SemaOverload.cpp revision b86b0579c5805c8ecaedd2d676e06bf8c2bf7f79
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Conversion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion
49  };
50  return Category[(int)Kind];
51}
52
53/// GetConversionRank - Retrieve the implicit conversion rank
54/// corresponding to the given implicit conversion kind.
55ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
56  static const ImplicitConversionRank
57    Rank[(int)ICK_Num_Conversion_Kinds] = {
58    ICR_Exact_Match,
59    ICR_Exact_Match,
60    ICR_Exact_Match,
61    ICR_Exact_Match,
62    ICR_Exact_Match,
63    ICR_Promotion,
64    ICR_Promotion,
65    ICR_Conversion,
66    ICR_Conversion,
67    ICR_Conversion,
68    ICR_Conversion,
69    ICR_Conversion,
70    ICR_Conversion,
71    ICR_Conversion
72  };
73  return Rank[(int)Kind];
74}
75
76/// GetImplicitConversionName - Return the name of this kind of
77/// implicit conversion.
78const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
79  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
80    "No conversion",
81    "Lvalue-to-rvalue",
82    "Array-to-pointer",
83    "Function-to-pointer",
84    "Qualification",
85    "Integral promotion",
86    "Floating point promotion",
87    "Integral conversion",
88    "Floating conversion",
89    "Floating-integral conversion",
90    "Pointer conversion",
91    "Pointer-to-member conversion",
92    "Boolean conversion",
93    "Derived-to-base conversion"
94  };
95  return Name[Kind];
96}
97
98/// StandardConversionSequence - Set the standard conversion
99/// sequence to the identity conversion.
100void StandardConversionSequence::setAsIdentityConversion() {
101  First = ICK_Identity;
102  Second = ICK_Identity;
103  Third = ICK_Identity;
104  Deprecated = false;
105  ReferenceBinding = false;
106  DirectBinding = false;
107  CopyConstructor = 0;
108}
109
110/// getRank - Retrieve the rank of this standard conversion sequence
111/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
112/// implicit conversions.
113ImplicitConversionRank StandardConversionSequence::getRank() const {
114  ImplicitConversionRank Rank = ICR_Exact_Match;
115  if  (GetConversionRank(First) > Rank)
116    Rank = GetConversionRank(First);
117  if  (GetConversionRank(Second) > Rank)
118    Rank = GetConversionRank(Second);
119  if  (GetConversionRank(Third) > Rank)
120    Rank = GetConversionRank(Third);
121  return Rank;
122}
123
124/// isPointerConversionToBool - Determines whether this conversion is
125/// a conversion of a pointer or pointer-to-member to bool. This is
126/// used as part of the ranking of standard conversion sequences
127/// (C++ 13.3.3.2p4).
128bool StandardConversionSequence::isPointerConversionToBool() const
129{
130  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
131  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
132
133  // Note that FromType has not necessarily been transformed by the
134  // array-to-pointer or function-to-pointer implicit conversions, so
135  // check for their presence as well as checking whether FromType is
136  // a pointer.
137  if (ToType->isBooleanType() &&
138      (FromType->isPointerType() || FromType->isBlockPointerType() ||
139       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
140    return true;
141
142  return false;
143}
144
145/// isPointerConversionToVoidPointer - Determines whether this
146/// conversion is a conversion of a pointer to a void pointer. This is
147/// used as part of the ranking of standard conversion sequences (C++
148/// 13.3.3.2p4).
149bool
150StandardConversionSequence::
151isPointerConversionToVoidPointer(ASTContext& Context) const
152{
153  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
154  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
155
156  // Note that FromType has not necessarily been transformed by the
157  // array-to-pointer implicit conversion, so check for its presence
158  // and redo the conversion to get a pointer.
159  if (First == ICK_Array_To_Pointer)
160    FromType = Context.getArrayDecayedType(FromType);
161
162  if (Second == ICK_Pointer_Conversion)
163    if (const PointerType* ToPtrType = ToType->getAsPointerType())
164      return ToPtrType->getPointeeType()->isVoidType();
165
166  return false;
167}
168
169/// DebugPrint - Print this standard conversion sequence to standard
170/// error. Useful for debugging overloading issues.
171void StandardConversionSequence::DebugPrint() const {
172  bool PrintedSomething = false;
173  if (First != ICK_Identity) {
174    fprintf(stderr, "%s", GetImplicitConversionName(First));
175    PrintedSomething = true;
176  }
177
178  if (Second != ICK_Identity) {
179    if (PrintedSomething) {
180      fprintf(stderr, " -> ");
181    }
182    fprintf(stderr, "%s", GetImplicitConversionName(Second));
183
184    if (CopyConstructor) {
185      fprintf(stderr, " (by copy constructor)");
186    } else if (DirectBinding) {
187      fprintf(stderr, " (direct reference binding)");
188    } else if (ReferenceBinding) {
189      fprintf(stderr, " (reference binding)");
190    }
191    PrintedSomething = true;
192  }
193
194  if (Third != ICK_Identity) {
195    if (PrintedSomething) {
196      fprintf(stderr, " -> ");
197    }
198    fprintf(stderr, "%s", GetImplicitConversionName(Third));
199    PrintedSomething = true;
200  }
201
202  if (!PrintedSomething) {
203    fprintf(stderr, "No conversions required");
204  }
205}
206
207/// DebugPrint - Print this user-defined conversion sequence to standard
208/// error. Useful for debugging overloading issues.
209void UserDefinedConversionSequence::DebugPrint() const {
210  if (Before.First || Before.Second || Before.Third) {
211    Before.DebugPrint();
212    fprintf(stderr, " -> ");
213  }
214  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
215  if (After.First || After.Second || After.Third) {
216    fprintf(stderr, " -> ");
217    After.DebugPrint();
218  }
219}
220
221/// DebugPrint - Print this implicit conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void ImplicitConversionSequence::DebugPrint() const {
224  switch (ConversionKind) {
225  case StandardConversion:
226    fprintf(stderr, "Standard conversion: ");
227    Standard.DebugPrint();
228    break;
229  case UserDefinedConversion:
230    fprintf(stderr, "User-defined conversion: ");
231    UserDefined.DebugPrint();
232    break;
233  case EllipsisConversion:
234    fprintf(stderr, "Ellipsis conversion");
235    break;
236  case BadConversion:
237    fprintf(stderr, "Bad conversion");
238    break;
239  }
240
241  fprintf(stderr, "\n");
242}
243
244// IsOverload - Determine whether the given New declaration is an
245// overload of the Old declaration. This routine returns false if New
246// and Old cannot be overloaded, e.g., if they are functions with the
247// same signature (C++ 1.3.10) or if the Old declaration isn't a
248// function (or overload set). When it does return false and Old is an
249// OverloadedFunctionDecl, MatchedDecl will be set to point to the
250// FunctionDecl that New cannot be overloaded with.
251//
252// Example: Given the following input:
253//
254//   void f(int, float); // #1
255//   void f(int, int); // #2
256//   int f(int, int); // #3
257//
258// When we process #1, there is no previous declaration of "f",
259// so IsOverload will not be used.
260//
261// When we process #2, Old is a FunctionDecl for #1.  By comparing the
262// parameter types, we see that #1 and #2 are overloaded (since they
263// have different signatures), so this routine returns false;
264// MatchedDecl is unchanged.
265//
266// When we process #3, Old is an OverloadedFunctionDecl containing #1
267// and #2. We compare the signatures of #3 to #1 (they're overloaded,
268// so we do nothing) and then #3 to #2. Since the signatures of #3 and
269// #2 are identical (return types of functions are not part of the
270// signature), IsOverload returns false and MatchedDecl will be set to
271// point to the FunctionDecl for #2.
272bool
273Sema::IsOverload(FunctionDecl *New, Decl* OldD,
274                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
275{
276  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
277    // Is this new function an overload of every function in the
278    // overload set?
279    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
280                                           FuncEnd = Ovl->function_end();
281    for (; Func != FuncEnd; ++Func) {
282      if (!IsOverload(New, *Func, MatchedDecl)) {
283        MatchedDecl = Func;
284        return false;
285      }
286    }
287
288    // This function overloads every function in the overload set.
289    return true;
290  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
291    // Is the function New an overload of the function Old?
292    QualType OldQType = Context.getCanonicalType(Old->getType());
293    QualType NewQType = Context.getCanonicalType(New->getType());
294
295    // Compare the signatures (C++ 1.3.10) of the two functions to
296    // determine whether they are overloads. If we find any mismatch
297    // in the signature, they are overloads.
298
299    // If either of these functions is a K&R-style function (no
300    // prototype), then we consider them to have matching signatures.
301    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
302        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
303      return false;
304
305    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
306    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
307
308    // The signature of a function includes the types of its
309    // parameters (C++ 1.3.10), which includes the presence or absence
310    // of the ellipsis; see C++ DR 357).
311    if (OldQType != NewQType &&
312        (OldType->getNumArgs() != NewType->getNumArgs() ||
313         OldType->isVariadic() != NewType->isVariadic() ||
314         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
315                     NewType->arg_type_begin())))
316      return true;
317
318    // If the function is a class member, its signature includes the
319    // cv-qualifiers (if any) on the function itself.
320    //
321    // As part of this, also check whether one of the member functions
322    // is static, in which case they are not overloads (C++
323    // 13.1p2). While not part of the definition of the signature,
324    // this check is important to determine whether these functions
325    // can be overloaded.
326    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
327    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
328    if (OldMethod && NewMethod &&
329        !OldMethod->isStatic() && !NewMethod->isStatic() &&
330        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
331      return true;
332
333    // The signatures match; this is not an overload.
334    return false;
335  } else {
336    // (C++ 13p1):
337    //   Only function declarations can be overloaded; object and type
338    //   declarations cannot be overloaded.
339    return false;
340  }
341}
342
343/// TryImplicitConversion - Attempt to perform an implicit conversion
344/// from the given expression (Expr) to the given type (ToType). This
345/// function returns an implicit conversion sequence that can be used
346/// to perform the initialization. Given
347///
348///   void f(float f);
349///   void g(int i) { f(i); }
350///
351/// this routine would produce an implicit conversion sequence to
352/// describe the initialization of f from i, which will be a standard
353/// conversion sequence containing an lvalue-to-rvalue conversion (C++
354/// 4.1) followed by a floating-integral conversion (C++ 4.9).
355//
356/// Note that this routine only determines how the conversion can be
357/// performed; it does not actually perform the conversion. As such,
358/// it will not produce any diagnostics if no conversion is available,
359/// but will instead return an implicit conversion sequence of kind
360/// "BadConversion".
361///
362/// If @p SuppressUserConversions, then user-defined conversions are
363/// not permitted.
364/// If @p AllowExplicit, then explicit user-defined conversions are
365/// permitted.
366ImplicitConversionSequence
367Sema::TryImplicitConversion(Expr* From, QualType ToType,
368                            bool SuppressUserConversions,
369                            bool AllowExplicit)
370{
371  ImplicitConversionSequence ICS;
372  if (IsStandardConversion(From, ToType, ICS.Standard))
373    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
374  else if (IsUserDefinedConversion(From, ToType, ICS.UserDefined,
375                                   !SuppressUserConversions, AllowExplicit)) {
376    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
377    // C++ [over.ics.user]p4:
378    //   A conversion of an expression of class type to the same class
379    //   type is given Exact Match rank, and a conversion of an
380    //   expression of class type to a base class of that type is
381    //   given Conversion rank, in spite of the fact that a copy
382    //   constructor (i.e., a user-defined conversion function) is
383    //   called for those cases.
384    if (CXXConstructorDecl *Constructor
385          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
386      QualType FromCanon
387        = Context.getCanonicalType(From->getType().getUnqualifiedType());
388      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
389      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
390        // Turn this into a "standard" conversion sequence, so that it
391        // gets ranked with standard conversion sequences.
392        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
393        ICS.Standard.setAsIdentityConversion();
394        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
395        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
396        ICS.Standard.CopyConstructor = Constructor;
397        if (ToCanon != FromCanon)
398          ICS.Standard.Second = ICK_Derived_To_Base;
399      }
400    }
401
402    // C++ [over.best.ics]p4:
403    //   However, when considering the argument of a user-defined
404    //   conversion function that is a candidate by 13.3.1.3 when
405    //   invoked for the copying of the temporary in the second step
406    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
407    //   13.3.1.6 in all cases, only standard conversion sequences and
408    //   ellipsis conversion sequences are allowed.
409    if (SuppressUserConversions &&
410        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
411      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
412  } else
413    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
414
415  return ICS;
416}
417
418/// IsStandardConversion - Determines whether there is a standard
419/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
420/// expression From to the type ToType. Standard conversion sequences
421/// only consider non-class types; for conversions that involve class
422/// types, use TryImplicitConversion. If a conversion exists, SCS will
423/// contain the standard conversion sequence required to perform this
424/// conversion and this routine will return true. Otherwise, this
425/// routine will return false and the value of SCS is unspecified.
426bool
427Sema::IsStandardConversion(Expr* From, QualType ToType,
428                           StandardConversionSequence &SCS)
429{
430  QualType FromType = From->getType();
431
432  // There are no standard conversions for class types, so abort early.
433  if (FromType->isRecordType() || ToType->isRecordType())
434    return false;
435
436  // Standard conversions (C++ [conv])
437  SCS.setAsIdentityConversion();
438  SCS.Deprecated = false;
439  SCS.IncompatibleObjC = false;
440  SCS.FromTypePtr = FromType.getAsOpaquePtr();
441  SCS.CopyConstructor = 0;
442
443  // The first conversion can be an lvalue-to-rvalue conversion,
444  // array-to-pointer conversion, or function-to-pointer conversion
445  // (C++ 4p1).
446
447  // Lvalue-to-rvalue conversion (C++ 4.1):
448  //   An lvalue (3.10) of a non-function, non-array type T can be
449  //   converted to an rvalue.
450  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
451  if (argIsLvalue == Expr::LV_Valid &&
452      !FromType->isFunctionType() && !FromType->isArrayType() &&
453      !FromType->isOverloadType()) {
454    SCS.First = ICK_Lvalue_To_Rvalue;
455
456    // If T is a non-class type, the type of the rvalue is the
457    // cv-unqualified version of T. Otherwise, the type of the rvalue
458    // is T (C++ 4.1p1).
459    FromType = FromType.getUnqualifiedType();
460  }
461  // Array-to-pointer conversion (C++ 4.2)
462  else if (FromType->isArrayType()) {
463    SCS.First = ICK_Array_To_Pointer;
464
465    // An lvalue or rvalue of type "array of N T" or "array of unknown
466    // bound of T" can be converted to an rvalue of type "pointer to
467    // T" (C++ 4.2p1).
468    FromType = Context.getArrayDecayedType(FromType);
469
470    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
471      // This conversion is deprecated. (C++ D.4).
472      SCS.Deprecated = true;
473
474      // For the purpose of ranking in overload resolution
475      // (13.3.3.1.1), this conversion is considered an
476      // array-to-pointer conversion followed by a qualification
477      // conversion (4.4). (C++ 4.2p2)
478      SCS.Second = ICK_Identity;
479      SCS.Third = ICK_Qualification;
480      SCS.ToTypePtr = ToType.getAsOpaquePtr();
481      return true;
482    }
483  }
484  // Function-to-pointer conversion (C++ 4.3).
485  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
486    SCS.First = ICK_Function_To_Pointer;
487
488    // An lvalue of function type T can be converted to an rvalue of
489    // type "pointer to T." The result is a pointer to the
490    // function. (C++ 4.3p1).
491    FromType = Context.getPointerType(FromType);
492  }
493  // Address of overloaded function (C++ [over.over]).
494  else if (FunctionDecl *Fn
495             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
496    SCS.First = ICK_Function_To_Pointer;
497
498    // We were able to resolve the address of the overloaded function,
499    // so we can convert to the type of that function.
500    FromType = Fn->getType();
501    if (ToType->isReferenceType())
502      FromType = Context.getReferenceType(FromType);
503    else if (ToType->isMemberPointerType()) {
504      // Resolve address only succeeds if both sides are member pointers,
505      // but it doesn't have to be the same class. See DR 247.
506      // Note that this means that the type of &Derived::fn can be
507      // Ret (Base::*)(Args) if the fn overload actually found is from the
508      // base class, even if it was brought into the derived class via a
509      // using declaration. The standard isn't clear on this issue at all.
510      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
511      FromType = Context.getMemberPointerType(FromType,
512                    Context.getTypeDeclType(M->getParent()).getTypePtr());
513    } else
514      FromType = Context.getPointerType(FromType);
515  }
516  // We don't require any conversions for the first step.
517  else {
518    SCS.First = ICK_Identity;
519  }
520
521  // The second conversion can be an integral promotion, floating
522  // point promotion, integral conversion, floating point conversion,
523  // floating-integral conversion, pointer conversion,
524  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
525  bool IncompatibleObjC = false;
526  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
527      Context.getCanonicalType(ToType).getUnqualifiedType()) {
528    // The unqualified versions of the types are the same: there's no
529    // conversion to do.
530    SCS.Second = ICK_Identity;
531  }
532  // Integral promotion (C++ 4.5).
533  else if (IsIntegralPromotion(From, FromType, ToType)) {
534    SCS.Second = ICK_Integral_Promotion;
535    FromType = ToType.getUnqualifiedType();
536  }
537  // Floating point promotion (C++ 4.6).
538  else if (IsFloatingPointPromotion(FromType, ToType)) {
539    SCS.Second = ICK_Floating_Promotion;
540    FromType = ToType.getUnqualifiedType();
541  }
542  // Integral conversions (C++ 4.7).
543  // FIXME: isIntegralType shouldn't be true for enums in C++.
544  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
545           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
546    SCS.Second = ICK_Integral_Conversion;
547    FromType = ToType.getUnqualifiedType();
548  }
549  // Floating point conversions (C++ 4.8).
550  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
551    SCS.Second = ICK_Floating_Conversion;
552    FromType = ToType.getUnqualifiedType();
553  }
554  // Floating-integral conversions (C++ 4.9).
555  // FIXME: isIntegralType shouldn't be true for enums in C++.
556  else if ((FromType->isFloatingType() &&
557            ToType->isIntegralType() && !ToType->isBooleanType() &&
558                                        !ToType->isEnumeralType()) ||
559           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
560            ToType->isFloatingType())) {
561    SCS.Second = ICK_Floating_Integral;
562    FromType = ToType.getUnqualifiedType();
563  }
564  // Pointer conversions (C++ 4.10).
565  else if (IsPointerConversion(From, FromType, ToType, FromType,
566                               IncompatibleObjC)) {
567    SCS.Second = ICK_Pointer_Conversion;
568    SCS.IncompatibleObjC = IncompatibleObjC;
569  }
570  // Pointer to member conversions (4.11).
571  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
572    SCS.Second = ICK_Pointer_Member;
573  }
574  // Boolean conversions (C++ 4.12).
575  else if (ToType->isBooleanType() &&
576           (FromType->isArithmeticType() ||
577            FromType->isEnumeralType() ||
578            FromType->isPointerType() ||
579            FromType->isBlockPointerType() ||
580            FromType->isMemberPointerType())) {
581    SCS.Second = ICK_Boolean_Conversion;
582    FromType = Context.BoolTy;
583  } else {
584    // No second conversion required.
585    SCS.Second = ICK_Identity;
586  }
587
588  QualType CanonFrom;
589  QualType CanonTo;
590  // The third conversion can be a qualification conversion (C++ 4p1).
591  if (IsQualificationConversion(FromType, ToType)) {
592    SCS.Third = ICK_Qualification;
593    FromType = ToType;
594    CanonFrom = Context.getCanonicalType(FromType);
595    CanonTo = Context.getCanonicalType(ToType);
596  } else {
597    // No conversion required
598    SCS.Third = ICK_Identity;
599
600    // C++ [over.best.ics]p6:
601    //   [...] Any difference in top-level cv-qualification is
602    //   subsumed by the initialization itself and does not constitute
603    //   a conversion. [...]
604    CanonFrom = Context.getCanonicalType(FromType);
605    CanonTo = Context.getCanonicalType(ToType);
606    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
607        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
608      FromType = ToType;
609      CanonFrom = CanonTo;
610    }
611  }
612
613  // If we have not converted the argument type to the parameter type,
614  // this is a bad conversion sequence.
615  if (CanonFrom != CanonTo)
616    return false;
617
618  SCS.ToTypePtr = FromType.getAsOpaquePtr();
619  return true;
620}
621
622/// IsIntegralPromotion - Determines whether the conversion from the
623/// expression From (whose potentially-adjusted type is FromType) to
624/// ToType is an integral promotion (C++ 4.5). If so, returns true and
625/// sets PromotedType to the promoted type.
626bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
627{
628  const BuiltinType *To = ToType->getAsBuiltinType();
629  // All integers are built-in.
630  if (!To) {
631    return false;
632  }
633
634  // An rvalue of type char, signed char, unsigned char, short int, or
635  // unsigned short int can be converted to an rvalue of type int if
636  // int can represent all the values of the source type; otherwise,
637  // the source rvalue can be converted to an rvalue of type unsigned
638  // int (C++ 4.5p1).
639  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
640    if (// We can promote any signed, promotable integer type to an int
641        (FromType->isSignedIntegerType() ||
642         // We can promote any unsigned integer type whose size is
643         // less than int to an int.
644         (!FromType->isSignedIntegerType() &&
645          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
646      return To->getKind() == BuiltinType::Int;
647    }
648
649    return To->getKind() == BuiltinType::UInt;
650  }
651
652  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
653  // can be converted to an rvalue of the first of the following types
654  // that can represent all the values of its underlying type: int,
655  // unsigned int, long, or unsigned long (C++ 4.5p2).
656  if ((FromType->isEnumeralType() || FromType->isWideCharType())
657      && ToType->isIntegerType()) {
658    // Determine whether the type we're converting from is signed or
659    // unsigned.
660    bool FromIsSigned;
661    uint64_t FromSize = Context.getTypeSize(FromType);
662    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
663      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
664      FromIsSigned = UnderlyingType->isSignedIntegerType();
665    } else {
666      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
667      FromIsSigned = true;
668    }
669
670    // The types we'll try to promote to, in the appropriate
671    // order. Try each of these types.
672    QualType PromoteTypes[6] = {
673      Context.IntTy, Context.UnsignedIntTy,
674      Context.LongTy, Context.UnsignedLongTy ,
675      Context.LongLongTy, Context.UnsignedLongLongTy
676    };
677    for (int Idx = 0; Idx < 6; ++Idx) {
678      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
679      if (FromSize < ToSize ||
680          (FromSize == ToSize &&
681           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
682        // We found the type that we can promote to. If this is the
683        // type we wanted, we have a promotion. Otherwise, no
684        // promotion.
685        return Context.getCanonicalType(ToType).getUnqualifiedType()
686          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
687      }
688    }
689  }
690
691  // An rvalue for an integral bit-field (9.6) can be converted to an
692  // rvalue of type int if int can represent all the values of the
693  // bit-field; otherwise, it can be converted to unsigned int if
694  // unsigned int can represent all the values of the bit-field. If
695  // the bit-field is larger yet, no integral promotion applies to
696  // it. If the bit-field has an enumerated type, it is treated as any
697  // other value of that type for promotion purposes (C++ 4.5p3).
698  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
699    using llvm::APSInt;
700    if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
701      APSInt BitWidth;
702      if (MemberDecl->isBitField() &&
703          FromType->isIntegralType() && !FromType->isEnumeralType() &&
704          From->isIntegerConstantExpr(BitWidth, Context)) {
705        APSInt ToSize(Context.getTypeSize(ToType));
706
707        // Are we promoting to an int from a bitfield that fits in an int?
708        if (BitWidth < ToSize ||
709            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
710          return To->getKind() == BuiltinType::Int;
711        }
712
713        // Are we promoting to an unsigned int from an unsigned bitfield
714        // that fits into an unsigned int?
715        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
716          return To->getKind() == BuiltinType::UInt;
717        }
718
719        return false;
720      }
721    }
722  }
723
724  // An rvalue of type bool can be converted to an rvalue of type int,
725  // with false becoming zero and true becoming one (C++ 4.5p4).
726  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
727    return true;
728  }
729
730  return false;
731}
732
733/// IsFloatingPointPromotion - Determines whether the conversion from
734/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
735/// returns true and sets PromotedType to the promoted type.
736bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
737{
738  /// An rvalue of type float can be converted to an rvalue of type
739  /// double. (C++ 4.6p1).
740  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
741    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
742      if (FromBuiltin->getKind() == BuiltinType::Float &&
743          ToBuiltin->getKind() == BuiltinType::Double)
744        return true;
745
746  return false;
747}
748
749/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
750/// the pointer type FromPtr to a pointer to type ToPointee, with the
751/// same type qualifiers as FromPtr has on its pointee type. ToType,
752/// if non-empty, will be a pointer to ToType that may or may not have
753/// the right set of qualifiers on its pointee.
754static QualType
755BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
756                                   QualType ToPointee, QualType ToType,
757                                   ASTContext &Context) {
758  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
759  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
760  unsigned Quals = CanonFromPointee.getCVRQualifiers();
761
762  // Exact qualifier match -> return the pointer type we're converting to.
763  if (CanonToPointee.getCVRQualifiers() == Quals) {
764    // ToType is exactly what we need. Return it.
765    if (ToType.getTypePtr())
766      return ToType;
767
768    // Build a pointer to ToPointee. It has the right qualifiers
769    // already.
770    return Context.getPointerType(ToPointee);
771  }
772
773  // Just build a canonical type that has the right qualifiers.
774  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
775}
776
777/// IsPointerConversion - Determines whether the conversion of the
778/// expression From, which has the (possibly adjusted) type FromType,
779/// can be converted to the type ToType via a pointer conversion (C++
780/// 4.10). If so, returns true and places the converted type (that
781/// might differ from ToType in its cv-qualifiers at some level) into
782/// ConvertedType.
783///
784/// This routine also supports conversions to and from block pointers
785/// and conversions with Objective-C's 'id', 'id<protocols...>', and
786/// pointers to interfaces. FIXME: Once we've determined the
787/// appropriate overloading rules for Objective-C, we may want to
788/// split the Objective-C checks into a different routine; however,
789/// GCC seems to consider all of these conversions to be pointer
790/// conversions, so for now they live here. IncompatibleObjC will be
791/// set if the conversion is an allowed Objective-C conversion that
792/// should result in a warning.
793bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
794                               QualType& ConvertedType,
795                               bool &IncompatibleObjC)
796{
797  IncompatibleObjC = false;
798  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
799    return true;
800
801  // Conversion from a null pointer constant to any Objective-C pointer type.
802  if (Context.isObjCObjectPointerType(ToType) &&
803      From->isNullPointerConstant(Context)) {
804    ConvertedType = ToType;
805    return true;
806  }
807
808  // Blocks: Block pointers can be converted to void*.
809  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
810      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
811    ConvertedType = ToType;
812    return true;
813  }
814  // Blocks: A null pointer constant can be converted to a block
815  // pointer type.
816  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
817    ConvertedType = ToType;
818    return true;
819  }
820
821  const PointerType* ToTypePtr = ToType->getAsPointerType();
822  if (!ToTypePtr)
823    return false;
824
825  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
826  if (From->isNullPointerConstant(Context)) {
827    ConvertedType = ToType;
828    return true;
829  }
830
831  // Beyond this point, both types need to be pointers.
832  const PointerType *FromTypePtr = FromType->getAsPointerType();
833  if (!FromTypePtr)
834    return false;
835
836  QualType FromPointeeType = FromTypePtr->getPointeeType();
837  QualType ToPointeeType = ToTypePtr->getPointeeType();
838
839  // An rvalue of type "pointer to cv T," where T is an object type,
840  // can be converted to an rvalue of type "pointer to cv void" (C++
841  // 4.10p2).
842  if (FromPointeeType->isIncompleteOrObjectType() &&
843      ToPointeeType->isVoidType()) {
844    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
845                                                       ToPointeeType,
846                                                       ToType, Context);
847    return true;
848  }
849
850  // C++ [conv.ptr]p3:
851  //
852  //   An rvalue of type "pointer to cv D," where D is a class type,
853  //   can be converted to an rvalue of type "pointer to cv B," where
854  //   B is a base class (clause 10) of D. If B is an inaccessible
855  //   (clause 11) or ambiguous (10.2) base class of D, a program that
856  //   necessitates this conversion is ill-formed. The result of the
857  //   conversion is a pointer to the base class sub-object of the
858  //   derived class object. The null pointer value is converted to
859  //   the null pointer value of the destination type.
860  //
861  // Note that we do not check for ambiguity or inaccessibility
862  // here. That is handled by CheckPointerConversion.
863  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
864      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
865    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
866                                                       ToPointeeType,
867                                                       ToType, Context);
868    return true;
869  }
870
871  return false;
872}
873
874/// isObjCPointerConversion - Determines whether this is an
875/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
876/// with the same arguments and return values.
877bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
878                                   QualType& ConvertedType,
879                                   bool &IncompatibleObjC) {
880  if (!getLangOptions().ObjC1)
881    return false;
882
883  // Conversions with Objective-C's id<...>.
884  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
885      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
886    ConvertedType = ToType;
887    return true;
888  }
889
890  // Beyond this point, both types need to be pointers or block pointers.
891  QualType ToPointeeType;
892  const PointerType* ToTypePtr = ToType->getAsPointerType();
893  if (ToTypePtr)
894    ToPointeeType = ToTypePtr->getPointeeType();
895  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
896    ToPointeeType = ToBlockPtr->getPointeeType();
897  else
898    return false;
899
900  QualType FromPointeeType;
901  const PointerType *FromTypePtr = FromType->getAsPointerType();
902  if (FromTypePtr)
903    FromPointeeType = FromTypePtr->getPointeeType();
904  else if (const BlockPointerType *FromBlockPtr
905             = FromType->getAsBlockPointerType())
906    FromPointeeType = FromBlockPtr->getPointeeType();
907  else
908    return false;
909
910  // Objective C++: We're able to convert from a pointer to an
911  // interface to a pointer to a different interface.
912  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
913  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
914  if (FromIface && ToIface &&
915      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
916    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
917                                                       ToPointeeType,
918                                                       ToType, Context);
919    return true;
920  }
921
922  if (FromIface && ToIface &&
923      Context.canAssignObjCInterfaces(FromIface, ToIface)) {
924    // Okay: this is some kind of implicit downcast of Objective-C
925    // interfaces, which is permitted. However, we're going to
926    // complain about it.
927    IncompatibleObjC = true;
928    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
929                                                       ToPointeeType,
930                                                       ToType, Context);
931    return true;
932  }
933
934  // Objective C++: We're able to convert between "id" and a pointer
935  // to any interface (in both directions).
936  if ((FromIface && Context.isObjCIdType(ToPointeeType))
937      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
938    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
939                                                       ToPointeeType,
940                                                       ToType, Context);
941    return true;
942  }
943
944  // Objective C++: Allow conversions between the Objective-C "id" and
945  // "Class", in either direction.
946  if ((Context.isObjCIdType(FromPointeeType) &&
947       Context.isObjCClassType(ToPointeeType)) ||
948      (Context.isObjCClassType(FromPointeeType) &&
949       Context.isObjCIdType(ToPointeeType))) {
950    ConvertedType = ToType;
951    return true;
952  }
953
954  // If we have pointers to pointers, recursively check whether this
955  // is an Objective-C conversion.
956  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
957      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
958                              IncompatibleObjC)) {
959    // We always complain about this conversion.
960    IncompatibleObjC = true;
961    ConvertedType = ToType;
962    return true;
963  }
964
965  // If we have pointers to functions or blocks, check whether the only
966  // differences in the argument and result types are in Objective-C
967  // pointer conversions. If so, we permit the conversion (but
968  // complain about it).
969  const FunctionTypeProto *FromFunctionType
970    = FromPointeeType->getAsFunctionTypeProto();
971  const FunctionTypeProto *ToFunctionType
972    = ToPointeeType->getAsFunctionTypeProto();
973  if (FromFunctionType && ToFunctionType) {
974    // If the function types are exactly the same, this isn't an
975    // Objective-C pointer conversion.
976    if (Context.getCanonicalType(FromPointeeType)
977          == Context.getCanonicalType(ToPointeeType))
978      return false;
979
980    // Perform the quick checks that will tell us whether these
981    // function types are obviously different.
982    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
983        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
984        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
985      return false;
986
987    bool HasObjCConversion = false;
988    if (Context.getCanonicalType(FromFunctionType->getResultType())
989          == Context.getCanonicalType(ToFunctionType->getResultType())) {
990      // Okay, the types match exactly. Nothing to do.
991    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
992                                       ToFunctionType->getResultType(),
993                                       ConvertedType, IncompatibleObjC)) {
994      // Okay, we have an Objective-C pointer conversion.
995      HasObjCConversion = true;
996    } else {
997      // Function types are too different. Abort.
998      return false;
999    }
1000
1001    // Check argument types.
1002    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1003         ArgIdx != NumArgs; ++ArgIdx) {
1004      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1005      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1006      if (Context.getCanonicalType(FromArgType)
1007            == Context.getCanonicalType(ToArgType)) {
1008        // Okay, the types match exactly. Nothing to do.
1009      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1010                                         ConvertedType, IncompatibleObjC)) {
1011        // Okay, we have an Objective-C pointer conversion.
1012        HasObjCConversion = true;
1013      } else {
1014        // Argument types are too different. Abort.
1015        return false;
1016      }
1017    }
1018
1019    if (HasObjCConversion) {
1020      // We had an Objective-C conversion. Allow this pointer
1021      // conversion, but complain about it.
1022      ConvertedType = ToType;
1023      IncompatibleObjC = true;
1024      return true;
1025    }
1026  }
1027
1028  return false;
1029}
1030
1031/// CheckPointerConversion - Check the pointer conversion from the
1032/// expression From to the type ToType. This routine checks for
1033/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1034/// conversions for which IsPointerConversion has already returned
1035/// true. It returns true and produces a diagnostic if there was an
1036/// error, or returns false otherwise.
1037bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1038  QualType FromType = From->getType();
1039
1040  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1041    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1042      QualType FromPointeeType = FromPtrType->getPointeeType(),
1043               ToPointeeType   = ToPtrType->getPointeeType();
1044
1045      // Objective-C++ conversions are always okay.
1046      // FIXME: We should have a different class of conversions for
1047      // the Objective-C++ implicit conversions.
1048      if (Context.isObjCIdType(FromPointeeType) ||
1049          Context.isObjCIdType(ToPointeeType) ||
1050          Context.isObjCClassType(FromPointeeType) ||
1051          Context.isObjCClassType(ToPointeeType))
1052        return false;
1053
1054      if (FromPointeeType->isRecordType() &&
1055          ToPointeeType->isRecordType()) {
1056        // We must have a derived-to-base conversion. Check an
1057        // ambiguous or inaccessible conversion.
1058        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1059                                            From->getExprLoc(),
1060                                            From->getSourceRange());
1061      }
1062    }
1063
1064  return false;
1065}
1066
1067/// IsMemberPointerConversion - Determines whether the conversion of the
1068/// expression From, which has the (possibly adjusted) type FromType, can be
1069/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1070/// If so, returns true and places the converted type (that might differ from
1071/// ToType in its cv-qualifiers at some level) into ConvertedType.
1072bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1073                                     QualType ToType, QualType &ConvertedType)
1074{
1075  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1076  if (!ToTypePtr)
1077    return false;
1078
1079  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1080  if (From->isNullPointerConstant(Context)) {
1081    ConvertedType = ToType;
1082    return true;
1083  }
1084
1085  // Otherwise, both types have to be member pointers.
1086  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1087  if (!FromTypePtr)
1088    return false;
1089
1090  // A pointer to member of B can be converted to a pointer to member of D,
1091  // where D is derived from B (C++ 4.11p2).
1092  QualType FromClass(FromTypePtr->getClass(), 0);
1093  QualType ToClass(ToTypePtr->getClass(), 0);
1094  // FIXME: What happens when these are dependent? Is this function even called?
1095
1096  if (IsDerivedFrom(ToClass, FromClass)) {
1097    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1098                                                 ToClass.getTypePtr());
1099    return true;
1100  }
1101
1102  return false;
1103}
1104
1105/// CheckMemberPointerConversion - Check the member pointer conversion from the
1106/// expression From to the type ToType. This routine checks for ambiguous or
1107/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1108/// for which IsMemberPointerConversion has already returned true. It returns
1109/// true and produces a diagnostic if there was an error, or returns false
1110/// otherwise.
1111bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1112  QualType FromType = From->getType();
1113  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1114  if (!FromPtrType)
1115    return false;
1116
1117  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1118  assert(ToPtrType && "No member pointer cast has a target type "
1119                      "that is not a member pointer.");
1120
1121  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1122  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1123
1124  // FIXME: What about dependent types?
1125  assert(FromClass->isRecordType() && "Pointer into non-class.");
1126  assert(ToClass->isRecordType() && "Pointer into non-class.");
1127
1128  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1129                  /*DetectVirtual=*/true);
1130  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1131  assert(DerivationOkay &&
1132         "Should not have been called if derivation isn't OK.");
1133  (void)DerivationOkay;
1134
1135  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1136                                  getUnqualifiedType())) {
1137    // Derivation is ambiguous. Redo the check to find the exact paths.
1138    Paths.clear();
1139    Paths.setRecordingPaths(true);
1140    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1141    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1142    (void)StillOkay;
1143
1144    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1145    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1146      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1147    return true;
1148  }
1149
1150  if (const CXXRecordType *VBase = Paths.getDetectedVirtual()) {
1151    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1152      << FromClass << ToClass << QualType(VBase, 0)
1153      << From->getSourceRange();
1154    return true;
1155  }
1156
1157  return false;
1158}
1159
1160/// IsQualificationConversion - Determines whether the conversion from
1161/// an rvalue of type FromType to ToType is a qualification conversion
1162/// (C++ 4.4).
1163bool
1164Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1165{
1166  FromType = Context.getCanonicalType(FromType);
1167  ToType = Context.getCanonicalType(ToType);
1168
1169  // If FromType and ToType are the same type, this is not a
1170  // qualification conversion.
1171  if (FromType == ToType)
1172    return false;
1173
1174  // (C++ 4.4p4):
1175  //   A conversion can add cv-qualifiers at levels other than the first
1176  //   in multi-level pointers, subject to the following rules: [...]
1177  bool PreviousToQualsIncludeConst = true;
1178  bool UnwrappedAnyPointer = false;
1179  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1180    // Within each iteration of the loop, we check the qualifiers to
1181    // determine if this still looks like a qualification
1182    // conversion. Then, if all is well, we unwrap one more level of
1183    // pointers or pointers-to-members and do it all again
1184    // until there are no more pointers or pointers-to-members left to
1185    // unwrap.
1186    UnwrappedAnyPointer = true;
1187
1188    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1189    //      2,j, and similarly for volatile.
1190    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1191      return false;
1192
1193    //   -- if the cv 1,j and cv 2,j are different, then const is in
1194    //      every cv for 0 < k < j.
1195    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1196        && !PreviousToQualsIncludeConst)
1197      return false;
1198
1199    // Keep track of whether all prior cv-qualifiers in the "to" type
1200    // include const.
1201    PreviousToQualsIncludeConst
1202      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1203  }
1204
1205  // We are left with FromType and ToType being the pointee types
1206  // after unwrapping the original FromType and ToType the same number
1207  // of types. If we unwrapped any pointers, and if FromType and
1208  // ToType have the same unqualified type (since we checked
1209  // qualifiers above), then this is a qualification conversion.
1210  return UnwrappedAnyPointer &&
1211    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1212}
1213
1214/// Determines whether there is a user-defined conversion sequence
1215/// (C++ [over.ics.user]) that converts expression From to the type
1216/// ToType. If such a conversion exists, User will contain the
1217/// user-defined conversion sequence that performs such a conversion
1218/// and this routine will return true. Otherwise, this routine returns
1219/// false and User is unspecified.
1220///
1221/// \param AllowConversionFunctions true if the conversion should
1222/// consider conversion functions at all. If false, only constructors
1223/// will be considered.
1224///
1225/// \param AllowExplicit  true if the conversion should consider C++0x
1226/// "explicit" conversion functions as well as non-explicit conversion
1227/// functions (C++0x [class.conv.fct]p2).
1228bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1229                                   UserDefinedConversionSequence& User,
1230                                   bool AllowConversionFunctions,
1231                                   bool AllowExplicit)
1232{
1233  OverloadCandidateSet CandidateSet;
1234  if (const CXXRecordType *ToRecordType
1235        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
1236    // C++ [over.match.ctor]p1:
1237    //   When objects of class type are direct-initialized (8.5), or
1238    //   copy-initialized from an expression of the same or a
1239    //   derived class type (8.5), overload resolution selects the
1240    //   constructor. [...] For copy-initialization, the candidate
1241    //   functions are all the converting constructors (12.3.1) of
1242    //   that class. The argument list is the expression-list within
1243    //   the parentheses of the initializer.
1244    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
1245    DeclarationName ConstructorName
1246      = Context.DeclarationNames.getCXXConstructorName(
1247                        Context.getCanonicalType(ToType).getUnqualifiedType());
1248    DeclContext::lookup_iterator Con, ConEnd;
1249    for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
1250         Con != ConEnd; ++Con) {
1251      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1252      if (Constructor->isConvertingConstructor())
1253        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1254                             /*SuppressUserConversions=*/true);
1255    }
1256  }
1257
1258  if (!AllowConversionFunctions) {
1259    // Don't allow any conversion functions to enter the overload set.
1260  } else if (const CXXRecordType *FromRecordType
1261               = dyn_cast_or_null<CXXRecordType>(
1262                                        From->getType()->getAsRecordType())) {
1263    // Add all of the conversion functions as candidates.
1264    // FIXME: Look for conversions in base classes!
1265    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1266    OverloadedFunctionDecl *Conversions
1267      = FromRecordDecl->getConversionFunctions();
1268    for (OverloadedFunctionDecl::function_iterator Func
1269           = Conversions->function_begin();
1270         Func != Conversions->function_end(); ++Func) {
1271      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1272      if (AllowExplicit || !Conv->isExplicit())
1273        AddConversionCandidate(Conv, From, ToType, CandidateSet);
1274    }
1275  }
1276
1277  OverloadCandidateSet::iterator Best;
1278  switch (BestViableFunction(CandidateSet, Best)) {
1279    case OR_Success:
1280      // Record the standard conversion we used and the conversion function.
1281      if (CXXConstructorDecl *Constructor
1282            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1283        // C++ [over.ics.user]p1:
1284        //   If the user-defined conversion is specified by a
1285        //   constructor (12.3.1), the initial standard conversion
1286        //   sequence converts the source type to the type required by
1287        //   the argument of the constructor.
1288        //
1289        // FIXME: What about ellipsis conversions?
1290        QualType ThisType = Constructor->getThisType(Context);
1291        User.Before = Best->Conversions[0].Standard;
1292        User.ConversionFunction = Constructor;
1293        User.After.setAsIdentityConversion();
1294        User.After.FromTypePtr
1295          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1296        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1297        return true;
1298      } else if (CXXConversionDecl *Conversion
1299                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1300        // C++ [over.ics.user]p1:
1301        //
1302        //   [...] If the user-defined conversion is specified by a
1303        //   conversion function (12.3.2), the initial standard
1304        //   conversion sequence converts the source type to the
1305        //   implicit object parameter of the conversion function.
1306        User.Before = Best->Conversions[0].Standard;
1307        User.ConversionFunction = Conversion;
1308
1309        // C++ [over.ics.user]p2:
1310        //   The second standard conversion sequence converts the
1311        //   result of the user-defined conversion to the target type
1312        //   for the sequence. Since an implicit conversion sequence
1313        //   is an initialization, the special rules for
1314        //   initialization by user-defined conversion apply when
1315        //   selecting the best user-defined conversion for a
1316        //   user-defined conversion sequence (see 13.3.3 and
1317        //   13.3.3.1).
1318        User.After = Best->FinalConversion;
1319        return true;
1320      } else {
1321        assert(false && "Not a constructor or conversion function?");
1322        return false;
1323      }
1324
1325    case OR_No_Viable_Function:
1326      // No conversion here! We're done.
1327      return false;
1328
1329    case OR_Ambiguous:
1330      // FIXME: See C++ [over.best.ics]p10 for the handling of
1331      // ambiguous conversion sequences.
1332      return false;
1333    }
1334
1335  return false;
1336}
1337
1338/// CompareImplicitConversionSequences - Compare two implicit
1339/// conversion sequences to determine whether one is better than the
1340/// other or if they are indistinguishable (C++ 13.3.3.2).
1341ImplicitConversionSequence::CompareKind
1342Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1343                                         const ImplicitConversionSequence& ICS2)
1344{
1345  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1346  // conversion sequences (as defined in 13.3.3.1)
1347  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1348  //      conversion sequence than a user-defined conversion sequence or
1349  //      an ellipsis conversion sequence, and
1350  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1351  //      conversion sequence than an ellipsis conversion sequence
1352  //      (13.3.3.1.3).
1353  //
1354  if (ICS1.ConversionKind < ICS2.ConversionKind)
1355    return ImplicitConversionSequence::Better;
1356  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1357    return ImplicitConversionSequence::Worse;
1358
1359  // Two implicit conversion sequences of the same form are
1360  // indistinguishable conversion sequences unless one of the
1361  // following rules apply: (C++ 13.3.3.2p3):
1362  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1363    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1364  else if (ICS1.ConversionKind ==
1365             ImplicitConversionSequence::UserDefinedConversion) {
1366    // User-defined conversion sequence U1 is a better conversion
1367    // sequence than another user-defined conversion sequence U2 if
1368    // they contain the same user-defined conversion function or
1369    // constructor and if the second standard conversion sequence of
1370    // U1 is better than the second standard conversion sequence of
1371    // U2 (C++ 13.3.3.2p3).
1372    if (ICS1.UserDefined.ConversionFunction ==
1373          ICS2.UserDefined.ConversionFunction)
1374      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1375                                                ICS2.UserDefined.After);
1376  }
1377
1378  return ImplicitConversionSequence::Indistinguishable;
1379}
1380
1381/// CompareStandardConversionSequences - Compare two standard
1382/// conversion sequences to determine whether one is better than the
1383/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1384ImplicitConversionSequence::CompareKind
1385Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1386                                         const StandardConversionSequence& SCS2)
1387{
1388  // Standard conversion sequence S1 is a better conversion sequence
1389  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1390
1391  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1392  //     sequences in the canonical form defined by 13.3.3.1.1,
1393  //     excluding any Lvalue Transformation; the identity conversion
1394  //     sequence is considered to be a subsequence of any
1395  //     non-identity conversion sequence) or, if not that,
1396  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1397    // Neither is a proper subsequence of the other. Do nothing.
1398    ;
1399  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1400           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1401           (SCS1.Second == ICK_Identity &&
1402            SCS1.Third == ICK_Identity))
1403    // SCS1 is a proper subsequence of SCS2.
1404    return ImplicitConversionSequence::Better;
1405  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1406           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1407           (SCS2.Second == ICK_Identity &&
1408            SCS2.Third == ICK_Identity))
1409    // SCS2 is a proper subsequence of SCS1.
1410    return ImplicitConversionSequence::Worse;
1411
1412  //  -- the rank of S1 is better than the rank of S2 (by the rules
1413  //     defined below), or, if not that,
1414  ImplicitConversionRank Rank1 = SCS1.getRank();
1415  ImplicitConversionRank Rank2 = SCS2.getRank();
1416  if (Rank1 < Rank2)
1417    return ImplicitConversionSequence::Better;
1418  else if (Rank2 < Rank1)
1419    return ImplicitConversionSequence::Worse;
1420
1421  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1422  // are indistinguishable unless one of the following rules
1423  // applies:
1424
1425  //   A conversion that is not a conversion of a pointer, or
1426  //   pointer to member, to bool is better than another conversion
1427  //   that is such a conversion.
1428  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1429    return SCS2.isPointerConversionToBool()
1430             ? ImplicitConversionSequence::Better
1431             : ImplicitConversionSequence::Worse;
1432
1433  // C++ [over.ics.rank]p4b2:
1434  //
1435  //   If class B is derived directly or indirectly from class A,
1436  //   conversion of B* to A* is better than conversion of B* to
1437  //   void*, and conversion of A* to void* is better than conversion
1438  //   of B* to void*.
1439  bool SCS1ConvertsToVoid
1440    = SCS1.isPointerConversionToVoidPointer(Context);
1441  bool SCS2ConvertsToVoid
1442    = SCS2.isPointerConversionToVoidPointer(Context);
1443  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1444    // Exactly one of the conversion sequences is a conversion to
1445    // a void pointer; it's the worse conversion.
1446    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1447                              : ImplicitConversionSequence::Worse;
1448  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1449    // Neither conversion sequence converts to a void pointer; compare
1450    // their derived-to-base conversions.
1451    if (ImplicitConversionSequence::CompareKind DerivedCK
1452          = CompareDerivedToBaseConversions(SCS1, SCS2))
1453      return DerivedCK;
1454  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1455    // Both conversion sequences are conversions to void
1456    // pointers. Compare the source types to determine if there's an
1457    // inheritance relationship in their sources.
1458    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1459    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1460
1461    // Adjust the types we're converting from via the array-to-pointer
1462    // conversion, if we need to.
1463    if (SCS1.First == ICK_Array_To_Pointer)
1464      FromType1 = Context.getArrayDecayedType(FromType1);
1465    if (SCS2.First == ICK_Array_To_Pointer)
1466      FromType2 = Context.getArrayDecayedType(FromType2);
1467
1468    QualType FromPointee1
1469      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1470    QualType FromPointee2
1471      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1472
1473    if (IsDerivedFrom(FromPointee2, FromPointee1))
1474      return ImplicitConversionSequence::Better;
1475    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1476      return ImplicitConversionSequence::Worse;
1477
1478    // Objective-C++: If one interface is more specific than the
1479    // other, it is the better one.
1480    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1481    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1482    if (FromIface1 && FromIface1) {
1483      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1484        return ImplicitConversionSequence::Better;
1485      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1486        return ImplicitConversionSequence::Worse;
1487    }
1488  }
1489
1490  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1491  // bullet 3).
1492  if (ImplicitConversionSequence::CompareKind QualCK
1493        = CompareQualificationConversions(SCS1, SCS2))
1494    return QualCK;
1495
1496  // C++ [over.ics.rank]p3b4:
1497  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1498  //      which the references refer are the same type except for
1499  //      top-level cv-qualifiers, and the type to which the reference
1500  //      initialized by S2 refers is more cv-qualified than the type
1501  //      to which the reference initialized by S1 refers.
1502  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1503    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1504    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1505    T1 = Context.getCanonicalType(T1);
1506    T2 = Context.getCanonicalType(T2);
1507    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1508      if (T2.isMoreQualifiedThan(T1))
1509        return ImplicitConversionSequence::Better;
1510      else if (T1.isMoreQualifiedThan(T2))
1511        return ImplicitConversionSequence::Worse;
1512    }
1513  }
1514
1515  return ImplicitConversionSequence::Indistinguishable;
1516}
1517
1518/// CompareQualificationConversions - Compares two standard conversion
1519/// sequences to determine whether they can be ranked based on their
1520/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1521ImplicitConversionSequence::CompareKind
1522Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1523                                      const StandardConversionSequence& SCS2)
1524{
1525  // C++ 13.3.3.2p3:
1526  //  -- S1 and S2 differ only in their qualification conversion and
1527  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1528  //     cv-qualification signature of type T1 is a proper subset of
1529  //     the cv-qualification signature of type T2, and S1 is not the
1530  //     deprecated string literal array-to-pointer conversion (4.2).
1531  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1532      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1533    return ImplicitConversionSequence::Indistinguishable;
1534
1535  // FIXME: the example in the standard doesn't use a qualification
1536  // conversion (!)
1537  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1538  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1539  T1 = Context.getCanonicalType(T1);
1540  T2 = Context.getCanonicalType(T2);
1541
1542  // If the types are the same, we won't learn anything by unwrapped
1543  // them.
1544  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1545    return ImplicitConversionSequence::Indistinguishable;
1546
1547  ImplicitConversionSequence::CompareKind Result
1548    = ImplicitConversionSequence::Indistinguishable;
1549  while (UnwrapSimilarPointerTypes(T1, T2)) {
1550    // Within each iteration of the loop, we check the qualifiers to
1551    // determine if this still looks like a qualification
1552    // conversion. Then, if all is well, we unwrap one more level of
1553    // pointers or pointers-to-members and do it all again
1554    // until there are no more pointers or pointers-to-members left
1555    // to unwrap. This essentially mimics what
1556    // IsQualificationConversion does, but here we're checking for a
1557    // strict subset of qualifiers.
1558    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1559      // The qualifiers are the same, so this doesn't tell us anything
1560      // about how the sequences rank.
1561      ;
1562    else if (T2.isMoreQualifiedThan(T1)) {
1563      // T1 has fewer qualifiers, so it could be the better sequence.
1564      if (Result == ImplicitConversionSequence::Worse)
1565        // Neither has qualifiers that are a subset of the other's
1566        // qualifiers.
1567        return ImplicitConversionSequence::Indistinguishable;
1568
1569      Result = ImplicitConversionSequence::Better;
1570    } else if (T1.isMoreQualifiedThan(T2)) {
1571      // T2 has fewer qualifiers, so it could be the better sequence.
1572      if (Result == ImplicitConversionSequence::Better)
1573        // Neither has qualifiers that are a subset of the other's
1574        // qualifiers.
1575        return ImplicitConversionSequence::Indistinguishable;
1576
1577      Result = ImplicitConversionSequence::Worse;
1578    } else {
1579      // Qualifiers are disjoint.
1580      return ImplicitConversionSequence::Indistinguishable;
1581    }
1582
1583    // If the types after this point are equivalent, we're done.
1584    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1585      break;
1586  }
1587
1588  // Check that the winning standard conversion sequence isn't using
1589  // the deprecated string literal array to pointer conversion.
1590  switch (Result) {
1591  case ImplicitConversionSequence::Better:
1592    if (SCS1.Deprecated)
1593      Result = ImplicitConversionSequence::Indistinguishable;
1594    break;
1595
1596  case ImplicitConversionSequence::Indistinguishable:
1597    break;
1598
1599  case ImplicitConversionSequence::Worse:
1600    if (SCS2.Deprecated)
1601      Result = ImplicitConversionSequence::Indistinguishable;
1602    break;
1603  }
1604
1605  return Result;
1606}
1607
1608/// CompareDerivedToBaseConversions - Compares two standard conversion
1609/// sequences to determine whether they can be ranked based on their
1610/// various kinds of derived-to-base conversions (C++
1611/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1612/// conversions between Objective-C interface types.
1613ImplicitConversionSequence::CompareKind
1614Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1615                                      const StandardConversionSequence& SCS2) {
1616  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1617  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1618  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1619  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1620
1621  // Adjust the types we're converting from via the array-to-pointer
1622  // conversion, if we need to.
1623  if (SCS1.First == ICK_Array_To_Pointer)
1624    FromType1 = Context.getArrayDecayedType(FromType1);
1625  if (SCS2.First == ICK_Array_To_Pointer)
1626    FromType2 = Context.getArrayDecayedType(FromType2);
1627
1628  // Canonicalize all of the types.
1629  FromType1 = Context.getCanonicalType(FromType1);
1630  ToType1 = Context.getCanonicalType(ToType1);
1631  FromType2 = Context.getCanonicalType(FromType2);
1632  ToType2 = Context.getCanonicalType(ToType2);
1633
1634  // C++ [over.ics.rank]p4b3:
1635  //
1636  //   If class B is derived directly or indirectly from class A and
1637  //   class C is derived directly or indirectly from B,
1638  //
1639  // For Objective-C, we let A, B, and C also be Objective-C
1640  // interfaces.
1641
1642  // Compare based on pointer conversions.
1643  if (SCS1.Second == ICK_Pointer_Conversion &&
1644      SCS2.Second == ICK_Pointer_Conversion &&
1645      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1646      FromType1->isPointerType() && FromType2->isPointerType() &&
1647      ToType1->isPointerType() && ToType2->isPointerType()) {
1648    QualType FromPointee1
1649      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1650    QualType ToPointee1
1651      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1652    QualType FromPointee2
1653      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1654    QualType ToPointee2
1655      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1656
1657    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1658    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1659    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1660    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1661
1662    //   -- conversion of C* to B* is better than conversion of C* to A*,
1663    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1664      if (IsDerivedFrom(ToPointee1, ToPointee2))
1665        return ImplicitConversionSequence::Better;
1666      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1667        return ImplicitConversionSequence::Worse;
1668
1669      if (ToIface1 && ToIface2) {
1670        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1671          return ImplicitConversionSequence::Better;
1672        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1673          return ImplicitConversionSequence::Worse;
1674      }
1675    }
1676
1677    //   -- conversion of B* to A* is better than conversion of C* to A*,
1678    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1679      if (IsDerivedFrom(FromPointee2, FromPointee1))
1680        return ImplicitConversionSequence::Better;
1681      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1682        return ImplicitConversionSequence::Worse;
1683
1684      if (FromIface1 && FromIface2) {
1685        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1686          return ImplicitConversionSequence::Better;
1687        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1688          return ImplicitConversionSequence::Worse;
1689      }
1690    }
1691  }
1692
1693  // Compare based on reference bindings.
1694  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1695      SCS1.Second == ICK_Derived_To_Base) {
1696    //   -- binding of an expression of type C to a reference of type
1697    //      B& is better than binding an expression of type C to a
1698    //      reference of type A&,
1699    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1700        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1701      if (IsDerivedFrom(ToType1, ToType2))
1702        return ImplicitConversionSequence::Better;
1703      else if (IsDerivedFrom(ToType2, ToType1))
1704        return ImplicitConversionSequence::Worse;
1705    }
1706
1707    //   -- binding of an expression of type B to a reference of type
1708    //      A& is better than binding an expression of type C to a
1709    //      reference of type A&,
1710    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1711        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1712      if (IsDerivedFrom(FromType2, FromType1))
1713        return ImplicitConversionSequence::Better;
1714      else if (IsDerivedFrom(FromType1, FromType2))
1715        return ImplicitConversionSequence::Worse;
1716    }
1717  }
1718
1719
1720  // FIXME: conversion of A::* to B::* is better than conversion of
1721  // A::* to C::*,
1722
1723  // FIXME: conversion of B::* to C::* is better than conversion of
1724  // A::* to C::*, and
1725
1726  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1727      SCS1.Second == ICK_Derived_To_Base) {
1728    //   -- conversion of C to B is better than conversion of C to A,
1729    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1730        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1731      if (IsDerivedFrom(ToType1, ToType2))
1732        return ImplicitConversionSequence::Better;
1733      else if (IsDerivedFrom(ToType2, ToType1))
1734        return ImplicitConversionSequence::Worse;
1735    }
1736
1737    //   -- conversion of B to A is better than conversion of C to A.
1738    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1739        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1740      if (IsDerivedFrom(FromType2, FromType1))
1741        return ImplicitConversionSequence::Better;
1742      else if (IsDerivedFrom(FromType1, FromType2))
1743        return ImplicitConversionSequence::Worse;
1744    }
1745  }
1746
1747  return ImplicitConversionSequence::Indistinguishable;
1748}
1749
1750/// TryCopyInitialization - Try to copy-initialize a value of type
1751/// ToType from the expression From. Return the implicit conversion
1752/// sequence required to pass this argument, which may be a bad
1753/// conversion sequence (meaning that the argument cannot be passed to
1754/// a parameter of this type). If @p SuppressUserConversions, then we
1755/// do not permit any user-defined conversion sequences.
1756ImplicitConversionSequence
1757Sema::TryCopyInitialization(Expr *From, QualType ToType,
1758                            bool SuppressUserConversions) {
1759  if (!getLangOptions().CPlusPlus) {
1760    // In C, copy initialization is the same as performing an assignment.
1761    AssignConvertType ConvTy =
1762      CheckSingleAssignmentConstraints(ToType, From);
1763    ImplicitConversionSequence ICS;
1764    if (getLangOptions().NoExtensions? ConvTy != Compatible
1765                                     : ConvTy == Incompatible)
1766      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1767    else
1768      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1769    return ICS;
1770  } else if (ToType->isReferenceType()) {
1771    ImplicitConversionSequence ICS;
1772    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1773    return ICS;
1774  } else {
1775    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1776  }
1777}
1778
1779/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1780/// type ToType. Returns true (and emits a diagnostic) if there was
1781/// an error, returns false if the initialization succeeded.
1782bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1783                                     const char* Flavor) {
1784  if (!getLangOptions().CPlusPlus) {
1785    // In C, argument passing is the same as performing an assignment.
1786    QualType FromType = From->getType();
1787    AssignConvertType ConvTy =
1788      CheckSingleAssignmentConstraints(ToType, From);
1789
1790    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1791                                    FromType, From, Flavor);
1792  }
1793
1794  if (ToType->isReferenceType())
1795    return CheckReferenceInit(From, ToType);
1796
1797  if (!PerformImplicitConversion(From, ToType, Flavor))
1798    return false;
1799
1800  return Diag(From->getSourceRange().getBegin(),
1801              diag::err_typecheck_convert_incompatible)
1802    << ToType << From->getType() << Flavor << From->getSourceRange();
1803}
1804
1805/// TryObjectArgumentInitialization - Try to initialize the object
1806/// parameter of the given member function (@c Method) from the
1807/// expression @p From.
1808ImplicitConversionSequence
1809Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1810  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1811  unsigned MethodQuals = Method->getTypeQualifiers();
1812  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1813
1814  // Set up the conversion sequence as a "bad" conversion, to allow us
1815  // to exit early.
1816  ImplicitConversionSequence ICS;
1817  ICS.Standard.setAsIdentityConversion();
1818  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1819
1820  // We need to have an object of class type.
1821  QualType FromType = From->getType();
1822  if (!FromType->isRecordType())
1823    return ICS;
1824
1825  // The implicit object parmeter is has the type "reference to cv X",
1826  // where X is the class of which the function is a member
1827  // (C++ [over.match.funcs]p4). However, when finding an implicit
1828  // conversion sequence for the argument, we are not allowed to
1829  // create temporaries or perform user-defined conversions
1830  // (C++ [over.match.funcs]p5). We perform a simplified version of
1831  // reference binding here, that allows class rvalues to bind to
1832  // non-constant references.
1833
1834  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1835  // with the implicit object parameter (C++ [over.match.funcs]p5).
1836  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1837  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1838      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1839    return ICS;
1840
1841  // Check that we have either the same type or a derived type. It
1842  // affects the conversion rank.
1843  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1844  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1845    ICS.Standard.Second = ICK_Identity;
1846  else if (IsDerivedFrom(FromType, ClassType))
1847    ICS.Standard.Second = ICK_Derived_To_Base;
1848  else
1849    return ICS;
1850
1851  // Success. Mark this as a reference binding.
1852  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1853  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1854  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1855  ICS.Standard.ReferenceBinding = true;
1856  ICS.Standard.DirectBinding = true;
1857  return ICS;
1858}
1859
1860/// PerformObjectArgumentInitialization - Perform initialization of
1861/// the implicit object parameter for the given Method with the given
1862/// expression.
1863bool
1864Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1865  QualType ImplicitParamType
1866    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1867  ImplicitConversionSequence ICS
1868    = TryObjectArgumentInitialization(From, Method);
1869  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1870    return Diag(From->getSourceRange().getBegin(),
1871                diag::err_implicit_object_parameter_init)
1872       << ImplicitParamType << From->getType() << From->getSourceRange();
1873
1874  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1875      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1876                                   From->getSourceRange().getBegin(),
1877                                   From->getSourceRange()))
1878    return true;
1879
1880  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1881  return false;
1882}
1883
1884/// TryContextuallyConvertToBool - Attempt to contextually convert the
1885/// expression From to bool (C++0x [conv]p3).
1886ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1887  return TryImplicitConversion(From, Context.BoolTy, false, true);
1888}
1889
1890/// PerformContextuallyConvertToBool - Perform a contextual conversion
1891/// of the expression From to bool (C++0x [conv]p3).
1892bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1893  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1894  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1895    return false;
1896
1897  return Diag(From->getSourceRange().getBegin(),
1898              diag::err_typecheck_bool_condition)
1899    << From->getType() << From->getSourceRange();
1900}
1901
1902/// AddOverloadCandidate - Adds the given function to the set of
1903/// candidate functions, using the given function call arguments.  If
1904/// @p SuppressUserConversions, then don't allow user-defined
1905/// conversions via constructors or conversion operators.
1906void
1907Sema::AddOverloadCandidate(FunctionDecl *Function,
1908                           Expr **Args, unsigned NumArgs,
1909                           OverloadCandidateSet& CandidateSet,
1910                           bool SuppressUserConversions)
1911{
1912  const FunctionTypeProto* Proto
1913    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1914  assert(Proto && "Functions without a prototype cannot be overloaded");
1915  assert(!isa<CXXConversionDecl>(Function) &&
1916         "Use AddConversionCandidate for conversion functions");
1917
1918  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1919    // If we get here, it's because we're calling a member function
1920    // that is named without a member access expression (e.g.,
1921    // "this->f") that was either written explicitly or created
1922    // implicitly. This can happen with a qualified call to a member
1923    // function, e.g., X::f(). We use a NULL object as the implied
1924    // object argument (C++ [over.call.func]p3).
1925    AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
1926                       SuppressUserConversions);
1927    return;
1928  }
1929
1930
1931  // Add this candidate
1932  CandidateSet.push_back(OverloadCandidate());
1933  OverloadCandidate& Candidate = CandidateSet.back();
1934  Candidate.Function = Function;
1935  Candidate.Viable = true;
1936  Candidate.IsSurrogate = false;
1937  Candidate.IgnoreObjectArgument = false;
1938
1939  unsigned NumArgsInProto = Proto->getNumArgs();
1940
1941  // (C++ 13.3.2p2): A candidate function having fewer than m
1942  // parameters is viable only if it has an ellipsis in its parameter
1943  // list (8.3.5).
1944  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1945    Candidate.Viable = false;
1946    return;
1947  }
1948
1949  // (C++ 13.3.2p2): A candidate function having more than m parameters
1950  // is viable only if the (m+1)st parameter has a default argument
1951  // (8.3.6). For the purposes of overload resolution, the
1952  // parameter list is truncated on the right, so that there are
1953  // exactly m parameters.
1954  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1955  if (NumArgs < MinRequiredArgs) {
1956    // Not enough arguments.
1957    Candidate.Viable = false;
1958    return;
1959  }
1960
1961  // Determine the implicit conversion sequences for each of the
1962  // arguments.
1963  Candidate.Conversions.resize(NumArgs);
1964  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1965    if (ArgIdx < NumArgsInProto) {
1966      // (C++ 13.3.2p3): for F to be a viable function, there shall
1967      // exist for each argument an implicit conversion sequence
1968      // (13.3.3.1) that converts that argument to the corresponding
1969      // parameter of F.
1970      QualType ParamType = Proto->getArgType(ArgIdx);
1971      Candidate.Conversions[ArgIdx]
1972        = TryCopyInitialization(Args[ArgIdx], ParamType,
1973                                SuppressUserConversions);
1974      if (Candidate.Conversions[ArgIdx].ConversionKind
1975            == ImplicitConversionSequence::BadConversion) {
1976        Candidate.Viable = false;
1977        break;
1978      }
1979    } else {
1980      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1981      // argument for which there is no corresponding parameter is
1982      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1983      Candidate.Conversions[ArgIdx].ConversionKind
1984        = ImplicitConversionSequence::EllipsisConversion;
1985    }
1986  }
1987}
1988
1989/// AddMethodCandidate - Adds the given C++ member function to the set
1990/// of candidate functions, using the given function call arguments
1991/// and the object argument (@c Object). For example, in a call
1992/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1993/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1994/// allow user-defined conversions via constructors or conversion
1995/// operators.
1996void
1997Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1998                         Expr **Args, unsigned NumArgs,
1999                         OverloadCandidateSet& CandidateSet,
2000                         bool SuppressUserConversions)
2001{
2002  const FunctionTypeProto* Proto
2003    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
2004  assert(Proto && "Methods without a prototype cannot be overloaded");
2005  assert(!isa<CXXConversionDecl>(Method) &&
2006         "Use AddConversionCandidate for conversion functions");
2007
2008  // Add this candidate
2009  CandidateSet.push_back(OverloadCandidate());
2010  OverloadCandidate& Candidate = CandidateSet.back();
2011  Candidate.Function = Method;
2012  Candidate.IsSurrogate = false;
2013  Candidate.IgnoreObjectArgument = false;
2014
2015  unsigned NumArgsInProto = Proto->getNumArgs();
2016
2017  // (C++ 13.3.2p2): A candidate function having fewer than m
2018  // parameters is viable only if it has an ellipsis in its parameter
2019  // list (8.3.5).
2020  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2021    Candidate.Viable = false;
2022    return;
2023  }
2024
2025  // (C++ 13.3.2p2): A candidate function having more than m parameters
2026  // is viable only if the (m+1)st parameter has a default argument
2027  // (8.3.6). For the purposes of overload resolution, the
2028  // parameter list is truncated on the right, so that there are
2029  // exactly m parameters.
2030  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2031  if (NumArgs < MinRequiredArgs) {
2032    // Not enough arguments.
2033    Candidate.Viable = false;
2034    return;
2035  }
2036
2037  Candidate.Viable = true;
2038  Candidate.Conversions.resize(NumArgs + 1);
2039
2040  if (Method->isStatic() || !Object)
2041    // The implicit object argument is ignored.
2042    Candidate.IgnoreObjectArgument = true;
2043  else {
2044    // Determine the implicit conversion sequence for the object
2045    // parameter.
2046    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2047    if (Candidate.Conversions[0].ConversionKind
2048          == ImplicitConversionSequence::BadConversion) {
2049      Candidate.Viable = false;
2050      return;
2051    }
2052  }
2053
2054  // Determine the implicit conversion sequences for each of the
2055  // arguments.
2056  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2057    if (ArgIdx < NumArgsInProto) {
2058      // (C++ 13.3.2p3): for F to be a viable function, there shall
2059      // exist for each argument an implicit conversion sequence
2060      // (13.3.3.1) that converts that argument to the corresponding
2061      // parameter of F.
2062      QualType ParamType = Proto->getArgType(ArgIdx);
2063      Candidate.Conversions[ArgIdx + 1]
2064        = TryCopyInitialization(Args[ArgIdx], ParamType,
2065                                SuppressUserConversions);
2066      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2067            == ImplicitConversionSequence::BadConversion) {
2068        Candidate.Viable = false;
2069        break;
2070      }
2071    } else {
2072      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2073      // argument for which there is no corresponding parameter is
2074      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2075      Candidate.Conversions[ArgIdx + 1].ConversionKind
2076        = ImplicitConversionSequence::EllipsisConversion;
2077    }
2078  }
2079}
2080
2081/// AddConversionCandidate - Add a C++ conversion function as a
2082/// candidate in the candidate set (C++ [over.match.conv],
2083/// C++ [over.match.copy]). From is the expression we're converting from,
2084/// and ToType is the type that we're eventually trying to convert to
2085/// (which may or may not be the same type as the type that the
2086/// conversion function produces).
2087void
2088Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2089                             Expr *From, QualType ToType,
2090                             OverloadCandidateSet& CandidateSet) {
2091  // Add this candidate
2092  CandidateSet.push_back(OverloadCandidate());
2093  OverloadCandidate& Candidate = CandidateSet.back();
2094  Candidate.Function = Conversion;
2095  Candidate.IsSurrogate = false;
2096  Candidate.IgnoreObjectArgument = false;
2097  Candidate.FinalConversion.setAsIdentityConversion();
2098  Candidate.FinalConversion.FromTypePtr
2099    = Conversion->getConversionType().getAsOpaquePtr();
2100  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2101
2102  // Determine the implicit conversion sequence for the implicit
2103  // object parameter.
2104  Candidate.Viable = true;
2105  Candidate.Conversions.resize(1);
2106  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2107
2108  if (Candidate.Conversions[0].ConversionKind
2109      == ImplicitConversionSequence::BadConversion) {
2110    Candidate.Viable = false;
2111    return;
2112  }
2113
2114  // To determine what the conversion from the result of calling the
2115  // conversion function to the type we're eventually trying to
2116  // convert to (ToType), we need to synthesize a call to the
2117  // conversion function and attempt copy initialization from it. This
2118  // makes sure that we get the right semantics with respect to
2119  // lvalues/rvalues and the type. Fortunately, we can allocate this
2120  // call on the stack and we don't need its arguments to be
2121  // well-formed.
2122  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2123                            SourceLocation());
2124  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2125                                &ConversionRef, false);
2126
2127  // Note that it is safe to allocate CallExpr on the stack here because
2128  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2129  // allocator).
2130  CallExpr Call(Context, &ConversionFn, 0, 0,
2131                Conversion->getConversionType().getNonReferenceType(),
2132                SourceLocation());
2133  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2134  switch (ICS.ConversionKind) {
2135  case ImplicitConversionSequence::StandardConversion:
2136    Candidate.FinalConversion = ICS.Standard;
2137    break;
2138
2139  case ImplicitConversionSequence::BadConversion:
2140    Candidate.Viable = false;
2141    break;
2142
2143  default:
2144    assert(false &&
2145           "Can only end up with a standard conversion sequence or failure");
2146  }
2147}
2148
2149/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2150/// converts the given @c Object to a function pointer via the
2151/// conversion function @c Conversion, and then attempts to call it
2152/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2153/// the type of function that we'll eventually be calling.
2154void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2155                                 const FunctionTypeProto *Proto,
2156                                 Expr *Object, Expr **Args, unsigned NumArgs,
2157                                 OverloadCandidateSet& CandidateSet) {
2158  CandidateSet.push_back(OverloadCandidate());
2159  OverloadCandidate& Candidate = CandidateSet.back();
2160  Candidate.Function = 0;
2161  Candidate.Surrogate = Conversion;
2162  Candidate.Viable = true;
2163  Candidate.IsSurrogate = true;
2164  Candidate.IgnoreObjectArgument = false;
2165  Candidate.Conversions.resize(NumArgs + 1);
2166
2167  // Determine the implicit conversion sequence for the implicit
2168  // object parameter.
2169  ImplicitConversionSequence ObjectInit
2170    = TryObjectArgumentInitialization(Object, Conversion);
2171  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2172    Candidate.Viable = false;
2173    return;
2174  }
2175
2176  // The first conversion is actually a user-defined conversion whose
2177  // first conversion is ObjectInit's standard conversion (which is
2178  // effectively a reference binding). Record it as such.
2179  Candidate.Conversions[0].ConversionKind
2180    = ImplicitConversionSequence::UserDefinedConversion;
2181  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2182  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2183  Candidate.Conversions[0].UserDefined.After
2184    = Candidate.Conversions[0].UserDefined.Before;
2185  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2186
2187  // Find the
2188  unsigned NumArgsInProto = Proto->getNumArgs();
2189
2190  // (C++ 13.3.2p2): A candidate function having fewer than m
2191  // parameters is viable only if it has an ellipsis in its parameter
2192  // list (8.3.5).
2193  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2194    Candidate.Viable = false;
2195    return;
2196  }
2197
2198  // Function types don't have any default arguments, so just check if
2199  // we have enough arguments.
2200  if (NumArgs < NumArgsInProto) {
2201    // Not enough arguments.
2202    Candidate.Viable = false;
2203    return;
2204  }
2205
2206  // Determine the implicit conversion sequences for each of the
2207  // arguments.
2208  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2209    if (ArgIdx < NumArgsInProto) {
2210      // (C++ 13.3.2p3): for F to be a viable function, there shall
2211      // exist for each argument an implicit conversion sequence
2212      // (13.3.3.1) that converts that argument to the corresponding
2213      // parameter of F.
2214      QualType ParamType = Proto->getArgType(ArgIdx);
2215      Candidate.Conversions[ArgIdx + 1]
2216        = TryCopyInitialization(Args[ArgIdx], ParamType,
2217                                /*SuppressUserConversions=*/false);
2218      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2219            == ImplicitConversionSequence::BadConversion) {
2220        Candidate.Viable = false;
2221        break;
2222      }
2223    } else {
2224      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2225      // argument for which there is no corresponding parameter is
2226      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2227      Candidate.Conversions[ArgIdx + 1].ConversionKind
2228        = ImplicitConversionSequence::EllipsisConversion;
2229    }
2230  }
2231}
2232
2233/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2234/// an acceptable non-member overloaded operator for a call whose
2235/// arguments have types T1 (and, if non-empty, T2). This routine
2236/// implements the check in C++ [over.match.oper]p3b2 concerning
2237/// enumeration types.
2238static bool
2239IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2240                                       QualType T1, QualType T2,
2241                                       ASTContext &Context) {
2242  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2243    return true;
2244
2245  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
2246  if (Proto->getNumArgs() < 1)
2247    return false;
2248
2249  if (T1->isEnumeralType()) {
2250    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2251    if (Context.getCanonicalType(T1).getUnqualifiedType()
2252          == Context.getCanonicalType(ArgType).getUnqualifiedType())
2253      return true;
2254  }
2255
2256  if (Proto->getNumArgs() < 2)
2257    return false;
2258
2259  if (!T2.isNull() && T2->isEnumeralType()) {
2260    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2261    if (Context.getCanonicalType(T2).getUnqualifiedType()
2262          == Context.getCanonicalType(ArgType).getUnqualifiedType())
2263      return true;
2264  }
2265
2266  return false;
2267}
2268
2269/// AddOperatorCandidates - Add the overloaded operator candidates for
2270/// the operator Op that was used in an operator expression such as "x
2271/// Op y". S is the scope in which the expression occurred (used for
2272/// name lookup of the operator), Args/NumArgs provides the operator
2273/// arguments, and CandidateSet will store the added overload
2274/// candidates. (C++ [over.match.oper]).
2275bool Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2276                                 SourceLocation OpLoc,
2277                                 Expr **Args, unsigned NumArgs,
2278                                 OverloadCandidateSet& CandidateSet,
2279                                 SourceRange OpRange) {
2280  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2281
2282  // C++ [over.match.oper]p3:
2283  //   For a unary operator @ with an operand of a type whose
2284  //   cv-unqualified version is T1, and for a binary operator @ with
2285  //   a left operand of a type whose cv-unqualified version is T1 and
2286  //   a right operand of a type whose cv-unqualified version is T2,
2287  //   three sets of candidate functions, designated member
2288  //   candidates, non-member candidates and built-in candidates, are
2289  //   constructed as follows:
2290  QualType T1 = Args[0]->getType();
2291  QualType T2;
2292  if (NumArgs > 1)
2293    T2 = Args[1]->getType();
2294
2295  //     -- If T1 is a class type, the set of member candidates is the
2296  //        result of the qualified lookup of T1::operator@
2297  //        (13.3.1.1.1); otherwise, the set of member candidates is
2298  //        empty.
2299  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2300    DeclContext::lookup_const_iterator Oper, OperEnd;
2301    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2302         Oper != OperEnd; ++Oper)
2303      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2304                         Args+1, NumArgs - 1, CandidateSet,
2305                         /*SuppressUserConversions=*/false);
2306  }
2307
2308  //     -- The set of non-member candidates is the result of the
2309  //        unqualified lookup of operator@ in the context of the
2310  //        expression according to the usual rules for name lookup in
2311  //        unqualified function calls (3.4.2) except that all member
2312  //        functions are ignored. However, if no operand has a class
2313  //        type, only those non-member functions in the lookup set
2314  //        that have a first parameter of type T1 or “reference to
2315  //        (possibly cv-qualified) T1”, when T1 is an enumeration
2316  //        type, or (if there is a right operand) a second parameter
2317  //        of type T2 or “reference to (possibly cv-qualified) T2”,
2318  //        when T2 is an enumeration type, are candidate functions.
2319  LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
2320
2321  if (Operators.isAmbiguous())
2322    return DiagnoseAmbiguousLookup(Operators, OpName, OpLoc, OpRange);
2323  else if (Operators) {
2324    for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2325         Op != OpEnd; ++Op) {
2326      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op))
2327        if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2328          AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2329                               /*SuppressUserConversions=*/false);
2330    }
2331  }
2332
2333  // Since the set of non-member candidates corresponds to
2334  // *unqualified* lookup of the operator name, we also perform
2335  // argument-dependent lookup (C++ [basic.lookup.argdep]).
2336  AddArgumentDependentLookupCandidates(OpName, Args, NumArgs, CandidateSet);
2337
2338  // Add builtin overload candidates (C++ [over.built]).
2339  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2340
2341  return false;
2342}
2343
2344/// AddBuiltinCandidate - Add a candidate for a built-in
2345/// operator. ResultTy and ParamTys are the result and parameter types
2346/// of the built-in candidate, respectively. Args and NumArgs are the
2347/// arguments being passed to the candidate. IsAssignmentOperator
2348/// should be true when this built-in candidate is an assignment
2349/// operator. NumContextualBoolArguments is the number of arguments
2350/// (at the beginning of the argument list) that will be contextually
2351/// converted to bool.
2352void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2353                               Expr **Args, unsigned NumArgs,
2354                               OverloadCandidateSet& CandidateSet,
2355                               bool IsAssignmentOperator,
2356                               unsigned NumContextualBoolArguments) {
2357  // Add this candidate
2358  CandidateSet.push_back(OverloadCandidate());
2359  OverloadCandidate& Candidate = CandidateSet.back();
2360  Candidate.Function = 0;
2361  Candidate.IsSurrogate = false;
2362  Candidate.IgnoreObjectArgument = false;
2363  Candidate.BuiltinTypes.ResultTy = ResultTy;
2364  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2365    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2366
2367  // Determine the implicit conversion sequences for each of the
2368  // arguments.
2369  Candidate.Viable = true;
2370  Candidate.Conversions.resize(NumArgs);
2371  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2372    // C++ [over.match.oper]p4:
2373    //   For the built-in assignment operators, conversions of the
2374    //   left operand are restricted as follows:
2375    //     -- no temporaries are introduced to hold the left operand, and
2376    //     -- no user-defined conversions are applied to the left
2377    //        operand to achieve a type match with the left-most
2378    //        parameter of a built-in candidate.
2379    //
2380    // We block these conversions by turning off user-defined
2381    // conversions, since that is the only way that initialization of
2382    // a reference to a non-class type can occur from something that
2383    // is not of the same type.
2384    if (ArgIdx < NumContextualBoolArguments) {
2385      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2386             "Contextual conversion to bool requires bool type");
2387      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2388    } else {
2389      Candidate.Conversions[ArgIdx]
2390        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2391                                ArgIdx == 0 && IsAssignmentOperator);
2392    }
2393    if (Candidate.Conversions[ArgIdx].ConversionKind
2394        == ImplicitConversionSequence::BadConversion) {
2395      Candidate.Viable = false;
2396      break;
2397    }
2398  }
2399}
2400
2401/// BuiltinCandidateTypeSet - A set of types that will be used for the
2402/// candidate operator functions for built-in operators (C++
2403/// [over.built]). The types are separated into pointer types and
2404/// enumeration types.
2405class BuiltinCandidateTypeSet  {
2406  /// TypeSet - A set of types.
2407  typedef llvm::SmallPtrSet<void*, 8> TypeSet;
2408
2409  /// PointerTypes - The set of pointer types that will be used in the
2410  /// built-in candidates.
2411  TypeSet PointerTypes;
2412
2413  /// EnumerationTypes - The set of enumeration types that will be
2414  /// used in the built-in candidates.
2415  TypeSet EnumerationTypes;
2416
2417  /// Context - The AST context in which we will build the type sets.
2418  ASTContext &Context;
2419
2420  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2421
2422public:
2423  /// iterator - Iterates through the types that are part of the set.
2424  class iterator {
2425    TypeSet::iterator Base;
2426
2427  public:
2428    typedef QualType                 value_type;
2429    typedef QualType                 reference;
2430    typedef QualType                 pointer;
2431    typedef std::ptrdiff_t           difference_type;
2432    typedef std::input_iterator_tag  iterator_category;
2433
2434    iterator(TypeSet::iterator B) : Base(B) { }
2435
2436    iterator& operator++() {
2437      ++Base;
2438      return *this;
2439    }
2440
2441    iterator operator++(int) {
2442      iterator tmp(*this);
2443      ++(*this);
2444      return tmp;
2445    }
2446
2447    reference operator*() const {
2448      return QualType::getFromOpaquePtr(*Base);
2449    }
2450
2451    pointer operator->() const {
2452      return **this;
2453    }
2454
2455    friend bool operator==(iterator LHS, iterator RHS) {
2456      return LHS.Base == RHS.Base;
2457    }
2458
2459    friend bool operator!=(iterator LHS, iterator RHS) {
2460      return LHS.Base != RHS.Base;
2461    }
2462  };
2463
2464  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2465
2466  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2467                             bool AllowExplicitConversions);
2468
2469  /// pointer_begin - First pointer type found;
2470  iterator pointer_begin() { return PointerTypes.begin(); }
2471
2472  /// pointer_end - Last pointer type found;
2473  iterator pointer_end() { return PointerTypes.end(); }
2474
2475  /// enumeration_begin - First enumeration type found;
2476  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2477
2478  /// enumeration_end - Last enumeration type found;
2479  iterator enumeration_end() { return EnumerationTypes.end(); }
2480};
2481
2482/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2483/// the set of pointer types along with any more-qualified variants of
2484/// that type. For example, if @p Ty is "int const *", this routine
2485/// will add "int const *", "int const volatile *", "int const
2486/// restrict *", and "int const volatile restrict *" to the set of
2487/// pointer types. Returns true if the add of @p Ty itself succeeded,
2488/// false otherwise.
2489bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2490  // Insert this type.
2491  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
2492    return false;
2493
2494  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2495    QualType PointeeTy = PointerTy->getPointeeType();
2496    // FIXME: Optimize this so that we don't keep trying to add the same types.
2497
2498    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2499    // with all pointer conversions that don't cast away constness?
2500    if (!PointeeTy.isConstQualified())
2501      AddWithMoreQualifiedTypeVariants
2502        (Context.getPointerType(PointeeTy.withConst()));
2503    if (!PointeeTy.isVolatileQualified())
2504      AddWithMoreQualifiedTypeVariants
2505        (Context.getPointerType(PointeeTy.withVolatile()));
2506    if (!PointeeTy.isRestrictQualified())
2507      AddWithMoreQualifiedTypeVariants
2508        (Context.getPointerType(PointeeTy.withRestrict()));
2509  }
2510
2511  return true;
2512}
2513
2514/// AddTypesConvertedFrom - Add each of the types to which the type @p
2515/// Ty can be implicit converted to the given set of @p Types. We're
2516/// primarily interested in pointer types and enumeration types.
2517/// AllowUserConversions is true if we should look at the conversion
2518/// functions of a class type, and AllowExplicitConversions if we
2519/// should also include the explicit conversion functions of a class
2520/// type.
2521void
2522BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2523                                               bool AllowUserConversions,
2524                                               bool AllowExplicitConversions) {
2525  // Only deal with canonical types.
2526  Ty = Context.getCanonicalType(Ty);
2527
2528  // Look through reference types; they aren't part of the type of an
2529  // expression for the purposes of conversions.
2530  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2531    Ty = RefTy->getPointeeType();
2532
2533  // We don't care about qualifiers on the type.
2534  Ty = Ty.getUnqualifiedType();
2535
2536  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2537    QualType PointeeTy = PointerTy->getPointeeType();
2538
2539    // Insert our type, and its more-qualified variants, into the set
2540    // of types.
2541    if (!AddWithMoreQualifiedTypeVariants(Ty))
2542      return;
2543
2544    // Add 'cv void*' to our set of types.
2545    if (!Ty->isVoidType()) {
2546      QualType QualVoid
2547        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2548      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2549    }
2550
2551    // If this is a pointer to a class type, add pointers to its bases
2552    // (with the same level of cv-qualification as the original
2553    // derived class, of course).
2554    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2555      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2556      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2557           Base != ClassDecl->bases_end(); ++Base) {
2558        QualType BaseTy = Context.getCanonicalType(Base->getType());
2559        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2560
2561        // Add the pointer type, recursively, so that we get all of
2562        // the indirect base classes, too.
2563        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2564      }
2565    }
2566  } else if (Ty->isEnumeralType()) {
2567    EnumerationTypes.insert(Ty.getAsOpaquePtr());
2568  } else if (AllowUserConversions) {
2569    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2570      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2571      // FIXME: Visit conversion functions in the base classes, too.
2572      OverloadedFunctionDecl *Conversions
2573        = ClassDecl->getConversionFunctions();
2574      for (OverloadedFunctionDecl::function_iterator Func
2575             = Conversions->function_begin();
2576           Func != Conversions->function_end(); ++Func) {
2577        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2578        if (AllowExplicitConversions || !Conv->isExplicit())
2579          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2580      }
2581    }
2582  }
2583}
2584
2585/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2586/// operator overloads to the candidate set (C++ [over.built]), based
2587/// on the operator @p Op and the arguments given. For example, if the
2588/// operator is a binary '+', this routine might add "int
2589/// operator+(int, int)" to cover integer addition.
2590void
2591Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2592                                   Expr **Args, unsigned NumArgs,
2593                                   OverloadCandidateSet& CandidateSet) {
2594  // The set of "promoted arithmetic types", which are the arithmetic
2595  // types are that preserved by promotion (C++ [over.built]p2). Note
2596  // that the first few of these types are the promoted integral
2597  // types; these types need to be first.
2598  // FIXME: What about complex?
2599  const unsigned FirstIntegralType = 0;
2600  const unsigned LastIntegralType = 13;
2601  const unsigned FirstPromotedIntegralType = 7,
2602                 LastPromotedIntegralType = 13;
2603  const unsigned FirstPromotedArithmeticType = 7,
2604                 LastPromotedArithmeticType = 16;
2605  const unsigned NumArithmeticTypes = 16;
2606  QualType ArithmeticTypes[NumArithmeticTypes] = {
2607    Context.BoolTy, Context.CharTy, Context.WCharTy,
2608    Context.SignedCharTy, Context.ShortTy,
2609    Context.UnsignedCharTy, Context.UnsignedShortTy,
2610    Context.IntTy, Context.LongTy, Context.LongLongTy,
2611    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2612    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2613  };
2614
2615  // Find all of the types that the arguments can convert to, but only
2616  // if the operator we're looking at has built-in operator candidates
2617  // that make use of these types.
2618  BuiltinCandidateTypeSet CandidateTypes(Context);
2619  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2620      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2621      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2622      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2623      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2624      (Op == OO_Star && NumArgs == 1)) {
2625    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2626      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2627                                           true,
2628                                           (Op == OO_Exclaim ||
2629                                            Op == OO_AmpAmp ||
2630                                            Op == OO_PipePipe));
2631  }
2632
2633  bool isComparison = false;
2634  switch (Op) {
2635  case OO_None:
2636  case NUM_OVERLOADED_OPERATORS:
2637    assert(false && "Expected an overloaded operator");
2638    break;
2639
2640  case OO_Star: // '*' is either unary or binary
2641    if (NumArgs == 1)
2642      goto UnaryStar;
2643    else
2644      goto BinaryStar;
2645    break;
2646
2647  case OO_Plus: // '+' is either unary or binary
2648    if (NumArgs == 1)
2649      goto UnaryPlus;
2650    else
2651      goto BinaryPlus;
2652    break;
2653
2654  case OO_Minus: // '-' is either unary or binary
2655    if (NumArgs == 1)
2656      goto UnaryMinus;
2657    else
2658      goto BinaryMinus;
2659    break;
2660
2661  case OO_Amp: // '&' is either unary or binary
2662    if (NumArgs == 1)
2663      goto UnaryAmp;
2664    else
2665      goto BinaryAmp;
2666
2667  case OO_PlusPlus:
2668  case OO_MinusMinus:
2669    // C++ [over.built]p3:
2670    //
2671    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2672    //   is either volatile or empty, there exist candidate operator
2673    //   functions of the form
2674    //
2675    //       VQ T&      operator++(VQ T&);
2676    //       T          operator++(VQ T&, int);
2677    //
2678    // C++ [over.built]p4:
2679    //
2680    //   For every pair (T, VQ), where T is an arithmetic type other
2681    //   than bool, and VQ is either volatile or empty, there exist
2682    //   candidate operator functions of the form
2683    //
2684    //       VQ T&      operator--(VQ T&);
2685    //       T          operator--(VQ T&, int);
2686    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2687         Arith < NumArithmeticTypes; ++Arith) {
2688      QualType ArithTy = ArithmeticTypes[Arith];
2689      QualType ParamTypes[2]
2690        = { Context.getReferenceType(ArithTy), Context.IntTy };
2691
2692      // Non-volatile version.
2693      if (NumArgs == 1)
2694        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2695      else
2696        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2697
2698      // Volatile version
2699      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2700      if (NumArgs == 1)
2701        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2702      else
2703        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2704    }
2705
2706    // C++ [over.built]p5:
2707    //
2708    //   For every pair (T, VQ), where T is a cv-qualified or
2709    //   cv-unqualified object type, and VQ is either volatile or
2710    //   empty, there exist candidate operator functions of the form
2711    //
2712    //       T*VQ&      operator++(T*VQ&);
2713    //       T*VQ&      operator--(T*VQ&);
2714    //       T*         operator++(T*VQ&, int);
2715    //       T*         operator--(T*VQ&, int);
2716    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2717         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2718      // Skip pointer types that aren't pointers to object types.
2719      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
2720        continue;
2721
2722      QualType ParamTypes[2] = {
2723        Context.getReferenceType(*Ptr), Context.IntTy
2724      };
2725
2726      // Without volatile
2727      if (NumArgs == 1)
2728        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2729      else
2730        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2731
2732      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2733        // With volatile
2734        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2735        if (NumArgs == 1)
2736          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2737        else
2738          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2739      }
2740    }
2741    break;
2742
2743  UnaryStar:
2744    // C++ [over.built]p6:
2745    //   For every cv-qualified or cv-unqualified object type T, there
2746    //   exist candidate operator functions of the form
2747    //
2748    //       T&         operator*(T*);
2749    //
2750    // C++ [over.built]p7:
2751    //   For every function type T, there exist candidate operator
2752    //   functions of the form
2753    //       T&         operator*(T*);
2754    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2755         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2756      QualType ParamTy = *Ptr;
2757      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2758      AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2759                          &ParamTy, Args, 1, CandidateSet);
2760    }
2761    break;
2762
2763  UnaryPlus:
2764    // C++ [over.built]p8:
2765    //   For every type T, there exist candidate operator functions of
2766    //   the form
2767    //
2768    //       T*         operator+(T*);
2769    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2770         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2771      QualType ParamTy = *Ptr;
2772      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2773    }
2774
2775    // Fall through
2776
2777  UnaryMinus:
2778    // C++ [over.built]p9:
2779    //  For every promoted arithmetic type T, there exist candidate
2780    //  operator functions of the form
2781    //
2782    //       T         operator+(T);
2783    //       T         operator-(T);
2784    for (unsigned Arith = FirstPromotedArithmeticType;
2785         Arith < LastPromotedArithmeticType; ++Arith) {
2786      QualType ArithTy = ArithmeticTypes[Arith];
2787      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2788    }
2789    break;
2790
2791  case OO_Tilde:
2792    // C++ [over.built]p10:
2793    //   For every promoted integral type T, there exist candidate
2794    //   operator functions of the form
2795    //
2796    //        T         operator~(T);
2797    for (unsigned Int = FirstPromotedIntegralType;
2798         Int < LastPromotedIntegralType; ++Int) {
2799      QualType IntTy = ArithmeticTypes[Int];
2800      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2801    }
2802    break;
2803
2804  case OO_New:
2805  case OO_Delete:
2806  case OO_Array_New:
2807  case OO_Array_Delete:
2808  case OO_Call:
2809    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2810    break;
2811
2812  case OO_Comma:
2813  UnaryAmp:
2814  case OO_Arrow:
2815    // C++ [over.match.oper]p3:
2816    //   -- For the operator ',', the unary operator '&', or the
2817    //      operator '->', the built-in candidates set is empty.
2818    break;
2819
2820  case OO_Less:
2821  case OO_Greater:
2822  case OO_LessEqual:
2823  case OO_GreaterEqual:
2824  case OO_EqualEqual:
2825  case OO_ExclaimEqual:
2826    // C++ [over.built]p15:
2827    //
2828    //   For every pointer or enumeration type T, there exist
2829    //   candidate operator functions of the form
2830    //
2831    //        bool       operator<(T, T);
2832    //        bool       operator>(T, T);
2833    //        bool       operator<=(T, T);
2834    //        bool       operator>=(T, T);
2835    //        bool       operator==(T, T);
2836    //        bool       operator!=(T, T);
2837    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2838         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2839      QualType ParamTypes[2] = { *Ptr, *Ptr };
2840      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2841    }
2842    for (BuiltinCandidateTypeSet::iterator Enum
2843           = CandidateTypes.enumeration_begin();
2844         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2845      QualType ParamTypes[2] = { *Enum, *Enum };
2846      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2847    }
2848
2849    // Fall through.
2850    isComparison = true;
2851
2852  BinaryPlus:
2853  BinaryMinus:
2854    if (!isComparison) {
2855      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2856
2857      // C++ [over.built]p13:
2858      //
2859      //   For every cv-qualified or cv-unqualified object type T
2860      //   there exist candidate operator functions of the form
2861      //
2862      //      T*         operator+(T*, ptrdiff_t);
2863      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2864      //      T*         operator-(T*, ptrdiff_t);
2865      //      T*         operator+(ptrdiff_t, T*);
2866      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2867      //
2868      // C++ [over.built]p14:
2869      //
2870      //   For every T, where T is a pointer to object type, there
2871      //   exist candidate operator functions of the form
2872      //
2873      //      ptrdiff_t  operator-(T, T);
2874      for (BuiltinCandidateTypeSet::iterator Ptr
2875             = CandidateTypes.pointer_begin();
2876           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2877        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2878
2879        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2880        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2881
2882        if (Op == OO_Plus) {
2883          // T* operator+(ptrdiff_t, T*);
2884          ParamTypes[0] = ParamTypes[1];
2885          ParamTypes[1] = *Ptr;
2886          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2887        } else {
2888          // ptrdiff_t operator-(T, T);
2889          ParamTypes[1] = *Ptr;
2890          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2891                              Args, 2, CandidateSet);
2892        }
2893      }
2894    }
2895    // Fall through
2896
2897  case OO_Slash:
2898  BinaryStar:
2899    // C++ [over.built]p12:
2900    //
2901    //   For every pair of promoted arithmetic types L and R, there
2902    //   exist candidate operator functions of the form
2903    //
2904    //        LR         operator*(L, R);
2905    //        LR         operator/(L, R);
2906    //        LR         operator+(L, R);
2907    //        LR         operator-(L, R);
2908    //        bool       operator<(L, R);
2909    //        bool       operator>(L, R);
2910    //        bool       operator<=(L, R);
2911    //        bool       operator>=(L, R);
2912    //        bool       operator==(L, R);
2913    //        bool       operator!=(L, R);
2914    //
2915    //   where LR is the result of the usual arithmetic conversions
2916    //   between types L and R.
2917    for (unsigned Left = FirstPromotedArithmeticType;
2918         Left < LastPromotedArithmeticType; ++Left) {
2919      for (unsigned Right = FirstPromotedArithmeticType;
2920           Right < LastPromotedArithmeticType; ++Right) {
2921        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2922        QualType Result
2923          = isComparison? Context.BoolTy
2924                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2925        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2926      }
2927    }
2928    break;
2929
2930  case OO_Percent:
2931  BinaryAmp:
2932  case OO_Caret:
2933  case OO_Pipe:
2934  case OO_LessLess:
2935  case OO_GreaterGreater:
2936    // C++ [over.built]p17:
2937    //
2938    //   For every pair of promoted integral types L and R, there
2939    //   exist candidate operator functions of the form
2940    //
2941    //      LR         operator%(L, R);
2942    //      LR         operator&(L, R);
2943    //      LR         operator^(L, R);
2944    //      LR         operator|(L, R);
2945    //      L          operator<<(L, R);
2946    //      L          operator>>(L, R);
2947    //
2948    //   where LR is the result of the usual arithmetic conversions
2949    //   between types L and R.
2950    for (unsigned Left = FirstPromotedIntegralType;
2951         Left < LastPromotedIntegralType; ++Left) {
2952      for (unsigned Right = FirstPromotedIntegralType;
2953           Right < LastPromotedIntegralType; ++Right) {
2954        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2955        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2956            ? LandR[0]
2957            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2958        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2959      }
2960    }
2961    break;
2962
2963  case OO_Equal:
2964    // C++ [over.built]p20:
2965    //
2966    //   For every pair (T, VQ), where T is an enumeration or
2967    //   (FIXME:) pointer to member type and VQ is either volatile or
2968    //   empty, there exist candidate operator functions of the form
2969    //
2970    //        VQ T&      operator=(VQ T&, T);
2971    for (BuiltinCandidateTypeSet::iterator Enum
2972           = CandidateTypes.enumeration_begin();
2973         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2974      QualType ParamTypes[2];
2975
2976      // T& operator=(T&, T)
2977      ParamTypes[0] = Context.getReferenceType(*Enum);
2978      ParamTypes[1] = *Enum;
2979      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2980                          /*IsAssignmentOperator=*/false);
2981
2982      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2983        // volatile T& operator=(volatile T&, T)
2984        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2985        ParamTypes[1] = *Enum;
2986        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2987                            /*IsAssignmentOperator=*/false);
2988      }
2989    }
2990    // Fall through.
2991
2992  case OO_PlusEqual:
2993  case OO_MinusEqual:
2994    // C++ [over.built]p19:
2995    //
2996    //   For every pair (T, VQ), where T is any type and VQ is either
2997    //   volatile or empty, there exist candidate operator functions
2998    //   of the form
2999    //
3000    //        T*VQ&      operator=(T*VQ&, T*);
3001    //
3002    // C++ [over.built]p21:
3003    //
3004    //   For every pair (T, VQ), where T is a cv-qualified or
3005    //   cv-unqualified object type and VQ is either volatile or
3006    //   empty, there exist candidate operator functions of the form
3007    //
3008    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3009    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3010    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3011         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3012      QualType ParamTypes[2];
3013      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3014
3015      // non-volatile version
3016      ParamTypes[0] = Context.getReferenceType(*Ptr);
3017      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3018                          /*IsAssigmentOperator=*/Op == OO_Equal);
3019
3020      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3021        // volatile version
3022        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
3023        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3024                            /*IsAssigmentOperator=*/Op == OO_Equal);
3025      }
3026    }
3027    // Fall through.
3028
3029  case OO_StarEqual:
3030  case OO_SlashEqual:
3031    // C++ [over.built]p18:
3032    //
3033    //   For every triple (L, VQ, R), where L is an arithmetic type,
3034    //   VQ is either volatile or empty, and R is a promoted
3035    //   arithmetic type, there exist candidate operator functions of
3036    //   the form
3037    //
3038    //        VQ L&      operator=(VQ L&, R);
3039    //        VQ L&      operator*=(VQ L&, R);
3040    //        VQ L&      operator/=(VQ L&, R);
3041    //        VQ L&      operator+=(VQ L&, R);
3042    //        VQ L&      operator-=(VQ L&, R);
3043    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3044      for (unsigned Right = FirstPromotedArithmeticType;
3045           Right < LastPromotedArithmeticType; ++Right) {
3046        QualType ParamTypes[2];
3047        ParamTypes[1] = ArithmeticTypes[Right];
3048
3049        // Add this built-in operator as a candidate (VQ is empty).
3050        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3051        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3052                            /*IsAssigmentOperator=*/Op == OO_Equal);
3053
3054        // Add this built-in operator as a candidate (VQ is 'volatile').
3055        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3056        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3057        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3058                            /*IsAssigmentOperator=*/Op == OO_Equal);
3059      }
3060    }
3061    break;
3062
3063  case OO_PercentEqual:
3064  case OO_LessLessEqual:
3065  case OO_GreaterGreaterEqual:
3066  case OO_AmpEqual:
3067  case OO_CaretEqual:
3068  case OO_PipeEqual:
3069    // C++ [over.built]p22:
3070    //
3071    //   For every triple (L, VQ, R), where L is an integral type, VQ
3072    //   is either volatile or empty, and R is a promoted integral
3073    //   type, there exist candidate operator functions of the form
3074    //
3075    //        VQ L&       operator%=(VQ L&, R);
3076    //        VQ L&       operator<<=(VQ L&, R);
3077    //        VQ L&       operator>>=(VQ L&, R);
3078    //        VQ L&       operator&=(VQ L&, R);
3079    //        VQ L&       operator^=(VQ L&, R);
3080    //        VQ L&       operator|=(VQ L&, R);
3081    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3082      for (unsigned Right = FirstPromotedIntegralType;
3083           Right < LastPromotedIntegralType; ++Right) {
3084        QualType ParamTypes[2];
3085        ParamTypes[1] = ArithmeticTypes[Right];
3086
3087        // Add this built-in operator as a candidate (VQ is empty).
3088        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3089        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3090
3091        // Add this built-in operator as a candidate (VQ is 'volatile').
3092        ParamTypes[0] = ArithmeticTypes[Left];
3093        ParamTypes[0].addVolatile();
3094        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3095        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3096      }
3097    }
3098    break;
3099
3100  case OO_Exclaim: {
3101    // C++ [over.operator]p23:
3102    //
3103    //   There also exist candidate operator functions of the form
3104    //
3105    //        bool        operator!(bool);
3106    //        bool        operator&&(bool, bool);     [BELOW]
3107    //        bool        operator||(bool, bool);     [BELOW]
3108    QualType ParamTy = Context.BoolTy;
3109    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3110                        /*IsAssignmentOperator=*/false,
3111                        /*NumContextualBoolArguments=*/1);
3112    break;
3113  }
3114
3115  case OO_AmpAmp:
3116  case OO_PipePipe: {
3117    // C++ [over.operator]p23:
3118    //
3119    //   There also exist candidate operator functions of the form
3120    //
3121    //        bool        operator!(bool);            [ABOVE]
3122    //        bool        operator&&(bool, bool);
3123    //        bool        operator||(bool, bool);
3124    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3125    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3126                        /*IsAssignmentOperator=*/false,
3127                        /*NumContextualBoolArguments=*/2);
3128    break;
3129  }
3130
3131  case OO_Subscript:
3132    // C++ [over.built]p13:
3133    //
3134    //   For every cv-qualified or cv-unqualified object type T there
3135    //   exist candidate operator functions of the form
3136    //
3137    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3138    //        T&         operator[](T*, ptrdiff_t);
3139    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3140    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3141    //        T&         operator[](ptrdiff_t, T*);
3142    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3143         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3144      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3145      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3146      QualType ResultTy = Context.getReferenceType(PointeeType);
3147
3148      // T& operator[](T*, ptrdiff_t)
3149      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3150
3151      // T& operator[](ptrdiff_t, T*);
3152      ParamTypes[0] = ParamTypes[1];
3153      ParamTypes[1] = *Ptr;
3154      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3155    }
3156    break;
3157
3158  case OO_ArrowStar:
3159    // FIXME: No support for pointer-to-members yet.
3160    break;
3161  }
3162}
3163
3164/// \brief Add function candidates found via argument-dependent lookup
3165/// to the set of overloading candidates.
3166///
3167/// This routine performs argument-dependent name lookup based on the
3168/// given function name (which may also be an operator name) and adds
3169/// all of the overload candidates found by ADL to the overload
3170/// candidate set (C++ [basic.lookup.argdep]).
3171void
3172Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3173                                           Expr **Args, unsigned NumArgs,
3174                                           OverloadCandidateSet& CandidateSet) {
3175  // Find all of the associated namespaces and classes based on the
3176  // arguments we have.
3177  AssociatedNamespaceSet AssociatedNamespaces;
3178  AssociatedClassSet AssociatedClasses;
3179  FindAssociatedClassesAndNamespaces(Args, NumArgs,
3180                                     AssociatedNamespaces, AssociatedClasses);
3181
3182  // C++ [basic.lookup.argdep]p3:
3183  //
3184  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3185  //   and let Y be the lookup set produced by argument dependent
3186  //   lookup (defined as follows). If X contains [...] then Y is
3187  //   empty. Otherwise Y is the set of declarations found in the
3188  //   namespaces associated with the argument types as described
3189  //   below. The set of declarations found by the lookup of the name
3190  //   is the union of X and Y.
3191  //
3192  // Here, we compute Y and add its members to the overloaded
3193  // candidate set.
3194  llvm::SmallPtrSet<FunctionDecl *, 16> KnownCandidates;
3195  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
3196                                     NSEnd = AssociatedNamespaces.end();
3197       NS != NSEnd; ++NS) {
3198    //   When considering an associated namespace, the lookup is the
3199    //   same as the lookup performed when the associated namespace is
3200    //   used as a qualifier (3.4.3.2) except that:
3201    //
3202    //     -- Any using-directives in the associated namespace are
3203    //        ignored.
3204    //
3205    //     -- FIXME: Any namespace-scope friend functions declared in
3206    //        associated classes are visible within their respective
3207    //        namespaces even if they are not visible during an ordinary
3208    //        lookup (11.4).
3209    DeclContext::lookup_iterator I, E;
3210    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
3211      FunctionDecl *Func = dyn_cast<FunctionDecl>(*I);
3212      if (!Func)
3213        break;
3214
3215      if (KnownCandidates.empty()) {
3216        // Record all of the function candidates that we've already
3217        // added to the overload set, so that we don't add those same
3218        // candidates a second time.
3219        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3220                                         CandEnd = CandidateSet.end();
3221             Cand != CandEnd; ++Cand)
3222          KnownCandidates.insert(Cand->Function);
3223      }
3224
3225      // If we haven't seen this function before, add it as a
3226      // candidate.
3227      if (KnownCandidates.insert(Func))
3228        AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3229    }
3230  }
3231}
3232
3233/// isBetterOverloadCandidate - Determines whether the first overload
3234/// candidate is a better candidate than the second (C++ 13.3.3p1).
3235bool
3236Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3237                                const OverloadCandidate& Cand2)
3238{
3239  // Define viable functions to be better candidates than non-viable
3240  // functions.
3241  if (!Cand2.Viable)
3242    return Cand1.Viable;
3243  else if (!Cand1.Viable)
3244    return false;
3245
3246  // C++ [over.match.best]p1:
3247  //
3248  //   -- if F is a static member function, ICS1(F) is defined such
3249  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3250  //      any function G, and, symmetrically, ICS1(G) is neither
3251  //      better nor worse than ICS1(F).
3252  unsigned StartArg = 0;
3253  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3254    StartArg = 1;
3255
3256  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3257  // function than another viable function F2 if for all arguments i,
3258  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3259  // then...
3260  unsigned NumArgs = Cand1.Conversions.size();
3261  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3262  bool HasBetterConversion = false;
3263  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3264    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3265                                               Cand2.Conversions[ArgIdx])) {
3266    case ImplicitConversionSequence::Better:
3267      // Cand1 has a better conversion sequence.
3268      HasBetterConversion = true;
3269      break;
3270
3271    case ImplicitConversionSequence::Worse:
3272      // Cand1 can't be better than Cand2.
3273      return false;
3274
3275    case ImplicitConversionSequence::Indistinguishable:
3276      // Do nothing.
3277      break;
3278    }
3279  }
3280
3281  if (HasBetterConversion)
3282    return true;
3283
3284  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3285  // implemented, but they require template support.
3286
3287  // C++ [over.match.best]p1b4:
3288  //
3289  //   -- the context is an initialization by user-defined conversion
3290  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3291  //      from the return type of F1 to the destination type (i.e.,
3292  //      the type of the entity being initialized) is a better
3293  //      conversion sequence than the standard conversion sequence
3294  //      from the return type of F2 to the destination type.
3295  if (Cand1.Function && Cand2.Function &&
3296      isa<CXXConversionDecl>(Cand1.Function) &&
3297      isa<CXXConversionDecl>(Cand2.Function)) {
3298    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3299                                               Cand2.FinalConversion)) {
3300    case ImplicitConversionSequence::Better:
3301      // Cand1 has a better conversion sequence.
3302      return true;
3303
3304    case ImplicitConversionSequence::Worse:
3305      // Cand1 can't be better than Cand2.
3306      return false;
3307
3308    case ImplicitConversionSequence::Indistinguishable:
3309      // Do nothing
3310      break;
3311    }
3312  }
3313
3314  return false;
3315}
3316
3317/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3318/// within an overload candidate set. If overloading is successful,
3319/// the result will be OR_Success and Best will be set to point to the
3320/// best viable function within the candidate set. Otherwise, one of
3321/// several kinds of errors will be returned; see
3322/// Sema::OverloadingResult.
3323Sema::OverloadingResult
3324Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3325                         OverloadCandidateSet::iterator& Best)
3326{
3327  // Find the best viable function.
3328  Best = CandidateSet.end();
3329  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3330       Cand != CandidateSet.end(); ++Cand) {
3331    if (Cand->Viable) {
3332      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3333        Best = Cand;
3334    }
3335  }
3336
3337  // If we didn't find any viable functions, abort.
3338  if (Best == CandidateSet.end())
3339    return OR_No_Viable_Function;
3340
3341  // Make sure that this function is better than every other viable
3342  // function. If not, we have an ambiguity.
3343  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3344       Cand != CandidateSet.end(); ++Cand) {
3345    if (Cand->Viable &&
3346        Cand != Best &&
3347        !isBetterOverloadCandidate(*Best, *Cand)) {
3348      Best = CandidateSet.end();
3349      return OR_Ambiguous;
3350    }
3351  }
3352
3353  // Best is the best viable function.
3354  return OR_Success;
3355}
3356
3357/// PrintOverloadCandidates - When overload resolution fails, prints
3358/// diagnostic messages containing the candidates in the candidate
3359/// set. If OnlyViable is true, only viable candidates will be printed.
3360void
3361Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3362                              bool OnlyViable)
3363{
3364  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3365                             LastCand = CandidateSet.end();
3366  for (; Cand != LastCand; ++Cand) {
3367    if (Cand->Viable || !OnlyViable) {
3368      if (Cand->Function) {
3369        // Normal function
3370        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3371      } else if (Cand->IsSurrogate) {
3372        // Desugar the type of the surrogate down to a function type,
3373        // retaining as many typedefs as possible while still showing
3374        // the function type (and, therefore, its parameter types).
3375        QualType FnType = Cand->Surrogate->getConversionType();
3376        bool isReference = false;
3377        bool isPointer = false;
3378        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3379          FnType = FnTypeRef->getPointeeType();
3380          isReference = true;
3381        }
3382        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3383          FnType = FnTypePtr->getPointeeType();
3384          isPointer = true;
3385        }
3386        // Desugar down to a function type.
3387        FnType = QualType(FnType->getAsFunctionType(), 0);
3388        // Reconstruct the pointer/reference as appropriate.
3389        if (isPointer) FnType = Context.getPointerType(FnType);
3390        if (isReference) FnType = Context.getReferenceType(FnType);
3391
3392        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3393          << FnType;
3394      } else {
3395        // FIXME: We need to get the identifier in here
3396        // FIXME: Do we want the error message to point at the
3397        // operator? (built-ins won't have a location)
3398        QualType FnType
3399          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3400                                    Cand->BuiltinTypes.ParamTypes,
3401                                    Cand->Conversions.size(),
3402                                    false, 0);
3403
3404        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3405      }
3406    }
3407  }
3408}
3409
3410/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3411/// an overloaded function (C++ [over.over]), where @p From is an
3412/// expression with overloaded function type and @p ToType is the type
3413/// we're trying to resolve to. For example:
3414///
3415/// @code
3416/// int f(double);
3417/// int f(int);
3418///
3419/// int (*pfd)(double) = f; // selects f(double)
3420/// @endcode
3421///
3422/// This routine returns the resulting FunctionDecl if it could be
3423/// resolved, and NULL otherwise. When @p Complain is true, this
3424/// routine will emit diagnostics if there is an error.
3425FunctionDecl *
3426Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3427                                         bool Complain) {
3428  QualType FunctionType = ToType;
3429  bool IsMember = false;
3430  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3431    FunctionType = ToTypePtr->getPointeeType();
3432  else if (const MemberPointerType *MemTypePtr =
3433                    ToType->getAsMemberPointerType()) {
3434    FunctionType = MemTypePtr->getPointeeType();
3435    IsMember = true;
3436  }
3437
3438  // We only look at pointers or references to functions.
3439  if (!FunctionType->isFunctionType())
3440    return 0;
3441
3442  // Find the actual overloaded function declaration.
3443  OverloadedFunctionDecl *Ovl = 0;
3444
3445  // C++ [over.over]p1:
3446  //   [...] [Note: any redundant set of parentheses surrounding the
3447  //   overloaded function name is ignored (5.1). ]
3448  Expr *OvlExpr = From->IgnoreParens();
3449
3450  // C++ [over.over]p1:
3451  //   [...] The overloaded function name can be preceded by the &
3452  //   operator.
3453  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3454    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3455      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3456  }
3457
3458  // Try to dig out the overloaded function.
3459  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3460    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3461
3462  // If there's no overloaded function declaration, we're done.
3463  if (!Ovl)
3464    return 0;
3465
3466  // Look through all of the overloaded functions, searching for one
3467  // whose type matches exactly.
3468  // FIXME: When templates or using declarations come along, we'll actually
3469  // have to deal with duplicates, partial ordering, etc. For now, we
3470  // can just do a simple search.
3471  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3472  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3473       Fun != Ovl->function_end(); ++Fun) {
3474    // C++ [over.over]p3:
3475    //   Non-member functions and static member functions match
3476    //   targets of type "pointer-to-function" or "reference-to-function."
3477    //   Nonstatic member functions match targets of
3478    //   type "pointer-to-member-function."
3479    // Note that according to DR 247, the containing class does not matter.
3480    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3481      // Skip non-static functions when converting to pointer, and static
3482      // when converting to member pointer.
3483      if (Method->isStatic() == IsMember)
3484        continue;
3485    } else if (IsMember)
3486      continue;
3487
3488    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3489      return *Fun;
3490  }
3491
3492  return 0;
3493}
3494
3495/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3496/// (which eventually refers to the declaration Func) and the call
3497/// arguments Args/NumArgs, attempt to resolve the function call down
3498/// to a specific function. If overload resolution succeeds, returns
3499/// the function declaration produced by overload
3500/// resolution. Otherwise, emits diagnostics, deletes all of the
3501/// arguments and Fn, and returns NULL.
3502FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3503                                            DeclarationName UnqualifiedName,
3504                                            SourceLocation LParenLoc,
3505                                            Expr **Args, unsigned NumArgs,
3506                                            SourceLocation *CommaLocs,
3507                                            SourceLocation RParenLoc,
3508                                            bool &ArgumentDependentLookup) {
3509  OverloadCandidateSet CandidateSet;
3510
3511  // Add the functions denoted by Callee to the set of candidate
3512  // functions. While we're doing so, track whether argument-dependent
3513  // lookup still applies, per:
3514  //
3515  // C++0x [basic.lookup.argdep]p3:
3516  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3517  //   and let Y be the lookup set produced by argument dependent
3518  //   lookup (defined as follows). If X contains
3519  //
3520  //     -- a declaration of a class member, or
3521  //
3522  //     -- a block-scope function declaration that is not a
3523  //        using-declaration, or
3524  //
3525  //     -- a declaration that is neither a function or a function
3526  //        template
3527  //
3528  //   then Y is empty.
3529  if (OverloadedFunctionDecl *Ovl
3530        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3531    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3532                                                FuncEnd = Ovl->function_end();
3533         Func != FuncEnd; ++Func) {
3534      AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3535
3536      if ((*Func)->getDeclContext()->isRecord() ||
3537          (*Func)->getDeclContext()->isFunctionOrMethod())
3538        ArgumentDependentLookup = false;
3539    }
3540  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3541    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3542
3543    if (Func->getDeclContext()->isRecord() ||
3544        Func->getDeclContext()->isFunctionOrMethod())
3545      ArgumentDependentLookup = false;
3546  }
3547
3548  if (Callee)
3549    UnqualifiedName = Callee->getDeclName();
3550
3551  if (ArgumentDependentLookup)
3552    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3553                                         CandidateSet);
3554
3555  OverloadCandidateSet::iterator Best;
3556  switch (BestViableFunction(CandidateSet, Best)) {
3557  case OR_Success:
3558    return Best->Function;
3559
3560  case OR_No_Viable_Function:
3561    Diag(Fn->getSourceRange().getBegin(),
3562         diag::err_ovl_no_viable_function_in_call)
3563      << UnqualifiedName << (unsigned)CandidateSet.size()
3564      << Fn->getSourceRange();
3565    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3566    break;
3567
3568  case OR_Ambiguous:
3569    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3570      << UnqualifiedName << Fn->getSourceRange();
3571    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3572    break;
3573  }
3574
3575  // Overload resolution failed. Destroy all of the subexpressions and
3576  // return NULL.
3577  Fn->Destroy(Context);
3578  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3579    Args[Arg]->Destroy(Context);
3580  return 0;
3581}
3582
3583/// BuildCallToMemberFunction - Build a call to a member
3584/// function. MemExpr is the expression that refers to the member
3585/// function (and includes the object parameter), Args/NumArgs are the
3586/// arguments to the function call (not including the object
3587/// parameter). The caller needs to validate that the member
3588/// expression refers to a member function or an overloaded member
3589/// function.
3590Sema::ExprResult
3591Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3592                                SourceLocation LParenLoc, Expr **Args,
3593                                unsigned NumArgs, SourceLocation *CommaLocs,
3594                                SourceLocation RParenLoc) {
3595  // Dig out the member expression. This holds both the object
3596  // argument and the member function we're referring to.
3597  MemberExpr *MemExpr = 0;
3598  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3599    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3600  else
3601    MemExpr = dyn_cast<MemberExpr>(MemExprE);
3602  assert(MemExpr && "Building member call without member expression");
3603
3604  // Extract the object argument.
3605  Expr *ObjectArg = MemExpr->getBase();
3606  if (MemExpr->isArrow())
3607    ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3608                     ObjectArg->getType()->getAsPointerType()->getPointeeType(),
3609                     SourceLocation());
3610  CXXMethodDecl *Method = 0;
3611  if (OverloadedFunctionDecl *Ovl
3612        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3613    // Add overload candidates
3614    OverloadCandidateSet CandidateSet;
3615    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3616                                                FuncEnd = Ovl->function_end();
3617         Func != FuncEnd; ++Func) {
3618      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3619      Method = cast<CXXMethodDecl>(*Func);
3620      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3621                         /*SuppressUserConversions=*/false);
3622    }
3623
3624    OverloadCandidateSet::iterator Best;
3625    switch (BestViableFunction(CandidateSet, Best)) {
3626    case OR_Success:
3627      Method = cast<CXXMethodDecl>(Best->Function);
3628      break;
3629
3630    case OR_No_Viable_Function:
3631      Diag(MemExpr->getSourceRange().getBegin(),
3632           diag::err_ovl_no_viable_member_function_in_call)
3633        << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3634        << MemExprE->getSourceRange();
3635      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3636      // FIXME: Leaking incoming expressions!
3637      return true;
3638
3639    case OR_Ambiguous:
3640      Diag(MemExpr->getSourceRange().getBegin(),
3641           diag::err_ovl_ambiguous_member_call)
3642        << Ovl->getDeclName() << MemExprE->getSourceRange();
3643      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3644      // FIXME: Leaking incoming expressions!
3645      return true;
3646    }
3647
3648    FixOverloadedFunctionReference(MemExpr, Method);
3649  } else {
3650    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3651  }
3652
3653  assert(Method && "Member call to something that isn't a method?");
3654  ExprOwningPtr<CXXMemberCallExpr>
3655    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
3656                                                  NumArgs,
3657                                  Method->getResultType().getNonReferenceType(),
3658                                  RParenLoc));
3659
3660  // Convert the object argument (for a non-static member function call).
3661  if (!Method->isStatic() &&
3662      PerformObjectArgumentInitialization(ObjectArg, Method))
3663    return true;
3664  MemExpr->setBase(ObjectArg);
3665
3666  // Convert the rest of the arguments
3667  const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType());
3668  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3669                              RParenLoc))
3670    return true;
3671
3672  return CheckFunctionCall(Method, TheCall.take()).release();
3673}
3674
3675/// BuildCallToObjectOfClassType - Build a call to an object of class
3676/// type (C++ [over.call.object]), which can end up invoking an
3677/// overloaded function call operator (@c operator()) or performing a
3678/// user-defined conversion on the object argument.
3679Sema::ExprResult
3680Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3681                                   SourceLocation LParenLoc,
3682                                   Expr **Args, unsigned NumArgs,
3683                                   SourceLocation *CommaLocs,
3684                                   SourceLocation RParenLoc) {
3685  assert(Object->getType()->isRecordType() && "Requires object type argument");
3686  const RecordType *Record = Object->getType()->getAsRecordType();
3687
3688  // C++ [over.call.object]p1:
3689  //  If the primary-expression E in the function call syntax
3690  //  evaluates to a class object of type “cv T”, then the set of
3691  //  candidate functions includes at least the function call
3692  //  operators of T. The function call operators of T are obtained by
3693  //  ordinary lookup of the name operator() in the context of
3694  //  (E).operator().
3695  OverloadCandidateSet CandidateSet;
3696  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3697  DeclContext::lookup_const_iterator Oper, OperEnd;
3698  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
3699       Oper != OperEnd; ++Oper)
3700    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3701                       CandidateSet, /*SuppressUserConversions=*/false);
3702
3703  // C++ [over.call.object]p2:
3704  //   In addition, for each conversion function declared in T of the
3705  //   form
3706  //
3707  //        operator conversion-type-id () cv-qualifier;
3708  //
3709  //   where cv-qualifier is the same cv-qualification as, or a
3710  //   greater cv-qualification than, cv, and where conversion-type-id
3711  //   denotes the type "pointer to function of (P1,...,Pn) returning
3712  //   R", or the type "reference to pointer to function of
3713  //   (P1,...,Pn) returning R", or the type "reference to function
3714  //   of (P1,...,Pn) returning R", a surrogate call function [...]
3715  //   is also considered as a candidate function. Similarly,
3716  //   surrogate call functions are added to the set of candidate
3717  //   functions for each conversion function declared in an
3718  //   accessible base class provided the function is not hidden
3719  //   within T by another intervening declaration.
3720  //
3721  // FIXME: Look in base classes for more conversion operators!
3722  OverloadedFunctionDecl *Conversions
3723    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
3724  for (OverloadedFunctionDecl::function_iterator
3725         Func = Conversions->function_begin(),
3726         FuncEnd = Conversions->function_end();
3727       Func != FuncEnd; ++Func) {
3728    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3729
3730    // Strip the reference type (if any) and then the pointer type (if
3731    // any) to get down to what might be a function type.
3732    QualType ConvType = Conv->getConversionType().getNonReferenceType();
3733    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3734      ConvType = ConvPtrType->getPointeeType();
3735
3736    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3737      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3738  }
3739
3740  // Perform overload resolution.
3741  OverloadCandidateSet::iterator Best;
3742  switch (BestViableFunction(CandidateSet, Best)) {
3743  case OR_Success:
3744    // Overload resolution succeeded; we'll build the appropriate call
3745    // below.
3746    break;
3747
3748  case OR_No_Viable_Function:
3749    Diag(Object->getSourceRange().getBegin(),
3750         diag::err_ovl_no_viable_object_call)
3751      << Object->getType() << (unsigned)CandidateSet.size()
3752      << Object->getSourceRange();
3753    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3754    break;
3755
3756  case OR_Ambiguous:
3757    Diag(Object->getSourceRange().getBegin(),
3758         diag::err_ovl_ambiguous_object_call)
3759      << Object->getType() << Object->getSourceRange();
3760    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3761    break;
3762  }
3763
3764  if (Best == CandidateSet.end()) {
3765    // We had an error; delete all of the subexpressions and return
3766    // the error.
3767    Object->Destroy(Context);
3768    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3769      Args[ArgIdx]->Destroy(Context);
3770    return true;
3771  }
3772
3773  if (Best->Function == 0) {
3774    // Since there is no function declaration, this is one of the
3775    // surrogate candidates. Dig out the conversion function.
3776    CXXConversionDecl *Conv
3777      = cast<CXXConversionDecl>(
3778                         Best->Conversions[0].UserDefined.ConversionFunction);
3779
3780    // We selected one of the surrogate functions that converts the
3781    // object parameter to a function pointer. Perform the conversion
3782    // on the object argument, then let ActOnCallExpr finish the job.
3783    // FIXME: Represent the user-defined conversion in the AST!
3784    ImpCastExprToType(Object,
3785                      Conv->getConversionType().getNonReferenceType(),
3786                      Conv->getConversionType()->isReferenceType());
3787    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3788                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3789                         CommaLocs, RParenLoc).release();
3790  }
3791
3792  // We found an overloaded operator(). Build a CXXOperatorCallExpr
3793  // that calls this method, using Object for the implicit object
3794  // parameter and passing along the remaining arguments.
3795  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3796  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3797
3798  unsigned NumArgsInProto = Proto->getNumArgs();
3799  unsigned NumArgsToCheck = NumArgs;
3800
3801  // Build the full argument list for the method call (the
3802  // implicit object parameter is placed at the beginning of the
3803  // list).
3804  Expr **MethodArgs;
3805  if (NumArgs < NumArgsInProto) {
3806    NumArgsToCheck = NumArgsInProto;
3807    MethodArgs = new Expr*[NumArgsInProto + 1];
3808  } else {
3809    MethodArgs = new Expr*[NumArgs + 1];
3810  }
3811  MethodArgs[0] = Object;
3812  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3813    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3814
3815  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
3816                                          SourceLocation());
3817  UsualUnaryConversions(NewFn);
3818
3819  // Once we've built TheCall, all of the expressions are properly
3820  // owned.
3821  QualType ResultTy = Method->getResultType().getNonReferenceType();
3822  ExprOwningPtr<CXXOperatorCallExpr>
3823    TheCall(this, new (Context) CXXOperatorCallExpr(Context, NewFn, MethodArgs,
3824                                                    NumArgs + 1,
3825                                                    ResultTy, RParenLoc));
3826  delete [] MethodArgs;
3827
3828  // We may have default arguments. If so, we need to allocate more
3829  // slots in the call for them.
3830  if (NumArgs < NumArgsInProto)
3831    TheCall->setNumArgs(Context, NumArgsInProto + 1);
3832  else if (NumArgs > NumArgsInProto)
3833    NumArgsToCheck = NumArgsInProto;
3834
3835  // Initialize the implicit object parameter.
3836  if (PerformObjectArgumentInitialization(Object, Method))
3837    return true;
3838  TheCall->setArg(0, Object);
3839
3840  // Check the argument types.
3841  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3842    Expr *Arg;
3843    if (i < NumArgs) {
3844      Arg = Args[i];
3845
3846      // Pass the argument.
3847      QualType ProtoArgType = Proto->getArgType(i);
3848      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3849        return true;
3850    } else {
3851      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
3852    }
3853
3854    TheCall->setArg(i + 1, Arg);
3855  }
3856
3857  // If this is a variadic call, handle args passed through "...".
3858  if (Proto->isVariadic()) {
3859    // Promote the arguments (C99 6.5.2.2p7).
3860    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3861      Expr *Arg = Args[i];
3862
3863      DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
3864      TheCall->setArg(i + 1, Arg);
3865    }
3866  }
3867
3868  return CheckFunctionCall(Method, TheCall.take()).release();
3869}
3870
3871/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3872///  (if one exists), where @c Base is an expression of class type and
3873/// @c Member is the name of the member we're trying to find.
3874Action::ExprResult
3875Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
3876                               SourceLocation MemberLoc,
3877                               IdentifierInfo &Member) {
3878  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3879
3880  // C++ [over.ref]p1:
3881  //
3882  //   [...] An expression x->m is interpreted as (x.operator->())->m
3883  //   for a class object x of type T if T::operator->() exists and if
3884  //   the operator is selected as the best match function by the
3885  //   overload resolution mechanism (13.3).
3886  // FIXME: look in base classes.
3887  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3888  OverloadCandidateSet CandidateSet;
3889  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3890
3891  DeclContext::lookup_const_iterator Oper, OperEnd;
3892  for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
3893       Oper != OperEnd; ++Oper)
3894    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
3895                       /*SuppressUserConversions=*/false);
3896
3897  ExprOwningPtr<Expr> BasePtr(this, Base);
3898
3899  // Perform overload resolution.
3900  OverloadCandidateSet::iterator Best;
3901  switch (BestViableFunction(CandidateSet, Best)) {
3902  case OR_Success:
3903    // Overload resolution succeeded; we'll build the call below.
3904    break;
3905
3906  case OR_No_Viable_Function:
3907    if (CandidateSet.empty())
3908      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
3909        << BasePtr->getType() << BasePtr->getSourceRange();
3910    else
3911      Diag(OpLoc, diag::err_ovl_no_viable_oper)
3912        << "operator->" << (unsigned)CandidateSet.size()
3913        << BasePtr->getSourceRange();
3914    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3915    return true;
3916
3917  case OR_Ambiguous:
3918    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3919      << "operator->" << BasePtr->getSourceRange();
3920    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3921    return true;
3922  }
3923
3924  // Convert the object parameter.
3925  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3926  if (PerformObjectArgumentInitialization(Base, Method))
3927    return true;
3928
3929  // No concerns about early exits now.
3930  BasePtr.take();
3931
3932  // Build the operator call.
3933  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
3934                                           SourceLocation());
3935  UsualUnaryConversions(FnExpr);
3936  Base = new (Context) CXXOperatorCallExpr(Context, FnExpr, &Base, 1,
3937                                 Method->getResultType().getNonReferenceType(),
3938                                 OpLoc);
3939  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
3940                                  MemberLoc, Member).release();
3941}
3942
3943/// FixOverloadedFunctionReference - E is an expression that refers to
3944/// a C++ overloaded function (possibly with some parentheses and
3945/// perhaps a '&' around it). We have resolved the overloaded function
3946/// to the function declaration Fn, so patch up the expression E to
3947/// refer (possibly indirectly) to Fn.
3948void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3949  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3950    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3951    E->setType(PE->getSubExpr()->getType());
3952  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3953    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3954           "Can only take the address of an overloaded function");
3955    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
3956      if (Method->isStatic()) {
3957        // Do nothing: static member functions aren't any different
3958        // from non-member functions.
3959      }
3960      else if (QualifiedDeclRefExpr *DRE
3961                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
3962        // We have taken the address of a pointer to member
3963        // function. Perform the computation here so that we get the
3964        // appropriate pointer to member type.
3965        DRE->setDecl(Fn);
3966        DRE->setType(Fn->getType());
3967        QualType ClassType
3968          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
3969        E->setType(Context.getMemberPointerType(Fn->getType(),
3970                                                ClassType.getTypePtr()));
3971        return;
3972      }
3973    }
3974    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3975    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
3976  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3977    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3978           "Expected overloaded function");
3979    DR->setDecl(Fn);
3980    E->setType(Fn->getType());
3981  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
3982    MemExpr->setMemberDecl(Fn);
3983    E->setType(Fn->getType());
3984  } else {
3985    assert(false && "Invalid reference to overloaded function");
3986  }
3987}
3988
3989} // end namespace clang
3990