SemaOverload.cpp revision b29b37d7e5bba50acc3a6642a2c90db080c22b90
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              ForceRValue, UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  // Lvalue-to-rvalue conversion (C++ 4.1):
571  //   An lvalue (3.10) of a non-function, non-array type T can be
572  //   converted to an rvalue.
573  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
574  if (argIsLvalue == Expr::LV_Valid &&
575      !FromType->isFunctionType() && !FromType->isArrayType() &&
576      Context.getCanonicalType(FromType) != Context.OverloadTy) {
577    SCS.First = ICK_Lvalue_To_Rvalue;
578
579    // If T is a non-class type, the type of the rvalue is the
580    // cv-unqualified version of T. Otherwise, the type of the rvalue
581    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
582    // just strip the qualifiers because they don't matter.
583    FromType = FromType.getUnqualifiedType();
584  } else if (FromType->isArrayType()) {
585    // Array-to-pointer conversion (C++ 4.2)
586    SCS.First = ICK_Array_To_Pointer;
587
588    // An lvalue or rvalue of type "array of N T" or "array of unknown
589    // bound of T" can be converted to an rvalue of type "pointer to
590    // T" (C++ 4.2p1).
591    FromType = Context.getArrayDecayedType(FromType);
592
593    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
594      // This conversion is deprecated. (C++ D.4).
595      SCS.DeprecatedStringLiteralToCharPtr = true;
596
597      // For the purpose of ranking in overload resolution
598      // (13.3.3.1.1), this conversion is considered an
599      // array-to-pointer conversion followed by a qualification
600      // conversion (4.4). (C++ 4.2p2)
601      SCS.Second = ICK_Identity;
602      SCS.Third = ICK_Qualification;
603      SCS.setAllToTypes(FromType);
604      return true;
605    }
606  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
607    // Function-to-pointer conversion (C++ 4.3).
608    SCS.First = ICK_Function_To_Pointer;
609
610    // An lvalue of function type T can be converted to an rvalue of
611    // type "pointer to T." The result is a pointer to the
612    // function. (C++ 4.3p1).
613    FromType = Context.getPointerType(FromType);
614  } else if (FunctionDecl *Fn
615               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
616    // Address of overloaded function (C++ [over.over]).
617    SCS.First = ICK_Function_To_Pointer;
618
619    // We were able to resolve the address of the overloaded function,
620    // so we can convert to the type of that function.
621    FromType = Fn->getType();
622    if (ToType->isLValueReferenceType())
623      FromType = Context.getLValueReferenceType(FromType);
624    else if (ToType->isRValueReferenceType())
625      FromType = Context.getRValueReferenceType(FromType);
626    else if (ToType->isMemberPointerType()) {
627      // Resolve address only succeeds if both sides are member pointers,
628      // but it doesn't have to be the same class. See DR 247.
629      // Note that this means that the type of &Derived::fn can be
630      // Ret (Base::*)(Args) if the fn overload actually found is from the
631      // base class, even if it was brought into the derived class via a
632      // using declaration. The standard isn't clear on this issue at all.
633      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
634      FromType = Context.getMemberPointerType(FromType,
635                    Context.getTypeDeclType(M->getParent()).getTypePtr());
636    } else
637      FromType = Context.getPointerType(FromType);
638  } else {
639    // We don't require any conversions for the first step.
640    SCS.First = ICK_Identity;
641  }
642  SCS.setToType(0, FromType);
643
644  // The second conversion can be an integral promotion, floating
645  // point promotion, integral conversion, floating point conversion,
646  // floating-integral conversion, pointer conversion,
647  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
648  // For overloading in C, this can also be a "compatible-type"
649  // conversion.
650  bool IncompatibleObjC = false;
651  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
652    // The unqualified versions of the types are the same: there's no
653    // conversion to do.
654    SCS.Second = ICK_Identity;
655  } else if (IsIntegralPromotion(From, FromType, ToType)) {
656    // Integral promotion (C++ 4.5).
657    SCS.Second = ICK_Integral_Promotion;
658    FromType = ToType.getUnqualifiedType();
659  } else if (IsFloatingPointPromotion(FromType, ToType)) {
660    // Floating point promotion (C++ 4.6).
661    SCS.Second = ICK_Floating_Promotion;
662    FromType = ToType.getUnqualifiedType();
663  } else if (IsComplexPromotion(FromType, ToType)) {
664    // Complex promotion (Clang extension)
665    SCS.Second = ICK_Complex_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
668           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
669    // Integral conversions (C++ 4.7).
670    SCS.Second = ICK_Integral_Conversion;
671    FromType = ToType.getUnqualifiedType();
672  } else if (FromType->isComplexType() && ToType->isComplexType()) {
673    // Complex conversions (C99 6.3.1.6)
674    SCS.Second = ICK_Complex_Conversion;
675    FromType = ToType.getUnqualifiedType();
676  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
677             (ToType->isComplexType() && FromType->isArithmeticType())) {
678    // Complex-real conversions (C99 6.3.1.7)
679    SCS.Second = ICK_Complex_Real;
680    FromType = ToType.getUnqualifiedType();
681  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
682    // Floating point conversions (C++ 4.8).
683    SCS.Second = ICK_Floating_Conversion;
684    FromType = ToType.getUnqualifiedType();
685  } else if ((FromType->isFloatingType() &&
686              ToType->isIntegralType() && (!ToType->isBooleanType() &&
687                                           !ToType->isEnumeralType())) ||
688             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
689              ToType->isFloatingType())) {
690    // Floating-integral conversions (C++ 4.9).
691    SCS.Second = ICK_Floating_Integral;
692    FromType = ToType.getUnqualifiedType();
693  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
694                                 FromType, IncompatibleObjC)) {
695    // Pointer conversions (C++ 4.10).
696    SCS.Second = ICK_Pointer_Conversion;
697    SCS.IncompatibleObjC = IncompatibleObjC;
698  } else if (IsMemberPointerConversion(From, FromType, ToType,
699                                       InOverloadResolution, FromType)) {
700    // Pointer to member conversions (4.11).
701    SCS.Second = ICK_Pointer_Member;
702  } else if (ToType->isBooleanType() &&
703             (FromType->isArithmeticType() ||
704              FromType->isEnumeralType() ||
705              FromType->isAnyPointerType() ||
706              FromType->isBlockPointerType() ||
707              FromType->isMemberPointerType() ||
708              FromType->isNullPtrType())) {
709    // Boolean conversions (C++ 4.12).
710    SCS.Second = ICK_Boolean_Conversion;
711    FromType = Context.BoolTy;
712  } else if (!getLangOptions().CPlusPlus &&
713             Context.typesAreCompatible(ToType, FromType)) {
714    // Compatible conversions (Clang extension for C function overloading)
715    SCS.Second = ICK_Compatible_Conversion;
716  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
717    // Treat a conversion that strips "noreturn" as an identity conversion.
718    SCS.Second = ICK_NoReturn_Adjustment;
719  } else {
720    // No second conversion required.
721    SCS.Second = ICK_Identity;
722  }
723  SCS.setToType(1, FromType);
724
725  QualType CanonFrom;
726  QualType CanonTo;
727  // The third conversion can be a qualification conversion (C++ 4p1).
728  if (IsQualificationConversion(FromType, ToType)) {
729    SCS.Third = ICK_Qualification;
730    FromType = ToType;
731    CanonFrom = Context.getCanonicalType(FromType);
732    CanonTo = Context.getCanonicalType(ToType);
733  } else {
734    // No conversion required
735    SCS.Third = ICK_Identity;
736
737    // C++ [over.best.ics]p6:
738    //   [...] Any difference in top-level cv-qualification is
739    //   subsumed by the initialization itself and does not constitute
740    //   a conversion. [...]
741    CanonFrom = Context.getCanonicalType(FromType);
742    CanonTo = Context.getCanonicalType(ToType);
743    if (CanonFrom.getLocalUnqualifiedType()
744                                       == CanonTo.getLocalUnqualifiedType() &&
745        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
746      FromType = ToType;
747      CanonFrom = CanonTo;
748    }
749  }
750  SCS.setToType(2, FromType);
751
752  // If we have not converted the argument type to the parameter type,
753  // this is a bad conversion sequence.
754  if (CanonFrom != CanonTo)
755    return false;
756
757  return true;
758}
759
760/// IsIntegralPromotion - Determines whether the conversion from the
761/// expression From (whose potentially-adjusted type is FromType) to
762/// ToType is an integral promotion (C++ 4.5). If so, returns true and
763/// sets PromotedType to the promoted type.
764bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
765  const BuiltinType *To = ToType->getAs<BuiltinType>();
766  // All integers are built-in.
767  if (!To) {
768    return false;
769  }
770
771  // An rvalue of type char, signed char, unsigned char, short int, or
772  // unsigned short int can be converted to an rvalue of type int if
773  // int can represent all the values of the source type; otherwise,
774  // the source rvalue can be converted to an rvalue of type unsigned
775  // int (C++ 4.5p1).
776  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
777      !FromType->isEnumeralType()) {
778    if (// We can promote any signed, promotable integer type to an int
779        (FromType->isSignedIntegerType() ||
780         // We can promote any unsigned integer type whose size is
781         // less than int to an int.
782         (!FromType->isSignedIntegerType() &&
783          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
784      return To->getKind() == BuiltinType::Int;
785    }
786
787    return To->getKind() == BuiltinType::UInt;
788  }
789
790  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
791  // can be converted to an rvalue of the first of the following types
792  // that can represent all the values of its underlying type: int,
793  // unsigned int, long, or unsigned long (C++ 4.5p2).
794
795  // We pre-calculate the promotion type for enum types.
796  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
797    if (ToType->isIntegerType())
798      return Context.hasSameUnqualifiedType(ToType,
799                                FromEnumType->getDecl()->getPromotionType());
800
801  if (FromType->isWideCharType() && ToType->isIntegerType()) {
802    // Determine whether the type we're converting from is signed or
803    // unsigned.
804    bool FromIsSigned;
805    uint64_t FromSize = Context.getTypeSize(FromType);
806
807    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
808    FromIsSigned = true;
809
810    // The types we'll try to promote to, in the appropriate
811    // order. Try each of these types.
812    QualType PromoteTypes[6] = {
813      Context.IntTy, Context.UnsignedIntTy,
814      Context.LongTy, Context.UnsignedLongTy ,
815      Context.LongLongTy, Context.UnsignedLongLongTy
816    };
817    for (int Idx = 0; Idx < 6; ++Idx) {
818      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
819      if (FromSize < ToSize ||
820          (FromSize == ToSize &&
821           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
822        // We found the type that we can promote to. If this is the
823        // type we wanted, we have a promotion. Otherwise, no
824        // promotion.
825        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
826      }
827    }
828  }
829
830  // An rvalue for an integral bit-field (9.6) can be converted to an
831  // rvalue of type int if int can represent all the values of the
832  // bit-field; otherwise, it can be converted to unsigned int if
833  // unsigned int can represent all the values of the bit-field. If
834  // the bit-field is larger yet, no integral promotion applies to
835  // it. If the bit-field has an enumerated type, it is treated as any
836  // other value of that type for promotion purposes (C++ 4.5p3).
837  // FIXME: We should delay checking of bit-fields until we actually perform the
838  // conversion.
839  using llvm::APSInt;
840  if (From)
841    if (FieldDecl *MemberDecl = From->getBitField()) {
842      APSInt BitWidth;
843      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
844          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
845        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
846        ToSize = Context.getTypeSize(ToType);
847
848        // Are we promoting to an int from a bitfield that fits in an int?
849        if (BitWidth < ToSize ||
850            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
851          return To->getKind() == BuiltinType::Int;
852        }
853
854        // Are we promoting to an unsigned int from an unsigned bitfield
855        // that fits into an unsigned int?
856        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
857          return To->getKind() == BuiltinType::UInt;
858        }
859
860        return false;
861      }
862    }
863
864  // An rvalue of type bool can be converted to an rvalue of type int,
865  // with false becoming zero and true becoming one (C++ 4.5p4).
866  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
867    return true;
868  }
869
870  return false;
871}
872
873/// IsFloatingPointPromotion - Determines whether the conversion from
874/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
875/// returns true and sets PromotedType to the promoted type.
876bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
877  /// An rvalue of type float can be converted to an rvalue of type
878  /// double. (C++ 4.6p1).
879  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
880    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
881      if (FromBuiltin->getKind() == BuiltinType::Float &&
882          ToBuiltin->getKind() == BuiltinType::Double)
883        return true;
884
885      // C99 6.3.1.5p1:
886      //   When a float is promoted to double or long double, or a
887      //   double is promoted to long double [...].
888      if (!getLangOptions().CPlusPlus &&
889          (FromBuiltin->getKind() == BuiltinType::Float ||
890           FromBuiltin->getKind() == BuiltinType::Double) &&
891          (ToBuiltin->getKind() == BuiltinType::LongDouble))
892        return true;
893    }
894
895  return false;
896}
897
898/// \brief Determine if a conversion is a complex promotion.
899///
900/// A complex promotion is defined as a complex -> complex conversion
901/// where the conversion between the underlying real types is a
902/// floating-point or integral promotion.
903bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
904  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
905  if (!FromComplex)
906    return false;
907
908  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
909  if (!ToComplex)
910    return false;
911
912  return IsFloatingPointPromotion(FromComplex->getElementType(),
913                                  ToComplex->getElementType()) ||
914    IsIntegralPromotion(0, FromComplex->getElementType(),
915                        ToComplex->getElementType());
916}
917
918/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
919/// the pointer type FromPtr to a pointer to type ToPointee, with the
920/// same type qualifiers as FromPtr has on its pointee type. ToType,
921/// if non-empty, will be a pointer to ToType that may or may not have
922/// the right set of qualifiers on its pointee.
923static QualType
924BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
925                                   QualType ToPointee, QualType ToType,
926                                   ASTContext &Context) {
927  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
928  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
929  Qualifiers Quals = CanonFromPointee.getQualifiers();
930
931  // Exact qualifier match -> return the pointer type we're converting to.
932  if (CanonToPointee.getLocalQualifiers() == Quals) {
933    // ToType is exactly what we need. Return it.
934    if (!ToType.isNull())
935      return ToType;
936
937    // Build a pointer to ToPointee. It has the right qualifiers
938    // already.
939    return Context.getPointerType(ToPointee);
940  }
941
942  // Just build a canonical type that has the right qualifiers.
943  return Context.getPointerType(
944         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
945                                  Quals));
946}
947
948/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
949/// the FromType, which is an objective-c pointer, to ToType, which may or may
950/// not have the right set of qualifiers.
951static QualType
952BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
953                                             QualType ToType,
954                                             ASTContext &Context) {
955  QualType CanonFromType = Context.getCanonicalType(FromType);
956  QualType CanonToType = Context.getCanonicalType(ToType);
957  Qualifiers Quals = CanonFromType.getQualifiers();
958
959  // Exact qualifier match -> return the pointer type we're converting to.
960  if (CanonToType.getLocalQualifiers() == Quals)
961    return ToType;
962
963  // Just build a canonical type that has the right qualifiers.
964  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
965}
966
967static bool isNullPointerConstantForConversion(Expr *Expr,
968                                               bool InOverloadResolution,
969                                               ASTContext &Context) {
970  // Handle value-dependent integral null pointer constants correctly.
971  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
972  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
973      Expr->getType()->isIntegralType())
974    return !InOverloadResolution;
975
976  return Expr->isNullPointerConstant(Context,
977                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
978                                        : Expr::NPC_ValueDependentIsNull);
979}
980
981/// IsPointerConversion - Determines whether the conversion of the
982/// expression From, which has the (possibly adjusted) type FromType,
983/// can be converted to the type ToType via a pointer conversion (C++
984/// 4.10). If so, returns true and places the converted type (that
985/// might differ from ToType in its cv-qualifiers at some level) into
986/// ConvertedType.
987///
988/// This routine also supports conversions to and from block pointers
989/// and conversions with Objective-C's 'id', 'id<protocols...>', and
990/// pointers to interfaces. FIXME: Once we've determined the
991/// appropriate overloading rules for Objective-C, we may want to
992/// split the Objective-C checks into a different routine; however,
993/// GCC seems to consider all of these conversions to be pointer
994/// conversions, so for now they live here. IncompatibleObjC will be
995/// set if the conversion is an allowed Objective-C conversion that
996/// should result in a warning.
997bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
998                               bool InOverloadResolution,
999                               QualType& ConvertedType,
1000                               bool &IncompatibleObjC) {
1001  IncompatibleObjC = false;
1002  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1003    return true;
1004
1005  // Conversion from a null pointer constant to any Objective-C pointer type.
1006  if (ToType->isObjCObjectPointerType() &&
1007      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1008    ConvertedType = ToType;
1009    return true;
1010  }
1011
1012  // Blocks: Block pointers can be converted to void*.
1013  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1014      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1015    ConvertedType = ToType;
1016    return true;
1017  }
1018  // Blocks: A null pointer constant can be converted to a block
1019  // pointer type.
1020  if (ToType->isBlockPointerType() &&
1021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1022    ConvertedType = ToType;
1023    return true;
1024  }
1025
1026  // If the left-hand-side is nullptr_t, the right side can be a null
1027  // pointer constant.
1028  if (ToType->isNullPtrType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1035  if (!ToTypePtr)
1036    return false;
1037
1038  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1039  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1040    ConvertedType = ToType;
1041    return true;
1042  }
1043
1044  // Beyond this point, both types need to be pointers
1045  // , including objective-c pointers.
1046  QualType ToPointeeType = ToTypePtr->getPointeeType();
1047  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1048    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1049                                                       ToType, Context);
1050    return true;
1051
1052  }
1053  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1054  if (!FromTypePtr)
1055    return false;
1056
1057  QualType FromPointeeType = FromTypePtr->getPointeeType();
1058
1059  // An rvalue of type "pointer to cv T," where T is an object type,
1060  // can be converted to an rvalue of type "pointer to cv void" (C++
1061  // 4.10p2).
1062  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1063    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1064                                                       ToPointeeType,
1065                                                       ToType, Context);
1066    return true;
1067  }
1068
1069  // When we're overloading in C, we allow a special kind of pointer
1070  // conversion for compatible-but-not-identical pointee types.
1071  if (!getLangOptions().CPlusPlus &&
1072      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1073    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1074                                                       ToPointeeType,
1075                                                       ToType, Context);
1076    return true;
1077  }
1078
1079  // C++ [conv.ptr]p3:
1080  //
1081  //   An rvalue of type "pointer to cv D," where D is a class type,
1082  //   can be converted to an rvalue of type "pointer to cv B," where
1083  //   B is a base class (clause 10) of D. If B is an inaccessible
1084  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1085  //   necessitates this conversion is ill-formed. The result of the
1086  //   conversion is a pointer to the base class sub-object of the
1087  //   derived class object. The null pointer value is converted to
1088  //   the null pointer value of the destination type.
1089  //
1090  // Note that we do not check for ambiguity or inaccessibility
1091  // here. That is handled by CheckPointerConversion.
1092  if (getLangOptions().CPlusPlus &&
1093      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1094      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1095      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1096      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1097    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1098                                                       ToPointeeType,
1099                                                       ToType, Context);
1100    return true;
1101  }
1102
1103  return false;
1104}
1105
1106/// isObjCPointerConversion - Determines whether this is an
1107/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1108/// with the same arguments and return values.
1109bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1110                                   QualType& ConvertedType,
1111                                   bool &IncompatibleObjC) {
1112  if (!getLangOptions().ObjC1)
1113    return false;
1114
1115  // First, we handle all conversions on ObjC object pointer types.
1116  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1117  const ObjCObjectPointerType *FromObjCPtr =
1118    FromType->getAs<ObjCObjectPointerType>();
1119
1120  if (ToObjCPtr && FromObjCPtr) {
1121    // Objective C++: We're able to convert between "id" or "Class" and a
1122    // pointer to any interface (in both directions).
1123    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1124      ConvertedType = ToType;
1125      return true;
1126    }
1127    // Conversions with Objective-C's id<...>.
1128    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1129         ToObjCPtr->isObjCQualifiedIdType()) &&
1130        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1131                                                  /*compare=*/false)) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Objective C++: We're able to convert from a pointer to an
1136    // interface to a pointer to a different interface.
1137    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1138      ConvertedType = ToType;
1139      return true;
1140    }
1141
1142    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1143      // Okay: this is some kind of implicit downcast of Objective-C
1144      // interfaces, which is permitted. However, we're going to
1145      // complain about it.
1146      IncompatibleObjC = true;
1147      ConvertedType = FromType;
1148      return true;
1149    }
1150  }
1151  // Beyond this point, both types need to be C pointers or block pointers.
1152  QualType ToPointeeType;
1153  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1154    ToPointeeType = ToCPtr->getPointeeType();
1155  else if (const BlockPointerType *ToBlockPtr =
1156            ToType->getAs<BlockPointerType>()) {
1157    // Objective C++: We're able to convert from a pointer to any object
1158    // to a block pointer type.
1159    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1160      ConvertedType = ToType;
1161      return true;
1162    }
1163    ToPointeeType = ToBlockPtr->getPointeeType();
1164  }
1165  else if (FromType->getAs<BlockPointerType>() &&
1166           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1167    // Objective C++: We're able to convert from a block pointer type to a
1168    // pointer to any object.
1169    ConvertedType = ToType;
1170    return true;
1171  }
1172  else
1173    return false;
1174
1175  QualType FromPointeeType;
1176  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1177    FromPointeeType = FromCPtr->getPointeeType();
1178  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1179    FromPointeeType = FromBlockPtr->getPointeeType();
1180  else
1181    return false;
1182
1183  // If we have pointers to pointers, recursively check whether this
1184  // is an Objective-C conversion.
1185  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1186      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1187                              IncompatibleObjC)) {
1188    // We always complain about this conversion.
1189    IncompatibleObjC = true;
1190    ConvertedType = ToType;
1191    return true;
1192  }
1193  // Allow conversion of pointee being objective-c pointer to another one;
1194  // as in I* to id.
1195  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1196      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1197      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1198                              IncompatibleObjC)) {
1199    ConvertedType = ToType;
1200    return true;
1201  }
1202
1203  // If we have pointers to functions or blocks, check whether the only
1204  // differences in the argument and result types are in Objective-C
1205  // pointer conversions. If so, we permit the conversion (but
1206  // complain about it).
1207  const FunctionProtoType *FromFunctionType
1208    = FromPointeeType->getAs<FunctionProtoType>();
1209  const FunctionProtoType *ToFunctionType
1210    = ToPointeeType->getAs<FunctionProtoType>();
1211  if (FromFunctionType && ToFunctionType) {
1212    // If the function types are exactly the same, this isn't an
1213    // Objective-C pointer conversion.
1214    if (Context.getCanonicalType(FromPointeeType)
1215          == Context.getCanonicalType(ToPointeeType))
1216      return false;
1217
1218    // Perform the quick checks that will tell us whether these
1219    // function types are obviously different.
1220    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1221        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1222        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1223      return false;
1224
1225    bool HasObjCConversion = false;
1226    if (Context.getCanonicalType(FromFunctionType->getResultType())
1227          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1228      // Okay, the types match exactly. Nothing to do.
1229    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1230                                       ToFunctionType->getResultType(),
1231                                       ConvertedType, IncompatibleObjC)) {
1232      // Okay, we have an Objective-C pointer conversion.
1233      HasObjCConversion = true;
1234    } else {
1235      // Function types are too different. Abort.
1236      return false;
1237    }
1238
1239    // Check argument types.
1240    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1241         ArgIdx != NumArgs; ++ArgIdx) {
1242      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1243      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1244      if (Context.getCanonicalType(FromArgType)
1245            == Context.getCanonicalType(ToArgType)) {
1246        // Okay, the types match exactly. Nothing to do.
1247      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1248                                         ConvertedType, IncompatibleObjC)) {
1249        // Okay, we have an Objective-C pointer conversion.
1250        HasObjCConversion = true;
1251      } else {
1252        // Argument types are too different. Abort.
1253        return false;
1254      }
1255    }
1256
1257    if (HasObjCConversion) {
1258      // We had an Objective-C conversion. Allow this pointer
1259      // conversion, but complain about it.
1260      ConvertedType = ToType;
1261      IncompatibleObjC = true;
1262      return true;
1263    }
1264  }
1265
1266  return false;
1267}
1268
1269/// CheckPointerConversion - Check the pointer conversion from the
1270/// expression From to the type ToType. This routine checks for
1271/// ambiguous or inaccessible derived-to-base pointer
1272/// conversions for which IsPointerConversion has already returned
1273/// true. It returns true and produces a diagnostic if there was an
1274/// error, or returns false otherwise.
1275bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1276                                  CastExpr::CastKind &Kind,
1277                                  bool IgnoreBaseAccess) {
1278  QualType FromType = From->getType();
1279
1280  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1281    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1282      QualType FromPointeeType = FromPtrType->getPointeeType(),
1283               ToPointeeType   = ToPtrType->getPointeeType();
1284
1285      if (FromPointeeType->isRecordType() &&
1286          ToPointeeType->isRecordType()) {
1287        // We must have a derived-to-base conversion. Check an
1288        // ambiguous or inaccessible conversion.
1289        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1290                                         From->getExprLoc(),
1291                                         From->getSourceRange(),
1292                                         IgnoreBaseAccess))
1293          return true;
1294
1295        // The conversion was successful.
1296        Kind = CastExpr::CK_DerivedToBase;
1297      }
1298    }
1299  if (const ObjCObjectPointerType *FromPtrType =
1300        FromType->getAs<ObjCObjectPointerType>())
1301    if (const ObjCObjectPointerType *ToPtrType =
1302          ToType->getAs<ObjCObjectPointerType>()) {
1303      // Objective-C++ conversions are always okay.
1304      // FIXME: We should have a different class of conversions for the
1305      // Objective-C++ implicit conversions.
1306      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1307        return false;
1308
1309  }
1310  return false;
1311}
1312
1313/// IsMemberPointerConversion - Determines whether the conversion of the
1314/// expression From, which has the (possibly adjusted) type FromType, can be
1315/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1316/// If so, returns true and places the converted type (that might differ from
1317/// ToType in its cv-qualifiers at some level) into ConvertedType.
1318bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1319                                     QualType ToType,
1320                                     bool InOverloadResolution,
1321                                     QualType &ConvertedType) {
1322  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1323  if (!ToTypePtr)
1324    return false;
1325
1326  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1327  if (From->isNullPointerConstant(Context,
1328                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1329                                        : Expr::NPC_ValueDependentIsNull)) {
1330    ConvertedType = ToType;
1331    return true;
1332  }
1333
1334  // Otherwise, both types have to be member pointers.
1335  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1336  if (!FromTypePtr)
1337    return false;
1338
1339  // A pointer to member of B can be converted to a pointer to member of D,
1340  // where D is derived from B (C++ 4.11p2).
1341  QualType FromClass(FromTypePtr->getClass(), 0);
1342  QualType ToClass(ToTypePtr->getClass(), 0);
1343  // FIXME: What happens when these are dependent? Is this function even called?
1344
1345  if (IsDerivedFrom(ToClass, FromClass)) {
1346    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1347                                                 ToClass.getTypePtr());
1348    return true;
1349  }
1350
1351  return false;
1352}
1353
1354/// CheckMemberPointerConversion - Check the member pointer conversion from the
1355/// expression From to the type ToType. This routine checks for ambiguous or
1356/// virtual or inaccessible base-to-derived member pointer conversions
1357/// for which IsMemberPointerConversion has already returned true. It returns
1358/// true and produces a diagnostic if there was an error, or returns false
1359/// otherwise.
1360bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1361                                        CastExpr::CastKind &Kind,
1362                                        bool IgnoreBaseAccess) {
1363  QualType FromType = From->getType();
1364  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1365  if (!FromPtrType) {
1366    // This must be a null pointer to member pointer conversion
1367    assert(From->isNullPointerConstant(Context,
1368                                       Expr::NPC_ValueDependentIsNull) &&
1369           "Expr must be null pointer constant!");
1370    Kind = CastExpr::CK_NullToMemberPointer;
1371    return false;
1372  }
1373
1374  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1375  assert(ToPtrType && "No member pointer cast has a target type "
1376                      "that is not a member pointer.");
1377
1378  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1379  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1380
1381  // FIXME: What about dependent types?
1382  assert(FromClass->isRecordType() && "Pointer into non-class.");
1383  assert(ToClass->isRecordType() && "Pointer into non-class.");
1384
1385  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1386                     /*DetectVirtual=*/true);
1387  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1388  assert(DerivationOkay &&
1389         "Should not have been called if derivation isn't OK.");
1390  (void)DerivationOkay;
1391
1392  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1393                                  getUnqualifiedType())) {
1394    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1395    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1396      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1397    return true;
1398  }
1399
1400  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1401    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1402      << FromClass << ToClass << QualType(VBase, 0)
1403      << From->getSourceRange();
1404    return true;
1405  }
1406
1407  if (!IgnoreBaseAccess)
1408    CheckBaseClassAccess(From->getExprLoc(), /*BaseToDerived*/ true,
1409                         FromClass, ToClass, Paths.front());
1410
1411  // Must be a base to derived member conversion.
1412  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1413  return false;
1414}
1415
1416/// IsQualificationConversion - Determines whether the conversion from
1417/// an rvalue of type FromType to ToType is a qualification conversion
1418/// (C++ 4.4).
1419bool
1420Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1421  FromType = Context.getCanonicalType(FromType);
1422  ToType = Context.getCanonicalType(ToType);
1423
1424  // If FromType and ToType are the same type, this is not a
1425  // qualification conversion.
1426  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1427    return false;
1428
1429  // (C++ 4.4p4):
1430  //   A conversion can add cv-qualifiers at levels other than the first
1431  //   in multi-level pointers, subject to the following rules: [...]
1432  bool PreviousToQualsIncludeConst = true;
1433  bool UnwrappedAnyPointer = false;
1434  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1435    // Within each iteration of the loop, we check the qualifiers to
1436    // determine if this still looks like a qualification
1437    // conversion. Then, if all is well, we unwrap one more level of
1438    // pointers or pointers-to-members and do it all again
1439    // until there are no more pointers or pointers-to-members left to
1440    // unwrap.
1441    UnwrappedAnyPointer = true;
1442
1443    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1444    //      2,j, and similarly for volatile.
1445    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1446      return false;
1447
1448    //   -- if the cv 1,j and cv 2,j are different, then const is in
1449    //      every cv for 0 < k < j.
1450    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1451        && !PreviousToQualsIncludeConst)
1452      return false;
1453
1454    // Keep track of whether all prior cv-qualifiers in the "to" type
1455    // include const.
1456    PreviousToQualsIncludeConst
1457      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1458  }
1459
1460  // We are left with FromType and ToType being the pointee types
1461  // after unwrapping the original FromType and ToType the same number
1462  // of types. If we unwrapped any pointers, and if FromType and
1463  // ToType have the same unqualified type (since we checked
1464  // qualifiers above), then this is a qualification conversion.
1465  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1466}
1467
1468/// Determines whether there is a user-defined conversion sequence
1469/// (C++ [over.ics.user]) that converts expression From to the type
1470/// ToType. If such a conversion exists, User will contain the
1471/// user-defined conversion sequence that performs such a conversion
1472/// and this routine will return true. Otherwise, this routine returns
1473/// false and User is unspecified.
1474///
1475/// \param AllowConversionFunctions true if the conversion should
1476/// consider conversion functions at all. If false, only constructors
1477/// will be considered.
1478///
1479/// \param AllowExplicit  true if the conversion should consider C++0x
1480/// "explicit" conversion functions as well as non-explicit conversion
1481/// functions (C++0x [class.conv.fct]p2).
1482///
1483/// \param ForceRValue  true if the expression should be treated as an rvalue
1484/// for overload resolution.
1485/// \param UserCast true if looking for user defined conversion for a static
1486/// cast.
1487OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1488                                          UserDefinedConversionSequence& User,
1489                                            OverloadCandidateSet& CandidateSet,
1490                                                bool AllowConversionFunctions,
1491                                                bool AllowExplicit,
1492                                                bool ForceRValue,
1493                                                bool UserCast) {
1494  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1495    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1496      // We're not going to find any constructors.
1497    } else if (CXXRecordDecl *ToRecordDecl
1498                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1499      // C++ [over.match.ctor]p1:
1500      //   When objects of class type are direct-initialized (8.5), or
1501      //   copy-initialized from an expression of the same or a
1502      //   derived class type (8.5), overload resolution selects the
1503      //   constructor. [...] For copy-initialization, the candidate
1504      //   functions are all the converting constructors (12.3.1) of
1505      //   that class. The argument list is the expression-list within
1506      //   the parentheses of the initializer.
1507      bool SuppressUserConversions = !UserCast;
1508      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1509          IsDerivedFrom(From->getType(), ToType)) {
1510        SuppressUserConversions = false;
1511        AllowConversionFunctions = false;
1512      }
1513
1514      DeclarationName ConstructorName
1515        = Context.DeclarationNames.getCXXConstructorName(
1516                          Context.getCanonicalType(ToType).getUnqualifiedType());
1517      DeclContext::lookup_iterator Con, ConEnd;
1518      for (llvm::tie(Con, ConEnd)
1519             = ToRecordDecl->lookup(ConstructorName);
1520           Con != ConEnd; ++Con) {
1521        // Find the constructor (which may be a template).
1522        CXXConstructorDecl *Constructor = 0;
1523        FunctionTemplateDecl *ConstructorTmpl
1524          = dyn_cast<FunctionTemplateDecl>(*Con);
1525        if (ConstructorTmpl)
1526          Constructor
1527            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1528        else
1529          Constructor = cast<CXXConstructorDecl>(*Con);
1530
1531        if (!Constructor->isInvalidDecl() &&
1532            Constructor->isConvertingConstructor(AllowExplicit)) {
1533          if (ConstructorTmpl)
1534            AddTemplateOverloadCandidate(ConstructorTmpl,
1535                                         ConstructorTmpl->getAccess(),
1536                                         /*ExplicitArgs*/ 0,
1537                                         &From, 1, CandidateSet,
1538                                         SuppressUserConversions, ForceRValue);
1539          else
1540            // Allow one user-defined conversion when user specifies a
1541            // From->ToType conversion via an static cast (c-style, etc).
1542            AddOverloadCandidate(Constructor, Constructor->getAccess(),
1543                                 &From, 1, CandidateSet,
1544                                 SuppressUserConversions, ForceRValue);
1545        }
1546      }
1547    }
1548  }
1549
1550  if (!AllowConversionFunctions) {
1551    // Don't allow any conversion functions to enter the overload set.
1552  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1553                                 PDiag(0)
1554                                   << From->getSourceRange())) {
1555    // No conversion functions from incomplete types.
1556  } else if (const RecordType *FromRecordType
1557               = From->getType()->getAs<RecordType>()) {
1558    if (CXXRecordDecl *FromRecordDecl
1559         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1560      // Add all of the conversion functions as candidates.
1561      const UnresolvedSetImpl *Conversions
1562        = FromRecordDecl->getVisibleConversionFunctions();
1563      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1564             E = Conversions->end(); I != E; ++I) {
1565        NamedDecl *D = *I;
1566        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1567        if (isa<UsingShadowDecl>(D))
1568          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1569
1570        CXXConversionDecl *Conv;
1571        FunctionTemplateDecl *ConvTemplate;
1572        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1573          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1574        else
1575          Conv = dyn_cast<CXXConversionDecl>(*I);
1576
1577        if (AllowExplicit || !Conv->isExplicit()) {
1578          if (ConvTemplate)
1579            AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
1580                                           ActingContext, From, ToType,
1581                                           CandidateSet);
1582          else
1583            AddConversionCandidate(Conv, I.getAccess(), ActingContext,
1584                                   From, ToType, CandidateSet);
1585        }
1586      }
1587    }
1588  }
1589
1590  OverloadCandidateSet::iterator Best;
1591  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1592    case OR_Success:
1593      // Record the standard conversion we used and the conversion function.
1594      if (CXXConstructorDecl *Constructor
1595            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1596        // C++ [over.ics.user]p1:
1597        //   If the user-defined conversion is specified by a
1598        //   constructor (12.3.1), the initial standard conversion
1599        //   sequence converts the source type to the type required by
1600        //   the argument of the constructor.
1601        //
1602        QualType ThisType = Constructor->getThisType(Context);
1603        if (Best->Conversions[0].isEllipsis())
1604          User.EllipsisConversion = true;
1605        else {
1606          User.Before = Best->Conversions[0].Standard;
1607          User.EllipsisConversion = false;
1608        }
1609        User.ConversionFunction = Constructor;
1610        User.After.setAsIdentityConversion();
1611        User.After.setFromType(
1612          ThisType->getAs<PointerType>()->getPointeeType());
1613        User.After.setAllToTypes(ToType);
1614        return OR_Success;
1615      } else if (CXXConversionDecl *Conversion
1616                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1617        // C++ [over.ics.user]p1:
1618        //
1619        //   [...] If the user-defined conversion is specified by a
1620        //   conversion function (12.3.2), the initial standard
1621        //   conversion sequence converts the source type to the
1622        //   implicit object parameter of the conversion function.
1623        User.Before = Best->Conversions[0].Standard;
1624        User.ConversionFunction = Conversion;
1625        User.EllipsisConversion = false;
1626
1627        // C++ [over.ics.user]p2:
1628        //   The second standard conversion sequence converts the
1629        //   result of the user-defined conversion to the target type
1630        //   for the sequence. Since an implicit conversion sequence
1631        //   is an initialization, the special rules for
1632        //   initialization by user-defined conversion apply when
1633        //   selecting the best user-defined conversion for a
1634        //   user-defined conversion sequence (see 13.3.3 and
1635        //   13.3.3.1).
1636        User.After = Best->FinalConversion;
1637        return OR_Success;
1638      } else {
1639        assert(false && "Not a constructor or conversion function?");
1640        return OR_No_Viable_Function;
1641      }
1642
1643    case OR_No_Viable_Function:
1644      return OR_No_Viable_Function;
1645    case OR_Deleted:
1646      // No conversion here! We're done.
1647      return OR_Deleted;
1648
1649    case OR_Ambiguous:
1650      return OR_Ambiguous;
1651    }
1652
1653  return OR_No_Viable_Function;
1654}
1655
1656bool
1657Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1658  ImplicitConversionSequence ICS;
1659  OverloadCandidateSet CandidateSet(From->getExprLoc());
1660  OverloadingResult OvResult =
1661    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1662                            CandidateSet, true, false, false);
1663  if (OvResult == OR_Ambiguous)
1664    Diag(From->getSourceRange().getBegin(),
1665         diag::err_typecheck_ambiguous_condition)
1666          << From->getType() << ToType << From->getSourceRange();
1667  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1668    Diag(From->getSourceRange().getBegin(),
1669         diag::err_typecheck_nonviable_condition)
1670    << From->getType() << ToType << From->getSourceRange();
1671  else
1672    return false;
1673  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1674  return true;
1675}
1676
1677/// CompareImplicitConversionSequences - Compare two implicit
1678/// conversion sequences to determine whether one is better than the
1679/// other or if they are indistinguishable (C++ 13.3.3.2).
1680ImplicitConversionSequence::CompareKind
1681Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1682                                         const ImplicitConversionSequence& ICS2)
1683{
1684  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1685  // conversion sequences (as defined in 13.3.3.1)
1686  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1687  //      conversion sequence than a user-defined conversion sequence or
1688  //      an ellipsis conversion sequence, and
1689  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1690  //      conversion sequence than an ellipsis conversion sequence
1691  //      (13.3.3.1.3).
1692  //
1693  // C++0x [over.best.ics]p10:
1694  //   For the purpose of ranking implicit conversion sequences as
1695  //   described in 13.3.3.2, the ambiguous conversion sequence is
1696  //   treated as a user-defined sequence that is indistinguishable
1697  //   from any other user-defined conversion sequence.
1698  if (ICS1.getKind() < ICS2.getKind()) {
1699    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1700      return ImplicitConversionSequence::Better;
1701  } else if (ICS2.getKind() < ICS1.getKind()) {
1702    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1703      return ImplicitConversionSequence::Worse;
1704  }
1705
1706  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1707    return ImplicitConversionSequence::Indistinguishable;
1708
1709  // Two implicit conversion sequences of the same form are
1710  // indistinguishable conversion sequences unless one of the
1711  // following rules apply: (C++ 13.3.3.2p3):
1712  if (ICS1.isStandard())
1713    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1714  else if (ICS1.isUserDefined()) {
1715    // User-defined conversion sequence U1 is a better conversion
1716    // sequence than another user-defined conversion sequence U2 if
1717    // they contain the same user-defined conversion function or
1718    // constructor and if the second standard conversion sequence of
1719    // U1 is better than the second standard conversion sequence of
1720    // U2 (C++ 13.3.3.2p3).
1721    if (ICS1.UserDefined.ConversionFunction ==
1722          ICS2.UserDefined.ConversionFunction)
1723      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1724                                                ICS2.UserDefined.After);
1725  }
1726
1727  return ImplicitConversionSequence::Indistinguishable;
1728}
1729
1730// Per 13.3.3.2p3, compare the given standard conversion sequences to
1731// determine if one is a proper subset of the other.
1732static ImplicitConversionSequence::CompareKind
1733compareStandardConversionSubsets(ASTContext &Context,
1734                                 const StandardConversionSequence& SCS1,
1735                                 const StandardConversionSequence& SCS2) {
1736  ImplicitConversionSequence::CompareKind Result
1737    = ImplicitConversionSequence::Indistinguishable;
1738
1739  if (SCS1.Second != SCS2.Second) {
1740    if (SCS1.Second == ICK_Identity)
1741      Result = ImplicitConversionSequence::Better;
1742    else if (SCS2.Second == ICK_Identity)
1743      Result = ImplicitConversionSequence::Worse;
1744    else
1745      return ImplicitConversionSequence::Indistinguishable;
1746  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1747    return ImplicitConversionSequence::Indistinguishable;
1748
1749  if (SCS1.Third == SCS2.Third) {
1750    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1751                             : ImplicitConversionSequence::Indistinguishable;
1752  }
1753
1754  if (SCS1.Third == ICK_Identity)
1755    return Result == ImplicitConversionSequence::Worse
1756             ? ImplicitConversionSequence::Indistinguishable
1757             : ImplicitConversionSequence::Better;
1758
1759  if (SCS2.Third == ICK_Identity)
1760    return Result == ImplicitConversionSequence::Better
1761             ? ImplicitConversionSequence::Indistinguishable
1762             : ImplicitConversionSequence::Worse;
1763
1764  return ImplicitConversionSequence::Indistinguishable;
1765}
1766
1767/// CompareStandardConversionSequences - Compare two standard
1768/// conversion sequences to determine whether one is better than the
1769/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1770ImplicitConversionSequence::CompareKind
1771Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1772                                         const StandardConversionSequence& SCS2)
1773{
1774  // Standard conversion sequence S1 is a better conversion sequence
1775  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1776
1777  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1778  //     sequences in the canonical form defined by 13.3.3.1.1,
1779  //     excluding any Lvalue Transformation; the identity conversion
1780  //     sequence is considered to be a subsequence of any
1781  //     non-identity conversion sequence) or, if not that,
1782  if (ImplicitConversionSequence::CompareKind CK
1783        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1784    return CK;
1785
1786  //  -- the rank of S1 is better than the rank of S2 (by the rules
1787  //     defined below), or, if not that,
1788  ImplicitConversionRank Rank1 = SCS1.getRank();
1789  ImplicitConversionRank Rank2 = SCS2.getRank();
1790  if (Rank1 < Rank2)
1791    return ImplicitConversionSequence::Better;
1792  else if (Rank2 < Rank1)
1793    return ImplicitConversionSequence::Worse;
1794
1795  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1796  // are indistinguishable unless one of the following rules
1797  // applies:
1798
1799  //   A conversion that is not a conversion of a pointer, or
1800  //   pointer to member, to bool is better than another conversion
1801  //   that is such a conversion.
1802  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1803    return SCS2.isPointerConversionToBool()
1804             ? ImplicitConversionSequence::Better
1805             : ImplicitConversionSequence::Worse;
1806
1807  // C++ [over.ics.rank]p4b2:
1808  //
1809  //   If class B is derived directly or indirectly from class A,
1810  //   conversion of B* to A* is better than conversion of B* to
1811  //   void*, and conversion of A* to void* is better than conversion
1812  //   of B* to void*.
1813  bool SCS1ConvertsToVoid
1814    = SCS1.isPointerConversionToVoidPointer(Context);
1815  bool SCS2ConvertsToVoid
1816    = SCS2.isPointerConversionToVoidPointer(Context);
1817  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1818    // Exactly one of the conversion sequences is a conversion to
1819    // a void pointer; it's the worse conversion.
1820    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1821                              : ImplicitConversionSequence::Worse;
1822  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1823    // Neither conversion sequence converts to a void pointer; compare
1824    // their derived-to-base conversions.
1825    if (ImplicitConversionSequence::CompareKind DerivedCK
1826          = CompareDerivedToBaseConversions(SCS1, SCS2))
1827      return DerivedCK;
1828  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1829    // Both conversion sequences are conversions to void
1830    // pointers. Compare the source types to determine if there's an
1831    // inheritance relationship in their sources.
1832    QualType FromType1 = SCS1.getFromType();
1833    QualType FromType2 = SCS2.getFromType();
1834
1835    // Adjust the types we're converting from via the array-to-pointer
1836    // conversion, if we need to.
1837    if (SCS1.First == ICK_Array_To_Pointer)
1838      FromType1 = Context.getArrayDecayedType(FromType1);
1839    if (SCS2.First == ICK_Array_To_Pointer)
1840      FromType2 = Context.getArrayDecayedType(FromType2);
1841
1842    QualType FromPointee1
1843      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1844    QualType FromPointee2
1845      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1846
1847    if (IsDerivedFrom(FromPointee2, FromPointee1))
1848      return ImplicitConversionSequence::Better;
1849    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1850      return ImplicitConversionSequence::Worse;
1851
1852    // Objective-C++: If one interface is more specific than the
1853    // other, it is the better one.
1854    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1855    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1856    if (FromIface1 && FromIface1) {
1857      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1858        return ImplicitConversionSequence::Better;
1859      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1860        return ImplicitConversionSequence::Worse;
1861    }
1862  }
1863
1864  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1865  // bullet 3).
1866  if (ImplicitConversionSequence::CompareKind QualCK
1867        = CompareQualificationConversions(SCS1, SCS2))
1868    return QualCK;
1869
1870  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1871    // C++0x [over.ics.rank]p3b4:
1872    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1873    //      implicit object parameter of a non-static member function declared
1874    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1875    //      rvalue and S2 binds an lvalue reference.
1876    // FIXME: We don't know if we're dealing with the implicit object parameter,
1877    // or if the member function in this case has a ref qualifier.
1878    // (Of course, we don't have ref qualifiers yet.)
1879    if (SCS1.RRefBinding != SCS2.RRefBinding)
1880      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1881                              : ImplicitConversionSequence::Worse;
1882
1883    // C++ [over.ics.rank]p3b4:
1884    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1885    //      which the references refer are the same type except for
1886    //      top-level cv-qualifiers, and the type to which the reference
1887    //      initialized by S2 refers is more cv-qualified than the type
1888    //      to which the reference initialized by S1 refers.
1889    QualType T1 = SCS1.getToType(2);
1890    QualType T2 = SCS2.getToType(2);
1891    T1 = Context.getCanonicalType(T1);
1892    T2 = Context.getCanonicalType(T2);
1893    Qualifiers T1Quals, T2Quals;
1894    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1895    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1896    if (UnqualT1 == UnqualT2) {
1897      // If the type is an array type, promote the element qualifiers to the type
1898      // for comparison.
1899      if (isa<ArrayType>(T1) && T1Quals)
1900        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1901      if (isa<ArrayType>(T2) && T2Quals)
1902        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1903      if (T2.isMoreQualifiedThan(T1))
1904        return ImplicitConversionSequence::Better;
1905      else if (T1.isMoreQualifiedThan(T2))
1906        return ImplicitConversionSequence::Worse;
1907    }
1908  }
1909
1910  return ImplicitConversionSequence::Indistinguishable;
1911}
1912
1913/// CompareQualificationConversions - Compares two standard conversion
1914/// sequences to determine whether they can be ranked based on their
1915/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1916ImplicitConversionSequence::CompareKind
1917Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1918                                      const StandardConversionSequence& SCS2) {
1919  // C++ 13.3.3.2p3:
1920  //  -- S1 and S2 differ only in their qualification conversion and
1921  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1922  //     cv-qualification signature of type T1 is a proper subset of
1923  //     the cv-qualification signature of type T2, and S1 is not the
1924  //     deprecated string literal array-to-pointer conversion (4.2).
1925  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1926      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1927    return ImplicitConversionSequence::Indistinguishable;
1928
1929  // FIXME: the example in the standard doesn't use a qualification
1930  // conversion (!)
1931  QualType T1 = SCS1.getToType(2);
1932  QualType T2 = SCS2.getToType(2);
1933  T1 = Context.getCanonicalType(T1);
1934  T2 = Context.getCanonicalType(T2);
1935  Qualifiers T1Quals, T2Quals;
1936  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1937  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1938
1939  // If the types are the same, we won't learn anything by unwrapped
1940  // them.
1941  if (UnqualT1 == UnqualT2)
1942    return ImplicitConversionSequence::Indistinguishable;
1943
1944  // If the type is an array type, promote the element qualifiers to the type
1945  // for comparison.
1946  if (isa<ArrayType>(T1) && T1Quals)
1947    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1948  if (isa<ArrayType>(T2) && T2Quals)
1949    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1950
1951  ImplicitConversionSequence::CompareKind Result
1952    = ImplicitConversionSequence::Indistinguishable;
1953  while (UnwrapSimilarPointerTypes(T1, T2)) {
1954    // Within each iteration of the loop, we check the qualifiers to
1955    // determine if this still looks like a qualification
1956    // conversion. Then, if all is well, we unwrap one more level of
1957    // pointers or pointers-to-members and do it all again
1958    // until there are no more pointers or pointers-to-members left
1959    // to unwrap. This essentially mimics what
1960    // IsQualificationConversion does, but here we're checking for a
1961    // strict subset of qualifiers.
1962    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1963      // The qualifiers are the same, so this doesn't tell us anything
1964      // about how the sequences rank.
1965      ;
1966    else if (T2.isMoreQualifiedThan(T1)) {
1967      // T1 has fewer qualifiers, so it could be the better sequence.
1968      if (Result == ImplicitConversionSequence::Worse)
1969        // Neither has qualifiers that are a subset of the other's
1970        // qualifiers.
1971        return ImplicitConversionSequence::Indistinguishable;
1972
1973      Result = ImplicitConversionSequence::Better;
1974    } else if (T1.isMoreQualifiedThan(T2)) {
1975      // T2 has fewer qualifiers, so it could be the better sequence.
1976      if (Result == ImplicitConversionSequence::Better)
1977        // Neither has qualifiers that are a subset of the other's
1978        // qualifiers.
1979        return ImplicitConversionSequence::Indistinguishable;
1980
1981      Result = ImplicitConversionSequence::Worse;
1982    } else {
1983      // Qualifiers are disjoint.
1984      return ImplicitConversionSequence::Indistinguishable;
1985    }
1986
1987    // If the types after this point are equivalent, we're done.
1988    if (Context.hasSameUnqualifiedType(T1, T2))
1989      break;
1990  }
1991
1992  // Check that the winning standard conversion sequence isn't using
1993  // the deprecated string literal array to pointer conversion.
1994  switch (Result) {
1995  case ImplicitConversionSequence::Better:
1996    if (SCS1.DeprecatedStringLiteralToCharPtr)
1997      Result = ImplicitConversionSequence::Indistinguishable;
1998    break;
1999
2000  case ImplicitConversionSequence::Indistinguishable:
2001    break;
2002
2003  case ImplicitConversionSequence::Worse:
2004    if (SCS2.DeprecatedStringLiteralToCharPtr)
2005      Result = ImplicitConversionSequence::Indistinguishable;
2006    break;
2007  }
2008
2009  return Result;
2010}
2011
2012/// CompareDerivedToBaseConversions - Compares two standard conversion
2013/// sequences to determine whether they can be ranked based on their
2014/// various kinds of derived-to-base conversions (C++
2015/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2016/// conversions between Objective-C interface types.
2017ImplicitConversionSequence::CompareKind
2018Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2019                                      const StandardConversionSequence& SCS2) {
2020  QualType FromType1 = SCS1.getFromType();
2021  QualType ToType1 = SCS1.getToType(1);
2022  QualType FromType2 = SCS2.getFromType();
2023  QualType ToType2 = SCS2.getToType(1);
2024
2025  // Adjust the types we're converting from via the array-to-pointer
2026  // conversion, if we need to.
2027  if (SCS1.First == ICK_Array_To_Pointer)
2028    FromType1 = Context.getArrayDecayedType(FromType1);
2029  if (SCS2.First == ICK_Array_To_Pointer)
2030    FromType2 = Context.getArrayDecayedType(FromType2);
2031
2032  // Canonicalize all of the types.
2033  FromType1 = Context.getCanonicalType(FromType1);
2034  ToType1 = Context.getCanonicalType(ToType1);
2035  FromType2 = Context.getCanonicalType(FromType2);
2036  ToType2 = Context.getCanonicalType(ToType2);
2037
2038  // C++ [over.ics.rank]p4b3:
2039  //
2040  //   If class B is derived directly or indirectly from class A and
2041  //   class C is derived directly or indirectly from B,
2042  //
2043  // For Objective-C, we let A, B, and C also be Objective-C
2044  // interfaces.
2045
2046  // Compare based on pointer conversions.
2047  if (SCS1.Second == ICK_Pointer_Conversion &&
2048      SCS2.Second == ICK_Pointer_Conversion &&
2049      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2050      FromType1->isPointerType() && FromType2->isPointerType() &&
2051      ToType1->isPointerType() && ToType2->isPointerType()) {
2052    QualType FromPointee1
2053      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2054    QualType ToPointee1
2055      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2056    QualType FromPointee2
2057      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2058    QualType ToPointee2
2059      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2060
2061    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2062    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2063    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2064    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2065
2066    //   -- conversion of C* to B* is better than conversion of C* to A*,
2067    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2068      if (IsDerivedFrom(ToPointee1, ToPointee2))
2069        return ImplicitConversionSequence::Better;
2070      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2071        return ImplicitConversionSequence::Worse;
2072
2073      if (ToIface1 && ToIface2) {
2074        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2075          return ImplicitConversionSequence::Better;
2076        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2077          return ImplicitConversionSequence::Worse;
2078      }
2079    }
2080
2081    //   -- conversion of B* to A* is better than conversion of C* to A*,
2082    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2083      if (IsDerivedFrom(FromPointee2, FromPointee1))
2084        return ImplicitConversionSequence::Better;
2085      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2086        return ImplicitConversionSequence::Worse;
2087
2088      if (FromIface1 && FromIface2) {
2089        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2090          return ImplicitConversionSequence::Better;
2091        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2092          return ImplicitConversionSequence::Worse;
2093      }
2094    }
2095  }
2096
2097  // Ranking of member-pointer types.
2098  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2099      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2100      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2101    const MemberPointerType * FromMemPointer1 =
2102                                        FromType1->getAs<MemberPointerType>();
2103    const MemberPointerType * ToMemPointer1 =
2104                                          ToType1->getAs<MemberPointerType>();
2105    const MemberPointerType * FromMemPointer2 =
2106                                          FromType2->getAs<MemberPointerType>();
2107    const MemberPointerType * ToMemPointer2 =
2108                                          ToType2->getAs<MemberPointerType>();
2109    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2110    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2111    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2112    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2113    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2114    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2115    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2116    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2117    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2118    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2119      if (IsDerivedFrom(ToPointee1, ToPointee2))
2120        return ImplicitConversionSequence::Worse;
2121      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2122        return ImplicitConversionSequence::Better;
2123    }
2124    // conversion of B::* to C::* is better than conversion of A::* to C::*
2125    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2126      if (IsDerivedFrom(FromPointee1, FromPointee2))
2127        return ImplicitConversionSequence::Better;
2128      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2129        return ImplicitConversionSequence::Worse;
2130    }
2131  }
2132
2133  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2134      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2135      SCS1.Second == ICK_Derived_To_Base) {
2136    //   -- conversion of C to B is better than conversion of C to A,
2137    //   -- binding of an expression of type C to a reference of type
2138    //      B& is better than binding an expression of type C to a
2139    //      reference of type A&,
2140    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2141        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2142      if (IsDerivedFrom(ToType1, ToType2))
2143        return ImplicitConversionSequence::Better;
2144      else if (IsDerivedFrom(ToType2, ToType1))
2145        return ImplicitConversionSequence::Worse;
2146    }
2147
2148    //   -- conversion of B to A is better than conversion of C to A.
2149    //   -- binding of an expression of type B to a reference of type
2150    //      A& is better than binding an expression of type C to a
2151    //      reference of type A&,
2152    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2153        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2154      if (IsDerivedFrom(FromType2, FromType1))
2155        return ImplicitConversionSequence::Better;
2156      else if (IsDerivedFrom(FromType1, FromType2))
2157        return ImplicitConversionSequence::Worse;
2158    }
2159  }
2160
2161  return ImplicitConversionSequence::Indistinguishable;
2162}
2163
2164/// TryCopyInitialization - Try to copy-initialize a value of type
2165/// ToType from the expression From. Return the implicit conversion
2166/// sequence required to pass this argument, which may be a bad
2167/// conversion sequence (meaning that the argument cannot be passed to
2168/// a parameter of this type). If @p SuppressUserConversions, then we
2169/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2170/// then we treat @p From as an rvalue, even if it is an lvalue.
2171ImplicitConversionSequence
2172Sema::TryCopyInitialization(Expr *From, QualType ToType,
2173                            bool SuppressUserConversions, bool ForceRValue,
2174                            bool InOverloadResolution) {
2175  if (ToType->isReferenceType()) {
2176    ImplicitConversionSequence ICS;
2177    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
2178    CheckReferenceInit(From, ToType,
2179                       /*FIXME:*/From->getLocStart(),
2180                       SuppressUserConversions,
2181                       /*AllowExplicit=*/false,
2182                       ForceRValue,
2183                       &ICS);
2184    return ICS;
2185  } else {
2186    return TryImplicitConversion(From, ToType,
2187                                 SuppressUserConversions,
2188                                 /*AllowExplicit=*/false,
2189                                 ForceRValue,
2190                                 InOverloadResolution);
2191  }
2192}
2193
2194/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2195/// the expression @p From. Returns true (and emits a diagnostic) if there was
2196/// an error, returns false if the initialization succeeded. Elidable should
2197/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2198/// differently in C++0x for this case.
2199bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2200                                     AssignmentAction Action, bool Elidable) {
2201  if (!getLangOptions().CPlusPlus) {
2202    // In C, argument passing is the same as performing an assignment.
2203    QualType FromType = From->getType();
2204
2205    AssignConvertType ConvTy =
2206      CheckSingleAssignmentConstraints(ToType, From);
2207    if (ConvTy != Compatible &&
2208        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2209      ConvTy = Compatible;
2210
2211    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2212                                    FromType, From, Action);
2213  }
2214
2215  if (ToType->isReferenceType())
2216    return CheckReferenceInit(From, ToType,
2217                              /*FIXME:*/From->getLocStart(),
2218                              /*SuppressUserConversions=*/false,
2219                              /*AllowExplicit=*/false,
2220                              /*ForceRValue=*/false);
2221
2222  if (!PerformImplicitConversion(From, ToType, Action,
2223                                 /*AllowExplicit=*/false, Elidable))
2224    return false;
2225  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2226    return Diag(From->getSourceRange().getBegin(),
2227                diag::err_typecheck_convert_incompatible)
2228      << ToType << From->getType() << Action << From->getSourceRange();
2229  return true;
2230}
2231
2232/// TryObjectArgumentInitialization - Try to initialize the object
2233/// parameter of the given member function (@c Method) from the
2234/// expression @p From.
2235ImplicitConversionSequence
2236Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2237                                      CXXMethodDecl *Method,
2238                                      CXXRecordDecl *ActingContext) {
2239  QualType ClassType = Context.getTypeDeclType(ActingContext);
2240  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2241  //                 const volatile object.
2242  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2243    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2244  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2245
2246  // Set up the conversion sequence as a "bad" conversion, to allow us
2247  // to exit early.
2248  ImplicitConversionSequence ICS;
2249
2250  // We need to have an object of class type.
2251  QualType FromType = OrigFromType;
2252  if (const PointerType *PT = FromType->getAs<PointerType>())
2253    FromType = PT->getPointeeType();
2254
2255  assert(FromType->isRecordType());
2256
2257  // The implicit object parameter is has the type "reference to cv X",
2258  // where X is the class of which the function is a member
2259  // (C++ [over.match.funcs]p4). However, when finding an implicit
2260  // conversion sequence for the argument, we are not allowed to
2261  // create temporaries or perform user-defined conversions
2262  // (C++ [over.match.funcs]p5). We perform a simplified version of
2263  // reference binding here, that allows class rvalues to bind to
2264  // non-constant references.
2265
2266  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2267  // with the implicit object parameter (C++ [over.match.funcs]p5).
2268  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2269  if (ImplicitParamType.getCVRQualifiers()
2270                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2271      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2272    ICS.setBad(BadConversionSequence::bad_qualifiers,
2273               OrigFromType, ImplicitParamType);
2274    return ICS;
2275  }
2276
2277  // Check that we have either the same type or a derived type. It
2278  // affects the conversion rank.
2279  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2280  ImplicitConversionKind SecondKind;
2281  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2282    SecondKind = ICK_Identity;
2283  } else if (IsDerivedFrom(FromType, ClassType))
2284    SecondKind = ICK_Derived_To_Base;
2285  else {
2286    ICS.setBad(BadConversionSequence::unrelated_class,
2287               FromType, ImplicitParamType);
2288    return ICS;
2289  }
2290
2291  // Success. Mark this as a reference binding.
2292  ICS.setStandard();
2293  ICS.Standard.setAsIdentityConversion();
2294  ICS.Standard.Second = SecondKind;
2295  ICS.Standard.setFromType(FromType);
2296  ICS.Standard.setAllToTypes(ImplicitParamType);
2297  ICS.Standard.ReferenceBinding = true;
2298  ICS.Standard.DirectBinding = true;
2299  ICS.Standard.RRefBinding = false;
2300  return ICS;
2301}
2302
2303/// PerformObjectArgumentInitialization - Perform initialization of
2304/// the implicit object parameter for the given Method with the given
2305/// expression.
2306bool
2307Sema::PerformObjectArgumentInitialization(Expr *&From,
2308                                          NestedNameSpecifier *Qualifier,
2309                                          CXXMethodDecl *Method) {
2310  QualType FromRecordType, DestType;
2311  QualType ImplicitParamRecordType  =
2312    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2313
2314  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2315    FromRecordType = PT->getPointeeType();
2316    DestType = Method->getThisType(Context);
2317  } else {
2318    FromRecordType = From->getType();
2319    DestType = ImplicitParamRecordType;
2320  }
2321
2322  // Note that we always use the true parent context when performing
2323  // the actual argument initialization.
2324  ImplicitConversionSequence ICS
2325    = TryObjectArgumentInitialization(From->getType(), Method,
2326                                      Method->getParent());
2327  if (ICS.isBad())
2328    return Diag(From->getSourceRange().getBegin(),
2329                diag::err_implicit_object_parameter_init)
2330       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2331
2332  if (ICS.Standard.Second == ICK_Derived_To_Base)
2333    return PerformObjectMemberConversion(From, Qualifier, Method);
2334
2335  if (!Context.hasSameType(From->getType(), DestType))
2336    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2337                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2338  return false;
2339}
2340
2341/// TryContextuallyConvertToBool - Attempt to contextually convert the
2342/// expression From to bool (C++0x [conv]p3).
2343ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2344  return TryImplicitConversion(From, Context.BoolTy,
2345                               // FIXME: Are these flags correct?
2346                               /*SuppressUserConversions=*/false,
2347                               /*AllowExplicit=*/true,
2348                               /*ForceRValue=*/false,
2349                               /*InOverloadResolution=*/false);
2350}
2351
2352/// PerformContextuallyConvertToBool - Perform a contextual conversion
2353/// of the expression From to bool (C++0x [conv]p3).
2354bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2355  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2356  if (!ICS.isBad())
2357    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2358
2359  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2360    return  Diag(From->getSourceRange().getBegin(),
2361                 diag::err_typecheck_bool_condition)
2362                  << From->getType() << From->getSourceRange();
2363  return true;
2364}
2365
2366/// AddOverloadCandidate - Adds the given function to the set of
2367/// candidate functions, using the given function call arguments.  If
2368/// @p SuppressUserConversions, then don't allow user-defined
2369/// conversions via constructors or conversion operators.
2370/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2371/// hacky way to implement the overloading rules for elidable copy
2372/// initialization in C++0x (C++0x 12.8p15).
2373///
2374/// \para PartialOverloading true if we are performing "partial" overloading
2375/// based on an incomplete set of function arguments. This feature is used by
2376/// code completion.
2377void
2378Sema::AddOverloadCandidate(FunctionDecl *Function,
2379                           AccessSpecifier Access,
2380                           Expr **Args, unsigned NumArgs,
2381                           OverloadCandidateSet& CandidateSet,
2382                           bool SuppressUserConversions,
2383                           bool ForceRValue,
2384                           bool PartialOverloading) {
2385  const FunctionProtoType* Proto
2386    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2387  assert(Proto && "Functions without a prototype cannot be overloaded");
2388  assert(!Function->getDescribedFunctionTemplate() &&
2389         "Use AddTemplateOverloadCandidate for function templates");
2390
2391  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2392    if (!isa<CXXConstructorDecl>(Method)) {
2393      // If we get here, it's because we're calling a member function
2394      // that is named without a member access expression (e.g.,
2395      // "this->f") that was either written explicitly or created
2396      // implicitly. This can happen with a qualified call to a member
2397      // function, e.g., X::f(). We use an empty type for the implied
2398      // object argument (C++ [over.call.func]p3), and the acting context
2399      // is irrelevant.
2400      AddMethodCandidate(Method, Access, Method->getParent(),
2401                         QualType(), Args, NumArgs, CandidateSet,
2402                         SuppressUserConversions, ForceRValue);
2403      return;
2404    }
2405    // We treat a constructor like a non-member function, since its object
2406    // argument doesn't participate in overload resolution.
2407  }
2408
2409  if (!CandidateSet.isNewCandidate(Function))
2410    return;
2411
2412  // Overload resolution is always an unevaluated context.
2413  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2414
2415  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2416    // C++ [class.copy]p3:
2417    //   A member function template is never instantiated to perform the copy
2418    //   of a class object to an object of its class type.
2419    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2420    if (NumArgs == 1 &&
2421        Constructor->isCopyConstructorLikeSpecialization() &&
2422        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2423         IsDerivedFrom(Args[0]->getType(), ClassType)))
2424      return;
2425  }
2426
2427  // Add this candidate
2428  CandidateSet.push_back(OverloadCandidate());
2429  OverloadCandidate& Candidate = CandidateSet.back();
2430  Candidate.Function = Function;
2431  Candidate.Access = Access;
2432  Candidate.Viable = true;
2433  Candidate.IsSurrogate = false;
2434  Candidate.IgnoreObjectArgument = false;
2435
2436  unsigned NumArgsInProto = Proto->getNumArgs();
2437
2438  // (C++ 13.3.2p2): A candidate function having fewer than m
2439  // parameters is viable only if it has an ellipsis in its parameter
2440  // list (8.3.5).
2441  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2442      !Proto->isVariadic()) {
2443    Candidate.Viable = false;
2444    Candidate.FailureKind = ovl_fail_too_many_arguments;
2445    return;
2446  }
2447
2448  // (C++ 13.3.2p2): A candidate function having more than m parameters
2449  // is viable only if the (m+1)st parameter has a default argument
2450  // (8.3.6). For the purposes of overload resolution, the
2451  // parameter list is truncated on the right, so that there are
2452  // exactly m parameters.
2453  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2454  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2455    // Not enough arguments.
2456    Candidate.Viable = false;
2457    Candidate.FailureKind = ovl_fail_too_few_arguments;
2458    return;
2459  }
2460
2461  // Determine the implicit conversion sequences for each of the
2462  // arguments.
2463  Candidate.Conversions.resize(NumArgs);
2464  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2465    if (ArgIdx < NumArgsInProto) {
2466      // (C++ 13.3.2p3): for F to be a viable function, there shall
2467      // exist for each argument an implicit conversion sequence
2468      // (13.3.3.1) that converts that argument to the corresponding
2469      // parameter of F.
2470      QualType ParamType = Proto->getArgType(ArgIdx);
2471      Candidate.Conversions[ArgIdx]
2472        = TryCopyInitialization(Args[ArgIdx], ParamType,
2473                                SuppressUserConversions, ForceRValue,
2474                                /*InOverloadResolution=*/true);
2475      if (Candidate.Conversions[ArgIdx].isBad()) {
2476        Candidate.Viable = false;
2477        Candidate.FailureKind = ovl_fail_bad_conversion;
2478        break;
2479      }
2480    } else {
2481      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2482      // argument for which there is no corresponding parameter is
2483      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2484      Candidate.Conversions[ArgIdx].setEllipsis();
2485    }
2486  }
2487}
2488
2489/// \brief Add all of the function declarations in the given function set to
2490/// the overload canddiate set.
2491void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2492                                 Expr **Args, unsigned NumArgs,
2493                                 OverloadCandidateSet& CandidateSet,
2494                                 bool SuppressUserConversions) {
2495  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2496    // FIXME: using declarations
2497    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2498      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2499        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
2500                           cast<CXXMethodDecl>(FD)->getParent(),
2501                           Args[0]->getType(), Args + 1, NumArgs - 1,
2502                           CandidateSet, SuppressUserConversions);
2503      else
2504        AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
2505                             SuppressUserConversions);
2506    } else {
2507      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2508      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2509          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2510        AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
2511                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2512                                   /*FIXME: explicit args */ 0,
2513                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2514                                   CandidateSet,
2515                                   SuppressUserConversions);
2516      else
2517        AddTemplateOverloadCandidate(FunTmpl, AS_none,
2518                                     /*FIXME: explicit args */ 0,
2519                                     Args, NumArgs, CandidateSet,
2520                                     SuppressUserConversions);
2521    }
2522  }
2523}
2524
2525/// AddMethodCandidate - Adds a named decl (which is some kind of
2526/// method) as a method candidate to the given overload set.
2527void Sema::AddMethodCandidate(NamedDecl *Decl,
2528                              AccessSpecifier Access,
2529                              QualType ObjectType,
2530                              Expr **Args, unsigned NumArgs,
2531                              OverloadCandidateSet& CandidateSet,
2532                              bool SuppressUserConversions, bool ForceRValue) {
2533  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2534
2535  if (isa<UsingShadowDecl>(Decl))
2536    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2537
2538  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2539    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2540           "Expected a member function template");
2541    AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
2542                               ObjectType, Args, NumArgs,
2543                               CandidateSet,
2544                               SuppressUserConversions,
2545                               ForceRValue);
2546  } else {
2547    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
2548                       ObjectType, Args, NumArgs,
2549                       CandidateSet, SuppressUserConversions, ForceRValue);
2550  }
2551}
2552
2553/// AddMethodCandidate - Adds the given C++ member function to the set
2554/// of candidate functions, using the given function call arguments
2555/// and the object argument (@c Object). For example, in a call
2556/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2557/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2558/// allow user-defined conversions via constructors or conversion
2559/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2560/// a slightly hacky way to implement the overloading rules for elidable copy
2561/// initialization in C++0x (C++0x 12.8p15).
2562void
2563Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
2564                         CXXRecordDecl *ActingContext, QualType ObjectType,
2565                         Expr **Args, unsigned NumArgs,
2566                         OverloadCandidateSet& CandidateSet,
2567                         bool SuppressUserConversions, bool ForceRValue) {
2568  const FunctionProtoType* Proto
2569    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2570  assert(Proto && "Methods without a prototype cannot be overloaded");
2571  assert(!isa<CXXConstructorDecl>(Method) &&
2572         "Use AddOverloadCandidate for constructors");
2573
2574  if (!CandidateSet.isNewCandidate(Method))
2575    return;
2576
2577  // Overload resolution is always an unevaluated context.
2578  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2579
2580  // Add this candidate
2581  CandidateSet.push_back(OverloadCandidate());
2582  OverloadCandidate& Candidate = CandidateSet.back();
2583  Candidate.Function = Method;
2584  Candidate.Access = Access;
2585  Candidate.IsSurrogate = false;
2586  Candidate.IgnoreObjectArgument = false;
2587
2588  unsigned NumArgsInProto = Proto->getNumArgs();
2589
2590  // (C++ 13.3.2p2): A candidate function having fewer than m
2591  // parameters is viable only if it has an ellipsis in its parameter
2592  // list (8.3.5).
2593  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2594    Candidate.Viable = false;
2595    Candidate.FailureKind = ovl_fail_too_many_arguments;
2596    return;
2597  }
2598
2599  // (C++ 13.3.2p2): A candidate function having more than m parameters
2600  // is viable only if the (m+1)st parameter has a default argument
2601  // (8.3.6). For the purposes of overload resolution, the
2602  // parameter list is truncated on the right, so that there are
2603  // exactly m parameters.
2604  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2605  if (NumArgs < MinRequiredArgs) {
2606    // Not enough arguments.
2607    Candidate.Viable = false;
2608    Candidate.FailureKind = ovl_fail_too_few_arguments;
2609    return;
2610  }
2611
2612  Candidate.Viable = true;
2613  Candidate.Conversions.resize(NumArgs + 1);
2614
2615  if (Method->isStatic() || ObjectType.isNull())
2616    // The implicit object argument is ignored.
2617    Candidate.IgnoreObjectArgument = true;
2618  else {
2619    // Determine the implicit conversion sequence for the object
2620    // parameter.
2621    Candidate.Conversions[0]
2622      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2623    if (Candidate.Conversions[0].isBad()) {
2624      Candidate.Viable = false;
2625      Candidate.FailureKind = ovl_fail_bad_conversion;
2626      return;
2627    }
2628  }
2629
2630  // Determine the implicit conversion sequences for each of the
2631  // arguments.
2632  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2633    if (ArgIdx < NumArgsInProto) {
2634      // (C++ 13.3.2p3): for F to be a viable function, there shall
2635      // exist for each argument an implicit conversion sequence
2636      // (13.3.3.1) that converts that argument to the corresponding
2637      // parameter of F.
2638      QualType ParamType = Proto->getArgType(ArgIdx);
2639      Candidate.Conversions[ArgIdx + 1]
2640        = TryCopyInitialization(Args[ArgIdx], ParamType,
2641                                SuppressUserConversions, ForceRValue,
2642                                /*InOverloadResolution=*/true);
2643      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2644        Candidate.Viable = false;
2645        Candidate.FailureKind = ovl_fail_bad_conversion;
2646        break;
2647      }
2648    } else {
2649      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2650      // argument for which there is no corresponding parameter is
2651      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2652      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2653    }
2654  }
2655}
2656
2657/// \brief Add a C++ member function template as a candidate to the candidate
2658/// set, using template argument deduction to produce an appropriate member
2659/// function template specialization.
2660void
2661Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2662                                 AccessSpecifier Access,
2663                                 CXXRecordDecl *ActingContext,
2664                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2665                                 QualType ObjectType,
2666                                 Expr **Args, unsigned NumArgs,
2667                                 OverloadCandidateSet& CandidateSet,
2668                                 bool SuppressUserConversions,
2669                                 bool ForceRValue) {
2670  if (!CandidateSet.isNewCandidate(MethodTmpl))
2671    return;
2672
2673  // C++ [over.match.funcs]p7:
2674  //   In each case where a candidate is a function template, candidate
2675  //   function template specializations are generated using template argument
2676  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2677  //   candidate functions in the usual way.113) A given name can refer to one
2678  //   or more function templates and also to a set of overloaded non-template
2679  //   functions. In such a case, the candidate functions generated from each
2680  //   function template are combined with the set of non-template candidate
2681  //   functions.
2682  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2683  FunctionDecl *Specialization = 0;
2684  if (TemplateDeductionResult Result
2685      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2686                                Args, NumArgs, Specialization, Info)) {
2687        // FIXME: Record what happened with template argument deduction, so
2688        // that we can give the user a beautiful diagnostic.
2689        (void)Result;
2690        return;
2691      }
2692
2693  // Add the function template specialization produced by template argument
2694  // deduction as a candidate.
2695  assert(Specialization && "Missing member function template specialization?");
2696  assert(isa<CXXMethodDecl>(Specialization) &&
2697         "Specialization is not a member function?");
2698  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
2699                     ActingContext, ObjectType, Args, NumArgs,
2700                     CandidateSet, SuppressUserConversions, ForceRValue);
2701}
2702
2703/// \brief Add a C++ function template specialization as a candidate
2704/// in the candidate set, using template argument deduction to produce
2705/// an appropriate function template specialization.
2706void
2707Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2708                                   AccessSpecifier Access,
2709                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2710                                   Expr **Args, unsigned NumArgs,
2711                                   OverloadCandidateSet& CandidateSet,
2712                                   bool SuppressUserConversions,
2713                                   bool ForceRValue) {
2714  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2715    return;
2716
2717  // C++ [over.match.funcs]p7:
2718  //   In each case where a candidate is a function template, candidate
2719  //   function template specializations are generated using template argument
2720  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2721  //   candidate functions in the usual way.113) A given name can refer to one
2722  //   or more function templates and also to a set of overloaded non-template
2723  //   functions. In such a case, the candidate functions generated from each
2724  //   function template are combined with the set of non-template candidate
2725  //   functions.
2726  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2727  FunctionDecl *Specialization = 0;
2728  if (TemplateDeductionResult Result
2729        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2730                                  Args, NumArgs, Specialization, Info)) {
2731    CandidateSet.push_back(OverloadCandidate());
2732    OverloadCandidate &Candidate = CandidateSet.back();
2733    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2734    Candidate.Access = Access;
2735    Candidate.Viable = false;
2736    Candidate.FailureKind = ovl_fail_bad_deduction;
2737    Candidate.IsSurrogate = false;
2738    Candidate.IgnoreObjectArgument = false;
2739
2740    // TODO: record more information about failed template arguments
2741    Candidate.DeductionFailure.Result = Result;
2742    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2743    return;
2744  }
2745
2746  // Add the function template specialization produced by template argument
2747  // deduction as a candidate.
2748  assert(Specialization && "Missing function template specialization?");
2749  AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
2750                       SuppressUserConversions, ForceRValue);
2751}
2752
2753/// AddConversionCandidate - Add a C++ conversion function as a
2754/// candidate in the candidate set (C++ [over.match.conv],
2755/// C++ [over.match.copy]). From is the expression we're converting from,
2756/// and ToType is the type that we're eventually trying to convert to
2757/// (which may or may not be the same type as the type that the
2758/// conversion function produces).
2759void
2760Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2761                             AccessSpecifier Access,
2762                             CXXRecordDecl *ActingContext,
2763                             Expr *From, QualType ToType,
2764                             OverloadCandidateSet& CandidateSet) {
2765  assert(!Conversion->getDescribedFunctionTemplate() &&
2766         "Conversion function templates use AddTemplateConversionCandidate");
2767
2768  if (!CandidateSet.isNewCandidate(Conversion))
2769    return;
2770
2771  // Overload resolution is always an unevaluated context.
2772  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2773
2774  // Add this candidate
2775  CandidateSet.push_back(OverloadCandidate());
2776  OverloadCandidate& Candidate = CandidateSet.back();
2777  Candidate.Function = Conversion;
2778  Candidate.Access = Access;
2779  Candidate.IsSurrogate = false;
2780  Candidate.IgnoreObjectArgument = false;
2781  Candidate.FinalConversion.setAsIdentityConversion();
2782  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2783  Candidate.FinalConversion.setAllToTypes(ToType);
2784
2785  // Determine the implicit conversion sequence for the implicit
2786  // object parameter.
2787  Candidate.Viable = true;
2788  Candidate.Conversions.resize(1);
2789  Candidate.Conversions[0]
2790    = TryObjectArgumentInitialization(From->getType(), Conversion,
2791                                      ActingContext);
2792  // Conversion functions to a different type in the base class is visible in
2793  // the derived class.  So, a derived to base conversion should not participate
2794  // in overload resolution.
2795  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2796    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2797  if (Candidate.Conversions[0].isBad()) {
2798    Candidate.Viable = false;
2799    Candidate.FailureKind = ovl_fail_bad_conversion;
2800    return;
2801  }
2802
2803  // We won't go through a user-define type conversion function to convert a
2804  // derived to base as such conversions are given Conversion Rank. They only
2805  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2806  QualType FromCanon
2807    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2808  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2809  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2810    Candidate.Viable = false;
2811    Candidate.FailureKind = ovl_fail_trivial_conversion;
2812    return;
2813  }
2814
2815
2816  // To determine what the conversion from the result of calling the
2817  // conversion function to the type we're eventually trying to
2818  // convert to (ToType), we need to synthesize a call to the
2819  // conversion function and attempt copy initialization from it. This
2820  // makes sure that we get the right semantics with respect to
2821  // lvalues/rvalues and the type. Fortunately, we can allocate this
2822  // call on the stack and we don't need its arguments to be
2823  // well-formed.
2824  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2825                            From->getLocStart());
2826  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2827                                CastExpr::CK_FunctionToPointerDecay,
2828                                &ConversionRef, false);
2829
2830  // Note that it is safe to allocate CallExpr on the stack here because
2831  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2832  // allocator).
2833  CallExpr Call(Context, &ConversionFn, 0, 0,
2834                Conversion->getConversionType().getNonReferenceType(),
2835                From->getLocStart());
2836  ImplicitConversionSequence ICS =
2837    TryCopyInitialization(&Call, ToType,
2838                          /*SuppressUserConversions=*/true,
2839                          /*ForceRValue=*/false,
2840                          /*InOverloadResolution=*/false);
2841
2842  switch (ICS.getKind()) {
2843  case ImplicitConversionSequence::StandardConversion:
2844    Candidate.FinalConversion = ICS.Standard;
2845    break;
2846
2847  case ImplicitConversionSequence::BadConversion:
2848    Candidate.Viable = false;
2849    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2850    break;
2851
2852  default:
2853    assert(false &&
2854           "Can only end up with a standard conversion sequence or failure");
2855  }
2856}
2857
2858/// \brief Adds a conversion function template specialization
2859/// candidate to the overload set, using template argument deduction
2860/// to deduce the template arguments of the conversion function
2861/// template from the type that we are converting to (C++
2862/// [temp.deduct.conv]).
2863void
2864Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2865                                     AccessSpecifier Access,
2866                                     CXXRecordDecl *ActingDC,
2867                                     Expr *From, QualType ToType,
2868                                     OverloadCandidateSet &CandidateSet) {
2869  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2870         "Only conversion function templates permitted here");
2871
2872  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2873    return;
2874
2875  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2876  CXXConversionDecl *Specialization = 0;
2877  if (TemplateDeductionResult Result
2878        = DeduceTemplateArguments(FunctionTemplate, ToType,
2879                                  Specialization, Info)) {
2880    // FIXME: Record what happened with template argument deduction, so
2881    // that we can give the user a beautiful diagnostic.
2882    (void)Result;
2883    return;
2884  }
2885
2886  // Add the conversion function template specialization produced by
2887  // template argument deduction as a candidate.
2888  assert(Specialization && "Missing function template specialization?");
2889  AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
2890                         CandidateSet);
2891}
2892
2893/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2894/// converts the given @c Object to a function pointer via the
2895/// conversion function @c Conversion, and then attempts to call it
2896/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2897/// the type of function that we'll eventually be calling.
2898void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2899                                 AccessSpecifier Access,
2900                                 CXXRecordDecl *ActingContext,
2901                                 const FunctionProtoType *Proto,
2902                                 QualType ObjectType,
2903                                 Expr **Args, unsigned NumArgs,
2904                                 OverloadCandidateSet& CandidateSet) {
2905  if (!CandidateSet.isNewCandidate(Conversion))
2906    return;
2907
2908  // Overload resolution is always an unevaluated context.
2909  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2910
2911  CandidateSet.push_back(OverloadCandidate());
2912  OverloadCandidate& Candidate = CandidateSet.back();
2913  Candidate.Function = 0;
2914  Candidate.Access = Access;
2915  Candidate.Surrogate = Conversion;
2916  Candidate.Viable = true;
2917  Candidate.IsSurrogate = true;
2918  Candidate.IgnoreObjectArgument = false;
2919  Candidate.Conversions.resize(NumArgs + 1);
2920
2921  // Determine the implicit conversion sequence for the implicit
2922  // object parameter.
2923  ImplicitConversionSequence ObjectInit
2924    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2925  if (ObjectInit.isBad()) {
2926    Candidate.Viable = false;
2927    Candidate.FailureKind = ovl_fail_bad_conversion;
2928    Candidate.Conversions[0] = ObjectInit;
2929    return;
2930  }
2931
2932  // The first conversion is actually a user-defined conversion whose
2933  // first conversion is ObjectInit's standard conversion (which is
2934  // effectively a reference binding). Record it as such.
2935  Candidate.Conversions[0].setUserDefined();
2936  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2937  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2938  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2939  Candidate.Conversions[0].UserDefined.After
2940    = Candidate.Conversions[0].UserDefined.Before;
2941  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2942
2943  // Find the
2944  unsigned NumArgsInProto = Proto->getNumArgs();
2945
2946  // (C++ 13.3.2p2): A candidate function having fewer than m
2947  // parameters is viable only if it has an ellipsis in its parameter
2948  // list (8.3.5).
2949  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2950    Candidate.Viable = false;
2951    Candidate.FailureKind = ovl_fail_too_many_arguments;
2952    return;
2953  }
2954
2955  // Function types don't have any default arguments, so just check if
2956  // we have enough arguments.
2957  if (NumArgs < NumArgsInProto) {
2958    // Not enough arguments.
2959    Candidate.Viable = false;
2960    Candidate.FailureKind = ovl_fail_too_few_arguments;
2961    return;
2962  }
2963
2964  // Determine the implicit conversion sequences for each of the
2965  // arguments.
2966  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2967    if (ArgIdx < NumArgsInProto) {
2968      // (C++ 13.3.2p3): for F to be a viable function, there shall
2969      // exist for each argument an implicit conversion sequence
2970      // (13.3.3.1) that converts that argument to the corresponding
2971      // parameter of F.
2972      QualType ParamType = Proto->getArgType(ArgIdx);
2973      Candidate.Conversions[ArgIdx + 1]
2974        = TryCopyInitialization(Args[ArgIdx], ParamType,
2975                                /*SuppressUserConversions=*/false,
2976                                /*ForceRValue=*/false,
2977                                /*InOverloadResolution=*/false);
2978      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2979        Candidate.Viable = false;
2980        Candidate.FailureKind = ovl_fail_bad_conversion;
2981        break;
2982      }
2983    } else {
2984      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2985      // argument for which there is no corresponding parameter is
2986      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2987      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2988    }
2989  }
2990}
2991
2992// FIXME: This will eventually be removed, once we've migrated all of the
2993// operator overloading logic over to the scheme used by binary operators, which
2994// works for template instantiation.
2995void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2996                                 SourceLocation OpLoc,
2997                                 Expr **Args, unsigned NumArgs,
2998                                 OverloadCandidateSet& CandidateSet,
2999                                 SourceRange OpRange) {
3000  UnresolvedSet<16> Fns;
3001
3002  QualType T1 = Args[0]->getType();
3003  QualType T2;
3004  if (NumArgs > 1)
3005    T2 = Args[1]->getType();
3006
3007  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3008  if (S)
3009    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3010  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3011  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3012                                       CandidateSet);
3013  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3014  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3015}
3016
3017/// \brief Add overload candidates for overloaded operators that are
3018/// member functions.
3019///
3020/// Add the overloaded operator candidates that are member functions
3021/// for the operator Op that was used in an operator expression such
3022/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3023/// CandidateSet will store the added overload candidates. (C++
3024/// [over.match.oper]).
3025void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3026                                       SourceLocation OpLoc,
3027                                       Expr **Args, unsigned NumArgs,
3028                                       OverloadCandidateSet& CandidateSet,
3029                                       SourceRange OpRange) {
3030  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3031
3032  // C++ [over.match.oper]p3:
3033  //   For a unary operator @ with an operand of a type whose
3034  //   cv-unqualified version is T1, and for a binary operator @ with
3035  //   a left operand of a type whose cv-unqualified version is T1 and
3036  //   a right operand of a type whose cv-unqualified version is T2,
3037  //   three sets of candidate functions, designated member
3038  //   candidates, non-member candidates and built-in candidates, are
3039  //   constructed as follows:
3040  QualType T1 = Args[0]->getType();
3041  QualType T2;
3042  if (NumArgs > 1)
3043    T2 = Args[1]->getType();
3044
3045  //     -- If T1 is a class type, the set of member candidates is the
3046  //        result of the qualified lookup of T1::operator@
3047  //        (13.3.1.1.1); otherwise, the set of member candidates is
3048  //        empty.
3049  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3050    // Complete the type if it can be completed. Otherwise, we're done.
3051    if (RequireCompleteType(OpLoc, T1, PDiag()))
3052      return;
3053
3054    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3055    LookupQualifiedName(Operators, T1Rec->getDecl());
3056    Operators.suppressDiagnostics();
3057
3058    for (LookupResult::iterator Oper = Operators.begin(),
3059                             OperEnd = Operators.end();
3060         Oper != OperEnd;
3061         ++Oper)
3062      AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
3063                         Args + 1, NumArgs - 1, CandidateSet,
3064                         /* SuppressUserConversions = */ false);
3065  }
3066}
3067
3068/// AddBuiltinCandidate - Add a candidate for a built-in
3069/// operator. ResultTy and ParamTys are the result and parameter types
3070/// of the built-in candidate, respectively. Args and NumArgs are the
3071/// arguments being passed to the candidate. IsAssignmentOperator
3072/// should be true when this built-in candidate is an assignment
3073/// operator. NumContextualBoolArguments is the number of arguments
3074/// (at the beginning of the argument list) that will be contextually
3075/// converted to bool.
3076void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3077                               Expr **Args, unsigned NumArgs,
3078                               OverloadCandidateSet& CandidateSet,
3079                               bool IsAssignmentOperator,
3080                               unsigned NumContextualBoolArguments) {
3081  // Overload resolution is always an unevaluated context.
3082  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3083
3084  // Add this candidate
3085  CandidateSet.push_back(OverloadCandidate());
3086  OverloadCandidate& Candidate = CandidateSet.back();
3087  Candidate.Function = 0;
3088  Candidate.Access = AS_none;
3089  Candidate.IsSurrogate = false;
3090  Candidate.IgnoreObjectArgument = false;
3091  Candidate.BuiltinTypes.ResultTy = ResultTy;
3092  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3093    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3094
3095  // Determine the implicit conversion sequences for each of the
3096  // arguments.
3097  Candidate.Viable = true;
3098  Candidate.Conversions.resize(NumArgs);
3099  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3100    // C++ [over.match.oper]p4:
3101    //   For the built-in assignment operators, conversions of the
3102    //   left operand are restricted as follows:
3103    //     -- no temporaries are introduced to hold the left operand, and
3104    //     -- no user-defined conversions are applied to the left
3105    //        operand to achieve a type match with the left-most
3106    //        parameter of a built-in candidate.
3107    //
3108    // We block these conversions by turning off user-defined
3109    // conversions, since that is the only way that initialization of
3110    // a reference to a non-class type can occur from something that
3111    // is not of the same type.
3112    if (ArgIdx < NumContextualBoolArguments) {
3113      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3114             "Contextual conversion to bool requires bool type");
3115      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3116    } else {
3117      Candidate.Conversions[ArgIdx]
3118        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3119                                ArgIdx == 0 && IsAssignmentOperator,
3120                                /*ForceRValue=*/false,
3121                                /*InOverloadResolution=*/false);
3122    }
3123    if (Candidate.Conversions[ArgIdx].isBad()) {
3124      Candidate.Viable = false;
3125      Candidate.FailureKind = ovl_fail_bad_conversion;
3126      break;
3127    }
3128  }
3129}
3130
3131/// BuiltinCandidateTypeSet - A set of types that will be used for the
3132/// candidate operator functions for built-in operators (C++
3133/// [over.built]). The types are separated into pointer types and
3134/// enumeration types.
3135class BuiltinCandidateTypeSet  {
3136  /// TypeSet - A set of types.
3137  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3138
3139  /// PointerTypes - The set of pointer types that will be used in the
3140  /// built-in candidates.
3141  TypeSet PointerTypes;
3142
3143  /// MemberPointerTypes - The set of member pointer types that will be
3144  /// used in the built-in candidates.
3145  TypeSet MemberPointerTypes;
3146
3147  /// EnumerationTypes - The set of enumeration types that will be
3148  /// used in the built-in candidates.
3149  TypeSet EnumerationTypes;
3150
3151  /// Sema - The semantic analysis instance where we are building the
3152  /// candidate type set.
3153  Sema &SemaRef;
3154
3155  /// Context - The AST context in which we will build the type sets.
3156  ASTContext &Context;
3157
3158  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3159                                               const Qualifiers &VisibleQuals);
3160  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3161
3162public:
3163  /// iterator - Iterates through the types that are part of the set.
3164  typedef TypeSet::iterator iterator;
3165
3166  BuiltinCandidateTypeSet(Sema &SemaRef)
3167    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3168
3169  void AddTypesConvertedFrom(QualType Ty,
3170                             SourceLocation Loc,
3171                             bool AllowUserConversions,
3172                             bool AllowExplicitConversions,
3173                             const Qualifiers &VisibleTypeConversionsQuals);
3174
3175  /// pointer_begin - First pointer type found;
3176  iterator pointer_begin() { return PointerTypes.begin(); }
3177
3178  /// pointer_end - Past the last pointer type found;
3179  iterator pointer_end() { return PointerTypes.end(); }
3180
3181  /// member_pointer_begin - First member pointer type found;
3182  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3183
3184  /// member_pointer_end - Past the last member pointer type found;
3185  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3186
3187  /// enumeration_begin - First enumeration type found;
3188  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3189
3190  /// enumeration_end - Past the last enumeration type found;
3191  iterator enumeration_end() { return EnumerationTypes.end(); }
3192};
3193
3194/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3195/// the set of pointer types along with any more-qualified variants of
3196/// that type. For example, if @p Ty is "int const *", this routine
3197/// will add "int const *", "int const volatile *", "int const
3198/// restrict *", and "int const volatile restrict *" to the set of
3199/// pointer types. Returns true if the add of @p Ty itself succeeded,
3200/// false otherwise.
3201///
3202/// FIXME: what to do about extended qualifiers?
3203bool
3204BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3205                                             const Qualifiers &VisibleQuals) {
3206
3207  // Insert this type.
3208  if (!PointerTypes.insert(Ty))
3209    return false;
3210
3211  const PointerType *PointerTy = Ty->getAs<PointerType>();
3212  assert(PointerTy && "type was not a pointer type!");
3213
3214  QualType PointeeTy = PointerTy->getPointeeType();
3215  // Don't add qualified variants of arrays. For one, they're not allowed
3216  // (the qualifier would sink to the element type), and for another, the
3217  // only overload situation where it matters is subscript or pointer +- int,
3218  // and those shouldn't have qualifier variants anyway.
3219  if (PointeeTy->isArrayType())
3220    return true;
3221  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3222  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3223    BaseCVR = Array->getElementType().getCVRQualifiers();
3224  bool hasVolatile = VisibleQuals.hasVolatile();
3225  bool hasRestrict = VisibleQuals.hasRestrict();
3226
3227  // Iterate through all strict supersets of BaseCVR.
3228  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3229    if ((CVR | BaseCVR) != CVR) continue;
3230    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3231    // in the types.
3232    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3233    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3234    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3235    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3236  }
3237
3238  return true;
3239}
3240
3241/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3242/// to the set of pointer types along with any more-qualified variants of
3243/// that type. For example, if @p Ty is "int const *", this routine
3244/// will add "int const *", "int const volatile *", "int const
3245/// restrict *", and "int const volatile restrict *" to the set of
3246/// pointer types. Returns true if the add of @p Ty itself succeeded,
3247/// false otherwise.
3248///
3249/// FIXME: what to do about extended qualifiers?
3250bool
3251BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3252    QualType Ty) {
3253  // Insert this type.
3254  if (!MemberPointerTypes.insert(Ty))
3255    return false;
3256
3257  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3258  assert(PointerTy && "type was not a member pointer type!");
3259
3260  QualType PointeeTy = PointerTy->getPointeeType();
3261  // Don't add qualified variants of arrays. For one, they're not allowed
3262  // (the qualifier would sink to the element type), and for another, the
3263  // only overload situation where it matters is subscript or pointer +- int,
3264  // and those shouldn't have qualifier variants anyway.
3265  if (PointeeTy->isArrayType())
3266    return true;
3267  const Type *ClassTy = PointerTy->getClass();
3268
3269  // Iterate through all strict supersets of the pointee type's CVR
3270  // qualifiers.
3271  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3272  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3273    if ((CVR | BaseCVR) != CVR) continue;
3274
3275    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3276    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3277  }
3278
3279  return true;
3280}
3281
3282/// AddTypesConvertedFrom - Add each of the types to which the type @p
3283/// Ty can be implicit converted to the given set of @p Types. We're
3284/// primarily interested in pointer types and enumeration types. We also
3285/// take member pointer types, for the conditional operator.
3286/// AllowUserConversions is true if we should look at the conversion
3287/// functions of a class type, and AllowExplicitConversions if we
3288/// should also include the explicit conversion functions of a class
3289/// type.
3290void
3291BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3292                                               SourceLocation Loc,
3293                                               bool AllowUserConversions,
3294                                               bool AllowExplicitConversions,
3295                                               const Qualifiers &VisibleQuals) {
3296  // Only deal with canonical types.
3297  Ty = Context.getCanonicalType(Ty);
3298
3299  // Look through reference types; they aren't part of the type of an
3300  // expression for the purposes of conversions.
3301  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3302    Ty = RefTy->getPointeeType();
3303
3304  // We don't care about qualifiers on the type.
3305  Ty = Ty.getLocalUnqualifiedType();
3306
3307  // If we're dealing with an array type, decay to the pointer.
3308  if (Ty->isArrayType())
3309    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3310
3311  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3312    QualType PointeeTy = PointerTy->getPointeeType();
3313
3314    // Insert our type, and its more-qualified variants, into the set
3315    // of types.
3316    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3317      return;
3318  } else if (Ty->isMemberPointerType()) {
3319    // Member pointers are far easier, since the pointee can't be converted.
3320    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3321      return;
3322  } else if (Ty->isEnumeralType()) {
3323    EnumerationTypes.insert(Ty);
3324  } else if (AllowUserConversions) {
3325    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3326      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3327        // No conversion functions in incomplete types.
3328        return;
3329      }
3330
3331      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3332      const UnresolvedSetImpl *Conversions
3333        = ClassDecl->getVisibleConversionFunctions();
3334      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3335             E = Conversions->end(); I != E; ++I) {
3336
3337        // Skip conversion function templates; they don't tell us anything
3338        // about which builtin types we can convert to.
3339        if (isa<FunctionTemplateDecl>(*I))
3340          continue;
3341
3342        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3343        if (AllowExplicitConversions || !Conv->isExplicit()) {
3344          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3345                                VisibleQuals);
3346        }
3347      }
3348    }
3349  }
3350}
3351
3352/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3353/// the volatile- and non-volatile-qualified assignment operators for the
3354/// given type to the candidate set.
3355static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3356                                                   QualType T,
3357                                                   Expr **Args,
3358                                                   unsigned NumArgs,
3359                                    OverloadCandidateSet &CandidateSet) {
3360  QualType ParamTypes[2];
3361
3362  // T& operator=(T&, T)
3363  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3364  ParamTypes[1] = T;
3365  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3366                        /*IsAssignmentOperator=*/true);
3367
3368  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3369    // volatile T& operator=(volatile T&, T)
3370    ParamTypes[0]
3371      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3372    ParamTypes[1] = T;
3373    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3374                          /*IsAssignmentOperator=*/true);
3375  }
3376}
3377
3378/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3379/// if any, found in visible type conversion functions found in ArgExpr's type.
3380static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3381    Qualifiers VRQuals;
3382    const RecordType *TyRec;
3383    if (const MemberPointerType *RHSMPType =
3384        ArgExpr->getType()->getAs<MemberPointerType>())
3385      TyRec = cast<RecordType>(RHSMPType->getClass());
3386    else
3387      TyRec = ArgExpr->getType()->getAs<RecordType>();
3388    if (!TyRec) {
3389      // Just to be safe, assume the worst case.
3390      VRQuals.addVolatile();
3391      VRQuals.addRestrict();
3392      return VRQuals;
3393    }
3394
3395    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3396    if (!ClassDecl->hasDefinition())
3397      return VRQuals;
3398
3399    const UnresolvedSetImpl *Conversions =
3400      ClassDecl->getVisibleConversionFunctions();
3401
3402    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3403           E = Conversions->end(); I != E; ++I) {
3404      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3405        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3406        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3407          CanTy = ResTypeRef->getPointeeType();
3408        // Need to go down the pointer/mempointer chain and add qualifiers
3409        // as see them.
3410        bool done = false;
3411        while (!done) {
3412          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3413            CanTy = ResTypePtr->getPointeeType();
3414          else if (const MemberPointerType *ResTypeMPtr =
3415                CanTy->getAs<MemberPointerType>())
3416            CanTy = ResTypeMPtr->getPointeeType();
3417          else
3418            done = true;
3419          if (CanTy.isVolatileQualified())
3420            VRQuals.addVolatile();
3421          if (CanTy.isRestrictQualified())
3422            VRQuals.addRestrict();
3423          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3424            return VRQuals;
3425        }
3426      }
3427    }
3428    return VRQuals;
3429}
3430
3431/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3432/// operator overloads to the candidate set (C++ [over.built]), based
3433/// on the operator @p Op and the arguments given. For example, if the
3434/// operator is a binary '+', this routine might add "int
3435/// operator+(int, int)" to cover integer addition.
3436void
3437Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3438                                   SourceLocation OpLoc,
3439                                   Expr **Args, unsigned NumArgs,
3440                                   OverloadCandidateSet& CandidateSet) {
3441  // The set of "promoted arithmetic types", which are the arithmetic
3442  // types are that preserved by promotion (C++ [over.built]p2). Note
3443  // that the first few of these types are the promoted integral
3444  // types; these types need to be first.
3445  // FIXME: What about complex?
3446  const unsigned FirstIntegralType = 0;
3447  const unsigned LastIntegralType = 13;
3448  const unsigned FirstPromotedIntegralType = 7,
3449                 LastPromotedIntegralType = 13;
3450  const unsigned FirstPromotedArithmeticType = 7,
3451                 LastPromotedArithmeticType = 16;
3452  const unsigned NumArithmeticTypes = 16;
3453  QualType ArithmeticTypes[NumArithmeticTypes] = {
3454    Context.BoolTy, Context.CharTy, Context.WCharTy,
3455// FIXME:   Context.Char16Ty, Context.Char32Ty,
3456    Context.SignedCharTy, Context.ShortTy,
3457    Context.UnsignedCharTy, Context.UnsignedShortTy,
3458    Context.IntTy, Context.LongTy, Context.LongLongTy,
3459    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3460    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3461  };
3462  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3463         "Invalid first promoted integral type");
3464  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3465           == Context.UnsignedLongLongTy &&
3466         "Invalid last promoted integral type");
3467  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3468         "Invalid first promoted arithmetic type");
3469  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3470            == Context.LongDoubleTy &&
3471         "Invalid last promoted arithmetic type");
3472
3473  // Find all of the types that the arguments can convert to, but only
3474  // if the operator we're looking at has built-in operator candidates
3475  // that make use of these types.
3476  Qualifiers VisibleTypeConversionsQuals;
3477  VisibleTypeConversionsQuals.addConst();
3478  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3479    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3480
3481  BuiltinCandidateTypeSet CandidateTypes(*this);
3482  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3483      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3484      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3485      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3486      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3487      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3488    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3489      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3490                                           OpLoc,
3491                                           true,
3492                                           (Op == OO_Exclaim ||
3493                                            Op == OO_AmpAmp ||
3494                                            Op == OO_PipePipe),
3495                                           VisibleTypeConversionsQuals);
3496  }
3497
3498  bool isComparison = false;
3499  switch (Op) {
3500  case OO_None:
3501  case NUM_OVERLOADED_OPERATORS:
3502    assert(false && "Expected an overloaded operator");
3503    break;
3504
3505  case OO_Star: // '*' is either unary or binary
3506    if (NumArgs == 1)
3507      goto UnaryStar;
3508    else
3509      goto BinaryStar;
3510    break;
3511
3512  case OO_Plus: // '+' is either unary or binary
3513    if (NumArgs == 1)
3514      goto UnaryPlus;
3515    else
3516      goto BinaryPlus;
3517    break;
3518
3519  case OO_Minus: // '-' is either unary or binary
3520    if (NumArgs == 1)
3521      goto UnaryMinus;
3522    else
3523      goto BinaryMinus;
3524    break;
3525
3526  case OO_Amp: // '&' is either unary or binary
3527    if (NumArgs == 1)
3528      goto UnaryAmp;
3529    else
3530      goto BinaryAmp;
3531
3532  case OO_PlusPlus:
3533  case OO_MinusMinus:
3534    // C++ [over.built]p3:
3535    //
3536    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3537    //   is either volatile or empty, there exist candidate operator
3538    //   functions of the form
3539    //
3540    //       VQ T&      operator++(VQ T&);
3541    //       T          operator++(VQ T&, int);
3542    //
3543    // C++ [over.built]p4:
3544    //
3545    //   For every pair (T, VQ), where T is an arithmetic type other
3546    //   than bool, and VQ is either volatile or empty, there exist
3547    //   candidate operator functions of the form
3548    //
3549    //       VQ T&      operator--(VQ T&);
3550    //       T          operator--(VQ T&, int);
3551    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3552         Arith < NumArithmeticTypes; ++Arith) {
3553      QualType ArithTy = ArithmeticTypes[Arith];
3554      QualType ParamTypes[2]
3555        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3556
3557      // Non-volatile version.
3558      if (NumArgs == 1)
3559        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3560      else
3561        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3562      // heuristic to reduce number of builtin candidates in the set.
3563      // Add volatile version only if there are conversions to a volatile type.
3564      if (VisibleTypeConversionsQuals.hasVolatile()) {
3565        // Volatile version
3566        ParamTypes[0]
3567          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3568        if (NumArgs == 1)
3569          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3570        else
3571          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3572      }
3573    }
3574
3575    // C++ [over.built]p5:
3576    //
3577    //   For every pair (T, VQ), where T is a cv-qualified or
3578    //   cv-unqualified object type, and VQ is either volatile or
3579    //   empty, there exist candidate operator functions of the form
3580    //
3581    //       T*VQ&      operator++(T*VQ&);
3582    //       T*VQ&      operator--(T*VQ&);
3583    //       T*         operator++(T*VQ&, int);
3584    //       T*         operator--(T*VQ&, int);
3585    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3586         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3587      // Skip pointer types that aren't pointers to object types.
3588      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3589        continue;
3590
3591      QualType ParamTypes[2] = {
3592        Context.getLValueReferenceType(*Ptr), Context.IntTy
3593      };
3594
3595      // Without volatile
3596      if (NumArgs == 1)
3597        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3598      else
3599        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3600
3601      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3602          VisibleTypeConversionsQuals.hasVolatile()) {
3603        // With volatile
3604        ParamTypes[0]
3605          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3606        if (NumArgs == 1)
3607          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3608        else
3609          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3610      }
3611    }
3612    break;
3613
3614  UnaryStar:
3615    // C++ [over.built]p6:
3616    //   For every cv-qualified or cv-unqualified object type T, there
3617    //   exist candidate operator functions of the form
3618    //
3619    //       T&         operator*(T*);
3620    //
3621    // C++ [over.built]p7:
3622    //   For every function type T, there exist candidate operator
3623    //   functions of the form
3624    //       T&         operator*(T*);
3625    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3626         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3627      QualType ParamTy = *Ptr;
3628      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3629      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3630                          &ParamTy, Args, 1, CandidateSet);
3631    }
3632    break;
3633
3634  UnaryPlus:
3635    // C++ [over.built]p8:
3636    //   For every type T, there exist candidate operator functions of
3637    //   the form
3638    //
3639    //       T*         operator+(T*);
3640    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3641         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3642      QualType ParamTy = *Ptr;
3643      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3644    }
3645
3646    // Fall through
3647
3648  UnaryMinus:
3649    // C++ [over.built]p9:
3650    //  For every promoted arithmetic type T, there exist candidate
3651    //  operator functions of the form
3652    //
3653    //       T         operator+(T);
3654    //       T         operator-(T);
3655    for (unsigned Arith = FirstPromotedArithmeticType;
3656         Arith < LastPromotedArithmeticType; ++Arith) {
3657      QualType ArithTy = ArithmeticTypes[Arith];
3658      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3659    }
3660    break;
3661
3662  case OO_Tilde:
3663    // C++ [over.built]p10:
3664    //   For every promoted integral type T, there exist candidate
3665    //   operator functions of the form
3666    //
3667    //        T         operator~(T);
3668    for (unsigned Int = FirstPromotedIntegralType;
3669         Int < LastPromotedIntegralType; ++Int) {
3670      QualType IntTy = ArithmeticTypes[Int];
3671      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3672    }
3673    break;
3674
3675  case OO_New:
3676  case OO_Delete:
3677  case OO_Array_New:
3678  case OO_Array_Delete:
3679  case OO_Call:
3680    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3681    break;
3682
3683  case OO_Comma:
3684  UnaryAmp:
3685  case OO_Arrow:
3686    // C++ [over.match.oper]p3:
3687    //   -- For the operator ',', the unary operator '&', or the
3688    //      operator '->', the built-in candidates set is empty.
3689    break;
3690
3691  case OO_EqualEqual:
3692  case OO_ExclaimEqual:
3693    // C++ [over.match.oper]p16:
3694    //   For every pointer to member type T, there exist candidate operator
3695    //   functions of the form
3696    //
3697    //        bool operator==(T,T);
3698    //        bool operator!=(T,T);
3699    for (BuiltinCandidateTypeSet::iterator
3700           MemPtr = CandidateTypes.member_pointer_begin(),
3701           MemPtrEnd = CandidateTypes.member_pointer_end();
3702         MemPtr != MemPtrEnd;
3703         ++MemPtr) {
3704      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3705      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3706    }
3707
3708    // Fall through
3709
3710  case OO_Less:
3711  case OO_Greater:
3712  case OO_LessEqual:
3713  case OO_GreaterEqual:
3714    // C++ [over.built]p15:
3715    //
3716    //   For every pointer or enumeration type T, there exist
3717    //   candidate operator functions of the form
3718    //
3719    //        bool       operator<(T, T);
3720    //        bool       operator>(T, T);
3721    //        bool       operator<=(T, T);
3722    //        bool       operator>=(T, T);
3723    //        bool       operator==(T, T);
3724    //        bool       operator!=(T, T);
3725    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3726         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3727      QualType ParamTypes[2] = { *Ptr, *Ptr };
3728      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3729    }
3730    for (BuiltinCandidateTypeSet::iterator Enum
3731           = CandidateTypes.enumeration_begin();
3732         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3733      QualType ParamTypes[2] = { *Enum, *Enum };
3734      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3735    }
3736
3737    // Fall through.
3738    isComparison = true;
3739
3740  BinaryPlus:
3741  BinaryMinus:
3742    if (!isComparison) {
3743      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3744
3745      // C++ [over.built]p13:
3746      //
3747      //   For every cv-qualified or cv-unqualified object type T
3748      //   there exist candidate operator functions of the form
3749      //
3750      //      T*         operator+(T*, ptrdiff_t);
3751      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3752      //      T*         operator-(T*, ptrdiff_t);
3753      //      T*         operator+(ptrdiff_t, T*);
3754      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3755      //
3756      // C++ [over.built]p14:
3757      //
3758      //   For every T, where T is a pointer to object type, there
3759      //   exist candidate operator functions of the form
3760      //
3761      //      ptrdiff_t  operator-(T, T);
3762      for (BuiltinCandidateTypeSet::iterator Ptr
3763             = CandidateTypes.pointer_begin();
3764           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3765        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3766
3767        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3768        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3769
3770        if (Op == OO_Plus) {
3771          // T* operator+(ptrdiff_t, T*);
3772          ParamTypes[0] = ParamTypes[1];
3773          ParamTypes[1] = *Ptr;
3774          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3775        } else {
3776          // ptrdiff_t operator-(T, T);
3777          ParamTypes[1] = *Ptr;
3778          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3779                              Args, 2, CandidateSet);
3780        }
3781      }
3782    }
3783    // Fall through
3784
3785  case OO_Slash:
3786  BinaryStar:
3787  Conditional:
3788    // C++ [over.built]p12:
3789    //
3790    //   For every pair of promoted arithmetic types L and R, there
3791    //   exist candidate operator functions of the form
3792    //
3793    //        LR         operator*(L, R);
3794    //        LR         operator/(L, R);
3795    //        LR         operator+(L, R);
3796    //        LR         operator-(L, R);
3797    //        bool       operator<(L, R);
3798    //        bool       operator>(L, R);
3799    //        bool       operator<=(L, R);
3800    //        bool       operator>=(L, R);
3801    //        bool       operator==(L, R);
3802    //        bool       operator!=(L, R);
3803    //
3804    //   where LR is the result of the usual arithmetic conversions
3805    //   between types L and R.
3806    //
3807    // C++ [over.built]p24:
3808    //
3809    //   For every pair of promoted arithmetic types L and R, there exist
3810    //   candidate operator functions of the form
3811    //
3812    //        LR       operator?(bool, L, R);
3813    //
3814    //   where LR is the result of the usual arithmetic conversions
3815    //   between types L and R.
3816    // Our candidates ignore the first parameter.
3817    for (unsigned Left = FirstPromotedArithmeticType;
3818         Left < LastPromotedArithmeticType; ++Left) {
3819      for (unsigned Right = FirstPromotedArithmeticType;
3820           Right < LastPromotedArithmeticType; ++Right) {
3821        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3822        QualType Result
3823          = isComparison
3824          ? Context.BoolTy
3825          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3826        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3827      }
3828    }
3829    break;
3830
3831  case OO_Percent:
3832  BinaryAmp:
3833  case OO_Caret:
3834  case OO_Pipe:
3835  case OO_LessLess:
3836  case OO_GreaterGreater:
3837    // C++ [over.built]p17:
3838    //
3839    //   For every pair of promoted integral types L and R, there
3840    //   exist candidate operator functions of the form
3841    //
3842    //      LR         operator%(L, R);
3843    //      LR         operator&(L, R);
3844    //      LR         operator^(L, R);
3845    //      LR         operator|(L, R);
3846    //      L          operator<<(L, R);
3847    //      L          operator>>(L, R);
3848    //
3849    //   where LR is the result of the usual arithmetic conversions
3850    //   between types L and R.
3851    for (unsigned Left = FirstPromotedIntegralType;
3852         Left < LastPromotedIntegralType; ++Left) {
3853      for (unsigned Right = FirstPromotedIntegralType;
3854           Right < LastPromotedIntegralType; ++Right) {
3855        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3856        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3857            ? LandR[0]
3858            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3859        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3860      }
3861    }
3862    break;
3863
3864  case OO_Equal:
3865    // C++ [over.built]p20:
3866    //
3867    //   For every pair (T, VQ), where T is an enumeration or
3868    //   pointer to member type and VQ is either volatile or
3869    //   empty, there exist candidate operator functions of the form
3870    //
3871    //        VQ T&      operator=(VQ T&, T);
3872    for (BuiltinCandidateTypeSet::iterator
3873           Enum = CandidateTypes.enumeration_begin(),
3874           EnumEnd = CandidateTypes.enumeration_end();
3875         Enum != EnumEnd; ++Enum)
3876      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3877                                             CandidateSet);
3878    for (BuiltinCandidateTypeSet::iterator
3879           MemPtr = CandidateTypes.member_pointer_begin(),
3880         MemPtrEnd = CandidateTypes.member_pointer_end();
3881         MemPtr != MemPtrEnd; ++MemPtr)
3882      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3883                                             CandidateSet);
3884      // Fall through.
3885
3886  case OO_PlusEqual:
3887  case OO_MinusEqual:
3888    // C++ [over.built]p19:
3889    //
3890    //   For every pair (T, VQ), where T is any type and VQ is either
3891    //   volatile or empty, there exist candidate operator functions
3892    //   of the form
3893    //
3894    //        T*VQ&      operator=(T*VQ&, T*);
3895    //
3896    // C++ [over.built]p21:
3897    //
3898    //   For every pair (T, VQ), where T is a cv-qualified or
3899    //   cv-unqualified object type and VQ is either volatile or
3900    //   empty, there exist candidate operator functions of the form
3901    //
3902    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3903    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3904    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3905         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3906      QualType ParamTypes[2];
3907      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3908
3909      // non-volatile version
3910      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3911      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3912                          /*IsAssigmentOperator=*/Op == OO_Equal);
3913
3914      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3915          VisibleTypeConversionsQuals.hasVolatile()) {
3916        // volatile version
3917        ParamTypes[0]
3918          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3919        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3920                            /*IsAssigmentOperator=*/Op == OO_Equal);
3921      }
3922    }
3923    // Fall through.
3924
3925  case OO_StarEqual:
3926  case OO_SlashEqual:
3927    // C++ [over.built]p18:
3928    //
3929    //   For every triple (L, VQ, R), where L is an arithmetic type,
3930    //   VQ is either volatile or empty, and R is a promoted
3931    //   arithmetic type, there exist candidate operator functions of
3932    //   the form
3933    //
3934    //        VQ L&      operator=(VQ L&, R);
3935    //        VQ L&      operator*=(VQ L&, R);
3936    //        VQ L&      operator/=(VQ L&, R);
3937    //        VQ L&      operator+=(VQ L&, R);
3938    //        VQ L&      operator-=(VQ L&, R);
3939    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3940      for (unsigned Right = FirstPromotedArithmeticType;
3941           Right < LastPromotedArithmeticType; ++Right) {
3942        QualType ParamTypes[2];
3943        ParamTypes[1] = ArithmeticTypes[Right];
3944
3945        // Add this built-in operator as a candidate (VQ is empty).
3946        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3947        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3948                            /*IsAssigmentOperator=*/Op == OO_Equal);
3949
3950        // Add this built-in operator as a candidate (VQ is 'volatile').
3951        if (VisibleTypeConversionsQuals.hasVolatile()) {
3952          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3953          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3954          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3955                              /*IsAssigmentOperator=*/Op == OO_Equal);
3956        }
3957      }
3958    }
3959    break;
3960
3961  case OO_PercentEqual:
3962  case OO_LessLessEqual:
3963  case OO_GreaterGreaterEqual:
3964  case OO_AmpEqual:
3965  case OO_CaretEqual:
3966  case OO_PipeEqual:
3967    // C++ [over.built]p22:
3968    //
3969    //   For every triple (L, VQ, R), where L is an integral type, VQ
3970    //   is either volatile or empty, and R is a promoted integral
3971    //   type, there exist candidate operator functions of the form
3972    //
3973    //        VQ L&       operator%=(VQ L&, R);
3974    //        VQ L&       operator<<=(VQ L&, R);
3975    //        VQ L&       operator>>=(VQ L&, R);
3976    //        VQ L&       operator&=(VQ L&, R);
3977    //        VQ L&       operator^=(VQ L&, R);
3978    //        VQ L&       operator|=(VQ L&, R);
3979    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3980      for (unsigned Right = FirstPromotedIntegralType;
3981           Right < LastPromotedIntegralType; ++Right) {
3982        QualType ParamTypes[2];
3983        ParamTypes[1] = ArithmeticTypes[Right];
3984
3985        // Add this built-in operator as a candidate (VQ is empty).
3986        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3987        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3988        if (VisibleTypeConversionsQuals.hasVolatile()) {
3989          // Add this built-in operator as a candidate (VQ is 'volatile').
3990          ParamTypes[0] = ArithmeticTypes[Left];
3991          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3992          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3993          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3994        }
3995      }
3996    }
3997    break;
3998
3999  case OO_Exclaim: {
4000    // C++ [over.operator]p23:
4001    //
4002    //   There also exist candidate operator functions of the form
4003    //
4004    //        bool        operator!(bool);
4005    //        bool        operator&&(bool, bool);     [BELOW]
4006    //        bool        operator||(bool, bool);     [BELOW]
4007    QualType ParamTy = Context.BoolTy;
4008    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4009                        /*IsAssignmentOperator=*/false,
4010                        /*NumContextualBoolArguments=*/1);
4011    break;
4012  }
4013
4014  case OO_AmpAmp:
4015  case OO_PipePipe: {
4016    // C++ [over.operator]p23:
4017    //
4018    //   There also exist candidate operator functions of the form
4019    //
4020    //        bool        operator!(bool);            [ABOVE]
4021    //        bool        operator&&(bool, bool);
4022    //        bool        operator||(bool, bool);
4023    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4024    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4025                        /*IsAssignmentOperator=*/false,
4026                        /*NumContextualBoolArguments=*/2);
4027    break;
4028  }
4029
4030  case OO_Subscript:
4031    // C++ [over.built]p13:
4032    //
4033    //   For every cv-qualified or cv-unqualified object type T there
4034    //   exist candidate operator functions of the form
4035    //
4036    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4037    //        T&         operator[](T*, ptrdiff_t);
4038    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4039    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4040    //        T&         operator[](ptrdiff_t, T*);
4041    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4042         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4043      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4044      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4045      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4046
4047      // T& operator[](T*, ptrdiff_t)
4048      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4049
4050      // T& operator[](ptrdiff_t, T*);
4051      ParamTypes[0] = ParamTypes[1];
4052      ParamTypes[1] = *Ptr;
4053      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4054    }
4055    break;
4056
4057  case OO_ArrowStar:
4058    // C++ [over.built]p11:
4059    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4060    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4061    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4062    //    there exist candidate operator functions of the form
4063    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4064    //    where CV12 is the union of CV1 and CV2.
4065    {
4066      for (BuiltinCandidateTypeSet::iterator Ptr =
4067             CandidateTypes.pointer_begin();
4068           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4069        QualType C1Ty = (*Ptr);
4070        QualType C1;
4071        QualifierCollector Q1;
4072        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4073          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4074          if (!isa<RecordType>(C1))
4075            continue;
4076          // heuristic to reduce number of builtin candidates in the set.
4077          // Add volatile/restrict version only if there are conversions to a
4078          // volatile/restrict type.
4079          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4080            continue;
4081          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4082            continue;
4083        }
4084        for (BuiltinCandidateTypeSet::iterator
4085             MemPtr = CandidateTypes.member_pointer_begin(),
4086             MemPtrEnd = CandidateTypes.member_pointer_end();
4087             MemPtr != MemPtrEnd; ++MemPtr) {
4088          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4089          QualType C2 = QualType(mptr->getClass(), 0);
4090          C2 = C2.getUnqualifiedType();
4091          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4092            break;
4093          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4094          // build CV12 T&
4095          QualType T = mptr->getPointeeType();
4096          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4097              T.isVolatileQualified())
4098            continue;
4099          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4100              T.isRestrictQualified())
4101            continue;
4102          T = Q1.apply(T);
4103          QualType ResultTy = Context.getLValueReferenceType(T);
4104          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4105        }
4106      }
4107    }
4108    break;
4109
4110  case OO_Conditional:
4111    // Note that we don't consider the first argument, since it has been
4112    // contextually converted to bool long ago. The candidates below are
4113    // therefore added as binary.
4114    //
4115    // C++ [over.built]p24:
4116    //   For every type T, where T is a pointer or pointer-to-member type,
4117    //   there exist candidate operator functions of the form
4118    //
4119    //        T        operator?(bool, T, T);
4120    //
4121    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4122         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4123      QualType ParamTypes[2] = { *Ptr, *Ptr };
4124      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4125    }
4126    for (BuiltinCandidateTypeSet::iterator Ptr =
4127           CandidateTypes.member_pointer_begin(),
4128         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4129      QualType ParamTypes[2] = { *Ptr, *Ptr };
4130      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4131    }
4132    goto Conditional;
4133  }
4134}
4135
4136/// \brief Add function candidates found via argument-dependent lookup
4137/// to the set of overloading candidates.
4138///
4139/// This routine performs argument-dependent name lookup based on the
4140/// given function name (which may also be an operator name) and adds
4141/// all of the overload candidates found by ADL to the overload
4142/// candidate set (C++ [basic.lookup.argdep]).
4143void
4144Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4145                                           bool Operator,
4146                                           Expr **Args, unsigned NumArgs,
4147                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4148                                           OverloadCandidateSet& CandidateSet,
4149                                           bool PartialOverloading) {
4150  ADLResult Fns;
4151
4152  // FIXME: This approach for uniquing ADL results (and removing
4153  // redundant candidates from the set) relies on pointer-equality,
4154  // which means we need to key off the canonical decl.  However,
4155  // always going back to the canonical decl might not get us the
4156  // right set of default arguments.  What default arguments are
4157  // we supposed to consider on ADL candidates, anyway?
4158
4159  // FIXME: Pass in the explicit template arguments?
4160  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4161
4162  // Erase all of the candidates we already knew about.
4163  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4164                                   CandEnd = CandidateSet.end();
4165       Cand != CandEnd; ++Cand)
4166    if (Cand->Function) {
4167      Fns.erase(Cand->Function);
4168      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4169        Fns.erase(FunTmpl);
4170    }
4171
4172  // For each of the ADL candidates we found, add it to the overload
4173  // set.
4174  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4175    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4176      if (ExplicitTemplateArgs)
4177        continue;
4178
4179      AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
4180                           false, false, PartialOverloading);
4181    } else
4182      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4183                                   AS_none, ExplicitTemplateArgs,
4184                                   Args, NumArgs, CandidateSet);
4185  }
4186}
4187
4188/// isBetterOverloadCandidate - Determines whether the first overload
4189/// candidate is a better candidate than the second (C++ 13.3.3p1).
4190bool
4191Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4192                                const OverloadCandidate& Cand2,
4193                                SourceLocation Loc) {
4194  // Define viable functions to be better candidates than non-viable
4195  // functions.
4196  if (!Cand2.Viable)
4197    return Cand1.Viable;
4198  else if (!Cand1.Viable)
4199    return false;
4200
4201  // C++ [over.match.best]p1:
4202  //
4203  //   -- if F is a static member function, ICS1(F) is defined such
4204  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4205  //      any function G, and, symmetrically, ICS1(G) is neither
4206  //      better nor worse than ICS1(F).
4207  unsigned StartArg = 0;
4208  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4209    StartArg = 1;
4210
4211  // C++ [over.match.best]p1:
4212  //   A viable function F1 is defined to be a better function than another
4213  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4214  //   conversion sequence than ICSi(F2), and then...
4215  unsigned NumArgs = Cand1.Conversions.size();
4216  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4217  bool HasBetterConversion = false;
4218  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4219    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4220                                               Cand2.Conversions[ArgIdx])) {
4221    case ImplicitConversionSequence::Better:
4222      // Cand1 has a better conversion sequence.
4223      HasBetterConversion = true;
4224      break;
4225
4226    case ImplicitConversionSequence::Worse:
4227      // Cand1 can't be better than Cand2.
4228      return false;
4229
4230    case ImplicitConversionSequence::Indistinguishable:
4231      // Do nothing.
4232      break;
4233    }
4234  }
4235
4236  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4237  //       ICSj(F2), or, if not that,
4238  if (HasBetterConversion)
4239    return true;
4240
4241  //     - F1 is a non-template function and F2 is a function template
4242  //       specialization, or, if not that,
4243  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4244      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4245    return true;
4246
4247  //   -- F1 and F2 are function template specializations, and the function
4248  //      template for F1 is more specialized than the template for F2
4249  //      according to the partial ordering rules described in 14.5.5.2, or,
4250  //      if not that,
4251  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4252      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4253    if (FunctionTemplateDecl *BetterTemplate
4254          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4255                                       Cand2.Function->getPrimaryTemplate(),
4256                                       Loc,
4257                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4258                                                             : TPOC_Call))
4259      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4260
4261  //   -- the context is an initialization by user-defined conversion
4262  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4263  //      from the return type of F1 to the destination type (i.e.,
4264  //      the type of the entity being initialized) is a better
4265  //      conversion sequence than the standard conversion sequence
4266  //      from the return type of F2 to the destination type.
4267  if (Cand1.Function && Cand2.Function &&
4268      isa<CXXConversionDecl>(Cand1.Function) &&
4269      isa<CXXConversionDecl>(Cand2.Function)) {
4270    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4271                                               Cand2.FinalConversion)) {
4272    case ImplicitConversionSequence::Better:
4273      // Cand1 has a better conversion sequence.
4274      return true;
4275
4276    case ImplicitConversionSequence::Worse:
4277      // Cand1 can't be better than Cand2.
4278      return false;
4279
4280    case ImplicitConversionSequence::Indistinguishable:
4281      // Do nothing
4282      break;
4283    }
4284  }
4285
4286  return false;
4287}
4288
4289/// \brief Computes the best viable function (C++ 13.3.3)
4290/// within an overload candidate set.
4291///
4292/// \param CandidateSet the set of candidate functions.
4293///
4294/// \param Loc the location of the function name (or operator symbol) for
4295/// which overload resolution occurs.
4296///
4297/// \param Best f overload resolution was successful or found a deleted
4298/// function, Best points to the candidate function found.
4299///
4300/// \returns The result of overload resolution.
4301OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4302                                           SourceLocation Loc,
4303                                        OverloadCandidateSet::iterator& Best) {
4304  // Find the best viable function.
4305  Best = CandidateSet.end();
4306  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4307       Cand != CandidateSet.end(); ++Cand) {
4308    if (Cand->Viable) {
4309      if (Best == CandidateSet.end() ||
4310          isBetterOverloadCandidate(*Cand, *Best, Loc))
4311        Best = Cand;
4312    }
4313  }
4314
4315  // If we didn't find any viable functions, abort.
4316  if (Best == CandidateSet.end())
4317    return OR_No_Viable_Function;
4318
4319  // Make sure that this function is better than every other viable
4320  // function. If not, we have an ambiguity.
4321  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4322       Cand != CandidateSet.end(); ++Cand) {
4323    if (Cand->Viable &&
4324        Cand != Best &&
4325        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4326      Best = CandidateSet.end();
4327      return OR_Ambiguous;
4328    }
4329  }
4330
4331  // Best is the best viable function.
4332  if (Best->Function &&
4333      (Best->Function->isDeleted() ||
4334       Best->Function->getAttr<UnavailableAttr>()))
4335    return OR_Deleted;
4336
4337  // C++ [basic.def.odr]p2:
4338  //   An overloaded function is used if it is selected by overload resolution
4339  //   when referred to from a potentially-evaluated expression. [Note: this
4340  //   covers calls to named functions (5.2.2), operator overloading
4341  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4342  //   placement new (5.3.4), as well as non-default initialization (8.5).
4343  if (Best->Function)
4344    MarkDeclarationReferenced(Loc, Best->Function);
4345  return OR_Success;
4346}
4347
4348namespace {
4349
4350enum OverloadCandidateKind {
4351  oc_function,
4352  oc_method,
4353  oc_constructor,
4354  oc_function_template,
4355  oc_method_template,
4356  oc_constructor_template,
4357  oc_implicit_default_constructor,
4358  oc_implicit_copy_constructor,
4359  oc_implicit_copy_assignment
4360};
4361
4362OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4363                                                FunctionDecl *Fn,
4364                                                std::string &Description) {
4365  bool isTemplate = false;
4366
4367  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4368    isTemplate = true;
4369    Description = S.getTemplateArgumentBindingsText(
4370      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4371  }
4372
4373  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4374    if (!Ctor->isImplicit())
4375      return isTemplate ? oc_constructor_template : oc_constructor;
4376
4377    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4378                                     : oc_implicit_default_constructor;
4379  }
4380
4381  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4382    // This actually gets spelled 'candidate function' for now, but
4383    // it doesn't hurt to split it out.
4384    if (!Meth->isImplicit())
4385      return isTemplate ? oc_method_template : oc_method;
4386
4387    assert(Meth->isCopyAssignment()
4388           && "implicit method is not copy assignment operator?");
4389    return oc_implicit_copy_assignment;
4390  }
4391
4392  return isTemplate ? oc_function_template : oc_function;
4393}
4394
4395} // end anonymous namespace
4396
4397// Notes the location of an overload candidate.
4398void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4399  std::string FnDesc;
4400  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4401  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4402    << (unsigned) K << FnDesc;
4403}
4404
4405/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4406/// "lead" diagnostic; it will be given two arguments, the source and
4407/// target types of the conversion.
4408void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4409                                       SourceLocation CaretLoc,
4410                                       const PartialDiagnostic &PDiag) {
4411  Diag(CaretLoc, PDiag)
4412    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4413  for (AmbiguousConversionSequence::const_iterator
4414         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4415    NoteOverloadCandidate(*I);
4416  }
4417}
4418
4419namespace {
4420
4421void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4422  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4423  assert(Conv.isBad());
4424  assert(Cand->Function && "for now, candidate must be a function");
4425  FunctionDecl *Fn = Cand->Function;
4426
4427  // There's a conversion slot for the object argument if this is a
4428  // non-constructor method.  Note that 'I' corresponds the
4429  // conversion-slot index.
4430  bool isObjectArgument = false;
4431  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4432    if (I == 0)
4433      isObjectArgument = true;
4434    else
4435      I--;
4436  }
4437
4438  std::string FnDesc;
4439  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4440
4441  Expr *FromExpr = Conv.Bad.FromExpr;
4442  QualType FromTy = Conv.Bad.getFromType();
4443  QualType ToTy = Conv.Bad.getToType();
4444
4445  if (FromTy == S.Context.OverloadTy) {
4446    assert(FromExpr && "overload set argument came from implicit argument?");
4447    Expr *E = FromExpr->IgnoreParens();
4448    if (isa<UnaryOperator>(E))
4449      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4450    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4451
4452    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4453      << (unsigned) FnKind << FnDesc
4454      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4455      << ToTy << Name << I+1;
4456    return;
4457  }
4458
4459  // Do some hand-waving analysis to see if the non-viability is due
4460  // to a qualifier mismatch.
4461  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4462  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4463  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4464    CToTy = RT->getPointeeType();
4465  else {
4466    // TODO: detect and diagnose the full richness of const mismatches.
4467    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4468      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4469        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4470  }
4471
4472  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4473      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4474    // It is dumb that we have to do this here.
4475    while (isa<ArrayType>(CFromTy))
4476      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4477    while (isa<ArrayType>(CToTy))
4478      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4479
4480    Qualifiers FromQs = CFromTy.getQualifiers();
4481    Qualifiers ToQs = CToTy.getQualifiers();
4482
4483    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4484      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4485        << (unsigned) FnKind << FnDesc
4486        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4487        << FromTy
4488        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4489        << (unsigned) isObjectArgument << I+1;
4490      return;
4491    }
4492
4493    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4494    assert(CVR && "unexpected qualifiers mismatch");
4495
4496    if (isObjectArgument) {
4497      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4498        << (unsigned) FnKind << FnDesc
4499        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4500        << FromTy << (CVR - 1);
4501    } else {
4502      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4503        << (unsigned) FnKind << FnDesc
4504        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4505        << FromTy << (CVR - 1) << I+1;
4506    }
4507    return;
4508  }
4509
4510  // Diagnose references or pointers to incomplete types differently,
4511  // since it's far from impossible that the incompleteness triggered
4512  // the failure.
4513  QualType TempFromTy = FromTy.getNonReferenceType();
4514  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4515    TempFromTy = PTy->getPointeeType();
4516  if (TempFromTy->isIncompleteType()) {
4517    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4518      << (unsigned) FnKind << FnDesc
4519      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4520      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4521    return;
4522  }
4523
4524  // TODO: specialize more based on the kind of mismatch
4525  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4526    << (unsigned) FnKind << FnDesc
4527    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4528    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4529}
4530
4531void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4532                           unsigned NumFormalArgs) {
4533  // TODO: treat calls to a missing default constructor as a special case
4534
4535  FunctionDecl *Fn = Cand->Function;
4536  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4537
4538  unsigned MinParams = Fn->getMinRequiredArguments();
4539
4540  // at least / at most / exactly
4541  unsigned mode, modeCount;
4542  if (NumFormalArgs < MinParams) {
4543    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4544    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4545      mode = 0; // "at least"
4546    else
4547      mode = 2; // "exactly"
4548    modeCount = MinParams;
4549  } else {
4550    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4551    if (MinParams != FnTy->getNumArgs())
4552      mode = 1; // "at most"
4553    else
4554      mode = 2; // "exactly"
4555    modeCount = FnTy->getNumArgs();
4556  }
4557
4558  std::string Description;
4559  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4560
4561  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4562    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4563}
4564
4565/// Diagnose a failed template-argument deduction.
4566void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4567                          Expr **Args, unsigned NumArgs) {
4568  FunctionDecl *Fn = Cand->Function; // pattern
4569
4570  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4571                                   Cand->DeductionFailure.TemplateParameter);
4572
4573  switch (Cand->DeductionFailure.Result) {
4574  case Sema::TDK_Success:
4575    llvm_unreachable("TDK_success while diagnosing bad deduction");
4576
4577  case Sema::TDK_Incomplete: {
4578    NamedDecl *ParamD;
4579    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4580    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4581    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4582    assert(ParamD && "no parameter found for incomplete deduction result");
4583    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4584      << ParamD->getDeclName();
4585    return;
4586  }
4587
4588  // TODO: diagnose these individually, then kill off
4589  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4590  case Sema::TDK_InstantiationDepth:
4591  case Sema::TDK_Inconsistent:
4592  case Sema::TDK_InconsistentQuals:
4593  case Sema::TDK_SubstitutionFailure:
4594  case Sema::TDK_NonDeducedMismatch:
4595  case Sema::TDK_TooManyArguments:
4596  case Sema::TDK_TooFewArguments:
4597  case Sema::TDK_InvalidExplicitArguments:
4598  case Sema::TDK_FailedOverloadResolution:
4599    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4600    return;
4601  }
4602}
4603
4604/// Generates a 'note' diagnostic for an overload candidate.  We've
4605/// already generated a primary error at the call site.
4606///
4607/// It really does need to be a single diagnostic with its caret
4608/// pointed at the candidate declaration.  Yes, this creates some
4609/// major challenges of technical writing.  Yes, this makes pointing
4610/// out problems with specific arguments quite awkward.  It's still
4611/// better than generating twenty screens of text for every failed
4612/// overload.
4613///
4614/// It would be great to be able to express per-candidate problems
4615/// more richly for those diagnostic clients that cared, but we'd
4616/// still have to be just as careful with the default diagnostics.
4617void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4618                           Expr **Args, unsigned NumArgs) {
4619  FunctionDecl *Fn = Cand->Function;
4620
4621  // Note deleted candidates, but only if they're viable.
4622  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4623    std::string FnDesc;
4624    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4625
4626    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4627      << FnKind << FnDesc << Fn->isDeleted();
4628    return;
4629  }
4630
4631  // We don't really have anything else to say about viable candidates.
4632  if (Cand->Viable) {
4633    S.NoteOverloadCandidate(Fn);
4634    return;
4635  }
4636
4637  switch (Cand->FailureKind) {
4638  case ovl_fail_too_many_arguments:
4639  case ovl_fail_too_few_arguments:
4640    return DiagnoseArityMismatch(S, Cand, NumArgs);
4641
4642  case ovl_fail_bad_deduction:
4643    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4644
4645  case ovl_fail_trivial_conversion:
4646  case ovl_fail_bad_final_conversion:
4647    return S.NoteOverloadCandidate(Fn);
4648
4649  case ovl_fail_bad_conversion: {
4650    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4651    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4652      if (Cand->Conversions[I].isBad())
4653        return DiagnoseBadConversion(S, Cand, I);
4654
4655    // FIXME: this currently happens when we're called from SemaInit
4656    // when user-conversion overload fails.  Figure out how to handle
4657    // those conditions and diagnose them well.
4658    return S.NoteOverloadCandidate(Fn);
4659  }
4660  }
4661}
4662
4663void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4664  // Desugar the type of the surrogate down to a function type,
4665  // retaining as many typedefs as possible while still showing
4666  // the function type (and, therefore, its parameter types).
4667  QualType FnType = Cand->Surrogate->getConversionType();
4668  bool isLValueReference = false;
4669  bool isRValueReference = false;
4670  bool isPointer = false;
4671  if (const LValueReferenceType *FnTypeRef =
4672        FnType->getAs<LValueReferenceType>()) {
4673    FnType = FnTypeRef->getPointeeType();
4674    isLValueReference = true;
4675  } else if (const RValueReferenceType *FnTypeRef =
4676               FnType->getAs<RValueReferenceType>()) {
4677    FnType = FnTypeRef->getPointeeType();
4678    isRValueReference = true;
4679  }
4680  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4681    FnType = FnTypePtr->getPointeeType();
4682    isPointer = true;
4683  }
4684  // Desugar down to a function type.
4685  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4686  // Reconstruct the pointer/reference as appropriate.
4687  if (isPointer) FnType = S.Context.getPointerType(FnType);
4688  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4689  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4690
4691  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4692    << FnType;
4693}
4694
4695void NoteBuiltinOperatorCandidate(Sema &S,
4696                                  const char *Opc,
4697                                  SourceLocation OpLoc,
4698                                  OverloadCandidate *Cand) {
4699  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4700  std::string TypeStr("operator");
4701  TypeStr += Opc;
4702  TypeStr += "(";
4703  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4704  if (Cand->Conversions.size() == 1) {
4705    TypeStr += ")";
4706    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4707  } else {
4708    TypeStr += ", ";
4709    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4710    TypeStr += ")";
4711    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4712  }
4713}
4714
4715void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4716                                  OverloadCandidate *Cand) {
4717  unsigned NoOperands = Cand->Conversions.size();
4718  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4719    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4720    if (ICS.isBad()) break; // all meaningless after first invalid
4721    if (!ICS.isAmbiguous()) continue;
4722
4723    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4724                              PDiag(diag::note_ambiguous_type_conversion));
4725  }
4726}
4727
4728SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4729  if (Cand->Function)
4730    return Cand->Function->getLocation();
4731  if (Cand->IsSurrogate)
4732    return Cand->Surrogate->getLocation();
4733  return SourceLocation();
4734}
4735
4736struct CompareOverloadCandidatesForDisplay {
4737  Sema &S;
4738  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4739
4740  bool operator()(const OverloadCandidate *L,
4741                  const OverloadCandidate *R) {
4742    // Fast-path this check.
4743    if (L == R) return false;
4744
4745    // Order first by viability.
4746    if (L->Viable) {
4747      if (!R->Viable) return true;
4748
4749      // TODO: introduce a tri-valued comparison for overload
4750      // candidates.  Would be more worthwhile if we had a sort
4751      // that could exploit it.
4752      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4753      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4754    } else if (R->Viable)
4755      return false;
4756
4757    assert(L->Viable == R->Viable);
4758
4759    // Criteria by which we can sort non-viable candidates:
4760    if (!L->Viable) {
4761      // 1. Arity mismatches come after other candidates.
4762      if (L->FailureKind == ovl_fail_too_many_arguments ||
4763          L->FailureKind == ovl_fail_too_few_arguments)
4764        return false;
4765      if (R->FailureKind == ovl_fail_too_many_arguments ||
4766          R->FailureKind == ovl_fail_too_few_arguments)
4767        return true;
4768
4769      // 2. Bad conversions come first and are ordered by the number
4770      // of bad conversions and quality of good conversions.
4771      if (L->FailureKind == ovl_fail_bad_conversion) {
4772        if (R->FailureKind != ovl_fail_bad_conversion)
4773          return true;
4774
4775        // If there's any ordering between the defined conversions...
4776        // FIXME: this might not be transitive.
4777        assert(L->Conversions.size() == R->Conversions.size());
4778
4779        int leftBetter = 0;
4780        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
4781        for (unsigned E = L->Conversions.size(); I != E; ++I) {
4782          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4783                                                       R->Conversions[I])) {
4784          case ImplicitConversionSequence::Better:
4785            leftBetter++;
4786            break;
4787
4788          case ImplicitConversionSequence::Worse:
4789            leftBetter--;
4790            break;
4791
4792          case ImplicitConversionSequence::Indistinguishable:
4793            break;
4794          }
4795        }
4796        if (leftBetter > 0) return true;
4797        if (leftBetter < 0) return false;
4798
4799      } else if (R->FailureKind == ovl_fail_bad_conversion)
4800        return false;
4801
4802      // TODO: others?
4803    }
4804
4805    // Sort everything else by location.
4806    SourceLocation LLoc = GetLocationForCandidate(L);
4807    SourceLocation RLoc = GetLocationForCandidate(R);
4808
4809    // Put candidates without locations (e.g. builtins) at the end.
4810    if (LLoc.isInvalid()) return false;
4811    if (RLoc.isInvalid()) return true;
4812
4813    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4814  }
4815};
4816
4817/// CompleteNonViableCandidate - Normally, overload resolution only
4818/// computes up to the first
4819void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4820                                Expr **Args, unsigned NumArgs) {
4821  assert(!Cand->Viable);
4822
4823  // Don't do anything on failures other than bad conversion.
4824  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4825
4826  // Skip forward to the first bad conversion.
4827  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
4828  unsigned ConvCount = Cand->Conversions.size();
4829  while (true) {
4830    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4831    ConvIdx++;
4832    if (Cand->Conversions[ConvIdx - 1].isBad())
4833      break;
4834  }
4835
4836  if (ConvIdx == ConvCount)
4837    return;
4838
4839  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
4840         "remaining conversion is initialized?");
4841
4842  // FIXME: these should probably be preserved from the overload
4843  // operation somehow.
4844  bool SuppressUserConversions = false;
4845  bool ForceRValue = false;
4846
4847  const FunctionProtoType* Proto;
4848  unsigned ArgIdx = ConvIdx;
4849
4850  if (Cand->IsSurrogate) {
4851    QualType ConvType
4852      = Cand->Surrogate->getConversionType().getNonReferenceType();
4853    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4854      ConvType = ConvPtrType->getPointeeType();
4855    Proto = ConvType->getAs<FunctionProtoType>();
4856    ArgIdx--;
4857  } else if (Cand->Function) {
4858    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4859    if (isa<CXXMethodDecl>(Cand->Function) &&
4860        !isa<CXXConstructorDecl>(Cand->Function))
4861      ArgIdx--;
4862  } else {
4863    // Builtin binary operator with a bad first conversion.
4864    assert(ConvCount <= 3);
4865    for (; ConvIdx != ConvCount; ++ConvIdx)
4866      Cand->Conversions[ConvIdx]
4867        = S.TryCopyInitialization(Args[ConvIdx],
4868                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4869                                  SuppressUserConversions, ForceRValue,
4870                                  /*InOverloadResolution*/ true);
4871    return;
4872  }
4873
4874  // Fill in the rest of the conversions.
4875  unsigned NumArgsInProto = Proto->getNumArgs();
4876  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4877    if (ArgIdx < NumArgsInProto)
4878      Cand->Conversions[ConvIdx]
4879        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4880                                  SuppressUserConversions, ForceRValue,
4881                                  /*InOverloadResolution=*/true);
4882    else
4883      Cand->Conversions[ConvIdx].setEllipsis();
4884  }
4885}
4886
4887} // end anonymous namespace
4888
4889/// PrintOverloadCandidates - When overload resolution fails, prints
4890/// diagnostic messages containing the candidates in the candidate
4891/// set.
4892void
4893Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4894                              OverloadCandidateDisplayKind OCD,
4895                              Expr **Args, unsigned NumArgs,
4896                              const char *Opc,
4897                              SourceLocation OpLoc) {
4898  // Sort the candidates by viability and position.  Sorting directly would
4899  // be prohibitive, so we make a set of pointers and sort those.
4900  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4901  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4902  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4903                                  LastCand = CandidateSet.end();
4904       Cand != LastCand; ++Cand) {
4905    if (Cand->Viable)
4906      Cands.push_back(Cand);
4907    else if (OCD == OCD_AllCandidates) {
4908      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4909      Cands.push_back(Cand);
4910    }
4911  }
4912
4913  std::sort(Cands.begin(), Cands.end(),
4914            CompareOverloadCandidatesForDisplay(*this));
4915
4916  bool ReportedAmbiguousConversions = false;
4917
4918  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4919  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4920    OverloadCandidate *Cand = *I;
4921
4922    if (Cand->Function)
4923      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4924    else if (Cand->IsSurrogate)
4925      NoteSurrogateCandidate(*this, Cand);
4926
4927    // This a builtin candidate.  We do not, in general, want to list
4928    // every possible builtin candidate.
4929    else if (Cand->Viable) {
4930      // Generally we only see ambiguities including viable builtin
4931      // operators if overload resolution got screwed up by an
4932      // ambiguous user-defined conversion.
4933      //
4934      // FIXME: It's quite possible for different conversions to see
4935      // different ambiguities, though.
4936      if (!ReportedAmbiguousConversions) {
4937        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4938        ReportedAmbiguousConversions = true;
4939      }
4940
4941      // If this is a viable builtin, print it.
4942      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4943    }
4944  }
4945}
4946
4947static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D,
4948                                  AccessSpecifier AS) {
4949  if (isa<UnresolvedLookupExpr>(E))
4950    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);
4951
4952  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
4953}
4954
4955/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4956/// an overloaded function (C++ [over.over]), where @p From is an
4957/// expression with overloaded function type and @p ToType is the type
4958/// we're trying to resolve to. For example:
4959///
4960/// @code
4961/// int f(double);
4962/// int f(int);
4963///
4964/// int (*pfd)(double) = f; // selects f(double)
4965/// @endcode
4966///
4967/// This routine returns the resulting FunctionDecl if it could be
4968/// resolved, and NULL otherwise. When @p Complain is true, this
4969/// routine will emit diagnostics if there is an error.
4970FunctionDecl *
4971Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4972                                         bool Complain) {
4973  QualType FunctionType = ToType;
4974  bool IsMember = false;
4975  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4976    FunctionType = ToTypePtr->getPointeeType();
4977  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4978    FunctionType = ToTypeRef->getPointeeType();
4979  else if (const MemberPointerType *MemTypePtr =
4980                    ToType->getAs<MemberPointerType>()) {
4981    FunctionType = MemTypePtr->getPointeeType();
4982    IsMember = true;
4983  }
4984
4985  // We only look at pointers or references to functions.
4986  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4987  if (!FunctionType->isFunctionType())
4988    return 0;
4989
4990  // Find the actual overloaded function declaration.
4991  if (From->getType() != Context.OverloadTy)
4992    return 0;
4993
4994  // C++ [over.over]p1:
4995  //   [...] [Note: any redundant set of parentheses surrounding the
4996  //   overloaded function name is ignored (5.1). ]
4997  // C++ [over.over]p1:
4998  //   [...] The overloaded function name can be preceded by the &
4999  //   operator.
5000  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5001  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5002  if (OvlExpr->hasExplicitTemplateArgs()) {
5003    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5004    ExplicitTemplateArgs = &ETABuffer;
5005  }
5006
5007  // Look through all of the overloaded functions, searching for one
5008  // whose type matches exactly.
5009  UnresolvedSet<4> Matches;  // contains only FunctionDecls
5010  bool FoundNonTemplateFunction = false;
5011  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5012         E = OvlExpr->decls_end(); I != E; ++I) {
5013    // Look through any using declarations to find the underlying function.
5014    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5015
5016    // C++ [over.over]p3:
5017    //   Non-member functions and static member functions match
5018    //   targets of type "pointer-to-function" or "reference-to-function."
5019    //   Nonstatic member functions match targets of
5020    //   type "pointer-to-member-function."
5021    // Note that according to DR 247, the containing class does not matter.
5022
5023    if (FunctionTemplateDecl *FunctionTemplate
5024          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5025      if (CXXMethodDecl *Method
5026            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5027        // Skip non-static function templates when converting to pointer, and
5028        // static when converting to member pointer.
5029        if (Method->isStatic() == IsMember)
5030          continue;
5031      } else if (IsMember)
5032        continue;
5033
5034      // C++ [over.over]p2:
5035      //   If the name is a function template, template argument deduction is
5036      //   done (14.8.2.2), and if the argument deduction succeeds, the
5037      //   resulting template argument list is used to generate a single
5038      //   function template specialization, which is added to the set of
5039      //   overloaded functions considered.
5040      // FIXME: We don't really want to build the specialization here, do we?
5041      FunctionDecl *Specialization = 0;
5042      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5043      if (TemplateDeductionResult Result
5044            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5045                                      FunctionType, Specialization, Info)) {
5046        // FIXME: make a note of the failed deduction for diagnostics.
5047        (void)Result;
5048      } else {
5049        // FIXME: If the match isn't exact, shouldn't we just drop this as
5050        // a candidate? Find a testcase before changing the code.
5051        assert(FunctionType
5052                 == Context.getCanonicalType(Specialization->getType()));
5053        Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
5054                        I.getAccess());
5055      }
5056
5057      continue;
5058    }
5059
5060    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5061      // Skip non-static functions when converting to pointer, and static
5062      // when converting to member pointer.
5063      if (Method->isStatic() == IsMember)
5064        continue;
5065
5066      // If we have explicit template arguments, skip non-templates.
5067      if (OvlExpr->hasExplicitTemplateArgs())
5068        continue;
5069    } else if (IsMember)
5070      continue;
5071
5072    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5073      QualType ResultTy;
5074      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5075          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5076                               ResultTy)) {
5077        Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
5078                        I.getAccess());
5079        FoundNonTemplateFunction = true;
5080      }
5081    }
5082  }
5083
5084  // If there were 0 or 1 matches, we're done.
5085  if (Matches.empty())
5086    return 0;
5087  else if (Matches.size() == 1) {
5088    FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
5089    MarkDeclarationReferenced(From->getLocStart(), Result);
5090    if (Complain)
5091      CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
5092    return Result;
5093  }
5094
5095  // C++ [over.over]p4:
5096  //   If more than one function is selected, [...]
5097  if (!FoundNonTemplateFunction) {
5098    //   [...] and any given function template specialization F1 is
5099    //   eliminated if the set contains a second function template
5100    //   specialization whose function template is more specialized
5101    //   than the function template of F1 according to the partial
5102    //   ordering rules of 14.5.5.2.
5103
5104    // The algorithm specified above is quadratic. We instead use a
5105    // two-pass algorithm (similar to the one used to identify the
5106    // best viable function in an overload set) that identifies the
5107    // best function template (if it exists).
5108
5109    UnresolvedSetIterator Result =
5110        getMostSpecialized(Matches.begin(), Matches.end(),
5111                           TPOC_Other, From->getLocStart(),
5112                           PDiag(),
5113                           PDiag(diag::err_addr_ovl_ambiguous)
5114                               << Matches[0]->getDeclName(),
5115                           PDiag(diag::note_ovl_candidate)
5116                               << (unsigned) oc_function_template);
5117    assert(Result != Matches.end() && "no most-specialized template");
5118    MarkDeclarationReferenced(From->getLocStart(), *Result);
5119    if (Complain)
5120      CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
5121    return cast<FunctionDecl>(*Result);
5122  }
5123
5124  //   [...] any function template specializations in the set are
5125  //   eliminated if the set also contains a non-template function, [...]
5126  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5127    if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
5128      ++I;
5129    else {
5130      Matches.erase(I);
5131      --N;
5132    }
5133  }
5134
5135  // [...] After such eliminations, if any, there shall remain exactly one
5136  // selected function.
5137  if (Matches.size() == 1) {
5138    UnresolvedSetIterator Match = Matches.begin();
5139    MarkDeclarationReferenced(From->getLocStart(), *Match);
5140    if (Complain)
5141      CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
5142    return cast<FunctionDecl>(*Match);
5143  }
5144
5145  // FIXME: We should probably return the same thing that BestViableFunction
5146  // returns (even if we issue the diagnostics here).
5147  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5148    << Matches[0]->getDeclName();
5149  for (UnresolvedSetIterator I = Matches.begin(),
5150         E = Matches.end(); I != E; ++I)
5151    NoteOverloadCandidate(cast<FunctionDecl>(*I));
5152  return 0;
5153}
5154
5155/// \brief Given an expression that refers to an overloaded function, try to
5156/// resolve that overloaded function expression down to a single function.
5157///
5158/// This routine can only resolve template-ids that refer to a single function
5159/// template, where that template-id refers to a single template whose template
5160/// arguments are either provided by the template-id or have defaults,
5161/// as described in C++0x [temp.arg.explicit]p3.
5162FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5163  // C++ [over.over]p1:
5164  //   [...] [Note: any redundant set of parentheses surrounding the
5165  //   overloaded function name is ignored (5.1). ]
5166  // C++ [over.over]p1:
5167  //   [...] The overloaded function name can be preceded by the &
5168  //   operator.
5169
5170  if (From->getType() != Context.OverloadTy)
5171    return 0;
5172
5173  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5174
5175  // If we didn't actually find any template-ids, we're done.
5176  if (!OvlExpr->hasExplicitTemplateArgs())
5177    return 0;
5178
5179  TemplateArgumentListInfo ExplicitTemplateArgs;
5180  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5181
5182  // Look through all of the overloaded functions, searching for one
5183  // whose type matches exactly.
5184  FunctionDecl *Matched = 0;
5185  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5186         E = OvlExpr->decls_end(); I != E; ++I) {
5187    // C++0x [temp.arg.explicit]p3:
5188    //   [...] In contexts where deduction is done and fails, or in contexts
5189    //   where deduction is not done, if a template argument list is
5190    //   specified and it, along with any default template arguments,
5191    //   identifies a single function template specialization, then the
5192    //   template-id is an lvalue for the function template specialization.
5193    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5194
5195    // C++ [over.over]p2:
5196    //   If the name is a function template, template argument deduction is
5197    //   done (14.8.2.2), and if the argument deduction succeeds, the
5198    //   resulting template argument list is used to generate a single
5199    //   function template specialization, which is added to the set of
5200    //   overloaded functions considered.
5201    FunctionDecl *Specialization = 0;
5202    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5203    if (TemplateDeductionResult Result
5204          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5205                                    Specialization, Info)) {
5206      // FIXME: make a note of the failed deduction for diagnostics.
5207      (void)Result;
5208      continue;
5209    }
5210
5211    // Multiple matches; we can't resolve to a single declaration.
5212    if (Matched)
5213      return 0;
5214
5215    Matched = Specialization;
5216  }
5217
5218  return Matched;
5219}
5220
5221/// \brief Add a single candidate to the overload set.
5222static void AddOverloadedCallCandidate(Sema &S,
5223                                       NamedDecl *Callee,
5224                                       AccessSpecifier Access,
5225                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5226                                       Expr **Args, unsigned NumArgs,
5227                                       OverloadCandidateSet &CandidateSet,
5228                                       bool PartialOverloading) {
5229  if (isa<UsingShadowDecl>(Callee))
5230    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5231
5232  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5233    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5234    S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
5235                           false, false, PartialOverloading);
5236    return;
5237  }
5238
5239  if (FunctionTemplateDecl *FuncTemplate
5240      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5241    S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
5242                                   Args, NumArgs, CandidateSet);
5243    return;
5244  }
5245
5246  assert(false && "unhandled case in overloaded call candidate");
5247
5248  // do nothing?
5249}
5250
5251/// \brief Add the overload candidates named by callee and/or found by argument
5252/// dependent lookup to the given overload set.
5253void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5254                                       Expr **Args, unsigned NumArgs,
5255                                       OverloadCandidateSet &CandidateSet,
5256                                       bool PartialOverloading) {
5257
5258#ifndef NDEBUG
5259  // Verify that ArgumentDependentLookup is consistent with the rules
5260  // in C++0x [basic.lookup.argdep]p3:
5261  //
5262  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5263  //   and let Y be the lookup set produced by argument dependent
5264  //   lookup (defined as follows). If X contains
5265  //
5266  //     -- a declaration of a class member, or
5267  //
5268  //     -- a block-scope function declaration that is not a
5269  //        using-declaration, or
5270  //
5271  //     -- a declaration that is neither a function or a function
5272  //        template
5273  //
5274  //   then Y is empty.
5275
5276  if (ULE->requiresADL()) {
5277    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5278           E = ULE->decls_end(); I != E; ++I) {
5279      assert(!(*I)->getDeclContext()->isRecord());
5280      assert(isa<UsingShadowDecl>(*I) ||
5281             !(*I)->getDeclContext()->isFunctionOrMethod());
5282      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5283    }
5284  }
5285#endif
5286
5287  // It would be nice to avoid this copy.
5288  TemplateArgumentListInfo TABuffer;
5289  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5290  if (ULE->hasExplicitTemplateArgs()) {
5291    ULE->copyTemplateArgumentsInto(TABuffer);
5292    ExplicitTemplateArgs = &TABuffer;
5293  }
5294
5295  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5296         E = ULE->decls_end(); I != E; ++I)
5297    AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
5298                               Args, NumArgs, CandidateSet,
5299                               PartialOverloading);
5300
5301  if (ULE->requiresADL())
5302    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5303                                         Args, NumArgs,
5304                                         ExplicitTemplateArgs,
5305                                         CandidateSet,
5306                                         PartialOverloading);
5307}
5308
5309static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5310                                      Expr **Args, unsigned NumArgs) {
5311  Fn->Destroy(SemaRef.Context);
5312  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5313    Args[Arg]->Destroy(SemaRef.Context);
5314  return SemaRef.ExprError();
5315}
5316
5317/// Attempts to recover from a call where no functions were found.
5318///
5319/// Returns true if new candidates were found.
5320static Sema::OwningExprResult
5321BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5322                      UnresolvedLookupExpr *ULE,
5323                      SourceLocation LParenLoc,
5324                      Expr **Args, unsigned NumArgs,
5325                      SourceLocation *CommaLocs,
5326                      SourceLocation RParenLoc) {
5327
5328  CXXScopeSpec SS;
5329  if (ULE->getQualifier()) {
5330    SS.setScopeRep(ULE->getQualifier());
5331    SS.setRange(ULE->getQualifierRange());
5332  }
5333
5334  TemplateArgumentListInfo TABuffer;
5335  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5336  if (ULE->hasExplicitTemplateArgs()) {
5337    ULE->copyTemplateArgumentsInto(TABuffer);
5338    ExplicitTemplateArgs = &TABuffer;
5339  }
5340
5341  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5342                 Sema::LookupOrdinaryName);
5343  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5344    return Destroy(SemaRef, Fn, Args, NumArgs);
5345
5346  assert(!R.empty() && "lookup results empty despite recovery");
5347
5348  // Build an implicit member call if appropriate.  Just drop the
5349  // casts and such from the call, we don't really care.
5350  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5351  if ((*R.begin())->isCXXClassMember())
5352    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5353  else if (ExplicitTemplateArgs)
5354    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5355  else
5356    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5357
5358  if (NewFn.isInvalid())
5359    return Destroy(SemaRef, Fn, Args, NumArgs);
5360
5361  Fn->Destroy(SemaRef.Context);
5362
5363  // This shouldn't cause an infinite loop because we're giving it
5364  // an expression with non-empty lookup results, which should never
5365  // end up here.
5366  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5367                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5368                               CommaLocs, RParenLoc);
5369}
5370
5371/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5372/// (which eventually refers to the declaration Func) and the call
5373/// arguments Args/NumArgs, attempt to resolve the function call down
5374/// to a specific function. If overload resolution succeeds, returns
5375/// the function declaration produced by overload
5376/// resolution. Otherwise, emits diagnostics, deletes all of the
5377/// arguments and Fn, and returns NULL.
5378Sema::OwningExprResult
5379Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5380                              SourceLocation LParenLoc,
5381                              Expr **Args, unsigned NumArgs,
5382                              SourceLocation *CommaLocs,
5383                              SourceLocation RParenLoc) {
5384#ifndef NDEBUG
5385  if (ULE->requiresADL()) {
5386    // To do ADL, we must have found an unqualified name.
5387    assert(!ULE->getQualifier() && "qualified name with ADL");
5388
5389    // We don't perform ADL for implicit declarations of builtins.
5390    // Verify that this was correctly set up.
5391    FunctionDecl *F;
5392    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5393        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5394        F->getBuiltinID() && F->isImplicit())
5395      assert(0 && "performing ADL for builtin");
5396
5397    // We don't perform ADL in C.
5398    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5399  }
5400#endif
5401
5402  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5403
5404  // Add the functions denoted by the callee to the set of candidate
5405  // functions, including those from argument-dependent lookup.
5406  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5407
5408  // If we found nothing, try to recover.
5409  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5410  // bailout out if it fails.
5411  if (CandidateSet.empty())
5412    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5413                                 CommaLocs, RParenLoc);
5414
5415  OverloadCandidateSet::iterator Best;
5416  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5417  case OR_Success: {
5418    FunctionDecl *FDecl = Best->Function;
5419    CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
5420    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5421    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5422  }
5423
5424  case OR_No_Viable_Function:
5425    Diag(Fn->getSourceRange().getBegin(),
5426         diag::err_ovl_no_viable_function_in_call)
5427      << ULE->getName() << Fn->getSourceRange();
5428    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5429    break;
5430
5431  case OR_Ambiguous:
5432    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5433      << ULE->getName() << Fn->getSourceRange();
5434    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5435    break;
5436
5437  case OR_Deleted:
5438    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5439      << Best->Function->isDeleted()
5440      << ULE->getName()
5441      << Fn->getSourceRange();
5442    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5443    break;
5444  }
5445
5446  // Overload resolution failed. Destroy all of the subexpressions and
5447  // return NULL.
5448  Fn->Destroy(Context);
5449  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5450    Args[Arg]->Destroy(Context);
5451  return ExprError();
5452}
5453
5454static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5455  return Functions.size() > 1 ||
5456    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5457}
5458
5459/// \brief Create a unary operation that may resolve to an overloaded
5460/// operator.
5461///
5462/// \param OpLoc The location of the operator itself (e.g., '*').
5463///
5464/// \param OpcIn The UnaryOperator::Opcode that describes this
5465/// operator.
5466///
5467/// \param Functions The set of non-member functions that will be
5468/// considered by overload resolution. The caller needs to build this
5469/// set based on the context using, e.g.,
5470/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5471/// set should not contain any member functions; those will be added
5472/// by CreateOverloadedUnaryOp().
5473///
5474/// \param input The input argument.
5475Sema::OwningExprResult
5476Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5477                              const UnresolvedSetImpl &Fns,
5478                              ExprArg input) {
5479  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5480  Expr *Input = (Expr *)input.get();
5481
5482  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5483  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5484  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5485
5486  Expr *Args[2] = { Input, 0 };
5487  unsigned NumArgs = 1;
5488
5489  // For post-increment and post-decrement, add the implicit '0' as
5490  // the second argument, so that we know this is a post-increment or
5491  // post-decrement.
5492  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5493    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5494    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5495                                           SourceLocation());
5496    NumArgs = 2;
5497  }
5498
5499  if (Input->isTypeDependent()) {
5500    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5501    UnresolvedLookupExpr *Fn
5502      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5503                                     0, SourceRange(), OpName, OpLoc,
5504                                     /*ADL*/ true, IsOverloaded(Fns));
5505    Fn->addDecls(Fns.begin(), Fns.end());
5506
5507    input.release();
5508    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5509                                                   &Args[0], NumArgs,
5510                                                   Context.DependentTy,
5511                                                   OpLoc));
5512  }
5513
5514  // Build an empty overload set.
5515  OverloadCandidateSet CandidateSet(OpLoc);
5516
5517  // Add the candidates from the given function set.
5518  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5519
5520  // Add operator candidates that are member functions.
5521  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5522
5523  // Add candidates from ADL.
5524  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5525                                       Args, NumArgs,
5526                                       /*ExplicitTemplateArgs*/ 0,
5527                                       CandidateSet);
5528
5529  // Add builtin operator candidates.
5530  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5531
5532  // Perform overload resolution.
5533  OverloadCandidateSet::iterator Best;
5534  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5535  case OR_Success: {
5536    // We found a built-in operator or an overloaded operator.
5537    FunctionDecl *FnDecl = Best->Function;
5538
5539    if (FnDecl) {
5540      // We matched an overloaded operator. Build a call to that
5541      // operator.
5542
5543      // Convert the arguments.
5544      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5545        CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5546
5547        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, Method))
5548          return ExprError();
5549      } else {
5550        // Convert the arguments.
5551        OwningExprResult InputInit
5552          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5553                                                      FnDecl->getParamDecl(0)),
5554                                      SourceLocation(),
5555                                      move(input));
5556        if (InputInit.isInvalid())
5557          return ExprError();
5558
5559        input = move(InputInit);
5560        Input = (Expr *)input.get();
5561      }
5562
5563      // Determine the result type
5564      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5565
5566      // Build the actual expression node.
5567      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5568                                               SourceLocation());
5569      UsualUnaryConversions(FnExpr);
5570
5571      input.release();
5572      Args[0] = Input;
5573      ExprOwningPtr<CallExpr> TheCall(this,
5574        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5575                                          Args, NumArgs, ResultTy, OpLoc));
5576
5577      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5578                              FnDecl))
5579        return ExprError();
5580
5581      return MaybeBindToTemporary(TheCall.release());
5582    } else {
5583      // We matched a built-in operator. Convert the arguments, then
5584      // break out so that we will build the appropriate built-in
5585      // operator node.
5586        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5587                                      Best->Conversions[0], AA_Passing))
5588          return ExprError();
5589
5590        break;
5591      }
5592    }
5593
5594    case OR_No_Viable_Function:
5595      // No viable function; fall through to handling this as a
5596      // built-in operator, which will produce an error message for us.
5597      break;
5598
5599    case OR_Ambiguous:
5600      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5601          << UnaryOperator::getOpcodeStr(Opc)
5602          << Input->getSourceRange();
5603      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5604                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5605      return ExprError();
5606
5607    case OR_Deleted:
5608      Diag(OpLoc, diag::err_ovl_deleted_oper)
5609        << Best->Function->isDeleted()
5610        << UnaryOperator::getOpcodeStr(Opc)
5611        << Input->getSourceRange();
5612      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5613      return ExprError();
5614    }
5615
5616  // Either we found no viable overloaded operator or we matched a
5617  // built-in operator. In either case, fall through to trying to
5618  // build a built-in operation.
5619  input.release();
5620  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5621}
5622
5623/// \brief Create a binary operation that may resolve to an overloaded
5624/// operator.
5625///
5626/// \param OpLoc The location of the operator itself (e.g., '+').
5627///
5628/// \param OpcIn The BinaryOperator::Opcode that describes this
5629/// operator.
5630///
5631/// \param Functions The set of non-member functions that will be
5632/// considered by overload resolution. The caller needs to build this
5633/// set based on the context using, e.g.,
5634/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5635/// set should not contain any member functions; those will be added
5636/// by CreateOverloadedBinOp().
5637///
5638/// \param LHS Left-hand argument.
5639/// \param RHS Right-hand argument.
5640Sema::OwningExprResult
5641Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5642                            unsigned OpcIn,
5643                            const UnresolvedSetImpl &Fns,
5644                            Expr *LHS, Expr *RHS) {
5645  Expr *Args[2] = { LHS, RHS };
5646  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5647
5648  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5649  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5650  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5651
5652  // If either side is type-dependent, create an appropriate dependent
5653  // expression.
5654  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5655    if (Fns.empty()) {
5656      // If there are no functions to store, just build a dependent
5657      // BinaryOperator or CompoundAssignment.
5658      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5659        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5660                                                  Context.DependentTy, OpLoc));
5661
5662      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5663                                                        Context.DependentTy,
5664                                                        Context.DependentTy,
5665                                                        Context.DependentTy,
5666                                                        OpLoc));
5667    }
5668
5669    // FIXME: save results of ADL from here?
5670    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5671    UnresolvedLookupExpr *Fn
5672      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5673                                     0, SourceRange(), OpName, OpLoc,
5674                                     /*ADL*/ true, IsOverloaded(Fns));
5675
5676    Fn->addDecls(Fns.begin(), Fns.end());
5677    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5678                                                   Args, 2,
5679                                                   Context.DependentTy,
5680                                                   OpLoc));
5681  }
5682
5683  // If this is the .* operator, which is not overloadable, just
5684  // create a built-in binary operator.
5685  if (Opc == BinaryOperator::PtrMemD)
5686    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5687
5688  // If this is the assignment operator, we only perform overload resolution
5689  // if the left-hand side is a class or enumeration type. This is actually
5690  // a hack. The standard requires that we do overload resolution between the
5691  // various built-in candidates, but as DR507 points out, this can lead to
5692  // problems. So we do it this way, which pretty much follows what GCC does.
5693  // Note that we go the traditional code path for compound assignment forms.
5694  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5695    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5696
5697  // Build an empty overload set.
5698  OverloadCandidateSet CandidateSet(OpLoc);
5699
5700  // Add the candidates from the given function set.
5701  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5702
5703  // Add operator candidates that are member functions.
5704  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5705
5706  // Add candidates from ADL.
5707  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5708                                       Args, 2,
5709                                       /*ExplicitTemplateArgs*/ 0,
5710                                       CandidateSet);
5711
5712  // Add builtin operator candidates.
5713  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5714
5715  // Perform overload resolution.
5716  OverloadCandidateSet::iterator Best;
5717  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5718    case OR_Success: {
5719      // We found a built-in operator or an overloaded operator.
5720      FunctionDecl *FnDecl = Best->Function;
5721
5722      if (FnDecl) {
5723        // We matched an overloaded operator. Build a call to that
5724        // operator.
5725
5726        // Convert the arguments.
5727        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5728          // Best->Access is only meaningful for class members.
5729          CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5730
5731          OwningExprResult Arg1
5732            = PerformCopyInitialization(
5733                                        InitializedEntity::InitializeParameter(
5734                                                        FnDecl->getParamDecl(0)),
5735                                        SourceLocation(),
5736                                        Owned(Args[1]));
5737          if (Arg1.isInvalid())
5738            return ExprError();
5739
5740          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5741                                                  Method))
5742            return ExprError();
5743
5744          Args[1] = RHS = Arg1.takeAs<Expr>();
5745        } else {
5746          // Convert the arguments.
5747          OwningExprResult Arg0
5748            = PerformCopyInitialization(
5749                                        InitializedEntity::InitializeParameter(
5750                                                        FnDecl->getParamDecl(0)),
5751                                        SourceLocation(),
5752                                        Owned(Args[0]));
5753          if (Arg0.isInvalid())
5754            return ExprError();
5755
5756          OwningExprResult Arg1
5757            = PerformCopyInitialization(
5758                                        InitializedEntity::InitializeParameter(
5759                                                        FnDecl->getParamDecl(1)),
5760                                        SourceLocation(),
5761                                        Owned(Args[1]));
5762          if (Arg1.isInvalid())
5763            return ExprError();
5764          Args[0] = LHS = Arg0.takeAs<Expr>();
5765          Args[1] = RHS = Arg1.takeAs<Expr>();
5766        }
5767
5768        // Determine the result type
5769        QualType ResultTy
5770          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5771        ResultTy = ResultTy.getNonReferenceType();
5772
5773        // Build the actual expression node.
5774        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5775                                                 OpLoc);
5776        UsualUnaryConversions(FnExpr);
5777
5778        ExprOwningPtr<CXXOperatorCallExpr>
5779          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5780                                                          Args, 2, ResultTy,
5781                                                          OpLoc));
5782
5783        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5784                                FnDecl))
5785          return ExprError();
5786
5787        return MaybeBindToTemporary(TheCall.release());
5788      } else {
5789        // We matched a built-in operator. Convert the arguments, then
5790        // break out so that we will build the appropriate built-in
5791        // operator node.
5792        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5793                                      Best->Conversions[0], AA_Passing) ||
5794            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5795                                      Best->Conversions[1], AA_Passing))
5796          return ExprError();
5797
5798        break;
5799      }
5800    }
5801
5802    case OR_No_Viable_Function: {
5803      // C++ [over.match.oper]p9:
5804      //   If the operator is the operator , [...] and there are no
5805      //   viable functions, then the operator is assumed to be the
5806      //   built-in operator and interpreted according to clause 5.
5807      if (Opc == BinaryOperator::Comma)
5808        break;
5809
5810      // For class as left operand for assignment or compound assigment operator
5811      // do not fall through to handling in built-in, but report that no overloaded
5812      // assignment operator found
5813      OwningExprResult Result = ExprError();
5814      if (Args[0]->getType()->isRecordType() &&
5815          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5816        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5817             << BinaryOperator::getOpcodeStr(Opc)
5818             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5819      } else {
5820        // No viable function; try to create a built-in operation, which will
5821        // produce an error. Then, show the non-viable candidates.
5822        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5823      }
5824      assert(Result.isInvalid() &&
5825             "C++ binary operator overloading is missing candidates!");
5826      if (Result.isInvalid())
5827        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5828                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5829      return move(Result);
5830    }
5831
5832    case OR_Ambiguous:
5833      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5834          << BinaryOperator::getOpcodeStr(Opc)
5835          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5836      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5837                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5838      return ExprError();
5839
5840    case OR_Deleted:
5841      Diag(OpLoc, diag::err_ovl_deleted_oper)
5842        << Best->Function->isDeleted()
5843        << BinaryOperator::getOpcodeStr(Opc)
5844        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5845      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5846      return ExprError();
5847  }
5848
5849  // We matched a built-in operator; build it.
5850  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5851}
5852
5853Action::OwningExprResult
5854Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5855                                         SourceLocation RLoc,
5856                                         ExprArg Base, ExprArg Idx) {
5857  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5858                    static_cast<Expr*>(Idx.get()) };
5859  DeclarationName OpName =
5860      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5861
5862  // If either side is type-dependent, create an appropriate dependent
5863  // expression.
5864  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5865
5866    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5867    UnresolvedLookupExpr *Fn
5868      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5869                                     0, SourceRange(), OpName, LLoc,
5870                                     /*ADL*/ true, /*Overloaded*/ false);
5871    // Can't add any actual overloads yet
5872
5873    Base.release();
5874    Idx.release();
5875    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5876                                                   Args, 2,
5877                                                   Context.DependentTy,
5878                                                   RLoc));
5879  }
5880
5881  // Build an empty overload set.
5882  OverloadCandidateSet CandidateSet(LLoc);
5883
5884  // Subscript can only be overloaded as a member function.
5885
5886  // Add operator candidates that are member functions.
5887  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5888
5889  // Add builtin operator candidates.
5890  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5891
5892  // Perform overload resolution.
5893  OverloadCandidateSet::iterator Best;
5894  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5895    case OR_Success: {
5896      // We found a built-in operator or an overloaded operator.
5897      FunctionDecl *FnDecl = Best->Function;
5898
5899      if (FnDecl) {
5900        // We matched an overloaded operator. Build a call to that
5901        // operator.
5902
5903        CheckMemberOperatorAccess(LLoc, Args[0], FnDecl, Best->getAccess());
5904
5905        // Convert the arguments.
5906        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5907        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5908                                                Method))
5909          return ExprError();
5910
5911        // Convert the arguments.
5912        OwningExprResult InputInit
5913          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5914                                                      FnDecl->getParamDecl(0)),
5915                                      SourceLocation(),
5916                                      Owned(Args[1]));
5917        if (InputInit.isInvalid())
5918          return ExprError();
5919
5920        Args[1] = InputInit.takeAs<Expr>();
5921
5922        // Determine the result type
5923        QualType ResultTy
5924          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5925        ResultTy = ResultTy.getNonReferenceType();
5926
5927        // Build the actual expression node.
5928        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5929                                                 LLoc);
5930        UsualUnaryConversions(FnExpr);
5931
5932        Base.release();
5933        Idx.release();
5934        ExprOwningPtr<CXXOperatorCallExpr>
5935          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5936                                                          FnExpr, Args, 2,
5937                                                          ResultTy, RLoc));
5938
5939        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5940                                FnDecl))
5941          return ExprError();
5942
5943        return MaybeBindToTemporary(TheCall.release());
5944      } else {
5945        // We matched a built-in operator. Convert the arguments, then
5946        // break out so that we will build the appropriate built-in
5947        // operator node.
5948        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5949                                      Best->Conversions[0], AA_Passing) ||
5950            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5951                                      Best->Conversions[1], AA_Passing))
5952          return ExprError();
5953
5954        break;
5955      }
5956    }
5957
5958    case OR_No_Viable_Function: {
5959      if (CandidateSet.empty())
5960        Diag(LLoc, diag::err_ovl_no_oper)
5961          << Args[0]->getType() << /*subscript*/ 0
5962          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5963      else
5964        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5965          << Args[0]->getType()
5966          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5967      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5968                              "[]", LLoc);
5969      return ExprError();
5970    }
5971
5972    case OR_Ambiguous:
5973      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5974          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5975      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5976                              "[]", LLoc);
5977      return ExprError();
5978
5979    case OR_Deleted:
5980      Diag(LLoc, diag::err_ovl_deleted_oper)
5981        << Best->Function->isDeleted() << "[]"
5982        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5983      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5984                              "[]", LLoc);
5985      return ExprError();
5986    }
5987
5988  // We matched a built-in operator; build it.
5989  Base.release();
5990  Idx.release();
5991  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5992                                         Owned(Args[1]), RLoc);
5993}
5994
5995/// BuildCallToMemberFunction - Build a call to a member
5996/// function. MemExpr is the expression that refers to the member
5997/// function (and includes the object parameter), Args/NumArgs are the
5998/// arguments to the function call (not including the object
5999/// parameter). The caller needs to validate that the member
6000/// expression refers to a member function or an overloaded member
6001/// function.
6002Sema::OwningExprResult
6003Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6004                                SourceLocation LParenLoc, Expr **Args,
6005                                unsigned NumArgs, SourceLocation *CommaLocs,
6006                                SourceLocation RParenLoc) {
6007  // Dig out the member expression. This holds both the object
6008  // argument and the member function we're referring to.
6009  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6010
6011  MemberExpr *MemExpr;
6012  CXXMethodDecl *Method = 0;
6013  NestedNameSpecifier *Qualifier = 0;
6014  if (isa<MemberExpr>(NakedMemExpr)) {
6015    MemExpr = cast<MemberExpr>(NakedMemExpr);
6016    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6017    Qualifier = MemExpr->getQualifier();
6018  } else {
6019    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6020    Qualifier = UnresExpr->getQualifier();
6021
6022    QualType ObjectType = UnresExpr->getBaseType();
6023
6024    // Add overload candidates
6025    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6026
6027    // FIXME: avoid copy.
6028    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6029    if (UnresExpr->hasExplicitTemplateArgs()) {
6030      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6031      TemplateArgs = &TemplateArgsBuffer;
6032    }
6033
6034    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6035           E = UnresExpr->decls_end(); I != E; ++I) {
6036
6037      NamedDecl *Func = *I;
6038      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6039      if (isa<UsingShadowDecl>(Func))
6040        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6041
6042      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6043        // If explicit template arguments were provided, we can't call a
6044        // non-template member function.
6045        if (TemplateArgs)
6046          continue;
6047
6048        AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
6049                           Args, NumArgs,
6050                           CandidateSet, /*SuppressUserConversions=*/false);
6051      } else {
6052        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6053                                   I.getAccess(), ActingDC, TemplateArgs,
6054                                   ObjectType, Args, NumArgs,
6055                                   CandidateSet,
6056                                   /*SuppressUsedConversions=*/false);
6057      }
6058    }
6059
6060    DeclarationName DeclName = UnresExpr->getMemberName();
6061
6062    OverloadCandidateSet::iterator Best;
6063    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6064    case OR_Success:
6065      Method = cast<CXXMethodDecl>(Best->Function);
6066      CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
6067      break;
6068
6069    case OR_No_Viable_Function:
6070      Diag(UnresExpr->getMemberLoc(),
6071           diag::err_ovl_no_viable_member_function_in_call)
6072        << DeclName << MemExprE->getSourceRange();
6073      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6074      // FIXME: Leaking incoming expressions!
6075      return ExprError();
6076
6077    case OR_Ambiguous:
6078      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6079        << DeclName << MemExprE->getSourceRange();
6080      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6081      // FIXME: Leaking incoming expressions!
6082      return ExprError();
6083
6084    case OR_Deleted:
6085      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6086        << Best->Function->isDeleted()
6087        << DeclName << MemExprE->getSourceRange();
6088      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6089      // FIXME: Leaking incoming expressions!
6090      return ExprError();
6091    }
6092
6093    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6094
6095    // If overload resolution picked a static member, build a
6096    // non-member call based on that function.
6097    if (Method->isStatic()) {
6098      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6099                                   Args, NumArgs, RParenLoc);
6100    }
6101
6102    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6103  }
6104
6105  assert(Method && "Member call to something that isn't a method?");
6106  ExprOwningPtr<CXXMemberCallExpr>
6107    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6108                                                  NumArgs,
6109                                  Method->getResultType().getNonReferenceType(),
6110                                  RParenLoc));
6111
6112  // Check for a valid return type.
6113  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6114                          TheCall.get(), Method))
6115    return ExprError();
6116
6117  // Convert the object argument (for a non-static member function call).
6118  Expr *ObjectArg = MemExpr->getBase();
6119  if (!Method->isStatic() &&
6120      PerformObjectArgumentInitialization(ObjectArg, Qualifier, Method))
6121    return ExprError();
6122  MemExpr->setBase(ObjectArg);
6123
6124  // Convert the rest of the arguments
6125  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6126  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6127                              RParenLoc))
6128    return ExprError();
6129
6130  if (CheckFunctionCall(Method, TheCall.get()))
6131    return ExprError();
6132
6133  return MaybeBindToTemporary(TheCall.release());
6134}
6135
6136/// BuildCallToObjectOfClassType - Build a call to an object of class
6137/// type (C++ [over.call.object]), which can end up invoking an
6138/// overloaded function call operator (@c operator()) or performing a
6139/// user-defined conversion on the object argument.
6140Sema::ExprResult
6141Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6142                                   SourceLocation LParenLoc,
6143                                   Expr **Args, unsigned NumArgs,
6144                                   SourceLocation *CommaLocs,
6145                                   SourceLocation RParenLoc) {
6146  assert(Object->getType()->isRecordType() && "Requires object type argument");
6147  const RecordType *Record = Object->getType()->getAs<RecordType>();
6148
6149  // C++ [over.call.object]p1:
6150  //  If the primary-expression E in the function call syntax
6151  //  evaluates to a class object of type "cv T", then the set of
6152  //  candidate functions includes at least the function call
6153  //  operators of T. The function call operators of T are obtained by
6154  //  ordinary lookup of the name operator() in the context of
6155  //  (E).operator().
6156  OverloadCandidateSet CandidateSet(LParenLoc);
6157  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6158
6159  if (RequireCompleteType(LParenLoc, Object->getType(),
6160                          PartialDiagnostic(diag::err_incomplete_object_call)
6161                          << Object->getSourceRange()))
6162    return true;
6163
6164  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6165  LookupQualifiedName(R, Record->getDecl());
6166  R.suppressDiagnostics();
6167
6168  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6169       Oper != OperEnd; ++Oper) {
6170    AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
6171                       Args, NumArgs, CandidateSet,
6172                       /*SuppressUserConversions=*/ false);
6173  }
6174
6175  // C++ [over.call.object]p2:
6176  //   In addition, for each conversion function declared in T of the
6177  //   form
6178  //
6179  //        operator conversion-type-id () cv-qualifier;
6180  //
6181  //   where cv-qualifier is the same cv-qualification as, or a
6182  //   greater cv-qualification than, cv, and where conversion-type-id
6183  //   denotes the type "pointer to function of (P1,...,Pn) returning
6184  //   R", or the type "reference to pointer to function of
6185  //   (P1,...,Pn) returning R", or the type "reference to function
6186  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6187  //   is also considered as a candidate function. Similarly,
6188  //   surrogate call functions are added to the set of candidate
6189  //   functions for each conversion function declared in an
6190  //   accessible base class provided the function is not hidden
6191  //   within T by another intervening declaration.
6192  const UnresolvedSetImpl *Conversions
6193    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6194  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6195         E = Conversions->end(); I != E; ++I) {
6196    NamedDecl *D = *I;
6197    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6198    if (isa<UsingShadowDecl>(D))
6199      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6200
6201    // Skip over templated conversion functions; they aren't
6202    // surrogates.
6203    if (isa<FunctionTemplateDecl>(D))
6204      continue;
6205
6206    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6207
6208    // Strip the reference type (if any) and then the pointer type (if
6209    // any) to get down to what might be a function type.
6210    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6211    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6212      ConvType = ConvPtrType->getPointeeType();
6213
6214    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6215      AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
6216                            Object->getType(), Args, NumArgs,
6217                            CandidateSet);
6218  }
6219
6220  // Perform overload resolution.
6221  OverloadCandidateSet::iterator Best;
6222  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6223  case OR_Success:
6224    // Overload resolution succeeded; we'll build the appropriate call
6225    // below.
6226    break;
6227
6228  case OR_No_Viable_Function:
6229    if (CandidateSet.empty())
6230      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6231        << Object->getType() << /*call*/ 1
6232        << Object->getSourceRange();
6233    else
6234      Diag(Object->getSourceRange().getBegin(),
6235           diag::err_ovl_no_viable_object_call)
6236        << Object->getType() << Object->getSourceRange();
6237    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6238    break;
6239
6240  case OR_Ambiguous:
6241    Diag(Object->getSourceRange().getBegin(),
6242         diag::err_ovl_ambiguous_object_call)
6243      << Object->getType() << Object->getSourceRange();
6244    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6245    break;
6246
6247  case OR_Deleted:
6248    Diag(Object->getSourceRange().getBegin(),
6249         diag::err_ovl_deleted_object_call)
6250      << Best->Function->isDeleted()
6251      << Object->getType() << Object->getSourceRange();
6252    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6253    break;
6254  }
6255
6256  if (Best == CandidateSet.end()) {
6257    // We had an error; delete all of the subexpressions and return
6258    // the error.
6259    Object->Destroy(Context);
6260    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6261      Args[ArgIdx]->Destroy(Context);
6262    return true;
6263  }
6264
6265  if (Best->Function == 0) {
6266    // Since there is no function declaration, this is one of the
6267    // surrogate candidates. Dig out the conversion function.
6268    CXXConversionDecl *Conv
6269      = cast<CXXConversionDecl>(
6270                         Best->Conversions[0].UserDefined.ConversionFunction);
6271
6272    CheckMemberOperatorAccess(LParenLoc, Object, Conv, Best->getAccess());
6273
6274    // We selected one of the surrogate functions that converts the
6275    // object parameter to a function pointer. Perform the conversion
6276    // on the object argument, then let ActOnCallExpr finish the job.
6277
6278    // Create an implicit member expr to refer to the conversion operator.
6279    // and then call it.
6280    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6281
6282    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6283                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6284                         CommaLocs, RParenLoc).release();
6285  }
6286
6287  CheckMemberOperatorAccess(LParenLoc, Object,
6288                            Best->Function, Best->getAccess());
6289
6290  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6291  // that calls this method, using Object for the implicit object
6292  // parameter and passing along the remaining arguments.
6293  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6294  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6295
6296  unsigned NumArgsInProto = Proto->getNumArgs();
6297  unsigned NumArgsToCheck = NumArgs;
6298
6299  // Build the full argument list for the method call (the
6300  // implicit object parameter is placed at the beginning of the
6301  // list).
6302  Expr **MethodArgs;
6303  if (NumArgs < NumArgsInProto) {
6304    NumArgsToCheck = NumArgsInProto;
6305    MethodArgs = new Expr*[NumArgsInProto + 1];
6306  } else {
6307    MethodArgs = new Expr*[NumArgs + 1];
6308  }
6309  MethodArgs[0] = Object;
6310  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6311    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6312
6313  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6314                                          SourceLocation());
6315  UsualUnaryConversions(NewFn);
6316
6317  // Once we've built TheCall, all of the expressions are properly
6318  // owned.
6319  QualType ResultTy = Method->getResultType().getNonReferenceType();
6320  ExprOwningPtr<CXXOperatorCallExpr>
6321    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6322                                                    MethodArgs, NumArgs + 1,
6323                                                    ResultTy, RParenLoc));
6324  delete [] MethodArgs;
6325
6326  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6327                          Method))
6328    return true;
6329
6330  // We may have default arguments. If so, we need to allocate more
6331  // slots in the call for them.
6332  if (NumArgs < NumArgsInProto)
6333    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6334  else if (NumArgs > NumArgsInProto)
6335    NumArgsToCheck = NumArgsInProto;
6336
6337  bool IsError = false;
6338
6339  // Initialize the implicit object parameter.
6340  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6341                                                 Method);
6342  TheCall->setArg(0, Object);
6343
6344
6345  // Check the argument types.
6346  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6347    Expr *Arg;
6348    if (i < NumArgs) {
6349      Arg = Args[i];
6350
6351      // Pass the argument.
6352
6353      OwningExprResult InputInit
6354        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6355                                                    Method->getParamDecl(i)),
6356                                    SourceLocation(), Owned(Arg));
6357
6358      IsError |= InputInit.isInvalid();
6359      Arg = InputInit.takeAs<Expr>();
6360    } else {
6361      OwningExprResult DefArg
6362        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6363      if (DefArg.isInvalid()) {
6364        IsError = true;
6365        break;
6366      }
6367
6368      Arg = DefArg.takeAs<Expr>();
6369    }
6370
6371    TheCall->setArg(i + 1, Arg);
6372  }
6373
6374  // If this is a variadic call, handle args passed through "...".
6375  if (Proto->isVariadic()) {
6376    // Promote the arguments (C99 6.5.2.2p7).
6377    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6378      Expr *Arg = Args[i];
6379      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6380      TheCall->setArg(i + 1, Arg);
6381    }
6382  }
6383
6384  if (IsError) return true;
6385
6386  if (CheckFunctionCall(Method, TheCall.get()))
6387    return true;
6388
6389  return MaybeBindToTemporary(TheCall.release()).release();
6390}
6391
6392/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6393///  (if one exists), where @c Base is an expression of class type and
6394/// @c Member is the name of the member we're trying to find.
6395Sema::OwningExprResult
6396Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6397  Expr *Base = static_cast<Expr *>(BaseIn.get());
6398  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6399
6400  SourceLocation Loc = Base->getExprLoc();
6401
6402  // C++ [over.ref]p1:
6403  //
6404  //   [...] An expression x->m is interpreted as (x.operator->())->m
6405  //   for a class object x of type T if T::operator->() exists and if
6406  //   the operator is selected as the best match function by the
6407  //   overload resolution mechanism (13.3).
6408  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6409  OverloadCandidateSet CandidateSet(Loc);
6410  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6411
6412  if (RequireCompleteType(Loc, Base->getType(),
6413                          PDiag(diag::err_typecheck_incomplete_tag)
6414                            << Base->getSourceRange()))
6415    return ExprError();
6416
6417  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6418  LookupQualifiedName(R, BaseRecord->getDecl());
6419  R.suppressDiagnostics();
6420
6421  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6422       Oper != OperEnd; ++Oper) {
6423    NamedDecl *D = *Oper;
6424    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6425    if (isa<UsingShadowDecl>(D))
6426      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6427
6428    AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
6429                       Base->getType(), 0, 0, CandidateSet,
6430                       /*SuppressUserConversions=*/false);
6431  }
6432
6433  // Perform overload resolution.
6434  OverloadCandidateSet::iterator Best;
6435  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6436  case OR_Success:
6437    // Overload resolution succeeded; we'll build the call below.
6438    break;
6439
6440  case OR_No_Viable_Function:
6441    if (CandidateSet.empty())
6442      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6443        << Base->getType() << Base->getSourceRange();
6444    else
6445      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6446        << "operator->" << Base->getSourceRange();
6447    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6448    return ExprError();
6449
6450  case OR_Ambiguous:
6451    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6452      << "->" << Base->getSourceRange();
6453    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6454    return ExprError();
6455
6456  case OR_Deleted:
6457    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6458      << Best->Function->isDeleted()
6459      << "->" << Base->getSourceRange();
6460    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6461    return ExprError();
6462  }
6463
6464  // Convert the object parameter.
6465  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6466  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, Method))
6467    return ExprError();
6468
6469  // No concerns about early exits now.
6470  BaseIn.release();
6471
6472  // Build the operator call.
6473  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6474                                           SourceLocation());
6475  UsualUnaryConversions(FnExpr);
6476
6477  QualType ResultTy = Method->getResultType().getNonReferenceType();
6478  ExprOwningPtr<CXXOperatorCallExpr>
6479    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6480                                                    &Base, 1, ResultTy, OpLoc));
6481
6482  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6483                          Method))
6484          return ExprError();
6485  return move(TheCall);
6486}
6487
6488/// FixOverloadedFunctionReference - E is an expression that refers to
6489/// a C++ overloaded function (possibly with some parentheses and
6490/// perhaps a '&' around it). We have resolved the overloaded function
6491/// to the function declaration Fn, so patch up the expression E to
6492/// refer (possibly indirectly) to Fn. Returns the new expr.
6493Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6494  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6495    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6496    if (SubExpr == PE->getSubExpr())
6497      return PE->Retain();
6498
6499    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6500  }
6501
6502  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6503    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6504    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6505                               SubExpr->getType()) &&
6506           "Implicit cast type cannot be determined from overload");
6507    if (SubExpr == ICE->getSubExpr())
6508      return ICE->Retain();
6509
6510    return new (Context) ImplicitCastExpr(ICE->getType(),
6511                                          ICE->getCastKind(),
6512                                          SubExpr,
6513                                          ICE->isLvalueCast());
6514  }
6515
6516  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6517    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6518           "Can only take the address of an overloaded function");
6519    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6520      if (Method->isStatic()) {
6521        // Do nothing: static member functions aren't any different
6522        // from non-member functions.
6523      } else {
6524        // Fix the sub expression, which really has to be an
6525        // UnresolvedLookupExpr holding an overloaded member function
6526        // or template.
6527        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6528        if (SubExpr == UnOp->getSubExpr())
6529          return UnOp->Retain();
6530
6531        assert(isa<DeclRefExpr>(SubExpr)
6532               && "fixed to something other than a decl ref");
6533        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6534               && "fixed to a member ref with no nested name qualifier");
6535
6536        // We have taken the address of a pointer to member
6537        // function. Perform the computation here so that we get the
6538        // appropriate pointer to member type.
6539        QualType ClassType
6540          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6541        QualType MemPtrType
6542          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6543
6544        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6545                                           MemPtrType, UnOp->getOperatorLoc());
6546      }
6547    }
6548    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6549    if (SubExpr == UnOp->getSubExpr())
6550      return UnOp->Retain();
6551
6552    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6553                                     Context.getPointerType(SubExpr->getType()),
6554                                       UnOp->getOperatorLoc());
6555  }
6556
6557  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6558    // FIXME: avoid copy.
6559    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6560    if (ULE->hasExplicitTemplateArgs()) {
6561      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6562      TemplateArgs = &TemplateArgsBuffer;
6563    }
6564
6565    return DeclRefExpr::Create(Context,
6566                               ULE->getQualifier(),
6567                               ULE->getQualifierRange(),
6568                               Fn,
6569                               ULE->getNameLoc(),
6570                               Fn->getType(),
6571                               TemplateArgs);
6572  }
6573
6574  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6575    // FIXME: avoid copy.
6576    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6577    if (MemExpr->hasExplicitTemplateArgs()) {
6578      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6579      TemplateArgs = &TemplateArgsBuffer;
6580    }
6581
6582    Expr *Base;
6583
6584    // If we're filling in
6585    if (MemExpr->isImplicitAccess()) {
6586      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6587        return DeclRefExpr::Create(Context,
6588                                   MemExpr->getQualifier(),
6589                                   MemExpr->getQualifierRange(),
6590                                   Fn,
6591                                   MemExpr->getMemberLoc(),
6592                                   Fn->getType(),
6593                                   TemplateArgs);
6594      } else {
6595        SourceLocation Loc = MemExpr->getMemberLoc();
6596        if (MemExpr->getQualifier())
6597          Loc = MemExpr->getQualifierRange().getBegin();
6598        Base = new (Context) CXXThisExpr(Loc,
6599                                         MemExpr->getBaseType(),
6600                                         /*isImplicit=*/true);
6601      }
6602    } else
6603      Base = MemExpr->getBase()->Retain();
6604
6605    return MemberExpr::Create(Context, Base,
6606                              MemExpr->isArrow(),
6607                              MemExpr->getQualifier(),
6608                              MemExpr->getQualifierRange(),
6609                              Fn,
6610                              MemExpr->getMemberLoc(),
6611                              TemplateArgs,
6612                              Fn->getType());
6613  }
6614
6615  assert(false && "Invalid reference to overloaded function");
6616  return E->Retain();
6617}
6618
6619Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6620                                                            FunctionDecl *Fn) {
6621  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6622}
6623
6624} // end namespace clang
6625