SemaOverload.cpp revision ba13543329afac4a0d01304ec2ec4924d99306a6
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm>
28#include <cstdio>
29
30namespace clang {
31
32/// GetConversionCategory - Retrieve the implicit conversion
33/// category corresponding to the given implicit conversion kind.
34ImplicitConversionCategory
35GetConversionCategory(ImplicitConversionKind Kind) {
36  static const ImplicitConversionCategory
37    Category[(int)ICK_Num_Conversion_Kinds] = {
38    ICC_Identity,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Lvalue_Transformation,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion
83  };
84  return Rank[(int)Kind];
85}
86
87/// GetImplicitConversionName - Return the name of this kind of
88/// implicit conversion.
89const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
90  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
91    "No conversion",
92    "Lvalue-to-rvalue",
93    "Array-to-pointer",
94    "Function-to-pointer",
95    "Qualification",
96    "Integral promotion",
97    "Floating point promotion",
98    "Complex promotion",
99    "Integral conversion",
100    "Floating conversion",
101    "Complex conversion",
102    "Floating-integral conversion",
103    "Complex-real conversion",
104    "Pointer conversion",
105    "Pointer-to-member conversion",
106    "Boolean conversion",
107    "Compatible-types conversion",
108    "Derived-to-base conversion"
109  };
110  return Name[Kind];
111}
112
113/// StandardConversionSequence - Set the standard conversion
114/// sequence to the identity conversion.
115void StandardConversionSequence::setAsIdentityConversion() {
116  First = ICK_Identity;
117  Second = ICK_Identity;
118  Third = ICK_Identity;
119  Deprecated = false;
120  ReferenceBinding = false;
121  DirectBinding = false;
122  RRefBinding = false;
123  CopyConstructor = 0;
124}
125
126/// getRank - Retrieve the rank of this standard conversion sequence
127/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
128/// implicit conversions.
129ImplicitConversionRank StandardConversionSequence::getRank() const {
130  ImplicitConversionRank Rank = ICR_Exact_Match;
131  if  (GetConversionRank(First) > Rank)
132    Rank = GetConversionRank(First);
133  if  (GetConversionRank(Second) > Rank)
134    Rank = GetConversionRank(Second);
135  if  (GetConversionRank(Third) > Rank)
136    Rank = GetConversionRank(Third);
137  return Rank;
138}
139
140/// isPointerConversionToBool - Determines whether this conversion is
141/// a conversion of a pointer or pointer-to-member to bool. This is
142/// used as part of the ranking of standard conversion sequences
143/// (C++ 13.3.3.2p4).
144bool StandardConversionSequence::isPointerConversionToBool() const {
145  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
146  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
147
148  // Note that FromType has not necessarily been transformed by the
149  // array-to-pointer or function-to-pointer implicit conversions, so
150  // check for their presence as well as checking whether FromType is
151  // a pointer.
152  if (ToType->isBooleanType() &&
153      (FromType->isPointerType() || FromType->isBlockPointerType() ||
154       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
155    return true;
156
157  return false;
158}
159
160/// isPointerConversionToVoidPointer - Determines whether this
161/// conversion is a conversion of a pointer to a void pointer. This is
162/// used as part of the ranking of standard conversion sequences (C++
163/// 13.3.3.2p4).
164bool
165StandardConversionSequence::
166isPointerConversionToVoidPointer(ASTContext& Context) const {
167  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
168  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
169
170  // Note that FromType has not necessarily been transformed by the
171  // array-to-pointer implicit conversion, so check for its presence
172  // and redo the conversion to get a pointer.
173  if (First == ICK_Array_To_Pointer)
174    FromType = Context.getArrayDecayedType(FromType);
175
176  if (Second == ICK_Pointer_Conversion)
177    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
178      return ToPtrType->getPointeeType()->isVoidType();
179
180  return false;
181}
182
183/// DebugPrint - Print this standard conversion sequence to standard
184/// error. Useful for debugging overloading issues.
185void StandardConversionSequence::DebugPrint() const {
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    fprintf(stderr, "%s", GetImplicitConversionName(First));
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      fprintf(stderr, " -> ");
195    }
196    fprintf(stderr, "%s", GetImplicitConversionName(Second));
197
198    if (CopyConstructor) {
199      fprintf(stderr, " (by copy constructor)");
200    } else if (DirectBinding) {
201      fprintf(stderr, " (direct reference binding)");
202    } else if (ReferenceBinding) {
203      fprintf(stderr, " (reference binding)");
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      fprintf(stderr, " -> ");
211    }
212    fprintf(stderr, "%s", GetImplicitConversionName(Third));
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    fprintf(stderr, "No conversions required");
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  if (Before.First || Before.Second || Before.Third) {
225    Before.DebugPrint();
226    fprintf(stderr, " -> ");
227  }
228  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
229  if (After.First || After.Second || After.Third) {
230    fprintf(stderr, " -> ");
231    After.DebugPrint();
232  }
233}
234
235/// DebugPrint - Print this implicit conversion sequence to standard
236/// error. Useful for debugging overloading issues.
237void ImplicitConversionSequence::DebugPrint() const {
238  switch (ConversionKind) {
239  case StandardConversion:
240    fprintf(stderr, "Standard conversion: ");
241    Standard.DebugPrint();
242    break;
243  case UserDefinedConversion:
244    fprintf(stderr, "User-defined conversion: ");
245    UserDefined.DebugPrint();
246    break;
247  case EllipsisConversion:
248    fprintf(stderr, "Ellipsis conversion");
249    break;
250  case BadConversion:
251    fprintf(stderr, "Bad conversion");
252    break;
253  }
254
255  fprintf(stderr, "\n");
256}
257
258// IsOverload - Determine whether the given New declaration is an
259// overload of the Old declaration. This routine returns false if New
260// and Old cannot be overloaded, e.g., if they are functions with the
261// same signature (C++ 1.3.10) or if the Old declaration isn't a
262// function (or overload set). When it does return false and Old is an
263// OverloadedFunctionDecl, MatchedDecl will be set to point to the
264// FunctionDecl that New cannot be overloaded with.
265//
266// Example: Given the following input:
267//
268//   void f(int, float); // #1
269//   void f(int, int); // #2
270//   int f(int, int); // #3
271//
272// When we process #1, there is no previous declaration of "f",
273// so IsOverload will not be used.
274//
275// When we process #2, Old is a FunctionDecl for #1.  By comparing the
276// parameter types, we see that #1 and #2 are overloaded (since they
277// have different signatures), so this routine returns false;
278// MatchedDecl is unchanged.
279//
280// When we process #3, Old is an OverloadedFunctionDecl containing #1
281// and #2. We compare the signatures of #3 to #1 (they're overloaded,
282// so we do nothing) and then #3 to #2. Since the signatures of #3 and
283// #2 are identical (return types of functions are not part of the
284// signature), IsOverload returns false and MatchedDecl will be set to
285// point to the FunctionDecl for #2.
286bool
287Sema::IsOverload(FunctionDecl *New, LookupResult &Previous, NamedDecl *&Match) {
288  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
289         I != E; ++I) {
290    NamedDecl *Old = (*I)->getUnderlyingDecl();
291    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(Old)) {
292      if (!IsOverload(New, OldT->getTemplatedDecl())) {
293        Match = Old;
294        return false;
295      }
296    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(Old)) {
297      if (!IsOverload(New, OldF)) {
298        Match = Old;
299        return false;
300      }
301    } else {
302      // (C++ 13p1):
303      //   Only function declarations can be overloaded; object and type
304      //   declarations cannot be overloaded.
305      Match = Old;
306      return false;
307    }
308  }
309
310  return true;
311}
312
313bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
314  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
315  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
316
317  // C++ [temp.fct]p2:
318  //   A function template can be overloaded with other function templates
319  //   and with normal (non-template) functions.
320  if ((OldTemplate == 0) != (NewTemplate == 0))
321    return true;
322
323  // Is the function New an overload of the function Old?
324  QualType OldQType = Context.getCanonicalType(Old->getType());
325  QualType NewQType = Context.getCanonicalType(New->getType());
326
327  // Compare the signatures (C++ 1.3.10) of the two functions to
328  // determine whether they are overloads. If we find any mismatch
329  // in the signature, they are overloads.
330
331  // If either of these functions is a K&R-style function (no
332  // prototype), then we consider them to have matching signatures.
333  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
334      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
335    return false;
336
337  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
338  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
339
340  // The signature of a function includes the types of its
341  // parameters (C++ 1.3.10), which includes the presence or absence
342  // of the ellipsis; see C++ DR 357).
343  if (OldQType != NewQType &&
344      (OldType->getNumArgs() != NewType->getNumArgs() ||
345       OldType->isVariadic() != NewType->isVariadic() ||
346       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
347                   NewType->arg_type_begin())))
348    return true;
349
350  // C++ [temp.over.link]p4:
351  //   The signature of a function template consists of its function
352  //   signature, its return type and its template parameter list. The names
353  //   of the template parameters are significant only for establishing the
354  //   relationship between the template parameters and the rest of the
355  //   signature.
356  //
357  // We check the return type and template parameter lists for function
358  // templates first; the remaining checks follow.
359  if (NewTemplate &&
360      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
361                                       OldTemplate->getTemplateParameters(),
362                                       false, TPL_TemplateMatch) ||
363       OldType->getResultType() != NewType->getResultType()))
364    return true;
365
366  // If the function is a class member, its signature includes the
367  // cv-qualifiers (if any) on the function itself.
368  //
369  // As part of this, also check whether one of the member functions
370  // is static, in which case they are not overloads (C++
371  // 13.1p2). While not part of the definition of the signature,
372  // this check is important to determine whether these functions
373  // can be overloaded.
374  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
375  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
376  if (OldMethod && NewMethod &&
377      !OldMethod->isStatic() && !NewMethod->isStatic() &&
378      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
379    return true;
380
381  // The signatures match; this is not an overload.
382  return false;
383}
384
385/// TryImplicitConversion - Attempt to perform an implicit conversion
386/// from the given expression (Expr) to the given type (ToType). This
387/// function returns an implicit conversion sequence that can be used
388/// to perform the initialization. Given
389///
390///   void f(float f);
391///   void g(int i) { f(i); }
392///
393/// this routine would produce an implicit conversion sequence to
394/// describe the initialization of f from i, which will be a standard
395/// conversion sequence containing an lvalue-to-rvalue conversion (C++
396/// 4.1) followed by a floating-integral conversion (C++ 4.9).
397//
398/// Note that this routine only determines how the conversion can be
399/// performed; it does not actually perform the conversion. As such,
400/// it will not produce any diagnostics if no conversion is available,
401/// but will instead return an implicit conversion sequence of kind
402/// "BadConversion".
403///
404/// If @p SuppressUserConversions, then user-defined conversions are
405/// not permitted.
406/// If @p AllowExplicit, then explicit user-defined conversions are
407/// permitted.
408/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
409/// no matter its actual lvalueness.
410/// If @p UserCast, the implicit conversion is being done for a user-specified
411/// cast.
412ImplicitConversionSequence
413Sema::TryImplicitConversion(Expr* From, QualType ToType,
414                            bool SuppressUserConversions,
415                            bool AllowExplicit, bool ForceRValue,
416                            bool InOverloadResolution,
417                            bool UserCast) {
418  ImplicitConversionSequence ICS;
419  OverloadCandidateSet Conversions;
420  OverloadingResult UserDefResult = OR_Success;
421  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
422    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
423  else if (getLangOptions().CPlusPlus &&
424           (UserDefResult = IsUserDefinedConversion(From, ToType,
425                                   ICS.UserDefined,
426                                   Conversions,
427                                   !SuppressUserConversions, AllowExplicit,
428				   ForceRValue, UserCast)) == OR_Success) {
429    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
430    // C++ [over.ics.user]p4:
431    //   A conversion of an expression of class type to the same class
432    //   type is given Exact Match rank, and a conversion of an
433    //   expression of class type to a base class of that type is
434    //   given Conversion rank, in spite of the fact that a copy
435    //   constructor (i.e., a user-defined conversion function) is
436    //   called for those cases.
437    if (CXXConstructorDecl *Constructor
438          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
439      QualType FromCanon
440        = Context.getCanonicalType(From->getType().getUnqualifiedType());
441      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
442      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
443        // Turn this into a "standard" conversion sequence, so that it
444        // gets ranked with standard conversion sequences.
445        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
446        ICS.Standard.setAsIdentityConversion();
447        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
448        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
449        ICS.Standard.CopyConstructor = Constructor;
450        if (ToCanon != FromCanon)
451          ICS.Standard.Second = ICK_Derived_To_Base;
452      }
453    }
454
455    // C++ [over.best.ics]p4:
456    //   However, when considering the argument of a user-defined
457    //   conversion function that is a candidate by 13.3.1.3 when
458    //   invoked for the copying of the temporary in the second step
459    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
460    //   13.3.1.6 in all cases, only standard conversion sequences and
461    //   ellipsis conversion sequences are allowed.
462    if (SuppressUserConversions &&
463        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
464      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
465  } else {
466    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
467    if (UserDefResult == OR_Ambiguous) {
468      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
469           Cand != Conversions.end(); ++Cand)
470        if (Cand->Viable)
471          ICS.ConversionFunctionSet.push_back(Cand->Function);
472    }
473  }
474
475  return ICS;
476}
477
478/// IsStandardConversion - Determines whether there is a standard
479/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
480/// expression From to the type ToType. Standard conversion sequences
481/// only consider non-class types; for conversions that involve class
482/// types, use TryImplicitConversion. If a conversion exists, SCS will
483/// contain the standard conversion sequence required to perform this
484/// conversion and this routine will return true. Otherwise, this
485/// routine will return false and the value of SCS is unspecified.
486bool
487Sema::IsStandardConversion(Expr* From, QualType ToType,
488                           bool InOverloadResolution,
489                           StandardConversionSequence &SCS) {
490  QualType FromType = From->getType();
491
492  // Standard conversions (C++ [conv])
493  SCS.setAsIdentityConversion();
494  SCS.Deprecated = false;
495  SCS.IncompatibleObjC = false;
496  SCS.FromTypePtr = FromType.getAsOpaquePtr();
497  SCS.CopyConstructor = 0;
498
499  // There are no standard conversions for class types in C++, so
500  // abort early. When overloading in C, however, we do permit
501  if (FromType->isRecordType() || ToType->isRecordType()) {
502    if (getLangOptions().CPlusPlus)
503      return false;
504
505    // When we're overloading in C, we allow, as standard conversions,
506  }
507
508  // The first conversion can be an lvalue-to-rvalue conversion,
509  // array-to-pointer conversion, or function-to-pointer conversion
510  // (C++ 4p1).
511
512  // Lvalue-to-rvalue conversion (C++ 4.1):
513  //   An lvalue (3.10) of a non-function, non-array type T can be
514  //   converted to an rvalue.
515  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
516  if (argIsLvalue == Expr::LV_Valid &&
517      !FromType->isFunctionType() && !FromType->isArrayType() &&
518      Context.getCanonicalType(FromType) != Context.OverloadTy) {
519    SCS.First = ICK_Lvalue_To_Rvalue;
520
521    // If T is a non-class type, the type of the rvalue is the
522    // cv-unqualified version of T. Otherwise, the type of the rvalue
523    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
524    // just strip the qualifiers because they don't matter.
525    FromType = FromType.getUnqualifiedType();
526  } else if (FromType->isArrayType()) {
527    // Array-to-pointer conversion (C++ 4.2)
528    SCS.First = ICK_Array_To_Pointer;
529
530    // An lvalue or rvalue of type "array of N T" or "array of unknown
531    // bound of T" can be converted to an rvalue of type "pointer to
532    // T" (C++ 4.2p1).
533    FromType = Context.getArrayDecayedType(FromType);
534
535    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
536      // This conversion is deprecated. (C++ D.4).
537      SCS.Deprecated = true;
538
539      // For the purpose of ranking in overload resolution
540      // (13.3.3.1.1), this conversion is considered an
541      // array-to-pointer conversion followed by a qualification
542      // conversion (4.4). (C++ 4.2p2)
543      SCS.Second = ICK_Identity;
544      SCS.Third = ICK_Qualification;
545      SCS.ToTypePtr = ToType.getAsOpaquePtr();
546      return true;
547    }
548  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
549    // Function-to-pointer conversion (C++ 4.3).
550    SCS.First = ICK_Function_To_Pointer;
551
552    // An lvalue of function type T can be converted to an rvalue of
553    // type "pointer to T." The result is a pointer to the
554    // function. (C++ 4.3p1).
555    FromType = Context.getPointerType(FromType);
556  } else if (FunctionDecl *Fn
557             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
558    // Address of overloaded function (C++ [over.over]).
559    SCS.First = ICK_Function_To_Pointer;
560
561    // We were able to resolve the address of the overloaded function,
562    // so we can convert to the type of that function.
563    FromType = Fn->getType();
564    if (ToType->isLValueReferenceType())
565      FromType = Context.getLValueReferenceType(FromType);
566    else if (ToType->isRValueReferenceType())
567      FromType = Context.getRValueReferenceType(FromType);
568    else if (ToType->isMemberPointerType()) {
569      // Resolve address only succeeds if both sides are member pointers,
570      // but it doesn't have to be the same class. See DR 247.
571      // Note that this means that the type of &Derived::fn can be
572      // Ret (Base::*)(Args) if the fn overload actually found is from the
573      // base class, even if it was brought into the derived class via a
574      // using declaration. The standard isn't clear on this issue at all.
575      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
576      FromType = Context.getMemberPointerType(FromType,
577                    Context.getTypeDeclType(M->getParent()).getTypePtr());
578    } else
579      FromType = Context.getPointerType(FromType);
580  } else {
581    // We don't require any conversions for the first step.
582    SCS.First = ICK_Identity;
583  }
584
585  // The second conversion can be an integral promotion, floating
586  // point promotion, integral conversion, floating point conversion,
587  // floating-integral conversion, pointer conversion,
588  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
589  // For overloading in C, this can also be a "compatible-type"
590  // conversion.
591  bool IncompatibleObjC = false;
592  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
593    // The unqualified versions of the types are the same: there's no
594    // conversion to do.
595    SCS.Second = ICK_Identity;
596  } else if (IsIntegralPromotion(From, FromType, ToType)) {
597    // Integral promotion (C++ 4.5).
598    SCS.Second = ICK_Integral_Promotion;
599    FromType = ToType.getUnqualifiedType();
600  } else if (IsFloatingPointPromotion(FromType, ToType)) {
601    // Floating point promotion (C++ 4.6).
602    SCS.Second = ICK_Floating_Promotion;
603    FromType = ToType.getUnqualifiedType();
604  } else if (IsComplexPromotion(FromType, ToType)) {
605    // Complex promotion (Clang extension)
606    SCS.Second = ICK_Complex_Promotion;
607    FromType = ToType.getUnqualifiedType();
608  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
609           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
610    // Integral conversions (C++ 4.7).
611    // FIXME: isIntegralType shouldn't be true for enums in C++.
612    SCS.Second = ICK_Integral_Conversion;
613    FromType = ToType.getUnqualifiedType();
614  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
615    // Floating point conversions (C++ 4.8).
616    SCS.Second = ICK_Floating_Conversion;
617    FromType = ToType.getUnqualifiedType();
618  } else if (FromType->isComplexType() && ToType->isComplexType()) {
619    // Complex conversions (C99 6.3.1.6)
620    SCS.Second = ICK_Complex_Conversion;
621    FromType = ToType.getUnqualifiedType();
622  } else if ((FromType->isFloatingType() &&
623              ToType->isIntegralType() && (!ToType->isBooleanType() &&
624                                           !ToType->isEnumeralType())) ||
625             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
626              ToType->isFloatingType())) {
627    // Floating-integral conversions (C++ 4.9).
628    // FIXME: isIntegralType shouldn't be true for enums in C++.
629    SCS.Second = ICK_Floating_Integral;
630    FromType = ToType.getUnqualifiedType();
631  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
632             (ToType->isComplexType() && FromType->isArithmeticType())) {
633    // Complex-real conversions (C99 6.3.1.7)
634    SCS.Second = ICK_Complex_Real;
635    FromType = ToType.getUnqualifiedType();
636  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
637                                 FromType, IncompatibleObjC)) {
638    // Pointer conversions (C++ 4.10).
639    SCS.Second = ICK_Pointer_Conversion;
640    SCS.IncompatibleObjC = IncompatibleObjC;
641  } else if (IsMemberPointerConversion(From, FromType, ToType,
642                                       InOverloadResolution, FromType)) {
643    // Pointer to member conversions (4.11).
644    SCS.Second = ICK_Pointer_Member;
645  } else if (ToType->isBooleanType() &&
646             (FromType->isArithmeticType() ||
647              FromType->isEnumeralType() ||
648              FromType->isPointerType() ||
649              FromType->isBlockPointerType() ||
650              FromType->isMemberPointerType() ||
651              FromType->isNullPtrType())) {
652    // Boolean conversions (C++ 4.12).
653    SCS.Second = ICK_Boolean_Conversion;
654    FromType = Context.BoolTy;
655  } else if (!getLangOptions().CPlusPlus &&
656             Context.typesAreCompatible(ToType, FromType)) {
657    // Compatible conversions (Clang extension for C function overloading)
658    SCS.Second = ICK_Compatible_Conversion;
659  } else {
660    // No second conversion required.
661    SCS.Second = ICK_Identity;
662  }
663
664  QualType CanonFrom;
665  QualType CanonTo;
666  // The third conversion can be a qualification conversion (C++ 4p1).
667  if (IsQualificationConversion(FromType, ToType)) {
668    SCS.Third = ICK_Qualification;
669    FromType = ToType;
670    CanonFrom = Context.getCanonicalType(FromType);
671    CanonTo = Context.getCanonicalType(ToType);
672  } else {
673    // No conversion required
674    SCS.Third = ICK_Identity;
675
676    // C++ [over.best.ics]p6:
677    //   [...] Any difference in top-level cv-qualification is
678    //   subsumed by the initialization itself and does not constitute
679    //   a conversion. [...]
680    CanonFrom = Context.getCanonicalType(FromType);
681    CanonTo = Context.getCanonicalType(ToType);
682    if (CanonFrom.getLocalUnqualifiedType()
683                                       == CanonTo.getLocalUnqualifiedType() &&
684        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
685      FromType = ToType;
686      CanonFrom = CanonTo;
687    }
688  }
689
690  // If we have not converted the argument type to the parameter type,
691  // this is a bad conversion sequence.
692  if (CanonFrom != CanonTo)
693    return false;
694
695  SCS.ToTypePtr = FromType.getAsOpaquePtr();
696  return true;
697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
704  const BuiltinType *To = ToType->getAs<BuiltinType>();
705  // All integers are built-in.
706  if (!To) {
707    return false;
708  }
709
710  // An rvalue of type char, signed char, unsigned char, short int, or
711  // unsigned short int can be converted to an rvalue of type int if
712  // int can represent all the values of the source type; otherwise,
713  // the source rvalue can be converted to an rvalue of type unsigned
714  // int (C++ 4.5p1).
715  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
716    if (// We can promote any signed, promotable integer type to an int
717        (FromType->isSignedIntegerType() ||
718         // We can promote any unsigned integer type whose size is
719         // less than int to an int.
720         (!FromType->isSignedIntegerType() &&
721          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
722      return To->getKind() == BuiltinType::Int;
723    }
724
725    return To->getKind() == BuiltinType::UInt;
726  }
727
728  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
729  // can be converted to an rvalue of the first of the following types
730  // that can represent all the values of its underlying type: int,
731  // unsigned int, long, or unsigned long (C++ 4.5p2).
732  if ((FromType->isEnumeralType() || FromType->isWideCharType())
733      && ToType->isIntegerType()) {
734    // Determine whether the type we're converting from is signed or
735    // unsigned.
736    bool FromIsSigned;
737    uint64_t FromSize = Context.getTypeSize(FromType);
738    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
739      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
740      FromIsSigned = UnderlyingType->isSignedIntegerType();
741    } else {
742      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
743      FromIsSigned = true;
744    }
745
746    // The types we'll try to promote to, in the appropriate
747    // order. Try each of these types.
748    QualType PromoteTypes[6] = {
749      Context.IntTy, Context.UnsignedIntTy,
750      Context.LongTy, Context.UnsignedLongTy ,
751      Context.LongLongTy, Context.UnsignedLongLongTy
752    };
753    for (int Idx = 0; Idx < 6; ++Idx) {
754      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
755      if (FromSize < ToSize ||
756          (FromSize == ToSize &&
757           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
758        // We found the type that we can promote to. If this is the
759        // type we wanted, we have a promotion. Otherwise, no
760        // promotion.
761        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
762      }
763    }
764  }
765
766  // An rvalue for an integral bit-field (9.6) can be converted to an
767  // rvalue of type int if int can represent all the values of the
768  // bit-field; otherwise, it can be converted to unsigned int if
769  // unsigned int can represent all the values of the bit-field. If
770  // the bit-field is larger yet, no integral promotion applies to
771  // it. If the bit-field has an enumerated type, it is treated as any
772  // other value of that type for promotion purposes (C++ 4.5p3).
773  // FIXME: We should delay checking of bit-fields until we actually perform the
774  // conversion.
775  using llvm::APSInt;
776  if (From)
777    if (FieldDecl *MemberDecl = From->getBitField()) {
778      APSInt BitWidth;
779      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
780          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
781        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
782        ToSize = Context.getTypeSize(ToType);
783
784        // Are we promoting to an int from a bitfield that fits in an int?
785        if (BitWidth < ToSize ||
786            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
787          return To->getKind() == BuiltinType::Int;
788        }
789
790        // Are we promoting to an unsigned int from an unsigned bitfield
791        // that fits into an unsigned int?
792        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
793          return To->getKind() == BuiltinType::UInt;
794        }
795
796        return false;
797      }
798    }
799
800  // An rvalue of type bool can be converted to an rvalue of type int,
801  // with false becoming zero and true becoming one (C++ 4.5p4).
802  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
803    return true;
804  }
805
806  return false;
807}
808
809/// IsFloatingPointPromotion - Determines whether the conversion from
810/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
811/// returns true and sets PromotedType to the promoted type.
812bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
813  /// An rvalue of type float can be converted to an rvalue of type
814  /// double. (C++ 4.6p1).
815  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
816    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
817      if (FromBuiltin->getKind() == BuiltinType::Float &&
818          ToBuiltin->getKind() == BuiltinType::Double)
819        return true;
820
821      // C99 6.3.1.5p1:
822      //   When a float is promoted to double or long double, or a
823      //   double is promoted to long double [...].
824      if (!getLangOptions().CPlusPlus &&
825          (FromBuiltin->getKind() == BuiltinType::Float ||
826           FromBuiltin->getKind() == BuiltinType::Double) &&
827          (ToBuiltin->getKind() == BuiltinType::LongDouble))
828        return true;
829    }
830
831  return false;
832}
833
834/// \brief Determine if a conversion is a complex promotion.
835///
836/// A complex promotion is defined as a complex -> complex conversion
837/// where the conversion between the underlying real types is a
838/// floating-point or integral promotion.
839bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
840  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
841  if (!FromComplex)
842    return false;
843
844  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
845  if (!ToComplex)
846    return false;
847
848  return IsFloatingPointPromotion(FromComplex->getElementType(),
849                                  ToComplex->getElementType()) ||
850    IsIntegralPromotion(0, FromComplex->getElementType(),
851                        ToComplex->getElementType());
852}
853
854/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
855/// the pointer type FromPtr to a pointer to type ToPointee, with the
856/// same type qualifiers as FromPtr has on its pointee type. ToType,
857/// if non-empty, will be a pointer to ToType that may or may not have
858/// the right set of qualifiers on its pointee.
859static QualType
860BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
861                                   QualType ToPointee, QualType ToType,
862                                   ASTContext &Context) {
863  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
864  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
865  Qualifiers Quals = CanonFromPointee.getQualifiers();
866
867  // Exact qualifier match -> return the pointer type we're converting to.
868  if (CanonToPointee.getLocalQualifiers() == Quals) {
869    // ToType is exactly what we need. Return it.
870    if (!ToType.isNull())
871      return ToType;
872
873    // Build a pointer to ToPointee. It has the right qualifiers
874    // already.
875    return Context.getPointerType(ToPointee);
876  }
877
878  // Just build a canonical type that has the right qualifiers.
879  return Context.getPointerType(
880         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
881                                  Quals));
882}
883
884static bool isNullPointerConstantForConversion(Expr *Expr,
885                                               bool InOverloadResolution,
886                                               ASTContext &Context) {
887  // Handle value-dependent integral null pointer constants correctly.
888  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
889  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
890      Expr->getType()->isIntegralType())
891    return !InOverloadResolution;
892
893  return Expr->isNullPointerConstant(Context,
894                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
895                                        : Expr::NPC_ValueDependentIsNull);
896}
897
898/// IsPointerConversion - Determines whether the conversion of the
899/// expression From, which has the (possibly adjusted) type FromType,
900/// can be converted to the type ToType via a pointer conversion (C++
901/// 4.10). If so, returns true and places the converted type (that
902/// might differ from ToType in its cv-qualifiers at some level) into
903/// ConvertedType.
904///
905/// This routine also supports conversions to and from block pointers
906/// and conversions with Objective-C's 'id', 'id<protocols...>', and
907/// pointers to interfaces. FIXME: Once we've determined the
908/// appropriate overloading rules for Objective-C, we may want to
909/// split the Objective-C checks into a different routine; however,
910/// GCC seems to consider all of these conversions to be pointer
911/// conversions, so for now they live here. IncompatibleObjC will be
912/// set if the conversion is an allowed Objective-C conversion that
913/// should result in a warning.
914bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
915                               bool InOverloadResolution,
916                               QualType& ConvertedType,
917                               bool &IncompatibleObjC) {
918  IncompatibleObjC = false;
919  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
920    return true;
921
922  // Conversion from a null pointer constant to any Objective-C pointer type.
923  if (ToType->isObjCObjectPointerType() &&
924      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
925    ConvertedType = ToType;
926    return true;
927  }
928
929  // Blocks: Block pointers can be converted to void*.
930  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
931      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
932    ConvertedType = ToType;
933    return true;
934  }
935  // Blocks: A null pointer constant can be converted to a block
936  // pointer type.
937  if (ToType->isBlockPointerType() &&
938      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
939    ConvertedType = ToType;
940    return true;
941  }
942
943  // If the left-hand-side is nullptr_t, the right side can be a null
944  // pointer constant.
945  if (ToType->isNullPtrType() &&
946      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
947    ConvertedType = ToType;
948    return true;
949  }
950
951  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
952  if (!ToTypePtr)
953    return false;
954
955  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
956  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
957    ConvertedType = ToType;
958    return true;
959  }
960
961  // Beyond this point, both types need to be pointers.
962  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
963  if (!FromTypePtr)
964    return false;
965
966  QualType FromPointeeType = FromTypePtr->getPointeeType();
967  QualType ToPointeeType = ToTypePtr->getPointeeType();
968
969  // An rvalue of type "pointer to cv T," where T is an object type,
970  // can be converted to an rvalue of type "pointer to cv void" (C++
971  // 4.10p2).
972  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
973    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
974                                                       ToPointeeType,
975                                                       ToType, Context);
976    return true;
977  }
978
979  // When we're overloading in C, we allow a special kind of pointer
980  // conversion for compatible-but-not-identical pointee types.
981  if (!getLangOptions().CPlusPlus &&
982      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
983    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
984                                                       ToPointeeType,
985                                                       ToType, Context);
986    return true;
987  }
988
989  // C++ [conv.ptr]p3:
990  //
991  //   An rvalue of type "pointer to cv D," where D is a class type,
992  //   can be converted to an rvalue of type "pointer to cv B," where
993  //   B is a base class (clause 10) of D. If B is an inaccessible
994  //   (clause 11) or ambiguous (10.2) base class of D, a program that
995  //   necessitates this conversion is ill-formed. The result of the
996  //   conversion is a pointer to the base class sub-object of the
997  //   derived class object. The null pointer value is converted to
998  //   the null pointer value of the destination type.
999  //
1000  // Note that we do not check for ambiguity or inaccessibility
1001  // here. That is handled by CheckPointerConversion.
1002  if (getLangOptions().CPlusPlus &&
1003      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1004      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1005      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1006    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1007                                                       ToPointeeType,
1008                                                       ToType, Context);
1009    return true;
1010  }
1011
1012  return false;
1013}
1014
1015/// isObjCPointerConversion - Determines whether this is an
1016/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1017/// with the same arguments and return values.
1018bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1019                                   QualType& ConvertedType,
1020                                   bool &IncompatibleObjC) {
1021  if (!getLangOptions().ObjC1)
1022    return false;
1023
1024  // First, we handle all conversions on ObjC object pointer types.
1025  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1026  const ObjCObjectPointerType *FromObjCPtr =
1027    FromType->getAs<ObjCObjectPointerType>();
1028
1029  if (ToObjCPtr && FromObjCPtr) {
1030    // Objective C++: We're able to convert between "id" or "Class" and a
1031    // pointer to any interface (in both directions).
1032    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1033      ConvertedType = ToType;
1034      return true;
1035    }
1036    // Conversions with Objective-C's id<...>.
1037    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1038         ToObjCPtr->isObjCQualifiedIdType()) &&
1039        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1040                                                  /*compare=*/false)) {
1041      ConvertedType = ToType;
1042      return true;
1043    }
1044    // Objective C++: We're able to convert from a pointer to an
1045    // interface to a pointer to a different interface.
1046    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1047      ConvertedType = ToType;
1048      return true;
1049    }
1050
1051    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1052      // Okay: this is some kind of implicit downcast of Objective-C
1053      // interfaces, which is permitted. However, we're going to
1054      // complain about it.
1055      IncompatibleObjC = true;
1056      ConvertedType = FromType;
1057      return true;
1058    }
1059  }
1060  // Beyond this point, both types need to be C pointers or block pointers.
1061  QualType ToPointeeType;
1062  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1063    ToPointeeType = ToCPtr->getPointeeType();
1064  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1065    ToPointeeType = ToBlockPtr->getPointeeType();
1066  else
1067    return false;
1068
1069  QualType FromPointeeType;
1070  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1071    FromPointeeType = FromCPtr->getPointeeType();
1072  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1073    FromPointeeType = FromBlockPtr->getPointeeType();
1074  else
1075    return false;
1076
1077  // If we have pointers to pointers, recursively check whether this
1078  // is an Objective-C conversion.
1079  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1080      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1081                              IncompatibleObjC)) {
1082    // We always complain about this conversion.
1083    IncompatibleObjC = true;
1084    ConvertedType = ToType;
1085    return true;
1086  }
1087  // If we have pointers to functions or blocks, check whether the only
1088  // differences in the argument and result types are in Objective-C
1089  // pointer conversions. If so, we permit the conversion (but
1090  // complain about it).
1091  const FunctionProtoType *FromFunctionType
1092    = FromPointeeType->getAs<FunctionProtoType>();
1093  const FunctionProtoType *ToFunctionType
1094    = ToPointeeType->getAs<FunctionProtoType>();
1095  if (FromFunctionType && ToFunctionType) {
1096    // If the function types are exactly the same, this isn't an
1097    // Objective-C pointer conversion.
1098    if (Context.getCanonicalType(FromPointeeType)
1099          == Context.getCanonicalType(ToPointeeType))
1100      return false;
1101
1102    // Perform the quick checks that will tell us whether these
1103    // function types are obviously different.
1104    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1105        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1106        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1107      return false;
1108
1109    bool HasObjCConversion = false;
1110    if (Context.getCanonicalType(FromFunctionType->getResultType())
1111          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1112      // Okay, the types match exactly. Nothing to do.
1113    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1114                                       ToFunctionType->getResultType(),
1115                                       ConvertedType, IncompatibleObjC)) {
1116      // Okay, we have an Objective-C pointer conversion.
1117      HasObjCConversion = true;
1118    } else {
1119      // Function types are too different. Abort.
1120      return false;
1121    }
1122
1123    // Check argument types.
1124    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1125         ArgIdx != NumArgs; ++ArgIdx) {
1126      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1127      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1128      if (Context.getCanonicalType(FromArgType)
1129            == Context.getCanonicalType(ToArgType)) {
1130        // Okay, the types match exactly. Nothing to do.
1131      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1132                                         ConvertedType, IncompatibleObjC)) {
1133        // Okay, we have an Objective-C pointer conversion.
1134        HasObjCConversion = true;
1135      } else {
1136        // Argument types are too different. Abort.
1137        return false;
1138      }
1139    }
1140
1141    if (HasObjCConversion) {
1142      // We had an Objective-C conversion. Allow this pointer
1143      // conversion, but complain about it.
1144      ConvertedType = ToType;
1145      IncompatibleObjC = true;
1146      return true;
1147    }
1148  }
1149
1150  return false;
1151}
1152
1153/// CheckPointerConversion - Check the pointer conversion from the
1154/// expression From to the type ToType. This routine checks for
1155/// ambiguous or inaccessible derived-to-base pointer
1156/// conversions for which IsPointerConversion has already returned
1157/// true. It returns true and produces a diagnostic if there was an
1158/// error, or returns false otherwise.
1159bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1160                                  CastExpr::CastKind &Kind,
1161                                  bool IgnoreBaseAccess) {
1162  QualType FromType = From->getType();
1163
1164  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1165    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1166      QualType FromPointeeType = FromPtrType->getPointeeType(),
1167               ToPointeeType   = ToPtrType->getPointeeType();
1168
1169      if (FromPointeeType->isRecordType() &&
1170          ToPointeeType->isRecordType()) {
1171        // We must have a derived-to-base conversion. Check an
1172        // ambiguous or inaccessible conversion.
1173        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1174                                         From->getExprLoc(),
1175                                         From->getSourceRange(),
1176                                         IgnoreBaseAccess))
1177          return true;
1178
1179        // The conversion was successful.
1180        Kind = CastExpr::CK_DerivedToBase;
1181      }
1182    }
1183  if (const ObjCObjectPointerType *FromPtrType =
1184        FromType->getAs<ObjCObjectPointerType>())
1185    if (const ObjCObjectPointerType *ToPtrType =
1186          ToType->getAs<ObjCObjectPointerType>()) {
1187      // Objective-C++ conversions are always okay.
1188      // FIXME: We should have a different class of conversions for the
1189      // Objective-C++ implicit conversions.
1190      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1191        return false;
1192
1193  }
1194  return false;
1195}
1196
1197/// IsMemberPointerConversion - Determines whether the conversion of the
1198/// expression From, which has the (possibly adjusted) type FromType, can be
1199/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1200/// If so, returns true and places the converted type (that might differ from
1201/// ToType in its cv-qualifiers at some level) into ConvertedType.
1202bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1203                                     QualType ToType,
1204                                     bool InOverloadResolution,
1205                                     QualType &ConvertedType) {
1206  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1207  if (!ToTypePtr)
1208    return false;
1209
1210  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1211  if (From->isNullPointerConstant(Context,
1212                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1213                                        : Expr::NPC_ValueDependentIsNull)) {
1214    ConvertedType = ToType;
1215    return true;
1216  }
1217
1218  // Otherwise, both types have to be member pointers.
1219  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1220  if (!FromTypePtr)
1221    return false;
1222
1223  // A pointer to member of B can be converted to a pointer to member of D,
1224  // where D is derived from B (C++ 4.11p2).
1225  QualType FromClass(FromTypePtr->getClass(), 0);
1226  QualType ToClass(ToTypePtr->getClass(), 0);
1227  // FIXME: What happens when these are dependent? Is this function even called?
1228
1229  if (IsDerivedFrom(ToClass, FromClass)) {
1230    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1231                                                 ToClass.getTypePtr());
1232    return true;
1233  }
1234
1235  return false;
1236}
1237
1238/// CheckMemberPointerConversion - Check the member pointer conversion from the
1239/// expression From to the type ToType. This routine checks for ambiguous or
1240/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1241/// for which IsMemberPointerConversion has already returned true. It returns
1242/// true and produces a diagnostic if there was an error, or returns false
1243/// otherwise.
1244bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1245                                        CastExpr::CastKind &Kind,
1246                                        bool IgnoreBaseAccess) {
1247  (void)IgnoreBaseAccess;
1248  QualType FromType = From->getType();
1249  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1250  if (!FromPtrType) {
1251    // This must be a null pointer to member pointer conversion
1252    assert(From->isNullPointerConstant(Context,
1253                                       Expr::NPC_ValueDependentIsNull) &&
1254           "Expr must be null pointer constant!");
1255    Kind = CastExpr::CK_NullToMemberPointer;
1256    return false;
1257  }
1258
1259  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1260  assert(ToPtrType && "No member pointer cast has a target type "
1261                      "that is not a member pointer.");
1262
1263  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1264  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1265
1266  // FIXME: What about dependent types?
1267  assert(FromClass->isRecordType() && "Pointer into non-class.");
1268  assert(ToClass->isRecordType() && "Pointer into non-class.");
1269
1270  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1271                     /*DetectVirtual=*/true);
1272  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1273  assert(DerivationOkay &&
1274         "Should not have been called if derivation isn't OK.");
1275  (void)DerivationOkay;
1276
1277  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1278                                  getUnqualifiedType())) {
1279    // Derivation is ambiguous. Redo the check to find the exact paths.
1280    Paths.clear();
1281    Paths.setRecordingPaths(true);
1282    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1283    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1284    (void)StillOkay;
1285
1286    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1287    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1288      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1289    return true;
1290  }
1291
1292  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1293    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1294      << FromClass << ToClass << QualType(VBase, 0)
1295      << From->getSourceRange();
1296    return true;
1297  }
1298
1299  // Must be a base to derived member conversion.
1300  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1301  return false;
1302}
1303
1304/// IsQualificationConversion - Determines whether the conversion from
1305/// an rvalue of type FromType to ToType is a qualification conversion
1306/// (C++ 4.4).
1307bool
1308Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1309  FromType = Context.getCanonicalType(FromType);
1310  ToType = Context.getCanonicalType(ToType);
1311
1312  // If FromType and ToType are the same type, this is not a
1313  // qualification conversion.
1314  if (FromType == ToType)
1315    return false;
1316
1317  // (C++ 4.4p4):
1318  //   A conversion can add cv-qualifiers at levels other than the first
1319  //   in multi-level pointers, subject to the following rules: [...]
1320  bool PreviousToQualsIncludeConst = true;
1321  bool UnwrappedAnyPointer = false;
1322  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1323    // Within each iteration of the loop, we check the qualifiers to
1324    // determine if this still looks like a qualification
1325    // conversion. Then, if all is well, we unwrap one more level of
1326    // pointers or pointers-to-members and do it all again
1327    // until there are no more pointers or pointers-to-members left to
1328    // unwrap.
1329    UnwrappedAnyPointer = true;
1330
1331    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1332    //      2,j, and similarly for volatile.
1333    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1334      return false;
1335
1336    //   -- if the cv 1,j and cv 2,j are different, then const is in
1337    //      every cv for 0 < k < j.
1338    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1339        && !PreviousToQualsIncludeConst)
1340      return false;
1341
1342    // Keep track of whether all prior cv-qualifiers in the "to" type
1343    // include const.
1344    PreviousToQualsIncludeConst
1345      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1346  }
1347
1348  // We are left with FromType and ToType being the pointee types
1349  // after unwrapping the original FromType and ToType the same number
1350  // of types. If we unwrapped any pointers, and if FromType and
1351  // ToType have the same unqualified type (since we checked
1352  // qualifiers above), then this is a qualification conversion.
1353  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1354}
1355
1356/// Determines whether there is a user-defined conversion sequence
1357/// (C++ [over.ics.user]) that converts expression From to the type
1358/// ToType. If such a conversion exists, User will contain the
1359/// user-defined conversion sequence that performs such a conversion
1360/// and this routine will return true. Otherwise, this routine returns
1361/// false and User is unspecified.
1362///
1363/// \param AllowConversionFunctions true if the conversion should
1364/// consider conversion functions at all. If false, only constructors
1365/// will be considered.
1366///
1367/// \param AllowExplicit  true if the conversion should consider C++0x
1368/// "explicit" conversion functions as well as non-explicit conversion
1369/// functions (C++0x [class.conv.fct]p2).
1370///
1371/// \param ForceRValue  true if the expression should be treated as an rvalue
1372/// for overload resolution.
1373/// \param UserCast true if looking for user defined conversion for a static
1374/// cast.
1375Sema::OverloadingResult Sema::IsUserDefinedConversion(
1376                                   Expr *From, QualType ToType,
1377                                   UserDefinedConversionSequence& User,
1378                                   OverloadCandidateSet& CandidateSet,
1379                                   bool AllowConversionFunctions,
1380                                   bool AllowExplicit, bool ForceRValue,
1381                                   bool UserCast) {
1382  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1383    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1384      // We're not going to find any constructors.
1385    } else if (CXXRecordDecl *ToRecordDecl
1386                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1387      // C++ [over.match.ctor]p1:
1388      //   When objects of class type are direct-initialized (8.5), or
1389      //   copy-initialized from an expression of the same or a
1390      //   derived class type (8.5), overload resolution selects the
1391      //   constructor. [...] For copy-initialization, the candidate
1392      //   functions are all the converting constructors (12.3.1) of
1393      //   that class. The argument list is the expression-list within
1394      //   the parentheses of the initializer.
1395      bool SuppressUserConversions = !UserCast;
1396      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1397          IsDerivedFrom(From->getType(), ToType)) {
1398        SuppressUserConversions = false;
1399        AllowConversionFunctions = false;
1400      }
1401
1402      DeclarationName ConstructorName
1403        = Context.DeclarationNames.getCXXConstructorName(
1404                          Context.getCanonicalType(ToType).getUnqualifiedType());
1405      DeclContext::lookup_iterator Con, ConEnd;
1406      for (llvm::tie(Con, ConEnd)
1407             = ToRecordDecl->lookup(ConstructorName);
1408           Con != ConEnd; ++Con) {
1409        // Find the constructor (which may be a template).
1410        CXXConstructorDecl *Constructor = 0;
1411        FunctionTemplateDecl *ConstructorTmpl
1412          = dyn_cast<FunctionTemplateDecl>(*Con);
1413        if (ConstructorTmpl)
1414          Constructor
1415            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1416        else
1417          Constructor = cast<CXXConstructorDecl>(*Con);
1418
1419        if (!Constructor->isInvalidDecl() &&
1420            Constructor->isConvertingConstructor(AllowExplicit)) {
1421          if (ConstructorTmpl)
1422            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1423                                         1, CandidateSet,
1424                                         SuppressUserConversions, ForceRValue);
1425          else
1426            // Allow one user-defined conversion when user specifies a
1427            // From->ToType conversion via an static cast (c-style, etc).
1428            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1429                                 SuppressUserConversions, ForceRValue);
1430        }
1431      }
1432    }
1433  }
1434
1435  if (!AllowConversionFunctions) {
1436    // Don't allow any conversion functions to enter the overload set.
1437  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1438                                 PDiag(0)
1439                                   << From->getSourceRange())) {
1440    // No conversion functions from incomplete types.
1441  } else if (const RecordType *FromRecordType
1442               = From->getType()->getAs<RecordType>()) {
1443    if (CXXRecordDecl *FromRecordDecl
1444         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1445      // Add all of the conversion functions as candidates.
1446      const UnresolvedSet *Conversions
1447        = FromRecordDecl->getVisibleConversionFunctions();
1448      for (UnresolvedSet::iterator I = Conversions->begin(),
1449             E = Conversions->end(); I != E; ++I) {
1450        CXXConversionDecl *Conv;
1451        FunctionTemplateDecl *ConvTemplate;
1452        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1453          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1454        else
1455          Conv = dyn_cast<CXXConversionDecl>(*I);
1456
1457        if (AllowExplicit || !Conv->isExplicit()) {
1458          if (ConvTemplate)
1459            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1460                                           CandidateSet);
1461          else
1462            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1463        }
1464      }
1465    }
1466  }
1467
1468  OverloadCandidateSet::iterator Best;
1469  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1470    case OR_Success:
1471      // Record the standard conversion we used and the conversion function.
1472      if (CXXConstructorDecl *Constructor
1473            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1474        // C++ [over.ics.user]p1:
1475        //   If the user-defined conversion is specified by a
1476        //   constructor (12.3.1), the initial standard conversion
1477        //   sequence converts the source type to the type required by
1478        //   the argument of the constructor.
1479        //
1480        QualType ThisType = Constructor->getThisType(Context);
1481        if (Best->Conversions[0].ConversionKind ==
1482            ImplicitConversionSequence::EllipsisConversion)
1483          User.EllipsisConversion = true;
1484        else {
1485          User.Before = Best->Conversions[0].Standard;
1486          User.EllipsisConversion = false;
1487        }
1488        User.ConversionFunction = Constructor;
1489        User.After.setAsIdentityConversion();
1490        User.After.FromTypePtr
1491          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1492        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1493        return OR_Success;
1494      } else if (CXXConversionDecl *Conversion
1495                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1496        // C++ [over.ics.user]p1:
1497        //
1498        //   [...] If the user-defined conversion is specified by a
1499        //   conversion function (12.3.2), the initial standard
1500        //   conversion sequence converts the source type to the
1501        //   implicit object parameter of the conversion function.
1502        User.Before = Best->Conversions[0].Standard;
1503        User.ConversionFunction = Conversion;
1504        User.EllipsisConversion = false;
1505
1506        // C++ [over.ics.user]p2:
1507        //   The second standard conversion sequence converts the
1508        //   result of the user-defined conversion to the target type
1509        //   for the sequence. Since an implicit conversion sequence
1510        //   is an initialization, the special rules for
1511        //   initialization by user-defined conversion apply when
1512        //   selecting the best user-defined conversion for a
1513        //   user-defined conversion sequence (see 13.3.3 and
1514        //   13.3.3.1).
1515        User.After = Best->FinalConversion;
1516        return OR_Success;
1517      } else {
1518        assert(false && "Not a constructor or conversion function?");
1519        return OR_No_Viable_Function;
1520      }
1521
1522    case OR_No_Viable_Function:
1523      return OR_No_Viable_Function;
1524    case OR_Deleted:
1525      // No conversion here! We're done.
1526      return OR_Deleted;
1527
1528    case OR_Ambiguous:
1529      return OR_Ambiguous;
1530    }
1531
1532  return OR_No_Viable_Function;
1533}
1534
1535bool
1536Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1537  ImplicitConversionSequence ICS;
1538  OverloadCandidateSet CandidateSet;
1539  OverloadingResult OvResult =
1540    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1541                            CandidateSet, true, false, false);
1542  if (OvResult == OR_Ambiguous)
1543    Diag(From->getSourceRange().getBegin(),
1544         diag::err_typecheck_ambiguous_condition)
1545          << From->getType() << ToType << From->getSourceRange();
1546  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1547    Diag(From->getSourceRange().getBegin(),
1548         diag::err_typecheck_nonviable_condition)
1549    << From->getType() << ToType << From->getSourceRange();
1550  else
1551    return false;
1552  PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1553  return true;
1554}
1555
1556/// CompareImplicitConversionSequences - Compare two implicit
1557/// conversion sequences to determine whether one is better than the
1558/// other or if they are indistinguishable (C++ 13.3.3.2).
1559ImplicitConversionSequence::CompareKind
1560Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1561                                         const ImplicitConversionSequence& ICS2)
1562{
1563  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1564  // conversion sequences (as defined in 13.3.3.1)
1565  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1566  //      conversion sequence than a user-defined conversion sequence or
1567  //      an ellipsis conversion sequence, and
1568  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1569  //      conversion sequence than an ellipsis conversion sequence
1570  //      (13.3.3.1.3).
1571  //
1572  if (ICS1.ConversionKind < ICS2.ConversionKind)
1573    return ImplicitConversionSequence::Better;
1574  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1575    return ImplicitConversionSequence::Worse;
1576
1577  // Two implicit conversion sequences of the same form are
1578  // indistinguishable conversion sequences unless one of the
1579  // following rules apply: (C++ 13.3.3.2p3):
1580  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1581    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1582  else if (ICS1.ConversionKind ==
1583             ImplicitConversionSequence::UserDefinedConversion) {
1584    // User-defined conversion sequence U1 is a better conversion
1585    // sequence than another user-defined conversion sequence U2 if
1586    // they contain the same user-defined conversion function or
1587    // constructor and if the second standard conversion sequence of
1588    // U1 is better than the second standard conversion sequence of
1589    // U2 (C++ 13.3.3.2p3).
1590    if (ICS1.UserDefined.ConversionFunction ==
1591          ICS2.UserDefined.ConversionFunction)
1592      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1593                                                ICS2.UserDefined.After);
1594  }
1595
1596  return ImplicitConversionSequence::Indistinguishable;
1597}
1598
1599/// CompareStandardConversionSequences - Compare two standard
1600/// conversion sequences to determine whether one is better than the
1601/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1602ImplicitConversionSequence::CompareKind
1603Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1604                                         const StandardConversionSequence& SCS2)
1605{
1606  // Standard conversion sequence S1 is a better conversion sequence
1607  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1608
1609  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1610  //     sequences in the canonical form defined by 13.3.3.1.1,
1611  //     excluding any Lvalue Transformation; the identity conversion
1612  //     sequence is considered to be a subsequence of any
1613  //     non-identity conversion sequence) or, if not that,
1614  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1615    // Neither is a proper subsequence of the other. Do nothing.
1616    ;
1617  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1618           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1619           (SCS1.Second == ICK_Identity &&
1620            SCS1.Third == ICK_Identity))
1621    // SCS1 is a proper subsequence of SCS2.
1622    return ImplicitConversionSequence::Better;
1623  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1624           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1625           (SCS2.Second == ICK_Identity &&
1626            SCS2.Third == ICK_Identity))
1627    // SCS2 is a proper subsequence of SCS1.
1628    return ImplicitConversionSequence::Worse;
1629
1630  //  -- the rank of S1 is better than the rank of S2 (by the rules
1631  //     defined below), or, if not that,
1632  ImplicitConversionRank Rank1 = SCS1.getRank();
1633  ImplicitConversionRank Rank2 = SCS2.getRank();
1634  if (Rank1 < Rank2)
1635    return ImplicitConversionSequence::Better;
1636  else if (Rank2 < Rank1)
1637    return ImplicitConversionSequence::Worse;
1638
1639  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1640  // are indistinguishable unless one of the following rules
1641  // applies:
1642
1643  //   A conversion that is not a conversion of a pointer, or
1644  //   pointer to member, to bool is better than another conversion
1645  //   that is such a conversion.
1646  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1647    return SCS2.isPointerConversionToBool()
1648             ? ImplicitConversionSequence::Better
1649             : ImplicitConversionSequence::Worse;
1650
1651  // C++ [over.ics.rank]p4b2:
1652  //
1653  //   If class B is derived directly or indirectly from class A,
1654  //   conversion of B* to A* is better than conversion of B* to
1655  //   void*, and conversion of A* to void* is better than conversion
1656  //   of B* to void*.
1657  bool SCS1ConvertsToVoid
1658    = SCS1.isPointerConversionToVoidPointer(Context);
1659  bool SCS2ConvertsToVoid
1660    = SCS2.isPointerConversionToVoidPointer(Context);
1661  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1662    // Exactly one of the conversion sequences is a conversion to
1663    // a void pointer; it's the worse conversion.
1664    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1665                              : ImplicitConversionSequence::Worse;
1666  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1667    // Neither conversion sequence converts to a void pointer; compare
1668    // their derived-to-base conversions.
1669    if (ImplicitConversionSequence::CompareKind DerivedCK
1670          = CompareDerivedToBaseConversions(SCS1, SCS2))
1671      return DerivedCK;
1672  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1673    // Both conversion sequences are conversions to void
1674    // pointers. Compare the source types to determine if there's an
1675    // inheritance relationship in their sources.
1676    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1677    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1678
1679    // Adjust the types we're converting from via the array-to-pointer
1680    // conversion, if we need to.
1681    if (SCS1.First == ICK_Array_To_Pointer)
1682      FromType1 = Context.getArrayDecayedType(FromType1);
1683    if (SCS2.First == ICK_Array_To_Pointer)
1684      FromType2 = Context.getArrayDecayedType(FromType2);
1685
1686    QualType FromPointee1
1687      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1688    QualType FromPointee2
1689      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1690
1691    if (IsDerivedFrom(FromPointee2, FromPointee1))
1692      return ImplicitConversionSequence::Better;
1693    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1694      return ImplicitConversionSequence::Worse;
1695
1696    // Objective-C++: If one interface is more specific than the
1697    // other, it is the better one.
1698    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1699    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1700    if (FromIface1 && FromIface1) {
1701      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1702        return ImplicitConversionSequence::Better;
1703      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1704        return ImplicitConversionSequence::Worse;
1705    }
1706  }
1707
1708  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1709  // bullet 3).
1710  if (ImplicitConversionSequence::CompareKind QualCK
1711        = CompareQualificationConversions(SCS1, SCS2))
1712    return QualCK;
1713
1714  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1715    // C++0x [over.ics.rank]p3b4:
1716    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1717    //      implicit object parameter of a non-static member function declared
1718    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1719    //      rvalue and S2 binds an lvalue reference.
1720    // FIXME: We don't know if we're dealing with the implicit object parameter,
1721    // or if the member function in this case has a ref qualifier.
1722    // (Of course, we don't have ref qualifiers yet.)
1723    if (SCS1.RRefBinding != SCS2.RRefBinding)
1724      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1725                              : ImplicitConversionSequence::Worse;
1726
1727    // C++ [over.ics.rank]p3b4:
1728    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1729    //      which the references refer are the same type except for
1730    //      top-level cv-qualifiers, and the type to which the reference
1731    //      initialized by S2 refers is more cv-qualified than the type
1732    //      to which the reference initialized by S1 refers.
1733    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1734    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1735    T1 = Context.getCanonicalType(T1);
1736    T2 = Context.getCanonicalType(T2);
1737    if (Context.hasSameUnqualifiedType(T1, T2)) {
1738      if (T2.isMoreQualifiedThan(T1))
1739        return ImplicitConversionSequence::Better;
1740      else if (T1.isMoreQualifiedThan(T2))
1741        return ImplicitConversionSequence::Worse;
1742    }
1743  }
1744
1745  return ImplicitConversionSequence::Indistinguishable;
1746}
1747
1748/// CompareQualificationConversions - Compares two standard conversion
1749/// sequences to determine whether they can be ranked based on their
1750/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1751ImplicitConversionSequence::CompareKind
1752Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1753                                      const StandardConversionSequence& SCS2) {
1754  // C++ 13.3.3.2p3:
1755  //  -- S1 and S2 differ only in their qualification conversion and
1756  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1757  //     cv-qualification signature of type T1 is a proper subset of
1758  //     the cv-qualification signature of type T2, and S1 is not the
1759  //     deprecated string literal array-to-pointer conversion (4.2).
1760  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1761      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1762    return ImplicitConversionSequence::Indistinguishable;
1763
1764  // FIXME: the example in the standard doesn't use a qualification
1765  // conversion (!)
1766  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1767  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1768  T1 = Context.getCanonicalType(T1);
1769  T2 = Context.getCanonicalType(T2);
1770
1771  // If the types are the same, we won't learn anything by unwrapped
1772  // them.
1773  if (Context.hasSameUnqualifiedType(T1, T2))
1774    return ImplicitConversionSequence::Indistinguishable;
1775
1776  ImplicitConversionSequence::CompareKind Result
1777    = ImplicitConversionSequence::Indistinguishable;
1778  while (UnwrapSimilarPointerTypes(T1, T2)) {
1779    // Within each iteration of the loop, we check the qualifiers to
1780    // determine if this still looks like a qualification
1781    // conversion. Then, if all is well, we unwrap one more level of
1782    // pointers or pointers-to-members and do it all again
1783    // until there are no more pointers or pointers-to-members left
1784    // to unwrap. This essentially mimics what
1785    // IsQualificationConversion does, but here we're checking for a
1786    // strict subset of qualifiers.
1787    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1788      // The qualifiers are the same, so this doesn't tell us anything
1789      // about how the sequences rank.
1790      ;
1791    else if (T2.isMoreQualifiedThan(T1)) {
1792      // T1 has fewer qualifiers, so it could be the better sequence.
1793      if (Result == ImplicitConversionSequence::Worse)
1794        // Neither has qualifiers that are a subset of the other's
1795        // qualifiers.
1796        return ImplicitConversionSequence::Indistinguishable;
1797
1798      Result = ImplicitConversionSequence::Better;
1799    } else if (T1.isMoreQualifiedThan(T2)) {
1800      // T2 has fewer qualifiers, so it could be the better sequence.
1801      if (Result == ImplicitConversionSequence::Better)
1802        // Neither has qualifiers that are a subset of the other's
1803        // qualifiers.
1804        return ImplicitConversionSequence::Indistinguishable;
1805
1806      Result = ImplicitConversionSequence::Worse;
1807    } else {
1808      // Qualifiers are disjoint.
1809      return ImplicitConversionSequence::Indistinguishable;
1810    }
1811
1812    // If the types after this point are equivalent, we're done.
1813    if (Context.hasSameUnqualifiedType(T1, T2))
1814      break;
1815  }
1816
1817  // Check that the winning standard conversion sequence isn't using
1818  // the deprecated string literal array to pointer conversion.
1819  switch (Result) {
1820  case ImplicitConversionSequence::Better:
1821    if (SCS1.Deprecated)
1822      Result = ImplicitConversionSequence::Indistinguishable;
1823    break;
1824
1825  case ImplicitConversionSequence::Indistinguishable:
1826    break;
1827
1828  case ImplicitConversionSequence::Worse:
1829    if (SCS2.Deprecated)
1830      Result = ImplicitConversionSequence::Indistinguishable;
1831    break;
1832  }
1833
1834  return Result;
1835}
1836
1837/// CompareDerivedToBaseConversions - Compares two standard conversion
1838/// sequences to determine whether they can be ranked based on their
1839/// various kinds of derived-to-base conversions (C++
1840/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1841/// conversions between Objective-C interface types.
1842ImplicitConversionSequence::CompareKind
1843Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1844                                      const StandardConversionSequence& SCS2) {
1845  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1846  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1847  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1848  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1849
1850  // Adjust the types we're converting from via the array-to-pointer
1851  // conversion, if we need to.
1852  if (SCS1.First == ICK_Array_To_Pointer)
1853    FromType1 = Context.getArrayDecayedType(FromType1);
1854  if (SCS2.First == ICK_Array_To_Pointer)
1855    FromType2 = Context.getArrayDecayedType(FromType2);
1856
1857  // Canonicalize all of the types.
1858  FromType1 = Context.getCanonicalType(FromType1);
1859  ToType1 = Context.getCanonicalType(ToType1);
1860  FromType2 = Context.getCanonicalType(FromType2);
1861  ToType2 = Context.getCanonicalType(ToType2);
1862
1863  // C++ [over.ics.rank]p4b3:
1864  //
1865  //   If class B is derived directly or indirectly from class A and
1866  //   class C is derived directly or indirectly from B,
1867  //
1868  // For Objective-C, we let A, B, and C also be Objective-C
1869  // interfaces.
1870
1871  // Compare based on pointer conversions.
1872  if (SCS1.Second == ICK_Pointer_Conversion &&
1873      SCS2.Second == ICK_Pointer_Conversion &&
1874      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1875      FromType1->isPointerType() && FromType2->isPointerType() &&
1876      ToType1->isPointerType() && ToType2->isPointerType()) {
1877    QualType FromPointee1
1878      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1879    QualType ToPointee1
1880      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1881    QualType FromPointee2
1882      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1883    QualType ToPointee2
1884      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1885
1886    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1887    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1888    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1889    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1890
1891    //   -- conversion of C* to B* is better than conversion of C* to A*,
1892    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1893      if (IsDerivedFrom(ToPointee1, ToPointee2))
1894        return ImplicitConversionSequence::Better;
1895      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1896        return ImplicitConversionSequence::Worse;
1897
1898      if (ToIface1 && ToIface2) {
1899        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1900          return ImplicitConversionSequence::Better;
1901        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1902          return ImplicitConversionSequence::Worse;
1903      }
1904    }
1905
1906    //   -- conversion of B* to A* is better than conversion of C* to A*,
1907    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1908      if (IsDerivedFrom(FromPointee2, FromPointee1))
1909        return ImplicitConversionSequence::Better;
1910      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1911        return ImplicitConversionSequence::Worse;
1912
1913      if (FromIface1 && FromIface2) {
1914        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1915          return ImplicitConversionSequence::Better;
1916        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1917          return ImplicitConversionSequence::Worse;
1918      }
1919    }
1920  }
1921
1922  // Compare based on reference bindings.
1923  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1924      SCS1.Second == ICK_Derived_To_Base) {
1925    //   -- binding of an expression of type C to a reference of type
1926    //      B& is better than binding an expression of type C to a
1927    //      reference of type A&,
1928    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1929        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1930      if (IsDerivedFrom(ToType1, ToType2))
1931        return ImplicitConversionSequence::Better;
1932      else if (IsDerivedFrom(ToType2, ToType1))
1933        return ImplicitConversionSequence::Worse;
1934    }
1935
1936    //   -- binding of an expression of type B to a reference of type
1937    //      A& is better than binding an expression of type C to a
1938    //      reference of type A&,
1939    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1940        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1941      if (IsDerivedFrom(FromType2, FromType1))
1942        return ImplicitConversionSequence::Better;
1943      else if (IsDerivedFrom(FromType1, FromType2))
1944        return ImplicitConversionSequence::Worse;
1945    }
1946  }
1947
1948  // Ranking of member-pointer types.
1949  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1950      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1951      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1952    const MemberPointerType * FromMemPointer1 =
1953                                        FromType1->getAs<MemberPointerType>();
1954    const MemberPointerType * ToMemPointer1 =
1955                                          ToType1->getAs<MemberPointerType>();
1956    const MemberPointerType * FromMemPointer2 =
1957                                          FromType2->getAs<MemberPointerType>();
1958    const MemberPointerType * ToMemPointer2 =
1959                                          ToType2->getAs<MemberPointerType>();
1960    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1961    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1962    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1963    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1964    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1965    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1966    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1967    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1968    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1969    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1970      if (IsDerivedFrom(ToPointee1, ToPointee2))
1971        return ImplicitConversionSequence::Worse;
1972      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1973        return ImplicitConversionSequence::Better;
1974    }
1975    // conversion of B::* to C::* is better than conversion of A::* to C::*
1976    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1977      if (IsDerivedFrom(FromPointee1, FromPointee2))
1978        return ImplicitConversionSequence::Better;
1979      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1980        return ImplicitConversionSequence::Worse;
1981    }
1982  }
1983
1984  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1985      SCS1.Second == ICK_Derived_To_Base) {
1986    //   -- conversion of C to B is better than conversion of C to A,
1987    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1988        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1989      if (IsDerivedFrom(ToType1, ToType2))
1990        return ImplicitConversionSequence::Better;
1991      else if (IsDerivedFrom(ToType2, ToType1))
1992        return ImplicitConversionSequence::Worse;
1993    }
1994
1995    //   -- conversion of B to A is better than conversion of C to A.
1996    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1997        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1998      if (IsDerivedFrom(FromType2, FromType1))
1999        return ImplicitConversionSequence::Better;
2000      else if (IsDerivedFrom(FromType1, FromType2))
2001        return ImplicitConversionSequence::Worse;
2002    }
2003  }
2004
2005  return ImplicitConversionSequence::Indistinguishable;
2006}
2007
2008/// TryCopyInitialization - Try to copy-initialize a value of type
2009/// ToType from the expression From. Return the implicit conversion
2010/// sequence required to pass this argument, which may be a bad
2011/// conversion sequence (meaning that the argument cannot be passed to
2012/// a parameter of this type). If @p SuppressUserConversions, then we
2013/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2014/// then we treat @p From as an rvalue, even if it is an lvalue.
2015ImplicitConversionSequence
2016Sema::TryCopyInitialization(Expr *From, QualType ToType,
2017                            bool SuppressUserConversions, bool ForceRValue,
2018                            bool InOverloadResolution) {
2019  if (ToType->isReferenceType()) {
2020    ImplicitConversionSequence ICS;
2021    CheckReferenceInit(From, ToType,
2022                       /*FIXME:*/From->getLocStart(),
2023                       SuppressUserConversions,
2024                       /*AllowExplicit=*/false,
2025                       ForceRValue,
2026                       &ICS);
2027    return ICS;
2028  } else {
2029    return TryImplicitConversion(From, ToType,
2030                                 SuppressUserConversions,
2031                                 /*AllowExplicit=*/false,
2032                                 ForceRValue,
2033                                 InOverloadResolution);
2034  }
2035}
2036
2037/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2038/// the expression @p From. Returns true (and emits a diagnostic) if there was
2039/// an error, returns false if the initialization succeeded. Elidable should
2040/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2041/// differently in C++0x for this case.
2042bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2043                                     const char* Flavor, bool Elidable) {
2044  if (!getLangOptions().CPlusPlus) {
2045    // In C, argument passing is the same as performing an assignment.
2046    QualType FromType = From->getType();
2047
2048    AssignConvertType ConvTy =
2049      CheckSingleAssignmentConstraints(ToType, From);
2050    if (ConvTy != Compatible &&
2051        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2052      ConvTy = Compatible;
2053
2054    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2055                                    FromType, From, Flavor);
2056  }
2057
2058  if (ToType->isReferenceType())
2059    return CheckReferenceInit(From, ToType,
2060                              /*FIXME:*/From->getLocStart(),
2061                              /*SuppressUserConversions=*/false,
2062                              /*AllowExplicit=*/false,
2063                              /*ForceRValue=*/false);
2064
2065  if (!PerformImplicitConversion(From, ToType, Flavor,
2066                                 /*AllowExplicit=*/false, Elidable))
2067    return false;
2068  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2069    return Diag(From->getSourceRange().getBegin(),
2070                diag::err_typecheck_convert_incompatible)
2071      << ToType << From->getType() << Flavor << From->getSourceRange();
2072  return true;
2073}
2074
2075/// TryObjectArgumentInitialization - Try to initialize the object
2076/// parameter of the given member function (@c Method) from the
2077/// expression @p From.
2078ImplicitConversionSequence
2079Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2080  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2081  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2082  //                 const volatile object.
2083  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2084    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2085  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2086
2087  // Set up the conversion sequence as a "bad" conversion, to allow us
2088  // to exit early.
2089  ImplicitConversionSequence ICS;
2090  ICS.Standard.setAsIdentityConversion();
2091  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2092
2093  // We need to have an object of class type.
2094  QualType FromType = From->getType();
2095  if (const PointerType *PT = FromType->getAs<PointerType>())
2096    FromType = PT->getPointeeType();
2097
2098  assert(FromType->isRecordType());
2099
2100  // The implicit object parameter is has the type "reference to cv X",
2101  // where X is the class of which the function is a member
2102  // (C++ [over.match.funcs]p4). However, when finding an implicit
2103  // conversion sequence for the argument, we are not allowed to
2104  // create temporaries or perform user-defined conversions
2105  // (C++ [over.match.funcs]p5). We perform a simplified version of
2106  // reference binding here, that allows class rvalues to bind to
2107  // non-constant references.
2108
2109  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2110  // with the implicit object parameter (C++ [over.match.funcs]p5).
2111  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2112  if (ImplicitParamType.getCVRQualifiers()
2113                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2114      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2115    return ICS;
2116
2117  // Check that we have either the same type or a derived type. It
2118  // affects the conversion rank.
2119  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2120  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2121    ICS.Standard.Second = ICK_Identity;
2122  else if (IsDerivedFrom(FromType, ClassType))
2123    ICS.Standard.Second = ICK_Derived_To_Base;
2124  else
2125    return ICS;
2126
2127  // Success. Mark this as a reference binding.
2128  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2129  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2130  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2131  ICS.Standard.ReferenceBinding = true;
2132  ICS.Standard.DirectBinding = true;
2133  ICS.Standard.RRefBinding = false;
2134  return ICS;
2135}
2136
2137/// PerformObjectArgumentInitialization - Perform initialization of
2138/// the implicit object parameter for the given Method with the given
2139/// expression.
2140bool
2141Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2142  QualType FromRecordType, DestType;
2143  QualType ImplicitParamRecordType  =
2144    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2145
2146  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2147    FromRecordType = PT->getPointeeType();
2148    DestType = Method->getThisType(Context);
2149  } else {
2150    FromRecordType = From->getType();
2151    DestType = ImplicitParamRecordType;
2152  }
2153
2154  ImplicitConversionSequence ICS
2155    = TryObjectArgumentInitialization(From, Method);
2156  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2157    return Diag(From->getSourceRange().getBegin(),
2158                diag::err_implicit_object_parameter_init)
2159       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2160
2161  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2162      CheckDerivedToBaseConversion(FromRecordType,
2163                                   ImplicitParamRecordType,
2164                                   From->getSourceRange().getBegin(),
2165                                   From->getSourceRange()))
2166    return true;
2167
2168  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2169                    /*isLvalue=*/true);
2170  return false;
2171}
2172
2173/// TryContextuallyConvertToBool - Attempt to contextually convert the
2174/// expression From to bool (C++0x [conv]p3).
2175ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2176  return TryImplicitConversion(From, Context.BoolTy,
2177                               // FIXME: Are these flags correct?
2178                               /*SuppressUserConversions=*/false,
2179                               /*AllowExplicit=*/true,
2180                               /*ForceRValue=*/false,
2181                               /*InOverloadResolution=*/false);
2182}
2183
2184/// PerformContextuallyConvertToBool - Perform a contextual conversion
2185/// of the expression From to bool (C++0x [conv]p3).
2186bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2187  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2188  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2189    return false;
2190
2191  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2192    return  Diag(From->getSourceRange().getBegin(),
2193                 diag::err_typecheck_bool_condition)
2194                  << From->getType() << From->getSourceRange();
2195  return true;
2196}
2197
2198/// AddOverloadCandidate - Adds the given function to the set of
2199/// candidate functions, using the given function call arguments.  If
2200/// @p SuppressUserConversions, then don't allow user-defined
2201/// conversions via constructors or conversion operators.
2202/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2203/// hacky way to implement the overloading rules for elidable copy
2204/// initialization in C++0x (C++0x 12.8p15).
2205///
2206/// \para PartialOverloading true if we are performing "partial" overloading
2207/// based on an incomplete set of function arguments. This feature is used by
2208/// code completion.
2209void
2210Sema::AddOverloadCandidate(FunctionDecl *Function,
2211                           Expr **Args, unsigned NumArgs,
2212                           OverloadCandidateSet& CandidateSet,
2213                           bool SuppressUserConversions,
2214                           bool ForceRValue,
2215                           bool PartialOverloading) {
2216  const FunctionProtoType* Proto
2217    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2218  assert(Proto && "Functions without a prototype cannot be overloaded");
2219  assert(!isa<CXXConversionDecl>(Function) &&
2220         "Use AddConversionCandidate for conversion functions");
2221  assert(!Function->getDescribedFunctionTemplate() &&
2222         "Use AddTemplateOverloadCandidate for function templates");
2223
2224  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2225    if (!isa<CXXConstructorDecl>(Method)) {
2226      // If we get here, it's because we're calling a member function
2227      // that is named without a member access expression (e.g.,
2228      // "this->f") that was either written explicitly or created
2229      // implicitly. This can happen with a qualified call to a member
2230      // function, e.g., X::f(). We use a NULL object as the implied
2231      // object argument (C++ [over.call.func]p3).
2232      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2233                         SuppressUserConversions, ForceRValue);
2234      return;
2235    }
2236    // We treat a constructor like a non-member function, since its object
2237    // argument doesn't participate in overload resolution.
2238  }
2239
2240  if (!CandidateSet.isNewCandidate(Function))
2241    return;
2242
2243  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2244    // C++ [class.copy]p3:
2245    //   A member function template is never instantiated to perform the copy
2246    //   of a class object to an object of its class type.
2247    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2248    if (NumArgs == 1 &&
2249        Constructor->isCopyConstructorLikeSpecialization() &&
2250        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2251      return;
2252  }
2253
2254  // Add this candidate
2255  CandidateSet.push_back(OverloadCandidate());
2256  OverloadCandidate& Candidate = CandidateSet.back();
2257  Candidate.Function = Function;
2258  Candidate.Viable = true;
2259  Candidate.IsSurrogate = false;
2260  Candidate.IgnoreObjectArgument = false;
2261
2262  unsigned NumArgsInProto = Proto->getNumArgs();
2263
2264  // (C++ 13.3.2p2): A candidate function having fewer than m
2265  // parameters is viable only if it has an ellipsis in its parameter
2266  // list (8.3.5).
2267  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2268      !Proto->isVariadic()) {
2269    Candidate.Viable = false;
2270    return;
2271  }
2272
2273  // (C++ 13.3.2p2): A candidate function having more than m parameters
2274  // is viable only if the (m+1)st parameter has a default argument
2275  // (8.3.6). For the purposes of overload resolution, the
2276  // parameter list is truncated on the right, so that there are
2277  // exactly m parameters.
2278  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2279  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2280    // Not enough arguments.
2281    Candidate.Viable = false;
2282    return;
2283  }
2284
2285  // Determine the implicit conversion sequences for each of the
2286  // arguments.
2287  Candidate.Conversions.resize(NumArgs);
2288  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2289    if (ArgIdx < NumArgsInProto) {
2290      // (C++ 13.3.2p3): for F to be a viable function, there shall
2291      // exist for each argument an implicit conversion sequence
2292      // (13.3.3.1) that converts that argument to the corresponding
2293      // parameter of F.
2294      QualType ParamType = Proto->getArgType(ArgIdx);
2295      Candidate.Conversions[ArgIdx]
2296        = TryCopyInitialization(Args[ArgIdx], ParamType,
2297                                SuppressUserConversions, ForceRValue,
2298                                /*InOverloadResolution=*/true);
2299      if (Candidate.Conversions[ArgIdx].ConversionKind
2300            == ImplicitConversionSequence::BadConversion) {
2301      // 13.3.3.1-p10 If several different sequences of conversions exist that
2302      // each convert the argument to the parameter type, the implicit conversion
2303      // sequence associated with the parameter is defined to be the unique conversion
2304      // sequence designated the ambiguous conversion sequence. For the purpose of
2305      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2306      // conversion sequence is treated as a user-defined sequence that is
2307      // indistinguishable from any other user-defined conversion sequence
2308        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2309          Candidate.Conversions[ArgIdx].ConversionKind =
2310            ImplicitConversionSequence::UserDefinedConversion;
2311          // Set the conversion function to one of them. As due to ambiguity,
2312          // they carry the same weight and is needed for overload resolution
2313          // later.
2314          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2315            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2316        }
2317        else {
2318          Candidate.Viable = false;
2319          break;
2320        }
2321      }
2322    } else {
2323      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2324      // argument for which there is no corresponding parameter is
2325      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2326      Candidate.Conversions[ArgIdx].ConversionKind
2327        = ImplicitConversionSequence::EllipsisConversion;
2328    }
2329  }
2330}
2331
2332/// \brief Add all of the function declarations in the given function set to
2333/// the overload canddiate set.
2334void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2335                                 Expr **Args, unsigned NumArgs,
2336                                 OverloadCandidateSet& CandidateSet,
2337                                 bool SuppressUserConversions) {
2338  for (FunctionSet::const_iterator F = Functions.begin(),
2339                                FEnd = Functions.end();
2340       F != FEnd; ++F) {
2341    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2342      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2343        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2344                           Args[0], Args + 1, NumArgs - 1,
2345                           CandidateSet, SuppressUserConversions);
2346      else
2347        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2348                             SuppressUserConversions);
2349    } else {
2350      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2351      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2352          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2353        AddMethodTemplateCandidate(FunTmpl,
2354                                   /*FIXME: explicit args */false, 0, 0,
2355                                   Args[0], Args + 1, NumArgs - 1,
2356                                   CandidateSet,
2357                                   SuppressUserConversions);
2358      else
2359        AddTemplateOverloadCandidate(FunTmpl,
2360                                     /*FIXME: explicit args */false, 0, 0,
2361                                     Args, NumArgs, CandidateSet,
2362                                     SuppressUserConversions);
2363    }
2364  }
2365}
2366
2367/// AddMethodCandidate - Adds a named decl (which is some kind of
2368/// method) as a method candidate to the given overload set.
2369void Sema::AddMethodCandidate(NamedDecl *Decl, Expr *Object,
2370                              Expr **Args, unsigned NumArgs,
2371                              OverloadCandidateSet& CandidateSet,
2372                              bool SuppressUserConversions, bool ForceRValue) {
2373
2374  // FIXME: use this
2375  //DeclContext *ActingContext = Decl->getDeclContext();
2376
2377  if (isa<UsingShadowDecl>(Decl))
2378    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2379
2380  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2381    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2382           "Expected a member function template");
2383    AddMethodTemplateCandidate(TD, false, 0, 0,
2384                               Object, Args, NumArgs,
2385                               CandidateSet,
2386                               SuppressUserConversions,
2387                               ForceRValue);
2388  } else {
2389    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Object, Args, NumArgs,
2390                       CandidateSet, SuppressUserConversions, ForceRValue);
2391  }
2392}
2393
2394/// AddMethodCandidate - Adds the given C++ member function to the set
2395/// of candidate functions, using the given function call arguments
2396/// and the object argument (@c Object). For example, in a call
2397/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2398/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2399/// allow user-defined conversions via constructors or conversion
2400/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2401/// a slightly hacky way to implement the overloading rules for elidable copy
2402/// initialization in C++0x (C++0x 12.8p15).
2403void
2404Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2405                         Expr **Args, unsigned NumArgs,
2406                         OverloadCandidateSet& CandidateSet,
2407                         bool SuppressUserConversions, bool ForceRValue) {
2408  const FunctionProtoType* Proto
2409    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2410  assert(Proto && "Methods without a prototype cannot be overloaded");
2411  assert(!isa<CXXConversionDecl>(Method) &&
2412         "Use AddConversionCandidate for conversion functions");
2413  assert(!isa<CXXConstructorDecl>(Method) &&
2414         "Use AddOverloadCandidate for constructors");
2415
2416  if (!CandidateSet.isNewCandidate(Method))
2417    return;
2418
2419  // Add this candidate
2420  CandidateSet.push_back(OverloadCandidate());
2421  OverloadCandidate& Candidate = CandidateSet.back();
2422  Candidate.Function = Method;
2423  Candidate.IsSurrogate = false;
2424  Candidate.IgnoreObjectArgument = false;
2425
2426  unsigned NumArgsInProto = Proto->getNumArgs();
2427
2428  // (C++ 13.3.2p2): A candidate function having fewer than m
2429  // parameters is viable only if it has an ellipsis in its parameter
2430  // list (8.3.5).
2431  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2432    Candidate.Viable = false;
2433    return;
2434  }
2435
2436  // (C++ 13.3.2p2): A candidate function having more than m parameters
2437  // is viable only if the (m+1)st parameter has a default argument
2438  // (8.3.6). For the purposes of overload resolution, the
2439  // parameter list is truncated on the right, so that there are
2440  // exactly m parameters.
2441  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2442  if (NumArgs < MinRequiredArgs) {
2443    // Not enough arguments.
2444    Candidate.Viable = false;
2445    return;
2446  }
2447
2448  Candidate.Viable = true;
2449  Candidate.Conversions.resize(NumArgs + 1);
2450
2451  if (Method->isStatic() || !Object)
2452    // The implicit object argument is ignored.
2453    Candidate.IgnoreObjectArgument = true;
2454  else {
2455    // Determine the implicit conversion sequence for the object
2456    // parameter.
2457    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2458    if (Candidate.Conversions[0].ConversionKind
2459          == ImplicitConversionSequence::BadConversion) {
2460      Candidate.Viable = false;
2461      return;
2462    }
2463  }
2464
2465  // Determine the implicit conversion sequences for each of the
2466  // arguments.
2467  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2468    if (ArgIdx < NumArgsInProto) {
2469      // (C++ 13.3.2p3): for F to be a viable function, there shall
2470      // exist for each argument an implicit conversion sequence
2471      // (13.3.3.1) that converts that argument to the corresponding
2472      // parameter of F.
2473      QualType ParamType = Proto->getArgType(ArgIdx);
2474      Candidate.Conversions[ArgIdx + 1]
2475        = TryCopyInitialization(Args[ArgIdx], ParamType,
2476                                SuppressUserConversions, ForceRValue,
2477                                /*InOverloadResolution=*/true);
2478      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2479            == ImplicitConversionSequence::BadConversion) {
2480        Candidate.Viable = false;
2481        break;
2482      }
2483    } else {
2484      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2485      // argument for which there is no corresponding parameter is
2486      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2487      Candidate.Conversions[ArgIdx + 1].ConversionKind
2488        = ImplicitConversionSequence::EllipsisConversion;
2489    }
2490  }
2491}
2492
2493/// \brief Add a C++ member function template as a candidate to the candidate
2494/// set, using template argument deduction to produce an appropriate member
2495/// function template specialization.
2496void
2497Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2498                                 bool HasExplicitTemplateArgs,
2499                             const TemplateArgumentLoc *ExplicitTemplateArgs,
2500                                 unsigned NumExplicitTemplateArgs,
2501                                 Expr *Object, Expr **Args, unsigned NumArgs,
2502                                 OverloadCandidateSet& CandidateSet,
2503                                 bool SuppressUserConversions,
2504                                 bool ForceRValue) {
2505  if (!CandidateSet.isNewCandidate(MethodTmpl))
2506    return;
2507
2508  // C++ [over.match.funcs]p7:
2509  //   In each case where a candidate is a function template, candidate
2510  //   function template specializations are generated using template argument
2511  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2512  //   candidate functions in the usual way.113) A given name can refer to one
2513  //   or more function templates and also to a set of overloaded non-template
2514  //   functions. In such a case, the candidate functions generated from each
2515  //   function template are combined with the set of non-template candidate
2516  //   functions.
2517  TemplateDeductionInfo Info(Context);
2518  FunctionDecl *Specialization = 0;
2519  if (TemplateDeductionResult Result
2520      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2521                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2522                                Args, NumArgs, Specialization, Info)) {
2523        // FIXME: Record what happened with template argument deduction, so
2524        // that we can give the user a beautiful diagnostic.
2525        (void)Result;
2526        return;
2527      }
2528
2529  // Add the function template specialization produced by template argument
2530  // deduction as a candidate.
2531  assert(Specialization && "Missing member function template specialization?");
2532  assert(isa<CXXMethodDecl>(Specialization) &&
2533         "Specialization is not a member function?");
2534  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2535                     CandidateSet, SuppressUserConversions, ForceRValue);
2536}
2537
2538/// \brief Add a C++ function template specialization as a candidate
2539/// in the candidate set, using template argument deduction to produce
2540/// an appropriate function template specialization.
2541void
2542Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2543                                   bool HasExplicitTemplateArgs,
2544                          const TemplateArgumentLoc *ExplicitTemplateArgs,
2545                                   unsigned NumExplicitTemplateArgs,
2546                                   Expr **Args, unsigned NumArgs,
2547                                   OverloadCandidateSet& CandidateSet,
2548                                   bool SuppressUserConversions,
2549                                   bool ForceRValue) {
2550  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2551    return;
2552
2553  // C++ [over.match.funcs]p7:
2554  //   In each case where a candidate is a function template, candidate
2555  //   function template specializations are generated using template argument
2556  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2557  //   candidate functions in the usual way.113) A given name can refer to one
2558  //   or more function templates and also to a set of overloaded non-template
2559  //   functions. In such a case, the candidate functions generated from each
2560  //   function template are combined with the set of non-template candidate
2561  //   functions.
2562  TemplateDeductionInfo Info(Context);
2563  FunctionDecl *Specialization = 0;
2564  if (TemplateDeductionResult Result
2565        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2566                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2567                                  Args, NumArgs, Specialization, Info)) {
2568    // FIXME: Record what happened with template argument deduction, so
2569    // that we can give the user a beautiful diagnostic.
2570    (void)Result;
2571    return;
2572  }
2573
2574  // Add the function template specialization produced by template argument
2575  // deduction as a candidate.
2576  assert(Specialization && "Missing function template specialization?");
2577  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2578                       SuppressUserConversions, ForceRValue);
2579}
2580
2581/// AddConversionCandidate - Add a C++ conversion function as a
2582/// candidate in the candidate set (C++ [over.match.conv],
2583/// C++ [over.match.copy]). From is the expression we're converting from,
2584/// and ToType is the type that we're eventually trying to convert to
2585/// (which may or may not be the same type as the type that the
2586/// conversion function produces).
2587void
2588Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2589                             Expr *From, QualType ToType,
2590                             OverloadCandidateSet& CandidateSet) {
2591  assert(!Conversion->getDescribedFunctionTemplate() &&
2592         "Conversion function templates use AddTemplateConversionCandidate");
2593
2594  if (!CandidateSet.isNewCandidate(Conversion))
2595    return;
2596
2597  // Add this candidate
2598  CandidateSet.push_back(OverloadCandidate());
2599  OverloadCandidate& Candidate = CandidateSet.back();
2600  Candidate.Function = Conversion;
2601  Candidate.IsSurrogate = false;
2602  Candidate.IgnoreObjectArgument = false;
2603  Candidate.FinalConversion.setAsIdentityConversion();
2604  Candidate.FinalConversion.FromTypePtr
2605    = Conversion->getConversionType().getAsOpaquePtr();
2606  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2607
2608  // Determine the implicit conversion sequence for the implicit
2609  // object parameter.
2610  Candidate.Viable = true;
2611  Candidate.Conversions.resize(1);
2612  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2613  // Conversion functions to a different type in the base class is visible in
2614  // the derived class.  So, a derived to base conversion should not participate
2615  // in overload resolution.
2616  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2617    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2618  if (Candidate.Conversions[0].ConversionKind
2619      == ImplicitConversionSequence::BadConversion) {
2620    Candidate.Viable = false;
2621    return;
2622  }
2623
2624  // We won't go through a user-define type conversion function to convert a
2625  // derived to base as such conversions are given Conversion Rank. They only
2626  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2627  QualType FromCanon
2628    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2629  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2630  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2631    Candidate.Viable = false;
2632    return;
2633  }
2634
2635
2636  // To determine what the conversion from the result of calling the
2637  // conversion function to the type we're eventually trying to
2638  // convert to (ToType), we need to synthesize a call to the
2639  // conversion function and attempt copy initialization from it. This
2640  // makes sure that we get the right semantics with respect to
2641  // lvalues/rvalues and the type. Fortunately, we can allocate this
2642  // call on the stack and we don't need its arguments to be
2643  // well-formed.
2644  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2645                            From->getLocStart());
2646  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2647                                CastExpr::CK_FunctionToPointerDecay,
2648                                &ConversionRef, false);
2649
2650  // Note that it is safe to allocate CallExpr on the stack here because
2651  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2652  // allocator).
2653  CallExpr Call(Context, &ConversionFn, 0, 0,
2654                Conversion->getConversionType().getNonReferenceType(),
2655                From->getLocStart());
2656  ImplicitConversionSequence ICS =
2657    TryCopyInitialization(&Call, ToType,
2658                          /*SuppressUserConversions=*/true,
2659                          /*ForceRValue=*/false,
2660                          /*InOverloadResolution=*/false);
2661
2662  switch (ICS.ConversionKind) {
2663  case ImplicitConversionSequence::StandardConversion:
2664    Candidate.FinalConversion = ICS.Standard;
2665    break;
2666
2667  case ImplicitConversionSequence::BadConversion:
2668    Candidate.Viable = false;
2669    break;
2670
2671  default:
2672    assert(false &&
2673           "Can only end up with a standard conversion sequence or failure");
2674  }
2675}
2676
2677/// \brief Adds a conversion function template specialization
2678/// candidate to the overload set, using template argument deduction
2679/// to deduce the template arguments of the conversion function
2680/// template from the type that we are converting to (C++
2681/// [temp.deduct.conv]).
2682void
2683Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2684                                     Expr *From, QualType ToType,
2685                                     OverloadCandidateSet &CandidateSet) {
2686  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2687         "Only conversion function templates permitted here");
2688
2689  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2690    return;
2691
2692  TemplateDeductionInfo Info(Context);
2693  CXXConversionDecl *Specialization = 0;
2694  if (TemplateDeductionResult Result
2695        = DeduceTemplateArguments(FunctionTemplate, ToType,
2696                                  Specialization, Info)) {
2697    // FIXME: Record what happened with template argument deduction, so
2698    // that we can give the user a beautiful diagnostic.
2699    (void)Result;
2700    return;
2701  }
2702
2703  // Add the conversion function template specialization produced by
2704  // template argument deduction as a candidate.
2705  assert(Specialization && "Missing function template specialization?");
2706  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2707}
2708
2709/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2710/// converts the given @c Object to a function pointer via the
2711/// conversion function @c Conversion, and then attempts to call it
2712/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2713/// the type of function that we'll eventually be calling.
2714void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2715                                 const FunctionProtoType *Proto,
2716                                 Expr *Object, Expr **Args, unsigned NumArgs,
2717                                 OverloadCandidateSet& CandidateSet) {
2718  if (!CandidateSet.isNewCandidate(Conversion))
2719    return;
2720
2721  CandidateSet.push_back(OverloadCandidate());
2722  OverloadCandidate& Candidate = CandidateSet.back();
2723  Candidate.Function = 0;
2724  Candidate.Surrogate = Conversion;
2725  Candidate.Viable = true;
2726  Candidate.IsSurrogate = true;
2727  Candidate.IgnoreObjectArgument = false;
2728  Candidate.Conversions.resize(NumArgs + 1);
2729
2730  // Determine the implicit conversion sequence for the implicit
2731  // object parameter.
2732  ImplicitConversionSequence ObjectInit
2733    = TryObjectArgumentInitialization(Object, Conversion);
2734  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2735    Candidate.Viable = false;
2736    return;
2737  }
2738
2739  // The first conversion is actually a user-defined conversion whose
2740  // first conversion is ObjectInit's standard conversion (which is
2741  // effectively a reference binding). Record it as such.
2742  Candidate.Conversions[0].ConversionKind
2743    = ImplicitConversionSequence::UserDefinedConversion;
2744  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2745  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2746  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2747  Candidate.Conversions[0].UserDefined.After
2748    = Candidate.Conversions[0].UserDefined.Before;
2749  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2750
2751  // Find the
2752  unsigned NumArgsInProto = Proto->getNumArgs();
2753
2754  // (C++ 13.3.2p2): A candidate function having fewer than m
2755  // parameters is viable only if it has an ellipsis in its parameter
2756  // list (8.3.5).
2757  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2758    Candidate.Viable = false;
2759    return;
2760  }
2761
2762  // Function types don't have any default arguments, so just check if
2763  // we have enough arguments.
2764  if (NumArgs < NumArgsInProto) {
2765    // Not enough arguments.
2766    Candidate.Viable = false;
2767    return;
2768  }
2769
2770  // Determine the implicit conversion sequences for each of the
2771  // arguments.
2772  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2773    if (ArgIdx < NumArgsInProto) {
2774      // (C++ 13.3.2p3): for F to be a viable function, there shall
2775      // exist for each argument an implicit conversion sequence
2776      // (13.3.3.1) that converts that argument to the corresponding
2777      // parameter of F.
2778      QualType ParamType = Proto->getArgType(ArgIdx);
2779      Candidate.Conversions[ArgIdx + 1]
2780        = TryCopyInitialization(Args[ArgIdx], ParamType,
2781                                /*SuppressUserConversions=*/false,
2782                                /*ForceRValue=*/false,
2783                                /*InOverloadResolution=*/false);
2784      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2785            == ImplicitConversionSequence::BadConversion) {
2786        Candidate.Viable = false;
2787        break;
2788      }
2789    } else {
2790      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2791      // argument for which there is no corresponding parameter is
2792      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2793      Candidate.Conversions[ArgIdx + 1].ConversionKind
2794        = ImplicitConversionSequence::EllipsisConversion;
2795    }
2796  }
2797}
2798
2799// FIXME: This will eventually be removed, once we've migrated all of the
2800// operator overloading logic over to the scheme used by binary operators, which
2801// works for template instantiation.
2802void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2803                                 SourceLocation OpLoc,
2804                                 Expr **Args, unsigned NumArgs,
2805                                 OverloadCandidateSet& CandidateSet,
2806                                 SourceRange OpRange) {
2807  FunctionSet Functions;
2808
2809  QualType T1 = Args[0]->getType();
2810  QualType T2;
2811  if (NumArgs > 1)
2812    T2 = Args[1]->getType();
2813
2814  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2815  if (S)
2816    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2817  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2818  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2819  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2820  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2821}
2822
2823/// \brief Add overload candidates for overloaded operators that are
2824/// member functions.
2825///
2826/// Add the overloaded operator candidates that are member functions
2827/// for the operator Op that was used in an operator expression such
2828/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2829/// CandidateSet will store the added overload candidates. (C++
2830/// [over.match.oper]).
2831void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2832                                       SourceLocation OpLoc,
2833                                       Expr **Args, unsigned NumArgs,
2834                                       OverloadCandidateSet& CandidateSet,
2835                                       SourceRange OpRange) {
2836  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2837
2838  // C++ [over.match.oper]p3:
2839  //   For a unary operator @ with an operand of a type whose
2840  //   cv-unqualified version is T1, and for a binary operator @ with
2841  //   a left operand of a type whose cv-unqualified version is T1 and
2842  //   a right operand of a type whose cv-unqualified version is T2,
2843  //   three sets of candidate functions, designated member
2844  //   candidates, non-member candidates and built-in candidates, are
2845  //   constructed as follows:
2846  QualType T1 = Args[0]->getType();
2847  QualType T2;
2848  if (NumArgs > 1)
2849    T2 = Args[1]->getType();
2850
2851  //     -- If T1 is a class type, the set of member candidates is the
2852  //        result of the qualified lookup of T1::operator@
2853  //        (13.3.1.1.1); otherwise, the set of member candidates is
2854  //        empty.
2855  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2856    // Complete the type if it can be completed. Otherwise, we're done.
2857    if (RequireCompleteType(OpLoc, T1, PDiag()))
2858      return;
2859
2860    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
2861    LookupQualifiedName(Operators, T1Rec->getDecl());
2862    Operators.suppressDiagnostics();
2863
2864    for (LookupResult::iterator Oper = Operators.begin(),
2865                             OperEnd = Operators.end();
2866         Oper != OperEnd;
2867         ++Oper)
2868      AddMethodCandidate(*Oper, Args[0], Args + 1, NumArgs - 1, CandidateSet,
2869                         /* SuppressUserConversions = */ false);
2870  }
2871}
2872
2873/// AddBuiltinCandidate - Add a candidate for a built-in
2874/// operator. ResultTy and ParamTys are the result and parameter types
2875/// of the built-in candidate, respectively. Args and NumArgs are the
2876/// arguments being passed to the candidate. IsAssignmentOperator
2877/// should be true when this built-in candidate is an assignment
2878/// operator. NumContextualBoolArguments is the number of arguments
2879/// (at the beginning of the argument list) that will be contextually
2880/// converted to bool.
2881void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2882                               Expr **Args, unsigned NumArgs,
2883                               OverloadCandidateSet& CandidateSet,
2884                               bool IsAssignmentOperator,
2885                               unsigned NumContextualBoolArguments) {
2886  // Add this candidate
2887  CandidateSet.push_back(OverloadCandidate());
2888  OverloadCandidate& Candidate = CandidateSet.back();
2889  Candidate.Function = 0;
2890  Candidate.IsSurrogate = false;
2891  Candidate.IgnoreObjectArgument = false;
2892  Candidate.BuiltinTypes.ResultTy = ResultTy;
2893  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2894    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2895
2896  // Determine the implicit conversion sequences for each of the
2897  // arguments.
2898  Candidate.Viable = true;
2899  Candidate.Conversions.resize(NumArgs);
2900  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2901    // C++ [over.match.oper]p4:
2902    //   For the built-in assignment operators, conversions of the
2903    //   left operand are restricted as follows:
2904    //     -- no temporaries are introduced to hold the left operand, and
2905    //     -- no user-defined conversions are applied to the left
2906    //        operand to achieve a type match with the left-most
2907    //        parameter of a built-in candidate.
2908    //
2909    // We block these conversions by turning off user-defined
2910    // conversions, since that is the only way that initialization of
2911    // a reference to a non-class type can occur from something that
2912    // is not of the same type.
2913    if (ArgIdx < NumContextualBoolArguments) {
2914      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2915             "Contextual conversion to bool requires bool type");
2916      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2917    } else {
2918      Candidate.Conversions[ArgIdx]
2919        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2920                                ArgIdx == 0 && IsAssignmentOperator,
2921                                /*ForceRValue=*/false,
2922                                /*InOverloadResolution=*/false);
2923    }
2924    if (Candidate.Conversions[ArgIdx].ConversionKind
2925        == ImplicitConversionSequence::BadConversion) {
2926      Candidate.Viable = false;
2927      break;
2928    }
2929  }
2930}
2931
2932/// BuiltinCandidateTypeSet - A set of types that will be used for the
2933/// candidate operator functions for built-in operators (C++
2934/// [over.built]). The types are separated into pointer types and
2935/// enumeration types.
2936class BuiltinCandidateTypeSet  {
2937  /// TypeSet - A set of types.
2938  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2939
2940  /// PointerTypes - The set of pointer types that will be used in the
2941  /// built-in candidates.
2942  TypeSet PointerTypes;
2943
2944  /// MemberPointerTypes - The set of member pointer types that will be
2945  /// used in the built-in candidates.
2946  TypeSet MemberPointerTypes;
2947
2948  /// EnumerationTypes - The set of enumeration types that will be
2949  /// used in the built-in candidates.
2950  TypeSet EnumerationTypes;
2951
2952  /// Sema - The semantic analysis instance where we are building the
2953  /// candidate type set.
2954  Sema &SemaRef;
2955
2956  /// Context - The AST context in which we will build the type sets.
2957  ASTContext &Context;
2958
2959  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2960                                               const Qualifiers &VisibleQuals);
2961  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2962
2963public:
2964  /// iterator - Iterates through the types that are part of the set.
2965  typedef TypeSet::iterator iterator;
2966
2967  BuiltinCandidateTypeSet(Sema &SemaRef)
2968    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2969
2970  void AddTypesConvertedFrom(QualType Ty,
2971                             SourceLocation Loc,
2972                             bool AllowUserConversions,
2973                             bool AllowExplicitConversions,
2974                             const Qualifiers &VisibleTypeConversionsQuals);
2975
2976  /// pointer_begin - First pointer type found;
2977  iterator pointer_begin() { return PointerTypes.begin(); }
2978
2979  /// pointer_end - Past the last pointer type found;
2980  iterator pointer_end() { return PointerTypes.end(); }
2981
2982  /// member_pointer_begin - First member pointer type found;
2983  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2984
2985  /// member_pointer_end - Past the last member pointer type found;
2986  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2987
2988  /// enumeration_begin - First enumeration type found;
2989  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2990
2991  /// enumeration_end - Past the last enumeration type found;
2992  iterator enumeration_end() { return EnumerationTypes.end(); }
2993};
2994
2995/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2996/// the set of pointer types along with any more-qualified variants of
2997/// that type. For example, if @p Ty is "int const *", this routine
2998/// will add "int const *", "int const volatile *", "int const
2999/// restrict *", and "int const volatile restrict *" to the set of
3000/// pointer types. Returns true if the add of @p Ty itself succeeded,
3001/// false otherwise.
3002///
3003/// FIXME: what to do about extended qualifiers?
3004bool
3005BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3006                                             const Qualifiers &VisibleQuals) {
3007
3008  // Insert this type.
3009  if (!PointerTypes.insert(Ty))
3010    return false;
3011
3012  const PointerType *PointerTy = Ty->getAs<PointerType>();
3013  assert(PointerTy && "type was not a pointer type!");
3014
3015  QualType PointeeTy = PointerTy->getPointeeType();
3016  // Don't add qualified variants of arrays. For one, they're not allowed
3017  // (the qualifier would sink to the element type), and for another, the
3018  // only overload situation where it matters is subscript or pointer +- int,
3019  // and those shouldn't have qualifier variants anyway.
3020  if (PointeeTy->isArrayType())
3021    return true;
3022  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3023  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3024    BaseCVR = Array->getElementType().getCVRQualifiers();
3025  bool hasVolatile = VisibleQuals.hasVolatile();
3026  bool hasRestrict = VisibleQuals.hasRestrict();
3027
3028  // Iterate through all strict supersets of BaseCVR.
3029  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3030    if ((CVR | BaseCVR) != CVR) continue;
3031    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3032    // in the types.
3033    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3034    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3035    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3036    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3037  }
3038
3039  return true;
3040}
3041
3042/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3043/// to the set of pointer types along with any more-qualified variants of
3044/// that type. For example, if @p Ty is "int const *", this routine
3045/// will add "int const *", "int const volatile *", "int const
3046/// restrict *", and "int const volatile restrict *" to the set of
3047/// pointer types. Returns true if the add of @p Ty itself succeeded,
3048/// false otherwise.
3049///
3050/// FIXME: what to do about extended qualifiers?
3051bool
3052BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3053    QualType Ty) {
3054  // Insert this type.
3055  if (!MemberPointerTypes.insert(Ty))
3056    return false;
3057
3058  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3059  assert(PointerTy && "type was not a member pointer type!");
3060
3061  QualType PointeeTy = PointerTy->getPointeeType();
3062  // Don't add qualified variants of arrays. For one, they're not allowed
3063  // (the qualifier would sink to the element type), and for another, the
3064  // only overload situation where it matters is subscript or pointer +- int,
3065  // and those shouldn't have qualifier variants anyway.
3066  if (PointeeTy->isArrayType())
3067    return true;
3068  const Type *ClassTy = PointerTy->getClass();
3069
3070  // Iterate through all strict supersets of the pointee type's CVR
3071  // qualifiers.
3072  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3073  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3074    if ((CVR | BaseCVR) != CVR) continue;
3075
3076    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3077    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3078  }
3079
3080  return true;
3081}
3082
3083/// AddTypesConvertedFrom - Add each of the types to which the type @p
3084/// Ty can be implicit converted to the given set of @p Types. We're
3085/// primarily interested in pointer types and enumeration types. We also
3086/// take member pointer types, for the conditional operator.
3087/// AllowUserConversions is true if we should look at the conversion
3088/// functions of a class type, and AllowExplicitConversions if we
3089/// should also include the explicit conversion functions of a class
3090/// type.
3091void
3092BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3093                                               SourceLocation Loc,
3094                                               bool AllowUserConversions,
3095                                               bool AllowExplicitConversions,
3096                                               const Qualifiers &VisibleQuals) {
3097  // Only deal with canonical types.
3098  Ty = Context.getCanonicalType(Ty);
3099
3100  // Look through reference types; they aren't part of the type of an
3101  // expression for the purposes of conversions.
3102  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3103    Ty = RefTy->getPointeeType();
3104
3105  // We don't care about qualifiers on the type.
3106  Ty = Ty.getLocalUnqualifiedType();
3107
3108  // If we're dealing with an array type, decay to the pointer.
3109  if (Ty->isArrayType())
3110    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3111
3112  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3113    QualType PointeeTy = PointerTy->getPointeeType();
3114
3115    // Insert our type, and its more-qualified variants, into the set
3116    // of types.
3117    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3118      return;
3119  } else if (Ty->isMemberPointerType()) {
3120    // Member pointers are far easier, since the pointee can't be converted.
3121    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3122      return;
3123  } else if (Ty->isEnumeralType()) {
3124    EnumerationTypes.insert(Ty);
3125  } else if (AllowUserConversions) {
3126    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3127      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3128        // No conversion functions in incomplete types.
3129        return;
3130      }
3131
3132      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3133      const UnresolvedSet *Conversions
3134        = ClassDecl->getVisibleConversionFunctions();
3135      for (UnresolvedSet::iterator I = Conversions->begin(),
3136             E = Conversions->end(); I != E; ++I) {
3137
3138        // Skip conversion function templates; they don't tell us anything
3139        // about which builtin types we can convert to.
3140        if (isa<FunctionTemplateDecl>(*I))
3141          continue;
3142
3143        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3144        if (AllowExplicitConversions || !Conv->isExplicit()) {
3145          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3146                                VisibleQuals);
3147        }
3148      }
3149    }
3150  }
3151}
3152
3153/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3154/// the volatile- and non-volatile-qualified assignment operators for the
3155/// given type to the candidate set.
3156static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3157                                                   QualType T,
3158                                                   Expr **Args,
3159                                                   unsigned NumArgs,
3160                                    OverloadCandidateSet &CandidateSet) {
3161  QualType ParamTypes[2];
3162
3163  // T& operator=(T&, T)
3164  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3165  ParamTypes[1] = T;
3166  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3167                        /*IsAssignmentOperator=*/true);
3168
3169  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3170    // volatile T& operator=(volatile T&, T)
3171    ParamTypes[0]
3172      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3173    ParamTypes[1] = T;
3174    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3175                          /*IsAssignmentOperator=*/true);
3176  }
3177}
3178
3179/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3180/// if any, found in visible type conversion functions found in ArgExpr's type.
3181static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3182    Qualifiers VRQuals;
3183    const RecordType *TyRec;
3184    if (const MemberPointerType *RHSMPType =
3185        ArgExpr->getType()->getAs<MemberPointerType>())
3186      TyRec = cast<RecordType>(RHSMPType->getClass());
3187    else
3188      TyRec = ArgExpr->getType()->getAs<RecordType>();
3189    if (!TyRec) {
3190      // Just to be safe, assume the worst case.
3191      VRQuals.addVolatile();
3192      VRQuals.addRestrict();
3193      return VRQuals;
3194    }
3195
3196    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3197    const UnresolvedSet *Conversions =
3198      ClassDecl->getVisibleConversionFunctions();
3199
3200    for (UnresolvedSet::iterator I = Conversions->begin(),
3201           E = Conversions->end(); I != E; ++I) {
3202      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3203        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3204        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3205          CanTy = ResTypeRef->getPointeeType();
3206        // Need to go down the pointer/mempointer chain and add qualifiers
3207        // as see them.
3208        bool done = false;
3209        while (!done) {
3210          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3211            CanTy = ResTypePtr->getPointeeType();
3212          else if (const MemberPointerType *ResTypeMPtr =
3213                CanTy->getAs<MemberPointerType>())
3214            CanTy = ResTypeMPtr->getPointeeType();
3215          else
3216            done = true;
3217          if (CanTy.isVolatileQualified())
3218            VRQuals.addVolatile();
3219          if (CanTy.isRestrictQualified())
3220            VRQuals.addRestrict();
3221          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3222            return VRQuals;
3223        }
3224      }
3225    }
3226    return VRQuals;
3227}
3228
3229/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3230/// operator overloads to the candidate set (C++ [over.built]), based
3231/// on the operator @p Op and the arguments given. For example, if the
3232/// operator is a binary '+', this routine might add "int
3233/// operator+(int, int)" to cover integer addition.
3234void
3235Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3236                                   SourceLocation OpLoc,
3237                                   Expr **Args, unsigned NumArgs,
3238                                   OverloadCandidateSet& CandidateSet) {
3239  // The set of "promoted arithmetic types", which are the arithmetic
3240  // types are that preserved by promotion (C++ [over.built]p2). Note
3241  // that the first few of these types are the promoted integral
3242  // types; these types need to be first.
3243  // FIXME: What about complex?
3244  const unsigned FirstIntegralType = 0;
3245  const unsigned LastIntegralType = 13;
3246  const unsigned FirstPromotedIntegralType = 7,
3247                 LastPromotedIntegralType = 13;
3248  const unsigned FirstPromotedArithmeticType = 7,
3249                 LastPromotedArithmeticType = 16;
3250  const unsigned NumArithmeticTypes = 16;
3251  QualType ArithmeticTypes[NumArithmeticTypes] = {
3252    Context.BoolTy, Context.CharTy, Context.WCharTy,
3253// FIXME:   Context.Char16Ty, Context.Char32Ty,
3254    Context.SignedCharTy, Context.ShortTy,
3255    Context.UnsignedCharTy, Context.UnsignedShortTy,
3256    Context.IntTy, Context.LongTy, Context.LongLongTy,
3257    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3258    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3259  };
3260  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3261         "Invalid first promoted integral type");
3262  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3263           == Context.UnsignedLongLongTy &&
3264         "Invalid last promoted integral type");
3265  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3266         "Invalid first promoted arithmetic type");
3267  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3268            == Context.LongDoubleTy &&
3269         "Invalid last promoted arithmetic type");
3270
3271  // Find all of the types that the arguments can convert to, but only
3272  // if the operator we're looking at has built-in operator candidates
3273  // that make use of these types.
3274  Qualifiers VisibleTypeConversionsQuals;
3275  VisibleTypeConversionsQuals.addConst();
3276  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3277    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3278
3279  BuiltinCandidateTypeSet CandidateTypes(*this);
3280  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3281      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3282      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3283      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3284      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3285      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3286    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3287      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3288                                           OpLoc,
3289                                           true,
3290                                           (Op == OO_Exclaim ||
3291                                            Op == OO_AmpAmp ||
3292                                            Op == OO_PipePipe),
3293                                           VisibleTypeConversionsQuals);
3294  }
3295
3296  bool isComparison = false;
3297  switch (Op) {
3298  case OO_None:
3299  case NUM_OVERLOADED_OPERATORS:
3300    assert(false && "Expected an overloaded operator");
3301    break;
3302
3303  case OO_Star: // '*' is either unary or binary
3304    if (NumArgs == 1)
3305      goto UnaryStar;
3306    else
3307      goto BinaryStar;
3308    break;
3309
3310  case OO_Plus: // '+' is either unary or binary
3311    if (NumArgs == 1)
3312      goto UnaryPlus;
3313    else
3314      goto BinaryPlus;
3315    break;
3316
3317  case OO_Minus: // '-' is either unary or binary
3318    if (NumArgs == 1)
3319      goto UnaryMinus;
3320    else
3321      goto BinaryMinus;
3322    break;
3323
3324  case OO_Amp: // '&' is either unary or binary
3325    if (NumArgs == 1)
3326      goto UnaryAmp;
3327    else
3328      goto BinaryAmp;
3329
3330  case OO_PlusPlus:
3331  case OO_MinusMinus:
3332    // C++ [over.built]p3:
3333    //
3334    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3335    //   is either volatile or empty, there exist candidate operator
3336    //   functions of the form
3337    //
3338    //       VQ T&      operator++(VQ T&);
3339    //       T          operator++(VQ T&, int);
3340    //
3341    // C++ [over.built]p4:
3342    //
3343    //   For every pair (T, VQ), where T is an arithmetic type other
3344    //   than bool, and VQ is either volatile or empty, there exist
3345    //   candidate operator functions of the form
3346    //
3347    //       VQ T&      operator--(VQ T&);
3348    //       T          operator--(VQ T&, int);
3349    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3350         Arith < NumArithmeticTypes; ++Arith) {
3351      QualType ArithTy = ArithmeticTypes[Arith];
3352      QualType ParamTypes[2]
3353        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3354
3355      // Non-volatile version.
3356      if (NumArgs == 1)
3357        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3358      else
3359        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3360      // heuristic to reduce number of builtin candidates in the set.
3361      // Add volatile version only if there are conversions to a volatile type.
3362      if (VisibleTypeConversionsQuals.hasVolatile()) {
3363        // Volatile version
3364        ParamTypes[0]
3365          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3366        if (NumArgs == 1)
3367          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3368        else
3369          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3370      }
3371    }
3372
3373    // C++ [over.built]p5:
3374    //
3375    //   For every pair (T, VQ), where T is a cv-qualified or
3376    //   cv-unqualified object type, and VQ is either volatile or
3377    //   empty, there exist candidate operator functions of the form
3378    //
3379    //       T*VQ&      operator++(T*VQ&);
3380    //       T*VQ&      operator--(T*VQ&);
3381    //       T*         operator++(T*VQ&, int);
3382    //       T*         operator--(T*VQ&, int);
3383    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3384         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3385      // Skip pointer types that aren't pointers to object types.
3386      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3387        continue;
3388
3389      QualType ParamTypes[2] = {
3390        Context.getLValueReferenceType(*Ptr), Context.IntTy
3391      };
3392
3393      // Without volatile
3394      if (NumArgs == 1)
3395        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3396      else
3397        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3398
3399      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3400          VisibleTypeConversionsQuals.hasVolatile()) {
3401        // With volatile
3402        ParamTypes[0]
3403          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3404        if (NumArgs == 1)
3405          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3406        else
3407          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3408      }
3409    }
3410    break;
3411
3412  UnaryStar:
3413    // C++ [over.built]p6:
3414    //   For every cv-qualified or cv-unqualified object type T, there
3415    //   exist candidate operator functions of the form
3416    //
3417    //       T&         operator*(T*);
3418    //
3419    // C++ [over.built]p7:
3420    //   For every function type T, there exist candidate operator
3421    //   functions of the form
3422    //       T&         operator*(T*);
3423    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3424         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3425      QualType ParamTy = *Ptr;
3426      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3427      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3428                          &ParamTy, Args, 1, CandidateSet);
3429    }
3430    break;
3431
3432  UnaryPlus:
3433    // C++ [over.built]p8:
3434    //   For every type T, there exist candidate operator functions of
3435    //   the form
3436    //
3437    //       T*         operator+(T*);
3438    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3439         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3440      QualType ParamTy = *Ptr;
3441      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3442    }
3443
3444    // Fall through
3445
3446  UnaryMinus:
3447    // C++ [over.built]p9:
3448    //  For every promoted arithmetic type T, there exist candidate
3449    //  operator functions of the form
3450    //
3451    //       T         operator+(T);
3452    //       T         operator-(T);
3453    for (unsigned Arith = FirstPromotedArithmeticType;
3454         Arith < LastPromotedArithmeticType; ++Arith) {
3455      QualType ArithTy = ArithmeticTypes[Arith];
3456      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3457    }
3458    break;
3459
3460  case OO_Tilde:
3461    // C++ [over.built]p10:
3462    //   For every promoted integral type T, there exist candidate
3463    //   operator functions of the form
3464    //
3465    //        T         operator~(T);
3466    for (unsigned Int = FirstPromotedIntegralType;
3467         Int < LastPromotedIntegralType; ++Int) {
3468      QualType IntTy = ArithmeticTypes[Int];
3469      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3470    }
3471    break;
3472
3473  case OO_New:
3474  case OO_Delete:
3475  case OO_Array_New:
3476  case OO_Array_Delete:
3477  case OO_Call:
3478    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3479    break;
3480
3481  case OO_Comma:
3482  UnaryAmp:
3483  case OO_Arrow:
3484    // C++ [over.match.oper]p3:
3485    //   -- For the operator ',', the unary operator '&', or the
3486    //      operator '->', the built-in candidates set is empty.
3487    break;
3488
3489  case OO_EqualEqual:
3490  case OO_ExclaimEqual:
3491    // C++ [over.match.oper]p16:
3492    //   For every pointer to member type T, there exist candidate operator
3493    //   functions of the form
3494    //
3495    //        bool operator==(T,T);
3496    //        bool operator!=(T,T);
3497    for (BuiltinCandidateTypeSet::iterator
3498           MemPtr = CandidateTypes.member_pointer_begin(),
3499           MemPtrEnd = CandidateTypes.member_pointer_end();
3500         MemPtr != MemPtrEnd;
3501         ++MemPtr) {
3502      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3503      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3504    }
3505
3506    // Fall through
3507
3508  case OO_Less:
3509  case OO_Greater:
3510  case OO_LessEqual:
3511  case OO_GreaterEqual:
3512    // C++ [over.built]p15:
3513    //
3514    //   For every pointer or enumeration type T, there exist
3515    //   candidate operator functions of the form
3516    //
3517    //        bool       operator<(T, T);
3518    //        bool       operator>(T, T);
3519    //        bool       operator<=(T, T);
3520    //        bool       operator>=(T, T);
3521    //        bool       operator==(T, T);
3522    //        bool       operator!=(T, T);
3523    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3524         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3525      QualType ParamTypes[2] = { *Ptr, *Ptr };
3526      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3527    }
3528    for (BuiltinCandidateTypeSet::iterator Enum
3529           = CandidateTypes.enumeration_begin();
3530         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3531      QualType ParamTypes[2] = { *Enum, *Enum };
3532      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3533    }
3534
3535    // Fall through.
3536    isComparison = true;
3537
3538  BinaryPlus:
3539  BinaryMinus:
3540    if (!isComparison) {
3541      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3542
3543      // C++ [over.built]p13:
3544      //
3545      //   For every cv-qualified or cv-unqualified object type T
3546      //   there exist candidate operator functions of the form
3547      //
3548      //      T*         operator+(T*, ptrdiff_t);
3549      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3550      //      T*         operator-(T*, ptrdiff_t);
3551      //      T*         operator+(ptrdiff_t, T*);
3552      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3553      //
3554      // C++ [over.built]p14:
3555      //
3556      //   For every T, where T is a pointer to object type, there
3557      //   exist candidate operator functions of the form
3558      //
3559      //      ptrdiff_t  operator-(T, T);
3560      for (BuiltinCandidateTypeSet::iterator Ptr
3561             = CandidateTypes.pointer_begin();
3562           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3563        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3564
3565        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3566        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3567
3568        if (Op == OO_Plus) {
3569          // T* operator+(ptrdiff_t, T*);
3570          ParamTypes[0] = ParamTypes[1];
3571          ParamTypes[1] = *Ptr;
3572          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3573        } else {
3574          // ptrdiff_t operator-(T, T);
3575          ParamTypes[1] = *Ptr;
3576          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3577                              Args, 2, CandidateSet);
3578        }
3579      }
3580    }
3581    // Fall through
3582
3583  case OO_Slash:
3584  BinaryStar:
3585  Conditional:
3586    // C++ [over.built]p12:
3587    //
3588    //   For every pair of promoted arithmetic types L and R, there
3589    //   exist candidate operator functions of the form
3590    //
3591    //        LR         operator*(L, R);
3592    //        LR         operator/(L, R);
3593    //        LR         operator+(L, R);
3594    //        LR         operator-(L, R);
3595    //        bool       operator<(L, R);
3596    //        bool       operator>(L, R);
3597    //        bool       operator<=(L, R);
3598    //        bool       operator>=(L, R);
3599    //        bool       operator==(L, R);
3600    //        bool       operator!=(L, R);
3601    //
3602    //   where LR is the result of the usual arithmetic conversions
3603    //   between types L and R.
3604    //
3605    // C++ [over.built]p24:
3606    //
3607    //   For every pair of promoted arithmetic types L and R, there exist
3608    //   candidate operator functions of the form
3609    //
3610    //        LR       operator?(bool, L, R);
3611    //
3612    //   where LR is the result of the usual arithmetic conversions
3613    //   between types L and R.
3614    // Our candidates ignore the first parameter.
3615    for (unsigned Left = FirstPromotedArithmeticType;
3616         Left < LastPromotedArithmeticType; ++Left) {
3617      for (unsigned Right = FirstPromotedArithmeticType;
3618           Right < LastPromotedArithmeticType; ++Right) {
3619        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3620        QualType Result
3621          = isComparison
3622          ? Context.BoolTy
3623          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3624        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3625      }
3626    }
3627    break;
3628
3629  case OO_Percent:
3630  BinaryAmp:
3631  case OO_Caret:
3632  case OO_Pipe:
3633  case OO_LessLess:
3634  case OO_GreaterGreater:
3635    // C++ [over.built]p17:
3636    //
3637    //   For every pair of promoted integral types L and R, there
3638    //   exist candidate operator functions of the form
3639    //
3640    //      LR         operator%(L, R);
3641    //      LR         operator&(L, R);
3642    //      LR         operator^(L, R);
3643    //      LR         operator|(L, R);
3644    //      L          operator<<(L, R);
3645    //      L          operator>>(L, R);
3646    //
3647    //   where LR is the result of the usual arithmetic conversions
3648    //   between types L and R.
3649    for (unsigned Left = FirstPromotedIntegralType;
3650         Left < LastPromotedIntegralType; ++Left) {
3651      for (unsigned Right = FirstPromotedIntegralType;
3652           Right < LastPromotedIntegralType; ++Right) {
3653        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3654        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3655            ? LandR[0]
3656            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3657        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3658      }
3659    }
3660    break;
3661
3662  case OO_Equal:
3663    // C++ [over.built]p20:
3664    //
3665    //   For every pair (T, VQ), where T is an enumeration or
3666    //   pointer to member type and VQ is either volatile or
3667    //   empty, there exist candidate operator functions of the form
3668    //
3669    //        VQ T&      operator=(VQ T&, T);
3670    for (BuiltinCandidateTypeSet::iterator
3671           Enum = CandidateTypes.enumeration_begin(),
3672           EnumEnd = CandidateTypes.enumeration_end();
3673         Enum != EnumEnd; ++Enum)
3674      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3675                                             CandidateSet);
3676    for (BuiltinCandidateTypeSet::iterator
3677           MemPtr = CandidateTypes.member_pointer_begin(),
3678         MemPtrEnd = CandidateTypes.member_pointer_end();
3679         MemPtr != MemPtrEnd; ++MemPtr)
3680      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3681                                             CandidateSet);
3682      // Fall through.
3683
3684  case OO_PlusEqual:
3685  case OO_MinusEqual:
3686    // C++ [over.built]p19:
3687    //
3688    //   For every pair (T, VQ), where T is any type and VQ is either
3689    //   volatile or empty, there exist candidate operator functions
3690    //   of the form
3691    //
3692    //        T*VQ&      operator=(T*VQ&, T*);
3693    //
3694    // C++ [over.built]p21:
3695    //
3696    //   For every pair (T, VQ), where T is a cv-qualified or
3697    //   cv-unqualified object type and VQ is either volatile or
3698    //   empty, there exist candidate operator functions of the form
3699    //
3700    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3701    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3702    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3703         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3704      QualType ParamTypes[2];
3705      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3706
3707      // non-volatile version
3708      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3709      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3710                          /*IsAssigmentOperator=*/Op == OO_Equal);
3711
3712      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3713          VisibleTypeConversionsQuals.hasVolatile()) {
3714        // volatile version
3715        ParamTypes[0]
3716          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3717        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3718                            /*IsAssigmentOperator=*/Op == OO_Equal);
3719      }
3720    }
3721    // Fall through.
3722
3723  case OO_StarEqual:
3724  case OO_SlashEqual:
3725    // C++ [over.built]p18:
3726    //
3727    //   For every triple (L, VQ, R), where L is an arithmetic type,
3728    //   VQ is either volatile or empty, and R is a promoted
3729    //   arithmetic type, there exist candidate operator functions of
3730    //   the form
3731    //
3732    //        VQ L&      operator=(VQ L&, R);
3733    //        VQ L&      operator*=(VQ L&, R);
3734    //        VQ L&      operator/=(VQ L&, R);
3735    //        VQ L&      operator+=(VQ L&, R);
3736    //        VQ L&      operator-=(VQ L&, R);
3737    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3738      for (unsigned Right = FirstPromotedArithmeticType;
3739           Right < LastPromotedArithmeticType; ++Right) {
3740        QualType ParamTypes[2];
3741        ParamTypes[1] = ArithmeticTypes[Right];
3742
3743        // Add this built-in operator as a candidate (VQ is empty).
3744        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3745        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3746                            /*IsAssigmentOperator=*/Op == OO_Equal);
3747
3748        // Add this built-in operator as a candidate (VQ is 'volatile').
3749        if (VisibleTypeConversionsQuals.hasVolatile()) {
3750          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3751          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3752          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3753                              /*IsAssigmentOperator=*/Op == OO_Equal);
3754        }
3755      }
3756    }
3757    break;
3758
3759  case OO_PercentEqual:
3760  case OO_LessLessEqual:
3761  case OO_GreaterGreaterEqual:
3762  case OO_AmpEqual:
3763  case OO_CaretEqual:
3764  case OO_PipeEqual:
3765    // C++ [over.built]p22:
3766    //
3767    //   For every triple (L, VQ, R), where L is an integral type, VQ
3768    //   is either volatile or empty, and R is a promoted integral
3769    //   type, there exist candidate operator functions of the form
3770    //
3771    //        VQ L&       operator%=(VQ L&, R);
3772    //        VQ L&       operator<<=(VQ L&, R);
3773    //        VQ L&       operator>>=(VQ L&, R);
3774    //        VQ L&       operator&=(VQ L&, R);
3775    //        VQ L&       operator^=(VQ L&, R);
3776    //        VQ L&       operator|=(VQ L&, R);
3777    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3778      for (unsigned Right = FirstPromotedIntegralType;
3779           Right < LastPromotedIntegralType; ++Right) {
3780        QualType ParamTypes[2];
3781        ParamTypes[1] = ArithmeticTypes[Right];
3782
3783        // Add this built-in operator as a candidate (VQ is empty).
3784        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3785        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3786        if (VisibleTypeConversionsQuals.hasVolatile()) {
3787          // Add this built-in operator as a candidate (VQ is 'volatile').
3788          ParamTypes[0] = ArithmeticTypes[Left];
3789          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3790          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3791          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3792        }
3793      }
3794    }
3795    break;
3796
3797  case OO_Exclaim: {
3798    // C++ [over.operator]p23:
3799    //
3800    //   There also exist candidate operator functions of the form
3801    //
3802    //        bool        operator!(bool);
3803    //        bool        operator&&(bool, bool);     [BELOW]
3804    //        bool        operator||(bool, bool);     [BELOW]
3805    QualType ParamTy = Context.BoolTy;
3806    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3807                        /*IsAssignmentOperator=*/false,
3808                        /*NumContextualBoolArguments=*/1);
3809    break;
3810  }
3811
3812  case OO_AmpAmp:
3813  case OO_PipePipe: {
3814    // C++ [over.operator]p23:
3815    //
3816    //   There also exist candidate operator functions of the form
3817    //
3818    //        bool        operator!(bool);            [ABOVE]
3819    //        bool        operator&&(bool, bool);
3820    //        bool        operator||(bool, bool);
3821    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3822    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3823                        /*IsAssignmentOperator=*/false,
3824                        /*NumContextualBoolArguments=*/2);
3825    break;
3826  }
3827
3828  case OO_Subscript:
3829    // C++ [over.built]p13:
3830    //
3831    //   For every cv-qualified or cv-unqualified object type T there
3832    //   exist candidate operator functions of the form
3833    //
3834    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3835    //        T&         operator[](T*, ptrdiff_t);
3836    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3837    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3838    //        T&         operator[](ptrdiff_t, T*);
3839    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3840         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3841      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3842      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3843      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3844
3845      // T& operator[](T*, ptrdiff_t)
3846      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3847
3848      // T& operator[](ptrdiff_t, T*);
3849      ParamTypes[0] = ParamTypes[1];
3850      ParamTypes[1] = *Ptr;
3851      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3852    }
3853    break;
3854
3855  case OO_ArrowStar:
3856    // C++ [over.built]p11:
3857    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3858    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3859    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3860    //    there exist candidate operator functions of the form
3861    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3862    //    where CV12 is the union of CV1 and CV2.
3863    {
3864      for (BuiltinCandidateTypeSet::iterator Ptr =
3865             CandidateTypes.pointer_begin();
3866           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3867        QualType C1Ty = (*Ptr);
3868        QualType C1;
3869        QualifierCollector Q1;
3870        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3871          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3872          if (!isa<RecordType>(C1))
3873            continue;
3874          // heuristic to reduce number of builtin candidates in the set.
3875          // Add volatile/restrict version only if there are conversions to a
3876          // volatile/restrict type.
3877          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3878            continue;
3879          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3880            continue;
3881        }
3882        for (BuiltinCandidateTypeSet::iterator
3883             MemPtr = CandidateTypes.member_pointer_begin(),
3884             MemPtrEnd = CandidateTypes.member_pointer_end();
3885             MemPtr != MemPtrEnd; ++MemPtr) {
3886          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3887          QualType C2 = QualType(mptr->getClass(), 0);
3888          C2 = C2.getUnqualifiedType();
3889          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3890            break;
3891          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3892          // build CV12 T&
3893          QualType T = mptr->getPointeeType();
3894          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3895              T.isVolatileQualified())
3896            continue;
3897          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3898              T.isRestrictQualified())
3899            continue;
3900          T = Q1.apply(T);
3901          QualType ResultTy = Context.getLValueReferenceType(T);
3902          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3903        }
3904      }
3905    }
3906    break;
3907
3908  case OO_Conditional:
3909    // Note that we don't consider the first argument, since it has been
3910    // contextually converted to bool long ago. The candidates below are
3911    // therefore added as binary.
3912    //
3913    // C++ [over.built]p24:
3914    //   For every type T, where T is a pointer or pointer-to-member type,
3915    //   there exist candidate operator functions of the form
3916    //
3917    //        T        operator?(bool, T, T);
3918    //
3919    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3920         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3921      QualType ParamTypes[2] = { *Ptr, *Ptr };
3922      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3923    }
3924    for (BuiltinCandidateTypeSet::iterator Ptr =
3925           CandidateTypes.member_pointer_begin(),
3926         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3927      QualType ParamTypes[2] = { *Ptr, *Ptr };
3928      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3929    }
3930    goto Conditional;
3931  }
3932}
3933
3934/// \brief Add function candidates found via argument-dependent lookup
3935/// to the set of overloading candidates.
3936///
3937/// This routine performs argument-dependent name lookup based on the
3938/// given function name (which may also be an operator name) and adds
3939/// all of the overload candidates found by ADL to the overload
3940/// candidate set (C++ [basic.lookup.argdep]).
3941void
3942Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3943                                           Expr **Args, unsigned NumArgs,
3944                                           bool HasExplicitTemplateArgs,
3945                            const TemplateArgumentLoc *ExplicitTemplateArgs,
3946                                           unsigned NumExplicitTemplateArgs,
3947                                           OverloadCandidateSet& CandidateSet,
3948                                           bool PartialOverloading) {
3949  FunctionSet Functions;
3950
3951  // FIXME: Should we be trafficking in canonical function decls throughout?
3952
3953  // Record all of the function candidates that we've already
3954  // added to the overload set, so that we don't add those same
3955  // candidates a second time.
3956  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3957                                   CandEnd = CandidateSet.end();
3958       Cand != CandEnd; ++Cand)
3959    if (Cand->Function) {
3960      Functions.insert(Cand->Function);
3961      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3962        Functions.insert(FunTmpl);
3963    }
3964
3965  // FIXME: Pass in the explicit template arguments?
3966  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
3967
3968  // Erase all of the candidates we already knew about.
3969  // FIXME: This is suboptimal. Is there a better way?
3970  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3971                                   CandEnd = CandidateSet.end();
3972       Cand != CandEnd; ++Cand)
3973    if (Cand->Function) {
3974      Functions.erase(Cand->Function);
3975      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3976        Functions.erase(FunTmpl);
3977    }
3978
3979  // For each of the ADL candidates we found, add it to the overload
3980  // set.
3981  for (FunctionSet::iterator Func = Functions.begin(),
3982                          FuncEnd = Functions.end();
3983       Func != FuncEnd; ++Func) {
3984    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3985      if (HasExplicitTemplateArgs)
3986        continue;
3987
3988      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3989                           false, false, PartialOverloading);
3990    } else
3991      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3992                                   HasExplicitTemplateArgs,
3993                                   ExplicitTemplateArgs,
3994                                   NumExplicitTemplateArgs,
3995                                   Args, NumArgs, CandidateSet);
3996  }
3997}
3998
3999/// isBetterOverloadCandidate - Determines whether the first overload
4000/// candidate is a better candidate than the second (C++ 13.3.3p1).
4001bool
4002Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4003                                const OverloadCandidate& Cand2) {
4004  // Define viable functions to be better candidates than non-viable
4005  // functions.
4006  if (!Cand2.Viable)
4007    return Cand1.Viable;
4008  else if (!Cand1.Viable)
4009    return false;
4010
4011  // C++ [over.match.best]p1:
4012  //
4013  //   -- if F is a static member function, ICS1(F) is defined such
4014  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4015  //      any function G, and, symmetrically, ICS1(G) is neither
4016  //      better nor worse than ICS1(F).
4017  unsigned StartArg = 0;
4018  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4019    StartArg = 1;
4020
4021  // C++ [over.match.best]p1:
4022  //   A viable function F1 is defined to be a better function than another
4023  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4024  //   conversion sequence than ICSi(F2), and then...
4025  unsigned NumArgs = Cand1.Conversions.size();
4026  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4027  bool HasBetterConversion = false;
4028  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4029    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4030                                               Cand2.Conversions[ArgIdx])) {
4031    case ImplicitConversionSequence::Better:
4032      // Cand1 has a better conversion sequence.
4033      HasBetterConversion = true;
4034      break;
4035
4036    case ImplicitConversionSequence::Worse:
4037      // Cand1 can't be better than Cand2.
4038      return false;
4039
4040    case ImplicitConversionSequence::Indistinguishable:
4041      // Do nothing.
4042      break;
4043    }
4044  }
4045
4046  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4047  //       ICSj(F2), or, if not that,
4048  if (HasBetterConversion)
4049    return true;
4050
4051  //     - F1 is a non-template function and F2 is a function template
4052  //       specialization, or, if not that,
4053  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4054      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4055    return true;
4056
4057  //   -- F1 and F2 are function template specializations, and the function
4058  //      template for F1 is more specialized than the template for F2
4059  //      according to the partial ordering rules described in 14.5.5.2, or,
4060  //      if not that,
4061  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4062      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4063    if (FunctionTemplateDecl *BetterTemplate
4064          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4065                                       Cand2.Function->getPrimaryTemplate(),
4066                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4067                                                             : TPOC_Call))
4068      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4069
4070  //   -- the context is an initialization by user-defined conversion
4071  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4072  //      from the return type of F1 to the destination type (i.e.,
4073  //      the type of the entity being initialized) is a better
4074  //      conversion sequence than the standard conversion sequence
4075  //      from the return type of F2 to the destination type.
4076  if (Cand1.Function && Cand2.Function &&
4077      isa<CXXConversionDecl>(Cand1.Function) &&
4078      isa<CXXConversionDecl>(Cand2.Function)) {
4079    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4080                                               Cand2.FinalConversion)) {
4081    case ImplicitConversionSequence::Better:
4082      // Cand1 has a better conversion sequence.
4083      return true;
4084
4085    case ImplicitConversionSequence::Worse:
4086      // Cand1 can't be better than Cand2.
4087      return false;
4088
4089    case ImplicitConversionSequence::Indistinguishable:
4090      // Do nothing
4091      break;
4092    }
4093  }
4094
4095  return false;
4096}
4097
4098/// \brief Computes the best viable function (C++ 13.3.3)
4099/// within an overload candidate set.
4100///
4101/// \param CandidateSet the set of candidate functions.
4102///
4103/// \param Loc the location of the function name (or operator symbol) for
4104/// which overload resolution occurs.
4105///
4106/// \param Best f overload resolution was successful or found a deleted
4107/// function, Best points to the candidate function found.
4108///
4109/// \returns The result of overload resolution.
4110Sema::OverloadingResult
4111Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4112                         SourceLocation Loc,
4113                         OverloadCandidateSet::iterator& Best) {
4114  // Find the best viable function.
4115  Best = CandidateSet.end();
4116  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4117       Cand != CandidateSet.end(); ++Cand) {
4118    if (Cand->Viable) {
4119      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4120        Best = Cand;
4121    }
4122  }
4123
4124  // If we didn't find any viable functions, abort.
4125  if (Best == CandidateSet.end())
4126    return OR_No_Viable_Function;
4127
4128  // Make sure that this function is better than every other viable
4129  // function. If not, we have an ambiguity.
4130  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4131       Cand != CandidateSet.end(); ++Cand) {
4132    if (Cand->Viable &&
4133        Cand != Best &&
4134        !isBetterOverloadCandidate(*Best, *Cand)) {
4135      Best = CandidateSet.end();
4136      return OR_Ambiguous;
4137    }
4138  }
4139
4140  // Best is the best viable function.
4141  if (Best->Function &&
4142      (Best->Function->isDeleted() ||
4143       Best->Function->getAttr<UnavailableAttr>()))
4144    return OR_Deleted;
4145
4146  // C++ [basic.def.odr]p2:
4147  //   An overloaded function is used if it is selected by overload resolution
4148  //   when referred to from a potentially-evaluated expression. [Note: this
4149  //   covers calls to named functions (5.2.2), operator overloading
4150  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4151  //   placement new (5.3.4), as well as non-default initialization (8.5).
4152  if (Best->Function)
4153    MarkDeclarationReferenced(Loc, Best->Function);
4154  return OR_Success;
4155}
4156
4157/// PrintOverloadCandidates - When overload resolution fails, prints
4158/// diagnostic messages containing the candidates in the candidate
4159/// set. If OnlyViable is true, only viable candidates will be printed.
4160void
4161Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4162                              bool OnlyViable,
4163                              const char *Opc,
4164                              SourceLocation OpLoc) {
4165  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4166                             LastCand = CandidateSet.end();
4167  bool Reported = false;
4168  for (; Cand != LastCand; ++Cand) {
4169    if (Cand->Viable || !OnlyViable) {
4170      if (Cand->Function) {
4171        if (Cand->Function->isDeleted() ||
4172            Cand->Function->getAttr<UnavailableAttr>()) {
4173          // Deleted or "unavailable" function.
4174          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4175            << Cand->Function->isDeleted();
4176        } else if (FunctionTemplateDecl *FunTmpl
4177                     = Cand->Function->getPrimaryTemplate()) {
4178          // Function template specialization
4179          // FIXME: Give a better reason!
4180          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4181            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4182                              *Cand->Function->getTemplateSpecializationArgs());
4183        } else {
4184          // Normal function
4185          bool errReported = false;
4186          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4187            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4188              const ImplicitConversionSequence &Conversion =
4189                                                        Cand->Conversions[i];
4190              if ((Conversion.ConversionKind !=
4191                   ImplicitConversionSequence::BadConversion) ||
4192                  Conversion.ConversionFunctionSet.size() == 0)
4193                continue;
4194              Diag(Cand->Function->getLocation(),
4195                   diag::err_ovl_candidate_not_viable) << (i+1);
4196              errReported = true;
4197              for (int j = Conversion.ConversionFunctionSet.size()-1;
4198                   j >= 0; j--) {
4199                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4200                Diag(Func->getLocation(), diag::err_ovl_candidate);
4201              }
4202            }
4203          }
4204          if (!errReported)
4205            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4206        }
4207      } else if (Cand->IsSurrogate) {
4208        // Desugar the type of the surrogate down to a function type,
4209        // retaining as many typedefs as possible while still showing
4210        // the function type (and, therefore, its parameter types).
4211        QualType FnType = Cand->Surrogate->getConversionType();
4212        bool isLValueReference = false;
4213        bool isRValueReference = false;
4214        bool isPointer = false;
4215        if (const LValueReferenceType *FnTypeRef =
4216              FnType->getAs<LValueReferenceType>()) {
4217          FnType = FnTypeRef->getPointeeType();
4218          isLValueReference = true;
4219        } else if (const RValueReferenceType *FnTypeRef =
4220                     FnType->getAs<RValueReferenceType>()) {
4221          FnType = FnTypeRef->getPointeeType();
4222          isRValueReference = true;
4223        }
4224        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4225          FnType = FnTypePtr->getPointeeType();
4226          isPointer = true;
4227        }
4228        // Desugar down to a function type.
4229        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4230        // Reconstruct the pointer/reference as appropriate.
4231        if (isPointer) FnType = Context.getPointerType(FnType);
4232        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4233        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4234
4235        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4236          << FnType;
4237      } else if (OnlyViable) {
4238        assert(Cand->Conversions.size() <= 2 &&
4239               "builtin-binary-operator-not-binary");
4240        std::string TypeStr("operator");
4241        TypeStr += Opc;
4242        TypeStr += "(";
4243        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4244        if (Cand->Conversions.size() == 1) {
4245          TypeStr += ")";
4246          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4247        }
4248        else {
4249          TypeStr += ", ";
4250          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4251          TypeStr += ")";
4252          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4253        }
4254      }
4255      else if (!Cand->Viable && !Reported) {
4256        // Non-viability might be due to ambiguous user-defined conversions,
4257        // needed for built-in operators. Report them as well, but only once
4258        // as we have typically many built-in candidates.
4259        unsigned NoOperands = Cand->Conversions.size();
4260        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4261          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4262          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4263              ICS.ConversionFunctionSet.empty())
4264            continue;
4265          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4266                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4267            QualType FromTy =
4268              QualType(
4269                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4270            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4271                  << FromTy << Func->getConversionType();
4272          }
4273          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4274            FunctionDecl *Func =
4275              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4276            Diag(Func->getLocation(),diag::err_ovl_candidate);
4277          }
4278        }
4279        Reported = true;
4280      }
4281    }
4282  }
4283}
4284
4285/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4286/// an overloaded function (C++ [over.over]), where @p From is an
4287/// expression with overloaded function type and @p ToType is the type
4288/// we're trying to resolve to. For example:
4289///
4290/// @code
4291/// int f(double);
4292/// int f(int);
4293///
4294/// int (*pfd)(double) = f; // selects f(double)
4295/// @endcode
4296///
4297/// This routine returns the resulting FunctionDecl if it could be
4298/// resolved, and NULL otherwise. When @p Complain is true, this
4299/// routine will emit diagnostics if there is an error.
4300FunctionDecl *
4301Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4302                                         bool Complain) {
4303  QualType FunctionType = ToType;
4304  bool IsMember = false;
4305  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4306    FunctionType = ToTypePtr->getPointeeType();
4307  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4308    FunctionType = ToTypeRef->getPointeeType();
4309  else if (const MemberPointerType *MemTypePtr =
4310                    ToType->getAs<MemberPointerType>()) {
4311    FunctionType = MemTypePtr->getPointeeType();
4312    IsMember = true;
4313  }
4314
4315  // We only look at pointers or references to functions.
4316  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4317  if (!FunctionType->isFunctionType())
4318    return 0;
4319
4320  // Find the actual overloaded function declaration.
4321
4322  // C++ [over.over]p1:
4323  //   [...] [Note: any redundant set of parentheses surrounding the
4324  //   overloaded function name is ignored (5.1). ]
4325  Expr *OvlExpr = From->IgnoreParens();
4326
4327  // C++ [over.over]p1:
4328  //   [...] The overloaded function name can be preceded by the &
4329  //   operator.
4330  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4331    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4332      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4333  }
4334
4335  bool HasExplicitTemplateArgs = false;
4336  const TemplateArgumentLoc *ExplicitTemplateArgs = 0;
4337  unsigned NumExplicitTemplateArgs = 0;
4338
4339  llvm::SmallVector<NamedDecl*,8> Fns;
4340
4341  // Try to dig out the overloaded function.
4342  OverloadedFunctionDecl *Ovl = 0;
4343  FunctionTemplateDecl *FunctionTemplate = 0;
4344  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4345    assert(!isa<OverloadedFunctionDecl>(DR->getDecl()));
4346    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4347    HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList();
4348    ExplicitTemplateArgs = DR->getTemplateArgs();
4349    NumExplicitTemplateArgs = DR->getNumTemplateArgs();
4350  } else if (UnresolvedLookupExpr *UL
4351               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4352    Fns.append(UL->decls_begin(), UL->decls_end());
4353  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4354    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4355    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4356    HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList();
4357    ExplicitTemplateArgs = ME->getTemplateArgs();
4358    NumExplicitTemplateArgs = ME->getNumTemplateArgs();
4359  } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) {
4360    TemplateName Name = TIRE->getTemplateName();
4361    Ovl = Name.getAsOverloadedFunctionDecl();
4362    FunctionTemplate =
4363      dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4364
4365    HasExplicitTemplateArgs = true;
4366    ExplicitTemplateArgs = TIRE->getTemplateArgs();
4367    NumExplicitTemplateArgs = TIRE->getNumTemplateArgs();
4368  }
4369
4370  if (Ovl) Fns.append(Ovl->function_begin(), Ovl->function_end());
4371  if (FunctionTemplate) Fns.push_back(FunctionTemplate);
4372
4373  // If we didn't actually find anything, we're done.
4374  if (Fns.empty())
4375    return 0;
4376
4377  // Look through all of the overloaded functions, searching for one
4378  // whose type matches exactly.
4379  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4380  bool FoundNonTemplateFunction = false;
4381  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4382         E = Fns.end(); I != E; ++I) {
4383    // C++ [over.over]p3:
4384    //   Non-member functions and static member functions match
4385    //   targets of type "pointer-to-function" or "reference-to-function."
4386    //   Nonstatic member functions match targets of
4387    //   type "pointer-to-member-function."
4388    // Note that according to DR 247, the containing class does not matter.
4389
4390    if (FunctionTemplateDecl *FunctionTemplate
4391          = dyn_cast<FunctionTemplateDecl>(*I)) {
4392      if (CXXMethodDecl *Method
4393            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4394        // Skip non-static function templates when converting to pointer, and
4395        // static when converting to member pointer.
4396        if (Method->isStatic() == IsMember)
4397          continue;
4398      } else if (IsMember)
4399        continue;
4400
4401      // C++ [over.over]p2:
4402      //   If the name is a function template, template argument deduction is
4403      //   done (14.8.2.2), and if the argument deduction succeeds, the
4404      //   resulting template argument list is used to generate a single
4405      //   function template specialization, which is added to the set of
4406      //   overloaded functions considered.
4407      // FIXME: We don't really want to build the specialization here, do we?
4408      FunctionDecl *Specialization = 0;
4409      TemplateDeductionInfo Info(Context);
4410      if (TemplateDeductionResult Result
4411            = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
4412                                      ExplicitTemplateArgs,
4413                                      NumExplicitTemplateArgs,
4414                                      FunctionType, Specialization, Info)) {
4415        // FIXME: make a note of the failed deduction for diagnostics.
4416        (void)Result;
4417      } else {
4418        // FIXME: If the match isn't exact, shouldn't we just drop this as
4419        // a candidate? Find a testcase before changing the code.
4420        assert(FunctionType
4421                 == Context.getCanonicalType(Specialization->getType()));
4422        Matches.insert(
4423                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4424      }
4425
4426      continue;
4427    }
4428
4429    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I)) {
4430      // Skip non-static functions when converting to pointer, and static
4431      // when converting to member pointer.
4432      if (Method->isStatic() == IsMember)
4433        continue;
4434
4435      // If we have explicit template arguments, skip non-templates.
4436      if (HasExplicitTemplateArgs)
4437        continue;
4438    } else if (IsMember)
4439      continue;
4440
4441    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*I)) {
4442      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4443        Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl()));
4444        FoundNonTemplateFunction = true;
4445      }
4446    }
4447  }
4448
4449  // If there were 0 or 1 matches, we're done.
4450  if (Matches.empty())
4451    return 0;
4452  else if (Matches.size() == 1) {
4453    FunctionDecl *Result = *Matches.begin();
4454    MarkDeclarationReferenced(From->getLocStart(), Result);
4455    return Result;
4456  }
4457
4458  // C++ [over.over]p4:
4459  //   If more than one function is selected, [...]
4460  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4461  if (!FoundNonTemplateFunction) {
4462    //   [...] and any given function template specialization F1 is
4463    //   eliminated if the set contains a second function template
4464    //   specialization whose function template is more specialized
4465    //   than the function template of F1 according to the partial
4466    //   ordering rules of 14.5.5.2.
4467
4468    // The algorithm specified above is quadratic. We instead use a
4469    // two-pass algorithm (similar to the one used to identify the
4470    // best viable function in an overload set) that identifies the
4471    // best function template (if it exists).
4472    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4473                                                         Matches.end());
4474    FunctionDecl *Result =
4475        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4476                           TPOC_Other, From->getLocStart(),
4477                           PDiag(),
4478                           PDiag(diag::err_addr_ovl_ambiguous)
4479                               << TemplateMatches[0]->getDeclName(),
4480                           PDiag(diag::err_ovl_template_candidate));
4481    MarkDeclarationReferenced(From->getLocStart(), Result);
4482    return Result;
4483  }
4484
4485  //   [...] any function template specializations in the set are
4486  //   eliminated if the set also contains a non-template function, [...]
4487  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4488  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4489    if ((*M)->getPrimaryTemplate() == 0)
4490      RemainingMatches.push_back(*M);
4491
4492  // [...] After such eliminations, if any, there shall remain exactly one
4493  // selected function.
4494  if (RemainingMatches.size() == 1) {
4495    FunctionDecl *Result = RemainingMatches.front();
4496    MarkDeclarationReferenced(From->getLocStart(), Result);
4497    return Result;
4498  }
4499
4500  // FIXME: We should probably return the same thing that BestViableFunction
4501  // returns (even if we issue the diagnostics here).
4502  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4503    << RemainingMatches[0]->getDeclName();
4504  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4505    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4506  return 0;
4507}
4508
4509/// \brief Add a single candidate to the overload set.
4510static void AddOverloadedCallCandidate(Sema &S,
4511                                       NamedDecl *Callee,
4512                                       bool &ArgumentDependentLookup,
4513                                       bool HasExplicitTemplateArgs,
4514                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4515                                       unsigned NumExplicitTemplateArgs,
4516                                       Expr **Args, unsigned NumArgs,
4517                                       OverloadCandidateSet &CandidateSet,
4518                                       bool PartialOverloading) {
4519  if (isa<UsingShadowDecl>(Callee))
4520    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
4521
4522  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4523    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4524    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4525                           PartialOverloading);
4526
4527    if (Func->getDeclContext()->isRecord() ||
4528        Func->getDeclContext()->isFunctionOrMethod())
4529      ArgumentDependentLookup = false;
4530    return;
4531  }
4532
4533  if (FunctionTemplateDecl *FuncTemplate
4534      = dyn_cast<FunctionTemplateDecl>(Callee)) {
4535    S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4536                                   ExplicitTemplateArgs,
4537                                   NumExplicitTemplateArgs,
4538                                   Args, NumArgs, CandidateSet);
4539
4540    if (FuncTemplate->getDeclContext()->isRecord())
4541      ArgumentDependentLookup = false;
4542    return;
4543  }
4544
4545  assert(false && "unhandled case in overloaded call candidate");
4546
4547  // do nothing?
4548}
4549
4550/// \brief Add the overload candidates named by callee and/or found by argument
4551/// dependent lookup to the given overload set.
4552void Sema::AddOverloadedCallCandidates(llvm::SmallVectorImpl<NamedDecl*> &Fns,
4553                                       DeclarationName &UnqualifiedName,
4554                                       bool &ArgumentDependentLookup,
4555                                       bool HasExplicitTemplateArgs,
4556                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4557                                       unsigned NumExplicitTemplateArgs,
4558                                       Expr **Args, unsigned NumArgs,
4559                                       OverloadCandidateSet &CandidateSet,
4560                                       bool PartialOverloading) {
4561
4562#ifndef NDEBUG
4563  // Verify that ArgumentDependentLookup is consistent with the rules
4564  // in C++0x [basic.lookup.argdep]p3:
4565  //
4566  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4567  //   and let Y be the lookup set produced by argument dependent
4568  //   lookup (defined as follows). If X contains
4569  //
4570  //     -- a declaration of a class member, or
4571  //
4572  //     -- a block-scope function declaration that is not a
4573  //        using-declaration, or
4574  //
4575  //     -- a declaration that is neither a function or a function
4576  //        template
4577  //
4578  //   then Y is empty.
4579
4580  if (ArgumentDependentLookup) {
4581    for (unsigned I = 0; I < Fns.size(); ++I) {
4582      assert(!Fns[I]->getDeclContext()->isRecord());
4583      assert(isa<UsingShadowDecl>(Fns[I]) ||
4584             !Fns[I]->getDeclContext()->isFunctionOrMethod());
4585      assert(Fns[I]->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
4586    }
4587  }
4588#endif
4589
4590  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4591         E = Fns.end(); I != E; ++I)
4592    AddOverloadedCallCandidate(*this, *I, ArgumentDependentLookup,
4593                               HasExplicitTemplateArgs,
4594                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4595                               Args, NumArgs, CandidateSet,
4596                               PartialOverloading);
4597
4598  if (ArgumentDependentLookup)
4599    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4600                                         HasExplicitTemplateArgs,
4601                                         ExplicitTemplateArgs,
4602                                         NumExplicitTemplateArgs,
4603                                         CandidateSet,
4604                                         PartialOverloading);
4605}
4606
4607/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4608/// (which eventually refers to the declaration Func) and the call
4609/// arguments Args/NumArgs, attempt to resolve the function call down
4610/// to a specific function. If overload resolution succeeds, returns
4611/// the function declaration produced by overload
4612/// resolution. Otherwise, emits diagnostics, deletes all of the
4613/// arguments and Fn, and returns NULL.
4614FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn,
4615                                     llvm::SmallVectorImpl<NamedDecl*> &Fns,
4616                                            DeclarationName UnqualifiedName,
4617                                            bool HasExplicitTemplateArgs,
4618                             const TemplateArgumentLoc *ExplicitTemplateArgs,
4619                                            unsigned NumExplicitTemplateArgs,
4620                                            SourceLocation LParenLoc,
4621                                            Expr **Args, unsigned NumArgs,
4622                                            SourceLocation *CommaLocs,
4623                                            SourceLocation RParenLoc,
4624                                            bool &ArgumentDependentLookup) {
4625  OverloadCandidateSet CandidateSet;
4626
4627  // Add the functions denoted by Callee to the set of candidate
4628  // functions.
4629  AddOverloadedCallCandidates(Fns, UnqualifiedName, ArgumentDependentLookup,
4630                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4631                              NumExplicitTemplateArgs, Args, NumArgs,
4632                              CandidateSet);
4633  OverloadCandidateSet::iterator Best;
4634  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4635  case OR_Success:
4636    return Best->Function;
4637
4638  case OR_No_Viable_Function:
4639    Diag(Fn->getSourceRange().getBegin(),
4640         diag::err_ovl_no_viable_function_in_call)
4641      << UnqualifiedName << Fn->getSourceRange();
4642    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4643    break;
4644
4645  case OR_Ambiguous:
4646    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4647      << UnqualifiedName << Fn->getSourceRange();
4648    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4649    break;
4650
4651  case OR_Deleted:
4652    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4653      << Best->Function->isDeleted()
4654      << UnqualifiedName
4655      << Fn->getSourceRange();
4656    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4657    break;
4658  }
4659
4660  // Overload resolution failed. Destroy all of the subexpressions and
4661  // return NULL.
4662  Fn->Destroy(Context);
4663  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4664    Args[Arg]->Destroy(Context);
4665  return 0;
4666}
4667
4668/// \brief Create a unary operation that may resolve to an overloaded
4669/// operator.
4670///
4671/// \param OpLoc The location of the operator itself (e.g., '*').
4672///
4673/// \param OpcIn The UnaryOperator::Opcode that describes this
4674/// operator.
4675///
4676/// \param Functions The set of non-member functions that will be
4677/// considered by overload resolution. The caller needs to build this
4678/// set based on the context using, e.g.,
4679/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4680/// set should not contain any member functions; those will be added
4681/// by CreateOverloadedUnaryOp().
4682///
4683/// \param input The input argument.
4684Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4685                                                     unsigned OpcIn,
4686                                                     FunctionSet &Functions,
4687                                                     ExprArg input) {
4688  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4689  Expr *Input = (Expr *)input.get();
4690
4691  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4692  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4693  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4694
4695  Expr *Args[2] = { Input, 0 };
4696  unsigned NumArgs = 1;
4697
4698  // For post-increment and post-decrement, add the implicit '0' as
4699  // the second argument, so that we know this is a post-increment or
4700  // post-decrement.
4701  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4702    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4703    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4704                                           SourceLocation());
4705    NumArgs = 2;
4706  }
4707
4708  if (Input->isTypeDependent()) {
4709    UnresolvedLookupExpr *Fn
4710      = UnresolvedLookupExpr::Create(Context, 0, SourceRange(), OpName, OpLoc,
4711                                     /*ADL*/ true);
4712    for (FunctionSet::iterator Func = Functions.begin(),
4713                            FuncEnd = Functions.end();
4714         Func != FuncEnd; ++Func)
4715      Fn->addDecl(*Func);
4716
4717    input.release();
4718    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4719                                                   &Args[0], NumArgs,
4720                                                   Context.DependentTy,
4721                                                   OpLoc));
4722  }
4723
4724  // Build an empty overload set.
4725  OverloadCandidateSet CandidateSet;
4726
4727  // Add the candidates from the given function set.
4728  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4729
4730  // Add operator candidates that are member functions.
4731  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4732
4733  // Add builtin operator candidates.
4734  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4735
4736  // Perform overload resolution.
4737  OverloadCandidateSet::iterator Best;
4738  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4739  case OR_Success: {
4740    // We found a built-in operator or an overloaded operator.
4741    FunctionDecl *FnDecl = Best->Function;
4742
4743    if (FnDecl) {
4744      // We matched an overloaded operator. Build a call to that
4745      // operator.
4746
4747      // Convert the arguments.
4748      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4749        if (PerformObjectArgumentInitialization(Input, Method))
4750          return ExprError();
4751      } else {
4752        // Convert the arguments.
4753        if (PerformCopyInitialization(Input,
4754                                      FnDecl->getParamDecl(0)->getType(),
4755                                      "passing"))
4756          return ExprError();
4757      }
4758
4759      // Determine the result type
4760      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4761
4762      // Build the actual expression node.
4763      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4764                                               SourceLocation());
4765      UsualUnaryConversions(FnExpr);
4766
4767      input.release();
4768      Args[0] = Input;
4769      ExprOwningPtr<CallExpr> TheCall(this,
4770        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4771                                          Args, NumArgs, ResultTy, OpLoc));
4772
4773      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4774                              FnDecl))
4775        return ExprError();
4776
4777      return MaybeBindToTemporary(TheCall.release());
4778    } else {
4779      // We matched a built-in operator. Convert the arguments, then
4780      // break out so that we will build the appropriate built-in
4781      // operator node.
4782        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4783                                      Best->Conversions[0], "passing"))
4784          return ExprError();
4785
4786        break;
4787      }
4788    }
4789
4790    case OR_No_Viable_Function:
4791      // No viable function; fall through to handling this as a
4792      // built-in operator, which will produce an error message for us.
4793      break;
4794
4795    case OR_Ambiguous:
4796      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4797          << UnaryOperator::getOpcodeStr(Opc)
4798          << Input->getSourceRange();
4799      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4800                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4801      return ExprError();
4802
4803    case OR_Deleted:
4804      Diag(OpLoc, diag::err_ovl_deleted_oper)
4805        << Best->Function->isDeleted()
4806        << UnaryOperator::getOpcodeStr(Opc)
4807        << Input->getSourceRange();
4808      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4809      return ExprError();
4810    }
4811
4812  // Either we found no viable overloaded operator or we matched a
4813  // built-in operator. In either case, fall through to trying to
4814  // build a built-in operation.
4815  input.release();
4816  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4817}
4818
4819/// \brief Create a binary operation that may resolve to an overloaded
4820/// operator.
4821///
4822/// \param OpLoc The location of the operator itself (e.g., '+').
4823///
4824/// \param OpcIn The BinaryOperator::Opcode that describes this
4825/// operator.
4826///
4827/// \param Functions The set of non-member functions that will be
4828/// considered by overload resolution. The caller needs to build this
4829/// set based on the context using, e.g.,
4830/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4831/// set should not contain any member functions; those will be added
4832/// by CreateOverloadedBinOp().
4833///
4834/// \param LHS Left-hand argument.
4835/// \param RHS Right-hand argument.
4836Sema::OwningExprResult
4837Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4838                            unsigned OpcIn,
4839                            FunctionSet &Functions,
4840                            Expr *LHS, Expr *RHS) {
4841  Expr *Args[2] = { LHS, RHS };
4842  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4843
4844  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4845  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4846  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4847
4848  // If either side is type-dependent, create an appropriate dependent
4849  // expression.
4850  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4851    if (Functions.empty()) {
4852      // If there are no functions to store, just build a dependent
4853      // BinaryOperator or CompoundAssignment.
4854      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
4855        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4856                                                  Context.DependentTy, OpLoc));
4857
4858      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
4859                                                        Context.DependentTy,
4860                                                        Context.DependentTy,
4861                                                        Context.DependentTy,
4862                                                        OpLoc));
4863    }
4864
4865    UnresolvedLookupExpr *Fn
4866      = UnresolvedLookupExpr::Create(Context, 0, SourceRange(), OpName, OpLoc,
4867                                     /* ADL */ true);
4868
4869    for (FunctionSet::iterator Func = Functions.begin(),
4870                            FuncEnd = Functions.end();
4871         Func != FuncEnd; ++Func)
4872      Fn->addDecl(*Func);
4873
4874    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4875                                                   Args, 2,
4876                                                   Context.DependentTy,
4877                                                   OpLoc));
4878  }
4879
4880  // If this is the .* operator, which is not overloadable, just
4881  // create a built-in binary operator.
4882  if (Opc == BinaryOperator::PtrMemD)
4883    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4884
4885  // If this is the assignment operator, we only perform overload resolution
4886  // if the left-hand side is a class or enumeration type. This is actually
4887  // a hack. The standard requires that we do overload resolution between the
4888  // various built-in candidates, but as DR507 points out, this can lead to
4889  // problems. So we do it this way, which pretty much follows what GCC does.
4890  // Note that we go the traditional code path for compound assignment forms.
4891  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
4892    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4893
4894  // Build an empty overload set.
4895  OverloadCandidateSet CandidateSet;
4896
4897  // Add the candidates from the given function set.
4898  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4899
4900  // Add operator candidates that are member functions.
4901  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4902
4903  // Add builtin operator candidates.
4904  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4905
4906  // Perform overload resolution.
4907  OverloadCandidateSet::iterator Best;
4908  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4909    case OR_Success: {
4910      // We found a built-in operator or an overloaded operator.
4911      FunctionDecl *FnDecl = Best->Function;
4912
4913      if (FnDecl) {
4914        // We matched an overloaded operator. Build a call to that
4915        // operator.
4916
4917        // Convert the arguments.
4918        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4919          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4920              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4921                                        "passing"))
4922            return ExprError();
4923        } else {
4924          // Convert the arguments.
4925          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4926                                        "passing") ||
4927              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4928                                        "passing"))
4929            return ExprError();
4930        }
4931
4932        // Determine the result type
4933        QualType ResultTy
4934          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4935        ResultTy = ResultTy.getNonReferenceType();
4936
4937        // Build the actual expression node.
4938        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4939                                                 OpLoc);
4940        UsualUnaryConversions(FnExpr);
4941
4942        ExprOwningPtr<CXXOperatorCallExpr>
4943          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4944                                                          Args, 2, ResultTy,
4945                                                          OpLoc));
4946
4947        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4948                                FnDecl))
4949          return ExprError();
4950
4951        return MaybeBindToTemporary(TheCall.release());
4952      } else {
4953        // We matched a built-in operator. Convert the arguments, then
4954        // break out so that we will build the appropriate built-in
4955        // operator node.
4956        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4957                                      Best->Conversions[0], "passing") ||
4958            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4959                                      Best->Conversions[1], "passing"))
4960          return ExprError();
4961
4962        break;
4963      }
4964    }
4965
4966    case OR_No_Viable_Function: {
4967      // C++ [over.match.oper]p9:
4968      //   If the operator is the operator , [...] and there are no
4969      //   viable functions, then the operator is assumed to be the
4970      //   built-in operator and interpreted according to clause 5.
4971      if (Opc == BinaryOperator::Comma)
4972        break;
4973
4974      // For class as left operand for assignment or compound assigment operator
4975      // do not fall through to handling in built-in, but report that no overloaded
4976      // assignment operator found
4977      OwningExprResult Result = ExprError();
4978      if (Args[0]->getType()->isRecordType() &&
4979          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4980        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4981             << BinaryOperator::getOpcodeStr(Opc)
4982             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4983      } else {
4984        // No viable function; try to create a built-in operation, which will
4985        // produce an error. Then, show the non-viable candidates.
4986        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4987      }
4988      assert(Result.isInvalid() &&
4989             "C++ binary operator overloading is missing candidates!");
4990      if (Result.isInvalid())
4991        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4992                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4993      return move(Result);
4994    }
4995
4996    case OR_Ambiguous:
4997      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4998          << BinaryOperator::getOpcodeStr(Opc)
4999          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5000      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5001                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5002      return ExprError();
5003
5004    case OR_Deleted:
5005      Diag(OpLoc, diag::err_ovl_deleted_oper)
5006        << Best->Function->isDeleted()
5007        << BinaryOperator::getOpcodeStr(Opc)
5008        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5009      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5010      return ExprError();
5011    }
5012
5013  // We matched a built-in operator; build it.
5014  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5015}
5016
5017Action::OwningExprResult
5018Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5019                                         SourceLocation RLoc,
5020                                         ExprArg Base, ExprArg Idx) {
5021  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5022                    static_cast<Expr*>(Idx.get()) };
5023  DeclarationName OpName =
5024      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5025
5026  // If either side is type-dependent, create an appropriate dependent
5027  // expression.
5028  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5029
5030    UnresolvedLookupExpr *Fn
5031      = UnresolvedLookupExpr::Create(Context, 0, SourceRange(), OpName, LLoc,
5032                                     /*ADL*/ true);
5033    // Can't add an actual overloads yet
5034
5035    Base.release();
5036    Idx.release();
5037    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5038                                                   Args, 2,
5039                                                   Context.DependentTy,
5040                                                   RLoc));
5041  }
5042
5043  // Build an empty overload set.
5044  OverloadCandidateSet CandidateSet;
5045
5046  // Subscript can only be overloaded as a member function.
5047
5048  // Add operator candidates that are member functions.
5049  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5050
5051  // Add builtin operator candidates.
5052  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5053
5054  // Perform overload resolution.
5055  OverloadCandidateSet::iterator Best;
5056  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5057    case OR_Success: {
5058      // We found a built-in operator or an overloaded operator.
5059      FunctionDecl *FnDecl = Best->Function;
5060
5061      if (FnDecl) {
5062        // We matched an overloaded operator. Build a call to that
5063        // operator.
5064
5065        // Convert the arguments.
5066        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5067        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5068            PerformCopyInitialization(Args[1],
5069                                      FnDecl->getParamDecl(0)->getType(),
5070                                      "passing"))
5071          return ExprError();
5072
5073        // Determine the result type
5074        QualType ResultTy
5075          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5076        ResultTy = ResultTy.getNonReferenceType();
5077
5078        // Build the actual expression node.
5079        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5080                                                 LLoc);
5081        UsualUnaryConversions(FnExpr);
5082
5083        Base.release();
5084        Idx.release();
5085        ExprOwningPtr<CXXOperatorCallExpr>
5086          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5087                                                          FnExpr, Args, 2,
5088                                                          ResultTy, RLoc));
5089
5090        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5091                                FnDecl))
5092          return ExprError();
5093
5094        return MaybeBindToTemporary(TheCall.release());
5095      } else {
5096        // We matched a built-in operator. Convert the arguments, then
5097        // break out so that we will build the appropriate built-in
5098        // operator node.
5099        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5100                                      Best->Conversions[0], "passing") ||
5101            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5102                                      Best->Conversions[1], "passing"))
5103          return ExprError();
5104
5105        break;
5106      }
5107    }
5108
5109    case OR_No_Viable_Function: {
5110      // No viable function; try to create a built-in operation, which will
5111      // produce an error. Then, show the non-viable candidates.
5112      OwningExprResult Result =
5113          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5114      assert(Result.isInvalid() &&
5115             "C++ subscript operator overloading is missing candidates!");
5116      if (Result.isInvalid())
5117        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5118                                "[]", LLoc);
5119      return move(Result);
5120    }
5121
5122    case OR_Ambiguous:
5123      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5124          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5125      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5126                              "[]", LLoc);
5127      return ExprError();
5128
5129    case OR_Deleted:
5130      Diag(LLoc, diag::err_ovl_deleted_oper)
5131        << Best->Function->isDeleted() << "[]"
5132        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5133      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5134      return ExprError();
5135    }
5136
5137  // We matched a built-in operator; build it.
5138  Base.release();
5139  Idx.release();
5140  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5141                                         Owned(Args[1]), RLoc);
5142}
5143
5144/// BuildCallToMemberFunction - Build a call to a member
5145/// function. MemExpr is the expression that refers to the member
5146/// function (and includes the object parameter), Args/NumArgs are the
5147/// arguments to the function call (not including the object
5148/// parameter). The caller needs to validate that the member
5149/// expression refers to a member function or an overloaded member
5150/// function.
5151Sema::ExprResult
5152Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5153                                SourceLocation LParenLoc, Expr **Args,
5154                                unsigned NumArgs, SourceLocation *CommaLocs,
5155                                SourceLocation RParenLoc) {
5156  // Dig out the member expression. This holds both the object
5157  // argument and the member function we're referring to.
5158  MemberExpr *MemExpr = 0;
5159  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5160    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5161  else
5162    MemExpr = dyn_cast<MemberExpr>(MemExprE);
5163  assert(MemExpr && "Building member call without member expression");
5164
5165  // Extract the object argument.
5166  Expr *ObjectArg = MemExpr->getBase();
5167
5168  CXXMethodDecl *Method = 0;
5169  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5170      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
5171    // Add overload candidates
5172    OverloadCandidateSet CandidateSet;
5173    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
5174
5175    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
5176         Func != FuncEnd; ++Func) {
5177      if ((Method = dyn_cast<CXXMethodDecl>(*Func))) {
5178        // If explicit template arguments were provided, we can't call a
5179        // non-template member function.
5180        if (MemExpr->hasExplicitTemplateArgumentList())
5181          continue;
5182
5183        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
5184                           /*SuppressUserConversions=*/false);
5185      } else
5186        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
5187                                   MemExpr->hasExplicitTemplateArgumentList(),
5188                                   MemExpr->getTemplateArgs(),
5189                                   MemExpr->getNumTemplateArgs(),
5190                                   ObjectArg, Args, NumArgs,
5191                                   CandidateSet,
5192                                   /*SuppressUsedConversions=*/false);
5193    }
5194
5195    OverloadCandidateSet::iterator Best;
5196    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
5197    case OR_Success:
5198      Method = cast<CXXMethodDecl>(Best->Function);
5199      break;
5200
5201    case OR_No_Viable_Function:
5202      Diag(MemExpr->getSourceRange().getBegin(),
5203           diag::err_ovl_no_viable_member_function_in_call)
5204        << DeclName << MemExprE->getSourceRange();
5205      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5206      // FIXME: Leaking incoming expressions!
5207      return true;
5208
5209    case OR_Ambiguous:
5210      Diag(MemExpr->getSourceRange().getBegin(),
5211           diag::err_ovl_ambiguous_member_call)
5212        << DeclName << MemExprE->getSourceRange();
5213      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5214      // FIXME: Leaking incoming expressions!
5215      return true;
5216
5217    case OR_Deleted:
5218      Diag(MemExpr->getSourceRange().getBegin(),
5219           diag::err_ovl_deleted_member_call)
5220        << Best->Function->isDeleted()
5221        << DeclName << MemExprE->getSourceRange();
5222      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5223      // FIXME: Leaking incoming expressions!
5224      return true;
5225    }
5226
5227    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
5228    if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5229      MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5230    else
5231      MemExpr = dyn_cast<MemberExpr>(MemExprE);
5232
5233  } else {
5234    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5235  }
5236
5237  assert(Method && "Member call to something that isn't a method?");
5238  ExprOwningPtr<CXXMemberCallExpr>
5239    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5240                                                  NumArgs,
5241                                  Method->getResultType().getNonReferenceType(),
5242                                  RParenLoc));
5243
5244  // Check for a valid return type.
5245  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5246                          TheCall.get(), Method))
5247    return true;
5248
5249  // Convert the object argument (for a non-static member function call).
5250  if (!Method->isStatic() &&
5251      PerformObjectArgumentInitialization(ObjectArg, Method))
5252    return true;
5253  MemExpr->setBase(ObjectArg);
5254
5255  // Convert the rest of the arguments
5256  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5257  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5258                              RParenLoc))
5259    return true;
5260
5261  if (CheckFunctionCall(Method, TheCall.get()))
5262    return true;
5263
5264  return MaybeBindToTemporary(TheCall.release()).release();
5265}
5266
5267/// BuildCallToObjectOfClassType - Build a call to an object of class
5268/// type (C++ [over.call.object]), which can end up invoking an
5269/// overloaded function call operator (@c operator()) or performing a
5270/// user-defined conversion on the object argument.
5271Sema::ExprResult
5272Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5273                                   SourceLocation LParenLoc,
5274                                   Expr **Args, unsigned NumArgs,
5275                                   SourceLocation *CommaLocs,
5276                                   SourceLocation RParenLoc) {
5277  assert(Object->getType()->isRecordType() && "Requires object type argument");
5278  const RecordType *Record = Object->getType()->getAs<RecordType>();
5279
5280  // C++ [over.call.object]p1:
5281  //  If the primary-expression E in the function call syntax
5282  //  evaluates to a class object of type "cv T", then the set of
5283  //  candidate functions includes at least the function call
5284  //  operators of T. The function call operators of T are obtained by
5285  //  ordinary lookup of the name operator() in the context of
5286  //  (E).operator().
5287  OverloadCandidateSet CandidateSet;
5288  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5289
5290  if (RequireCompleteType(LParenLoc, Object->getType(),
5291                          PartialDiagnostic(diag::err_incomplete_object_call)
5292                          << Object->getSourceRange()))
5293    return true;
5294
5295  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
5296  LookupQualifiedName(R, Record->getDecl());
5297  R.suppressDiagnostics();
5298
5299  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5300       Oper != OperEnd; ++Oper) {
5301    AddMethodCandidate(*Oper, Object, Args, NumArgs, CandidateSet,
5302                       /*SuppressUserConversions=*/ false);
5303  }
5304
5305  // C++ [over.call.object]p2:
5306  //   In addition, for each conversion function declared in T of the
5307  //   form
5308  //
5309  //        operator conversion-type-id () cv-qualifier;
5310  //
5311  //   where cv-qualifier is the same cv-qualification as, or a
5312  //   greater cv-qualification than, cv, and where conversion-type-id
5313  //   denotes the type "pointer to function of (P1,...,Pn) returning
5314  //   R", or the type "reference to pointer to function of
5315  //   (P1,...,Pn) returning R", or the type "reference to function
5316  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5317  //   is also considered as a candidate function. Similarly,
5318  //   surrogate call functions are added to the set of candidate
5319  //   functions for each conversion function declared in an
5320  //   accessible base class provided the function is not hidden
5321  //   within T by another intervening declaration.
5322  // FIXME: Look in base classes for more conversion operators!
5323  const UnresolvedSet *Conversions
5324    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5325  for (UnresolvedSet::iterator I = Conversions->begin(),
5326         E = Conversions->end(); I != E; ++I) {
5327    // Skip over templated conversion functions; they aren't
5328    // surrogates.
5329    if (isa<FunctionTemplateDecl>(*I))
5330      continue;
5331
5332    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
5333
5334    // Strip the reference type (if any) and then the pointer type (if
5335    // any) to get down to what might be a function type.
5336    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5337    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5338      ConvType = ConvPtrType->getPointeeType();
5339
5340    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5341      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5342  }
5343
5344  // Perform overload resolution.
5345  OverloadCandidateSet::iterator Best;
5346  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5347  case OR_Success:
5348    // Overload resolution succeeded; we'll build the appropriate call
5349    // below.
5350    break;
5351
5352  case OR_No_Viable_Function:
5353    Diag(Object->getSourceRange().getBegin(),
5354         diag::err_ovl_no_viable_object_call)
5355      << Object->getType() << Object->getSourceRange();
5356    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5357    break;
5358
5359  case OR_Ambiguous:
5360    Diag(Object->getSourceRange().getBegin(),
5361         diag::err_ovl_ambiguous_object_call)
5362      << Object->getType() << Object->getSourceRange();
5363    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5364    break;
5365
5366  case OR_Deleted:
5367    Diag(Object->getSourceRange().getBegin(),
5368         diag::err_ovl_deleted_object_call)
5369      << Best->Function->isDeleted()
5370      << Object->getType() << Object->getSourceRange();
5371    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5372    break;
5373  }
5374
5375  if (Best == CandidateSet.end()) {
5376    // We had an error; delete all of the subexpressions and return
5377    // the error.
5378    Object->Destroy(Context);
5379    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5380      Args[ArgIdx]->Destroy(Context);
5381    return true;
5382  }
5383
5384  if (Best->Function == 0) {
5385    // Since there is no function declaration, this is one of the
5386    // surrogate candidates. Dig out the conversion function.
5387    CXXConversionDecl *Conv
5388      = cast<CXXConversionDecl>(
5389                         Best->Conversions[0].UserDefined.ConversionFunction);
5390
5391    // We selected one of the surrogate functions that converts the
5392    // object parameter to a function pointer. Perform the conversion
5393    // on the object argument, then let ActOnCallExpr finish the job.
5394
5395    // Create an implicit member expr to refer to the conversion operator.
5396    // and then call it.
5397    CXXMemberCallExpr *CE =
5398    BuildCXXMemberCallExpr(Object, Conv);
5399
5400    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5401                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5402                         CommaLocs, RParenLoc).release();
5403  }
5404
5405  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5406  // that calls this method, using Object for the implicit object
5407  // parameter and passing along the remaining arguments.
5408  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5409  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5410
5411  unsigned NumArgsInProto = Proto->getNumArgs();
5412  unsigned NumArgsToCheck = NumArgs;
5413
5414  // Build the full argument list for the method call (the
5415  // implicit object parameter is placed at the beginning of the
5416  // list).
5417  Expr **MethodArgs;
5418  if (NumArgs < NumArgsInProto) {
5419    NumArgsToCheck = NumArgsInProto;
5420    MethodArgs = new Expr*[NumArgsInProto + 1];
5421  } else {
5422    MethodArgs = new Expr*[NumArgs + 1];
5423  }
5424  MethodArgs[0] = Object;
5425  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5426    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5427
5428  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5429                                          SourceLocation());
5430  UsualUnaryConversions(NewFn);
5431
5432  // Once we've built TheCall, all of the expressions are properly
5433  // owned.
5434  QualType ResultTy = Method->getResultType().getNonReferenceType();
5435  ExprOwningPtr<CXXOperatorCallExpr>
5436    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5437                                                    MethodArgs, NumArgs + 1,
5438                                                    ResultTy, RParenLoc));
5439  delete [] MethodArgs;
5440
5441  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5442                          Method))
5443    return true;
5444
5445  // We may have default arguments. If so, we need to allocate more
5446  // slots in the call for them.
5447  if (NumArgs < NumArgsInProto)
5448    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5449  else if (NumArgs > NumArgsInProto)
5450    NumArgsToCheck = NumArgsInProto;
5451
5452  bool IsError = false;
5453
5454  // Initialize the implicit object parameter.
5455  IsError |= PerformObjectArgumentInitialization(Object, Method);
5456  TheCall->setArg(0, Object);
5457
5458
5459  // Check the argument types.
5460  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5461    Expr *Arg;
5462    if (i < NumArgs) {
5463      Arg = Args[i];
5464
5465      // Pass the argument.
5466      QualType ProtoArgType = Proto->getArgType(i);
5467      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5468    } else {
5469      OwningExprResult DefArg
5470        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
5471      if (DefArg.isInvalid()) {
5472        IsError = true;
5473        break;
5474      }
5475
5476      Arg = DefArg.takeAs<Expr>();
5477    }
5478
5479    TheCall->setArg(i + 1, Arg);
5480  }
5481
5482  // If this is a variadic call, handle args passed through "...".
5483  if (Proto->isVariadic()) {
5484    // Promote the arguments (C99 6.5.2.2p7).
5485    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5486      Expr *Arg = Args[i];
5487      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5488      TheCall->setArg(i + 1, Arg);
5489    }
5490  }
5491
5492  if (IsError) return true;
5493
5494  if (CheckFunctionCall(Method, TheCall.get()))
5495    return true;
5496
5497  return MaybeBindToTemporary(TheCall.release()).release();
5498}
5499
5500/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5501///  (if one exists), where @c Base is an expression of class type and
5502/// @c Member is the name of the member we're trying to find.
5503Sema::OwningExprResult
5504Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5505  Expr *Base = static_cast<Expr *>(BaseIn.get());
5506  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5507
5508  // C++ [over.ref]p1:
5509  //
5510  //   [...] An expression x->m is interpreted as (x.operator->())->m
5511  //   for a class object x of type T if T::operator->() exists and if
5512  //   the operator is selected as the best match function by the
5513  //   overload resolution mechanism (13.3).
5514  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5515  OverloadCandidateSet CandidateSet;
5516  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5517
5518  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
5519                          PDiag(diag::err_typecheck_incomplete_tag)
5520                            << Base->getSourceRange()))
5521    return ExprError();
5522
5523  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
5524  LookupQualifiedName(R, BaseRecord->getDecl());
5525  R.suppressDiagnostics();
5526
5527  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5528       Oper != OperEnd; ++Oper)
5529    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5530                       /*SuppressUserConversions=*/false);
5531
5532  // Perform overload resolution.
5533  OverloadCandidateSet::iterator Best;
5534  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5535  case OR_Success:
5536    // Overload resolution succeeded; we'll build the call below.
5537    break;
5538
5539  case OR_No_Viable_Function:
5540    if (CandidateSet.empty())
5541      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5542        << Base->getType() << Base->getSourceRange();
5543    else
5544      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5545        << "operator->" << Base->getSourceRange();
5546    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5547    return ExprError();
5548
5549  case OR_Ambiguous:
5550    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5551      << "->" << Base->getSourceRange();
5552    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5553    return ExprError();
5554
5555  case OR_Deleted:
5556    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5557      << Best->Function->isDeleted()
5558      << "->" << Base->getSourceRange();
5559    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5560    return ExprError();
5561  }
5562
5563  // Convert the object parameter.
5564  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5565  if (PerformObjectArgumentInitialization(Base, Method))
5566    return ExprError();
5567
5568  // No concerns about early exits now.
5569  BaseIn.release();
5570
5571  // Build the operator call.
5572  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5573                                           SourceLocation());
5574  UsualUnaryConversions(FnExpr);
5575
5576  QualType ResultTy = Method->getResultType().getNonReferenceType();
5577  ExprOwningPtr<CXXOperatorCallExpr>
5578    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5579                                                    &Base, 1, ResultTy, OpLoc));
5580
5581  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5582                          Method))
5583          return ExprError();
5584  return move(TheCall);
5585}
5586
5587/// FixOverloadedFunctionReference - E is an expression that refers to
5588/// a C++ overloaded function (possibly with some parentheses and
5589/// perhaps a '&' around it). We have resolved the overloaded function
5590/// to the function declaration Fn, so patch up the expression E to
5591/// refer (possibly indirectly) to Fn. Returns the new expr.
5592Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5593  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5594    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5595    if (SubExpr == PE->getSubExpr())
5596      return PE->Retain();
5597
5598    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
5599  }
5600
5601  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5602    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5603    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5604                               SubExpr->getType()) &&
5605           "Implicit cast type cannot be determined from overload");
5606    if (SubExpr == ICE->getSubExpr())
5607      return ICE->Retain();
5608
5609    return new (Context) ImplicitCastExpr(ICE->getType(),
5610                                          ICE->getCastKind(),
5611                                          SubExpr,
5612                                          ICE->isLvalueCast());
5613  }
5614
5615  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5616    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5617           "Can only take the address of an overloaded function");
5618    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5619      if (Method->isStatic()) {
5620        // Do nothing: static member functions aren't any different
5621        // from non-member functions.
5622      } else {
5623        // Fix the sub expression, which really has to be one of:
5624        //   * a DeclRefExpr holding a member function template
5625        //   * a TemplateIdRefExpr, also holding a member function template
5626        //   * an UnresolvedLookupExpr holding an overloaded member function
5627        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5628        if (SubExpr == UnOp->getSubExpr())
5629          return UnOp->Retain();
5630
5631        assert(isa<DeclRefExpr>(SubExpr)
5632               && "fixed to something other than a decl ref");
5633        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
5634               && "fixed to a member ref with no nested name qualifier");
5635
5636        // We have taken the address of a pointer to member
5637        // function. Perform the computation here so that we get the
5638        // appropriate pointer to member type.
5639        QualType ClassType
5640          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5641        QualType MemPtrType
5642          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
5643
5644        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5645                                           MemPtrType, UnOp->getOperatorLoc());
5646      }
5647
5648      // FIXME: TemplateIdRefExpr referring to a member function template
5649      // specialization!
5650    }
5651    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5652    if (SubExpr == UnOp->getSubExpr())
5653      return UnOp->Retain();
5654
5655    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5656                                     Context.getPointerType(SubExpr->getType()),
5657                                       UnOp->getOperatorLoc());
5658  }
5659
5660  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5661    assert((isa<FunctionTemplateDecl>(DRE->getDecl()) ||
5662            isa<FunctionDecl>(DRE->getDecl())) &&
5663           "Expected function or function template");
5664    return DeclRefExpr::Create(Context,
5665                               DRE->getQualifier(),
5666                               DRE->getQualifierRange(),
5667                               Fn,
5668                               DRE->getLocation(),
5669                               DRE->hasExplicitTemplateArgumentList(),
5670                               DRE->getLAngleLoc(),
5671                               DRE->getTemplateArgs(),
5672                               DRE->getNumTemplateArgs(),
5673                               DRE->getRAngleLoc(),
5674                               Fn->getType(),
5675                               DRE->isTypeDependent(),
5676                               DRE->isValueDependent());
5677  }
5678
5679  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
5680    return DeclRefExpr::Create(Context,
5681                               ULE->getQualifier(),
5682                               ULE->getQualifierRange(),
5683                               Fn,
5684                               ULE->getNameLoc(),
5685                               Fn->getType(),
5686                               Fn->getType()->isDependentType(),
5687                               false);
5688  }
5689
5690
5691  if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5692    assert((isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5693            isa<FunctionTemplateDecl>(MemExpr->getMemberDecl()) ||
5694            isa<FunctionDecl>(MemExpr->getMemberDecl())) &&
5695           "Expected member function or member function template");
5696    return MemberExpr::Create(Context, MemExpr->getBase()->Retain(),
5697                              MemExpr->isArrow(),
5698                              MemExpr->getQualifier(),
5699                              MemExpr->getQualifierRange(),
5700                              Fn,
5701                              MemExpr->getMemberLoc(),
5702                              MemExpr->hasExplicitTemplateArgumentList(),
5703                              MemExpr->getLAngleLoc(),
5704                              MemExpr->getTemplateArgs(),
5705                              MemExpr->getNumTemplateArgs(),
5706                              MemExpr->getRAngleLoc(),
5707                              Fn->getType());
5708  }
5709
5710  if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) {
5711    // FIXME: Don't destroy TID here, since we need its template arguments
5712    // to survive.
5713    // TID->Destroy(Context);
5714    return DeclRefExpr::Create(Context,
5715                               TID->getQualifier(), TID->getQualifierRange(),
5716                               Fn, TID->getTemplateNameLoc(),
5717                               true,
5718                               TID->getLAngleLoc(),
5719                               TID->getTemplateArgs(),
5720                               TID->getNumTemplateArgs(),
5721                               TID->getRAngleLoc(),
5722                               Fn->getType(),
5723                               /*FIXME?*/false, /*FIXME?*/false);
5724  }
5725
5726  assert(false && "Invalid reference to overloaded function");
5727  return E->Retain();
5728}
5729
5730} // end namespace clang
5731