SemaOverload.cpp revision bb461503b115af248f3b13735d6936e0a436fdf0
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Expr.h"
19#include "llvm/Support/Compiler.h"
20#include <algorithm>
21
22namespace clang {
23
24/// GetConversionCategory - Retrieve the implicit conversion
25/// category corresponding to the given implicit conversion kind.
26ImplicitConversionCategory
27GetConversionCategory(ImplicitConversionKind Kind) {
28  static const ImplicitConversionCategory
29    Category[(int)ICK_Num_Conversion_Kinds] = {
30    ICC_Identity,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Lvalue_Transformation,
34    ICC_Qualification_Adjustment,
35    ICC_Promotion,
36    ICC_Promotion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion,
42    ICC_Conversion
43  };
44  return Category[(int)Kind];
45}
46
47/// GetConversionRank - Retrieve the implicit conversion rank
48/// corresponding to the given implicit conversion kind.
49ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
50  static const ImplicitConversionRank
51    Rank[(int)ICK_Num_Conversion_Kinds] = {
52    ICR_Exact_Match,
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Exact_Match,
57    ICR_Promotion,
58    ICR_Promotion,
59    ICR_Conversion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion,
64    ICR_Conversion
65  };
66  return Rank[(int)Kind];
67}
68
69/// GetImplicitConversionName - Return the name of this kind of
70/// implicit conversion.
71const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
72  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
73    "No conversion",
74    "Lvalue-to-rvalue",
75    "Array-to-pointer",
76    "Function-to-pointer",
77    "Qualification",
78    "Integral promotion",
79    "Floating point promotion",
80    "Integral conversion",
81    "Floating conversion",
82    "Floating-integral conversion",
83    "Pointer conversion",
84    "Pointer-to-member conversion",
85    "Boolean conversion"
86  };
87  return Name[Kind];
88}
89
90/// getRank - Retrieve the rank of this standard conversion sequence
91/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
92/// implicit conversions.
93ImplicitConversionRank StandardConversionSequence::getRank() const {
94  ImplicitConversionRank Rank = ICR_Exact_Match;
95  if  (GetConversionRank(First) > Rank)
96    Rank = GetConversionRank(First);
97  if  (GetConversionRank(Second) > Rank)
98    Rank = GetConversionRank(Second);
99  if  (GetConversionRank(Third) > Rank)
100    Rank = GetConversionRank(Third);
101  return Rank;
102}
103
104/// isPointerConversionToBool - Determines whether this conversion is
105/// a conversion of a pointer or pointer-to-member to bool. This is
106/// used as part of the ranking of standard conversion sequences
107/// (C++ 13.3.3.2p4).
108bool StandardConversionSequence::isPointerConversionToBool() const
109{
110  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
111  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
112
113  // Note that FromType has not necessarily been transformed by the
114  // array-to-pointer or function-to-pointer implicit conversions, so
115  // check for their presence as well as checking whether FromType is
116  // a pointer.
117  if (ToType->isBooleanType() &&
118      (FromType->isPointerType() ||
119       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
120    return true;
121
122  return false;
123}
124
125/// isPointerConversionToVoidPointer - Determines whether this
126/// conversion is a conversion of a pointer to a void pointer. This is
127/// used as part of the ranking of standard conversion sequences (C++
128/// 13.3.3.2p4).
129bool
130StandardConversionSequence::
131isPointerConversionToVoidPointer(ASTContext& Context) const
132{
133  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
134  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
135
136  // Note that FromType has not necessarily been transformed by the
137  // array-to-pointer implicit conversion, so check for its presence
138  // and redo the conversion to get a pointer.
139  if (First == ICK_Array_To_Pointer)
140    FromType = Context.getArrayDecayedType(FromType);
141
142  if (Second == ICK_Pointer_Conversion)
143    if (const PointerType* ToPtrType = ToType->getAsPointerType())
144      return ToPtrType->getPointeeType()->isVoidType();
145
146  return false;
147}
148
149/// DebugPrint - Print this standard conversion sequence to standard
150/// error. Useful for debugging overloading issues.
151void StandardConversionSequence::DebugPrint() const {
152  bool PrintedSomething = false;
153  if (First != ICK_Identity) {
154    fprintf(stderr, "%s", GetImplicitConversionName(First));
155    PrintedSomething = true;
156  }
157
158  if (Second != ICK_Identity) {
159    if (PrintedSomething) {
160      fprintf(stderr, " -> ");
161    }
162    fprintf(stderr, "%s", GetImplicitConversionName(Second));
163    PrintedSomething = true;
164  }
165
166  if (Third != ICK_Identity) {
167    if (PrintedSomething) {
168      fprintf(stderr, " -> ");
169    }
170    fprintf(stderr, "%s", GetImplicitConversionName(Third));
171    PrintedSomething = true;
172  }
173
174  if (!PrintedSomething) {
175    fprintf(stderr, "No conversions required");
176  }
177}
178
179/// DebugPrint - Print this user-defined conversion sequence to standard
180/// error. Useful for debugging overloading issues.
181void UserDefinedConversionSequence::DebugPrint() const {
182  if (Before.First || Before.Second || Before.Third) {
183    Before.DebugPrint();
184    fprintf(stderr, " -> ");
185  }
186  fprintf(stderr, "'%s'", ConversionFunction->getName());
187  if (After.First || After.Second || After.Third) {
188    fprintf(stderr, " -> ");
189    After.DebugPrint();
190  }
191}
192
193/// DebugPrint - Print this implicit conversion sequence to standard
194/// error. Useful for debugging overloading issues.
195void ImplicitConversionSequence::DebugPrint() const {
196  switch (ConversionKind) {
197  case StandardConversion:
198    fprintf(stderr, "Standard conversion: ");
199    Standard.DebugPrint();
200    break;
201  case UserDefinedConversion:
202    fprintf(stderr, "User-defined conversion: ");
203    UserDefined.DebugPrint();
204    break;
205  case EllipsisConversion:
206    fprintf(stderr, "Ellipsis conversion");
207    break;
208  case BadConversion:
209    fprintf(stderr, "Bad conversion");
210    break;
211  }
212
213  fprintf(stderr, "\n");
214}
215
216// IsOverload - Determine whether the given New declaration is an
217// overload of the Old declaration. This routine returns false if New
218// and Old cannot be overloaded, e.g., if they are functions with the
219// same signature (C++ 1.3.10) or if the Old declaration isn't a
220// function (or overload set). When it does return false and Old is an
221// OverloadedFunctionDecl, MatchedDecl will be set to point to the
222// FunctionDecl that New cannot be overloaded with.
223//
224// Example: Given the following input:
225//
226//   void f(int, float); // #1
227//   void f(int, int); // #2
228//   int f(int, int); // #3
229//
230// When we process #1, there is no previous declaration of "f",
231// so IsOverload will not be used.
232//
233// When we process #2, Old is a FunctionDecl for #1.  By comparing the
234// parameter types, we see that #1 and #2 are overloaded (since they
235// have different signatures), so this routine returns false;
236// MatchedDecl is unchanged.
237//
238// When we process #3, Old is an OverloadedFunctionDecl containing #1
239// and #2. We compare the signatures of #3 to #1 (they're overloaded,
240// so we do nothing) and then #3 to #2. Since the signatures of #3 and
241// #2 are identical (return types of functions are not part of the
242// signature), IsOverload returns false and MatchedDecl will be set to
243// point to the FunctionDecl for #2.
244bool
245Sema::IsOverload(FunctionDecl *New, Decl* OldD,
246                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
247{
248  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
249    // Is this new function an overload of every function in the
250    // overload set?
251    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
252                                           FuncEnd = Ovl->function_end();
253    for (; Func != FuncEnd; ++Func) {
254      if (!IsOverload(New, *Func, MatchedDecl)) {
255        MatchedDecl = Func;
256        return false;
257      }
258    }
259
260    // This function overloads every function in the overload set.
261    return true;
262  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
263    // Is the function New an overload of the function Old?
264    QualType OldQType = Context.getCanonicalType(Old->getType());
265    QualType NewQType = Context.getCanonicalType(New->getType());
266
267    // Compare the signatures (C++ 1.3.10) of the two functions to
268    // determine whether they are overloads. If we find any mismatch
269    // in the signature, they are overloads.
270
271    // If either of these functions is a K&R-style function (no
272    // prototype), then we consider them to have matching signatures.
273    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
274        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
275      return false;
276
277    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
278    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
279
280    // The signature of a function includes the types of its
281    // parameters (C++ 1.3.10), which includes the presence or absence
282    // of the ellipsis; see C++ DR 357).
283    if (OldQType != NewQType &&
284        (OldType->getNumArgs() != NewType->getNumArgs() ||
285         OldType->isVariadic() != NewType->isVariadic() ||
286         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
287                     NewType->arg_type_begin())))
288      return true;
289
290    // If the function is a class member, its signature includes the
291    // cv-qualifiers (if any) on the function itself.
292    //
293    // As part of this, also check whether one of the member functions
294    // is static, in which case they are not overloads (C++
295    // 13.1p2). While not part of the definition of the signature,
296    // this check is important to determine whether these functions
297    // can be overloaded.
298    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
299    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
300    if (OldMethod && NewMethod &&
301        !OldMethod->isStatic() && !NewMethod->isStatic() &&
302        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
303      return true;
304
305    // The signatures match; this is not an overload.
306    return false;
307  } else {
308    // (C++ 13p1):
309    //   Only function declarations can be overloaded; object and type
310    //   declarations cannot be overloaded.
311    return false;
312  }
313}
314
315/// TryCopyInitialization - Attempt to copy-initialize a value of the
316/// given type (ToType) from the given expression (Expr), as one would
317/// do when copy-initializing a function parameter. This function
318/// returns an implicit conversion sequence that can be used to
319/// perform the initialization. Given
320///
321///   void f(float f);
322///   void g(int i) { f(i); }
323///
324/// this routine would produce an implicit conversion sequence to
325/// describe the initialization of f from i, which will be a standard
326/// conversion sequence containing an lvalue-to-rvalue conversion (C++
327/// 4.1) followed by a floating-integral conversion (C++ 4.9).
328//
329/// Note that this routine only determines how the conversion can be
330/// performed; it does not actually perform the conversion. As such,
331/// it will not produce any diagnostics if no conversion is available,
332/// but will instead return an implicit conversion sequence of kind
333/// "BadConversion".
334ImplicitConversionSequence
335Sema::TryCopyInitialization(Expr* From, QualType ToType)
336{
337  ImplicitConversionSequence ICS;
338
339  QualType FromType = From->getType();
340
341  // Standard conversions (C++ 4)
342  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
343  ICS.Standard.Deprecated = false;
344  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
345
346  if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType()) {
347    // FIXME: This is a hack to deal with the initialization of
348    // references the way that the C-centric code elsewhere deals with
349    // references, by only allowing them if the referred-to type is
350    // exactly the same. This means that we're only handling the
351    // direct-binding case. The code will be replaced by an
352    // implementation of C++ 13.3.3.1.4 once we have the
353    // initialization of references implemented.
354    QualType ToPointee = Context.getCanonicalType(ToTypeRef->getPointeeType());
355
356    // Get down to the canonical type that we're converting from.
357    if (const ReferenceType *FromTypeRef = FromType->getAsReferenceType())
358      FromType = FromTypeRef->getPointeeType();
359    FromType = Context.getCanonicalType(FromType);
360
361    ICS.Standard.First = ICK_Identity;
362    ICS.Standard.Second = ICK_Identity;
363    ICS.Standard.Third = ICK_Identity;
364    ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
365
366    if (FromType != ToPointee)
367      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
368
369    return ICS;
370  }
371
372  // The first conversion can be an lvalue-to-rvalue conversion,
373  // array-to-pointer conversion, or function-to-pointer conversion
374  // (C++ 4p1).
375
376  // Lvalue-to-rvalue conversion (C++ 4.1):
377  //   An lvalue (3.10) of a non-function, non-array type T can be
378  //   converted to an rvalue.
379  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
380  if (argIsLvalue == Expr::LV_Valid &&
381      !FromType->isFunctionType() && !FromType->isArrayType()) {
382    ICS.Standard.First = ICK_Lvalue_To_Rvalue;
383
384    // If T is a non-class type, the type of the rvalue is the
385    // cv-unqualified version of T. Otherwise, the type of the rvalue
386    // is T (C++ 4.1p1).
387    if (!FromType->isRecordType())
388      FromType = FromType.getUnqualifiedType();
389  }
390  // Array-to-pointer conversion (C++ 4.2)
391  else if (FromType->isArrayType()) {
392    ICS.Standard.First = ICK_Array_To_Pointer;
393
394    // An lvalue or rvalue of type "array of N T" or "array of unknown
395    // bound of T" can be converted to an rvalue of type "pointer to
396    // T" (C++ 4.2p1).
397    FromType = Context.getArrayDecayedType(FromType);
398
399    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
400      // This conversion is deprecated. (C++ D.4).
401      ICS.Standard.Deprecated = true;
402
403      // For the purpose of ranking in overload resolution
404      // (13.3.3.1.1), this conversion is considered an
405      // array-to-pointer conversion followed by a qualification
406      // conversion (4.4). (C++ 4.2p2)
407      ICS.Standard.Second = ICK_Identity;
408      ICS.Standard.Third = ICK_Qualification;
409      ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
410      return ICS;
411    }
412  }
413  // Function-to-pointer conversion (C++ 4.3).
414  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
415    ICS.Standard.First = ICK_Function_To_Pointer;
416
417    // An lvalue of function type T can be converted to an rvalue of
418    // type "pointer to T." The result is a pointer to the
419    // function. (C++ 4.3p1).
420    FromType = Context.getPointerType(FromType);
421
422    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
423  }
424  // We don't require any conversions for the first step.
425  else {
426    ICS.Standard.First = ICK_Identity;
427  }
428
429  // The second conversion can be an integral promotion, floating
430  // point promotion, integral conversion, floating point conversion,
431  // floating-integral conversion, pointer conversion,
432  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
433  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
434      Context.getCanonicalType(ToType).getUnqualifiedType()) {
435    // The unqualified versions of the types are the same: there's no
436    // conversion to do.
437    ICS.Standard.Second = ICK_Identity;
438  }
439  // Integral promotion (C++ 4.5).
440  else if (IsIntegralPromotion(From, FromType, ToType)) {
441    ICS.Standard.Second = ICK_Integral_Promotion;
442    FromType = ToType.getUnqualifiedType();
443  }
444  // Floating point promotion (C++ 4.6).
445  else if (IsFloatingPointPromotion(FromType, ToType)) {
446    ICS.Standard.Second = ICK_Floating_Promotion;
447    FromType = ToType.getUnqualifiedType();
448  }
449  // Integral conversions (C++ 4.7).
450  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
451           (ToType->isIntegralType() || ToType->isEnumeralType())) {
452    ICS.Standard.Second = ICK_Integral_Conversion;
453    FromType = ToType.getUnqualifiedType();
454  }
455  // Floating point conversions (C++ 4.8).
456  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
457    ICS.Standard.Second = ICK_Floating_Conversion;
458    FromType = ToType.getUnqualifiedType();
459  }
460  // Floating-integral conversions (C++ 4.9).
461  else if ((FromType->isFloatingType() &&
462            ToType->isIntegralType() && !ToType->isBooleanType()) ||
463           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
464            ToType->isFloatingType())) {
465    ICS.Standard.Second = ICK_Floating_Integral;
466    FromType = ToType.getUnqualifiedType();
467  }
468  // Pointer conversions (C++ 4.10).
469  else if (IsPointerConversion(From, FromType, ToType, FromType))
470    ICS.Standard.Second = ICK_Pointer_Conversion;
471  // FIXME: Pointer to member conversions (4.11).
472  // Boolean conversions (C++ 4.12).
473  // FIXME: pointer-to-member type
474  else if (ToType->isBooleanType() &&
475           (FromType->isArithmeticType() ||
476            FromType->isEnumeralType() ||
477            FromType->isPointerType())) {
478    ICS.Standard.Second = ICK_Boolean_Conversion;
479    FromType = Context.BoolTy;
480  } else {
481    // No second conversion required.
482    ICS.Standard.Second = ICK_Identity;
483  }
484
485  // The third conversion can be a qualification conversion (C++ 4p1).
486  if (IsQualificationConversion(FromType, ToType)) {
487    ICS.Standard.Third = ICK_Qualification;
488    FromType = ToType;
489  } else {
490    // No conversion required
491    ICS.Standard.Third = ICK_Identity;
492  }
493
494  // If we have not converted the argument type to the parameter type,
495  // this is a bad conversion sequence.
496  if (Context.getCanonicalType(FromType) != Context.getCanonicalType(ToType))
497    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
498
499  ICS.Standard.ToTypePtr = FromType.getAsOpaquePtr();
500  return ICS;
501}
502
503/// IsIntegralPromotion - Determines whether the conversion from the
504/// expression From (whose potentially-adjusted type is FromType) to
505/// ToType is an integral promotion (C++ 4.5). If so, returns true and
506/// sets PromotedType to the promoted type.
507bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
508{
509  const BuiltinType *To = ToType->getAsBuiltinType();
510
511  // An rvalue of type char, signed char, unsigned char, short int, or
512  // unsigned short int can be converted to an rvalue of type int if
513  // int can represent all the values of the source type; otherwise,
514  // the source rvalue can be converted to an rvalue of type unsigned
515  // int (C++ 4.5p1).
516  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && To) {
517    if (// We can promote any signed, promotable integer type to an int
518        (FromType->isSignedIntegerType() ||
519         // We can promote any unsigned integer type whose size is
520         // less than int to an int.
521         (!FromType->isSignedIntegerType() &&
522          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))))
523      return To->getKind() == BuiltinType::Int;
524
525    return To->getKind() == BuiltinType::UInt;
526  }
527
528  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
529  // can be converted to an rvalue of the first of the following types
530  // that can represent all the values of its underlying type: int,
531  // unsigned int, long, or unsigned long (C++ 4.5p2).
532  if ((FromType->isEnumeralType() || FromType->isWideCharType())
533      && ToType->isIntegerType()) {
534    // Determine whether the type we're converting from is signed or
535    // unsigned.
536    bool FromIsSigned;
537    uint64_t FromSize = Context.getTypeSize(FromType);
538    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
539      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
540      FromIsSigned = UnderlyingType->isSignedIntegerType();
541    } else {
542      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
543      FromIsSigned = true;
544    }
545
546    // The types we'll try to promote to, in the appropriate
547    // order. Try each of these types.
548    QualType PromoteTypes[4] = {
549      Context.IntTy, Context.UnsignedIntTy,
550      Context.LongTy, Context.UnsignedLongTy
551    };
552    for (int Idx = 0; Idx < 0; ++Idx) {
553      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
554      if (FromSize < ToSize ||
555          (FromSize == ToSize &&
556           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
557        // We found the type that we can promote to. If this is the
558        // type we wanted, we have a promotion. Otherwise, no
559        // promotion.
560        return Context.getCanonicalType(FromType).getUnqualifiedType()
561          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
562      }
563    }
564  }
565
566  // An rvalue for an integral bit-field (9.6) can be converted to an
567  // rvalue of type int if int can represent all the values of the
568  // bit-field; otherwise, it can be converted to unsigned int if
569  // unsigned int can represent all the values of the bit-field. If
570  // the bit-field is larger yet, no integral promotion applies to
571  // it. If the bit-field has an enumerated type, it is treated as any
572  // other value of that type for promotion purposes (C++ 4.5p3).
573  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
574    using llvm::APSInt;
575    FieldDecl *MemberDecl = MemRef->getMemberDecl();
576    APSInt BitWidth;
577    if (MemberDecl->isBitField() &&
578        FromType->isIntegralType() && !FromType->isEnumeralType() &&
579        From->isIntegerConstantExpr(BitWidth, Context)) {
580      APSInt ToSize(Context.getTypeSize(ToType));
581
582      // Are we promoting to an int from a bitfield that fits in an int?
583      if (BitWidth < ToSize ||
584          (FromType->isSignedIntegerType() && BitWidth <= ToSize))
585        return To->getKind() == BuiltinType::Int;
586
587      // Are we promoting to an unsigned int from an unsigned bitfield
588      // that fits into an unsigned int?
589      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize)
590        return To->getKind() == BuiltinType::UInt;
591
592      return false;
593    }
594  }
595
596  // An rvalue of type bool can be converted to an rvalue of type int,
597  // with false becoming zero and true becoming one (C++ 4.5p4).
598  if (FromType->isBooleanType() && To && To->getKind() == BuiltinType::Int)
599    return true;
600
601  return false;
602}
603
604/// IsFloatingPointPromotion - Determines whether the conversion from
605/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
606/// returns true and sets PromotedType to the promoted type.
607bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
608{
609  /// An rvalue of type float can be converted to an rvalue of type
610  /// double. (C++ 4.6p1).
611  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
612    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
613      if (FromBuiltin->getKind() == BuiltinType::Float &&
614          ToBuiltin->getKind() == BuiltinType::Double)
615        return true;
616
617  return false;
618}
619
620/// IsPointerConversion - Determines whether the conversion of the
621/// expression From, which has the (possibly adjusted) type FromType,
622/// can be converted to the type ToType via a pointer conversion (C++
623/// 4.10). If so, returns true and places the converted type (that
624/// might differ from ToType in its cv-qualifiers at some level) into
625/// ConvertedType.
626bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
627                               QualType& ConvertedType)
628{
629  const PointerType* ToTypePtr = ToType->getAsPointerType();
630  if (!ToTypePtr)
631    return false;
632
633  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
634  if (From->isNullPointerConstant(Context)) {
635    ConvertedType = ToType;
636    return true;
637  }
638
639  // An rvalue of type "pointer to cv T," where T is an object type,
640  // can be converted to an rvalue of type "pointer to cv void" (C++
641  // 4.10p2).
642  if (FromType->isPointerType() &&
643      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
644      ToTypePtr->getPointeeType()->isVoidType()) {
645    // We need to produce a pointer to cv void, where cv is the same
646    // set of cv-qualifiers as we had on the incoming pointee type.
647    QualType toPointee = ToTypePtr->getPointeeType();
648    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
649                   ->getPointeeType().getCVRQualifiers();
650
651    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
652	  == Quals) {
653      // ToType is exactly the type we want. Use it.
654      ConvertedType = ToType;
655    } else {
656      // Build a new type with the right qualifiers.
657      ConvertedType
658	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
659    }
660    return true;
661  }
662
663  // C++ [conv.ptr]p3:
664  //
665  //   An rvalue of type "pointer to cv D," where D is a class type,
666  //   can be converted to an rvalue of type "pointer to cv B," where
667  //   B is a base class (clause 10) of D. If B is an inaccessible
668  //   (clause 11) or ambiguous (10.2) base class of D, a program that
669  //   necessitates this conversion is ill-formed. The result of the
670  //   conversion is a pointer to the base class sub-object of the
671  //   derived class object. The null pointer value is converted to
672  //   the null pointer value of the destination type.
673  //
674  // Note that we do not check for ambiguity or inaccessibility
675  // here. That is handled by CheckPointerConversion.
676  if (const PointerType *FromPtrType = FromType->getAsPointerType())
677    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
678      if (FromPtrType->getPointeeType()->isRecordType() &&
679          ToPtrType->getPointeeType()->isRecordType() &&
680          IsDerivedFrom(FromPtrType->getPointeeType(),
681                        ToPtrType->getPointeeType())) {
682        // The conversion is okay. Now, we need to produce the type
683        // that results from this conversion, which will have the same
684        // qualifiers as the incoming type.
685        QualType CanonFromPointee
686          = Context.getCanonicalType(FromPtrType->getPointeeType());
687        QualType ToPointee = ToPtrType->getPointeeType();
688        QualType CanonToPointee = Context.getCanonicalType(ToPointee);
689        unsigned Quals = CanonFromPointee.getCVRQualifiers();
690
691        if (CanonToPointee.getCVRQualifiers() == Quals) {
692          // ToType is exactly the type we want. Use it.
693          ConvertedType = ToType;
694        } else {
695          // Build a new type with the right qualifiers.
696          ConvertedType
697            = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
698        }
699        return true;
700      }
701    }
702
703  return false;
704}
705
706/// CheckPointerConversion - Check the pointer conversion from the
707/// expression From to the type ToType. This routine checks for
708/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
709/// conversions for which IsPointerConversion has already returned
710/// true. It returns true and produces a diagnostic if there was an
711/// error, or returns false otherwise.
712bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
713  QualType FromType = From->getType();
714
715  if (const PointerType *FromPtrType = FromType->getAsPointerType())
716    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
717      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false);
718      QualType FromPointeeType = FromPtrType->getPointeeType(),
719               ToPointeeType   = ToPtrType->getPointeeType();
720      if (FromPointeeType->isRecordType() &&
721          ToPointeeType->isRecordType()) {
722        // We must have a derived-to-base conversion. Check an
723        // ambiguous or inaccessible conversion.
724        return CheckDerivedToBaseConversion(From->getExprLoc(),
725                                            From->getSourceRange(),
726                                            FromPointeeType, ToPointeeType);
727      }
728    }
729
730  return false;
731}
732
733/// IsQualificationConversion - Determines whether the conversion from
734/// an rvalue of type FromType to ToType is a qualification conversion
735/// (C++ 4.4).
736bool
737Sema::IsQualificationConversion(QualType FromType, QualType ToType)
738{
739  FromType = Context.getCanonicalType(FromType);
740  ToType = Context.getCanonicalType(ToType);
741
742  // If FromType and ToType are the same type, this is not a
743  // qualification conversion.
744  if (FromType == ToType)
745    return false;
746
747  // (C++ 4.4p4):
748  //   A conversion can add cv-qualifiers at levels other than the first
749  //   in multi-level pointers, subject to the following rules: [...]
750  bool PreviousToQualsIncludeConst = true;
751  bool UnwrappedAnyPointer = false;
752  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
753    // Within each iteration of the loop, we check the qualifiers to
754    // determine if this still looks like a qualification
755    // conversion. Then, if all is well, we unwrap one more level of
756    // pointers or pointers-to-members and do it all again
757    // until there are no more pointers or pointers-to-members left to
758    // unwrap.
759    UnwrappedAnyPointer = true;
760
761    //   -- for every j > 0, if const is in cv 1,j then const is in cv
762    //      2,j, and similarly for volatile.
763    if (!ToType.isAtLeastAsQualifiedAs(FromType))
764      return false;
765
766    //   -- if the cv 1,j and cv 2,j are different, then const is in
767    //      every cv for 0 < k < j.
768    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
769        && !PreviousToQualsIncludeConst)
770      return false;
771
772    // Keep track of whether all prior cv-qualifiers in the "to" type
773    // include const.
774    PreviousToQualsIncludeConst
775      = PreviousToQualsIncludeConst && ToType.isConstQualified();
776  }
777
778  // We are left with FromType and ToType being the pointee types
779  // after unwrapping the original FromType and ToType the same number
780  // of types. If we unwrapped any pointers, and if FromType and
781  // ToType have the same unqualified type (since we checked
782  // qualifiers above), then this is a qualification conversion.
783  return UnwrappedAnyPointer &&
784    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
785}
786
787/// CompareImplicitConversionSequences - Compare two implicit
788/// conversion sequences to determine whether one is better than the
789/// other or if they are indistinguishable (C++ 13.3.3.2).
790ImplicitConversionSequence::CompareKind
791Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
792                                         const ImplicitConversionSequence& ICS2)
793{
794  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
795  // conversion sequences (as defined in 13.3.3.1)
796  //   -- a standard conversion sequence (13.3.3.1.1) is a better
797  //      conversion sequence than a user-defined conversion sequence or
798  //      an ellipsis conversion sequence, and
799  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
800  //      conversion sequence than an ellipsis conversion sequence
801  //      (13.3.3.1.3).
802  //
803  if (ICS1.ConversionKind < ICS2.ConversionKind)
804    return ImplicitConversionSequence::Better;
805  else if (ICS2.ConversionKind < ICS1.ConversionKind)
806    return ImplicitConversionSequence::Worse;
807
808  // Two implicit conversion sequences of the same form are
809  // indistinguishable conversion sequences unless one of the
810  // following rules apply: (C++ 13.3.3.2p3):
811  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
812    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
813  else if (ICS1.ConversionKind ==
814             ImplicitConversionSequence::UserDefinedConversion) {
815    // User-defined conversion sequence U1 is a better conversion
816    // sequence than another user-defined conversion sequence U2 if
817    // they contain the same user-defined conversion function or
818    // constructor and if the second standard conversion sequence of
819    // U1 is better than the second standard conversion sequence of
820    // U2 (C++ 13.3.3.2p3).
821    if (ICS1.UserDefined.ConversionFunction ==
822          ICS2.UserDefined.ConversionFunction)
823      return CompareStandardConversionSequences(ICS1.UserDefined.After,
824                                                ICS2.UserDefined.After);
825  }
826
827  return ImplicitConversionSequence::Indistinguishable;
828}
829
830/// CompareStandardConversionSequences - Compare two standard
831/// conversion sequences to determine whether one is better than the
832/// other or if they are indistinguishable (C++ 13.3.3.2p3).
833ImplicitConversionSequence::CompareKind
834Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
835                                         const StandardConversionSequence& SCS2)
836{
837  // Standard conversion sequence S1 is a better conversion sequence
838  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
839
840  //  -- S1 is a proper subsequence of S2 (comparing the conversion
841  //     sequences in the canonical form defined by 13.3.3.1.1,
842  //     excluding any Lvalue Transformation; the identity conversion
843  //     sequence is considered to be a subsequence of any
844  //     non-identity conversion sequence) or, if not that,
845  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
846    // Neither is a proper subsequence of the other. Do nothing.
847    ;
848  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
849           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
850           (SCS1.Second == ICK_Identity &&
851            SCS1.Third == ICK_Identity))
852    // SCS1 is a proper subsequence of SCS2.
853    return ImplicitConversionSequence::Better;
854  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
855           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
856           (SCS2.Second == ICK_Identity &&
857            SCS2.Third == ICK_Identity))
858    // SCS2 is a proper subsequence of SCS1.
859    return ImplicitConversionSequence::Worse;
860
861  //  -- the rank of S1 is better than the rank of S2 (by the rules
862  //     defined below), or, if not that,
863  ImplicitConversionRank Rank1 = SCS1.getRank();
864  ImplicitConversionRank Rank2 = SCS2.getRank();
865  if (Rank1 < Rank2)
866    return ImplicitConversionSequence::Better;
867  else if (Rank2 < Rank1)
868    return ImplicitConversionSequence::Worse;
869
870  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
871  // are indistinguishable unless one of the following rules
872  // applies:
873
874  //   A conversion that is not a conversion of a pointer, or
875  //   pointer to member, to bool is better than another conversion
876  //   that is such a conversion.
877  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
878    return SCS2.isPointerConversionToBool()
879             ? ImplicitConversionSequence::Better
880             : ImplicitConversionSequence::Worse;
881
882  // C++ [over.ics.rank]p4b2:
883  //
884  //   If class B is derived directly or indirectly from class A,
885  //   conversion of B* to A* is better than conversion of B* to void*,
886  //   and (FIXME) conversion of A* to void* is better than conversion of B*
887  //   to void*.
888  bool SCS1ConvertsToVoid
889    = SCS1.isPointerConversionToVoidPointer(Context);
890  bool SCS2ConvertsToVoid
891    = SCS2.isPointerConversionToVoidPointer(Context);
892  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid)
893    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
894                              : ImplicitConversionSequence::Worse;
895
896  if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid)
897    if (ImplicitConversionSequence::CompareKind DerivedCK
898          = CompareDerivedToBaseConversions(SCS1, SCS2))
899      return DerivedCK;
900
901  // Compare based on qualification conversions (C++ 13.3.3.2p3,
902  // bullet 3).
903  if (ImplicitConversionSequence::CompareKind QualCK
904        = CompareQualificationConversions(SCS1, SCS2))
905    return QualCK;
906
907  // FIXME: Handle comparison of reference bindings.
908
909  return ImplicitConversionSequence::Indistinguishable;
910}
911
912/// CompareQualificationConversions - Compares two standard conversion
913/// sequences to determine whether they can be ranked based on their
914/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
915ImplicitConversionSequence::CompareKind
916Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
917                                      const StandardConversionSequence& SCS2)
918{
919  // C++ 13.3.3.2p3:
920  //  -- S1 and S2 differ only in their qualification conversion and
921  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
922  //     cv-qualification signature of type T1 is a proper subset of
923  //     the cv-qualification signature of type T2, and S1 is not the
924  //     deprecated string literal array-to-pointer conversion (4.2).
925  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
926      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
927    return ImplicitConversionSequence::Indistinguishable;
928
929  // FIXME: the example in the standard doesn't use a qualification
930  // conversion (!)
931  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
932  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
933  T1 = Context.getCanonicalType(T1);
934  T2 = Context.getCanonicalType(T2);
935
936  // If the types are the same, we won't learn anything by unwrapped
937  // them.
938  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
939    return ImplicitConversionSequence::Indistinguishable;
940
941  ImplicitConversionSequence::CompareKind Result
942    = ImplicitConversionSequence::Indistinguishable;
943  while (UnwrapSimilarPointerTypes(T1, T2)) {
944    // Within each iteration of the loop, we check the qualifiers to
945    // determine if this still looks like a qualification
946    // conversion. Then, if all is well, we unwrap one more level of
947    // pointers or pointers-to-members and do it all again
948    // until there are no more pointers or pointers-to-members left
949    // to unwrap. This essentially mimics what
950    // IsQualificationConversion does, but here we're checking for a
951    // strict subset of qualifiers.
952    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
953      // The qualifiers are the same, so this doesn't tell us anything
954      // about how the sequences rank.
955      ;
956    else if (T2.isMoreQualifiedThan(T1)) {
957      // T1 has fewer qualifiers, so it could be the better sequence.
958      if (Result == ImplicitConversionSequence::Worse)
959        // Neither has qualifiers that are a subset of the other's
960        // qualifiers.
961        return ImplicitConversionSequence::Indistinguishable;
962
963      Result = ImplicitConversionSequence::Better;
964    } else if (T1.isMoreQualifiedThan(T2)) {
965      // T2 has fewer qualifiers, so it could be the better sequence.
966      if (Result == ImplicitConversionSequence::Better)
967        // Neither has qualifiers that are a subset of the other's
968        // qualifiers.
969        return ImplicitConversionSequence::Indistinguishable;
970
971      Result = ImplicitConversionSequence::Worse;
972    } else {
973      // Qualifiers are disjoint.
974      return ImplicitConversionSequence::Indistinguishable;
975    }
976
977    // If the types after this point are equivalent, we're done.
978    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
979      break;
980  }
981
982  // Check that the winning standard conversion sequence isn't using
983  // the deprecated string literal array to pointer conversion.
984  switch (Result) {
985  case ImplicitConversionSequence::Better:
986    if (SCS1.Deprecated)
987      Result = ImplicitConversionSequence::Indistinguishable;
988    break;
989
990  case ImplicitConversionSequence::Indistinguishable:
991    break;
992
993  case ImplicitConversionSequence::Worse:
994    if (SCS2.Deprecated)
995      Result = ImplicitConversionSequence::Indistinguishable;
996    break;
997  }
998
999  return Result;
1000}
1001
1002/// CompareDerivedToBaseConversions - Compares two standard conversion
1003/// sequences to determine whether they can be ranked based on their
1004/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
1005ImplicitConversionSequence::CompareKind
1006Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1007                                      const StandardConversionSequence& SCS2) {
1008  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1009  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1010  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1011  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1012
1013  // Adjust the types we're converting from via the array-to-pointer
1014  // conversion, if we need to.
1015  if (SCS1.First == ICK_Array_To_Pointer)
1016    FromType1 = Context.getArrayDecayedType(FromType1);
1017  if (SCS2.First == ICK_Array_To_Pointer)
1018    FromType2 = Context.getArrayDecayedType(FromType2);
1019
1020  // Canonicalize all of the types.
1021  FromType1 = Context.getCanonicalType(FromType1);
1022  ToType1 = Context.getCanonicalType(ToType1);
1023  FromType2 = Context.getCanonicalType(FromType2);
1024  ToType2 = Context.getCanonicalType(ToType2);
1025
1026  // C++ [over.ics.rank]p4b4:
1027  //
1028  //   If class B is derived directly or indirectly from class A and
1029  //   class C is derived directly or indirectly from B,
1030  //
1031  // FIXME: Verify that in this section we're talking about the
1032  // unqualified forms of C, B, and A.
1033  if (SCS1.Second == ICK_Pointer_Conversion &&
1034      SCS2.Second == ICK_Pointer_Conversion) {
1035    //   -- conversion of C* to B* is better than conversion of C* to A*,
1036    QualType FromPointee1
1037      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1038    QualType ToPointee1
1039      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1040    QualType FromPointee2
1041      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1042    QualType ToPointee2
1043      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1044    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1045      if (IsDerivedFrom(ToPointee1, ToPointee2))
1046        return ImplicitConversionSequence::Better;
1047      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1048        return ImplicitConversionSequence::Worse;
1049    }
1050  }
1051
1052  // FIXME: many more sub-bullets of C++ [over.ics.rank]p4b4 to
1053  // implement.
1054  return ImplicitConversionSequence::Indistinguishable;
1055}
1056
1057/// AddOverloadCandidate - Adds the given function to the set of
1058/// candidate functions, using the given function call arguments.
1059void
1060Sema::AddOverloadCandidate(FunctionDecl *Function,
1061                           Expr **Args, unsigned NumArgs,
1062                           OverloadCandidateSet& CandidateSet)
1063{
1064  const FunctionTypeProto* Proto
1065    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1066  assert(Proto && "Functions without a prototype cannot be overloaded");
1067
1068  // Add this candidate
1069  CandidateSet.push_back(OverloadCandidate());
1070  OverloadCandidate& Candidate = CandidateSet.back();
1071  Candidate.Function = Function;
1072
1073  unsigned NumArgsInProto = Proto->getNumArgs();
1074
1075  // (C++ 13.3.2p2): A candidate function having fewer than m
1076  // parameters is viable only if it has an ellipsis in its parameter
1077  // list (8.3.5).
1078  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1079    Candidate.Viable = false;
1080    return;
1081  }
1082
1083  // (C++ 13.3.2p2): A candidate function having more than m parameters
1084  // is viable only if the (m+1)st parameter has a default argument
1085  // (8.3.6). For the purposes of overload resolution, the
1086  // parameter list is truncated on the right, so that there are
1087  // exactly m parameters.
1088  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1089  if (NumArgs < MinRequiredArgs) {
1090    // Not enough arguments.
1091    Candidate.Viable = false;
1092    return;
1093  }
1094
1095  // Determine the implicit conversion sequences for each of the
1096  // arguments.
1097  Candidate.Viable = true;
1098  Candidate.Conversions.resize(NumArgs);
1099  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1100    if (ArgIdx < NumArgsInProto) {
1101      // (C++ 13.3.2p3): for F to be a viable function, there shall
1102      // exist for each argument an implicit conversion sequence
1103      // (13.3.3.1) that converts that argument to the corresponding
1104      // parameter of F.
1105      QualType ParamType = Proto->getArgType(ArgIdx);
1106      Candidate.Conversions[ArgIdx]
1107        = TryCopyInitialization(Args[ArgIdx], ParamType);
1108      if (Candidate.Conversions[ArgIdx].ConversionKind
1109            == ImplicitConversionSequence::BadConversion)
1110        Candidate.Viable = false;
1111    } else {
1112      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1113      // argument for which there is no corresponding parameter is
1114      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1115      Candidate.Conversions[ArgIdx].ConversionKind
1116        = ImplicitConversionSequence::EllipsisConversion;
1117    }
1118  }
1119}
1120
1121/// AddOverloadCandidates - Add all of the function overloads in Ovl
1122/// to the candidate set.
1123void
1124Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl,
1125                            Expr **Args, unsigned NumArgs,
1126                            OverloadCandidateSet& CandidateSet)
1127{
1128  for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
1129       Func != Ovl->function_end(); ++Func)
1130    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
1131}
1132
1133/// isBetterOverloadCandidate - Determines whether the first overload
1134/// candidate is a better candidate than the second (C++ 13.3.3p1).
1135bool
1136Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
1137                                const OverloadCandidate& Cand2)
1138{
1139  // Define viable functions to be better candidates than non-viable
1140  // functions.
1141  if (!Cand2.Viable)
1142    return Cand1.Viable;
1143  else if (!Cand1.Viable)
1144    return false;
1145
1146  // FIXME: Deal with the implicit object parameter for static member
1147  // functions. (C++ 13.3.3p1).
1148
1149  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
1150  // function than another viable function F2 if for all arguments i,
1151  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
1152  // then...
1153  unsigned NumArgs = Cand1.Conversions.size();
1154  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
1155  bool HasBetterConversion = false;
1156  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1157    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
1158                                               Cand2.Conversions[ArgIdx])) {
1159    case ImplicitConversionSequence::Better:
1160      // Cand1 has a better conversion sequence.
1161      HasBetterConversion = true;
1162      break;
1163
1164    case ImplicitConversionSequence::Worse:
1165      // Cand1 can't be better than Cand2.
1166      return false;
1167
1168    case ImplicitConversionSequence::Indistinguishable:
1169      // Do nothing.
1170      break;
1171    }
1172  }
1173
1174  if (HasBetterConversion)
1175    return true;
1176
1177  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1178
1179  return false;
1180}
1181
1182/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1183/// within an overload candidate set. If overloading is successful,
1184/// the result will be OR_Success and Best will be set to point to the
1185/// best viable function within the candidate set. Otherwise, one of
1186/// several kinds of errors will be returned; see
1187/// Sema::OverloadingResult.
1188Sema::OverloadingResult
1189Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1190                         OverloadCandidateSet::iterator& Best)
1191{
1192  // Find the best viable function.
1193  Best = CandidateSet.end();
1194  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1195       Cand != CandidateSet.end(); ++Cand) {
1196    if (Cand->Viable) {
1197      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1198        Best = Cand;
1199    }
1200  }
1201
1202  // If we didn't find any viable functions, abort.
1203  if (Best == CandidateSet.end())
1204    return OR_No_Viable_Function;
1205
1206  // Make sure that this function is better than every other viable
1207  // function. If not, we have an ambiguity.
1208  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1209       Cand != CandidateSet.end(); ++Cand) {
1210    if (Cand->Viable &&
1211        Cand != Best &&
1212        !isBetterOverloadCandidate(*Best, *Cand))
1213      return OR_Ambiguous;
1214  }
1215
1216  // Best is the best viable function.
1217  return OR_Success;
1218}
1219
1220/// PrintOverloadCandidates - When overload resolution fails, prints
1221/// diagnostic messages containing the candidates in the candidate
1222/// set. If OnlyViable is true, only viable candidates will be printed.
1223void
1224Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1225                              bool OnlyViable)
1226{
1227  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1228                             LastCand = CandidateSet.end();
1229  for (; Cand != LastCand; ++Cand) {
1230    if (Cand->Viable ||!OnlyViable)
1231      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1232  }
1233}
1234
1235} // end namespace clang
1236