SemaOverload.cpp revision b7cd135215501a154eb4f68159f3af020783099e
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static Expr *
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation()) {
42  Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc);
43  S.DefaultFunctionArrayConversion(E);
44  return E;
45}
46
47static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
48                                 bool InOverloadResolution,
49                                 StandardConversionSequence &SCS);
50static OverloadingResult
51IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
52                        UserDefinedConversionSequence& User,
53                        OverloadCandidateSet& Conversions,
54                        bool AllowExplicit);
55
56
57static ImplicitConversionSequence::CompareKind
58CompareStandardConversionSequences(Sema &S,
59                                   const StandardConversionSequence& SCS1,
60                                   const StandardConversionSequence& SCS2);
61
62static ImplicitConversionSequence::CompareKind
63CompareQualificationConversions(Sema &S,
64                                const StandardConversionSequence& SCS1,
65                                const StandardConversionSequence& SCS2);
66
67static ImplicitConversionSequence::CompareKind
68CompareDerivedToBaseConversions(Sema &S,
69                                const StandardConversionSequence& SCS1,
70                                const StandardConversionSequence& SCS2);
71
72
73
74/// GetConversionCategory - Retrieve the implicit conversion
75/// category corresponding to the given implicit conversion kind.
76ImplicitConversionCategory
77GetConversionCategory(ImplicitConversionKind Kind) {
78  static const ImplicitConversionCategory
79    Category[(int)ICK_Num_Conversion_Kinds] = {
80    ICC_Identity,
81    ICC_Lvalue_Transformation,
82    ICC_Lvalue_Transformation,
83    ICC_Lvalue_Transformation,
84    ICC_Identity,
85    ICC_Qualification_Adjustment,
86    ICC_Promotion,
87    ICC_Promotion,
88    ICC_Promotion,
89    ICC_Conversion,
90    ICC_Conversion,
91    ICC_Conversion,
92    ICC_Conversion,
93    ICC_Conversion,
94    ICC_Conversion,
95    ICC_Conversion,
96    ICC_Conversion,
97    ICC_Conversion,
98    ICC_Conversion,
99    ICC_Conversion,
100    ICC_Conversion
101  };
102  return Category[(int)Kind];
103}
104
105/// GetConversionRank - Retrieve the implicit conversion rank
106/// corresponding to the given implicit conversion kind.
107ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
108  static const ImplicitConversionRank
109    Rank[(int)ICK_Num_Conversion_Kinds] = {
110    ICR_Exact_Match,
111    ICR_Exact_Match,
112    ICR_Exact_Match,
113    ICR_Exact_Match,
114    ICR_Exact_Match,
115    ICR_Exact_Match,
116    ICR_Promotion,
117    ICR_Promotion,
118    ICR_Promotion,
119    ICR_Conversion,
120    ICR_Conversion,
121    ICR_Conversion,
122    ICR_Conversion,
123    ICR_Conversion,
124    ICR_Conversion,
125    ICR_Conversion,
126    ICR_Conversion,
127    ICR_Conversion,
128    ICR_Conversion,
129    ICR_Conversion,
130    ICR_Complex_Real_Conversion
131  };
132  return Rank[(int)Kind];
133}
134
135/// GetImplicitConversionName - Return the name of this kind of
136/// implicit conversion.
137const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
138  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
139    "No conversion",
140    "Lvalue-to-rvalue",
141    "Array-to-pointer",
142    "Function-to-pointer",
143    "Noreturn adjustment",
144    "Qualification",
145    "Integral promotion",
146    "Floating point promotion",
147    "Complex promotion",
148    "Integral conversion",
149    "Floating conversion",
150    "Complex conversion",
151    "Floating-integral conversion",
152    "Pointer conversion",
153    "Pointer-to-member conversion",
154    "Boolean conversion",
155    "Compatible-types conversion",
156    "Derived-to-base conversion",
157    "Vector conversion",
158    "Vector splat",
159    "Complex-real conversion"
160  };
161  return Name[Kind];
162}
163
164/// StandardConversionSequence - Set the standard conversion
165/// sequence to the identity conversion.
166void StandardConversionSequence::setAsIdentityConversion() {
167  First = ICK_Identity;
168  Second = ICK_Identity;
169  Third = ICK_Identity;
170  DeprecatedStringLiteralToCharPtr = false;
171  ReferenceBinding = false;
172  DirectBinding = false;
173  IsLvalueReference = true;
174  BindsToFunctionLvalue = false;
175  BindsToRvalue = false;
176  CopyConstructor = 0;
177}
178
179/// getRank - Retrieve the rank of this standard conversion sequence
180/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
181/// implicit conversions.
182ImplicitConversionRank StandardConversionSequence::getRank() const {
183  ImplicitConversionRank Rank = ICR_Exact_Match;
184  if  (GetConversionRank(First) > Rank)
185    Rank = GetConversionRank(First);
186  if  (GetConversionRank(Second) > Rank)
187    Rank = GetConversionRank(Second);
188  if  (GetConversionRank(Third) > Rank)
189    Rank = GetConversionRank(Third);
190  return Rank;
191}
192
193/// isPointerConversionToBool - Determines whether this conversion is
194/// a conversion of a pointer or pointer-to-member to bool. This is
195/// used as part of the ranking of standard conversion sequences
196/// (C++ 13.3.3.2p4).
197bool StandardConversionSequence::isPointerConversionToBool() const {
198  // Note that FromType has not necessarily been transformed by the
199  // array-to-pointer or function-to-pointer implicit conversions, so
200  // check for their presence as well as checking whether FromType is
201  // a pointer.
202  if (getToType(1)->isBooleanType() &&
203      (getFromType()->isPointerType() ||
204       getFromType()->isObjCObjectPointerType() ||
205       getFromType()->isBlockPointerType() ||
206       getFromType()->isNullPtrType() ||
207       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
208    return true;
209
210  return false;
211}
212
213/// isPointerConversionToVoidPointer - Determines whether this
214/// conversion is a conversion of a pointer to a void pointer. This is
215/// used as part of the ranking of standard conversion sequences (C++
216/// 13.3.3.2p4).
217bool
218StandardConversionSequence::
219isPointerConversionToVoidPointer(ASTContext& Context) const {
220  QualType FromType = getFromType();
221  QualType ToType = getToType(1);
222
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer implicit conversion, so check for its presence
225  // and redo the conversion to get a pointer.
226  if (First == ICK_Array_To_Pointer)
227    FromType = Context.getArrayDecayedType(FromType);
228
229  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
230    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
231      return ToPtrType->getPointeeType()->isVoidType();
232
233  return false;
234}
235
236/// DebugPrint - Print this standard conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void StandardConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  bool PrintedSomething = false;
241  if (First != ICK_Identity) {
242    OS << GetImplicitConversionName(First);
243    PrintedSomething = true;
244  }
245
246  if (Second != ICK_Identity) {
247    if (PrintedSomething) {
248      OS << " -> ";
249    }
250    OS << GetImplicitConversionName(Second);
251
252    if (CopyConstructor) {
253      OS << " (by copy constructor)";
254    } else if (DirectBinding) {
255      OS << " (direct reference binding)";
256    } else if (ReferenceBinding) {
257      OS << " (reference binding)";
258    }
259    PrintedSomething = true;
260  }
261
262  if (Third != ICK_Identity) {
263    if (PrintedSomething) {
264      OS << " -> ";
265    }
266    OS << GetImplicitConversionName(Third);
267    PrintedSomething = true;
268  }
269
270  if (!PrintedSomething) {
271    OS << "No conversions required";
272  }
273}
274
275/// DebugPrint - Print this user-defined conversion sequence to standard
276/// error. Useful for debugging overloading issues.
277void UserDefinedConversionSequence::DebugPrint() const {
278  llvm::raw_ostream &OS = llvm::errs();
279  if (Before.First || Before.Second || Before.Third) {
280    Before.DebugPrint();
281    OS << " -> ";
282  }
283  OS << '\'' << ConversionFunction << '\'';
284  if (After.First || After.Second || After.Third) {
285    OS << " -> ";
286    After.DebugPrint();
287  }
288}
289
290/// DebugPrint - Print this implicit conversion sequence to standard
291/// error. Useful for debugging overloading issues.
292void ImplicitConversionSequence::DebugPrint() const {
293  llvm::raw_ostream &OS = llvm::errs();
294  switch (ConversionKind) {
295  case StandardConversion:
296    OS << "Standard conversion: ";
297    Standard.DebugPrint();
298    break;
299  case UserDefinedConversion:
300    OS << "User-defined conversion: ";
301    UserDefined.DebugPrint();
302    break;
303  case EllipsisConversion:
304    OS << "Ellipsis conversion";
305    break;
306  case AmbiguousConversion:
307    OS << "Ambiguous conversion";
308    break;
309  case BadConversion:
310    OS << "Bad conversion";
311    break;
312  }
313
314  OS << "\n";
315}
316
317void AmbiguousConversionSequence::construct() {
318  new (&conversions()) ConversionSet();
319}
320
321void AmbiguousConversionSequence::destruct() {
322  conversions().~ConversionSet();
323}
324
325void
326AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
327  FromTypePtr = O.FromTypePtr;
328  ToTypePtr = O.ToTypePtr;
329  new (&conversions()) ConversionSet(O.conversions());
330}
331
332namespace {
333  // Structure used by OverloadCandidate::DeductionFailureInfo to store
334  // template parameter and template argument information.
335  struct DFIParamWithArguments {
336    TemplateParameter Param;
337    TemplateArgument FirstArg;
338    TemplateArgument SecondArg;
339  };
340}
341
342/// \brief Convert from Sema's representation of template deduction information
343/// to the form used in overload-candidate information.
344OverloadCandidate::DeductionFailureInfo
345static MakeDeductionFailureInfo(ASTContext &Context,
346                                Sema::TemplateDeductionResult TDK,
347                                TemplateDeductionInfo &Info) {
348  OverloadCandidate::DeductionFailureInfo Result;
349  Result.Result = static_cast<unsigned>(TDK);
350  Result.Data = 0;
351  switch (TDK) {
352  case Sema::TDK_Success:
353  case Sema::TDK_InstantiationDepth:
354  case Sema::TDK_TooManyArguments:
355  case Sema::TDK_TooFewArguments:
356    break;
357
358  case Sema::TDK_Incomplete:
359  case Sema::TDK_InvalidExplicitArguments:
360    Result.Data = Info.Param.getOpaqueValue();
361    break;
362
363  case Sema::TDK_Inconsistent:
364  case Sema::TDK_Underqualified: {
365    // FIXME: Should allocate from normal heap so that we can free this later.
366    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
367    Saved->Param = Info.Param;
368    Saved->FirstArg = Info.FirstArg;
369    Saved->SecondArg = Info.SecondArg;
370    Result.Data = Saved;
371    break;
372  }
373
374  case Sema::TDK_SubstitutionFailure:
375    Result.Data = Info.take();
376    break;
377
378  case Sema::TDK_NonDeducedMismatch:
379  case Sema::TDK_FailedOverloadResolution:
380    break;
381  }
382
383  return Result;
384}
385
386void OverloadCandidate::DeductionFailureInfo::Destroy() {
387  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
388  case Sema::TDK_Success:
389  case Sema::TDK_InstantiationDepth:
390  case Sema::TDK_Incomplete:
391  case Sema::TDK_TooManyArguments:
392  case Sema::TDK_TooFewArguments:
393  case Sema::TDK_InvalidExplicitArguments:
394    break;
395
396  case Sema::TDK_Inconsistent:
397  case Sema::TDK_Underqualified:
398    // FIXME: Destroy the data?
399    Data = 0;
400    break;
401
402  case Sema::TDK_SubstitutionFailure:
403    // FIXME: Destroy the template arugment list?
404    Data = 0;
405    break;
406
407  // Unhandled
408  case Sema::TDK_NonDeducedMismatch:
409  case Sema::TDK_FailedOverloadResolution:
410    break;
411  }
412}
413
414TemplateParameter
415OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
416  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
417  case Sema::TDK_Success:
418  case Sema::TDK_InstantiationDepth:
419  case Sema::TDK_TooManyArguments:
420  case Sema::TDK_TooFewArguments:
421  case Sema::TDK_SubstitutionFailure:
422    return TemplateParameter();
423
424  case Sema::TDK_Incomplete:
425  case Sema::TDK_InvalidExplicitArguments:
426    return TemplateParameter::getFromOpaqueValue(Data);
427
428  case Sema::TDK_Inconsistent:
429  case Sema::TDK_Underqualified:
430    return static_cast<DFIParamWithArguments*>(Data)->Param;
431
432  // Unhandled
433  case Sema::TDK_NonDeducedMismatch:
434  case Sema::TDK_FailedOverloadResolution:
435    break;
436  }
437
438  return TemplateParameter();
439}
440
441TemplateArgumentList *
442OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
443  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
444    case Sema::TDK_Success:
445    case Sema::TDK_InstantiationDepth:
446    case Sema::TDK_TooManyArguments:
447    case Sema::TDK_TooFewArguments:
448    case Sema::TDK_Incomplete:
449    case Sema::TDK_InvalidExplicitArguments:
450    case Sema::TDK_Inconsistent:
451    case Sema::TDK_Underqualified:
452      return 0;
453
454    case Sema::TDK_SubstitutionFailure:
455      return static_cast<TemplateArgumentList*>(Data);
456
457    // Unhandled
458    case Sema::TDK_NonDeducedMismatch:
459    case Sema::TDK_FailedOverloadResolution:
460      break;
461  }
462
463  return 0;
464}
465
466const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
467  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
468  case Sema::TDK_Success:
469  case Sema::TDK_InstantiationDepth:
470  case Sema::TDK_Incomplete:
471  case Sema::TDK_TooManyArguments:
472  case Sema::TDK_TooFewArguments:
473  case Sema::TDK_InvalidExplicitArguments:
474  case Sema::TDK_SubstitutionFailure:
475    return 0;
476
477  case Sema::TDK_Inconsistent:
478  case Sema::TDK_Underqualified:
479    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
480
481  // Unhandled
482  case Sema::TDK_NonDeducedMismatch:
483  case Sema::TDK_FailedOverloadResolution:
484    break;
485  }
486
487  return 0;
488}
489
490const TemplateArgument *
491OverloadCandidate::DeductionFailureInfo::getSecondArg() {
492  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
493  case Sema::TDK_Success:
494  case Sema::TDK_InstantiationDepth:
495  case Sema::TDK_Incomplete:
496  case Sema::TDK_TooManyArguments:
497  case Sema::TDK_TooFewArguments:
498  case Sema::TDK_InvalidExplicitArguments:
499  case Sema::TDK_SubstitutionFailure:
500    return 0;
501
502  case Sema::TDK_Inconsistent:
503  case Sema::TDK_Underqualified:
504    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
505
506  // Unhandled
507  case Sema::TDK_NonDeducedMismatch:
508  case Sema::TDK_FailedOverloadResolution:
509    break;
510  }
511
512  return 0;
513}
514
515void OverloadCandidateSet::clear() {
516  inherited::clear();
517  Functions.clear();
518}
519
520// IsOverload - Determine whether the given New declaration is an
521// overload of the declarations in Old. This routine returns false if
522// New and Old cannot be overloaded, e.g., if New has the same
523// signature as some function in Old (C++ 1.3.10) or if the Old
524// declarations aren't functions (or function templates) at all. When
525// it does return false, MatchedDecl will point to the decl that New
526// cannot be overloaded with.  This decl may be a UsingShadowDecl on
527// top of the underlying declaration.
528//
529// Example: Given the following input:
530//
531//   void f(int, float); // #1
532//   void f(int, int); // #2
533//   int f(int, int); // #3
534//
535// When we process #1, there is no previous declaration of "f",
536// so IsOverload will not be used.
537//
538// When we process #2, Old contains only the FunctionDecl for #1.  By
539// comparing the parameter types, we see that #1 and #2 are overloaded
540// (since they have different signatures), so this routine returns
541// false; MatchedDecl is unchanged.
542//
543// When we process #3, Old is an overload set containing #1 and #2. We
544// compare the signatures of #3 to #1 (they're overloaded, so we do
545// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
546// identical (return types of functions are not part of the
547// signature), IsOverload returns false and MatchedDecl will be set to
548// point to the FunctionDecl for #2.
549//
550// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
551// into a class by a using declaration.  The rules for whether to hide
552// shadow declarations ignore some properties which otherwise figure
553// into a function template's signature.
554Sema::OverloadKind
555Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
556                    NamedDecl *&Match, bool NewIsUsingDecl) {
557  for (LookupResult::iterator I = Old.begin(), E = Old.end();
558         I != E; ++I) {
559    NamedDecl *OldD = *I;
560
561    bool OldIsUsingDecl = false;
562    if (isa<UsingShadowDecl>(OldD)) {
563      OldIsUsingDecl = true;
564
565      // We can always introduce two using declarations into the same
566      // context, even if they have identical signatures.
567      if (NewIsUsingDecl) continue;
568
569      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
570    }
571
572    // If either declaration was introduced by a using declaration,
573    // we'll need to use slightly different rules for matching.
574    // Essentially, these rules are the normal rules, except that
575    // function templates hide function templates with different
576    // return types or template parameter lists.
577    bool UseMemberUsingDeclRules =
578      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
579
580    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
581      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
582        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
583          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
584          continue;
585        }
586
587        Match = *I;
588        return Ovl_Match;
589      }
590    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
591      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
592        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
593          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
594          continue;
595        }
596
597        Match = *I;
598        return Ovl_Match;
599      }
600    } else if (isa<UsingDecl>(OldD)) {
601      // We can overload with these, which can show up when doing
602      // redeclaration checks for UsingDecls.
603      assert(Old.getLookupKind() == LookupUsingDeclName);
604    } else if (isa<TagDecl>(OldD)) {
605      // We can always overload with tags by hiding them.
606    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
607      // Optimistically assume that an unresolved using decl will
608      // overload; if it doesn't, we'll have to diagnose during
609      // template instantiation.
610    } else {
611      // (C++ 13p1):
612      //   Only function declarations can be overloaded; object and type
613      //   declarations cannot be overloaded.
614      Match = *I;
615      return Ovl_NonFunction;
616    }
617  }
618
619  return Ovl_Overload;
620}
621
622bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
623                      bool UseUsingDeclRules) {
624  // If both of the functions are extern "C", then they are not
625  // overloads.
626  if (Old->isExternC() && New->isExternC())
627    return false;
628
629  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
630  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
631
632  // C++ [temp.fct]p2:
633  //   A function template can be overloaded with other function templates
634  //   and with normal (non-template) functions.
635  if ((OldTemplate == 0) != (NewTemplate == 0))
636    return true;
637
638  // Is the function New an overload of the function Old?
639  QualType OldQType = Context.getCanonicalType(Old->getType());
640  QualType NewQType = Context.getCanonicalType(New->getType());
641
642  // Compare the signatures (C++ 1.3.10) of the two functions to
643  // determine whether they are overloads. If we find any mismatch
644  // in the signature, they are overloads.
645
646  // If either of these functions is a K&R-style function (no
647  // prototype), then we consider them to have matching signatures.
648  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
649      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
650    return false;
651
652  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
653  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
654
655  // The signature of a function includes the types of its
656  // parameters (C++ 1.3.10), which includes the presence or absence
657  // of the ellipsis; see C++ DR 357).
658  if (OldQType != NewQType &&
659      (OldType->getNumArgs() != NewType->getNumArgs() ||
660       OldType->isVariadic() != NewType->isVariadic() ||
661       !FunctionArgTypesAreEqual(OldType, NewType)))
662    return true;
663
664  // C++ [temp.over.link]p4:
665  //   The signature of a function template consists of its function
666  //   signature, its return type and its template parameter list. The names
667  //   of the template parameters are significant only for establishing the
668  //   relationship between the template parameters and the rest of the
669  //   signature.
670  //
671  // We check the return type and template parameter lists for function
672  // templates first; the remaining checks follow.
673  //
674  // However, we don't consider either of these when deciding whether
675  // a member introduced by a shadow declaration is hidden.
676  if (!UseUsingDeclRules && NewTemplate &&
677      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
678                                       OldTemplate->getTemplateParameters(),
679                                       false, TPL_TemplateMatch) ||
680       OldType->getResultType() != NewType->getResultType()))
681    return true;
682
683  // If the function is a class member, its signature includes the
684  // cv-qualifiers (if any) on the function itself.
685  //
686  // As part of this, also check whether one of the member functions
687  // is static, in which case they are not overloads (C++
688  // 13.1p2). While not part of the definition of the signature,
689  // this check is important to determine whether these functions
690  // can be overloaded.
691  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
692  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
693  if (OldMethod && NewMethod &&
694      !OldMethod->isStatic() && !NewMethod->isStatic() &&
695      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
696    return true;
697
698  // The signatures match; this is not an overload.
699  return false;
700}
701
702/// TryImplicitConversion - Attempt to perform an implicit conversion
703/// from the given expression (Expr) to the given type (ToType). This
704/// function returns an implicit conversion sequence that can be used
705/// to perform the initialization. Given
706///
707///   void f(float f);
708///   void g(int i) { f(i); }
709///
710/// this routine would produce an implicit conversion sequence to
711/// describe the initialization of f from i, which will be a standard
712/// conversion sequence containing an lvalue-to-rvalue conversion (C++
713/// 4.1) followed by a floating-integral conversion (C++ 4.9).
714//
715/// Note that this routine only determines how the conversion can be
716/// performed; it does not actually perform the conversion. As such,
717/// it will not produce any diagnostics if no conversion is available,
718/// but will instead return an implicit conversion sequence of kind
719/// "BadConversion".
720///
721/// If @p SuppressUserConversions, then user-defined conversions are
722/// not permitted.
723/// If @p AllowExplicit, then explicit user-defined conversions are
724/// permitted.
725static ImplicitConversionSequence
726TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
727                      bool SuppressUserConversions,
728                      bool AllowExplicit,
729                      bool InOverloadResolution) {
730  ImplicitConversionSequence ICS;
731  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
732                           ICS.Standard)) {
733    ICS.setStandard();
734    return ICS;
735  }
736
737  if (!S.getLangOptions().CPlusPlus) {
738    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
739    return ICS;
740  }
741
742  // C++ [over.ics.user]p4:
743  //   A conversion of an expression of class type to the same class
744  //   type is given Exact Match rank, and a conversion of an
745  //   expression of class type to a base class of that type is
746  //   given Conversion rank, in spite of the fact that a copy/move
747  //   constructor (i.e., a user-defined conversion function) is
748  //   called for those cases.
749  QualType FromType = From->getType();
750  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
751      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
752       S.IsDerivedFrom(FromType, ToType))) {
753    ICS.setStandard();
754    ICS.Standard.setAsIdentityConversion();
755    ICS.Standard.setFromType(FromType);
756    ICS.Standard.setAllToTypes(ToType);
757
758    // We don't actually check at this point whether there is a valid
759    // copy/move constructor, since overloading just assumes that it
760    // exists. When we actually perform initialization, we'll find the
761    // appropriate constructor to copy the returned object, if needed.
762    ICS.Standard.CopyConstructor = 0;
763
764    // Determine whether this is considered a derived-to-base conversion.
765    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
766      ICS.Standard.Second = ICK_Derived_To_Base;
767
768    return ICS;
769  }
770
771  if (SuppressUserConversions) {
772    // We're not in the case above, so there is no conversion that
773    // we can perform.
774    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
775    return ICS;
776  }
777
778  // Attempt user-defined conversion.
779  OverloadCandidateSet Conversions(From->getExprLoc());
780  OverloadingResult UserDefResult
781    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
782                              AllowExplicit);
783
784  if (UserDefResult == OR_Success) {
785    ICS.setUserDefined();
786    // C++ [over.ics.user]p4:
787    //   A conversion of an expression of class type to the same class
788    //   type is given Exact Match rank, and a conversion of an
789    //   expression of class type to a base class of that type is
790    //   given Conversion rank, in spite of the fact that a copy
791    //   constructor (i.e., a user-defined conversion function) is
792    //   called for those cases.
793    if (CXXConstructorDecl *Constructor
794          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
795      QualType FromCanon
796        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
797      QualType ToCanon
798        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
799      if (Constructor->isCopyConstructor() &&
800          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
801        // Turn this into a "standard" conversion sequence, so that it
802        // gets ranked with standard conversion sequences.
803        ICS.setStandard();
804        ICS.Standard.setAsIdentityConversion();
805        ICS.Standard.setFromType(From->getType());
806        ICS.Standard.setAllToTypes(ToType);
807        ICS.Standard.CopyConstructor = Constructor;
808        if (ToCanon != FromCanon)
809          ICS.Standard.Second = ICK_Derived_To_Base;
810      }
811    }
812
813    // C++ [over.best.ics]p4:
814    //   However, when considering the argument of a user-defined
815    //   conversion function that is a candidate by 13.3.1.3 when
816    //   invoked for the copying of the temporary in the second step
817    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
818    //   13.3.1.6 in all cases, only standard conversion sequences and
819    //   ellipsis conversion sequences are allowed.
820    if (SuppressUserConversions && ICS.isUserDefined()) {
821      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
822    }
823  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
824    ICS.setAmbiguous();
825    ICS.Ambiguous.setFromType(From->getType());
826    ICS.Ambiguous.setToType(ToType);
827    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
828         Cand != Conversions.end(); ++Cand)
829      if (Cand->Viable)
830        ICS.Ambiguous.addConversion(Cand->Function);
831  } else {
832    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
833  }
834
835  return ICS;
836}
837
838bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
839                                 const InitializedEntity &Entity,
840                                 Expr *Initializer,
841                                 bool SuppressUserConversions,
842                                 bool AllowExplicitConversions,
843                                 bool InOverloadResolution) {
844  ImplicitConversionSequence ICS
845    = clang::TryImplicitConversion(*this, Initializer, Entity.getType(),
846                                   SuppressUserConversions,
847                                   AllowExplicitConversions,
848                                   InOverloadResolution);
849  if (ICS.isBad()) return true;
850
851  // Perform the actual conversion.
852  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
853  return false;
854}
855
856/// PerformImplicitConversion - Perform an implicit conversion of the
857/// expression From to the type ToType. Returns true if there was an
858/// error, false otherwise. The expression From is replaced with the
859/// converted expression. Flavor is the kind of conversion we're
860/// performing, used in the error message. If @p AllowExplicit,
861/// explicit user-defined conversions are permitted.
862bool
863Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
864                                AssignmentAction Action, bool AllowExplicit) {
865  ImplicitConversionSequence ICS;
866  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
867}
868
869bool
870Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
871                                AssignmentAction Action, bool AllowExplicit,
872                                ImplicitConversionSequence& ICS) {
873  ICS = clang::TryImplicitConversion(*this, From, ToType,
874                                     /*SuppressUserConversions=*/false,
875                                     AllowExplicit,
876                                     /*InOverloadResolution=*/false);
877  return PerformImplicitConversion(From, ToType, ICS, Action);
878}
879
880/// \brief Determine whether the conversion from FromType to ToType is a valid
881/// conversion that strips "noreturn" off the nested function type.
882static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
883                                 QualType ToType, QualType &ResultTy) {
884  if (Context.hasSameUnqualifiedType(FromType, ToType))
885    return false;
886
887  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
888  // where F adds one of the following at most once:
889  //   - a pointer
890  //   - a member pointer
891  //   - a block pointer
892  CanQualType CanTo = Context.getCanonicalType(ToType);
893  CanQualType CanFrom = Context.getCanonicalType(FromType);
894  Type::TypeClass TyClass = CanTo->getTypeClass();
895  if (TyClass != CanFrom->getTypeClass()) return false;
896  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
897    if (TyClass == Type::Pointer) {
898      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
899      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
900    } else if (TyClass == Type::BlockPointer) {
901      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
902      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
903    } else if (TyClass == Type::MemberPointer) {
904      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
905      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
906    } else {
907      return false;
908    }
909
910    TyClass = CanTo->getTypeClass();
911    if (TyClass != CanFrom->getTypeClass()) return false;
912    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
913      return false;
914  }
915
916  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
917  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
918  if (!EInfo.getNoReturn()) return false;
919
920  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
921  assert(QualType(FromFn, 0).isCanonical());
922  if (QualType(FromFn, 0) != CanTo) return false;
923
924  ResultTy = ToType;
925  return true;
926}
927
928/// \brief Determine whether the conversion from FromType to ToType is a valid
929/// vector conversion.
930///
931/// \param ICK Will be set to the vector conversion kind, if this is a vector
932/// conversion.
933static bool IsVectorConversion(ASTContext &Context, QualType FromType,
934                               QualType ToType, ImplicitConversionKind &ICK) {
935  // We need at least one of these types to be a vector type to have a vector
936  // conversion.
937  if (!ToType->isVectorType() && !FromType->isVectorType())
938    return false;
939
940  // Identical types require no conversions.
941  if (Context.hasSameUnqualifiedType(FromType, ToType))
942    return false;
943
944  // There are no conversions between extended vector types, only identity.
945  if (ToType->isExtVectorType()) {
946    // There are no conversions between extended vector types other than the
947    // identity conversion.
948    if (FromType->isExtVectorType())
949      return false;
950
951    // Vector splat from any arithmetic type to a vector.
952    if (FromType->isArithmeticType()) {
953      ICK = ICK_Vector_Splat;
954      return true;
955    }
956  }
957
958  // We can perform the conversion between vector types in the following cases:
959  // 1)vector types are equivalent AltiVec and GCC vector types
960  // 2)lax vector conversions are permitted and the vector types are of the
961  //   same size
962  if (ToType->isVectorType() && FromType->isVectorType()) {
963    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
964        (Context.getLangOptions().LaxVectorConversions &&
965         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
966      ICK = ICK_Vector_Conversion;
967      return true;
968    }
969  }
970
971  return false;
972}
973
974/// IsStandardConversion - Determines whether there is a standard
975/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
976/// expression From to the type ToType. Standard conversion sequences
977/// only consider non-class types; for conversions that involve class
978/// types, use TryImplicitConversion. If a conversion exists, SCS will
979/// contain the standard conversion sequence required to perform this
980/// conversion and this routine will return true. Otherwise, this
981/// routine will return false and the value of SCS is unspecified.
982static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
983                                 bool InOverloadResolution,
984                                 StandardConversionSequence &SCS) {
985  QualType FromType = From->getType();
986
987  // Standard conversions (C++ [conv])
988  SCS.setAsIdentityConversion();
989  SCS.DeprecatedStringLiteralToCharPtr = false;
990  SCS.IncompatibleObjC = false;
991  SCS.setFromType(FromType);
992  SCS.CopyConstructor = 0;
993
994  // There are no standard conversions for class types in C++, so
995  // abort early. When overloading in C, however, we do permit
996  if (FromType->isRecordType() || ToType->isRecordType()) {
997    if (S.getLangOptions().CPlusPlus)
998      return false;
999
1000    // When we're overloading in C, we allow, as standard conversions,
1001  }
1002
1003  // The first conversion can be an lvalue-to-rvalue conversion,
1004  // array-to-pointer conversion, or function-to-pointer conversion
1005  // (C++ 4p1).
1006
1007  if (FromType == S.Context.OverloadTy) {
1008    DeclAccessPair AccessPair;
1009    if (FunctionDecl *Fn
1010          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1011                                                 AccessPair)) {
1012      // We were able to resolve the address of the overloaded function,
1013      // so we can convert to the type of that function.
1014      FromType = Fn->getType();
1015      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
1016        if (!Method->isStatic()) {
1017          const Type *ClassType
1018            = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1019          FromType = S.Context.getMemberPointerType(FromType, ClassType);
1020        }
1021      }
1022
1023      // If the "from" expression takes the address of the overloaded
1024      // function, update the type of the resulting expression accordingly.
1025      if (FromType->getAs<FunctionType>())
1026        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
1027          if (UnOp->getOpcode() == UO_AddrOf)
1028            FromType = S.Context.getPointerType(FromType);
1029
1030      // Check that we've computed the proper type after overload resolution.
1031      assert(S.Context.hasSameType(FromType,
1032            S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1033    } else {
1034      return false;
1035    }
1036  }
1037  // Lvalue-to-rvalue conversion (C++ 4.1):
1038  //   An lvalue (3.10) of a non-function, non-array type T can be
1039  //   converted to an rvalue.
1040  bool argIsLValue = From->isLValue();
1041  if (argIsLValue &&
1042      !FromType->isFunctionType() && !FromType->isArrayType() &&
1043      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1044    SCS.First = ICK_Lvalue_To_Rvalue;
1045
1046    // If T is a non-class type, the type of the rvalue is the
1047    // cv-unqualified version of T. Otherwise, the type of the rvalue
1048    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1049    // just strip the qualifiers because they don't matter.
1050    FromType = FromType.getUnqualifiedType();
1051  } else if (FromType->isArrayType()) {
1052    // Array-to-pointer conversion (C++ 4.2)
1053    SCS.First = ICK_Array_To_Pointer;
1054
1055    // An lvalue or rvalue of type "array of N T" or "array of unknown
1056    // bound of T" can be converted to an rvalue of type "pointer to
1057    // T" (C++ 4.2p1).
1058    FromType = S.Context.getArrayDecayedType(FromType);
1059
1060    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1061      // This conversion is deprecated. (C++ D.4).
1062      SCS.DeprecatedStringLiteralToCharPtr = true;
1063
1064      // For the purpose of ranking in overload resolution
1065      // (13.3.3.1.1), this conversion is considered an
1066      // array-to-pointer conversion followed by a qualification
1067      // conversion (4.4). (C++ 4.2p2)
1068      SCS.Second = ICK_Identity;
1069      SCS.Third = ICK_Qualification;
1070      SCS.setAllToTypes(FromType);
1071      return true;
1072    }
1073  } else if (FromType->isFunctionType() && argIsLValue) {
1074    // Function-to-pointer conversion (C++ 4.3).
1075    SCS.First = ICK_Function_To_Pointer;
1076
1077    // An lvalue of function type T can be converted to an rvalue of
1078    // type "pointer to T." The result is a pointer to the
1079    // function. (C++ 4.3p1).
1080    FromType = S.Context.getPointerType(FromType);
1081  } else {
1082    // We don't require any conversions for the first step.
1083    SCS.First = ICK_Identity;
1084  }
1085  SCS.setToType(0, FromType);
1086
1087  // The second conversion can be an integral promotion, floating
1088  // point promotion, integral conversion, floating point conversion,
1089  // floating-integral conversion, pointer conversion,
1090  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1091  // For overloading in C, this can also be a "compatible-type"
1092  // conversion.
1093  bool IncompatibleObjC = false;
1094  ImplicitConversionKind SecondICK = ICK_Identity;
1095  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1096    // The unqualified versions of the types are the same: there's no
1097    // conversion to do.
1098    SCS.Second = ICK_Identity;
1099  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1100    // Integral promotion (C++ 4.5).
1101    SCS.Second = ICK_Integral_Promotion;
1102    FromType = ToType.getUnqualifiedType();
1103  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1104    // Floating point promotion (C++ 4.6).
1105    SCS.Second = ICK_Floating_Promotion;
1106    FromType = ToType.getUnqualifiedType();
1107  } else if (S.IsComplexPromotion(FromType, ToType)) {
1108    // Complex promotion (Clang extension)
1109    SCS.Second = ICK_Complex_Promotion;
1110    FromType = ToType.getUnqualifiedType();
1111  } else if (ToType->isBooleanType() &&
1112             (FromType->isArithmeticType() ||
1113              FromType->isAnyPointerType() ||
1114              FromType->isBlockPointerType() ||
1115              FromType->isMemberPointerType() ||
1116              FromType->isNullPtrType())) {
1117    // Boolean conversions (C++ 4.12).
1118    SCS.Second = ICK_Boolean_Conversion;
1119    FromType = S.Context.BoolTy;
1120  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1121             ToType->isIntegralType(S.Context)) {
1122    // Integral conversions (C++ 4.7).
1123    SCS.Second = ICK_Integral_Conversion;
1124    FromType = ToType.getUnqualifiedType();
1125  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1126    // Complex conversions (C99 6.3.1.6)
1127    SCS.Second = ICK_Complex_Conversion;
1128    FromType = ToType.getUnqualifiedType();
1129  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1130             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1131    // Complex-real conversions (C99 6.3.1.7)
1132    SCS.Second = ICK_Complex_Real;
1133    FromType = ToType.getUnqualifiedType();
1134  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1135    // Floating point conversions (C++ 4.8).
1136    SCS.Second = ICK_Floating_Conversion;
1137    FromType = ToType.getUnqualifiedType();
1138  } else if ((FromType->isRealFloatingType() &&
1139              ToType->isIntegralType(S.Context)) ||
1140             (FromType->isIntegralOrUnscopedEnumerationType() &&
1141              ToType->isRealFloatingType())) {
1142    // Floating-integral conversions (C++ 4.9).
1143    SCS.Second = ICK_Floating_Integral;
1144    FromType = ToType.getUnqualifiedType();
1145  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1146                                   FromType, IncompatibleObjC)) {
1147    // Pointer conversions (C++ 4.10).
1148    SCS.Second = ICK_Pointer_Conversion;
1149    SCS.IncompatibleObjC = IncompatibleObjC;
1150  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1151                                         InOverloadResolution, FromType)) {
1152    // Pointer to member conversions (4.11).
1153    SCS.Second = ICK_Pointer_Member;
1154  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1155    SCS.Second = SecondICK;
1156    FromType = ToType.getUnqualifiedType();
1157  } else if (!S.getLangOptions().CPlusPlus &&
1158             S.Context.typesAreCompatible(ToType, FromType)) {
1159    // Compatible conversions (Clang extension for C function overloading)
1160    SCS.Second = ICK_Compatible_Conversion;
1161    FromType = ToType.getUnqualifiedType();
1162  } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) {
1163    // Treat a conversion that strips "noreturn" as an identity conversion.
1164    SCS.Second = ICK_NoReturn_Adjustment;
1165  } else {
1166    // No second conversion required.
1167    SCS.Second = ICK_Identity;
1168  }
1169  SCS.setToType(1, FromType);
1170
1171  QualType CanonFrom;
1172  QualType CanonTo;
1173  // The third conversion can be a qualification conversion (C++ 4p1).
1174  if (S.IsQualificationConversion(FromType, ToType)) {
1175    SCS.Third = ICK_Qualification;
1176    FromType = ToType;
1177    CanonFrom = S.Context.getCanonicalType(FromType);
1178    CanonTo = S.Context.getCanonicalType(ToType);
1179  } else {
1180    // No conversion required
1181    SCS.Third = ICK_Identity;
1182
1183    // C++ [over.best.ics]p6:
1184    //   [...] Any difference in top-level cv-qualification is
1185    //   subsumed by the initialization itself and does not constitute
1186    //   a conversion. [...]
1187    CanonFrom = S.Context.getCanonicalType(FromType);
1188    CanonTo = S.Context.getCanonicalType(ToType);
1189    if (CanonFrom.getLocalUnqualifiedType()
1190                                       == CanonTo.getLocalUnqualifiedType() &&
1191        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1192         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1193      FromType = ToType;
1194      CanonFrom = CanonTo;
1195    }
1196  }
1197  SCS.setToType(2, FromType);
1198
1199  // If we have not converted the argument type to the parameter type,
1200  // this is a bad conversion sequence.
1201  if (CanonFrom != CanonTo)
1202    return false;
1203
1204  return true;
1205}
1206
1207/// IsIntegralPromotion - Determines whether the conversion from the
1208/// expression From (whose potentially-adjusted type is FromType) to
1209/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1210/// sets PromotedType to the promoted type.
1211bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1212  const BuiltinType *To = ToType->getAs<BuiltinType>();
1213  // All integers are built-in.
1214  if (!To) {
1215    return false;
1216  }
1217
1218  // An rvalue of type char, signed char, unsigned char, short int, or
1219  // unsigned short int can be converted to an rvalue of type int if
1220  // int can represent all the values of the source type; otherwise,
1221  // the source rvalue can be converted to an rvalue of type unsigned
1222  // int (C++ 4.5p1).
1223  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1224      !FromType->isEnumeralType()) {
1225    if (// We can promote any signed, promotable integer type to an int
1226        (FromType->isSignedIntegerType() ||
1227         // We can promote any unsigned integer type whose size is
1228         // less than int to an int.
1229         (!FromType->isSignedIntegerType() &&
1230          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1231      return To->getKind() == BuiltinType::Int;
1232    }
1233
1234    return To->getKind() == BuiltinType::UInt;
1235  }
1236
1237  // C++0x [conv.prom]p3:
1238  //   A prvalue of an unscoped enumeration type whose underlying type is not
1239  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1240  //   following types that can represent all the values of the enumeration
1241  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1242  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1243  //   long long int. If none of the types in that list can represent all the
1244  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1245  //   type can be converted to an rvalue a prvalue of the extended integer type
1246  //   with lowest integer conversion rank (4.13) greater than the rank of long
1247  //   long in which all the values of the enumeration can be represented. If
1248  //   there are two such extended types, the signed one is chosen.
1249  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1250    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1251    // provided for a scoped enumeration.
1252    if (FromEnumType->getDecl()->isScoped())
1253      return false;
1254
1255    // We have already pre-calculated the promotion type, so this is trivial.
1256    if (ToType->isIntegerType() &&
1257        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1258      return Context.hasSameUnqualifiedType(ToType,
1259                                FromEnumType->getDecl()->getPromotionType());
1260  }
1261
1262  // C++0x [conv.prom]p2:
1263  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1264  //   to an rvalue a prvalue of the first of the following types that can
1265  //   represent all the values of its underlying type: int, unsigned int,
1266  //   long int, unsigned long int, long long int, or unsigned long long int.
1267  //   If none of the types in that list can represent all the values of its
1268  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1269  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1270  //   type.
1271  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1272      ToType->isIntegerType()) {
1273    // Determine whether the type we're converting from is signed or
1274    // unsigned.
1275    bool FromIsSigned;
1276    uint64_t FromSize = Context.getTypeSize(FromType);
1277
1278    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1279    FromIsSigned = true;
1280
1281    // The types we'll try to promote to, in the appropriate
1282    // order. Try each of these types.
1283    QualType PromoteTypes[6] = {
1284      Context.IntTy, Context.UnsignedIntTy,
1285      Context.LongTy, Context.UnsignedLongTy ,
1286      Context.LongLongTy, Context.UnsignedLongLongTy
1287    };
1288    for (int Idx = 0; Idx < 6; ++Idx) {
1289      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1290      if (FromSize < ToSize ||
1291          (FromSize == ToSize &&
1292           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1293        // We found the type that we can promote to. If this is the
1294        // type we wanted, we have a promotion. Otherwise, no
1295        // promotion.
1296        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1297      }
1298    }
1299  }
1300
1301  // An rvalue for an integral bit-field (9.6) can be converted to an
1302  // rvalue of type int if int can represent all the values of the
1303  // bit-field; otherwise, it can be converted to unsigned int if
1304  // unsigned int can represent all the values of the bit-field. If
1305  // the bit-field is larger yet, no integral promotion applies to
1306  // it. If the bit-field has an enumerated type, it is treated as any
1307  // other value of that type for promotion purposes (C++ 4.5p3).
1308  // FIXME: We should delay checking of bit-fields until we actually perform the
1309  // conversion.
1310  using llvm::APSInt;
1311  if (From)
1312    if (FieldDecl *MemberDecl = From->getBitField()) {
1313      APSInt BitWidth;
1314      if (FromType->isIntegralType(Context) &&
1315          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1316        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1317        ToSize = Context.getTypeSize(ToType);
1318
1319        // Are we promoting to an int from a bitfield that fits in an int?
1320        if (BitWidth < ToSize ||
1321            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1322          return To->getKind() == BuiltinType::Int;
1323        }
1324
1325        // Are we promoting to an unsigned int from an unsigned bitfield
1326        // that fits into an unsigned int?
1327        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1328          return To->getKind() == BuiltinType::UInt;
1329        }
1330
1331        return false;
1332      }
1333    }
1334
1335  // An rvalue of type bool can be converted to an rvalue of type int,
1336  // with false becoming zero and true becoming one (C++ 4.5p4).
1337  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1338    return true;
1339  }
1340
1341  return false;
1342}
1343
1344/// IsFloatingPointPromotion - Determines whether the conversion from
1345/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1346/// returns true and sets PromotedType to the promoted type.
1347bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1348  /// An rvalue of type float can be converted to an rvalue of type
1349  /// double. (C++ 4.6p1).
1350  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1351    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1352      if (FromBuiltin->getKind() == BuiltinType::Float &&
1353          ToBuiltin->getKind() == BuiltinType::Double)
1354        return true;
1355
1356      // C99 6.3.1.5p1:
1357      //   When a float is promoted to double or long double, or a
1358      //   double is promoted to long double [...].
1359      if (!getLangOptions().CPlusPlus &&
1360          (FromBuiltin->getKind() == BuiltinType::Float ||
1361           FromBuiltin->getKind() == BuiltinType::Double) &&
1362          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1363        return true;
1364    }
1365
1366  return false;
1367}
1368
1369/// \brief Determine if a conversion is a complex promotion.
1370///
1371/// A complex promotion is defined as a complex -> complex conversion
1372/// where the conversion between the underlying real types is a
1373/// floating-point or integral promotion.
1374bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1375  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1376  if (!FromComplex)
1377    return false;
1378
1379  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1380  if (!ToComplex)
1381    return false;
1382
1383  return IsFloatingPointPromotion(FromComplex->getElementType(),
1384                                  ToComplex->getElementType()) ||
1385    IsIntegralPromotion(0, FromComplex->getElementType(),
1386                        ToComplex->getElementType());
1387}
1388
1389/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1390/// the pointer type FromPtr to a pointer to type ToPointee, with the
1391/// same type qualifiers as FromPtr has on its pointee type. ToType,
1392/// if non-empty, will be a pointer to ToType that may or may not have
1393/// the right set of qualifiers on its pointee.
1394static QualType
1395BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1396                                   QualType ToPointee, QualType ToType,
1397                                   ASTContext &Context) {
1398  assert((FromPtr->getTypeClass() == Type::Pointer ||
1399          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1400         "Invalid similarly-qualified pointer type");
1401
1402  /// \brief Conversions to 'id' subsume cv-qualifier conversions.
1403  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1404    return ToType.getUnqualifiedType();
1405
1406  QualType CanonFromPointee
1407    = Context.getCanonicalType(FromPtr->getPointeeType());
1408  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1409  Qualifiers Quals = CanonFromPointee.getQualifiers();
1410
1411  // Exact qualifier match -> return the pointer type we're converting to.
1412  if (CanonToPointee.getLocalQualifiers() == Quals) {
1413    // ToType is exactly what we need. Return it.
1414    if (!ToType.isNull())
1415      return ToType.getUnqualifiedType();
1416
1417    // Build a pointer to ToPointee. It has the right qualifiers
1418    // already.
1419    if (isa<ObjCObjectPointerType>(ToType))
1420      return Context.getObjCObjectPointerType(ToPointee);
1421    return Context.getPointerType(ToPointee);
1422  }
1423
1424  // Just build a canonical type that has the right qualifiers.
1425  QualType QualifiedCanonToPointee
1426    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1427
1428  if (isa<ObjCObjectPointerType>(ToType))
1429    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1430  return Context.getPointerType(QualifiedCanonToPointee);
1431}
1432
1433static bool isNullPointerConstantForConversion(Expr *Expr,
1434                                               bool InOverloadResolution,
1435                                               ASTContext &Context) {
1436  // Handle value-dependent integral null pointer constants correctly.
1437  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1438  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1439      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1440    return !InOverloadResolution;
1441
1442  return Expr->isNullPointerConstant(Context,
1443                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1444                                        : Expr::NPC_ValueDependentIsNull);
1445}
1446
1447/// IsPointerConversion - Determines whether the conversion of the
1448/// expression From, which has the (possibly adjusted) type FromType,
1449/// can be converted to the type ToType via a pointer conversion (C++
1450/// 4.10). If so, returns true and places the converted type (that
1451/// might differ from ToType in its cv-qualifiers at some level) into
1452/// ConvertedType.
1453///
1454/// This routine also supports conversions to and from block pointers
1455/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1456/// pointers to interfaces. FIXME: Once we've determined the
1457/// appropriate overloading rules for Objective-C, we may want to
1458/// split the Objective-C checks into a different routine; however,
1459/// GCC seems to consider all of these conversions to be pointer
1460/// conversions, so for now they live here. IncompatibleObjC will be
1461/// set if the conversion is an allowed Objective-C conversion that
1462/// should result in a warning.
1463bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1464                               bool InOverloadResolution,
1465                               QualType& ConvertedType,
1466                               bool &IncompatibleObjC) {
1467  IncompatibleObjC = false;
1468  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1469                              IncompatibleObjC))
1470    return true;
1471
1472  // Conversion from a null pointer constant to any Objective-C pointer type.
1473  if (ToType->isObjCObjectPointerType() &&
1474      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1475    ConvertedType = ToType;
1476    return true;
1477  }
1478
1479  // Blocks: Block pointers can be converted to void*.
1480  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1481      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1482    ConvertedType = ToType;
1483    return true;
1484  }
1485  // Blocks: A null pointer constant can be converted to a block
1486  // pointer type.
1487  if (ToType->isBlockPointerType() &&
1488      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1489    ConvertedType = ToType;
1490    return true;
1491  }
1492
1493  // If the left-hand-side is nullptr_t, the right side can be a null
1494  // pointer constant.
1495  if (ToType->isNullPtrType() &&
1496      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1497    ConvertedType = ToType;
1498    return true;
1499  }
1500
1501  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1502  if (!ToTypePtr)
1503    return false;
1504
1505  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1506  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1507    ConvertedType = ToType;
1508    return true;
1509  }
1510
1511  // Beyond this point, both types need to be pointers
1512  // , including objective-c pointers.
1513  QualType ToPointeeType = ToTypePtr->getPointeeType();
1514  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1515    ConvertedType = BuildSimilarlyQualifiedPointerType(
1516                                      FromType->getAs<ObjCObjectPointerType>(),
1517                                                       ToPointeeType,
1518                                                       ToType, Context);
1519    return true;
1520  }
1521  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1522  if (!FromTypePtr)
1523    return false;
1524
1525  QualType FromPointeeType = FromTypePtr->getPointeeType();
1526
1527  // If the unqualified pointee types are the same, this can't be a
1528  // pointer conversion, so don't do all of the work below.
1529  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1530    return false;
1531
1532  // An rvalue of type "pointer to cv T," where T is an object type,
1533  // can be converted to an rvalue of type "pointer to cv void" (C++
1534  // 4.10p2).
1535  if (FromPointeeType->isIncompleteOrObjectType() &&
1536      ToPointeeType->isVoidType()) {
1537    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1538                                                       ToPointeeType,
1539                                                       ToType, Context);
1540    return true;
1541  }
1542
1543  // When we're overloading in C, we allow a special kind of pointer
1544  // conversion for compatible-but-not-identical pointee types.
1545  if (!getLangOptions().CPlusPlus &&
1546      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1547    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1548                                                       ToPointeeType,
1549                                                       ToType, Context);
1550    return true;
1551  }
1552
1553  // C++ [conv.ptr]p3:
1554  //
1555  //   An rvalue of type "pointer to cv D," where D is a class type,
1556  //   can be converted to an rvalue of type "pointer to cv B," where
1557  //   B is a base class (clause 10) of D. If B is an inaccessible
1558  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1559  //   necessitates this conversion is ill-formed. The result of the
1560  //   conversion is a pointer to the base class sub-object of the
1561  //   derived class object. The null pointer value is converted to
1562  //   the null pointer value of the destination type.
1563  //
1564  // Note that we do not check for ambiguity or inaccessibility
1565  // here. That is handled by CheckPointerConversion.
1566  if (getLangOptions().CPlusPlus &&
1567      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1568      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1569      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1570      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1571    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1572                                                       ToPointeeType,
1573                                                       ToType, Context);
1574    return true;
1575  }
1576
1577  return false;
1578}
1579
1580/// isObjCPointerConversion - Determines whether this is an
1581/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1582/// with the same arguments and return values.
1583bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1584                                   QualType& ConvertedType,
1585                                   bool &IncompatibleObjC) {
1586  if (!getLangOptions().ObjC1)
1587    return false;
1588
1589  // First, we handle all conversions on ObjC object pointer types.
1590  const ObjCObjectPointerType* ToObjCPtr =
1591    ToType->getAs<ObjCObjectPointerType>();
1592  const ObjCObjectPointerType *FromObjCPtr =
1593    FromType->getAs<ObjCObjectPointerType>();
1594
1595  if (ToObjCPtr && FromObjCPtr) {
1596    // If the pointee types are the same (ignoring qualifications),
1597    // then this is not a pointer conversion.
1598    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1599                                       FromObjCPtr->getPointeeType()))
1600      return false;
1601
1602    // Objective C++: We're able to convert between "id" or "Class" and a
1603    // pointer to any interface (in both directions).
1604    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1605      ConvertedType = ToType;
1606      return true;
1607    }
1608    // Conversions with Objective-C's id<...>.
1609    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1610         ToObjCPtr->isObjCQualifiedIdType()) &&
1611        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1612                                                  /*compare=*/false)) {
1613      ConvertedType = ToType;
1614      return true;
1615    }
1616    // Objective C++: We're able to convert from a pointer to an
1617    // interface to a pointer to a different interface.
1618    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1619      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1620      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1621      if (getLangOptions().CPlusPlus && LHS && RHS &&
1622          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1623                                                FromObjCPtr->getPointeeType()))
1624        return false;
1625      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1626                                                   ToObjCPtr->getPointeeType(),
1627                                                         ToType, Context);
1628      return true;
1629    }
1630
1631    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1632      // Okay: this is some kind of implicit downcast of Objective-C
1633      // interfaces, which is permitted. However, we're going to
1634      // complain about it.
1635      IncompatibleObjC = true;
1636      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1637                                                   ToObjCPtr->getPointeeType(),
1638                                                         ToType, Context);
1639      return true;
1640    }
1641  }
1642  // Beyond this point, both types need to be C pointers or block pointers.
1643  QualType ToPointeeType;
1644  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1645    ToPointeeType = ToCPtr->getPointeeType();
1646  else if (const BlockPointerType *ToBlockPtr =
1647            ToType->getAs<BlockPointerType>()) {
1648    // Objective C++: We're able to convert from a pointer to any object
1649    // to a block pointer type.
1650    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1651      ConvertedType = ToType;
1652      return true;
1653    }
1654    ToPointeeType = ToBlockPtr->getPointeeType();
1655  }
1656  else if (FromType->getAs<BlockPointerType>() &&
1657           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1658    // Objective C++: We're able to convert from a block pointer type to a
1659    // pointer to any object.
1660    ConvertedType = ToType;
1661    return true;
1662  }
1663  else
1664    return false;
1665
1666  QualType FromPointeeType;
1667  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1668    FromPointeeType = FromCPtr->getPointeeType();
1669  else if (const BlockPointerType *FromBlockPtr =
1670           FromType->getAs<BlockPointerType>())
1671    FromPointeeType = FromBlockPtr->getPointeeType();
1672  else
1673    return false;
1674
1675  // If we have pointers to pointers, recursively check whether this
1676  // is an Objective-C conversion.
1677  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1678      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1679                              IncompatibleObjC)) {
1680    // We always complain about this conversion.
1681    IncompatibleObjC = true;
1682    ConvertedType = Context.getPointerType(ConvertedType);
1683    return true;
1684  }
1685  // Allow conversion of pointee being objective-c pointer to another one;
1686  // as in I* to id.
1687  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1688      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1689      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1690                              IncompatibleObjC)) {
1691    ConvertedType = Context.getPointerType(ConvertedType);
1692    return true;
1693  }
1694
1695  // If we have pointers to functions or blocks, check whether the only
1696  // differences in the argument and result types are in Objective-C
1697  // pointer conversions. If so, we permit the conversion (but
1698  // complain about it).
1699  const FunctionProtoType *FromFunctionType
1700    = FromPointeeType->getAs<FunctionProtoType>();
1701  const FunctionProtoType *ToFunctionType
1702    = ToPointeeType->getAs<FunctionProtoType>();
1703  if (FromFunctionType && ToFunctionType) {
1704    // If the function types are exactly the same, this isn't an
1705    // Objective-C pointer conversion.
1706    if (Context.getCanonicalType(FromPointeeType)
1707          == Context.getCanonicalType(ToPointeeType))
1708      return false;
1709
1710    // Perform the quick checks that will tell us whether these
1711    // function types are obviously different.
1712    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1713        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1714        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1715      return false;
1716
1717    bool HasObjCConversion = false;
1718    if (Context.getCanonicalType(FromFunctionType->getResultType())
1719          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1720      // Okay, the types match exactly. Nothing to do.
1721    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1722                                       ToFunctionType->getResultType(),
1723                                       ConvertedType, IncompatibleObjC)) {
1724      // Okay, we have an Objective-C pointer conversion.
1725      HasObjCConversion = true;
1726    } else {
1727      // Function types are too different. Abort.
1728      return false;
1729    }
1730
1731    // Check argument types.
1732    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1733         ArgIdx != NumArgs; ++ArgIdx) {
1734      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1735      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1736      if (Context.getCanonicalType(FromArgType)
1737            == Context.getCanonicalType(ToArgType)) {
1738        // Okay, the types match exactly. Nothing to do.
1739      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1740                                         ConvertedType, IncompatibleObjC)) {
1741        // Okay, we have an Objective-C pointer conversion.
1742        HasObjCConversion = true;
1743      } else {
1744        // Argument types are too different. Abort.
1745        return false;
1746      }
1747    }
1748
1749    if (HasObjCConversion) {
1750      // We had an Objective-C conversion. Allow this pointer
1751      // conversion, but complain about it.
1752      ConvertedType = ToType;
1753      IncompatibleObjC = true;
1754      return true;
1755    }
1756  }
1757
1758  return false;
1759}
1760
1761/// FunctionArgTypesAreEqual - This routine checks two function proto types
1762/// for equlity of their argument types. Caller has already checked that
1763/// they have same number of arguments. This routine assumes that Objective-C
1764/// pointer types which only differ in their protocol qualifiers are equal.
1765bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
1766                                    const FunctionProtoType *NewType) {
1767  if (!getLangOptions().ObjC1)
1768    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1769                      NewType->arg_type_begin());
1770
1771  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1772       N = NewType->arg_type_begin(),
1773       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1774    QualType ToType = (*O);
1775    QualType FromType = (*N);
1776    if (ToType != FromType) {
1777      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1778        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1779          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1780               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1781              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1782               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1783            continue;
1784      }
1785      else if (const ObjCObjectPointerType *PTTo =
1786                 ToType->getAs<ObjCObjectPointerType>()) {
1787        if (const ObjCObjectPointerType *PTFr =
1788              FromType->getAs<ObjCObjectPointerType>())
1789          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1790            continue;
1791      }
1792      return false;
1793    }
1794  }
1795  return true;
1796}
1797
1798/// CheckPointerConversion - Check the pointer conversion from the
1799/// expression From to the type ToType. This routine checks for
1800/// ambiguous or inaccessible derived-to-base pointer
1801/// conversions for which IsPointerConversion has already returned
1802/// true. It returns true and produces a diagnostic if there was an
1803/// error, or returns false otherwise.
1804bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1805                                  CastKind &Kind,
1806                                  CXXCastPath& BasePath,
1807                                  bool IgnoreBaseAccess) {
1808  QualType FromType = From->getType();
1809  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
1810
1811  Kind = CK_BitCast;
1812
1813  if (CXXBoolLiteralExpr* LitBool
1814                          = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
1815    if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false)
1816      Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
1817        << ToType;
1818
1819  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1820    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1821      QualType FromPointeeType = FromPtrType->getPointeeType(),
1822               ToPointeeType   = ToPtrType->getPointeeType();
1823
1824      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1825          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1826        // We must have a derived-to-base conversion. Check an
1827        // ambiguous or inaccessible conversion.
1828        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1829                                         From->getExprLoc(),
1830                                         From->getSourceRange(), &BasePath,
1831                                         IgnoreBaseAccess))
1832          return true;
1833
1834        // The conversion was successful.
1835        Kind = CK_DerivedToBase;
1836      }
1837    }
1838  if (const ObjCObjectPointerType *FromPtrType =
1839        FromType->getAs<ObjCObjectPointerType>()) {
1840    if (const ObjCObjectPointerType *ToPtrType =
1841          ToType->getAs<ObjCObjectPointerType>()) {
1842      // Objective-C++ conversions are always okay.
1843      // FIXME: We should have a different class of conversions for the
1844      // Objective-C++ implicit conversions.
1845      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1846        return false;
1847    }
1848  }
1849
1850  // We shouldn't fall into this case unless it's valid for other
1851  // reasons.
1852  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1853    Kind = CK_NullToPointer;
1854
1855  return false;
1856}
1857
1858/// IsMemberPointerConversion - Determines whether the conversion of the
1859/// expression From, which has the (possibly adjusted) type FromType, can be
1860/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1861/// If so, returns true and places the converted type (that might differ from
1862/// ToType in its cv-qualifiers at some level) into ConvertedType.
1863bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1864                                     QualType ToType,
1865                                     bool InOverloadResolution,
1866                                     QualType &ConvertedType) {
1867  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1868  if (!ToTypePtr)
1869    return false;
1870
1871  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1872  if (From->isNullPointerConstant(Context,
1873                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1874                                        : Expr::NPC_ValueDependentIsNull)) {
1875    ConvertedType = ToType;
1876    return true;
1877  }
1878
1879  // Otherwise, both types have to be member pointers.
1880  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1881  if (!FromTypePtr)
1882    return false;
1883
1884  // A pointer to member of B can be converted to a pointer to member of D,
1885  // where D is derived from B (C++ 4.11p2).
1886  QualType FromClass(FromTypePtr->getClass(), 0);
1887  QualType ToClass(ToTypePtr->getClass(), 0);
1888
1889  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
1890      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
1891      IsDerivedFrom(ToClass, FromClass)) {
1892    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1893                                                 ToClass.getTypePtr());
1894    return true;
1895  }
1896
1897  return false;
1898}
1899
1900/// CheckMemberPointerConversion - Check the member pointer conversion from the
1901/// expression From to the type ToType. This routine checks for ambiguous or
1902/// virtual or inaccessible base-to-derived member pointer conversions
1903/// for which IsMemberPointerConversion has already returned true. It returns
1904/// true and produces a diagnostic if there was an error, or returns false
1905/// otherwise.
1906bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1907                                        CastKind &Kind,
1908                                        CXXCastPath &BasePath,
1909                                        bool IgnoreBaseAccess) {
1910  QualType FromType = From->getType();
1911  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1912  if (!FromPtrType) {
1913    // This must be a null pointer to member pointer conversion
1914    assert(From->isNullPointerConstant(Context,
1915                                       Expr::NPC_ValueDependentIsNull) &&
1916           "Expr must be null pointer constant!");
1917    Kind = CK_NullToMemberPointer;
1918    return false;
1919  }
1920
1921  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1922  assert(ToPtrType && "No member pointer cast has a target type "
1923                      "that is not a member pointer.");
1924
1925  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1926  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1927
1928  // FIXME: What about dependent types?
1929  assert(FromClass->isRecordType() && "Pointer into non-class.");
1930  assert(ToClass->isRecordType() && "Pointer into non-class.");
1931
1932  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1933                     /*DetectVirtual=*/true);
1934  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1935  assert(DerivationOkay &&
1936         "Should not have been called if derivation isn't OK.");
1937  (void)DerivationOkay;
1938
1939  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1940                                  getUnqualifiedType())) {
1941    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1942    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1943      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1944    return true;
1945  }
1946
1947  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1948    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1949      << FromClass << ToClass << QualType(VBase, 0)
1950      << From->getSourceRange();
1951    return true;
1952  }
1953
1954  if (!IgnoreBaseAccess)
1955    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1956                         Paths.front(),
1957                         diag::err_downcast_from_inaccessible_base);
1958
1959  // Must be a base to derived member conversion.
1960  BuildBasePathArray(Paths, BasePath);
1961  Kind = CK_BaseToDerivedMemberPointer;
1962  return false;
1963}
1964
1965/// IsQualificationConversion - Determines whether the conversion from
1966/// an rvalue of type FromType to ToType is a qualification conversion
1967/// (C++ 4.4).
1968bool
1969Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1970  FromType = Context.getCanonicalType(FromType);
1971  ToType = Context.getCanonicalType(ToType);
1972
1973  // If FromType and ToType are the same type, this is not a
1974  // qualification conversion.
1975  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1976    return false;
1977
1978  // (C++ 4.4p4):
1979  //   A conversion can add cv-qualifiers at levels other than the first
1980  //   in multi-level pointers, subject to the following rules: [...]
1981  bool PreviousToQualsIncludeConst = true;
1982  bool UnwrappedAnyPointer = false;
1983  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
1984    // Within each iteration of the loop, we check the qualifiers to
1985    // determine if this still looks like a qualification
1986    // conversion. Then, if all is well, we unwrap one more level of
1987    // pointers or pointers-to-members and do it all again
1988    // until there are no more pointers or pointers-to-members left to
1989    // unwrap.
1990    UnwrappedAnyPointer = true;
1991
1992    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1993    //      2,j, and similarly for volatile.
1994    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1995      return false;
1996
1997    //   -- if the cv 1,j and cv 2,j are different, then const is in
1998    //      every cv for 0 < k < j.
1999    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
2000        && !PreviousToQualsIncludeConst)
2001      return false;
2002
2003    // Keep track of whether all prior cv-qualifiers in the "to" type
2004    // include const.
2005    PreviousToQualsIncludeConst
2006      = PreviousToQualsIncludeConst && ToType.isConstQualified();
2007  }
2008
2009  // We are left with FromType and ToType being the pointee types
2010  // after unwrapping the original FromType and ToType the same number
2011  // of types. If we unwrapped any pointers, and if FromType and
2012  // ToType have the same unqualified type (since we checked
2013  // qualifiers above), then this is a qualification conversion.
2014  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2015}
2016
2017/// Determines whether there is a user-defined conversion sequence
2018/// (C++ [over.ics.user]) that converts expression From to the type
2019/// ToType. If such a conversion exists, User will contain the
2020/// user-defined conversion sequence that performs such a conversion
2021/// and this routine will return true. Otherwise, this routine returns
2022/// false and User is unspecified.
2023///
2024/// \param AllowExplicit  true if the conversion should consider C++0x
2025/// "explicit" conversion functions as well as non-explicit conversion
2026/// functions (C++0x [class.conv.fct]p2).
2027static OverloadingResult
2028IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2029                        UserDefinedConversionSequence& User,
2030                        OverloadCandidateSet& CandidateSet,
2031                        bool AllowExplicit) {
2032  // Whether we will only visit constructors.
2033  bool ConstructorsOnly = false;
2034
2035  // If the type we are conversion to is a class type, enumerate its
2036  // constructors.
2037  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2038    // C++ [over.match.ctor]p1:
2039    //   When objects of class type are direct-initialized (8.5), or
2040    //   copy-initialized from an expression of the same or a
2041    //   derived class type (8.5), overload resolution selects the
2042    //   constructor. [...] For copy-initialization, the candidate
2043    //   functions are all the converting constructors (12.3.1) of
2044    //   that class. The argument list is the expression-list within
2045    //   the parentheses of the initializer.
2046    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2047        (From->getType()->getAs<RecordType>() &&
2048         S.IsDerivedFrom(From->getType(), ToType)))
2049      ConstructorsOnly = true;
2050
2051    if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) {
2052      // We're not going to find any constructors.
2053    } else if (CXXRecordDecl *ToRecordDecl
2054                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2055      DeclContext::lookup_iterator Con, ConEnd;
2056      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2057           Con != ConEnd; ++Con) {
2058        NamedDecl *D = *Con;
2059        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2060
2061        // Find the constructor (which may be a template).
2062        CXXConstructorDecl *Constructor = 0;
2063        FunctionTemplateDecl *ConstructorTmpl
2064          = dyn_cast<FunctionTemplateDecl>(D);
2065        if (ConstructorTmpl)
2066          Constructor
2067            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2068        else
2069          Constructor = cast<CXXConstructorDecl>(D);
2070
2071        if (!Constructor->isInvalidDecl() &&
2072            Constructor->isConvertingConstructor(AllowExplicit)) {
2073          if (ConstructorTmpl)
2074            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2075                                           /*ExplicitArgs*/ 0,
2076                                           &From, 1, CandidateSet,
2077                                           /*SuppressUserConversions=*/
2078                                             !ConstructorsOnly);
2079          else
2080            // Allow one user-defined conversion when user specifies a
2081            // From->ToType conversion via an static cast (c-style, etc).
2082            S.AddOverloadCandidate(Constructor, FoundDecl,
2083                                   &From, 1, CandidateSet,
2084                                   /*SuppressUserConversions=*/
2085                                     !ConstructorsOnly);
2086        }
2087      }
2088    }
2089  }
2090
2091  // Enumerate conversion functions, if we're allowed to.
2092  if (ConstructorsOnly) {
2093  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2094                                   S.PDiag(0) << From->getSourceRange())) {
2095    // No conversion functions from incomplete types.
2096  } else if (const RecordType *FromRecordType
2097                                   = From->getType()->getAs<RecordType>()) {
2098    if (CXXRecordDecl *FromRecordDecl
2099         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2100      // Add all of the conversion functions as candidates.
2101      const UnresolvedSetImpl *Conversions
2102        = FromRecordDecl->getVisibleConversionFunctions();
2103      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2104             E = Conversions->end(); I != E; ++I) {
2105        DeclAccessPair FoundDecl = I.getPair();
2106        NamedDecl *D = FoundDecl.getDecl();
2107        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2108        if (isa<UsingShadowDecl>(D))
2109          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2110
2111        CXXConversionDecl *Conv;
2112        FunctionTemplateDecl *ConvTemplate;
2113        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2114          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2115        else
2116          Conv = cast<CXXConversionDecl>(D);
2117
2118        if (AllowExplicit || !Conv->isExplicit()) {
2119          if (ConvTemplate)
2120            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2121                                             ActingContext, From, ToType,
2122                                             CandidateSet);
2123          else
2124            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2125                                     From, ToType, CandidateSet);
2126        }
2127      }
2128    }
2129  }
2130
2131  OverloadCandidateSet::iterator Best;
2132  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2133  case OR_Success:
2134    // Record the standard conversion we used and the conversion function.
2135    if (CXXConstructorDecl *Constructor
2136          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2137      // C++ [over.ics.user]p1:
2138      //   If the user-defined conversion is specified by a
2139      //   constructor (12.3.1), the initial standard conversion
2140      //   sequence converts the source type to the type required by
2141      //   the argument of the constructor.
2142      //
2143      QualType ThisType = Constructor->getThisType(S.Context);
2144      if (Best->Conversions[0].isEllipsis())
2145        User.EllipsisConversion = true;
2146      else {
2147        User.Before = Best->Conversions[0].Standard;
2148        User.EllipsisConversion = false;
2149      }
2150      User.ConversionFunction = Constructor;
2151      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2152      User.After.setAsIdentityConversion();
2153      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2154      User.After.setAllToTypes(ToType);
2155      return OR_Success;
2156    } else if (CXXConversionDecl *Conversion
2157                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2158      // C++ [over.ics.user]p1:
2159      //
2160      //   [...] If the user-defined conversion is specified by a
2161      //   conversion function (12.3.2), the initial standard
2162      //   conversion sequence converts the source type to the
2163      //   implicit object parameter of the conversion function.
2164      User.Before = Best->Conversions[0].Standard;
2165      User.ConversionFunction = Conversion;
2166      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2167      User.EllipsisConversion = false;
2168
2169      // C++ [over.ics.user]p2:
2170      //   The second standard conversion sequence converts the
2171      //   result of the user-defined conversion to the target type
2172      //   for the sequence. Since an implicit conversion sequence
2173      //   is an initialization, the special rules for
2174      //   initialization by user-defined conversion apply when
2175      //   selecting the best user-defined conversion for a
2176      //   user-defined conversion sequence (see 13.3.3 and
2177      //   13.3.3.1).
2178      User.After = Best->FinalConversion;
2179      return OR_Success;
2180    } else {
2181      llvm_unreachable("Not a constructor or conversion function?");
2182      return OR_No_Viable_Function;
2183    }
2184
2185  case OR_No_Viable_Function:
2186    return OR_No_Viable_Function;
2187  case OR_Deleted:
2188    // No conversion here! We're done.
2189    return OR_Deleted;
2190
2191  case OR_Ambiguous:
2192    return OR_Ambiguous;
2193  }
2194
2195  return OR_No_Viable_Function;
2196}
2197
2198bool
2199Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2200  ImplicitConversionSequence ICS;
2201  OverloadCandidateSet CandidateSet(From->getExprLoc());
2202  OverloadingResult OvResult =
2203    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2204                            CandidateSet, false);
2205  if (OvResult == OR_Ambiguous)
2206    Diag(From->getSourceRange().getBegin(),
2207         diag::err_typecheck_ambiguous_condition)
2208          << From->getType() << ToType << From->getSourceRange();
2209  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2210    Diag(From->getSourceRange().getBegin(),
2211         diag::err_typecheck_nonviable_condition)
2212    << From->getType() << ToType << From->getSourceRange();
2213  else
2214    return false;
2215  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2216  return true;
2217}
2218
2219/// CompareImplicitConversionSequences - Compare two implicit
2220/// conversion sequences to determine whether one is better than the
2221/// other or if they are indistinguishable (C++ 13.3.3.2).
2222static ImplicitConversionSequence::CompareKind
2223CompareImplicitConversionSequences(Sema &S,
2224                                   const ImplicitConversionSequence& ICS1,
2225                                   const ImplicitConversionSequence& ICS2)
2226{
2227  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2228  // conversion sequences (as defined in 13.3.3.1)
2229  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2230  //      conversion sequence than a user-defined conversion sequence or
2231  //      an ellipsis conversion sequence, and
2232  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2233  //      conversion sequence than an ellipsis conversion sequence
2234  //      (13.3.3.1.3).
2235  //
2236  // C++0x [over.best.ics]p10:
2237  //   For the purpose of ranking implicit conversion sequences as
2238  //   described in 13.3.3.2, the ambiguous conversion sequence is
2239  //   treated as a user-defined sequence that is indistinguishable
2240  //   from any other user-defined conversion sequence.
2241  if (ICS1.getKindRank() < ICS2.getKindRank())
2242    return ImplicitConversionSequence::Better;
2243  else if (ICS2.getKindRank() < ICS1.getKindRank())
2244    return ImplicitConversionSequence::Worse;
2245
2246  // The following checks require both conversion sequences to be of
2247  // the same kind.
2248  if (ICS1.getKind() != ICS2.getKind())
2249    return ImplicitConversionSequence::Indistinguishable;
2250
2251  // Two implicit conversion sequences of the same form are
2252  // indistinguishable conversion sequences unless one of the
2253  // following rules apply: (C++ 13.3.3.2p3):
2254  if (ICS1.isStandard())
2255    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2256  else if (ICS1.isUserDefined()) {
2257    // User-defined conversion sequence U1 is a better conversion
2258    // sequence than another user-defined conversion sequence U2 if
2259    // they contain the same user-defined conversion function or
2260    // constructor and if the second standard conversion sequence of
2261    // U1 is better than the second standard conversion sequence of
2262    // U2 (C++ 13.3.3.2p3).
2263    if (ICS1.UserDefined.ConversionFunction ==
2264          ICS2.UserDefined.ConversionFunction)
2265      return CompareStandardConversionSequences(S,
2266                                                ICS1.UserDefined.After,
2267                                                ICS2.UserDefined.After);
2268  }
2269
2270  return ImplicitConversionSequence::Indistinguishable;
2271}
2272
2273static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2274  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2275    Qualifiers Quals;
2276    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2277    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2278  }
2279
2280  return Context.hasSameUnqualifiedType(T1, T2);
2281}
2282
2283// Per 13.3.3.2p3, compare the given standard conversion sequences to
2284// determine if one is a proper subset of the other.
2285static ImplicitConversionSequence::CompareKind
2286compareStandardConversionSubsets(ASTContext &Context,
2287                                 const StandardConversionSequence& SCS1,
2288                                 const StandardConversionSequence& SCS2) {
2289  ImplicitConversionSequence::CompareKind Result
2290    = ImplicitConversionSequence::Indistinguishable;
2291
2292  // the identity conversion sequence is considered to be a subsequence of
2293  // any non-identity conversion sequence
2294  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2295    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2296      return ImplicitConversionSequence::Better;
2297    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2298      return ImplicitConversionSequence::Worse;
2299  }
2300
2301  if (SCS1.Second != SCS2.Second) {
2302    if (SCS1.Second == ICK_Identity)
2303      Result = ImplicitConversionSequence::Better;
2304    else if (SCS2.Second == ICK_Identity)
2305      Result = ImplicitConversionSequence::Worse;
2306    else
2307      return ImplicitConversionSequence::Indistinguishable;
2308  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2309    return ImplicitConversionSequence::Indistinguishable;
2310
2311  if (SCS1.Third == SCS2.Third) {
2312    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2313                             : ImplicitConversionSequence::Indistinguishable;
2314  }
2315
2316  if (SCS1.Third == ICK_Identity)
2317    return Result == ImplicitConversionSequence::Worse
2318             ? ImplicitConversionSequence::Indistinguishable
2319             : ImplicitConversionSequence::Better;
2320
2321  if (SCS2.Third == ICK_Identity)
2322    return Result == ImplicitConversionSequence::Better
2323             ? ImplicitConversionSequence::Indistinguishable
2324             : ImplicitConversionSequence::Worse;
2325
2326  return ImplicitConversionSequence::Indistinguishable;
2327}
2328
2329/// \brief Determine whether one of the given reference bindings is better
2330/// than the other based on what kind of bindings they are.
2331static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2332                                       const StandardConversionSequence &SCS2) {
2333  // C++0x [over.ics.rank]p3b4:
2334  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2335  //      implicit object parameter of a non-static member function declared
2336  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2337  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2338  //      lvalue reference to a function lvalue and S2 binds an rvalue
2339  //      reference*.
2340  //
2341  // FIXME: Rvalue references. We're going rogue with the above edits,
2342  // because the semantics in the current C++0x working paper (N3225 at the
2343  // time of this writing) break the standard definition of std::forward
2344  // and std::reference_wrapper when dealing with references to functions.
2345  // Proposed wording changes submitted to CWG for consideration.
2346  //
2347  // FIXME: Rvalue references. We don't know if we're dealing with the
2348  // implicit object parameter, or if the member function in this case has a
2349  // ref qualifier. (Of course, we don't have ref qualifiers yet.)
2350  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2351          SCS2.IsLvalueReference) ||
2352         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2353          !SCS2.IsLvalueReference);
2354}
2355
2356/// CompareStandardConversionSequences - Compare two standard
2357/// conversion sequences to determine whether one is better than the
2358/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2359static ImplicitConversionSequence::CompareKind
2360CompareStandardConversionSequences(Sema &S,
2361                                   const StandardConversionSequence& SCS1,
2362                                   const StandardConversionSequence& SCS2)
2363{
2364  // Standard conversion sequence S1 is a better conversion sequence
2365  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2366
2367  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2368  //     sequences in the canonical form defined by 13.3.3.1.1,
2369  //     excluding any Lvalue Transformation; the identity conversion
2370  //     sequence is considered to be a subsequence of any
2371  //     non-identity conversion sequence) or, if not that,
2372  if (ImplicitConversionSequence::CompareKind CK
2373        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2374    return CK;
2375
2376  //  -- the rank of S1 is better than the rank of S2 (by the rules
2377  //     defined below), or, if not that,
2378  ImplicitConversionRank Rank1 = SCS1.getRank();
2379  ImplicitConversionRank Rank2 = SCS2.getRank();
2380  if (Rank1 < Rank2)
2381    return ImplicitConversionSequence::Better;
2382  else if (Rank2 < Rank1)
2383    return ImplicitConversionSequence::Worse;
2384
2385  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2386  // are indistinguishable unless one of the following rules
2387  // applies:
2388
2389  //   A conversion that is not a conversion of a pointer, or
2390  //   pointer to member, to bool is better than another conversion
2391  //   that is such a conversion.
2392  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2393    return SCS2.isPointerConversionToBool()
2394             ? ImplicitConversionSequence::Better
2395             : ImplicitConversionSequence::Worse;
2396
2397  // C++ [over.ics.rank]p4b2:
2398  //
2399  //   If class B is derived directly or indirectly from class A,
2400  //   conversion of B* to A* is better than conversion of B* to
2401  //   void*, and conversion of A* to void* is better than conversion
2402  //   of B* to void*.
2403  bool SCS1ConvertsToVoid
2404    = SCS1.isPointerConversionToVoidPointer(S.Context);
2405  bool SCS2ConvertsToVoid
2406    = SCS2.isPointerConversionToVoidPointer(S.Context);
2407  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2408    // Exactly one of the conversion sequences is a conversion to
2409    // a void pointer; it's the worse conversion.
2410    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2411                              : ImplicitConversionSequence::Worse;
2412  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2413    // Neither conversion sequence converts to a void pointer; compare
2414    // their derived-to-base conversions.
2415    if (ImplicitConversionSequence::CompareKind DerivedCK
2416          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2417      return DerivedCK;
2418  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2419    // Both conversion sequences are conversions to void
2420    // pointers. Compare the source types to determine if there's an
2421    // inheritance relationship in their sources.
2422    QualType FromType1 = SCS1.getFromType();
2423    QualType FromType2 = SCS2.getFromType();
2424
2425    // Adjust the types we're converting from via the array-to-pointer
2426    // conversion, if we need to.
2427    if (SCS1.First == ICK_Array_To_Pointer)
2428      FromType1 = S.Context.getArrayDecayedType(FromType1);
2429    if (SCS2.First == ICK_Array_To_Pointer)
2430      FromType2 = S.Context.getArrayDecayedType(FromType2);
2431
2432    QualType FromPointee1
2433      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2434    QualType FromPointee2
2435      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2436
2437    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2438      return ImplicitConversionSequence::Better;
2439    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2440      return ImplicitConversionSequence::Worse;
2441
2442    // Objective-C++: If one interface is more specific than the
2443    // other, it is the better one.
2444    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2445    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2446    if (FromIface1 && FromIface1) {
2447      if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2448        return ImplicitConversionSequence::Better;
2449      else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2450        return ImplicitConversionSequence::Worse;
2451    }
2452  }
2453
2454  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2455  // bullet 3).
2456  if (ImplicitConversionSequence::CompareKind QualCK
2457        = CompareQualificationConversions(S, SCS1, SCS2))
2458    return QualCK;
2459
2460  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2461    // Check for a better reference binding based on the kind of bindings.
2462    if (isBetterReferenceBindingKind(SCS1, SCS2))
2463      return ImplicitConversionSequence::Better;
2464    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2465      return ImplicitConversionSequence::Worse;
2466
2467    // C++ [over.ics.rank]p3b4:
2468    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2469    //      which the references refer are the same type except for
2470    //      top-level cv-qualifiers, and the type to which the reference
2471    //      initialized by S2 refers is more cv-qualified than the type
2472    //      to which the reference initialized by S1 refers.
2473    QualType T1 = SCS1.getToType(2);
2474    QualType T2 = SCS2.getToType(2);
2475    T1 = S.Context.getCanonicalType(T1);
2476    T2 = S.Context.getCanonicalType(T2);
2477    Qualifiers T1Quals, T2Quals;
2478    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2479    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2480    if (UnqualT1 == UnqualT2) {
2481      // If the type is an array type, promote the element qualifiers to the
2482      // type for comparison.
2483      if (isa<ArrayType>(T1) && T1Quals)
2484        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2485      if (isa<ArrayType>(T2) && T2Quals)
2486        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2487      if (T2.isMoreQualifiedThan(T1))
2488        return ImplicitConversionSequence::Better;
2489      else if (T1.isMoreQualifiedThan(T2))
2490        return ImplicitConversionSequence::Worse;
2491    }
2492  }
2493
2494  return ImplicitConversionSequence::Indistinguishable;
2495}
2496
2497/// CompareQualificationConversions - Compares two standard conversion
2498/// sequences to determine whether they can be ranked based on their
2499/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2500ImplicitConversionSequence::CompareKind
2501CompareQualificationConversions(Sema &S,
2502                                const StandardConversionSequence& SCS1,
2503                                const StandardConversionSequence& SCS2) {
2504  // C++ 13.3.3.2p3:
2505  //  -- S1 and S2 differ only in their qualification conversion and
2506  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2507  //     cv-qualification signature of type T1 is a proper subset of
2508  //     the cv-qualification signature of type T2, and S1 is not the
2509  //     deprecated string literal array-to-pointer conversion (4.2).
2510  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2511      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2512    return ImplicitConversionSequence::Indistinguishable;
2513
2514  // FIXME: the example in the standard doesn't use a qualification
2515  // conversion (!)
2516  QualType T1 = SCS1.getToType(2);
2517  QualType T2 = SCS2.getToType(2);
2518  T1 = S.Context.getCanonicalType(T1);
2519  T2 = S.Context.getCanonicalType(T2);
2520  Qualifiers T1Quals, T2Quals;
2521  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2522  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2523
2524  // If the types are the same, we won't learn anything by unwrapped
2525  // them.
2526  if (UnqualT1 == UnqualT2)
2527    return ImplicitConversionSequence::Indistinguishable;
2528
2529  // If the type is an array type, promote the element qualifiers to the type
2530  // for comparison.
2531  if (isa<ArrayType>(T1) && T1Quals)
2532    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2533  if (isa<ArrayType>(T2) && T2Quals)
2534    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2535
2536  ImplicitConversionSequence::CompareKind Result
2537    = ImplicitConversionSequence::Indistinguishable;
2538  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2539    // Within each iteration of the loop, we check the qualifiers to
2540    // determine if this still looks like a qualification
2541    // conversion. Then, if all is well, we unwrap one more level of
2542    // pointers or pointers-to-members and do it all again
2543    // until there are no more pointers or pointers-to-members left
2544    // to unwrap. This essentially mimics what
2545    // IsQualificationConversion does, but here we're checking for a
2546    // strict subset of qualifiers.
2547    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2548      // The qualifiers are the same, so this doesn't tell us anything
2549      // about how the sequences rank.
2550      ;
2551    else if (T2.isMoreQualifiedThan(T1)) {
2552      // T1 has fewer qualifiers, so it could be the better sequence.
2553      if (Result == ImplicitConversionSequence::Worse)
2554        // Neither has qualifiers that are a subset of the other's
2555        // qualifiers.
2556        return ImplicitConversionSequence::Indistinguishable;
2557
2558      Result = ImplicitConversionSequence::Better;
2559    } else if (T1.isMoreQualifiedThan(T2)) {
2560      // T2 has fewer qualifiers, so it could be the better sequence.
2561      if (Result == ImplicitConversionSequence::Better)
2562        // Neither has qualifiers that are a subset of the other's
2563        // qualifiers.
2564        return ImplicitConversionSequence::Indistinguishable;
2565
2566      Result = ImplicitConversionSequence::Worse;
2567    } else {
2568      // Qualifiers are disjoint.
2569      return ImplicitConversionSequence::Indistinguishable;
2570    }
2571
2572    // If the types after this point are equivalent, we're done.
2573    if (S.Context.hasSameUnqualifiedType(T1, T2))
2574      break;
2575  }
2576
2577  // Check that the winning standard conversion sequence isn't using
2578  // the deprecated string literal array to pointer conversion.
2579  switch (Result) {
2580  case ImplicitConversionSequence::Better:
2581    if (SCS1.DeprecatedStringLiteralToCharPtr)
2582      Result = ImplicitConversionSequence::Indistinguishable;
2583    break;
2584
2585  case ImplicitConversionSequence::Indistinguishable:
2586    break;
2587
2588  case ImplicitConversionSequence::Worse:
2589    if (SCS2.DeprecatedStringLiteralToCharPtr)
2590      Result = ImplicitConversionSequence::Indistinguishable;
2591    break;
2592  }
2593
2594  return Result;
2595}
2596
2597/// CompareDerivedToBaseConversions - Compares two standard conversion
2598/// sequences to determine whether they can be ranked based on their
2599/// various kinds of derived-to-base conversions (C++
2600/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2601/// conversions between Objective-C interface types.
2602ImplicitConversionSequence::CompareKind
2603CompareDerivedToBaseConversions(Sema &S,
2604                                const StandardConversionSequence& SCS1,
2605                                const StandardConversionSequence& SCS2) {
2606  QualType FromType1 = SCS1.getFromType();
2607  QualType ToType1 = SCS1.getToType(1);
2608  QualType FromType2 = SCS2.getFromType();
2609  QualType ToType2 = SCS2.getToType(1);
2610
2611  // Adjust the types we're converting from via the array-to-pointer
2612  // conversion, if we need to.
2613  if (SCS1.First == ICK_Array_To_Pointer)
2614    FromType1 = S.Context.getArrayDecayedType(FromType1);
2615  if (SCS2.First == ICK_Array_To_Pointer)
2616    FromType2 = S.Context.getArrayDecayedType(FromType2);
2617
2618  // Canonicalize all of the types.
2619  FromType1 = S.Context.getCanonicalType(FromType1);
2620  ToType1 = S.Context.getCanonicalType(ToType1);
2621  FromType2 = S.Context.getCanonicalType(FromType2);
2622  ToType2 = S.Context.getCanonicalType(ToType2);
2623
2624  // C++ [over.ics.rank]p4b3:
2625  //
2626  //   If class B is derived directly or indirectly from class A and
2627  //   class C is derived directly or indirectly from B,
2628  //
2629  // For Objective-C, we let A, B, and C also be Objective-C
2630  // interfaces.
2631
2632  // Compare based on pointer conversions.
2633  if (SCS1.Second == ICK_Pointer_Conversion &&
2634      SCS2.Second == ICK_Pointer_Conversion &&
2635      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2636      FromType1->isPointerType() && FromType2->isPointerType() &&
2637      ToType1->isPointerType() && ToType2->isPointerType()) {
2638    QualType FromPointee1
2639      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2640    QualType ToPointee1
2641      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2642    QualType FromPointee2
2643      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2644    QualType ToPointee2
2645      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2646
2647    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2648    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2649    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2650    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2651
2652    //   -- conversion of C* to B* is better than conversion of C* to A*,
2653    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2654      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2655        return ImplicitConversionSequence::Better;
2656      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2657        return ImplicitConversionSequence::Worse;
2658
2659      if (ToIface1 && ToIface2) {
2660        if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2661          return ImplicitConversionSequence::Better;
2662        else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2663          return ImplicitConversionSequence::Worse;
2664      }
2665    }
2666
2667    //   -- conversion of B* to A* is better than conversion of C* to A*,
2668    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2669      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2670        return ImplicitConversionSequence::Better;
2671      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2672        return ImplicitConversionSequence::Worse;
2673
2674      if (FromIface1 && FromIface2) {
2675        if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2676          return ImplicitConversionSequence::Better;
2677        else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2678          return ImplicitConversionSequence::Worse;
2679      }
2680    }
2681  }
2682
2683  // Ranking of member-pointer types.
2684  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2685      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2686      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2687    const MemberPointerType * FromMemPointer1 =
2688                                        FromType1->getAs<MemberPointerType>();
2689    const MemberPointerType * ToMemPointer1 =
2690                                          ToType1->getAs<MemberPointerType>();
2691    const MemberPointerType * FromMemPointer2 =
2692                                          FromType2->getAs<MemberPointerType>();
2693    const MemberPointerType * ToMemPointer2 =
2694                                          ToType2->getAs<MemberPointerType>();
2695    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2696    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2697    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2698    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2699    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2700    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2701    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2702    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2703    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2704    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2705      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2706        return ImplicitConversionSequence::Worse;
2707      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2708        return ImplicitConversionSequence::Better;
2709    }
2710    // conversion of B::* to C::* is better than conversion of A::* to C::*
2711    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2712      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2713        return ImplicitConversionSequence::Better;
2714      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2715        return ImplicitConversionSequence::Worse;
2716    }
2717  }
2718
2719  if (SCS1.Second == ICK_Derived_To_Base) {
2720    //   -- conversion of C to B is better than conversion of C to A,
2721    //   -- binding of an expression of type C to a reference of type
2722    //      B& is better than binding an expression of type C to a
2723    //      reference of type A&,
2724    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2725        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2726      if (S.IsDerivedFrom(ToType1, ToType2))
2727        return ImplicitConversionSequence::Better;
2728      else if (S.IsDerivedFrom(ToType2, ToType1))
2729        return ImplicitConversionSequence::Worse;
2730    }
2731
2732    //   -- conversion of B to A is better than conversion of C to A.
2733    //   -- binding of an expression of type B to a reference of type
2734    //      A& is better than binding an expression of type C to a
2735    //      reference of type A&,
2736    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2737        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2738      if (S.IsDerivedFrom(FromType2, FromType1))
2739        return ImplicitConversionSequence::Better;
2740      else if (S.IsDerivedFrom(FromType1, FromType2))
2741        return ImplicitConversionSequence::Worse;
2742    }
2743  }
2744
2745  return ImplicitConversionSequence::Indistinguishable;
2746}
2747
2748/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2749/// determine whether they are reference-related,
2750/// reference-compatible, reference-compatible with added
2751/// qualification, or incompatible, for use in C++ initialization by
2752/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2753/// type, and the first type (T1) is the pointee type of the reference
2754/// type being initialized.
2755Sema::ReferenceCompareResult
2756Sema::CompareReferenceRelationship(SourceLocation Loc,
2757                                   QualType OrigT1, QualType OrigT2,
2758                                   bool &DerivedToBase,
2759                                   bool &ObjCConversion) {
2760  assert(!OrigT1->isReferenceType() &&
2761    "T1 must be the pointee type of the reference type");
2762  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2763
2764  QualType T1 = Context.getCanonicalType(OrigT1);
2765  QualType T2 = Context.getCanonicalType(OrigT2);
2766  Qualifiers T1Quals, T2Quals;
2767  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2768  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2769
2770  // C++ [dcl.init.ref]p4:
2771  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2772  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2773  //   T1 is a base class of T2.
2774  DerivedToBase = false;
2775  ObjCConversion = false;
2776  if (UnqualT1 == UnqualT2) {
2777    // Nothing to do.
2778  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2779           IsDerivedFrom(UnqualT2, UnqualT1))
2780    DerivedToBase = true;
2781  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
2782           UnqualT2->isObjCObjectOrInterfaceType() &&
2783           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
2784    ObjCConversion = true;
2785  else
2786    return Ref_Incompatible;
2787
2788  // At this point, we know that T1 and T2 are reference-related (at
2789  // least).
2790
2791  // If the type is an array type, promote the element qualifiers to the type
2792  // for comparison.
2793  if (isa<ArrayType>(T1) && T1Quals)
2794    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2795  if (isa<ArrayType>(T2) && T2Quals)
2796    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2797
2798  // C++ [dcl.init.ref]p4:
2799  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2800  //   reference-related to T2 and cv1 is the same cv-qualification
2801  //   as, or greater cv-qualification than, cv2. For purposes of
2802  //   overload resolution, cases for which cv1 is greater
2803  //   cv-qualification than cv2 are identified as
2804  //   reference-compatible with added qualification (see 13.3.3.2).
2805  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2806    return Ref_Compatible;
2807  else if (T1.isMoreQualifiedThan(T2))
2808    return Ref_Compatible_With_Added_Qualification;
2809  else
2810    return Ref_Related;
2811}
2812
2813/// \brief Look for a user-defined conversion to an value reference-compatible
2814///        with DeclType. Return true if something definite is found.
2815static bool
2816FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
2817                         QualType DeclType, SourceLocation DeclLoc,
2818                         Expr *Init, QualType T2, bool AllowRvalues,
2819                         bool AllowExplicit) {
2820  assert(T2->isRecordType() && "Can only find conversions of record types.");
2821  CXXRecordDecl *T2RecordDecl
2822    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2823
2824  OverloadCandidateSet CandidateSet(DeclLoc);
2825  const UnresolvedSetImpl *Conversions
2826    = T2RecordDecl->getVisibleConversionFunctions();
2827  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2828         E = Conversions->end(); I != E; ++I) {
2829    NamedDecl *D = *I;
2830    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2831    if (isa<UsingShadowDecl>(D))
2832      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2833
2834    FunctionTemplateDecl *ConvTemplate
2835      = dyn_cast<FunctionTemplateDecl>(D);
2836    CXXConversionDecl *Conv;
2837    if (ConvTemplate)
2838      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2839    else
2840      Conv = cast<CXXConversionDecl>(D);
2841
2842    // If this is an explicit conversion, and we're not allowed to consider
2843    // explicit conversions, skip it.
2844    if (!AllowExplicit && Conv->isExplicit())
2845      continue;
2846
2847    if (AllowRvalues) {
2848      bool DerivedToBase = false;
2849      bool ObjCConversion = false;
2850      if (!ConvTemplate &&
2851          S.CompareReferenceRelationship(
2852            DeclLoc,
2853            Conv->getConversionType().getNonReferenceType()
2854              .getUnqualifiedType(),
2855            DeclType.getNonReferenceType().getUnqualifiedType(),
2856            DerivedToBase, ObjCConversion) ==
2857          Sema::Ref_Incompatible)
2858        continue;
2859    } else {
2860      // If the conversion function doesn't return a reference type,
2861      // it can't be considered for this conversion. An rvalue reference
2862      // is only acceptable if its referencee is a function type.
2863
2864      const ReferenceType *RefType =
2865        Conv->getConversionType()->getAs<ReferenceType>();
2866      if (!RefType ||
2867          (!RefType->isLValueReferenceType() &&
2868           !RefType->getPointeeType()->isFunctionType()))
2869        continue;
2870    }
2871
2872    if (ConvTemplate)
2873      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2874                                       Init, DeclType, CandidateSet);
2875    else
2876      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2877                               DeclType, CandidateSet);
2878  }
2879
2880  OverloadCandidateSet::iterator Best;
2881  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
2882  case OR_Success:
2883    // C++ [over.ics.ref]p1:
2884    //
2885    //   [...] If the parameter binds directly to the result of
2886    //   applying a conversion function to the argument
2887    //   expression, the implicit conversion sequence is a
2888    //   user-defined conversion sequence (13.3.3.1.2), with the
2889    //   second standard conversion sequence either an identity
2890    //   conversion or, if the conversion function returns an
2891    //   entity of a type that is a derived class of the parameter
2892    //   type, a derived-to-base Conversion.
2893    if (!Best->FinalConversion.DirectBinding)
2894      return false;
2895
2896    ICS.setUserDefined();
2897    ICS.UserDefined.Before = Best->Conversions[0].Standard;
2898    ICS.UserDefined.After = Best->FinalConversion;
2899    ICS.UserDefined.ConversionFunction = Best->Function;
2900    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
2901    ICS.UserDefined.EllipsisConversion = false;
2902    assert(ICS.UserDefined.After.ReferenceBinding &&
2903           ICS.UserDefined.After.DirectBinding &&
2904           "Expected a direct reference binding!");
2905    return true;
2906
2907  case OR_Ambiguous:
2908    ICS.setAmbiguous();
2909    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2910         Cand != CandidateSet.end(); ++Cand)
2911      if (Cand->Viable)
2912        ICS.Ambiguous.addConversion(Cand->Function);
2913    return true;
2914
2915  case OR_No_Viable_Function:
2916  case OR_Deleted:
2917    // There was no suitable conversion, or we found a deleted
2918    // conversion; continue with other checks.
2919    return false;
2920  }
2921
2922  return false;
2923}
2924
2925/// \brief Compute an implicit conversion sequence for reference
2926/// initialization.
2927static ImplicitConversionSequence
2928TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2929                 SourceLocation DeclLoc,
2930                 bool SuppressUserConversions,
2931                 bool AllowExplicit) {
2932  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2933
2934  // Most paths end in a failed conversion.
2935  ImplicitConversionSequence ICS;
2936  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2937
2938  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2939  QualType T2 = Init->getType();
2940
2941  // If the initializer is the address of an overloaded function, try
2942  // to resolve the overloaded function. If all goes well, T2 is the
2943  // type of the resulting function.
2944  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2945    DeclAccessPair Found;
2946    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2947                                                                false, Found))
2948      T2 = Fn->getType();
2949  }
2950
2951  // Compute some basic properties of the types and the initializer.
2952  bool isRValRef = DeclType->isRValueReferenceType();
2953  bool DerivedToBase = false;
2954  bool ObjCConversion = false;
2955  Expr::Classification InitCategory = Init->Classify(S.Context);
2956  Sema::ReferenceCompareResult RefRelationship
2957    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
2958                                     ObjCConversion);
2959
2960
2961  // C++0x [dcl.init.ref]p5:
2962  //   A reference to type "cv1 T1" is initialized by an expression
2963  //   of type "cv2 T2" as follows:
2964
2965  //     -- If reference is an lvalue reference and the initializer expression
2966  if (!isRValRef) {
2967    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2968    //        reference-compatible with "cv2 T2," or
2969    //
2970    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2971    if (InitCategory.isLValue() &&
2972        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2973      // C++ [over.ics.ref]p1:
2974      //   When a parameter of reference type binds directly (8.5.3)
2975      //   to an argument expression, the implicit conversion sequence
2976      //   is the identity conversion, unless the argument expression
2977      //   has a type that is a derived class of the parameter type,
2978      //   in which case the implicit conversion sequence is a
2979      //   derived-to-base Conversion (13.3.3.1).
2980      ICS.setStandard();
2981      ICS.Standard.First = ICK_Identity;
2982      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
2983                         : ObjCConversion? ICK_Compatible_Conversion
2984                         : ICK_Identity;
2985      ICS.Standard.Third = ICK_Identity;
2986      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2987      ICS.Standard.setToType(0, T2);
2988      ICS.Standard.setToType(1, T1);
2989      ICS.Standard.setToType(2, T1);
2990      ICS.Standard.ReferenceBinding = true;
2991      ICS.Standard.DirectBinding = true;
2992      ICS.Standard.IsLvalueReference = !isRValRef;
2993      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
2994      ICS.Standard.BindsToRvalue = false;
2995      ICS.Standard.CopyConstructor = 0;
2996
2997      // Nothing more to do: the inaccessibility/ambiguity check for
2998      // derived-to-base conversions is suppressed when we're
2999      // computing the implicit conversion sequence (C++
3000      // [over.best.ics]p2).
3001      return ICS;
3002    }
3003
3004    //       -- has a class type (i.e., T2 is a class type), where T1 is
3005    //          not reference-related to T2, and can be implicitly
3006    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3007    //          is reference-compatible with "cv3 T3" 92) (this
3008    //          conversion is selected by enumerating the applicable
3009    //          conversion functions (13.3.1.6) and choosing the best
3010    //          one through overload resolution (13.3)),
3011    if (!SuppressUserConversions && T2->isRecordType() &&
3012        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3013        RefRelationship == Sema::Ref_Incompatible) {
3014      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3015                                   Init, T2, /*AllowRvalues=*/false,
3016                                   AllowExplicit))
3017        return ICS;
3018    }
3019  }
3020
3021  //     -- Otherwise, the reference shall be an lvalue reference to a
3022  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3023  //        shall be an rvalue reference.
3024  //
3025  // We actually handle one oddity of C++ [over.ics.ref] at this
3026  // point, which is that, due to p2 (which short-circuits reference
3027  // binding by only attempting a simple conversion for non-direct
3028  // bindings) and p3's strange wording, we allow a const volatile
3029  // reference to bind to an rvalue. Hence the check for the presence
3030  // of "const" rather than checking for "const" being the only
3031  // qualifier.
3032  // This is also the point where rvalue references and lvalue inits no longer
3033  // go together.
3034  if (!isRValRef && !T1.isConstQualified())
3035    return ICS;
3036
3037  //       -- If the initializer expression
3038  //
3039  //            -- is an xvalue, class prvalue, array prvalue or function
3040  //               lvalue and "cv1T1" is reference-compatible with "cv2 T2", or
3041  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3042      (InitCategory.isXValue() ||
3043      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3044      (InitCategory.isLValue() && T2->isFunctionType()))) {
3045    ICS.setStandard();
3046    ICS.Standard.First = ICK_Identity;
3047    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3048                      : ObjCConversion? ICK_Compatible_Conversion
3049                      : ICK_Identity;
3050    ICS.Standard.Third = ICK_Identity;
3051    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3052    ICS.Standard.setToType(0, T2);
3053    ICS.Standard.setToType(1, T1);
3054    ICS.Standard.setToType(2, T1);
3055    ICS.Standard.ReferenceBinding = true;
3056    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3057    // binding unless we're binding to a class prvalue.
3058    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3059    // allow the use of rvalue references in C++98/03 for the benefit of
3060    // standard library implementors; therefore, we need the xvalue check here.
3061    ICS.Standard.DirectBinding =
3062      S.getLangOptions().CPlusPlus0x ||
3063      (InitCategory.isPRValue() && !T2->isRecordType());
3064    ICS.Standard.IsLvalueReference = !isRValRef;
3065    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3066    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3067    ICS.Standard.CopyConstructor = 0;
3068    return ICS;
3069  }
3070
3071  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3072  //               reference-related to T2, and can be implicitly converted to
3073  //               an xvalue, class prvalue, or function lvalue of type
3074  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3075  //               "cv3 T3",
3076  //
3077  //          then the reference is bound to the value of the initializer
3078  //          expression in the first case and to the result of the conversion
3079  //          in the second case (or, in either case, to an appropriate base
3080  //          class subobject).
3081  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3082      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3083      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3084                               Init, T2, /*AllowRvalues=*/true,
3085                               AllowExplicit)) {
3086    // In the second case, if the reference is an rvalue reference
3087    // and the second standard conversion sequence of the
3088    // user-defined conversion sequence includes an lvalue-to-rvalue
3089    // conversion, the program is ill-formed.
3090    if (ICS.isUserDefined() && isRValRef &&
3091        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3092      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3093
3094    return ICS;
3095  }
3096
3097  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3098  //          initialized from the initializer expression using the
3099  //          rules for a non-reference copy initialization (8.5). The
3100  //          reference is then bound to the temporary. If T1 is
3101  //          reference-related to T2, cv1 must be the same
3102  //          cv-qualification as, or greater cv-qualification than,
3103  //          cv2; otherwise, the program is ill-formed.
3104  if (RefRelationship == Sema::Ref_Related) {
3105    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3106    // we would be reference-compatible or reference-compatible with
3107    // added qualification. But that wasn't the case, so the reference
3108    // initialization fails.
3109    return ICS;
3110  }
3111
3112  // If at least one of the types is a class type, the types are not
3113  // related, and we aren't allowed any user conversions, the
3114  // reference binding fails. This case is important for breaking
3115  // recursion, since TryImplicitConversion below will attempt to
3116  // create a temporary through the use of a copy constructor.
3117  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3118      (T1->isRecordType() || T2->isRecordType()))
3119    return ICS;
3120
3121  // If T1 is reference-related to T2 and the reference is an rvalue
3122  // reference, the initializer expression shall not be an lvalue.
3123  if (RefRelationship >= Sema::Ref_Related &&
3124      isRValRef && Init->Classify(S.Context).isLValue())
3125    return ICS;
3126
3127  // C++ [over.ics.ref]p2:
3128  //   When a parameter of reference type is not bound directly to
3129  //   an argument expression, the conversion sequence is the one
3130  //   required to convert the argument expression to the
3131  //   underlying type of the reference according to
3132  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3133  //   to copy-initializing a temporary of the underlying type with
3134  //   the argument expression. Any difference in top-level
3135  //   cv-qualification is subsumed by the initialization itself
3136  //   and does not constitute a conversion.
3137  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3138                              /*AllowExplicit=*/false,
3139                              /*InOverloadResolution=*/false);
3140
3141  // Of course, that's still a reference binding.
3142  if (ICS.isStandard()) {
3143    ICS.Standard.ReferenceBinding = true;
3144    ICS.Standard.IsLvalueReference = !isRValRef;
3145    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3146    ICS.Standard.BindsToRvalue = true;
3147  } else if (ICS.isUserDefined()) {
3148    ICS.UserDefined.After.ReferenceBinding = true;
3149    ICS.Standard.IsLvalueReference = !isRValRef;
3150    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3151    ICS.Standard.BindsToRvalue = true;
3152  }
3153
3154  return ICS;
3155}
3156
3157/// TryCopyInitialization - Try to copy-initialize a value of type
3158/// ToType from the expression From. Return the implicit conversion
3159/// sequence required to pass this argument, which may be a bad
3160/// conversion sequence (meaning that the argument cannot be passed to
3161/// a parameter of this type). If @p SuppressUserConversions, then we
3162/// do not permit any user-defined conversion sequences.
3163static ImplicitConversionSequence
3164TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3165                      bool SuppressUserConversions,
3166                      bool InOverloadResolution) {
3167  if (ToType->isReferenceType())
3168    return TryReferenceInit(S, From, ToType,
3169                            /*FIXME:*/From->getLocStart(),
3170                            SuppressUserConversions,
3171                            /*AllowExplicit=*/false);
3172
3173  return TryImplicitConversion(S, From, ToType,
3174                               SuppressUserConversions,
3175                               /*AllowExplicit=*/false,
3176                               InOverloadResolution);
3177}
3178
3179/// TryObjectArgumentInitialization - Try to initialize the object
3180/// parameter of the given member function (@c Method) from the
3181/// expression @p From.
3182static ImplicitConversionSequence
3183TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3184                                CXXMethodDecl *Method,
3185                                CXXRecordDecl *ActingContext) {
3186  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3187  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3188  //                 const volatile object.
3189  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3190    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3191  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3192
3193  // Set up the conversion sequence as a "bad" conversion, to allow us
3194  // to exit early.
3195  ImplicitConversionSequence ICS;
3196
3197  // We need to have an object of class type.
3198  QualType FromType = OrigFromType;
3199  if (const PointerType *PT = FromType->getAs<PointerType>())
3200    FromType = PT->getPointeeType();
3201
3202  assert(FromType->isRecordType());
3203
3204  // The implicit object parameter is has the type "reference to cv X",
3205  // where X is the class of which the function is a member
3206  // (C++ [over.match.funcs]p4). However, when finding an implicit
3207  // conversion sequence for the argument, we are not allowed to
3208  // create temporaries or perform user-defined conversions
3209  // (C++ [over.match.funcs]p5). We perform a simplified version of
3210  // reference binding here, that allows class rvalues to bind to
3211  // non-constant references.
3212
3213  // First check the qualifiers. We don't care about lvalue-vs-rvalue
3214  // with the implicit object parameter (C++ [over.match.funcs]p5).
3215  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3216  if (ImplicitParamType.getCVRQualifiers()
3217                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3218      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3219    ICS.setBad(BadConversionSequence::bad_qualifiers,
3220               OrigFromType, ImplicitParamType);
3221    return ICS;
3222  }
3223
3224  // Check that we have either the same type or a derived type. It
3225  // affects the conversion rank.
3226  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3227  ImplicitConversionKind SecondKind;
3228  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3229    SecondKind = ICK_Identity;
3230  } else if (S.IsDerivedFrom(FromType, ClassType))
3231    SecondKind = ICK_Derived_To_Base;
3232  else {
3233    ICS.setBad(BadConversionSequence::unrelated_class,
3234               FromType, ImplicitParamType);
3235    return ICS;
3236  }
3237
3238  // Success. Mark this as a reference binding.
3239  ICS.setStandard();
3240  ICS.Standard.setAsIdentityConversion();
3241  ICS.Standard.Second = SecondKind;
3242  ICS.Standard.setFromType(FromType);
3243  ICS.Standard.setAllToTypes(ImplicitParamType);
3244  ICS.Standard.ReferenceBinding = true;
3245  ICS.Standard.DirectBinding = true;
3246
3247  // FIXME: Rvalue references.
3248  ICS.Standard.IsLvalueReference = true;
3249  ICS.Standard.BindsToFunctionLvalue = false;
3250  ICS.Standard.BindsToRvalue = false;
3251  return ICS;
3252}
3253
3254/// PerformObjectArgumentInitialization - Perform initialization of
3255/// the implicit object parameter for the given Method with the given
3256/// expression.
3257bool
3258Sema::PerformObjectArgumentInitialization(Expr *&From,
3259                                          NestedNameSpecifier *Qualifier,
3260                                          NamedDecl *FoundDecl,
3261                                          CXXMethodDecl *Method) {
3262  QualType FromRecordType, DestType;
3263  QualType ImplicitParamRecordType  =
3264    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3265
3266  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3267    FromRecordType = PT->getPointeeType();
3268    DestType = Method->getThisType(Context);
3269  } else {
3270    FromRecordType = From->getType();
3271    DestType = ImplicitParamRecordType;
3272  }
3273
3274  // Note that we always use the true parent context when performing
3275  // the actual argument initialization.
3276  ImplicitConversionSequence ICS
3277    = TryObjectArgumentInitialization(*this, From->getType(), Method,
3278                                      Method->getParent());
3279  if (ICS.isBad()) {
3280    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3281      Qualifiers FromQs = FromRecordType.getQualifiers();
3282      Qualifiers ToQs = DestType.getQualifiers();
3283      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3284      if (CVR) {
3285        Diag(From->getSourceRange().getBegin(),
3286             diag::err_member_function_call_bad_cvr)
3287          << Method->getDeclName() << FromRecordType << (CVR - 1)
3288          << From->getSourceRange();
3289        Diag(Method->getLocation(), diag::note_previous_decl)
3290          << Method->getDeclName();
3291        return true;
3292      }
3293    }
3294
3295    return Diag(From->getSourceRange().getBegin(),
3296                diag::err_implicit_object_parameter_init)
3297       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3298  }
3299
3300  if (ICS.Standard.Second == ICK_Derived_To_Base)
3301    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3302
3303  if (!Context.hasSameType(From->getType(), DestType))
3304    ImpCastExprToType(From, DestType, CK_NoOp,
3305                      From->getType()->isPointerType() ? VK_RValue : VK_LValue);
3306  return false;
3307}
3308
3309/// TryContextuallyConvertToBool - Attempt to contextually convert the
3310/// expression From to bool (C++0x [conv]p3).
3311static ImplicitConversionSequence
3312TryContextuallyConvertToBool(Sema &S, Expr *From) {
3313  // FIXME: This is pretty broken.
3314  return TryImplicitConversion(S, From, S.Context.BoolTy,
3315                               // FIXME: Are these flags correct?
3316                               /*SuppressUserConversions=*/false,
3317                               /*AllowExplicit=*/true,
3318                               /*InOverloadResolution=*/false);
3319}
3320
3321/// PerformContextuallyConvertToBool - Perform a contextual conversion
3322/// of the expression From to bool (C++0x [conv]p3).
3323bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
3324  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3325  if (!ICS.isBad())
3326    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3327
3328  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3329    return  Diag(From->getSourceRange().getBegin(),
3330                 diag::err_typecheck_bool_condition)
3331                  << From->getType() << From->getSourceRange();
3332  return true;
3333}
3334
3335/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3336/// expression From to 'id'.
3337static ImplicitConversionSequence
3338TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3339  QualType Ty = S.Context.getObjCIdType();
3340  return TryImplicitConversion(S, From, Ty,
3341                               // FIXME: Are these flags correct?
3342                               /*SuppressUserConversions=*/false,
3343                               /*AllowExplicit=*/true,
3344                               /*InOverloadResolution=*/false);
3345}
3346
3347/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3348/// of the expression From to 'id'.
3349bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
3350  QualType Ty = Context.getObjCIdType();
3351  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3352  if (!ICS.isBad())
3353    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3354  return true;
3355}
3356
3357/// \brief Attempt to convert the given expression to an integral or
3358/// enumeration type.
3359///
3360/// This routine will attempt to convert an expression of class type to an
3361/// integral or enumeration type, if that class type only has a single
3362/// conversion to an integral or enumeration type.
3363///
3364/// \param Loc The source location of the construct that requires the
3365/// conversion.
3366///
3367/// \param FromE The expression we're converting from.
3368///
3369/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3370/// have integral or enumeration type.
3371///
3372/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3373/// incomplete class type.
3374///
3375/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3376/// explicit conversion function (because no implicit conversion functions
3377/// were available). This is a recovery mode.
3378///
3379/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3380/// showing which conversion was picked.
3381///
3382/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3383/// conversion function that could convert to integral or enumeration type.
3384///
3385/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3386/// usable conversion function.
3387///
3388/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3389/// function, which may be an extension in this case.
3390///
3391/// \returns The expression, converted to an integral or enumeration type if
3392/// successful.
3393ExprResult
3394Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3395                                         const PartialDiagnostic &NotIntDiag,
3396                                       const PartialDiagnostic &IncompleteDiag,
3397                                     const PartialDiagnostic &ExplicitConvDiag,
3398                                     const PartialDiagnostic &ExplicitConvNote,
3399                                         const PartialDiagnostic &AmbigDiag,
3400                                         const PartialDiagnostic &AmbigNote,
3401                                         const PartialDiagnostic &ConvDiag) {
3402  // We can't perform any more checking for type-dependent expressions.
3403  if (From->isTypeDependent())
3404    return Owned(From);
3405
3406  // If the expression already has integral or enumeration type, we're golden.
3407  QualType T = From->getType();
3408  if (T->isIntegralOrEnumerationType())
3409    return Owned(From);
3410
3411  // FIXME: Check for missing '()' if T is a function type?
3412
3413  // If we don't have a class type in C++, there's no way we can get an
3414  // expression of integral or enumeration type.
3415  const RecordType *RecordTy = T->getAs<RecordType>();
3416  if (!RecordTy || !getLangOptions().CPlusPlus) {
3417    Diag(Loc, NotIntDiag)
3418      << T << From->getSourceRange();
3419    return Owned(From);
3420  }
3421
3422  // We must have a complete class type.
3423  if (RequireCompleteType(Loc, T, IncompleteDiag))
3424    return Owned(From);
3425
3426  // Look for a conversion to an integral or enumeration type.
3427  UnresolvedSet<4> ViableConversions;
3428  UnresolvedSet<4> ExplicitConversions;
3429  const UnresolvedSetImpl *Conversions
3430    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3431
3432  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3433                                   E = Conversions->end();
3434       I != E;
3435       ++I) {
3436    if (CXXConversionDecl *Conversion
3437          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3438      if (Conversion->getConversionType().getNonReferenceType()
3439            ->isIntegralOrEnumerationType()) {
3440        if (Conversion->isExplicit())
3441          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3442        else
3443          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3444      }
3445  }
3446
3447  switch (ViableConversions.size()) {
3448  case 0:
3449    if (ExplicitConversions.size() == 1) {
3450      DeclAccessPair Found = ExplicitConversions[0];
3451      CXXConversionDecl *Conversion
3452        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3453
3454      // The user probably meant to invoke the given explicit
3455      // conversion; use it.
3456      QualType ConvTy
3457        = Conversion->getConversionType().getNonReferenceType();
3458      std::string TypeStr;
3459      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3460
3461      Diag(Loc, ExplicitConvDiag)
3462        << T << ConvTy
3463        << FixItHint::CreateInsertion(From->getLocStart(),
3464                                      "static_cast<" + TypeStr + ">(")
3465        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3466                                      ")");
3467      Diag(Conversion->getLocation(), ExplicitConvNote)
3468        << ConvTy->isEnumeralType() << ConvTy;
3469
3470      // If we aren't in a SFINAE context, build a call to the
3471      // explicit conversion function.
3472      if (isSFINAEContext())
3473        return ExprError();
3474
3475      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3476      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3477      if (Result.isInvalid())
3478        return ExprError();
3479
3480      From = Result.get();
3481    }
3482
3483    // We'll complain below about a non-integral condition type.
3484    break;
3485
3486  case 1: {
3487    // Apply this conversion.
3488    DeclAccessPair Found = ViableConversions[0];
3489    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3490
3491    CXXConversionDecl *Conversion
3492      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3493    QualType ConvTy
3494      = Conversion->getConversionType().getNonReferenceType();
3495    if (ConvDiag.getDiagID()) {
3496      if (isSFINAEContext())
3497        return ExprError();
3498
3499      Diag(Loc, ConvDiag)
3500        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3501    }
3502
3503    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
3504                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3505    if (Result.isInvalid())
3506      return ExprError();
3507
3508    From = Result.get();
3509    break;
3510  }
3511
3512  default:
3513    Diag(Loc, AmbigDiag)
3514      << T << From->getSourceRange();
3515    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3516      CXXConversionDecl *Conv
3517        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3518      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3519      Diag(Conv->getLocation(), AmbigNote)
3520        << ConvTy->isEnumeralType() << ConvTy;
3521    }
3522    return Owned(From);
3523  }
3524
3525  if (!From->getType()->isIntegralOrEnumerationType())
3526    Diag(Loc, NotIntDiag)
3527      << From->getType() << From->getSourceRange();
3528
3529  return Owned(From);
3530}
3531
3532/// AddOverloadCandidate - Adds the given function to the set of
3533/// candidate functions, using the given function call arguments.  If
3534/// @p SuppressUserConversions, then don't allow user-defined
3535/// conversions via constructors or conversion operators.
3536///
3537/// \para PartialOverloading true if we are performing "partial" overloading
3538/// based on an incomplete set of function arguments. This feature is used by
3539/// code completion.
3540void
3541Sema::AddOverloadCandidate(FunctionDecl *Function,
3542                           DeclAccessPair FoundDecl,
3543                           Expr **Args, unsigned NumArgs,
3544                           OverloadCandidateSet& CandidateSet,
3545                           bool SuppressUserConversions,
3546                           bool PartialOverloading) {
3547  const FunctionProtoType* Proto
3548    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3549  assert(Proto && "Functions without a prototype cannot be overloaded");
3550  assert(!Function->getDescribedFunctionTemplate() &&
3551         "Use AddTemplateOverloadCandidate for function templates");
3552
3553  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3554    if (!isa<CXXConstructorDecl>(Method)) {
3555      // If we get here, it's because we're calling a member function
3556      // that is named without a member access expression (e.g.,
3557      // "this->f") that was either written explicitly or created
3558      // implicitly. This can happen with a qualified call to a member
3559      // function, e.g., X::f(). We use an empty type for the implied
3560      // object argument (C++ [over.call.func]p3), and the acting context
3561      // is irrelevant.
3562      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3563                         QualType(), Args, NumArgs, CandidateSet,
3564                         SuppressUserConversions);
3565      return;
3566    }
3567    // We treat a constructor like a non-member function, since its object
3568    // argument doesn't participate in overload resolution.
3569  }
3570
3571  if (!CandidateSet.isNewCandidate(Function))
3572    return;
3573
3574  // Overload resolution is always an unevaluated context.
3575  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3576
3577  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3578    // C++ [class.copy]p3:
3579    //   A member function template is never instantiated to perform the copy
3580    //   of a class object to an object of its class type.
3581    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3582    if (NumArgs == 1 &&
3583        Constructor->isSpecializationCopyingObject() &&
3584        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3585         IsDerivedFrom(Args[0]->getType(), ClassType)))
3586      return;
3587  }
3588
3589  // Add this candidate
3590  CandidateSet.push_back(OverloadCandidate());
3591  OverloadCandidate& Candidate = CandidateSet.back();
3592  Candidate.FoundDecl = FoundDecl;
3593  Candidate.Function = Function;
3594  Candidate.Viable = true;
3595  Candidate.IsSurrogate = false;
3596  Candidate.IgnoreObjectArgument = false;
3597  Candidate.ExplicitCallArguments = NumArgs;
3598
3599  unsigned NumArgsInProto = Proto->getNumArgs();
3600
3601  // (C++ 13.3.2p2): A candidate function having fewer than m
3602  // parameters is viable only if it has an ellipsis in its parameter
3603  // list (8.3.5).
3604  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3605      !Proto->isVariadic()) {
3606    Candidate.Viable = false;
3607    Candidate.FailureKind = ovl_fail_too_many_arguments;
3608    return;
3609  }
3610
3611  // (C++ 13.3.2p2): A candidate function having more than m parameters
3612  // is viable only if the (m+1)st parameter has a default argument
3613  // (8.3.6). For the purposes of overload resolution, the
3614  // parameter list is truncated on the right, so that there are
3615  // exactly m parameters.
3616  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3617  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3618    // Not enough arguments.
3619    Candidate.Viable = false;
3620    Candidate.FailureKind = ovl_fail_too_few_arguments;
3621    return;
3622  }
3623
3624  // Determine the implicit conversion sequences for each of the
3625  // arguments.
3626  Candidate.Conversions.resize(NumArgs);
3627  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3628    if (ArgIdx < NumArgsInProto) {
3629      // (C++ 13.3.2p3): for F to be a viable function, there shall
3630      // exist for each argument an implicit conversion sequence
3631      // (13.3.3.1) that converts that argument to the corresponding
3632      // parameter of F.
3633      QualType ParamType = Proto->getArgType(ArgIdx);
3634      Candidate.Conversions[ArgIdx]
3635        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3636                                SuppressUserConversions,
3637                                /*InOverloadResolution=*/true);
3638      if (Candidate.Conversions[ArgIdx].isBad()) {
3639        Candidate.Viable = false;
3640        Candidate.FailureKind = ovl_fail_bad_conversion;
3641        break;
3642      }
3643    } else {
3644      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3645      // argument for which there is no corresponding parameter is
3646      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3647      Candidate.Conversions[ArgIdx].setEllipsis();
3648    }
3649  }
3650}
3651
3652/// \brief Add all of the function declarations in the given function set to
3653/// the overload canddiate set.
3654void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3655                                 Expr **Args, unsigned NumArgs,
3656                                 OverloadCandidateSet& CandidateSet,
3657                                 bool SuppressUserConversions) {
3658  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3659    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3660    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3661      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3662        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3663                           cast<CXXMethodDecl>(FD)->getParent(),
3664                           Args[0]->getType(), Args + 1, NumArgs - 1,
3665                           CandidateSet, SuppressUserConversions);
3666      else
3667        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3668                             SuppressUserConversions);
3669    } else {
3670      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3671      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3672          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3673        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3674                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3675                                   /*FIXME: explicit args */ 0,
3676                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3677                                   CandidateSet,
3678                                   SuppressUserConversions);
3679      else
3680        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3681                                     /*FIXME: explicit args */ 0,
3682                                     Args, NumArgs, CandidateSet,
3683                                     SuppressUserConversions);
3684    }
3685  }
3686}
3687
3688/// AddMethodCandidate - Adds a named decl (which is some kind of
3689/// method) as a method candidate to the given overload set.
3690void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3691                              QualType ObjectType,
3692                              Expr **Args, unsigned NumArgs,
3693                              OverloadCandidateSet& CandidateSet,
3694                              bool SuppressUserConversions) {
3695  NamedDecl *Decl = FoundDecl.getDecl();
3696  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3697
3698  if (isa<UsingShadowDecl>(Decl))
3699    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3700
3701  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3702    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3703           "Expected a member function template");
3704    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3705                               /*ExplicitArgs*/ 0,
3706                               ObjectType, Args, NumArgs,
3707                               CandidateSet,
3708                               SuppressUserConversions);
3709  } else {
3710    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3711                       ObjectType, Args, NumArgs,
3712                       CandidateSet, SuppressUserConversions);
3713  }
3714}
3715
3716/// AddMethodCandidate - Adds the given C++ member function to the set
3717/// of candidate functions, using the given function call arguments
3718/// and the object argument (@c Object). For example, in a call
3719/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3720/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3721/// allow user-defined conversions via constructors or conversion
3722/// operators.
3723void
3724Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3725                         CXXRecordDecl *ActingContext, QualType ObjectType,
3726                         Expr **Args, unsigned NumArgs,
3727                         OverloadCandidateSet& CandidateSet,
3728                         bool SuppressUserConversions) {
3729  const FunctionProtoType* Proto
3730    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3731  assert(Proto && "Methods without a prototype cannot be overloaded");
3732  assert(!isa<CXXConstructorDecl>(Method) &&
3733         "Use AddOverloadCandidate for constructors");
3734
3735  if (!CandidateSet.isNewCandidate(Method))
3736    return;
3737
3738  // Overload resolution is always an unevaluated context.
3739  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3740
3741  // Add this candidate
3742  CandidateSet.push_back(OverloadCandidate());
3743  OverloadCandidate& Candidate = CandidateSet.back();
3744  Candidate.FoundDecl = FoundDecl;
3745  Candidate.Function = Method;
3746  Candidate.IsSurrogate = false;
3747  Candidate.IgnoreObjectArgument = false;
3748  Candidate.ExplicitCallArguments = NumArgs;
3749
3750  unsigned NumArgsInProto = Proto->getNumArgs();
3751
3752  // (C++ 13.3.2p2): A candidate function having fewer than m
3753  // parameters is viable only if it has an ellipsis in its parameter
3754  // list (8.3.5).
3755  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3756    Candidate.Viable = false;
3757    Candidate.FailureKind = ovl_fail_too_many_arguments;
3758    return;
3759  }
3760
3761  // (C++ 13.3.2p2): A candidate function having more than m parameters
3762  // is viable only if the (m+1)st parameter has a default argument
3763  // (8.3.6). For the purposes of overload resolution, the
3764  // parameter list is truncated on the right, so that there are
3765  // exactly m parameters.
3766  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3767  if (NumArgs < MinRequiredArgs) {
3768    // Not enough arguments.
3769    Candidate.Viable = false;
3770    Candidate.FailureKind = ovl_fail_too_few_arguments;
3771    return;
3772  }
3773
3774  Candidate.Viable = true;
3775  Candidate.Conversions.resize(NumArgs + 1);
3776
3777  if (Method->isStatic() || ObjectType.isNull())
3778    // The implicit object argument is ignored.
3779    Candidate.IgnoreObjectArgument = true;
3780  else {
3781    // Determine the implicit conversion sequence for the object
3782    // parameter.
3783    Candidate.Conversions[0]
3784      = TryObjectArgumentInitialization(*this, ObjectType, Method,
3785                                        ActingContext);
3786    if (Candidate.Conversions[0].isBad()) {
3787      Candidate.Viable = false;
3788      Candidate.FailureKind = ovl_fail_bad_conversion;
3789      return;
3790    }
3791  }
3792
3793  // Determine the implicit conversion sequences for each of the
3794  // arguments.
3795  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3796    if (ArgIdx < NumArgsInProto) {
3797      // (C++ 13.3.2p3): for F to be a viable function, there shall
3798      // exist for each argument an implicit conversion sequence
3799      // (13.3.3.1) that converts that argument to the corresponding
3800      // parameter of F.
3801      QualType ParamType = Proto->getArgType(ArgIdx);
3802      Candidate.Conversions[ArgIdx + 1]
3803        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3804                                SuppressUserConversions,
3805                                /*InOverloadResolution=*/true);
3806      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3807        Candidate.Viable = false;
3808        Candidate.FailureKind = ovl_fail_bad_conversion;
3809        break;
3810      }
3811    } else {
3812      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3813      // argument for which there is no corresponding parameter is
3814      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3815      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3816    }
3817  }
3818}
3819
3820/// \brief Add a C++ member function template as a candidate to the candidate
3821/// set, using template argument deduction to produce an appropriate member
3822/// function template specialization.
3823void
3824Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3825                                 DeclAccessPair FoundDecl,
3826                                 CXXRecordDecl *ActingContext,
3827                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3828                                 QualType ObjectType,
3829                                 Expr **Args, unsigned NumArgs,
3830                                 OverloadCandidateSet& CandidateSet,
3831                                 bool SuppressUserConversions) {
3832  if (!CandidateSet.isNewCandidate(MethodTmpl))
3833    return;
3834
3835  // C++ [over.match.funcs]p7:
3836  //   In each case where a candidate is a function template, candidate
3837  //   function template specializations are generated using template argument
3838  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3839  //   candidate functions in the usual way.113) A given name can refer to one
3840  //   or more function templates and also to a set of overloaded non-template
3841  //   functions. In such a case, the candidate functions generated from each
3842  //   function template are combined with the set of non-template candidate
3843  //   functions.
3844  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3845  FunctionDecl *Specialization = 0;
3846  if (TemplateDeductionResult Result
3847      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3848                                Args, NumArgs, Specialization, Info)) {
3849    CandidateSet.push_back(OverloadCandidate());
3850    OverloadCandidate &Candidate = CandidateSet.back();
3851    Candidate.FoundDecl = FoundDecl;
3852    Candidate.Function = MethodTmpl->getTemplatedDecl();
3853    Candidate.Viable = false;
3854    Candidate.FailureKind = ovl_fail_bad_deduction;
3855    Candidate.IsSurrogate = false;
3856    Candidate.IgnoreObjectArgument = false;
3857    Candidate.ExplicitCallArguments = NumArgs;
3858    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3859                                                          Info);
3860    return;
3861  }
3862
3863  // Add the function template specialization produced by template argument
3864  // deduction as a candidate.
3865  assert(Specialization && "Missing member function template specialization?");
3866  assert(isa<CXXMethodDecl>(Specialization) &&
3867         "Specialization is not a member function?");
3868  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3869                     ActingContext, ObjectType, Args, NumArgs,
3870                     CandidateSet, SuppressUserConversions);
3871}
3872
3873/// \brief Add a C++ function template specialization as a candidate
3874/// in the candidate set, using template argument deduction to produce
3875/// an appropriate function template specialization.
3876void
3877Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3878                                   DeclAccessPair FoundDecl,
3879                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3880                                   Expr **Args, unsigned NumArgs,
3881                                   OverloadCandidateSet& CandidateSet,
3882                                   bool SuppressUserConversions) {
3883  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3884    return;
3885
3886  // C++ [over.match.funcs]p7:
3887  //   In each case where a candidate is a function template, candidate
3888  //   function template specializations are generated using template argument
3889  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3890  //   candidate functions in the usual way.113) A given name can refer to one
3891  //   or more function templates and also to a set of overloaded non-template
3892  //   functions. In such a case, the candidate functions generated from each
3893  //   function template are combined with the set of non-template candidate
3894  //   functions.
3895  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3896  FunctionDecl *Specialization = 0;
3897  if (TemplateDeductionResult Result
3898        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3899                                  Args, NumArgs, Specialization, Info)) {
3900    CandidateSet.push_back(OverloadCandidate());
3901    OverloadCandidate &Candidate = CandidateSet.back();
3902    Candidate.FoundDecl = FoundDecl;
3903    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3904    Candidate.Viable = false;
3905    Candidate.FailureKind = ovl_fail_bad_deduction;
3906    Candidate.IsSurrogate = false;
3907    Candidate.IgnoreObjectArgument = false;
3908    Candidate.ExplicitCallArguments = NumArgs;
3909    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3910                                                          Info);
3911    return;
3912  }
3913
3914  // Add the function template specialization produced by template argument
3915  // deduction as a candidate.
3916  assert(Specialization && "Missing function template specialization?");
3917  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3918                       SuppressUserConversions);
3919}
3920
3921/// AddConversionCandidate - Add a C++ conversion function as a
3922/// candidate in the candidate set (C++ [over.match.conv],
3923/// C++ [over.match.copy]). From is the expression we're converting from,
3924/// and ToType is the type that we're eventually trying to convert to
3925/// (which may or may not be the same type as the type that the
3926/// conversion function produces).
3927void
3928Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3929                             DeclAccessPair FoundDecl,
3930                             CXXRecordDecl *ActingContext,
3931                             Expr *From, QualType ToType,
3932                             OverloadCandidateSet& CandidateSet) {
3933  assert(!Conversion->getDescribedFunctionTemplate() &&
3934         "Conversion function templates use AddTemplateConversionCandidate");
3935  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3936  if (!CandidateSet.isNewCandidate(Conversion))
3937    return;
3938
3939  // Overload resolution is always an unevaluated context.
3940  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3941
3942  // Add this candidate
3943  CandidateSet.push_back(OverloadCandidate());
3944  OverloadCandidate& Candidate = CandidateSet.back();
3945  Candidate.FoundDecl = FoundDecl;
3946  Candidate.Function = Conversion;
3947  Candidate.IsSurrogate = false;
3948  Candidate.IgnoreObjectArgument = false;
3949  Candidate.FinalConversion.setAsIdentityConversion();
3950  Candidate.FinalConversion.setFromType(ConvType);
3951  Candidate.FinalConversion.setAllToTypes(ToType);
3952  Candidate.Viable = true;
3953  Candidate.Conversions.resize(1);
3954  Candidate.ExplicitCallArguments = 1;
3955
3956  // C++ [over.match.funcs]p4:
3957  //   For conversion functions, the function is considered to be a member of
3958  //   the class of the implicit implied object argument for the purpose of
3959  //   defining the type of the implicit object parameter.
3960  //
3961  // Determine the implicit conversion sequence for the implicit
3962  // object parameter.
3963  QualType ImplicitParamType = From->getType();
3964  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
3965    ImplicitParamType = FromPtrType->getPointeeType();
3966  CXXRecordDecl *ConversionContext
3967    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
3968
3969  Candidate.Conversions[0]
3970    = TryObjectArgumentInitialization(*this, From->getType(), Conversion,
3971                                      ConversionContext);
3972
3973  if (Candidate.Conversions[0].isBad()) {
3974    Candidate.Viable = false;
3975    Candidate.FailureKind = ovl_fail_bad_conversion;
3976    return;
3977  }
3978
3979  // We won't go through a user-define type conversion function to convert a
3980  // derived to base as such conversions are given Conversion Rank. They only
3981  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3982  QualType FromCanon
3983    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3984  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3985  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3986    Candidate.Viable = false;
3987    Candidate.FailureKind = ovl_fail_trivial_conversion;
3988    return;
3989  }
3990
3991  // To determine what the conversion from the result of calling the
3992  // conversion function to the type we're eventually trying to
3993  // convert to (ToType), we need to synthesize a call to the
3994  // conversion function and attempt copy initialization from it. This
3995  // makes sure that we get the right semantics with respect to
3996  // lvalues/rvalues and the type. Fortunately, we can allocate this
3997  // call on the stack and we don't need its arguments to be
3998  // well-formed.
3999  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4000                            VK_LValue, From->getLocStart());
4001  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4002                                Context.getPointerType(Conversion->getType()),
4003                                CK_FunctionToPointerDecay,
4004                                &ConversionRef, VK_RValue);
4005
4006  QualType CallResultType
4007    = Conversion->getConversionType().getNonLValueExprType(Context);
4008  if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) {
4009    Candidate.Viable = false;
4010    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4011    return;
4012  }
4013
4014  ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType());
4015
4016  // Note that it is safe to allocate CallExpr on the stack here because
4017  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4018  // allocator).
4019  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4020                From->getLocStart());
4021  ImplicitConversionSequence ICS =
4022    TryCopyInitialization(*this, &Call, ToType,
4023                          /*SuppressUserConversions=*/true,
4024                          /*InOverloadResolution=*/false);
4025
4026  switch (ICS.getKind()) {
4027  case ImplicitConversionSequence::StandardConversion:
4028    Candidate.FinalConversion = ICS.Standard;
4029
4030    // C++ [over.ics.user]p3:
4031    //   If the user-defined conversion is specified by a specialization of a
4032    //   conversion function template, the second standard conversion sequence
4033    //   shall have exact match rank.
4034    if (Conversion->getPrimaryTemplate() &&
4035        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4036      Candidate.Viable = false;
4037      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4038    }
4039
4040    // C++0x [dcl.init.ref]p5:
4041    //    In the second case, if the reference is an rvalue reference and
4042    //    the second standard conversion sequence of the user-defined
4043    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4044    //    program is ill-formed.
4045    if (ToType->isRValueReferenceType() &&
4046        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4047      Candidate.Viable = false;
4048      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4049    }
4050    break;
4051
4052  case ImplicitConversionSequence::BadConversion:
4053    Candidate.Viable = false;
4054    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4055    break;
4056
4057  default:
4058    assert(false &&
4059           "Can only end up with a standard conversion sequence or failure");
4060  }
4061}
4062
4063/// \brief Adds a conversion function template specialization
4064/// candidate to the overload set, using template argument deduction
4065/// to deduce the template arguments of the conversion function
4066/// template from the type that we are converting to (C++
4067/// [temp.deduct.conv]).
4068void
4069Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4070                                     DeclAccessPair FoundDecl,
4071                                     CXXRecordDecl *ActingDC,
4072                                     Expr *From, QualType ToType,
4073                                     OverloadCandidateSet &CandidateSet) {
4074  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4075         "Only conversion function templates permitted here");
4076
4077  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4078    return;
4079
4080  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4081  CXXConversionDecl *Specialization = 0;
4082  if (TemplateDeductionResult Result
4083        = DeduceTemplateArguments(FunctionTemplate, ToType,
4084                                  Specialization, Info)) {
4085    CandidateSet.push_back(OverloadCandidate());
4086    OverloadCandidate &Candidate = CandidateSet.back();
4087    Candidate.FoundDecl = FoundDecl;
4088    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4089    Candidate.Viable = false;
4090    Candidate.FailureKind = ovl_fail_bad_deduction;
4091    Candidate.IsSurrogate = false;
4092    Candidate.IgnoreObjectArgument = false;
4093    Candidate.ExplicitCallArguments = 1;
4094    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4095                                                          Info);
4096    return;
4097  }
4098
4099  // Add the conversion function template specialization produced by
4100  // template argument deduction as a candidate.
4101  assert(Specialization && "Missing function template specialization?");
4102  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4103                         CandidateSet);
4104}
4105
4106/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4107/// converts the given @c Object to a function pointer via the
4108/// conversion function @c Conversion, and then attempts to call it
4109/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4110/// the type of function that we'll eventually be calling.
4111void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4112                                 DeclAccessPair FoundDecl,
4113                                 CXXRecordDecl *ActingContext,
4114                                 const FunctionProtoType *Proto,
4115                                 QualType ObjectType,
4116                                 Expr **Args, unsigned NumArgs,
4117                                 OverloadCandidateSet& CandidateSet) {
4118  if (!CandidateSet.isNewCandidate(Conversion))
4119    return;
4120
4121  // Overload resolution is always an unevaluated context.
4122  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4123
4124  CandidateSet.push_back(OverloadCandidate());
4125  OverloadCandidate& Candidate = CandidateSet.back();
4126  Candidate.FoundDecl = FoundDecl;
4127  Candidate.Function = 0;
4128  Candidate.Surrogate = Conversion;
4129  Candidate.Viable = true;
4130  Candidate.IsSurrogate = true;
4131  Candidate.IgnoreObjectArgument = false;
4132  Candidate.Conversions.resize(NumArgs + 1);
4133  Candidate.ExplicitCallArguments = NumArgs;
4134
4135  // Determine the implicit conversion sequence for the implicit
4136  // object parameter.
4137  ImplicitConversionSequence ObjectInit
4138    = TryObjectArgumentInitialization(*this, ObjectType, Conversion,
4139                                      ActingContext);
4140  if (ObjectInit.isBad()) {
4141    Candidate.Viable = false;
4142    Candidate.FailureKind = ovl_fail_bad_conversion;
4143    Candidate.Conversions[0] = ObjectInit;
4144    return;
4145  }
4146
4147  // The first conversion is actually a user-defined conversion whose
4148  // first conversion is ObjectInit's standard conversion (which is
4149  // effectively a reference binding). Record it as such.
4150  Candidate.Conversions[0].setUserDefined();
4151  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4152  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4153  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4154  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4155    = FoundDecl.getDecl();
4156  Candidate.Conversions[0].UserDefined.After
4157    = Candidate.Conversions[0].UserDefined.Before;
4158  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4159
4160  // Find the
4161  unsigned NumArgsInProto = Proto->getNumArgs();
4162
4163  // (C++ 13.3.2p2): A candidate function having fewer than m
4164  // parameters is viable only if it has an ellipsis in its parameter
4165  // list (8.3.5).
4166  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4167    Candidate.Viable = false;
4168    Candidate.FailureKind = ovl_fail_too_many_arguments;
4169    return;
4170  }
4171
4172  // Function types don't have any default arguments, so just check if
4173  // we have enough arguments.
4174  if (NumArgs < NumArgsInProto) {
4175    // Not enough arguments.
4176    Candidate.Viable = false;
4177    Candidate.FailureKind = ovl_fail_too_few_arguments;
4178    return;
4179  }
4180
4181  // Determine the implicit conversion sequences for each of the
4182  // arguments.
4183  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4184    if (ArgIdx < NumArgsInProto) {
4185      // (C++ 13.3.2p3): for F to be a viable function, there shall
4186      // exist for each argument an implicit conversion sequence
4187      // (13.3.3.1) that converts that argument to the corresponding
4188      // parameter of F.
4189      QualType ParamType = Proto->getArgType(ArgIdx);
4190      Candidate.Conversions[ArgIdx + 1]
4191        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4192                                /*SuppressUserConversions=*/false,
4193                                /*InOverloadResolution=*/false);
4194      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4195        Candidate.Viable = false;
4196        Candidate.FailureKind = ovl_fail_bad_conversion;
4197        break;
4198      }
4199    } else {
4200      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4201      // argument for which there is no corresponding parameter is
4202      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4203      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4204    }
4205  }
4206}
4207
4208/// \brief Add overload candidates for overloaded operators that are
4209/// member functions.
4210///
4211/// Add the overloaded operator candidates that are member functions
4212/// for the operator Op that was used in an operator expression such
4213/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4214/// CandidateSet will store the added overload candidates. (C++
4215/// [over.match.oper]).
4216void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4217                                       SourceLocation OpLoc,
4218                                       Expr **Args, unsigned NumArgs,
4219                                       OverloadCandidateSet& CandidateSet,
4220                                       SourceRange OpRange) {
4221  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4222
4223  // C++ [over.match.oper]p3:
4224  //   For a unary operator @ with an operand of a type whose
4225  //   cv-unqualified version is T1, and for a binary operator @ with
4226  //   a left operand of a type whose cv-unqualified version is T1 and
4227  //   a right operand of a type whose cv-unqualified version is T2,
4228  //   three sets of candidate functions, designated member
4229  //   candidates, non-member candidates and built-in candidates, are
4230  //   constructed as follows:
4231  QualType T1 = Args[0]->getType();
4232
4233  //     -- If T1 is a class type, the set of member candidates is the
4234  //        result of the qualified lookup of T1::operator@
4235  //        (13.3.1.1.1); otherwise, the set of member candidates is
4236  //        empty.
4237  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4238    // Complete the type if it can be completed. Otherwise, we're done.
4239    if (RequireCompleteType(OpLoc, T1, PDiag()))
4240      return;
4241
4242    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4243    LookupQualifiedName(Operators, T1Rec->getDecl());
4244    Operators.suppressDiagnostics();
4245
4246    for (LookupResult::iterator Oper = Operators.begin(),
4247                             OperEnd = Operators.end();
4248         Oper != OperEnd;
4249         ++Oper)
4250      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4251                         Args + 1, NumArgs - 1, CandidateSet,
4252                         /* SuppressUserConversions = */ false);
4253  }
4254}
4255
4256/// AddBuiltinCandidate - Add a candidate for a built-in
4257/// operator. ResultTy and ParamTys are the result and parameter types
4258/// of the built-in candidate, respectively. Args and NumArgs are the
4259/// arguments being passed to the candidate. IsAssignmentOperator
4260/// should be true when this built-in candidate is an assignment
4261/// operator. NumContextualBoolArguments is the number of arguments
4262/// (at the beginning of the argument list) that will be contextually
4263/// converted to bool.
4264void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4265                               Expr **Args, unsigned NumArgs,
4266                               OverloadCandidateSet& CandidateSet,
4267                               bool IsAssignmentOperator,
4268                               unsigned NumContextualBoolArguments) {
4269  // Overload resolution is always an unevaluated context.
4270  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4271
4272  // Add this candidate
4273  CandidateSet.push_back(OverloadCandidate());
4274  OverloadCandidate& Candidate = CandidateSet.back();
4275  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4276  Candidate.Function = 0;
4277  Candidate.IsSurrogate = false;
4278  Candidate.IgnoreObjectArgument = false;
4279  Candidate.BuiltinTypes.ResultTy = ResultTy;
4280  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4281    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4282
4283  // Determine the implicit conversion sequences for each of the
4284  // arguments.
4285  Candidate.Viable = true;
4286  Candidate.Conversions.resize(NumArgs);
4287  Candidate.ExplicitCallArguments = NumArgs;
4288  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4289    // C++ [over.match.oper]p4:
4290    //   For the built-in assignment operators, conversions of the
4291    //   left operand are restricted as follows:
4292    //     -- no temporaries are introduced to hold the left operand, and
4293    //     -- no user-defined conversions are applied to the left
4294    //        operand to achieve a type match with the left-most
4295    //        parameter of a built-in candidate.
4296    //
4297    // We block these conversions by turning off user-defined
4298    // conversions, since that is the only way that initialization of
4299    // a reference to a non-class type can occur from something that
4300    // is not of the same type.
4301    if (ArgIdx < NumContextualBoolArguments) {
4302      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4303             "Contextual conversion to bool requires bool type");
4304      Candidate.Conversions[ArgIdx]
4305        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4306    } else {
4307      Candidate.Conversions[ArgIdx]
4308        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4309                                ArgIdx == 0 && IsAssignmentOperator,
4310                                /*InOverloadResolution=*/false);
4311    }
4312    if (Candidate.Conversions[ArgIdx].isBad()) {
4313      Candidate.Viable = false;
4314      Candidate.FailureKind = ovl_fail_bad_conversion;
4315      break;
4316    }
4317  }
4318}
4319
4320/// BuiltinCandidateTypeSet - A set of types that will be used for the
4321/// candidate operator functions for built-in operators (C++
4322/// [over.built]). The types are separated into pointer types and
4323/// enumeration types.
4324class BuiltinCandidateTypeSet  {
4325  /// TypeSet - A set of types.
4326  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4327
4328  /// PointerTypes - The set of pointer types that will be used in the
4329  /// built-in candidates.
4330  TypeSet PointerTypes;
4331
4332  /// MemberPointerTypes - The set of member pointer types that will be
4333  /// used in the built-in candidates.
4334  TypeSet MemberPointerTypes;
4335
4336  /// EnumerationTypes - The set of enumeration types that will be
4337  /// used in the built-in candidates.
4338  TypeSet EnumerationTypes;
4339
4340  /// \brief The set of vector types that will be used in the built-in
4341  /// candidates.
4342  TypeSet VectorTypes;
4343
4344  /// \brief A flag indicating non-record types are viable candidates
4345  bool HasNonRecordTypes;
4346
4347  /// \brief A flag indicating whether either arithmetic or enumeration types
4348  /// were present in the candidate set.
4349  bool HasArithmeticOrEnumeralTypes;
4350
4351  /// Sema - The semantic analysis instance where we are building the
4352  /// candidate type set.
4353  Sema &SemaRef;
4354
4355  /// Context - The AST context in which we will build the type sets.
4356  ASTContext &Context;
4357
4358  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4359                                               const Qualifiers &VisibleQuals);
4360  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4361
4362public:
4363  /// iterator - Iterates through the types that are part of the set.
4364  typedef TypeSet::iterator iterator;
4365
4366  BuiltinCandidateTypeSet(Sema &SemaRef)
4367    : HasNonRecordTypes(false),
4368      HasArithmeticOrEnumeralTypes(false),
4369      SemaRef(SemaRef),
4370      Context(SemaRef.Context) { }
4371
4372  void AddTypesConvertedFrom(QualType Ty,
4373                             SourceLocation Loc,
4374                             bool AllowUserConversions,
4375                             bool AllowExplicitConversions,
4376                             const Qualifiers &VisibleTypeConversionsQuals);
4377
4378  /// pointer_begin - First pointer type found;
4379  iterator pointer_begin() { return PointerTypes.begin(); }
4380
4381  /// pointer_end - Past the last pointer type found;
4382  iterator pointer_end() { return PointerTypes.end(); }
4383
4384  /// member_pointer_begin - First member pointer type found;
4385  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4386
4387  /// member_pointer_end - Past the last member pointer type found;
4388  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4389
4390  /// enumeration_begin - First enumeration type found;
4391  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4392
4393  /// enumeration_end - Past the last enumeration type found;
4394  iterator enumeration_end() { return EnumerationTypes.end(); }
4395
4396  iterator vector_begin() { return VectorTypes.begin(); }
4397  iterator vector_end() { return VectorTypes.end(); }
4398
4399  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4400  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4401};
4402
4403/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4404/// the set of pointer types along with any more-qualified variants of
4405/// that type. For example, if @p Ty is "int const *", this routine
4406/// will add "int const *", "int const volatile *", "int const
4407/// restrict *", and "int const volatile restrict *" to the set of
4408/// pointer types. Returns true if the add of @p Ty itself succeeded,
4409/// false otherwise.
4410///
4411/// FIXME: what to do about extended qualifiers?
4412bool
4413BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4414                                             const Qualifiers &VisibleQuals) {
4415
4416  // Insert this type.
4417  if (!PointerTypes.insert(Ty))
4418    return false;
4419
4420  QualType PointeeTy;
4421  const PointerType *PointerTy = Ty->getAs<PointerType>();
4422  bool buildObjCPtr = false;
4423  if (!PointerTy) {
4424    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4425      PointeeTy = PTy->getPointeeType();
4426      buildObjCPtr = true;
4427    }
4428    else
4429      assert(false && "type was not a pointer type!");
4430  }
4431  else
4432    PointeeTy = PointerTy->getPointeeType();
4433
4434  // Don't add qualified variants of arrays. For one, they're not allowed
4435  // (the qualifier would sink to the element type), and for another, the
4436  // only overload situation where it matters is subscript or pointer +- int,
4437  // and those shouldn't have qualifier variants anyway.
4438  if (PointeeTy->isArrayType())
4439    return true;
4440  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4441  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4442    BaseCVR = Array->getElementType().getCVRQualifiers();
4443  bool hasVolatile = VisibleQuals.hasVolatile();
4444  bool hasRestrict = VisibleQuals.hasRestrict();
4445
4446  // Iterate through all strict supersets of BaseCVR.
4447  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4448    if ((CVR | BaseCVR) != CVR) continue;
4449    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4450    // in the types.
4451    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4452    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4453    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4454    if (!buildObjCPtr)
4455      PointerTypes.insert(Context.getPointerType(QPointeeTy));
4456    else
4457      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
4458  }
4459
4460  return true;
4461}
4462
4463/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4464/// to the set of pointer types along with any more-qualified variants of
4465/// that type. For example, if @p Ty is "int const *", this routine
4466/// will add "int const *", "int const volatile *", "int const
4467/// restrict *", and "int const volatile restrict *" to the set of
4468/// pointer types. Returns true if the add of @p Ty itself succeeded,
4469/// false otherwise.
4470///
4471/// FIXME: what to do about extended qualifiers?
4472bool
4473BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4474    QualType Ty) {
4475  // Insert this type.
4476  if (!MemberPointerTypes.insert(Ty))
4477    return false;
4478
4479  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4480  assert(PointerTy && "type was not a member pointer type!");
4481
4482  QualType PointeeTy = PointerTy->getPointeeType();
4483  // Don't add qualified variants of arrays. For one, they're not allowed
4484  // (the qualifier would sink to the element type), and for another, the
4485  // only overload situation where it matters is subscript or pointer +- int,
4486  // and those shouldn't have qualifier variants anyway.
4487  if (PointeeTy->isArrayType())
4488    return true;
4489  const Type *ClassTy = PointerTy->getClass();
4490
4491  // Iterate through all strict supersets of the pointee type's CVR
4492  // qualifiers.
4493  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4494  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4495    if ((CVR | BaseCVR) != CVR) continue;
4496
4497    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4498    MemberPointerTypes.insert(
4499      Context.getMemberPointerType(QPointeeTy, ClassTy));
4500  }
4501
4502  return true;
4503}
4504
4505/// AddTypesConvertedFrom - Add each of the types to which the type @p
4506/// Ty can be implicit converted to the given set of @p Types. We're
4507/// primarily interested in pointer types and enumeration types. We also
4508/// take member pointer types, for the conditional operator.
4509/// AllowUserConversions is true if we should look at the conversion
4510/// functions of a class type, and AllowExplicitConversions if we
4511/// should also include the explicit conversion functions of a class
4512/// type.
4513void
4514BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4515                                               SourceLocation Loc,
4516                                               bool AllowUserConversions,
4517                                               bool AllowExplicitConversions,
4518                                               const Qualifiers &VisibleQuals) {
4519  // Only deal with canonical types.
4520  Ty = Context.getCanonicalType(Ty);
4521
4522  // Look through reference types; they aren't part of the type of an
4523  // expression for the purposes of conversions.
4524  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4525    Ty = RefTy->getPointeeType();
4526
4527  // If we're dealing with an array type, decay to the pointer.
4528  if (Ty->isArrayType())
4529    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4530
4531  // Otherwise, we don't care about qualifiers on the type.
4532  Ty = Ty.getLocalUnqualifiedType();
4533
4534  // Flag if we ever add a non-record type.
4535  const RecordType *TyRec = Ty->getAs<RecordType>();
4536  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
4537
4538  // Flag if we encounter an arithmetic type.
4539  HasArithmeticOrEnumeralTypes =
4540    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
4541
4542  if (Ty->isObjCIdType() || Ty->isObjCClassType())
4543    PointerTypes.insert(Ty);
4544  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
4545    // Insert our type, and its more-qualified variants, into the set
4546    // of types.
4547    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4548      return;
4549  } else if (Ty->isMemberPointerType()) {
4550    // Member pointers are far easier, since the pointee can't be converted.
4551    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4552      return;
4553  } else if (Ty->isEnumeralType()) {
4554    HasArithmeticOrEnumeralTypes = true;
4555    EnumerationTypes.insert(Ty);
4556  } else if (Ty->isVectorType()) {
4557    // We treat vector types as arithmetic types in many contexts as an
4558    // extension.
4559    HasArithmeticOrEnumeralTypes = true;
4560    VectorTypes.insert(Ty);
4561  } else if (AllowUserConversions && TyRec) {
4562    // No conversion functions in incomplete types.
4563    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
4564      return;
4565
4566    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4567    const UnresolvedSetImpl *Conversions
4568      = ClassDecl->getVisibleConversionFunctions();
4569    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4570           E = Conversions->end(); I != E; ++I) {
4571      NamedDecl *D = I.getDecl();
4572      if (isa<UsingShadowDecl>(D))
4573        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4574
4575      // Skip conversion function templates; they don't tell us anything
4576      // about which builtin types we can convert to.
4577      if (isa<FunctionTemplateDecl>(D))
4578        continue;
4579
4580      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4581      if (AllowExplicitConversions || !Conv->isExplicit()) {
4582        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4583                              VisibleQuals);
4584      }
4585    }
4586  }
4587}
4588
4589/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4590/// the volatile- and non-volatile-qualified assignment operators for the
4591/// given type to the candidate set.
4592static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4593                                                   QualType T,
4594                                                   Expr **Args,
4595                                                   unsigned NumArgs,
4596                                    OverloadCandidateSet &CandidateSet) {
4597  QualType ParamTypes[2];
4598
4599  // T& operator=(T&, T)
4600  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4601  ParamTypes[1] = T;
4602  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4603                        /*IsAssignmentOperator=*/true);
4604
4605  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4606    // volatile T& operator=(volatile T&, T)
4607    ParamTypes[0]
4608      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4609    ParamTypes[1] = T;
4610    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4611                          /*IsAssignmentOperator=*/true);
4612  }
4613}
4614
4615/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4616/// if any, found in visible type conversion functions found in ArgExpr's type.
4617static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4618    Qualifiers VRQuals;
4619    const RecordType *TyRec;
4620    if (const MemberPointerType *RHSMPType =
4621        ArgExpr->getType()->getAs<MemberPointerType>())
4622      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4623    else
4624      TyRec = ArgExpr->getType()->getAs<RecordType>();
4625    if (!TyRec) {
4626      // Just to be safe, assume the worst case.
4627      VRQuals.addVolatile();
4628      VRQuals.addRestrict();
4629      return VRQuals;
4630    }
4631
4632    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4633    if (!ClassDecl->hasDefinition())
4634      return VRQuals;
4635
4636    const UnresolvedSetImpl *Conversions =
4637      ClassDecl->getVisibleConversionFunctions();
4638
4639    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4640           E = Conversions->end(); I != E; ++I) {
4641      NamedDecl *D = I.getDecl();
4642      if (isa<UsingShadowDecl>(D))
4643        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4644      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4645        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4646        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4647          CanTy = ResTypeRef->getPointeeType();
4648        // Need to go down the pointer/mempointer chain and add qualifiers
4649        // as see them.
4650        bool done = false;
4651        while (!done) {
4652          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4653            CanTy = ResTypePtr->getPointeeType();
4654          else if (const MemberPointerType *ResTypeMPtr =
4655                CanTy->getAs<MemberPointerType>())
4656            CanTy = ResTypeMPtr->getPointeeType();
4657          else
4658            done = true;
4659          if (CanTy.isVolatileQualified())
4660            VRQuals.addVolatile();
4661          if (CanTy.isRestrictQualified())
4662            VRQuals.addRestrict();
4663          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4664            return VRQuals;
4665        }
4666      }
4667    }
4668    return VRQuals;
4669}
4670
4671namespace {
4672
4673/// \brief Helper class to manage the addition of builtin operator overload
4674/// candidates. It provides shared state and utility methods used throughout
4675/// the process, as well as a helper method to add each group of builtin
4676/// operator overloads from the standard to a candidate set.
4677class BuiltinOperatorOverloadBuilder {
4678  // Common instance state available to all overload candidate addition methods.
4679  Sema &S;
4680  Expr **Args;
4681  unsigned NumArgs;
4682  Qualifiers VisibleTypeConversionsQuals;
4683  bool HasArithmeticOrEnumeralCandidateType;
4684  llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
4685  OverloadCandidateSet &CandidateSet;
4686
4687  // Define some constants used to index and iterate over the arithemetic types
4688  // provided via the getArithmeticType() method below.
4689  // The "promoted arithmetic types" are the arithmetic
4690  // types are that preserved by promotion (C++ [over.built]p2).
4691  static const unsigned FirstIntegralType = 3;
4692  static const unsigned LastIntegralType = 18;
4693  static const unsigned FirstPromotedIntegralType = 3,
4694                        LastPromotedIntegralType = 9;
4695  static const unsigned FirstPromotedArithmeticType = 0,
4696                        LastPromotedArithmeticType = 9;
4697  static const unsigned NumArithmeticTypes = 18;
4698
4699  /// \brief Get the canonical type for a given arithmetic type index.
4700  CanQualType getArithmeticType(unsigned index) {
4701    assert(index < NumArithmeticTypes);
4702    static CanQualType ASTContext::* const
4703      ArithmeticTypes[NumArithmeticTypes] = {
4704      // Start of promoted types.
4705      &ASTContext::FloatTy,
4706      &ASTContext::DoubleTy,
4707      &ASTContext::LongDoubleTy,
4708
4709      // Start of integral types.
4710      &ASTContext::IntTy,
4711      &ASTContext::LongTy,
4712      &ASTContext::LongLongTy,
4713      &ASTContext::UnsignedIntTy,
4714      &ASTContext::UnsignedLongTy,
4715      &ASTContext::UnsignedLongLongTy,
4716      // End of promoted types.
4717
4718      &ASTContext::BoolTy,
4719      &ASTContext::CharTy,
4720      &ASTContext::WCharTy,
4721      &ASTContext::Char16Ty,
4722      &ASTContext::Char32Ty,
4723      &ASTContext::SignedCharTy,
4724      &ASTContext::ShortTy,
4725      &ASTContext::UnsignedCharTy,
4726      &ASTContext::UnsignedShortTy,
4727      // End of integral types.
4728      // FIXME: What about complex?
4729    };
4730    return S.Context.*ArithmeticTypes[index];
4731  }
4732
4733  /// \brief Gets the canonical type resulting from the usual arithemetic
4734  /// converions for the given arithmetic types.
4735  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
4736    // Accelerator table for performing the usual arithmetic conversions.
4737    // The rules are basically:
4738    //   - if either is floating-point, use the wider floating-point
4739    //   - if same signedness, use the higher rank
4740    //   - if same size, use unsigned of the higher rank
4741    //   - use the larger type
4742    // These rules, together with the axiom that higher ranks are
4743    // never smaller, are sufficient to precompute all of these results
4744    // *except* when dealing with signed types of higher rank.
4745    // (we could precompute SLL x UI for all known platforms, but it's
4746    // better not to make any assumptions).
4747    enum PromotedType {
4748                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
4749    };
4750    static PromotedType ConversionsTable[LastPromotedArithmeticType]
4751                                        [LastPromotedArithmeticType] = {
4752      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
4753      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
4754      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
4755      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
4756      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
4757      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
4758      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
4759      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
4760      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
4761    };
4762
4763    assert(L < LastPromotedArithmeticType);
4764    assert(R < LastPromotedArithmeticType);
4765    int Idx = ConversionsTable[L][R];
4766
4767    // Fast path: the table gives us a concrete answer.
4768    if (Idx != Dep) return getArithmeticType(Idx);
4769
4770    // Slow path: we need to compare widths.
4771    // An invariant is that the signed type has higher rank.
4772    CanQualType LT = getArithmeticType(L),
4773                RT = getArithmeticType(R);
4774    unsigned LW = S.Context.getIntWidth(LT),
4775             RW = S.Context.getIntWidth(RT);
4776
4777    // If they're different widths, use the signed type.
4778    if (LW > RW) return LT;
4779    else if (LW < RW) return RT;
4780
4781    // Otherwise, use the unsigned type of the signed type's rank.
4782    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
4783    assert(L == SLL || R == SLL);
4784    return S.Context.UnsignedLongLongTy;
4785  }
4786
4787  /// \brief Helper method to factor out the common pattern of adding overloads
4788  /// for '++' and '--' builtin operators.
4789  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
4790                                           bool HasVolatile) {
4791    QualType ParamTypes[2] = {
4792      S.Context.getLValueReferenceType(CandidateTy),
4793      S.Context.IntTy
4794    };
4795
4796    // Non-volatile version.
4797    if (NumArgs == 1)
4798      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4799    else
4800      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
4801
4802    // Use a heuristic to reduce number of builtin candidates in the set:
4803    // add volatile version only if there are conversions to a volatile type.
4804    if (HasVolatile) {
4805      ParamTypes[0] =
4806        S.Context.getLValueReferenceType(
4807          S.Context.getVolatileType(CandidateTy));
4808      if (NumArgs == 1)
4809        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4810      else
4811        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
4812    }
4813  }
4814
4815public:
4816  BuiltinOperatorOverloadBuilder(
4817    Sema &S, Expr **Args, unsigned NumArgs,
4818    Qualifiers VisibleTypeConversionsQuals,
4819    bool HasArithmeticOrEnumeralCandidateType,
4820    llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
4821    OverloadCandidateSet &CandidateSet)
4822    : S(S), Args(Args), NumArgs(NumArgs),
4823      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
4824      HasArithmeticOrEnumeralCandidateType(
4825        HasArithmeticOrEnumeralCandidateType),
4826      CandidateTypes(CandidateTypes),
4827      CandidateSet(CandidateSet) {
4828    // Validate some of our static helper constants in debug builds.
4829    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
4830           "Invalid first promoted integral type");
4831    assert(getArithmeticType(LastPromotedIntegralType - 1)
4832             == S.Context.UnsignedLongLongTy &&
4833           "Invalid last promoted integral type");
4834    assert(getArithmeticType(FirstPromotedArithmeticType)
4835             == S.Context.FloatTy &&
4836           "Invalid first promoted arithmetic type");
4837    assert(getArithmeticType(LastPromotedArithmeticType - 1)
4838             == S.Context.UnsignedLongLongTy &&
4839           "Invalid last promoted arithmetic type");
4840  }
4841
4842  // C++ [over.built]p3:
4843  //
4844  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4845  //   is either volatile or empty, there exist candidate operator
4846  //   functions of the form
4847  //
4848  //       VQ T&      operator++(VQ T&);
4849  //       T          operator++(VQ T&, int);
4850  //
4851  // C++ [over.built]p4:
4852  //
4853  //   For every pair (T, VQ), where T is an arithmetic type other
4854  //   than bool, and VQ is either volatile or empty, there exist
4855  //   candidate operator functions of the form
4856  //
4857  //       VQ T&      operator--(VQ T&);
4858  //       T          operator--(VQ T&, int);
4859  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
4860    if (!HasArithmeticOrEnumeralCandidateType)
4861      return;
4862
4863    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4864         Arith < NumArithmeticTypes; ++Arith) {
4865      addPlusPlusMinusMinusStyleOverloads(
4866        getArithmeticType(Arith),
4867        VisibleTypeConversionsQuals.hasVolatile());
4868    }
4869  }
4870
4871  // C++ [over.built]p5:
4872  //
4873  //   For every pair (T, VQ), where T is a cv-qualified or
4874  //   cv-unqualified object type, and VQ is either volatile or
4875  //   empty, there exist candidate operator functions of the form
4876  //
4877  //       T*VQ&      operator++(T*VQ&);
4878  //       T*VQ&      operator--(T*VQ&);
4879  //       T*         operator++(T*VQ&, int);
4880  //       T*         operator--(T*VQ&, int);
4881  void addPlusPlusMinusMinusPointerOverloads() {
4882    for (BuiltinCandidateTypeSet::iterator
4883              Ptr = CandidateTypes[0].pointer_begin(),
4884           PtrEnd = CandidateTypes[0].pointer_end();
4885         Ptr != PtrEnd; ++Ptr) {
4886      // Skip pointer types that aren't pointers to object types.
4887      if (!(*Ptr)->getPointeeType()->isObjectType())
4888        continue;
4889
4890      addPlusPlusMinusMinusStyleOverloads(*Ptr,
4891        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4892         VisibleTypeConversionsQuals.hasVolatile()));
4893    }
4894  }
4895
4896  // C++ [over.built]p6:
4897  //   For every cv-qualified or cv-unqualified object type T, there
4898  //   exist candidate operator functions of the form
4899  //
4900  //       T&         operator*(T*);
4901  //
4902  // C++ [over.built]p7:
4903  //   For every function type T, there exist candidate operator
4904  //   functions of the form
4905  //       T&         operator*(T*);
4906  void addUnaryStarPointerOverloads() {
4907    for (BuiltinCandidateTypeSet::iterator
4908              Ptr = CandidateTypes[0].pointer_begin(),
4909           PtrEnd = CandidateTypes[0].pointer_end();
4910         Ptr != PtrEnd; ++Ptr) {
4911      QualType ParamTy = *Ptr;
4912      QualType PointeeTy = ParamTy->getPointeeType();
4913      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
4914        continue;
4915
4916      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
4917                            &ParamTy, Args, 1, CandidateSet);
4918    }
4919  }
4920
4921  // C++ [over.built]p9:
4922  //  For every promoted arithmetic type T, there exist candidate
4923  //  operator functions of the form
4924  //
4925  //       T         operator+(T);
4926  //       T         operator-(T);
4927  void addUnaryPlusOrMinusArithmeticOverloads() {
4928    if (!HasArithmeticOrEnumeralCandidateType)
4929      return;
4930
4931    for (unsigned Arith = FirstPromotedArithmeticType;
4932         Arith < LastPromotedArithmeticType; ++Arith) {
4933      QualType ArithTy = getArithmeticType(Arith);
4934      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4935    }
4936
4937    // Extension: We also add these operators for vector types.
4938    for (BuiltinCandidateTypeSet::iterator
4939              Vec = CandidateTypes[0].vector_begin(),
4940           VecEnd = CandidateTypes[0].vector_end();
4941         Vec != VecEnd; ++Vec) {
4942      QualType VecTy = *Vec;
4943      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4944    }
4945  }
4946
4947  // C++ [over.built]p8:
4948  //   For every type T, there exist candidate operator functions of
4949  //   the form
4950  //
4951  //       T*         operator+(T*);
4952  void addUnaryPlusPointerOverloads() {
4953    for (BuiltinCandidateTypeSet::iterator
4954              Ptr = CandidateTypes[0].pointer_begin(),
4955           PtrEnd = CandidateTypes[0].pointer_end();
4956         Ptr != PtrEnd; ++Ptr) {
4957      QualType ParamTy = *Ptr;
4958      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4959    }
4960  }
4961
4962  // C++ [over.built]p10:
4963  //   For every promoted integral type T, there exist candidate
4964  //   operator functions of the form
4965  //
4966  //        T         operator~(T);
4967  void addUnaryTildePromotedIntegralOverloads() {
4968    if (!HasArithmeticOrEnumeralCandidateType)
4969      return;
4970
4971    for (unsigned Int = FirstPromotedIntegralType;
4972         Int < LastPromotedIntegralType; ++Int) {
4973      QualType IntTy = getArithmeticType(Int);
4974      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4975    }
4976
4977    // Extension: We also add this operator for vector types.
4978    for (BuiltinCandidateTypeSet::iterator
4979              Vec = CandidateTypes[0].vector_begin(),
4980           VecEnd = CandidateTypes[0].vector_end();
4981         Vec != VecEnd; ++Vec) {
4982      QualType VecTy = *Vec;
4983      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4984    }
4985  }
4986
4987  // C++ [over.match.oper]p16:
4988  //   For every pointer to member type T, there exist candidate operator
4989  //   functions of the form
4990  //
4991  //        bool operator==(T,T);
4992  //        bool operator!=(T,T);
4993  void addEqualEqualOrNotEqualMemberPointerOverloads() {
4994    /// Set of (canonical) types that we've already handled.
4995    llvm::SmallPtrSet<QualType, 8> AddedTypes;
4996
4997    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4998      for (BuiltinCandidateTypeSet::iterator
4999                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5000             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5001           MemPtr != MemPtrEnd;
5002           ++MemPtr) {
5003        // Don't add the same builtin candidate twice.
5004        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5005          continue;
5006
5007        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5008        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5009                              CandidateSet);
5010      }
5011    }
5012  }
5013
5014  // C++ [over.built]p15:
5015  //
5016  //   For every pointer or enumeration type T, there exist
5017  //   candidate operator functions of the form
5018  //
5019  //        bool       operator<(T, T);
5020  //        bool       operator>(T, T);
5021  //        bool       operator<=(T, T);
5022  //        bool       operator>=(T, T);
5023  //        bool       operator==(T, T);
5024  //        bool       operator!=(T, T);
5025  void addRelationalPointerOrEnumeralOverloads() {
5026    // C++ [over.built]p1:
5027    //   If there is a user-written candidate with the same name and parameter
5028    //   types as a built-in candidate operator function, the built-in operator
5029    //   function is hidden and is not included in the set of candidate
5030    //   functions.
5031    //
5032    // The text is actually in a note, but if we don't implement it then we end
5033    // up with ambiguities when the user provides an overloaded operator for
5034    // an enumeration type. Note that only enumeration types have this problem,
5035    // so we track which enumeration types we've seen operators for. Also, the
5036    // only other overloaded operator with enumeration argumenst, operator=,
5037    // cannot be overloaded for enumeration types, so this is the only place
5038    // where we must suppress candidates like this.
5039    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5040      UserDefinedBinaryOperators;
5041
5042    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5043      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5044          CandidateTypes[ArgIdx].enumeration_end()) {
5045        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5046                                         CEnd = CandidateSet.end();
5047             C != CEnd; ++C) {
5048          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5049            continue;
5050
5051          QualType FirstParamType =
5052            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5053          QualType SecondParamType =
5054            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5055
5056          // Skip if either parameter isn't of enumeral type.
5057          if (!FirstParamType->isEnumeralType() ||
5058              !SecondParamType->isEnumeralType())
5059            continue;
5060
5061          // Add this operator to the set of known user-defined operators.
5062          UserDefinedBinaryOperators.insert(
5063            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5064                           S.Context.getCanonicalType(SecondParamType)));
5065        }
5066      }
5067    }
5068
5069    /// Set of (canonical) types that we've already handled.
5070    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5071
5072    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5073      for (BuiltinCandidateTypeSet::iterator
5074                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5075             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5076           Ptr != PtrEnd; ++Ptr) {
5077        // Don't add the same builtin candidate twice.
5078        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5079          continue;
5080
5081        QualType ParamTypes[2] = { *Ptr, *Ptr };
5082        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5083                              CandidateSet);
5084      }
5085      for (BuiltinCandidateTypeSet::iterator
5086                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5087             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5088           Enum != EnumEnd; ++Enum) {
5089        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5090
5091        // Don't add the same builtin candidate twice, or if a user defined
5092        // candidate exists.
5093        if (!AddedTypes.insert(CanonType) ||
5094            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5095                                                            CanonType)))
5096          continue;
5097
5098        QualType ParamTypes[2] = { *Enum, *Enum };
5099        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5100                              CandidateSet);
5101      }
5102    }
5103  }
5104
5105  // C++ [over.built]p13:
5106  //
5107  //   For every cv-qualified or cv-unqualified object type T
5108  //   there exist candidate operator functions of the form
5109  //
5110  //      T*         operator+(T*, ptrdiff_t);
5111  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5112  //      T*         operator-(T*, ptrdiff_t);
5113  //      T*         operator+(ptrdiff_t, T*);
5114  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5115  //
5116  // C++ [over.built]p14:
5117  //
5118  //   For every T, where T is a pointer to object type, there
5119  //   exist candidate operator functions of the form
5120  //
5121  //      ptrdiff_t  operator-(T, T);
5122  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5123    /// Set of (canonical) types that we've already handled.
5124    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5125
5126    for (int Arg = 0; Arg < 2; ++Arg) {
5127      QualType AsymetricParamTypes[2] = {
5128        S.Context.getPointerDiffType(),
5129        S.Context.getPointerDiffType(),
5130      };
5131      for (BuiltinCandidateTypeSet::iterator
5132                Ptr = CandidateTypes[Arg].pointer_begin(),
5133             PtrEnd = CandidateTypes[Arg].pointer_end();
5134           Ptr != PtrEnd; ++Ptr) {
5135        QualType PointeeTy = (*Ptr)->getPointeeType();
5136        if (!PointeeTy->isObjectType())
5137          continue;
5138
5139        AsymetricParamTypes[Arg] = *Ptr;
5140        if (Arg == 0 || Op == OO_Plus) {
5141          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5142          // T* operator+(ptrdiff_t, T*);
5143          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5144                                CandidateSet);
5145        }
5146        if (Op == OO_Minus) {
5147          // ptrdiff_t operator-(T, T);
5148          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5149            continue;
5150
5151          QualType ParamTypes[2] = { *Ptr, *Ptr };
5152          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5153                                Args, 2, CandidateSet);
5154        }
5155      }
5156    }
5157  }
5158
5159  // C++ [over.built]p12:
5160  //
5161  //   For every pair of promoted arithmetic types L and R, there
5162  //   exist candidate operator functions of the form
5163  //
5164  //        LR         operator*(L, R);
5165  //        LR         operator/(L, R);
5166  //        LR         operator+(L, R);
5167  //        LR         operator-(L, R);
5168  //        bool       operator<(L, R);
5169  //        bool       operator>(L, R);
5170  //        bool       operator<=(L, R);
5171  //        bool       operator>=(L, R);
5172  //        bool       operator==(L, R);
5173  //        bool       operator!=(L, R);
5174  //
5175  //   where LR is the result of the usual arithmetic conversions
5176  //   between types L and R.
5177  //
5178  // C++ [over.built]p24:
5179  //
5180  //   For every pair of promoted arithmetic types L and R, there exist
5181  //   candidate operator functions of the form
5182  //
5183  //        LR       operator?(bool, L, R);
5184  //
5185  //   where LR is the result of the usual arithmetic conversions
5186  //   between types L and R.
5187  // Our candidates ignore the first parameter.
5188  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5189    if (!HasArithmeticOrEnumeralCandidateType)
5190      return;
5191
5192    for (unsigned Left = FirstPromotedArithmeticType;
5193         Left < LastPromotedArithmeticType; ++Left) {
5194      for (unsigned Right = FirstPromotedArithmeticType;
5195           Right < LastPromotedArithmeticType; ++Right) {
5196        QualType LandR[2] = { getArithmeticType(Left),
5197                              getArithmeticType(Right) };
5198        QualType Result =
5199          isComparison ? S.Context.BoolTy
5200                       : getUsualArithmeticConversions(Left, Right);
5201        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5202      }
5203    }
5204
5205    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5206    // conditional operator for vector types.
5207    for (BuiltinCandidateTypeSet::iterator
5208              Vec1 = CandidateTypes[0].vector_begin(),
5209           Vec1End = CandidateTypes[0].vector_end();
5210         Vec1 != Vec1End; ++Vec1) {
5211      for (BuiltinCandidateTypeSet::iterator
5212                Vec2 = CandidateTypes[1].vector_begin(),
5213             Vec2End = CandidateTypes[1].vector_end();
5214           Vec2 != Vec2End; ++Vec2) {
5215        QualType LandR[2] = { *Vec1, *Vec2 };
5216        QualType Result = S.Context.BoolTy;
5217        if (!isComparison) {
5218          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5219            Result = *Vec1;
5220          else
5221            Result = *Vec2;
5222        }
5223
5224        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5225      }
5226    }
5227  }
5228
5229  // C++ [over.built]p17:
5230  //
5231  //   For every pair of promoted integral types L and R, there
5232  //   exist candidate operator functions of the form
5233  //
5234  //      LR         operator%(L, R);
5235  //      LR         operator&(L, R);
5236  //      LR         operator^(L, R);
5237  //      LR         operator|(L, R);
5238  //      L          operator<<(L, R);
5239  //      L          operator>>(L, R);
5240  //
5241  //   where LR is the result of the usual arithmetic conversions
5242  //   between types L and R.
5243  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5244    if (!HasArithmeticOrEnumeralCandidateType)
5245      return;
5246
5247    for (unsigned Left = FirstPromotedIntegralType;
5248         Left < LastPromotedIntegralType; ++Left) {
5249      for (unsigned Right = FirstPromotedIntegralType;
5250           Right < LastPromotedIntegralType; ++Right) {
5251        QualType LandR[2] = { getArithmeticType(Left),
5252                              getArithmeticType(Right) };
5253        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5254            ? LandR[0]
5255            : getUsualArithmeticConversions(Left, Right);
5256        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5257      }
5258    }
5259  }
5260
5261  // C++ [over.built]p20:
5262  //
5263  //   For every pair (T, VQ), where T is an enumeration or
5264  //   pointer to member type and VQ is either volatile or
5265  //   empty, there exist candidate operator functions of the form
5266  //
5267  //        VQ T&      operator=(VQ T&, T);
5268  void addAssignmentMemberPointerOrEnumeralOverloads() {
5269    /// Set of (canonical) types that we've already handled.
5270    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5271
5272    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5273      for (BuiltinCandidateTypeSet::iterator
5274                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5275             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5276           Enum != EnumEnd; ++Enum) {
5277        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5278          continue;
5279
5280        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5281                                               CandidateSet);
5282      }
5283
5284      for (BuiltinCandidateTypeSet::iterator
5285                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5286             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5287           MemPtr != MemPtrEnd; ++MemPtr) {
5288        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5289          continue;
5290
5291        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5292                                               CandidateSet);
5293      }
5294    }
5295  }
5296
5297  // C++ [over.built]p19:
5298  //
5299  //   For every pair (T, VQ), where T is any type and VQ is either
5300  //   volatile or empty, there exist candidate operator functions
5301  //   of the form
5302  //
5303  //        T*VQ&      operator=(T*VQ&, T*);
5304  //
5305  // C++ [over.built]p21:
5306  //
5307  //   For every pair (T, VQ), where T is a cv-qualified or
5308  //   cv-unqualified object type and VQ is either volatile or
5309  //   empty, there exist candidate operator functions of the form
5310  //
5311  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5312  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5313  void addAssignmentPointerOverloads(bool isEqualOp) {
5314    /// Set of (canonical) types that we've already handled.
5315    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5316
5317    for (BuiltinCandidateTypeSet::iterator
5318              Ptr = CandidateTypes[0].pointer_begin(),
5319           PtrEnd = CandidateTypes[0].pointer_end();
5320         Ptr != PtrEnd; ++Ptr) {
5321      // If this is operator=, keep track of the builtin candidates we added.
5322      if (isEqualOp)
5323        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5324      else if (!(*Ptr)->getPointeeType()->isObjectType())
5325        continue;
5326
5327      // non-volatile version
5328      QualType ParamTypes[2] = {
5329        S.Context.getLValueReferenceType(*Ptr),
5330        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5331      };
5332      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5333                            /*IsAssigmentOperator=*/ isEqualOp);
5334
5335      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5336          VisibleTypeConversionsQuals.hasVolatile()) {
5337        // volatile version
5338        ParamTypes[0] =
5339          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5340        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5341                              /*IsAssigmentOperator=*/isEqualOp);
5342      }
5343    }
5344
5345    if (isEqualOp) {
5346      for (BuiltinCandidateTypeSet::iterator
5347                Ptr = CandidateTypes[1].pointer_begin(),
5348             PtrEnd = CandidateTypes[1].pointer_end();
5349           Ptr != PtrEnd; ++Ptr) {
5350        // Make sure we don't add the same candidate twice.
5351        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5352          continue;
5353
5354        QualType ParamTypes[2] = {
5355          S.Context.getLValueReferenceType(*Ptr),
5356          *Ptr,
5357        };
5358
5359        // non-volatile version
5360        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5361                              /*IsAssigmentOperator=*/true);
5362
5363        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5364            VisibleTypeConversionsQuals.hasVolatile()) {
5365          // volatile version
5366          ParamTypes[0] =
5367            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5368          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5369                                CandidateSet, /*IsAssigmentOperator=*/true);
5370        }
5371      }
5372    }
5373  }
5374
5375  // C++ [over.built]p18:
5376  //
5377  //   For every triple (L, VQ, R), where L is an arithmetic type,
5378  //   VQ is either volatile or empty, and R is a promoted
5379  //   arithmetic type, there exist candidate operator functions of
5380  //   the form
5381  //
5382  //        VQ L&      operator=(VQ L&, R);
5383  //        VQ L&      operator*=(VQ L&, R);
5384  //        VQ L&      operator/=(VQ L&, R);
5385  //        VQ L&      operator+=(VQ L&, R);
5386  //        VQ L&      operator-=(VQ L&, R);
5387  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5388    if (!HasArithmeticOrEnumeralCandidateType)
5389      return;
5390
5391    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5392      for (unsigned Right = FirstPromotedArithmeticType;
5393           Right < LastPromotedArithmeticType; ++Right) {
5394        QualType ParamTypes[2];
5395        ParamTypes[1] = getArithmeticType(Right);
5396
5397        // Add this built-in operator as a candidate (VQ is empty).
5398        ParamTypes[0] =
5399          S.Context.getLValueReferenceType(getArithmeticType(Left));
5400        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5401                              /*IsAssigmentOperator=*/isEqualOp);
5402
5403        // Add this built-in operator as a candidate (VQ is 'volatile').
5404        if (VisibleTypeConversionsQuals.hasVolatile()) {
5405          ParamTypes[0] =
5406            S.Context.getVolatileType(getArithmeticType(Left));
5407          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5408          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5409                                CandidateSet,
5410                                /*IsAssigmentOperator=*/isEqualOp);
5411        }
5412      }
5413    }
5414
5415    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5416    for (BuiltinCandidateTypeSet::iterator
5417              Vec1 = CandidateTypes[0].vector_begin(),
5418           Vec1End = CandidateTypes[0].vector_end();
5419         Vec1 != Vec1End; ++Vec1) {
5420      for (BuiltinCandidateTypeSet::iterator
5421                Vec2 = CandidateTypes[1].vector_begin(),
5422             Vec2End = CandidateTypes[1].vector_end();
5423           Vec2 != Vec2End; ++Vec2) {
5424        QualType ParamTypes[2];
5425        ParamTypes[1] = *Vec2;
5426        // Add this built-in operator as a candidate (VQ is empty).
5427        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5428        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5429                              /*IsAssigmentOperator=*/isEqualOp);
5430
5431        // Add this built-in operator as a candidate (VQ is 'volatile').
5432        if (VisibleTypeConversionsQuals.hasVolatile()) {
5433          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5434          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5435          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5436                                CandidateSet,
5437                                /*IsAssigmentOperator=*/isEqualOp);
5438        }
5439      }
5440    }
5441  }
5442
5443  // C++ [over.built]p22:
5444  //
5445  //   For every triple (L, VQ, R), where L is an integral type, VQ
5446  //   is either volatile or empty, and R is a promoted integral
5447  //   type, there exist candidate operator functions of the form
5448  //
5449  //        VQ L&       operator%=(VQ L&, R);
5450  //        VQ L&       operator<<=(VQ L&, R);
5451  //        VQ L&       operator>>=(VQ L&, R);
5452  //        VQ L&       operator&=(VQ L&, R);
5453  //        VQ L&       operator^=(VQ L&, R);
5454  //        VQ L&       operator|=(VQ L&, R);
5455  void addAssignmentIntegralOverloads() {
5456    if (!HasArithmeticOrEnumeralCandidateType)
5457      return;
5458
5459    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
5460      for (unsigned Right = FirstPromotedIntegralType;
5461           Right < LastPromotedIntegralType; ++Right) {
5462        QualType ParamTypes[2];
5463        ParamTypes[1] = getArithmeticType(Right);
5464
5465        // Add this built-in operator as a candidate (VQ is empty).
5466        ParamTypes[0] =
5467          S.Context.getLValueReferenceType(getArithmeticType(Left));
5468        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5469        if (VisibleTypeConversionsQuals.hasVolatile()) {
5470          // Add this built-in operator as a candidate (VQ is 'volatile').
5471          ParamTypes[0] = getArithmeticType(Left);
5472          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
5473          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5474          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5475                                CandidateSet);
5476        }
5477      }
5478    }
5479  }
5480
5481  // C++ [over.operator]p23:
5482  //
5483  //   There also exist candidate operator functions of the form
5484  //
5485  //        bool        operator!(bool);
5486  //        bool        operator&&(bool, bool);
5487  //        bool        operator||(bool, bool);
5488  void addExclaimOverload() {
5489    QualType ParamTy = S.Context.BoolTy;
5490    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
5491                          /*IsAssignmentOperator=*/false,
5492                          /*NumContextualBoolArguments=*/1);
5493  }
5494  void addAmpAmpOrPipePipeOverload() {
5495    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
5496    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
5497                          /*IsAssignmentOperator=*/false,
5498                          /*NumContextualBoolArguments=*/2);
5499  }
5500
5501  // C++ [over.built]p13:
5502  //
5503  //   For every cv-qualified or cv-unqualified object type T there
5504  //   exist candidate operator functions of the form
5505  //
5506  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
5507  //        T&         operator[](T*, ptrdiff_t);
5508  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
5509  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
5510  //        T&         operator[](ptrdiff_t, T*);
5511  void addSubscriptOverloads() {
5512    for (BuiltinCandidateTypeSet::iterator
5513              Ptr = CandidateTypes[0].pointer_begin(),
5514           PtrEnd = CandidateTypes[0].pointer_end();
5515         Ptr != PtrEnd; ++Ptr) {
5516      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
5517      QualType PointeeType = (*Ptr)->getPointeeType();
5518      if (!PointeeType->isObjectType())
5519        continue;
5520
5521      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5522
5523      // T& operator[](T*, ptrdiff_t)
5524      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5525    }
5526
5527    for (BuiltinCandidateTypeSet::iterator
5528              Ptr = CandidateTypes[1].pointer_begin(),
5529           PtrEnd = CandidateTypes[1].pointer_end();
5530         Ptr != PtrEnd; ++Ptr) {
5531      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
5532      QualType PointeeType = (*Ptr)->getPointeeType();
5533      if (!PointeeType->isObjectType())
5534        continue;
5535
5536      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5537
5538      // T& operator[](ptrdiff_t, T*)
5539      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5540    }
5541  }
5542
5543  // C++ [over.built]p11:
5544  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5545  //    C1 is the same type as C2 or is a derived class of C2, T is an object
5546  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5547  //    there exist candidate operator functions of the form
5548  //
5549  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5550  //
5551  //    where CV12 is the union of CV1 and CV2.
5552  void addArrowStarOverloads() {
5553    for (BuiltinCandidateTypeSet::iterator
5554             Ptr = CandidateTypes[0].pointer_begin(),
5555           PtrEnd = CandidateTypes[0].pointer_end();
5556         Ptr != PtrEnd; ++Ptr) {
5557      QualType C1Ty = (*Ptr);
5558      QualType C1;
5559      QualifierCollector Q1;
5560      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
5561      if (!isa<RecordType>(C1))
5562        continue;
5563      // heuristic to reduce number of builtin candidates in the set.
5564      // Add volatile/restrict version only if there are conversions to a
5565      // volatile/restrict type.
5566      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5567        continue;
5568      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5569        continue;
5570      for (BuiltinCandidateTypeSet::iterator
5571                MemPtr = CandidateTypes[1].member_pointer_begin(),
5572             MemPtrEnd = CandidateTypes[1].member_pointer_end();
5573           MemPtr != MemPtrEnd; ++MemPtr) {
5574        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5575        QualType C2 = QualType(mptr->getClass(), 0);
5576        C2 = C2.getUnqualifiedType();
5577        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
5578          break;
5579        QualType ParamTypes[2] = { *Ptr, *MemPtr };
5580        // build CV12 T&
5581        QualType T = mptr->getPointeeType();
5582        if (!VisibleTypeConversionsQuals.hasVolatile() &&
5583            T.isVolatileQualified())
5584          continue;
5585        if (!VisibleTypeConversionsQuals.hasRestrict() &&
5586            T.isRestrictQualified())
5587          continue;
5588        T = Q1.apply(S.Context, T);
5589        QualType ResultTy = S.Context.getLValueReferenceType(T);
5590        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5591      }
5592    }
5593  }
5594
5595  // Note that we don't consider the first argument, since it has been
5596  // contextually converted to bool long ago. The candidates below are
5597  // therefore added as binary.
5598  //
5599  // C++ [over.built]p25:
5600  //   For every type T, where T is a pointer, pointer-to-member, or scoped
5601  //   enumeration type, there exist candidate operator functions of the form
5602  //
5603  //        T        operator?(bool, T, T);
5604  //
5605  void addConditionalOperatorOverloads() {
5606    /// Set of (canonical) types that we've already handled.
5607    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5608
5609    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5610      for (BuiltinCandidateTypeSet::iterator
5611                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5612             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5613           Ptr != PtrEnd; ++Ptr) {
5614        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5615          continue;
5616
5617        QualType ParamTypes[2] = { *Ptr, *Ptr };
5618        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5619      }
5620
5621      for (BuiltinCandidateTypeSet::iterator
5622                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5623             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5624           MemPtr != MemPtrEnd; ++MemPtr) {
5625        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5626          continue;
5627
5628        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5629        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
5630      }
5631
5632      if (S.getLangOptions().CPlusPlus0x) {
5633        for (BuiltinCandidateTypeSet::iterator
5634                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5635               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5636             Enum != EnumEnd; ++Enum) {
5637          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
5638            continue;
5639
5640          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5641            continue;
5642
5643          QualType ParamTypes[2] = { *Enum, *Enum };
5644          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
5645        }
5646      }
5647    }
5648  }
5649};
5650
5651} // end anonymous namespace
5652
5653/// AddBuiltinOperatorCandidates - Add the appropriate built-in
5654/// operator overloads to the candidate set (C++ [over.built]), based
5655/// on the operator @p Op and the arguments given. For example, if the
5656/// operator is a binary '+', this routine might add "int
5657/// operator+(int, int)" to cover integer addition.
5658void
5659Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
5660                                   SourceLocation OpLoc,
5661                                   Expr **Args, unsigned NumArgs,
5662                                   OverloadCandidateSet& CandidateSet) {
5663  // Find all of the types that the arguments can convert to, but only
5664  // if the operator we're looking at has built-in operator candidates
5665  // that make use of these types. Also record whether we encounter non-record
5666  // candidate types or either arithmetic or enumeral candidate types.
5667  Qualifiers VisibleTypeConversionsQuals;
5668  VisibleTypeConversionsQuals.addConst();
5669  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5670    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
5671
5672  bool HasNonRecordCandidateType = false;
5673  bool HasArithmeticOrEnumeralCandidateType = false;
5674  llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
5675  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5676    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
5677    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
5678                                                 OpLoc,
5679                                                 true,
5680                                                 (Op == OO_Exclaim ||
5681                                                  Op == OO_AmpAmp ||
5682                                                  Op == OO_PipePipe),
5683                                                 VisibleTypeConversionsQuals);
5684    HasNonRecordCandidateType = HasNonRecordCandidateType ||
5685        CandidateTypes[ArgIdx].hasNonRecordTypes();
5686    HasArithmeticOrEnumeralCandidateType =
5687        HasArithmeticOrEnumeralCandidateType ||
5688        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
5689  }
5690
5691  // Exit early when no non-record types have been added to the candidate set
5692  // for any of the arguments to the operator.
5693  if (!HasNonRecordCandidateType)
5694    return;
5695
5696  // Setup an object to manage the common state for building overloads.
5697  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
5698                                           VisibleTypeConversionsQuals,
5699                                           HasArithmeticOrEnumeralCandidateType,
5700                                           CandidateTypes, CandidateSet);
5701
5702  // Dispatch over the operation to add in only those overloads which apply.
5703  switch (Op) {
5704  case OO_None:
5705  case NUM_OVERLOADED_OPERATORS:
5706    assert(false && "Expected an overloaded operator");
5707    break;
5708
5709  case OO_New:
5710  case OO_Delete:
5711  case OO_Array_New:
5712  case OO_Array_Delete:
5713  case OO_Call:
5714    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
5715    break;
5716
5717  case OO_Comma:
5718  case OO_Arrow:
5719    // C++ [over.match.oper]p3:
5720    //   -- For the operator ',', the unary operator '&', or the
5721    //      operator '->', the built-in candidates set is empty.
5722    break;
5723
5724  case OO_Plus: // '+' is either unary or binary
5725    if (NumArgs == 1)
5726      OpBuilder.addUnaryPlusPointerOverloads();
5727    // Fall through.
5728
5729  case OO_Minus: // '-' is either unary or binary
5730    if (NumArgs == 1) {
5731      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
5732    } else {
5733      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
5734      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5735    }
5736    break;
5737
5738  case OO_Star: // '*' is either unary or binary
5739    if (NumArgs == 1)
5740      OpBuilder.addUnaryStarPointerOverloads();
5741    else
5742      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5743    break;
5744
5745  case OO_Slash:
5746    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5747    break;
5748
5749  case OO_PlusPlus:
5750  case OO_MinusMinus:
5751    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
5752    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
5753    break;
5754
5755  case OO_EqualEqual:
5756  case OO_ExclaimEqual:
5757    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
5758    // Fall through.
5759
5760  case OO_Less:
5761  case OO_Greater:
5762  case OO_LessEqual:
5763  case OO_GreaterEqual:
5764    OpBuilder.addRelationalPointerOrEnumeralOverloads();
5765    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
5766    break;
5767
5768  case OO_Percent:
5769  case OO_Caret:
5770  case OO_Pipe:
5771  case OO_LessLess:
5772  case OO_GreaterGreater:
5773    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
5774    break;
5775
5776  case OO_Amp: // '&' is either unary or binary
5777    if (NumArgs == 1)
5778      // C++ [over.match.oper]p3:
5779      //   -- For the operator ',', the unary operator '&', or the
5780      //      operator '->', the built-in candidates set is empty.
5781      break;
5782
5783    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
5784    break;
5785
5786  case OO_Tilde:
5787    OpBuilder.addUnaryTildePromotedIntegralOverloads();
5788    break;
5789
5790  case OO_Equal:
5791    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
5792    // Fall through.
5793
5794  case OO_PlusEqual:
5795  case OO_MinusEqual:
5796    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
5797    // Fall through.
5798
5799  case OO_StarEqual:
5800  case OO_SlashEqual:
5801    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
5802    break;
5803
5804  case OO_PercentEqual:
5805  case OO_LessLessEqual:
5806  case OO_GreaterGreaterEqual:
5807  case OO_AmpEqual:
5808  case OO_CaretEqual:
5809  case OO_PipeEqual:
5810    OpBuilder.addAssignmentIntegralOverloads();
5811    break;
5812
5813  case OO_Exclaim:
5814    OpBuilder.addExclaimOverload();
5815    break;
5816
5817  case OO_AmpAmp:
5818  case OO_PipePipe:
5819    OpBuilder.addAmpAmpOrPipePipeOverload();
5820    break;
5821
5822  case OO_Subscript:
5823    OpBuilder.addSubscriptOverloads();
5824    break;
5825
5826  case OO_ArrowStar:
5827    OpBuilder.addArrowStarOverloads();
5828    break;
5829
5830  case OO_Conditional:
5831    OpBuilder.addConditionalOperatorOverloads();
5832    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5833    break;
5834  }
5835}
5836
5837/// \brief Add function candidates found via argument-dependent lookup
5838/// to the set of overloading candidates.
5839///
5840/// This routine performs argument-dependent name lookup based on the
5841/// given function name (which may also be an operator name) and adds
5842/// all of the overload candidates found by ADL to the overload
5843/// candidate set (C++ [basic.lookup.argdep]).
5844void
5845Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
5846                                           bool Operator,
5847                                           Expr **Args, unsigned NumArgs,
5848                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5849                                           OverloadCandidateSet& CandidateSet,
5850                                           bool PartialOverloading) {
5851  ADLResult Fns;
5852
5853  // FIXME: This approach for uniquing ADL results (and removing
5854  // redundant candidates from the set) relies on pointer-equality,
5855  // which means we need to key off the canonical decl.  However,
5856  // always going back to the canonical decl might not get us the
5857  // right set of default arguments.  What default arguments are
5858  // we supposed to consider on ADL candidates, anyway?
5859
5860  // FIXME: Pass in the explicit template arguments?
5861  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
5862
5863  // Erase all of the candidates we already knew about.
5864  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5865                                   CandEnd = CandidateSet.end();
5866       Cand != CandEnd; ++Cand)
5867    if (Cand->Function) {
5868      Fns.erase(Cand->Function);
5869      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
5870        Fns.erase(FunTmpl);
5871    }
5872
5873  // For each of the ADL candidates we found, add it to the overload
5874  // set.
5875  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
5876    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
5877    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
5878      if (ExplicitTemplateArgs)
5879        continue;
5880
5881      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
5882                           false, PartialOverloading);
5883    } else
5884      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
5885                                   FoundDecl, ExplicitTemplateArgs,
5886                                   Args, NumArgs, CandidateSet);
5887  }
5888}
5889
5890/// isBetterOverloadCandidate - Determines whether the first overload
5891/// candidate is a better candidate than the second (C++ 13.3.3p1).
5892bool
5893isBetterOverloadCandidate(Sema &S,
5894                          const OverloadCandidate &Cand1,
5895                          const OverloadCandidate &Cand2,
5896                          SourceLocation Loc,
5897                          bool UserDefinedConversion) {
5898  // Define viable functions to be better candidates than non-viable
5899  // functions.
5900  if (!Cand2.Viable)
5901    return Cand1.Viable;
5902  else if (!Cand1.Viable)
5903    return false;
5904
5905  // C++ [over.match.best]p1:
5906  //
5907  //   -- if F is a static member function, ICS1(F) is defined such
5908  //      that ICS1(F) is neither better nor worse than ICS1(G) for
5909  //      any function G, and, symmetrically, ICS1(G) is neither
5910  //      better nor worse than ICS1(F).
5911  unsigned StartArg = 0;
5912  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
5913    StartArg = 1;
5914
5915  // C++ [over.match.best]p1:
5916  //   A viable function F1 is defined to be a better function than another
5917  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
5918  //   conversion sequence than ICSi(F2), and then...
5919  unsigned NumArgs = Cand1.Conversions.size();
5920  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
5921  bool HasBetterConversion = false;
5922  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
5923    switch (CompareImplicitConversionSequences(S,
5924                                               Cand1.Conversions[ArgIdx],
5925                                               Cand2.Conversions[ArgIdx])) {
5926    case ImplicitConversionSequence::Better:
5927      // Cand1 has a better conversion sequence.
5928      HasBetterConversion = true;
5929      break;
5930
5931    case ImplicitConversionSequence::Worse:
5932      // Cand1 can't be better than Cand2.
5933      return false;
5934
5935    case ImplicitConversionSequence::Indistinguishable:
5936      // Do nothing.
5937      break;
5938    }
5939  }
5940
5941  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
5942  //       ICSj(F2), or, if not that,
5943  if (HasBetterConversion)
5944    return true;
5945
5946  //     - F1 is a non-template function and F2 is a function template
5947  //       specialization, or, if not that,
5948  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
5949      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5950    return true;
5951
5952  //   -- F1 and F2 are function template specializations, and the function
5953  //      template for F1 is more specialized than the template for F2
5954  //      according to the partial ordering rules described in 14.5.5.2, or,
5955  //      if not that,
5956  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
5957      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
5958    if (FunctionTemplateDecl *BetterTemplate
5959          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
5960                                         Cand2.Function->getPrimaryTemplate(),
5961                                         Loc,
5962                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
5963                                                             : TPOC_Call,
5964                                         Cand1.ExplicitCallArguments))
5965      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
5966  }
5967
5968  //   -- the context is an initialization by user-defined conversion
5969  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
5970  //      from the return type of F1 to the destination type (i.e.,
5971  //      the type of the entity being initialized) is a better
5972  //      conversion sequence than the standard conversion sequence
5973  //      from the return type of F2 to the destination type.
5974  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
5975      isa<CXXConversionDecl>(Cand1.Function) &&
5976      isa<CXXConversionDecl>(Cand2.Function)) {
5977    switch (CompareStandardConversionSequences(S,
5978                                               Cand1.FinalConversion,
5979                                               Cand2.FinalConversion)) {
5980    case ImplicitConversionSequence::Better:
5981      // Cand1 has a better conversion sequence.
5982      return true;
5983
5984    case ImplicitConversionSequence::Worse:
5985      // Cand1 can't be better than Cand2.
5986      return false;
5987
5988    case ImplicitConversionSequence::Indistinguishable:
5989      // Do nothing
5990      break;
5991    }
5992  }
5993
5994  return false;
5995}
5996
5997/// \brief Computes the best viable function (C++ 13.3.3)
5998/// within an overload candidate set.
5999///
6000/// \param CandidateSet the set of candidate functions.
6001///
6002/// \param Loc the location of the function name (or operator symbol) for
6003/// which overload resolution occurs.
6004///
6005/// \param Best f overload resolution was successful or found a deleted
6006/// function, Best points to the candidate function found.
6007///
6008/// \returns The result of overload resolution.
6009OverloadingResult
6010OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6011                                         iterator &Best,
6012                                         bool UserDefinedConversion) {
6013  // Find the best viable function.
6014  Best = end();
6015  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6016    if (Cand->Viable)
6017      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6018                                                     UserDefinedConversion))
6019        Best = Cand;
6020  }
6021
6022  // If we didn't find any viable functions, abort.
6023  if (Best == end())
6024    return OR_No_Viable_Function;
6025
6026  // Make sure that this function is better than every other viable
6027  // function. If not, we have an ambiguity.
6028  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6029    if (Cand->Viable &&
6030        Cand != Best &&
6031        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6032                                   UserDefinedConversion)) {
6033      Best = end();
6034      return OR_Ambiguous;
6035    }
6036  }
6037
6038  // Best is the best viable function.
6039  if (Best->Function &&
6040      (Best->Function->isDeleted() ||
6041       Best->Function->getAttr<UnavailableAttr>()))
6042    return OR_Deleted;
6043
6044  // C++ [basic.def.odr]p2:
6045  //   An overloaded function is used if it is selected by overload resolution
6046  //   when referred to from a potentially-evaluated expression. [Note: this
6047  //   covers calls to named functions (5.2.2), operator overloading
6048  //   (clause 13), user-defined conversions (12.3.2), allocation function for
6049  //   placement new (5.3.4), as well as non-default initialization (8.5).
6050  if (Best->Function)
6051    S.MarkDeclarationReferenced(Loc, Best->Function);
6052
6053  return OR_Success;
6054}
6055
6056namespace {
6057
6058enum OverloadCandidateKind {
6059  oc_function,
6060  oc_method,
6061  oc_constructor,
6062  oc_function_template,
6063  oc_method_template,
6064  oc_constructor_template,
6065  oc_implicit_default_constructor,
6066  oc_implicit_copy_constructor,
6067  oc_implicit_copy_assignment
6068};
6069
6070OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6071                                                FunctionDecl *Fn,
6072                                                std::string &Description) {
6073  bool isTemplate = false;
6074
6075  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6076    isTemplate = true;
6077    Description = S.getTemplateArgumentBindingsText(
6078      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6079  }
6080
6081  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6082    if (!Ctor->isImplicit())
6083      return isTemplate ? oc_constructor_template : oc_constructor;
6084
6085    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
6086                                     : oc_implicit_default_constructor;
6087  }
6088
6089  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6090    // This actually gets spelled 'candidate function' for now, but
6091    // it doesn't hurt to split it out.
6092    if (!Meth->isImplicit())
6093      return isTemplate ? oc_method_template : oc_method;
6094
6095    assert(Meth->isCopyAssignmentOperator()
6096           && "implicit method is not copy assignment operator?");
6097    return oc_implicit_copy_assignment;
6098  }
6099
6100  return isTemplate ? oc_function_template : oc_function;
6101}
6102
6103} // end anonymous namespace
6104
6105// Notes the location of an overload candidate.
6106void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6107  std::string FnDesc;
6108  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6109  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6110    << (unsigned) K << FnDesc;
6111}
6112
6113/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6114/// "lead" diagnostic; it will be given two arguments, the source and
6115/// target types of the conversion.
6116void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6117                                 Sema &S,
6118                                 SourceLocation CaretLoc,
6119                                 const PartialDiagnostic &PDiag) const {
6120  S.Diag(CaretLoc, PDiag)
6121    << Ambiguous.getFromType() << Ambiguous.getToType();
6122  for (AmbiguousConversionSequence::const_iterator
6123         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6124    S.NoteOverloadCandidate(*I);
6125  }
6126}
6127
6128namespace {
6129
6130void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6131  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6132  assert(Conv.isBad());
6133  assert(Cand->Function && "for now, candidate must be a function");
6134  FunctionDecl *Fn = Cand->Function;
6135
6136  // There's a conversion slot for the object argument if this is a
6137  // non-constructor method.  Note that 'I' corresponds the
6138  // conversion-slot index.
6139  bool isObjectArgument = false;
6140  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6141    if (I == 0)
6142      isObjectArgument = true;
6143    else
6144      I--;
6145  }
6146
6147  std::string FnDesc;
6148  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6149
6150  Expr *FromExpr = Conv.Bad.FromExpr;
6151  QualType FromTy = Conv.Bad.getFromType();
6152  QualType ToTy = Conv.Bad.getToType();
6153
6154  if (FromTy == S.Context.OverloadTy) {
6155    assert(FromExpr && "overload set argument came from implicit argument?");
6156    Expr *E = FromExpr->IgnoreParens();
6157    if (isa<UnaryOperator>(E))
6158      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6159    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6160
6161    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6162      << (unsigned) FnKind << FnDesc
6163      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6164      << ToTy << Name << I+1;
6165    return;
6166  }
6167
6168  // Do some hand-waving analysis to see if the non-viability is due
6169  // to a qualifier mismatch.
6170  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6171  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6172  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6173    CToTy = RT->getPointeeType();
6174  else {
6175    // TODO: detect and diagnose the full richness of const mismatches.
6176    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6177      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6178        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6179  }
6180
6181  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6182      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6183    // It is dumb that we have to do this here.
6184    while (isa<ArrayType>(CFromTy))
6185      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6186    while (isa<ArrayType>(CToTy))
6187      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6188
6189    Qualifiers FromQs = CFromTy.getQualifiers();
6190    Qualifiers ToQs = CToTy.getQualifiers();
6191
6192    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6193      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6194        << (unsigned) FnKind << FnDesc
6195        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6196        << FromTy
6197        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6198        << (unsigned) isObjectArgument << I+1;
6199      return;
6200    }
6201
6202    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6203    assert(CVR && "unexpected qualifiers mismatch");
6204
6205    if (isObjectArgument) {
6206      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6207        << (unsigned) FnKind << FnDesc
6208        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6209        << FromTy << (CVR - 1);
6210    } else {
6211      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6212        << (unsigned) FnKind << FnDesc
6213        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6214        << FromTy << (CVR - 1) << I+1;
6215    }
6216    return;
6217  }
6218
6219  // Diagnose references or pointers to incomplete types differently,
6220  // since it's far from impossible that the incompleteness triggered
6221  // the failure.
6222  QualType TempFromTy = FromTy.getNonReferenceType();
6223  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6224    TempFromTy = PTy->getPointeeType();
6225  if (TempFromTy->isIncompleteType()) {
6226    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6227      << (unsigned) FnKind << FnDesc
6228      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6229      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6230    return;
6231  }
6232
6233  // Diagnose base -> derived pointer conversions.
6234  unsigned BaseToDerivedConversion = 0;
6235  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6236    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6237      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6238                                               FromPtrTy->getPointeeType()) &&
6239          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6240          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6241          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6242                          FromPtrTy->getPointeeType()))
6243        BaseToDerivedConversion = 1;
6244    }
6245  } else if (const ObjCObjectPointerType *FromPtrTy
6246                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6247    if (const ObjCObjectPointerType *ToPtrTy
6248                                        = ToTy->getAs<ObjCObjectPointerType>())
6249      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6250        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6251          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6252                                                FromPtrTy->getPointeeType()) &&
6253              FromIface->isSuperClassOf(ToIface))
6254            BaseToDerivedConversion = 2;
6255  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6256      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6257          !FromTy->isIncompleteType() &&
6258          !ToRefTy->getPointeeType()->isIncompleteType() &&
6259          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6260        BaseToDerivedConversion = 3;
6261    }
6262
6263  if (BaseToDerivedConversion) {
6264    S.Diag(Fn->getLocation(),
6265           diag::note_ovl_candidate_bad_base_to_derived_conv)
6266      << (unsigned) FnKind << FnDesc
6267      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6268      << (BaseToDerivedConversion - 1)
6269      << FromTy << ToTy << I+1;
6270    return;
6271  }
6272
6273  // TODO: specialize more based on the kind of mismatch
6274  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
6275    << (unsigned) FnKind << FnDesc
6276    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6277    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6278}
6279
6280void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
6281                           unsigned NumFormalArgs) {
6282  // TODO: treat calls to a missing default constructor as a special case
6283
6284  FunctionDecl *Fn = Cand->Function;
6285  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
6286
6287  unsigned MinParams = Fn->getMinRequiredArguments();
6288
6289  // at least / at most / exactly
6290  unsigned mode, modeCount;
6291  if (NumFormalArgs < MinParams) {
6292    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
6293           (Cand->FailureKind == ovl_fail_bad_deduction &&
6294            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
6295    if (MinParams != FnTy->getNumArgs() ||
6296        FnTy->isVariadic() || FnTy->isTemplateVariadic())
6297      mode = 0; // "at least"
6298    else
6299      mode = 2; // "exactly"
6300    modeCount = MinParams;
6301  } else {
6302    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
6303           (Cand->FailureKind == ovl_fail_bad_deduction &&
6304            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
6305    if (MinParams != FnTy->getNumArgs())
6306      mode = 1; // "at most"
6307    else
6308      mode = 2; // "exactly"
6309    modeCount = FnTy->getNumArgs();
6310  }
6311
6312  std::string Description;
6313  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
6314
6315  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
6316    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
6317    << modeCount << NumFormalArgs;
6318}
6319
6320/// Diagnose a failed template-argument deduction.
6321void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
6322                          Expr **Args, unsigned NumArgs) {
6323  FunctionDecl *Fn = Cand->Function; // pattern
6324
6325  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
6326  NamedDecl *ParamD;
6327  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
6328  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
6329  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
6330  switch (Cand->DeductionFailure.Result) {
6331  case Sema::TDK_Success:
6332    llvm_unreachable("TDK_success while diagnosing bad deduction");
6333
6334  case Sema::TDK_Incomplete: {
6335    assert(ParamD && "no parameter found for incomplete deduction result");
6336    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
6337      << ParamD->getDeclName();
6338    return;
6339  }
6340
6341  case Sema::TDK_Underqualified: {
6342    assert(ParamD && "no parameter found for bad qualifiers deduction result");
6343    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
6344
6345    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
6346
6347    // Param will have been canonicalized, but it should just be a
6348    // qualified version of ParamD, so move the qualifiers to that.
6349    QualifierCollector Qs;
6350    Qs.strip(Param);
6351    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
6352    assert(S.Context.hasSameType(Param, NonCanonParam));
6353
6354    // Arg has also been canonicalized, but there's nothing we can do
6355    // about that.  It also doesn't matter as much, because it won't
6356    // have any template parameters in it (because deduction isn't
6357    // done on dependent types).
6358    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
6359
6360    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
6361      << ParamD->getDeclName() << Arg << NonCanonParam;
6362    return;
6363  }
6364
6365  case Sema::TDK_Inconsistent: {
6366    assert(ParamD && "no parameter found for inconsistent deduction result");
6367    int which = 0;
6368    if (isa<TemplateTypeParmDecl>(ParamD))
6369      which = 0;
6370    else if (isa<NonTypeTemplateParmDecl>(ParamD))
6371      which = 1;
6372    else {
6373      which = 2;
6374    }
6375
6376    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
6377      << which << ParamD->getDeclName()
6378      << *Cand->DeductionFailure.getFirstArg()
6379      << *Cand->DeductionFailure.getSecondArg();
6380    return;
6381  }
6382
6383  case Sema::TDK_InvalidExplicitArguments:
6384    assert(ParamD && "no parameter found for invalid explicit arguments");
6385    if (ParamD->getDeclName())
6386      S.Diag(Fn->getLocation(),
6387             diag::note_ovl_candidate_explicit_arg_mismatch_named)
6388        << ParamD->getDeclName();
6389    else {
6390      int index = 0;
6391      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
6392        index = TTP->getIndex();
6393      else if (NonTypeTemplateParmDecl *NTTP
6394                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
6395        index = NTTP->getIndex();
6396      else
6397        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
6398      S.Diag(Fn->getLocation(),
6399             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
6400        << (index + 1);
6401    }
6402    return;
6403
6404  case Sema::TDK_TooManyArguments:
6405  case Sema::TDK_TooFewArguments:
6406    DiagnoseArityMismatch(S, Cand, NumArgs);
6407    return;
6408
6409  case Sema::TDK_InstantiationDepth:
6410    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
6411    return;
6412
6413  case Sema::TDK_SubstitutionFailure: {
6414    std::string ArgString;
6415    if (TemplateArgumentList *Args
6416                            = Cand->DeductionFailure.getTemplateArgumentList())
6417      ArgString = S.getTemplateArgumentBindingsText(
6418                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
6419                                                    *Args);
6420    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
6421      << ArgString;
6422    return;
6423  }
6424
6425  // TODO: diagnose these individually, then kill off
6426  // note_ovl_candidate_bad_deduction, which is uselessly vague.
6427  case Sema::TDK_NonDeducedMismatch:
6428  case Sema::TDK_FailedOverloadResolution:
6429    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
6430    return;
6431  }
6432}
6433
6434/// Generates a 'note' diagnostic for an overload candidate.  We've
6435/// already generated a primary error at the call site.
6436///
6437/// It really does need to be a single diagnostic with its caret
6438/// pointed at the candidate declaration.  Yes, this creates some
6439/// major challenges of technical writing.  Yes, this makes pointing
6440/// out problems with specific arguments quite awkward.  It's still
6441/// better than generating twenty screens of text for every failed
6442/// overload.
6443///
6444/// It would be great to be able to express per-candidate problems
6445/// more richly for those diagnostic clients that cared, but we'd
6446/// still have to be just as careful with the default diagnostics.
6447void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
6448                           Expr **Args, unsigned NumArgs) {
6449  FunctionDecl *Fn = Cand->Function;
6450
6451  // Note deleted candidates, but only if they're viable.
6452  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
6453    std::string FnDesc;
6454    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6455
6456    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
6457      << FnKind << FnDesc << Fn->isDeleted();
6458    return;
6459  }
6460
6461  // We don't really have anything else to say about viable candidates.
6462  if (Cand->Viable) {
6463    S.NoteOverloadCandidate(Fn);
6464    return;
6465  }
6466
6467  switch (Cand->FailureKind) {
6468  case ovl_fail_too_many_arguments:
6469  case ovl_fail_too_few_arguments:
6470    return DiagnoseArityMismatch(S, Cand, NumArgs);
6471
6472  case ovl_fail_bad_deduction:
6473    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
6474
6475  case ovl_fail_trivial_conversion:
6476  case ovl_fail_bad_final_conversion:
6477  case ovl_fail_final_conversion_not_exact:
6478    return S.NoteOverloadCandidate(Fn);
6479
6480  case ovl_fail_bad_conversion: {
6481    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
6482    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
6483      if (Cand->Conversions[I].isBad())
6484        return DiagnoseBadConversion(S, Cand, I);
6485
6486    // FIXME: this currently happens when we're called from SemaInit
6487    // when user-conversion overload fails.  Figure out how to handle
6488    // those conditions and diagnose them well.
6489    return S.NoteOverloadCandidate(Fn);
6490  }
6491  }
6492}
6493
6494void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
6495  // Desugar the type of the surrogate down to a function type,
6496  // retaining as many typedefs as possible while still showing
6497  // the function type (and, therefore, its parameter types).
6498  QualType FnType = Cand->Surrogate->getConversionType();
6499  bool isLValueReference = false;
6500  bool isRValueReference = false;
6501  bool isPointer = false;
6502  if (const LValueReferenceType *FnTypeRef =
6503        FnType->getAs<LValueReferenceType>()) {
6504    FnType = FnTypeRef->getPointeeType();
6505    isLValueReference = true;
6506  } else if (const RValueReferenceType *FnTypeRef =
6507               FnType->getAs<RValueReferenceType>()) {
6508    FnType = FnTypeRef->getPointeeType();
6509    isRValueReference = true;
6510  }
6511  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
6512    FnType = FnTypePtr->getPointeeType();
6513    isPointer = true;
6514  }
6515  // Desugar down to a function type.
6516  FnType = QualType(FnType->getAs<FunctionType>(), 0);
6517  // Reconstruct the pointer/reference as appropriate.
6518  if (isPointer) FnType = S.Context.getPointerType(FnType);
6519  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
6520  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
6521
6522  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
6523    << FnType;
6524}
6525
6526void NoteBuiltinOperatorCandidate(Sema &S,
6527                                  const char *Opc,
6528                                  SourceLocation OpLoc,
6529                                  OverloadCandidate *Cand) {
6530  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
6531  std::string TypeStr("operator");
6532  TypeStr += Opc;
6533  TypeStr += "(";
6534  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
6535  if (Cand->Conversions.size() == 1) {
6536    TypeStr += ")";
6537    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
6538  } else {
6539    TypeStr += ", ";
6540    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
6541    TypeStr += ")";
6542    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
6543  }
6544}
6545
6546void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
6547                                  OverloadCandidate *Cand) {
6548  unsigned NoOperands = Cand->Conversions.size();
6549  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
6550    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
6551    if (ICS.isBad()) break; // all meaningless after first invalid
6552    if (!ICS.isAmbiguous()) continue;
6553
6554    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
6555                              S.PDiag(diag::note_ambiguous_type_conversion));
6556  }
6557}
6558
6559SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
6560  if (Cand->Function)
6561    return Cand->Function->getLocation();
6562  if (Cand->IsSurrogate)
6563    return Cand->Surrogate->getLocation();
6564  return SourceLocation();
6565}
6566
6567struct CompareOverloadCandidatesForDisplay {
6568  Sema &S;
6569  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
6570
6571  bool operator()(const OverloadCandidate *L,
6572                  const OverloadCandidate *R) {
6573    // Fast-path this check.
6574    if (L == R) return false;
6575
6576    // Order first by viability.
6577    if (L->Viable) {
6578      if (!R->Viable) return true;
6579
6580      // TODO: introduce a tri-valued comparison for overload
6581      // candidates.  Would be more worthwhile if we had a sort
6582      // that could exploit it.
6583      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
6584      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
6585    } else if (R->Viable)
6586      return false;
6587
6588    assert(L->Viable == R->Viable);
6589
6590    // Criteria by which we can sort non-viable candidates:
6591    if (!L->Viable) {
6592      // 1. Arity mismatches come after other candidates.
6593      if (L->FailureKind == ovl_fail_too_many_arguments ||
6594          L->FailureKind == ovl_fail_too_few_arguments)
6595        return false;
6596      if (R->FailureKind == ovl_fail_too_many_arguments ||
6597          R->FailureKind == ovl_fail_too_few_arguments)
6598        return true;
6599
6600      // 2. Bad conversions come first and are ordered by the number
6601      // of bad conversions and quality of good conversions.
6602      if (L->FailureKind == ovl_fail_bad_conversion) {
6603        if (R->FailureKind != ovl_fail_bad_conversion)
6604          return true;
6605
6606        // If there's any ordering between the defined conversions...
6607        // FIXME: this might not be transitive.
6608        assert(L->Conversions.size() == R->Conversions.size());
6609
6610        int leftBetter = 0;
6611        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
6612        for (unsigned E = L->Conversions.size(); I != E; ++I) {
6613          switch (CompareImplicitConversionSequences(S,
6614                                                     L->Conversions[I],
6615                                                     R->Conversions[I])) {
6616          case ImplicitConversionSequence::Better:
6617            leftBetter++;
6618            break;
6619
6620          case ImplicitConversionSequence::Worse:
6621            leftBetter--;
6622            break;
6623
6624          case ImplicitConversionSequence::Indistinguishable:
6625            break;
6626          }
6627        }
6628        if (leftBetter > 0) return true;
6629        if (leftBetter < 0) return false;
6630
6631      } else if (R->FailureKind == ovl_fail_bad_conversion)
6632        return false;
6633
6634      // TODO: others?
6635    }
6636
6637    // Sort everything else by location.
6638    SourceLocation LLoc = GetLocationForCandidate(L);
6639    SourceLocation RLoc = GetLocationForCandidate(R);
6640
6641    // Put candidates without locations (e.g. builtins) at the end.
6642    if (LLoc.isInvalid()) return false;
6643    if (RLoc.isInvalid()) return true;
6644
6645    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
6646  }
6647};
6648
6649/// CompleteNonViableCandidate - Normally, overload resolution only
6650/// computes up to the first
6651void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
6652                                Expr **Args, unsigned NumArgs) {
6653  assert(!Cand->Viable);
6654
6655  // Don't do anything on failures other than bad conversion.
6656  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
6657
6658  // Skip forward to the first bad conversion.
6659  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
6660  unsigned ConvCount = Cand->Conversions.size();
6661  while (true) {
6662    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
6663    ConvIdx++;
6664    if (Cand->Conversions[ConvIdx - 1].isBad())
6665      break;
6666  }
6667
6668  if (ConvIdx == ConvCount)
6669    return;
6670
6671  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
6672         "remaining conversion is initialized?");
6673
6674  // FIXME: this should probably be preserved from the overload
6675  // operation somehow.
6676  bool SuppressUserConversions = false;
6677
6678  const FunctionProtoType* Proto;
6679  unsigned ArgIdx = ConvIdx;
6680
6681  if (Cand->IsSurrogate) {
6682    QualType ConvType
6683      = Cand->Surrogate->getConversionType().getNonReferenceType();
6684    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6685      ConvType = ConvPtrType->getPointeeType();
6686    Proto = ConvType->getAs<FunctionProtoType>();
6687    ArgIdx--;
6688  } else if (Cand->Function) {
6689    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
6690    if (isa<CXXMethodDecl>(Cand->Function) &&
6691        !isa<CXXConstructorDecl>(Cand->Function))
6692      ArgIdx--;
6693  } else {
6694    // Builtin binary operator with a bad first conversion.
6695    assert(ConvCount <= 3);
6696    for (; ConvIdx != ConvCount; ++ConvIdx)
6697      Cand->Conversions[ConvIdx]
6698        = TryCopyInitialization(S, Args[ConvIdx],
6699                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
6700                                SuppressUserConversions,
6701                                /*InOverloadResolution*/ true);
6702    return;
6703  }
6704
6705  // Fill in the rest of the conversions.
6706  unsigned NumArgsInProto = Proto->getNumArgs();
6707  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
6708    if (ArgIdx < NumArgsInProto)
6709      Cand->Conversions[ConvIdx]
6710        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
6711                                SuppressUserConversions,
6712                                /*InOverloadResolution=*/true);
6713    else
6714      Cand->Conversions[ConvIdx].setEllipsis();
6715  }
6716}
6717
6718} // end anonymous namespace
6719
6720/// PrintOverloadCandidates - When overload resolution fails, prints
6721/// diagnostic messages containing the candidates in the candidate
6722/// set.
6723void OverloadCandidateSet::NoteCandidates(Sema &S,
6724                                          OverloadCandidateDisplayKind OCD,
6725                                          Expr **Args, unsigned NumArgs,
6726                                          const char *Opc,
6727                                          SourceLocation OpLoc) {
6728  // Sort the candidates by viability and position.  Sorting directly would
6729  // be prohibitive, so we make a set of pointers and sort those.
6730  llvm::SmallVector<OverloadCandidate*, 32> Cands;
6731  if (OCD == OCD_AllCandidates) Cands.reserve(size());
6732  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
6733    if (Cand->Viable)
6734      Cands.push_back(Cand);
6735    else if (OCD == OCD_AllCandidates) {
6736      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
6737      if (Cand->Function || Cand->IsSurrogate)
6738        Cands.push_back(Cand);
6739      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
6740      // want to list every possible builtin candidate.
6741    }
6742  }
6743
6744  std::sort(Cands.begin(), Cands.end(),
6745            CompareOverloadCandidatesForDisplay(S));
6746
6747  bool ReportedAmbiguousConversions = false;
6748
6749  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
6750  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
6751  unsigned CandsShown = 0;
6752  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
6753    OverloadCandidate *Cand = *I;
6754
6755    // Set an arbitrary limit on the number of candidate functions we'll spam
6756    // the user with.  FIXME: This limit should depend on details of the
6757    // candidate list.
6758    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
6759      break;
6760    }
6761    ++CandsShown;
6762
6763    if (Cand->Function)
6764      NoteFunctionCandidate(S, Cand, Args, NumArgs);
6765    else if (Cand->IsSurrogate)
6766      NoteSurrogateCandidate(S, Cand);
6767    else {
6768      assert(Cand->Viable &&
6769             "Non-viable built-in candidates are not added to Cands.");
6770      // Generally we only see ambiguities including viable builtin
6771      // operators if overload resolution got screwed up by an
6772      // ambiguous user-defined conversion.
6773      //
6774      // FIXME: It's quite possible for different conversions to see
6775      // different ambiguities, though.
6776      if (!ReportedAmbiguousConversions) {
6777        NoteAmbiguousUserConversions(S, OpLoc, Cand);
6778        ReportedAmbiguousConversions = true;
6779      }
6780
6781      // If this is a viable builtin, print it.
6782      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
6783    }
6784  }
6785
6786  if (I != E)
6787    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
6788}
6789
6790static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
6791  if (isa<UnresolvedLookupExpr>(E))
6792    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
6793
6794  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
6795}
6796
6797/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
6798/// an overloaded function (C++ [over.over]), where @p From is an
6799/// expression with overloaded function type and @p ToType is the type
6800/// we're trying to resolve to. For example:
6801///
6802/// @code
6803/// int f(double);
6804/// int f(int);
6805///
6806/// int (*pfd)(double) = f; // selects f(double)
6807/// @endcode
6808///
6809/// This routine returns the resulting FunctionDecl if it could be
6810/// resolved, and NULL otherwise. When @p Complain is true, this
6811/// routine will emit diagnostics if there is an error.
6812FunctionDecl *
6813Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
6814                                         bool Complain,
6815                                         DeclAccessPair &FoundResult) {
6816  QualType FunctionType = ToType;
6817  bool IsMember = false;
6818  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
6819    FunctionType = ToTypePtr->getPointeeType();
6820  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
6821    FunctionType = ToTypeRef->getPointeeType();
6822  else if (const MemberPointerType *MemTypePtr =
6823                    ToType->getAs<MemberPointerType>()) {
6824    FunctionType = MemTypePtr->getPointeeType();
6825    IsMember = true;
6826  }
6827
6828  // C++ [over.over]p1:
6829  //   [...] [Note: any redundant set of parentheses surrounding the
6830  //   overloaded function name is ignored (5.1). ]
6831  // C++ [over.over]p1:
6832  //   [...] The overloaded function name can be preceded by the &
6833  //   operator.
6834  // However, remember whether the expression has member-pointer form:
6835  // C++ [expr.unary.op]p4:
6836  //     A pointer to member is only formed when an explicit & is used
6837  //     and its operand is a qualified-id not enclosed in
6838  //     parentheses.
6839  OverloadExpr::FindResult Ovl = OverloadExpr::find(From);
6840  OverloadExpr *OvlExpr = Ovl.Expression;
6841
6842  // We expect a pointer or reference to function, or a function pointer.
6843  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
6844  if (!FunctionType->isFunctionType()) {
6845    if (Complain)
6846      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
6847        << OvlExpr->getName() << ToType;
6848
6849    return 0;
6850  }
6851
6852  // If the overload expression doesn't have the form of a pointer to
6853  // member, don't try to convert it to a pointer-to-member type.
6854  if (IsMember && !Ovl.HasFormOfMemberPointer) {
6855    if (!Complain) return 0;
6856
6857    // TODO: Should we condition this on whether any functions might
6858    // have matched, or is it more appropriate to do that in callers?
6859    // TODO: a fixit wouldn't hurt.
6860    Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
6861      << ToType << OvlExpr->getSourceRange();
6862    return 0;
6863  }
6864
6865  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
6866  if (OvlExpr->hasExplicitTemplateArgs()) {
6867    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
6868    ExplicitTemplateArgs = &ETABuffer;
6869  }
6870
6871  assert(From->getType() == Context.OverloadTy);
6872
6873  // Look through all of the overloaded functions, searching for one
6874  // whose type matches exactly.
6875  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
6876  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
6877
6878  bool FoundNonTemplateFunction = false;
6879  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6880         E = OvlExpr->decls_end(); I != E; ++I) {
6881    // Look through any using declarations to find the underlying function.
6882    NamedDecl *Fn = (*I)->getUnderlyingDecl();
6883
6884    // C++ [over.over]p3:
6885    //   Non-member functions and static member functions match
6886    //   targets of type "pointer-to-function" or "reference-to-function."
6887    //   Nonstatic member functions match targets of
6888    //   type "pointer-to-member-function."
6889    // Note that according to DR 247, the containing class does not matter.
6890
6891    if (FunctionTemplateDecl *FunctionTemplate
6892          = dyn_cast<FunctionTemplateDecl>(Fn)) {
6893      if (CXXMethodDecl *Method
6894            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
6895        // Skip non-static function templates when converting to pointer, and
6896        // static when converting to member pointer.
6897        if (Method->isStatic() == IsMember)
6898          continue;
6899      } else if (IsMember)
6900        continue;
6901
6902      // C++ [over.over]p2:
6903      //   If the name is a function template, template argument deduction is
6904      //   done (14.8.2.2), and if the argument deduction succeeds, the
6905      //   resulting template argument list is used to generate a single
6906      //   function template specialization, which is added to the set of
6907      //   overloaded functions considered.
6908      FunctionDecl *Specialization = 0;
6909      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6910      if (TemplateDeductionResult Result
6911            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
6912                                      FunctionType, Specialization, Info)) {
6913        // FIXME: make a note of the failed deduction for diagnostics.
6914        (void)Result;
6915      } else {
6916        // Template argument deduction ensures that we have an exact match.
6917        // This function template specicalization works.
6918        Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
6919        assert(FunctionType
6920                 == Context.getCanonicalType(Specialization->getType()));
6921        Matches.push_back(std::make_pair(I.getPair(), Specialization));
6922      }
6923
6924      continue;
6925    }
6926
6927    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6928      // Skip non-static functions when converting to pointer, and static
6929      // when converting to member pointer.
6930      if (Method->isStatic() == IsMember)
6931        continue;
6932
6933      // If we have explicit template arguments, skip non-templates.
6934      if (OvlExpr->hasExplicitTemplateArgs())
6935        continue;
6936    } else if (IsMember)
6937      continue;
6938
6939    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
6940      QualType ResultTy;
6941      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
6942          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
6943                               ResultTy)) {
6944        Matches.push_back(std::make_pair(I.getPair(),
6945                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
6946        FoundNonTemplateFunction = true;
6947      }
6948    }
6949  }
6950
6951  // If there were 0 or 1 matches, we're done.
6952  if (Matches.empty()) {
6953    if (Complain) {
6954      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
6955        << OvlExpr->getName() << FunctionType;
6956      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6957                                 E = OvlExpr->decls_end();
6958           I != E; ++I)
6959        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
6960          NoteOverloadCandidate(F);
6961    }
6962
6963    return 0;
6964  } else if (Matches.size() == 1) {
6965    FunctionDecl *Result = Matches[0].second;
6966    FoundResult = Matches[0].first;
6967    MarkDeclarationReferenced(From->getLocStart(), Result);
6968    if (Complain) {
6969      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
6970    }
6971    return Result;
6972  }
6973
6974  // C++ [over.over]p4:
6975  //   If more than one function is selected, [...]
6976  if (!FoundNonTemplateFunction) {
6977    //   [...] and any given function template specialization F1 is
6978    //   eliminated if the set contains a second function template
6979    //   specialization whose function template is more specialized
6980    //   than the function template of F1 according to the partial
6981    //   ordering rules of 14.5.5.2.
6982
6983    // The algorithm specified above is quadratic. We instead use a
6984    // two-pass algorithm (similar to the one used to identify the
6985    // best viable function in an overload set) that identifies the
6986    // best function template (if it exists).
6987
6988    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
6989    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6990      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
6991
6992    UnresolvedSetIterator Result =
6993        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
6994                           TPOC_Other, 0, From->getLocStart(),
6995                           PDiag(),
6996                           PDiag(diag::err_addr_ovl_ambiguous)
6997                               << Matches[0].second->getDeclName(),
6998                           PDiag(diag::note_ovl_candidate)
6999                               << (unsigned) oc_function_template);
7000    if (Result == MatchesCopy.end())
7001      return 0;
7002
7003    MarkDeclarationReferenced(From->getLocStart(), *Result);
7004    FoundResult = Matches[Result - MatchesCopy.begin()].first;
7005    if (Complain)
7006      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
7007    return cast<FunctionDecl>(*Result);
7008  }
7009
7010  //   [...] any function template specializations in the set are
7011  //   eliminated if the set also contains a non-template function, [...]
7012  for (unsigned I = 0, N = Matches.size(); I != N; ) {
7013    if (Matches[I].second->getPrimaryTemplate() == 0)
7014      ++I;
7015    else {
7016      Matches[I] = Matches[--N];
7017      Matches.set_size(N);
7018    }
7019  }
7020
7021  // [...] After such eliminations, if any, there shall remain exactly one
7022  // selected function.
7023  if (Matches.size() == 1) {
7024    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
7025    FoundResult = Matches[0].first;
7026    if (Complain)
7027      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
7028    return cast<FunctionDecl>(Matches[0].second);
7029  }
7030
7031  // FIXME: We should probably return the same thing that BestViableFunction
7032  // returns (even if we issue the diagnostics here).
7033  if (Complain) {
7034    Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
7035      << Matches[0].second->getDeclName();
7036    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7037      NoteOverloadCandidate(Matches[I].second);
7038  }
7039
7040  return 0;
7041}
7042
7043/// \brief Given an expression that refers to an overloaded function, try to
7044/// resolve that overloaded function expression down to a single function.
7045///
7046/// This routine can only resolve template-ids that refer to a single function
7047/// template, where that template-id refers to a single template whose template
7048/// arguments are either provided by the template-id or have defaults,
7049/// as described in C++0x [temp.arg.explicit]p3.
7050FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
7051  // C++ [over.over]p1:
7052  //   [...] [Note: any redundant set of parentheses surrounding the
7053  //   overloaded function name is ignored (5.1). ]
7054  // C++ [over.over]p1:
7055  //   [...] The overloaded function name can be preceded by the &
7056  //   operator.
7057
7058  if (From->getType() != Context.OverloadTy)
7059    return 0;
7060
7061  OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression;
7062
7063  // If we didn't actually find any template-ids, we're done.
7064  if (!OvlExpr->hasExplicitTemplateArgs())
7065    return 0;
7066
7067  TemplateArgumentListInfo ExplicitTemplateArgs;
7068  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7069
7070  // Look through all of the overloaded functions, searching for one
7071  // whose type matches exactly.
7072  FunctionDecl *Matched = 0;
7073  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7074         E = OvlExpr->decls_end(); I != E; ++I) {
7075    // C++0x [temp.arg.explicit]p3:
7076    //   [...] In contexts where deduction is done and fails, or in contexts
7077    //   where deduction is not done, if a template argument list is
7078    //   specified and it, along with any default template arguments,
7079    //   identifies a single function template specialization, then the
7080    //   template-id is an lvalue for the function template specialization.
7081    FunctionTemplateDecl *FunctionTemplate
7082      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7083
7084    // C++ [over.over]p2:
7085    //   If the name is a function template, template argument deduction is
7086    //   done (14.8.2.2), and if the argument deduction succeeds, the
7087    //   resulting template argument list is used to generate a single
7088    //   function template specialization, which is added to the set of
7089    //   overloaded functions considered.
7090    FunctionDecl *Specialization = 0;
7091    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7092    if (TemplateDeductionResult Result
7093          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7094                                    Specialization, Info)) {
7095      // FIXME: make a note of the failed deduction for diagnostics.
7096      (void)Result;
7097      continue;
7098    }
7099
7100    // Multiple matches; we can't resolve to a single declaration.
7101    if (Matched)
7102      return 0;
7103
7104    Matched = Specialization;
7105  }
7106
7107  return Matched;
7108}
7109
7110/// \brief Add a single candidate to the overload set.
7111static void AddOverloadedCallCandidate(Sema &S,
7112                                       DeclAccessPair FoundDecl,
7113                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
7114                                       Expr **Args, unsigned NumArgs,
7115                                       OverloadCandidateSet &CandidateSet,
7116                                       bool PartialOverloading) {
7117  NamedDecl *Callee = FoundDecl.getDecl();
7118  if (isa<UsingShadowDecl>(Callee))
7119    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
7120
7121  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
7122    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
7123    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
7124                           false, PartialOverloading);
7125    return;
7126  }
7127
7128  if (FunctionTemplateDecl *FuncTemplate
7129      = dyn_cast<FunctionTemplateDecl>(Callee)) {
7130    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
7131                                   ExplicitTemplateArgs,
7132                                   Args, NumArgs, CandidateSet);
7133    return;
7134  }
7135
7136  assert(false && "unhandled case in overloaded call candidate");
7137
7138  // do nothing?
7139}
7140
7141/// \brief Add the overload candidates named by callee and/or found by argument
7142/// dependent lookup to the given overload set.
7143void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
7144                                       Expr **Args, unsigned NumArgs,
7145                                       OverloadCandidateSet &CandidateSet,
7146                                       bool PartialOverloading) {
7147
7148#ifndef NDEBUG
7149  // Verify that ArgumentDependentLookup is consistent with the rules
7150  // in C++0x [basic.lookup.argdep]p3:
7151  //
7152  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
7153  //   and let Y be the lookup set produced by argument dependent
7154  //   lookup (defined as follows). If X contains
7155  //
7156  //     -- a declaration of a class member, or
7157  //
7158  //     -- a block-scope function declaration that is not a
7159  //        using-declaration, or
7160  //
7161  //     -- a declaration that is neither a function or a function
7162  //        template
7163  //
7164  //   then Y is empty.
7165
7166  if (ULE->requiresADL()) {
7167    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7168           E = ULE->decls_end(); I != E; ++I) {
7169      assert(!(*I)->getDeclContext()->isRecord());
7170      assert(isa<UsingShadowDecl>(*I) ||
7171             !(*I)->getDeclContext()->isFunctionOrMethod());
7172      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
7173    }
7174  }
7175#endif
7176
7177  // It would be nice to avoid this copy.
7178  TemplateArgumentListInfo TABuffer;
7179  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7180  if (ULE->hasExplicitTemplateArgs()) {
7181    ULE->copyTemplateArgumentsInto(TABuffer);
7182    ExplicitTemplateArgs = &TABuffer;
7183  }
7184
7185  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7186         E = ULE->decls_end(); I != E; ++I)
7187    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
7188                               Args, NumArgs, CandidateSet,
7189                               PartialOverloading);
7190
7191  if (ULE->requiresADL())
7192    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
7193                                         Args, NumArgs,
7194                                         ExplicitTemplateArgs,
7195                                         CandidateSet,
7196                                         PartialOverloading);
7197}
7198
7199/// Attempts to recover from a call where no functions were found.
7200///
7201/// Returns true if new candidates were found.
7202static ExprResult
7203BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
7204                      UnresolvedLookupExpr *ULE,
7205                      SourceLocation LParenLoc,
7206                      Expr **Args, unsigned NumArgs,
7207                      SourceLocation RParenLoc) {
7208
7209  CXXScopeSpec SS;
7210  if (ULE->getQualifier()) {
7211    SS.setScopeRep(ULE->getQualifier());
7212    SS.setRange(ULE->getQualifierRange());
7213  }
7214
7215  TemplateArgumentListInfo TABuffer;
7216  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7217  if (ULE->hasExplicitTemplateArgs()) {
7218    ULE->copyTemplateArgumentsInto(TABuffer);
7219    ExplicitTemplateArgs = &TABuffer;
7220  }
7221
7222  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
7223                 Sema::LookupOrdinaryName);
7224  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
7225    return ExprError();
7226
7227  assert(!R.empty() && "lookup results empty despite recovery");
7228
7229  // Build an implicit member call if appropriate.  Just drop the
7230  // casts and such from the call, we don't really care.
7231  ExprResult NewFn = ExprError();
7232  if ((*R.begin())->isCXXClassMember())
7233    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
7234                                                    ExplicitTemplateArgs);
7235  else if (ExplicitTemplateArgs)
7236    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
7237  else
7238    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
7239
7240  if (NewFn.isInvalid())
7241    return ExprError();
7242
7243  // This shouldn't cause an infinite loop because we're giving it
7244  // an expression with non-empty lookup results, which should never
7245  // end up here.
7246  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
7247                               MultiExprArg(Args, NumArgs), RParenLoc);
7248}
7249
7250/// ResolveOverloadedCallFn - Given the call expression that calls Fn
7251/// (which eventually refers to the declaration Func) and the call
7252/// arguments Args/NumArgs, attempt to resolve the function call down
7253/// to a specific function. If overload resolution succeeds, returns
7254/// the function declaration produced by overload
7255/// resolution. Otherwise, emits diagnostics, deletes all of the
7256/// arguments and Fn, and returns NULL.
7257ExprResult
7258Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
7259                              SourceLocation LParenLoc,
7260                              Expr **Args, unsigned NumArgs,
7261                              SourceLocation RParenLoc) {
7262#ifndef NDEBUG
7263  if (ULE->requiresADL()) {
7264    // To do ADL, we must have found an unqualified name.
7265    assert(!ULE->getQualifier() && "qualified name with ADL");
7266
7267    // We don't perform ADL for implicit declarations of builtins.
7268    // Verify that this was correctly set up.
7269    FunctionDecl *F;
7270    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
7271        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
7272        F->getBuiltinID() && F->isImplicit())
7273      assert(0 && "performing ADL for builtin");
7274
7275    // We don't perform ADL in C.
7276    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
7277  }
7278#endif
7279
7280  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
7281
7282  // Add the functions denoted by the callee to the set of candidate
7283  // functions, including those from argument-dependent lookup.
7284  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
7285
7286  // If we found nothing, try to recover.
7287  // AddRecoveryCallCandidates diagnoses the error itself, so we just
7288  // bailout out if it fails.
7289  if (CandidateSet.empty())
7290    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
7291                                 RParenLoc);
7292
7293  OverloadCandidateSet::iterator Best;
7294  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
7295  case OR_Success: {
7296    FunctionDecl *FDecl = Best->Function;
7297    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
7298    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
7299                      ULE->getNameLoc());
7300    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
7301    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
7302                                 RParenLoc);
7303  }
7304
7305  case OR_No_Viable_Function:
7306    Diag(Fn->getSourceRange().getBegin(),
7307         diag::err_ovl_no_viable_function_in_call)
7308      << ULE->getName() << Fn->getSourceRange();
7309    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7310    break;
7311
7312  case OR_Ambiguous:
7313    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
7314      << ULE->getName() << Fn->getSourceRange();
7315    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
7316    break;
7317
7318  case OR_Deleted:
7319    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
7320      << Best->Function->isDeleted()
7321      << ULE->getName()
7322      << Fn->getSourceRange();
7323    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7324    break;
7325  }
7326
7327  // Overload resolution failed.
7328  return ExprError();
7329}
7330
7331static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
7332  return Functions.size() > 1 ||
7333    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
7334}
7335
7336/// \brief Create a unary operation that may resolve to an overloaded
7337/// operator.
7338///
7339/// \param OpLoc The location of the operator itself (e.g., '*').
7340///
7341/// \param OpcIn The UnaryOperator::Opcode that describes this
7342/// operator.
7343///
7344/// \param Functions The set of non-member functions that will be
7345/// considered by overload resolution. The caller needs to build this
7346/// set based on the context using, e.g.,
7347/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7348/// set should not contain any member functions; those will be added
7349/// by CreateOverloadedUnaryOp().
7350///
7351/// \param input The input argument.
7352ExprResult
7353Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
7354                              const UnresolvedSetImpl &Fns,
7355                              Expr *Input) {
7356  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
7357
7358  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
7359  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
7360  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7361  // TODO: provide better source location info.
7362  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7363
7364  if (Input->getObjectKind() == OK_ObjCProperty)
7365    ConvertPropertyForRValue(Input);
7366
7367  Expr *Args[2] = { Input, 0 };
7368  unsigned NumArgs = 1;
7369
7370  // For post-increment and post-decrement, add the implicit '0' as
7371  // the second argument, so that we know this is a post-increment or
7372  // post-decrement.
7373  if (Opc == UO_PostInc || Opc == UO_PostDec) {
7374    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
7375    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
7376                                     SourceLocation());
7377    NumArgs = 2;
7378  }
7379
7380  if (Input->isTypeDependent()) {
7381    if (Fns.empty())
7382      return Owned(new (Context) UnaryOperator(Input,
7383                                               Opc,
7384                                               Context.DependentTy,
7385                                               VK_RValue, OK_Ordinary,
7386                                               OpLoc));
7387
7388    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7389    UnresolvedLookupExpr *Fn
7390      = UnresolvedLookupExpr::Create(Context, NamingClass,
7391                                     0, SourceRange(), OpNameInfo,
7392                                     /*ADL*/ true, IsOverloaded(Fns),
7393                                     Fns.begin(), Fns.end());
7394    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7395                                                   &Args[0], NumArgs,
7396                                                   Context.DependentTy,
7397                                                   VK_RValue,
7398                                                   OpLoc));
7399  }
7400
7401  // Build an empty overload set.
7402  OverloadCandidateSet CandidateSet(OpLoc);
7403
7404  // Add the candidates from the given function set.
7405  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
7406
7407  // Add operator candidates that are member functions.
7408  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7409
7410  // Add candidates from ADL.
7411  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7412                                       Args, NumArgs,
7413                                       /*ExplicitTemplateArgs*/ 0,
7414                                       CandidateSet);
7415
7416  // Add builtin operator candidates.
7417  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7418
7419  // Perform overload resolution.
7420  OverloadCandidateSet::iterator Best;
7421  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7422  case OR_Success: {
7423    // We found a built-in operator or an overloaded operator.
7424    FunctionDecl *FnDecl = Best->Function;
7425
7426    if (FnDecl) {
7427      // We matched an overloaded operator. Build a call to that
7428      // operator.
7429
7430      // Convert the arguments.
7431      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7432        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
7433
7434        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
7435                                                Best->FoundDecl, Method))
7436          return ExprError();
7437      } else {
7438        // Convert the arguments.
7439        ExprResult InputInit
7440          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7441                                                      Context,
7442                                                      FnDecl->getParamDecl(0)),
7443                                      SourceLocation(),
7444                                      Input);
7445        if (InputInit.isInvalid())
7446          return ExprError();
7447        Input = InputInit.take();
7448      }
7449
7450      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7451
7452      // Determine the result type.
7453      QualType ResultTy = FnDecl->getResultType();
7454      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7455      ResultTy = ResultTy.getNonLValueExprType(Context);
7456
7457      // Build the actual expression node.
7458      Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl);
7459
7460      Args[0] = Input;
7461      CallExpr *TheCall =
7462        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
7463                                          Args, NumArgs, ResultTy, VK, OpLoc);
7464
7465      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7466                              FnDecl))
7467        return ExprError();
7468
7469      return MaybeBindToTemporary(TheCall);
7470    } else {
7471      // We matched a built-in operator. Convert the arguments, then
7472      // break out so that we will build the appropriate built-in
7473      // operator node.
7474        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
7475                                      Best->Conversions[0], AA_Passing))
7476          return ExprError();
7477
7478        break;
7479      }
7480    }
7481
7482    case OR_No_Viable_Function:
7483      // No viable function; fall through to handling this as a
7484      // built-in operator, which will produce an error message for us.
7485      break;
7486
7487    case OR_Ambiguous:
7488      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
7489          << UnaryOperator::getOpcodeStr(Opc)
7490          << Input->getType()
7491          << Input->getSourceRange();
7492      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
7493                                  Args, NumArgs,
7494                                  UnaryOperator::getOpcodeStr(Opc), OpLoc);
7495      return ExprError();
7496
7497    case OR_Deleted:
7498      Diag(OpLoc, diag::err_ovl_deleted_oper)
7499        << Best->Function->isDeleted()
7500        << UnaryOperator::getOpcodeStr(Opc)
7501        << Input->getSourceRange();
7502      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7503      return ExprError();
7504    }
7505
7506  // Either we found no viable overloaded operator or we matched a
7507  // built-in operator. In either case, fall through to trying to
7508  // build a built-in operation.
7509  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
7510}
7511
7512/// \brief Create a binary operation that may resolve to an overloaded
7513/// operator.
7514///
7515/// \param OpLoc The location of the operator itself (e.g., '+').
7516///
7517/// \param OpcIn The BinaryOperator::Opcode that describes this
7518/// operator.
7519///
7520/// \param Functions The set of non-member functions that will be
7521/// considered by overload resolution. The caller needs to build this
7522/// set based on the context using, e.g.,
7523/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7524/// set should not contain any member functions; those will be added
7525/// by CreateOverloadedBinOp().
7526///
7527/// \param LHS Left-hand argument.
7528/// \param RHS Right-hand argument.
7529ExprResult
7530Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
7531                            unsigned OpcIn,
7532                            const UnresolvedSetImpl &Fns,
7533                            Expr *LHS, Expr *RHS) {
7534  Expr *Args[2] = { LHS, RHS };
7535  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
7536
7537  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
7538  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
7539  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7540
7541  // If either side is type-dependent, create an appropriate dependent
7542  // expression.
7543  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7544    if (Fns.empty()) {
7545      // If there are no functions to store, just build a dependent
7546      // BinaryOperator or CompoundAssignment.
7547      if (Opc <= BO_Assign || Opc > BO_OrAssign)
7548        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
7549                                                  Context.DependentTy,
7550                                                  VK_RValue, OK_Ordinary,
7551                                                  OpLoc));
7552
7553      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
7554                                                        Context.DependentTy,
7555                                                        VK_LValue,
7556                                                        OK_Ordinary,
7557                                                        Context.DependentTy,
7558                                                        Context.DependentTy,
7559                                                        OpLoc));
7560    }
7561
7562    // FIXME: save results of ADL from here?
7563    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7564    // TODO: provide better source location info in DNLoc component.
7565    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7566    UnresolvedLookupExpr *Fn
7567      = UnresolvedLookupExpr::Create(Context, NamingClass, 0, SourceRange(),
7568                                     OpNameInfo, /*ADL*/ true, IsOverloaded(Fns),
7569                                     Fns.begin(), Fns.end());
7570    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7571                                                   Args, 2,
7572                                                   Context.DependentTy,
7573                                                   VK_RValue,
7574                                                   OpLoc));
7575  }
7576
7577  // Always do property rvalue conversions on the RHS.
7578  if (Args[1]->getObjectKind() == OK_ObjCProperty)
7579    ConvertPropertyForRValue(Args[1]);
7580
7581  // The LHS is more complicated.
7582  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
7583
7584    // There's a tension for assignment operators between primitive
7585    // property assignment and the overloaded operators.
7586    if (BinaryOperator::isAssignmentOp(Opc)) {
7587      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
7588
7589      // Is the property "logically" settable?
7590      bool Settable = (PRE->isExplicitProperty() ||
7591                       PRE->getImplicitPropertySetter());
7592
7593      // To avoid gratuitously inventing semantics, use the primitive
7594      // unless it isn't.  Thoughts in case we ever really care:
7595      // - If the property isn't logically settable, we have to
7596      //   load and hope.
7597      // - If the property is settable and this is simple assignment,
7598      //   we really should use the primitive.
7599      // - If the property is settable, then we could try overloading
7600      //   on a generic lvalue of the appropriate type;  if it works
7601      //   out to a builtin candidate, we would do that same operation
7602      //   on the property, and otherwise just error.
7603      if (Settable)
7604        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7605    }
7606
7607    ConvertPropertyForRValue(Args[0]);
7608  }
7609
7610  // If this is the assignment operator, we only perform overload resolution
7611  // if the left-hand side is a class or enumeration type. This is actually
7612  // a hack. The standard requires that we do overload resolution between the
7613  // various built-in candidates, but as DR507 points out, this can lead to
7614  // problems. So we do it this way, which pretty much follows what GCC does.
7615  // Note that we go the traditional code path for compound assignment forms.
7616  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
7617    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7618
7619  // If this is the .* operator, which is not overloadable, just
7620  // create a built-in binary operator.
7621  if (Opc == BO_PtrMemD)
7622    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7623
7624  // Build an empty overload set.
7625  OverloadCandidateSet CandidateSet(OpLoc);
7626
7627  // Add the candidates from the given function set.
7628  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
7629
7630  // Add operator candidates that are member functions.
7631  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
7632
7633  // Add candidates from ADL.
7634  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7635                                       Args, 2,
7636                                       /*ExplicitTemplateArgs*/ 0,
7637                                       CandidateSet);
7638
7639  // Add builtin operator candidates.
7640  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
7641
7642  // Perform overload resolution.
7643  OverloadCandidateSet::iterator Best;
7644  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7645    case OR_Success: {
7646      // We found a built-in operator or an overloaded operator.
7647      FunctionDecl *FnDecl = Best->Function;
7648
7649      if (FnDecl) {
7650        // We matched an overloaded operator. Build a call to that
7651        // operator.
7652
7653        // Convert the arguments.
7654        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7655          // Best->Access is only meaningful for class members.
7656          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
7657
7658          ExprResult Arg1 =
7659            PerformCopyInitialization(
7660              InitializedEntity::InitializeParameter(Context,
7661                                                     FnDecl->getParamDecl(0)),
7662              SourceLocation(), Owned(Args[1]));
7663          if (Arg1.isInvalid())
7664            return ExprError();
7665
7666          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7667                                                  Best->FoundDecl, Method))
7668            return ExprError();
7669
7670          Args[1] = RHS = Arg1.takeAs<Expr>();
7671        } else {
7672          // Convert the arguments.
7673          ExprResult Arg0 = PerformCopyInitialization(
7674            InitializedEntity::InitializeParameter(Context,
7675                                                   FnDecl->getParamDecl(0)),
7676            SourceLocation(), Owned(Args[0]));
7677          if (Arg0.isInvalid())
7678            return ExprError();
7679
7680          ExprResult Arg1 =
7681            PerformCopyInitialization(
7682              InitializedEntity::InitializeParameter(Context,
7683                                                     FnDecl->getParamDecl(1)),
7684              SourceLocation(), Owned(Args[1]));
7685          if (Arg1.isInvalid())
7686            return ExprError();
7687          Args[0] = LHS = Arg0.takeAs<Expr>();
7688          Args[1] = RHS = Arg1.takeAs<Expr>();
7689        }
7690
7691        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7692
7693        // Determine the result type.
7694        QualType ResultTy = FnDecl->getResultType();
7695        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7696        ResultTy = ResultTy.getNonLValueExprType(Context);
7697
7698        // Build the actual expression node.
7699        Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
7700
7701        CXXOperatorCallExpr *TheCall =
7702          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
7703                                            Args, 2, ResultTy, VK, OpLoc);
7704
7705        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7706                                FnDecl))
7707          return ExprError();
7708
7709        return MaybeBindToTemporary(TheCall);
7710      } else {
7711        // We matched a built-in operator. Convert the arguments, then
7712        // break out so that we will build the appropriate built-in
7713        // operator node.
7714        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7715                                      Best->Conversions[0], AA_Passing) ||
7716            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7717                                      Best->Conversions[1], AA_Passing))
7718          return ExprError();
7719
7720        break;
7721      }
7722    }
7723
7724    case OR_No_Viable_Function: {
7725      // C++ [over.match.oper]p9:
7726      //   If the operator is the operator , [...] and there are no
7727      //   viable functions, then the operator is assumed to be the
7728      //   built-in operator and interpreted according to clause 5.
7729      if (Opc == BO_Comma)
7730        break;
7731
7732      // For class as left operand for assignment or compound assigment
7733      // operator do not fall through to handling in built-in, but report that
7734      // no overloaded assignment operator found
7735      ExprResult Result = ExprError();
7736      if (Args[0]->getType()->isRecordType() &&
7737          Opc >= BO_Assign && Opc <= BO_OrAssign) {
7738        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
7739             << BinaryOperator::getOpcodeStr(Opc)
7740             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7741      } else {
7742        // No viable function; try to create a built-in operation, which will
7743        // produce an error. Then, show the non-viable candidates.
7744        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7745      }
7746      assert(Result.isInvalid() &&
7747             "C++ binary operator overloading is missing candidates!");
7748      if (Result.isInvalid())
7749        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7750                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
7751      return move(Result);
7752    }
7753
7754    case OR_Ambiguous:
7755      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
7756          << BinaryOperator::getOpcodeStr(Opc)
7757          << Args[0]->getType() << Args[1]->getType()
7758          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7759      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
7760                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
7761      return ExprError();
7762
7763    case OR_Deleted:
7764      Diag(OpLoc, diag::err_ovl_deleted_oper)
7765        << Best->Function->isDeleted()
7766        << BinaryOperator::getOpcodeStr(Opc)
7767        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7768      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
7769      return ExprError();
7770  }
7771
7772  // We matched a built-in operator; build it.
7773  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7774}
7775
7776ExprResult
7777Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
7778                                         SourceLocation RLoc,
7779                                         Expr *Base, Expr *Idx) {
7780  Expr *Args[2] = { Base, Idx };
7781  DeclarationName OpName =
7782      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
7783
7784  // If either side is type-dependent, create an appropriate dependent
7785  // expression.
7786  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7787
7788    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7789    // CHECKME: no 'operator' keyword?
7790    DeclarationNameInfo OpNameInfo(OpName, LLoc);
7791    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
7792    UnresolvedLookupExpr *Fn
7793      = UnresolvedLookupExpr::Create(Context, NamingClass,
7794                                     0, SourceRange(), OpNameInfo,
7795                                     /*ADL*/ true, /*Overloaded*/ false,
7796                                     UnresolvedSetIterator(),
7797                                     UnresolvedSetIterator());
7798    // Can't add any actual overloads yet
7799
7800    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
7801                                                   Args, 2,
7802                                                   Context.DependentTy,
7803                                                   VK_RValue,
7804                                                   RLoc));
7805  }
7806
7807  if (Args[0]->getObjectKind() == OK_ObjCProperty)
7808    ConvertPropertyForRValue(Args[0]);
7809  if (Args[1]->getObjectKind() == OK_ObjCProperty)
7810    ConvertPropertyForRValue(Args[1]);
7811
7812  // Build an empty overload set.
7813  OverloadCandidateSet CandidateSet(LLoc);
7814
7815  // Subscript can only be overloaded as a member function.
7816
7817  // Add operator candidates that are member functions.
7818  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7819
7820  // Add builtin operator candidates.
7821  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7822
7823  // Perform overload resolution.
7824  OverloadCandidateSet::iterator Best;
7825  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
7826    case OR_Success: {
7827      // We found a built-in operator or an overloaded operator.
7828      FunctionDecl *FnDecl = Best->Function;
7829
7830      if (FnDecl) {
7831        // We matched an overloaded operator. Build a call to that
7832        // operator.
7833
7834        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
7835        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
7836
7837        // Convert the arguments.
7838        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
7839        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7840                                                Best->FoundDecl, Method))
7841          return ExprError();
7842
7843        // Convert the arguments.
7844        ExprResult InputInit
7845          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7846                                                      Context,
7847                                                      FnDecl->getParamDecl(0)),
7848                                      SourceLocation(),
7849                                      Owned(Args[1]));
7850        if (InputInit.isInvalid())
7851          return ExprError();
7852
7853        Args[1] = InputInit.takeAs<Expr>();
7854
7855        // Determine the result type
7856        QualType ResultTy = FnDecl->getResultType();
7857        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7858        ResultTy = ResultTy.getNonLValueExprType(Context);
7859
7860        // Build the actual expression node.
7861        Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc);
7862
7863        CXXOperatorCallExpr *TheCall =
7864          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
7865                                            FnExpr, Args, 2,
7866                                            ResultTy, VK, RLoc);
7867
7868        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
7869                                FnDecl))
7870          return ExprError();
7871
7872        return MaybeBindToTemporary(TheCall);
7873      } else {
7874        // We matched a built-in operator. Convert the arguments, then
7875        // break out so that we will build the appropriate built-in
7876        // operator node.
7877        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7878                                      Best->Conversions[0], AA_Passing) ||
7879            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7880                                      Best->Conversions[1], AA_Passing))
7881          return ExprError();
7882
7883        break;
7884      }
7885    }
7886
7887    case OR_No_Viable_Function: {
7888      if (CandidateSet.empty())
7889        Diag(LLoc, diag::err_ovl_no_oper)
7890          << Args[0]->getType() << /*subscript*/ 0
7891          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7892      else
7893        Diag(LLoc, diag::err_ovl_no_viable_subscript)
7894          << Args[0]->getType()
7895          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7896      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7897                                  "[]", LLoc);
7898      return ExprError();
7899    }
7900
7901    case OR_Ambiguous:
7902      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
7903          << "[]"
7904          << Args[0]->getType() << Args[1]->getType()
7905          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7906      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
7907                                  "[]", LLoc);
7908      return ExprError();
7909
7910    case OR_Deleted:
7911      Diag(LLoc, diag::err_ovl_deleted_oper)
7912        << Best->Function->isDeleted() << "[]"
7913        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7914      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7915                                  "[]", LLoc);
7916      return ExprError();
7917    }
7918
7919  // We matched a built-in operator; build it.
7920  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
7921}
7922
7923/// BuildCallToMemberFunction - Build a call to a member
7924/// function. MemExpr is the expression that refers to the member
7925/// function (and includes the object parameter), Args/NumArgs are the
7926/// arguments to the function call (not including the object
7927/// parameter). The caller needs to validate that the member
7928/// expression refers to a member function or an overloaded member
7929/// function.
7930ExprResult
7931Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
7932                                SourceLocation LParenLoc, Expr **Args,
7933                                unsigned NumArgs, SourceLocation RParenLoc) {
7934  // Dig out the member expression. This holds both the object
7935  // argument and the member function we're referring to.
7936  Expr *NakedMemExpr = MemExprE->IgnoreParens();
7937
7938  MemberExpr *MemExpr;
7939  CXXMethodDecl *Method = 0;
7940  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
7941  NestedNameSpecifier *Qualifier = 0;
7942  if (isa<MemberExpr>(NakedMemExpr)) {
7943    MemExpr = cast<MemberExpr>(NakedMemExpr);
7944    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
7945    FoundDecl = MemExpr->getFoundDecl();
7946    Qualifier = MemExpr->getQualifier();
7947  } else {
7948    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
7949    Qualifier = UnresExpr->getQualifier();
7950
7951    QualType ObjectType = UnresExpr->getBaseType();
7952
7953    // Add overload candidates
7954    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
7955
7956    // FIXME: avoid copy.
7957    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7958    if (UnresExpr->hasExplicitTemplateArgs()) {
7959      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7960      TemplateArgs = &TemplateArgsBuffer;
7961    }
7962
7963    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
7964           E = UnresExpr->decls_end(); I != E; ++I) {
7965
7966      NamedDecl *Func = *I;
7967      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
7968      if (isa<UsingShadowDecl>(Func))
7969        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
7970
7971      // Microsoft supports direct constructor calls.
7972      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
7973        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
7974                             CandidateSet);
7975      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
7976        // If explicit template arguments were provided, we can't call a
7977        // non-template member function.
7978        if (TemplateArgs)
7979          continue;
7980
7981        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
7982                           Args, NumArgs,
7983                           CandidateSet, /*SuppressUserConversions=*/false);
7984      } else {
7985        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
7986                                   I.getPair(), ActingDC, TemplateArgs,
7987                                   ObjectType, Args, NumArgs,
7988                                   CandidateSet,
7989                                   /*SuppressUsedConversions=*/false);
7990      }
7991    }
7992
7993    DeclarationName DeclName = UnresExpr->getMemberName();
7994
7995    OverloadCandidateSet::iterator Best;
7996    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
7997                                            Best)) {
7998    case OR_Success:
7999      Method = cast<CXXMethodDecl>(Best->Function);
8000      FoundDecl = Best->FoundDecl;
8001      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
8002      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
8003      break;
8004
8005    case OR_No_Viable_Function:
8006      Diag(UnresExpr->getMemberLoc(),
8007           diag::err_ovl_no_viable_member_function_in_call)
8008        << DeclName << MemExprE->getSourceRange();
8009      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8010      // FIXME: Leaking incoming expressions!
8011      return ExprError();
8012
8013    case OR_Ambiguous:
8014      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
8015        << DeclName << MemExprE->getSourceRange();
8016      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8017      // FIXME: Leaking incoming expressions!
8018      return ExprError();
8019
8020    case OR_Deleted:
8021      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
8022        << Best->Function->isDeleted()
8023        << DeclName << MemExprE->getSourceRange();
8024      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8025      // FIXME: Leaking incoming expressions!
8026      return ExprError();
8027    }
8028
8029    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
8030
8031    // If overload resolution picked a static member, build a
8032    // non-member call based on that function.
8033    if (Method->isStatic()) {
8034      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
8035                                   Args, NumArgs, RParenLoc);
8036    }
8037
8038    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
8039  }
8040
8041  QualType ResultType = Method->getResultType();
8042  ExprValueKind VK = Expr::getValueKindForType(ResultType);
8043  ResultType = ResultType.getNonLValueExprType(Context);
8044
8045  assert(Method && "Member call to something that isn't a method?");
8046  CXXMemberCallExpr *TheCall =
8047    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
8048                                    ResultType, VK, RParenLoc);
8049
8050  // Check for a valid return type.
8051  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
8052                          TheCall, Method))
8053    return ExprError();
8054
8055  // Convert the object argument (for a non-static member function call).
8056  // We only need to do this if there was actually an overload; otherwise
8057  // it was done at lookup.
8058  Expr *ObjectArg = MemExpr->getBase();
8059  if (!Method->isStatic() &&
8060      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
8061                                          FoundDecl, Method))
8062    return ExprError();
8063  MemExpr->setBase(ObjectArg);
8064
8065  // Convert the rest of the arguments
8066  const FunctionProtoType *Proto =
8067    Method->getType()->getAs<FunctionProtoType>();
8068  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
8069                              RParenLoc))
8070    return ExprError();
8071
8072  if (CheckFunctionCall(Method, TheCall))
8073    return ExprError();
8074
8075  return MaybeBindToTemporary(TheCall);
8076}
8077
8078/// BuildCallToObjectOfClassType - Build a call to an object of class
8079/// type (C++ [over.call.object]), which can end up invoking an
8080/// overloaded function call operator (@c operator()) or performing a
8081/// user-defined conversion on the object argument.
8082ExprResult
8083Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
8084                                   SourceLocation LParenLoc,
8085                                   Expr **Args, unsigned NumArgs,
8086                                   SourceLocation RParenLoc) {
8087  if (Object->getObjectKind() == OK_ObjCProperty)
8088    ConvertPropertyForRValue(Object);
8089
8090  assert(Object->getType()->isRecordType() && "Requires object type argument");
8091  const RecordType *Record = Object->getType()->getAs<RecordType>();
8092
8093  // C++ [over.call.object]p1:
8094  //  If the primary-expression E in the function call syntax
8095  //  evaluates to a class object of type "cv T", then the set of
8096  //  candidate functions includes at least the function call
8097  //  operators of T. The function call operators of T are obtained by
8098  //  ordinary lookup of the name operator() in the context of
8099  //  (E).operator().
8100  OverloadCandidateSet CandidateSet(LParenLoc);
8101  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
8102
8103  if (RequireCompleteType(LParenLoc, Object->getType(),
8104                          PDiag(diag::err_incomplete_object_call)
8105                          << Object->getSourceRange()))
8106    return true;
8107
8108  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
8109  LookupQualifiedName(R, Record->getDecl());
8110  R.suppressDiagnostics();
8111
8112  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8113       Oper != OperEnd; ++Oper) {
8114    AddMethodCandidate(Oper.getPair(), Object->getType(),
8115                       Args, NumArgs, CandidateSet,
8116                       /*SuppressUserConversions=*/ false);
8117  }
8118
8119  // C++ [over.call.object]p2:
8120  //   In addition, for each conversion function declared in T of the
8121  //   form
8122  //
8123  //        operator conversion-type-id () cv-qualifier;
8124  //
8125  //   where cv-qualifier is the same cv-qualification as, or a
8126  //   greater cv-qualification than, cv, and where conversion-type-id
8127  //   denotes the type "pointer to function of (P1,...,Pn) returning
8128  //   R", or the type "reference to pointer to function of
8129  //   (P1,...,Pn) returning R", or the type "reference to function
8130  //   of (P1,...,Pn) returning R", a surrogate call function [...]
8131  //   is also considered as a candidate function. Similarly,
8132  //   surrogate call functions are added to the set of candidate
8133  //   functions for each conversion function declared in an
8134  //   accessible base class provided the function is not hidden
8135  //   within T by another intervening declaration.
8136  const UnresolvedSetImpl *Conversions
8137    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
8138  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
8139         E = Conversions->end(); I != E; ++I) {
8140    NamedDecl *D = *I;
8141    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
8142    if (isa<UsingShadowDecl>(D))
8143      D = cast<UsingShadowDecl>(D)->getTargetDecl();
8144
8145    // Skip over templated conversion functions; they aren't
8146    // surrogates.
8147    if (isa<FunctionTemplateDecl>(D))
8148      continue;
8149
8150    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8151
8152    // Strip the reference type (if any) and then the pointer type (if
8153    // any) to get down to what might be a function type.
8154    QualType ConvType = Conv->getConversionType().getNonReferenceType();
8155    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8156      ConvType = ConvPtrType->getPointeeType();
8157
8158    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
8159      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
8160                            Object->getType(), Args, NumArgs,
8161                            CandidateSet);
8162  }
8163
8164  // Perform overload resolution.
8165  OverloadCandidateSet::iterator Best;
8166  switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(),
8167                             Best)) {
8168  case OR_Success:
8169    // Overload resolution succeeded; we'll build the appropriate call
8170    // below.
8171    break;
8172
8173  case OR_No_Viable_Function:
8174    if (CandidateSet.empty())
8175      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
8176        << Object->getType() << /*call*/ 1
8177        << Object->getSourceRange();
8178    else
8179      Diag(Object->getSourceRange().getBegin(),
8180           diag::err_ovl_no_viable_object_call)
8181        << Object->getType() << Object->getSourceRange();
8182    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8183    break;
8184
8185  case OR_Ambiguous:
8186    Diag(Object->getSourceRange().getBegin(),
8187         diag::err_ovl_ambiguous_object_call)
8188      << Object->getType() << Object->getSourceRange();
8189    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8190    break;
8191
8192  case OR_Deleted:
8193    Diag(Object->getSourceRange().getBegin(),
8194         diag::err_ovl_deleted_object_call)
8195      << Best->Function->isDeleted()
8196      << Object->getType() << Object->getSourceRange();
8197    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8198    break;
8199  }
8200
8201  if (Best == CandidateSet.end())
8202    return true;
8203
8204  if (Best->Function == 0) {
8205    // Since there is no function declaration, this is one of the
8206    // surrogate candidates. Dig out the conversion function.
8207    CXXConversionDecl *Conv
8208      = cast<CXXConversionDecl>(
8209                         Best->Conversions[0].UserDefined.ConversionFunction);
8210
8211    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
8212    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8213
8214    // We selected one of the surrogate functions that converts the
8215    // object parameter to a function pointer. Perform the conversion
8216    // on the object argument, then let ActOnCallExpr finish the job.
8217
8218    // Create an implicit member expr to refer to the conversion operator.
8219    // and then call it.
8220    ExprResult Call = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv);
8221    if (Call.isInvalid())
8222      return ExprError();
8223
8224    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
8225                         RParenLoc);
8226  }
8227
8228  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
8229  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8230
8231  // We found an overloaded operator(). Build a CXXOperatorCallExpr
8232  // that calls this method, using Object for the implicit object
8233  // parameter and passing along the remaining arguments.
8234  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8235  const FunctionProtoType *Proto =
8236    Method->getType()->getAs<FunctionProtoType>();
8237
8238  unsigned NumArgsInProto = Proto->getNumArgs();
8239  unsigned NumArgsToCheck = NumArgs;
8240
8241  // Build the full argument list for the method call (the
8242  // implicit object parameter is placed at the beginning of the
8243  // list).
8244  Expr **MethodArgs;
8245  if (NumArgs < NumArgsInProto) {
8246    NumArgsToCheck = NumArgsInProto;
8247    MethodArgs = new Expr*[NumArgsInProto + 1];
8248  } else {
8249    MethodArgs = new Expr*[NumArgs + 1];
8250  }
8251  MethodArgs[0] = Object;
8252  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
8253    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
8254
8255  Expr *NewFn = CreateFunctionRefExpr(*this, Method);
8256
8257  // Once we've built TheCall, all of the expressions are properly
8258  // owned.
8259  QualType ResultTy = Method->getResultType();
8260  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8261  ResultTy = ResultTy.getNonLValueExprType(Context);
8262
8263  CXXOperatorCallExpr *TheCall =
8264    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
8265                                      MethodArgs, NumArgs + 1,
8266                                      ResultTy, VK, RParenLoc);
8267  delete [] MethodArgs;
8268
8269  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
8270                          Method))
8271    return true;
8272
8273  // We may have default arguments. If so, we need to allocate more
8274  // slots in the call for them.
8275  if (NumArgs < NumArgsInProto)
8276    TheCall->setNumArgs(Context, NumArgsInProto + 1);
8277  else if (NumArgs > NumArgsInProto)
8278    NumArgsToCheck = NumArgsInProto;
8279
8280  bool IsError = false;
8281
8282  // Initialize the implicit object parameter.
8283  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
8284                                                 Best->FoundDecl, Method);
8285  TheCall->setArg(0, Object);
8286
8287
8288  // Check the argument types.
8289  for (unsigned i = 0; i != NumArgsToCheck; i++) {
8290    Expr *Arg;
8291    if (i < NumArgs) {
8292      Arg = Args[i];
8293
8294      // Pass the argument.
8295
8296      ExprResult InputInit
8297        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8298                                                    Context,
8299                                                    Method->getParamDecl(i)),
8300                                    SourceLocation(), Arg);
8301
8302      IsError |= InputInit.isInvalid();
8303      Arg = InputInit.takeAs<Expr>();
8304    } else {
8305      ExprResult DefArg
8306        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
8307      if (DefArg.isInvalid()) {
8308        IsError = true;
8309        break;
8310      }
8311
8312      Arg = DefArg.takeAs<Expr>();
8313    }
8314
8315    TheCall->setArg(i + 1, Arg);
8316  }
8317
8318  // If this is a variadic call, handle args passed through "...".
8319  if (Proto->isVariadic()) {
8320    // Promote the arguments (C99 6.5.2.2p7).
8321    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
8322      Expr *Arg = Args[i];
8323      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
8324      TheCall->setArg(i + 1, Arg);
8325    }
8326  }
8327
8328  if (IsError) return true;
8329
8330  if (CheckFunctionCall(Method, TheCall))
8331    return true;
8332
8333  return MaybeBindToTemporary(TheCall);
8334}
8335
8336/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
8337///  (if one exists), where @c Base is an expression of class type and
8338/// @c Member is the name of the member we're trying to find.
8339ExprResult
8340Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
8341  assert(Base->getType()->isRecordType() &&
8342         "left-hand side must have class type");
8343
8344  if (Base->getObjectKind() == OK_ObjCProperty)
8345    ConvertPropertyForRValue(Base);
8346
8347  SourceLocation Loc = Base->getExprLoc();
8348
8349  // C++ [over.ref]p1:
8350  //
8351  //   [...] An expression x->m is interpreted as (x.operator->())->m
8352  //   for a class object x of type T if T::operator->() exists and if
8353  //   the operator is selected as the best match function by the
8354  //   overload resolution mechanism (13.3).
8355  DeclarationName OpName =
8356    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
8357  OverloadCandidateSet CandidateSet(Loc);
8358  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
8359
8360  if (RequireCompleteType(Loc, Base->getType(),
8361                          PDiag(diag::err_typecheck_incomplete_tag)
8362                            << Base->getSourceRange()))
8363    return ExprError();
8364
8365  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
8366  LookupQualifiedName(R, BaseRecord->getDecl());
8367  R.suppressDiagnostics();
8368
8369  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8370       Oper != OperEnd; ++Oper) {
8371    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
8372                       /*SuppressUserConversions=*/false);
8373  }
8374
8375  // Perform overload resolution.
8376  OverloadCandidateSet::iterator Best;
8377  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8378  case OR_Success:
8379    // Overload resolution succeeded; we'll build the call below.
8380    break;
8381
8382  case OR_No_Viable_Function:
8383    if (CandidateSet.empty())
8384      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
8385        << Base->getType() << Base->getSourceRange();
8386    else
8387      Diag(OpLoc, diag::err_ovl_no_viable_oper)
8388        << "operator->" << Base->getSourceRange();
8389    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8390    return ExprError();
8391
8392  case OR_Ambiguous:
8393    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8394      << "->" << Base->getType() << Base->getSourceRange();
8395    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
8396    return ExprError();
8397
8398  case OR_Deleted:
8399    Diag(OpLoc,  diag::err_ovl_deleted_oper)
8400      << Best->Function->isDeleted()
8401      << "->" << Base->getSourceRange();
8402    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8403    return ExprError();
8404  }
8405
8406  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
8407  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8408
8409  // Convert the object parameter.
8410  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8411  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
8412                                          Best->FoundDecl, Method))
8413    return ExprError();
8414
8415  // Build the operator call.
8416  Expr *FnExpr = CreateFunctionRefExpr(*this, Method);
8417
8418  QualType ResultTy = Method->getResultType();
8419  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8420  ResultTy = ResultTy.getNonLValueExprType(Context);
8421  CXXOperatorCallExpr *TheCall =
8422    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
8423                                      &Base, 1, ResultTy, VK, OpLoc);
8424
8425  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
8426                          Method))
8427          return ExprError();
8428  return Owned(TheCall);
8429}
8430
8431/// FixOverloadedFunctionReference - E is an expression that refers to
8432/// a C++ overloaded function (possibly with some parentheses and
8433/// perhaps a '&' around it). We have resolved the overloaded function
8434/// to the function declaration Fn, so patch up the expression E to
8435/// refer (possibly indirectly) to Fn. Returns the new expr.
8436Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
8437                                           FunctionDecl *Fn) {
8438  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
8439    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
8440                                                   Found, Fn);
8441    if (SubExpr == PE->getSubExpr())
8442      return PE;
8443
8444    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
8445  }
8446
8447  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8448    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
8449                                                   Found, Fn);
8450    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
8451                               SubExpr->getType()) &&
8452           "Implicit cast type cannot be determined from overload");
8453    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
8454    if (SubExpr == ICE->getSubExpr())
8455      return ICE;
8456
8457    return ImplicitCastExpr::Create(Context, ICE->getType(),
8458                                    ICE->getCastKind(),
8459                                    SubExpr, 0,
8460                                    ICE->getValueKind());
8461  }
8462
8463  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
8464    assert(UnOp->getOpcode() == UO_AddrOf &&
8465           "Can only take the address of an overloaded function");
8466    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8467      if (Method->isStatic()) {
8468        // Do nothing: static member functions aren't any different
8469        // from non-member functions.
8470      } else {
8471        // Fix the sub expression, which really has to be an
8472        // UnresolvedLookupExpr holding an overloaded member function
8473        // or template.
8474        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
8475                                                       Found, Fn);
8476        if (SubExpr == UnOp->getSubExpr())
8477          return UnOp;
8478
8479        assert(isa<DeclRefExpr>(SubExpr)
8480               && "fixed to something other than a decl ref");
8481        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
8482               && "fixed to a member ref with no nested name qualifier");
8483
8484        // We have taken the address of a pointer to member
8485        // function. Perform the computation here so that we get the
8486        // appropriate pointer to member type.
8487        QualType ClassType
8488          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
8489        QualType MemPtrType
8490          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
8491
8492        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
8493                                           VK_RValue, OK_Ordinary,
8494                                           UnOp->getOperatorLoc());
8495      }
8496    }
8497    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
8498                                                   Found, Fn);
8499    if (SubExpr == UnOp->getSubExpr())
8500      return UnOp;
8501
8502    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
8503                                     Context.getPointerType(SubExpr->getType()),
8504                                       VK_RValue, OK_Ordinary,
8505                                       UnOp->getOperatorLoc());
8506  }
8507
8508  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8509    // FIXME: avoid copy.
8510    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8511    if (ULE->hasExplicitTemplateArgs()) {
8512      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
8513      TemplateArgs = &TemplateArgsBuffer;
8514    }
8515
8516    return DeclRefExpr::Create(Context,
8517                               ULE->getQualifier(),
8518                               ULE->getQualifierRange(),
8519                               Fn,
8520                               ULE->getNameLoc(),
8521                               Fn->getType(),
8522                               VK_LValue,
8523                               TemplateArgs);
8524  }
8525
8526  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
8527    // FIXME: avoid copy.
8528    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8529    if (MemExpr->hasExplicitTemplateArgs()) {
8530      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
8531      TemplateArgs = &TemplateArgsBuffer;
8532    }
8533
8534    Expr *Base;
8535
8536    // If we're filling in a static method where we used to have an
8537    // implicit member access, rewrite to a simple decl ref.
8538    if (MemExpr->isImplicitAccess()) {
8539      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
8540        return DeclRefExpr::Create(Context,
8541                                   MemExpr->getQualifier(),
8542                                   MemExpr->getQualifierRange(),
8543                                   Fn,
8544                                   MemExpr->getMemberLoc(),
8545                                   Fn->getType(),
8546                                   VK_LValue,
8547                                   TemplateArgs);
8548      } else {
8549        SourceLocation Loc = MemExpr->getMemberLoc();
8550        if (MemExpr->getQualifier())
8551          Loc = MemExpr->getQualifierRange().getBegin();
8552        Base = new (Context) CXXThisExpr(Loc,
8553                                         MemExpr->getBaseType(),
8554                                         /*isImplicit=*/true);
8555      }
8556    } else
8557      Base = MemExpr->getBase();
8558
8559    return MemberExpr::Create(Context, Base,
8560                              MemExpr->isArrow(),
8561                              MemExpr->getQualifier(),
8562                              MemExpr->getQualifierRange(),
8563                              Fn,
8564                              Found,
8565                              MemExpr->getMemberNameInfo(),
8566                              TemplateArgs,
8567                              Fn->getType(),
8568                              cast<CXXMethodDecl>(Fn)->isStatic()
8569                                ? VK_LValue : VK_RValue,
8570                              OK_Ordinary);
8571  }
8572
8573  llvm_unreachable("Invalid reference to overloaded function");
8574  return E;
8575}
8576
8577ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
8578                                                DeclAccessPair Found,
8579                                                FunctionDecl *Fn) {
8580  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
8581}
8582
8583} // end namespace clang
8584