, OK_Ordinary,
9700                                       UnOp->getOperatorLoc());
9701  }
9702
9703  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9704    // FIXME: avoid copy.
9705    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9706    if (ULE->hasExplicitTemplateArgs()) {
9707      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
9708      TemplateArgs = &TemplateArgsBuffer;
9709    }
9710
9711    return DeclRefExpr::Create(Context,
9712                               ULE->getQualifierLoc(),
9713                               Fn,
9714                               ULE->getNameLoc(),
9715                               Fn->getType(),
9716                               VK_LValue,
9717                               Found.getDecl(),
9718                               TemplateArgs);
9719  }
9720
9721  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
9722    // FIXME: avoid copy.
9723    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9724    if (MemExpr->hasExplicitTemplateArgs()) {
9725      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9726      TemplateArgs = &TemplateArgsBuffer;
9727    }
9728
9729    Expr *Base;
9730
9731    // If we're filling in a static method where we used to have an
9732    // implicit member access, rewrite to a simple decl ref.
9733    if (MemExpr->isImplicitAccess()) {
9734      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9735        return DeclRefExpr::Create(Context,
9736                                   MemExpr->getQualifierLoc(),
9737                                   Fn,
9738                                   MemExpr->getMemberLoc(),
9739                                   Fn->getType(),
9740                                   VK_LValue,
9741                                   Found.getDecl(),
9742                                   TemplateArgs);
9743      } else {
9744        SourceLocation Loc = MemExpr->getMemberLoc();
9745        if (MemExpr->getQualifier())
9746          Loc = MemExpr->getQualifierLoc().getBeginLoc();
9747        Base = new (Context) CXXThisExpr(Loc,
9748                                         MemExpr->getBaseType(),
9749                                         /*isImplicit=*/true);
9750      }
9751    } else
9752      Base = MemExpr->getBase();
9753
9754    ExprValueKind valueKind;
9755    QualType type;
9756    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
9757      valueKind = VK_LValue;
9758      type = Fn->getType();
9759    } else {
9760      valueKind = VK_RValue;
9761      type = Context.BoundMemberTy;
9762    }
9763
9764    return MemberExpr::Create(Context, Base,
9765                              MemExpr->isArrow(),
9766                              MemExpr->getQualifierLoc(),
9767                              Fn,
9768                              Found,
9769                              MemExpr->getMemberNameInfo(),
9770                              TemplateArgs,
9771                              type, valueKind, OK_Ordinary);
9772  }
9773
9774  llvm_unreachable("Invalid reference to overloaded function");
9775  return E;
9776}
9777
9778ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
9779                                                DeclAccessPair Found,
9780                                                FunctionDecl *Fn) {
9781  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
9782}
9783
9784} // end namespace clang
9785