SemaOverload.cpp revision c12c5bba6ceb6acd4e51e7a0fc03257da9cfd44e
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << '\'' << ConversionFunction << '\'';
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278namespace {
279  // Structure used by OverloadCandidate::DeductionFailureInfo to store
280  // template parameter and template argument information.
281  struct DFIParamWithArguments {
282    TemplateParameter Param;
283    TemplateArgument FirstArg;
284    TemplateArgument SecondArg;
285  };
286}
287
288/// \brief Convert from Sema's representation of template deduction information
289/// to the form used in overload-candidate information.
290OverloadCandidate::DeductionFailureInfo
291static MakeDeductionFailureInfo(ASTContext &Context,
292                                Sema::TemplateDeductionResult TDK,
293                                Sema::TemplateDeductionInfo &Info) {
294  OverloadCandidate::DeductionFailureInfo Result;
295  Result.Result = static_cast<unsigned>(TDK);
296  Result.Data = 0;
297  switch (TDK) {
298  case Sema::TDK_Success:
299  case Sema::TDK_InstantiationDepth:
300  case Sema::TDK_TooManyArguments:
301  case Sema::TDK_TooFewArguments:
302    break;
303
304  case Sema::TDK_Incomplete:
305  case Sema::TDK_InvalidExplicitArguments:
306    Result.Data = Info.Param.getOpaqueValue();
307    break;
308
309  case Sema::TDK_Inconsistent:
310  case Sema::TDK_InconsistentQuals: {
311    // FIXME: Should allocate from normal heap so that we can free this later.
312    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
313    Saved->Param = Info.Param;
314    Saved->FirstArg = Info.FirstArg;
315    Saved->SecondArg = Info.SecondArg;
316    Result.Data = Saved;
317    break;
318  }
319
320  case Sema::TDK_SubstitutionFailure:
321    Result.Data = Info.take();
322    break;
323
324  case Sema::TDK_NonDeducedMismatch:
325  case Sema::TDK_FailedOverloadResolution:
326    break;
327  }
328
329  return Result;
330}
331
332void OverloadCandidate::DeductionFailureInfo::Destroy() {
333  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
334  case Sema::TDK_Success:
335  case Sema::TDK_InstantiationDepth:
336  case Sema::TDK_Incomplete:
337  case Sema::TDK_TooManyArguments:
338  case Sema::TDK_TooFewArguments:
339  case Sema::TDK_InvalidExplicitArguments:
340    break;
341
342  case Sema::TDK_Inconsistent:
343  case Sema::TDK_InconsistentQuals:
344    // FIXME: Destroy the data?
345    Data = 0;
346    break;
347
348  case Sema::TDK_SubstitutionFailure:
349    // FIXME: Destroy the template arugment list?
350    Data = 0;
351    break;
352
353  // Unhandled
354  case Sema::TDK_NonDeducedMismatch:
355  case Sema::TDK_FailedOverloadResolution:
356    break;
357  }
358}
359
360TemplateParameter
361OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
362  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
363  case Sema::TDK_Success:
364  case Sema::TDK_InstantiationDepth:
365  case Sema::TDK_TooManyArguments:
366  case Sema::TDK_TooFewArguments:
367  case Sema::TDK_SubstitutionFailure:
368    return TemplateParameter();
369
370  case Sema::TDK_Incomplete:
371  case Sema::TDK_InvalidExplicitArguments:
372    return TemplateParameter::getFromOpaqueValue(Data);
373
374  case Sema::TDK_Inconsistent:
375  case Sema::TDK_InconsistentQuals:
376    return static_cast<DFIParamWithArguments*>(Data)->Param;
377
378  // Unhandled
379  case Sema::TDK_NonDeducedMismatch:
380  case Sema::TDK_FailedOverloadResolution:
381    break;
382  }
383
384  return TemplateParameter();
385}
386
387TemplateArgumentList *
388OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
389  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
390    case Sema::TDK_Success:
391    case Sema::TDK_InstantiationDepth:
392    case Sema::TDK_TooManyArguments:
393    case Sema::TDK_TooFewArguments:
394    case Sema::TDK_Incomplete:
395    case Sema::TDK_InvalidExplicitArguments:
396    case Sema::TDK_Inconsistent:
397    case Sema::TDK_InconsistentQuals:
398      return 0;
399
400    case Sema::TDK_SubstitutionFailure:
401      return static_cast<TemplateArgumentList*>(Data);
402
403    // Unhandled
404    case Sema::TDK_NonDeducedMismatch:
405    case Sema::TDK_FailedOverloadResolution:
406      break;
407  }
408
409  return 0;
410}
411
412const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
413  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
414  case Sema::TDK_Success:
415  case Sema::TDK_InstantiationDepth:
416  case Sema::TDK_Incomplete:
417  case Sema::TDK_TooManyArguments:
418  case Sema::TDK_TooFewArguments:
419  case Sema::TDK_InvalidExplicitArguments:
420  case Sema::TDK_SubstitutionFailure:
421    return 0;
422
423  case Sema::TDK_Inconsistent:
424  case Sema::TDK_InconsistentQuals:
425    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
426
427  // Unhandled
428  case Sema::TDK_NonDeducedMismatch:
429  case Sema::TDK_FailedOverloadResolution:
430    break;
431  }
432
433  return 0;
434}
435
436const TemplateArgument *
437OverloadCandidate::DeductionFailureInfo::getSecondArg() {
438  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
439  case Sema::TDK_Success:
440  case Sema::TDK_InstantiationDepth:
441  case Sema::TDK_Incomplete:
442  case Sema::TDK_TooManyArguments:
443  case Sema::TDK_TooFewArguments:
444  case Sema::TDK_InvalidExplicitArguments:
445  case Sema::TDK_SubstitutionFailure:
446    return 0;
447
448  case Sema::TDK_Inconsistent:
449  case Sema::TDK_InconsistentQuals:
450    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
451
452  // Unhandled
453  case Sema::TDK_NonDeducedMismatch:
454  case Sema::TDK_FailedOverloadResolution:
455    break;
456  }
457
458  return 0;
459}
460
461void OverloadCandidateSet::clear() {
462  inherited::clear();
463  Functions.clear();
464}
465
466// IsOverload - Determine whether the given New declaration is an
467// overload of the declarations in Old. This routine returns false if
468// New and Old cannot be overloaded, e.g., if New has the same
469// signature as some function in Old (C++ 1.3.10) or if the Old
470// declarations aren't functions (or function templates) at all. When
471// it does return false, MatchedDecl will point to the decl that New
472// cannot be overloaded with.  This decl may be a UsingShadowDecl on
473// top of the underlying declaration.
474//
475// Example: Given the following input:
476//
477//   void f(int, float); // #1
478//   void f(int, int); // #2
479//   int f(int, int); // #3
480//
481// When we process #1, there is no previous declaration of "f",
482// so IsOverload will not be used.
483//
484// When we process #2, Old contains only the FunctionDecl for #1.  By
485// comparing the parameter types, we see that #1 and #2 are overloaded
486// (since they have different signatures), so this routine returns
487// false; MatchedDecl is unchanged.
488//
489// When we process #3, Old is an overload set containing #1 and #2. We
490// compare the signatures of #3 to #1 (they're overloaded, so we do
491// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
492// identical (return types of functions are not part of the
493// signature), IsOverload returns false and MatchedDecl will be set to
494// point to the FunctionDecl for #2.
495Sema::OverloadKind
496Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
497                    NamedDecl *&Match) {
498  for (LookupResult::iterator I = Old.begin(), E = Old.end();
499         I != E; ++I) {
500    NamedDecl *OldD = (*I)->getUnderlyingDecl();
501    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
502      if (!IsOverload(New, OldT->getTemplatedDecl())) {
503        Match = *I;
504        return Ovl_Match;
505      }
506    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
507      if (!IsOverload(New, OldF)) {
508        Match = *I;
509        return Ovl_Match;
510      }
511    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
512      // We can overload with these, which can show up when doing
513      // redeclaration checks for UsingDecls.
514      assert(Old.getLookupKind() == LookupUsingDeclName);
515    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
516      // Optimistically assume that an unresolved using decl will
517      // overload; if it doesn't, we'll have to diagnose during
518      // template instantiation.
519    } else {
520      // (C++ 13p1):
521      //   Only function declarations can be overloaded; object and type
522      //   declarations cannot be overloaded.
523      Match = *I;
524      return Ovl_NonFunction;
525    }
526  }
527
528  return Ovl_Overload;
529}
530
531bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
532  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
533  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
534
535  // C++ [temp.fct]p2:
536  //   A function template can be overloaded with other function templates
537  //   and with normal (non-template) functions.
538  if ((OldTemplate == 0) != (NewTemplate == 0))
539    return true;
540
541  // Is the function New an overload of the function Old?
542  QualType OldQType = Context.getCanonicalType(Old->getType());
543  QualType NewQType = Context.getCanonicalType(New->getType());
544
545  // Compare the signatures (C++ 1.3.10) of the two functions to
546  // determine whether they are overloads. If we find any mismatch
547  // in the signature, they are overloads.
548
549  // If either of these functions is a K&R-style function (no
550  // prototype), then we consider them to have matching signatures.
551  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
552      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
553    return false;
554
555  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
556  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
557
558  // The signature of a function includes the types of its
559  // parameters (C++ 1.3.10), which includes the presence or absence
560  // of the ellipsis; see C++ DR 357).
561  if (OldQType != NewQType &&
562      (OldType->getNumArgs() != NewType->getNumArgs() ||
563       OldType->isVariadic() != NewType->isVariadic() ||
564       !FunctionArgTypesAreEqual(OldType, NewType)))
565    return true;
566
567  // C++ [temp.over.link]p4:
568  //   The signature of a function template consists of its function
569  //   signature, its return type and its template parameter list. The names
570  //   of the template parameters are significant only for establishing the
571  //   relationship between the template parameters and the rest of the
572  //   signature.
573  //
574  // We check the return type and template parameter lists for function
575  // templates first; the remaining checks follow.
576  if (NewTemplate &&
577      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
578                                       OldTemplate->getTemplateParameters(),
579                                       false, TPL_TemplateMatch) ||
580       OldType->getResultType() != NewType->getResultType()))
581    return true;
582
583  // If the function is a class member, its signature includes the
584  // cv-qualifiers (if any) on the function itself.
585  //
586  // As part of this, also check whether one of the member functions
587  // is static, in which case they are not overloads (C++
588  // 13.1p2). While not part of the definition of the signature,
589  // this check is important to determine whether these functions
590  // can be overloaded.
591  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
592  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
593  if (OldMethod && NewMethod &&
594      !OldMethod->isStatic() && !NewMethod->isStatic() &&
595      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
596    return true;
597
598  // The signatures match; this is not an overload.
599  return false;
600}
601
602/// TryImplicitConversion - Attempt to perform an implicit conversion
603/// from the given expression (Expr) to the given type (ToType). This
604/// function returns an implicit conversion sequence that can be used
605/// to perform the initialization. Given
606///
607///   void f(float f);
608///   void g(int i) { f(i); }
609///
610/// this routine would produce an implicit conversion sequence to
611/// describe the initialization of f from i, which will be a standard
612/// conversion sequence containing an lvalue-to-rvalue conversion (C++
613/// 4.1) followed by a floating-integral conversion (C++ 4.9).
614//
615/// Note that this routine only determines how the conversion can be
616/// performed; it does not actually perform the conversion. As such,
617/// it will not produce any diagnostics if no conversion is available,
618/// but will instead return an implicit conversion sequence of kind
619/// "BadConversion".
620///
621/// If @p SuppressUserConversions, then user-defined conversions are
622/// not permitted.
623/// If @p AllowExplicit, then explicit user-defined conversions are
624/// permitted.
625ImplicitConversionSequence
626Sema::TryImplicitConversion(Expr* From, QualType ToType,
627                            bool SuppressUserConversions,
628                            bool AllowExplicit,
629                            bool InOverloadResolution) {
630  ImplicitConversionSequence ICS;
631  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
632    ICS.setStandard();
633    return ICS;
634  }
635
636  if (!getLangOptions().CPlusPlus) {
637    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
638    return ICS;
639  }
640
641  if (SuppressUserConversions) {
642    // C++ [over.ics.user]p4:
643    //   A conversion of an expression of class type to the same class
644    //   type is given Exact Match rank, and a conversion of an
645    //   expression of class type to a base class of that type is
646    //   given Conversion rank, in spite of the fact that a copy/move
647    //   constructor (i.e., a user-defined conversion function) is
648    //   called for those cases.
649    QualType FromType = From->getType();
650    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
651        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
652          IsDerivedFrom(FromType, ToType))) {
653      // We're not in the case above, so there is no conversion that
654      // we can perform.
655      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
656      return ICS;
657    }
658
659    ICS.setStandard();
660    ICS.Standard.setAsIdentityConversion();
661    ICS.Standard.setFromType(FromType);
662    ICS.Standard.setAllToTypes(ToType);
663
664    // We don't actually check at this point whether there is a valid
665    // copy/move constructor, since overloading just assumes that it
666    // exists. When we actually perform initialization, we'll find the
667    // appropriate constructor to copy the returned object, if needed.
668    ICS.Standard.CopyConstructor = 0;
669
670    // Determine whether this is considered a derived-to-base conversion.
671    if (!Context.hasSameUnqualifiedType(FromType, ToType))
672      ICS.Standard.Second = ICK_Derived_To_Base;
673
674    return ICS;
675  }
676
677  // Attempt user-defined conversion.
678  OverloadCandidateSet Conversions(From->getExprLoc());
679  OverloadingResult UserDefResult
680    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
681                              AllowExplicit);
682
683  if (UserDefResult == OR_Success) {
684    ICS.setUserDefined();
685    // C++ [over.ics.user]p4:
686    //   A conversion of an expression of class type to the same class
687    //   type is given Exact Match rank, and a conversion of an
688    //   expression of class type to a base class of that type is
689    //   given Conversion rank, in spite of the fact that a copy
690    //   constructor (i.e., a user-defined conversion function) is
691    //   called for those cases.
692    if (CXXConstructorDecl *Constructor
693          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
694      QualType FromCanon
695        = Context.getCanonicalType(From->getType().getUnqualifiedType());
696      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
697      if (Constructor->isCopyConstructor() &&
698          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
699        // Turn this into a "standard" conversion sequence, so that it
700        // gets ranked with standard conversion sequences.
701        ICS.setStandard();
702        ICS.Standard.setAsIdentityConversion();
703        ICS.Standard.setFromType(From->getType());
704        ICS.Standard.setAllToTypes(ToType);
705        ICS.Standard.CopyConstructor = Constructor;
706        if (ToCanon != FromCanon)
707          ICS.Standard.Second = ICK_Derived_To_Base;
708      }
709    }
710
711    // C++ [over.best.ics]p4:
712    //   However, when considering the argument of a user-defined
713    //   conversion function that is a candidate by 13.3.1.3 when
714    //   invoked for the copying of the temporary in the second step
715    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
716    //   13.3.1.6 in all cases, only standard conversion sequences and
717    //   ellipsis conversion sequences are allowed.
718    if (SuppressUserConversions && ICS.isUserDefined()) {
719      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
720    }
721  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
722    ICS.setAmbiguous();
723    ICS.Ambiguous.setFromType(From->getType());
724    ICS.Ambiguous.setToType(ToType);
725    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
726         Cand != Conversions.end(); ++Cand)
727      if (Cand->Viable)
728        ICS.Ambiguous.addConversion(Cand->Function);
729  } else {
730    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
731  }
732
733  return ICS;
734}
735
736/// PerformImplicitConversion - Perform an implicit conversion of the
737/// expression From to the type ToType. Returns true if there was an
738/// error, false otherwise. The expression From is replaced with the
739/// converted expression. Flavor is the kind of conversion we're
740/// performing, used in the error message. If @p AllowExplicit,
741/// explicit user-defined conversions are permitted.
742bool
743Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
744                                AssignmentAction Action, bool AllowExplicit) {
745  ImplicitConversionSequence ICS;
746  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
747}
748
749bool
750Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
751                                AssignmentAction Action, bool AllowExplicit,
752                                ImplicitConversionSequence& ICS) {
753  ICS = TryImplicitConversion(From, ToType,
754                              /*SuppressUserConversions=*/false,
755                              AllowExplicit,
756                              /*InOverloadResolution=*/false);
757  return PerformImplicitConversion(From, ToType, ICS, Action);
758}
759
760/// \brief Determine whether the conversion from FromType to ToType is a valid
761/// conversion that strips "noreturn" off the nested function type.
762static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
763                                 QualType ToType, QualType &ResultTy) {
764  if (Context.hasSameUnqualifiedType(FromType, ToType))
765    return false;
766
767  // Strip the noreturn off the type we're converting from; noreturn can
768  // safely be removed.
769  FromType = Context.getNoReturnType(FromType, false);
770  if (!Context.hasSameUnqualifiedType(FromType, ToType))
771    return false;
772
773  ResultTy = FromType;
774  return true;
775}
776
777/// IsStandardConversion - Determines whether there is a standard
778/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
779/// expression From to the type ToType. Standard conversion sequences
780/// only consider non-class types; for conversions that involve class
781/// types, use TryImplicitConversion. If a conversion exists, SCS will
782/// contain the standard conversion sequence required to perform this
783/// conversion and this routine will return true. Otherwise, this
784/// routine will return false and the value of SCS is unspecified.
785bool
786Sema::IsStandardConversion(Expr* From, QualType ToType,
787                           bool InOverloadResolution,
788                           StandardConversionSequence &SCS) {
789  QualType FromType = From->getType();
790
791  // Standard conversions (C++ [conv])
792  SCS.setAsIdentityConversion();
793  SCS.DeprecatedStringLiteralToCharPtr = false;
794  SCS.IncompatibleObjC = false;
795  SCS.setFromType(FromType);
796  SCS.CopyConstructor = 0;
797
798  // There are no standard conversions for class types in C++, so
799  // abort early. When overloading in C, however, we do permit
800  if (FromType->isRecordType() || ToType->isRecordType()) {
801    if (getLangOptions().CPlusPlus)
802      return false;
803
804    // When we're overloading in C, we allow, as standard conversions,
805  }
806
807  // The first conversion can be an lvalue-to-rvalue conversion,
808  // array-to-pointer conversion, or function-to-pointer conversion
809  // (C++ 4p1).
810
811  if (FromType == Context.OverloadTy) {
812    DeclAccessPair AccessPair;
813    if (FunctionDecl *Fn
814          = ResolveAddressOfOverloadedFunction(From, ToType, false,
815                                               AccessPair)) {
816      // We were able to resolve the address of the overloaded function,
817      // so we can convert to the type of that function.
818      FromType = Fn->getType();
819      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
820        if (!Method->isStatic()) {
821          Type *ClassType
822            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
823          FromType = Context.getMemberPointerType(FromType, ClassType);
824        }
825      }
826
827      // If the "from" expression takes the address of the overloaded
828      // function, update the type of the resulting expression accordingly.
829      if (FromType->getAs<FunctionType>())
830        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
831          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
832            FromType = Context.getPointerType(FromType);
833
834      // Check that we've computed the proper type after overload resolution.
835      assert(Context.hasSameType(FromType,
836              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
837    } else {
838      return false;
839    }
840  }
841  // Lvalue-to-rvalue conversion (C++ 4.1):
842  //   An lvalue (3.10) of a non-function, non-array type T can be
843  //   converted to an rvalue.
844  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
845  if (argIsLvalue == Expr::LV_Valid &&
846      !FromType->isFunctionType() && !FromType->isArrayType() &&
847      Context.getCanonicalType(FromType) != Context.OverloadTy) {
848    SCS.First = ICK_Lvalue_To_Rvalue;
849
850    // If T is a non-class type, the type of the rvalue is the
851    // cv-unqualified version of T. Otherwise, the type of the rvalue
852    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
853    // just strip the qualifiers because they don't matter.
854    FromType = FromType.getUnqualifiedType();
855  } else if (FromType->isArrayType()) {
856    // Array-to-pointer conversion (C++ 4.2)
857    SCS.First = ICK_Array_To_Pointer;
858
859    // An lvalue or rvalue of type "array of N T" or "array of unknown
860    // bound of T" can be converted to an rvalue of type "pointer to
861    // T" (C++ 4.2p1).
862    FromType = Context.getArrayDecayedType(FromType);
863
864    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
865      // This conversion is deprecated. (C++ D.4).
866      SCS.DeprecatedStringLiteralToCharPtr = true;
867
868      // For the purpose of ranking in overload resolution
869      // (13.3.3.1.1), this conversion is considered an
870      // array-to-pointer conversion followed by a qualification
871      // conversion (4.4). (C++ 4.2p2)
872      SCS.Second = ICK_Identity;
873      SCS.Third = ICK_Qualification;
874      SCS.setAllToTypes(FromType);
875      return true;
876    }
877  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
878    // Function-to-pointer conversion (C++ 4.3).
879    SCS.First = ICK_Function_To_Pointer;
880
881    // An lvalue of function type T can be converted to an rvalue of
882    // type "pointer to T." The result is a pointer to the
883    // function. (C++ 4.3p1).
884    FromType = Context.getPointerType(FromType);
885  } else {
886    // We don't require any conversions for the first step.
887    SCS.First = ICK_Identity;
888  }
889  SCS.setToType(0, FromType);
890
891  // The second conversion can be an integral promotion, floating
892  // point promotion, integral conversion, floating point conversion,
893  // floating-integral conversion, pointer conversion,
894  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
895  // For overloading in C, this can also be a "compatible-type"
896  // conversion.
897  bool IncompatibleObjC = false;
898  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
899    // The unqualified versions of the types are the same: there's no
900    // conversion to do.
901    SCS.Second = ICK_Identity;
902  } else if (IsIntegralPromotion(From, FromType, ToType)) {
903    // Integral promotion (C++ 4.5).
904    SCS.Second = ICK_Integral_Promotion;
905    FromType = ToType.getUnqualifiedType();
906  } else if (IsFloatingPointPromotion(FromType, ToType)) {
907    // Floating point promotion (C++ 4.6).
908    SCS.Second = ICK_Floating_Promotion;
909    FromType = ToType.getUnqualifiedType();
910  } else if (IsComplexPromotion(FromType, ToType)) {
911    // Complex promotion (Clang extension)
912    SCS.Second = ICK_Complex_Promotion;
913    FromType = ToType.getUnqualifiedType();
914  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
915           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
916    // Integral conversions (C++ 4.7).
917    SCS.Second = ICK_Integral_Conversion;
918    FromType = ToType.getUnqualifiedType();
919  } else if (FromType->isComplexType() && ToType->isComplexType()) {
920    // Complex conversions (C99 6.3.1.6)
921    SCS.Second = ICK_Complex_Conversion;
922    FromType = ToType.getUnqualifiedType();
923  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
924             (ToType->isComplexType() && FromType->isArithmeticType())) {
925    // Complex-real conversions (C99 6.3.1.7)
926    SCS.Second = ICK_Complex_Real;
927    FromType = ToType.getUnqualifiedType();
928  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
929    // Floating point conversions (C++ 4.8).
930    SCS.Second = ICK_Floating_Conversion;
931    FromType = ToType.getUnqualifiedType();
932  } else if ((FromType->isFloatingType() &&
933              ToType->isIntegralType() && (!ToType->isBooleanType() &&
934                                           !ToType->isEnumeralType())) ||
935             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
936              ToType->isFloatingType())) {
937    // Floating-integral conversions (C++ 4.9).
938    SCS.Second = ICK_Floating_Integral;
939    FromType = ToType.getUnqualifiedType();
940  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
941                                 FromType, IncompatibleObjC)) {
942    // Pointer conversions (C++ 4.10).
943    SCS.Second = ICK_Pointer_Conversion;
944    SCS.IncompatibleObjC = IncompatibleObjC;
945  } else if (IsMemberPointerConversion(From, FromType, ToType,
946                                       InOverloadResolution, FromType)) {
947    // Pointer to member conversions (4.11).
948    SCS.Second = ICK_Pointer_Member;
949  } else if (ToType->isBooleanType() &&
950             (FromType->isArithmeticType() ||
951              FromType->isEnumeralType() ||
952              FromType->isAnyPointerType() ||
953              FromType->isBlockPointerType() ||
954              FromType->isMemberPointerType() ||
955              FromType->isNullPtrType())) {
956    // Boolean conversions (C++ 4.12).
957    SCS.Second = ICK_Boolean_Conversion;
958    FromType = Context.BoolTy;
959  } else if (!getLangOptions().CPlusPlus &&
960             Context.typesAreCompatible(ToType, FromType)) {
961    // Compatible conversions (Clang extension for C function overloading)
962    SCS.Second = ICK_Compatible_Conversion;
963  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
964    // Treat a conversion that strips "noreturn" as an identity conversion.
965    SCS.Second = ICK_NoReturn_Adjustment;
966  } else {
967    // No second conversion required.
968    SCS.Second = ICK_Identity;
969  }
970  SCS.setToType(1, FromType);
971
972  QualType CanonFrom;
973  QualType CanonTo;
974  // The third conversion can be a qualification conversion (C++ 4p1).
975  if (IsQualificationConversion(FromType, ToType)) {
976    SCS.Third = ICK_Qualification;
977    FromType = ToType;
978    CanonFrom = Context.getCanonicalType(FromType);
979    CanonTo = Context.getCanonicalType(ToType);
980  } else {
981    // No conversion required
982    SCS.Third = ICK_Identity;
983
984    // C++ [over.best.ics]p6:
985    //   [...] Any difference in top-level cv-qualification is
986    //   subsumed by the initialization itself and does not constitute
987    //   a conversion. [...]
988    CanonFrom = Context.getCanonicalType(FromType);
989    CanonTo = Context.getCanonicalType(ToType);
990    if (CanonFrom.getLocalUnqualifiedType()
991                                       == CanonTo.getLocalUnqualifiedType() &&
992        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
993      FromType = ToType;
994      CanonFrom = CanonTo;
995    }
996  }
997  SCS.setToType(2, FromType);
998
999  // If we have not converted the argument type to the parameter type,
1000  // this is a bad conversion sequence.
1001  if (CanonFrom != CanonTo)
1002    return false;
1003
1004  return true;
1005}
1006
1007/// IsIntegralPromotion - Determines whether the conversion from the
1008/// expression From (whose potentially-adjusted type is FromType) to
1009/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1010/// sets PromotedType to the promoted type.
1011bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1012  const BuiltinType *To = ToType->getAs<BuiltinType>();
1013  // All integers are built-in.
1014  if (!To) {
1015    return false;
1016  }
1017
1018  // An rvalue of type char, signed char, unsigned char, short int, or
1019  // unsigned short int can be converted to an rvalue of type int if
1020  // int can represent all the values of the source type; otherwise,
1021  // the source rvalue can be converted to an rvalue of type unsigned
1022  // int (C++ 4.5p1).
1023  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1024      !FromType->isEnumeralType()) {
1025    if (// We can promote any signed, promotable integer type to an int
1026        (FromType->isSignedIntegerType() ||
1027         // We can promote any unsigned integer type whose size is
1028         // less than int to an int.
1029         (!FromType->isSignedIntegerType() &&
1030          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1031      return To->getKind() == BuiltinType::Int;
1032    }
1033
1034    return To->getKind() == BuiltinType::UInt;
1035  }
1036
1037  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
1038  // can be converted to an rvalue of the first of the following types
1039  // that can represent all the values of its underlying type: int,
1040  // unsigned int, long, or unsigned long (C++ 4.5p2).
1041
1042  // We pre-calculate the promotion type for enum types.
1043  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
1044    if (ToType->isIntegerType())
1045      return Context.hasSameUnqualifiedType(ToType,
1046                                FromEnumType->getDecl()->getPromotionType());
1047
1048  if (FromType->isWideCharType() && ToType->isIntegerType()) {
1049    // Determine whether the type we're converting from is signed or
1050    // unsigned.
1051    bool FromIsSigned;
1052    uint64_t FromSize = Context.getTypeSize(FromType);
1053
1054    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1055    FromIsSigned = true;
1056
1057    // The types we'll try to promote to, in the appropriate
1058    // order. Try each of these types.
1059    QualType PromoteTypes[6] = {
1060      Context.IntTy, Context.UnsignedIntTy,
1061      Context.LongTy, Context.UnsignedLongTy ,
1062      Context.LongLongTy, Context.UnsignedLongLongTy
1063    };
1064    for (int Idx = 0; Idx < 6; ++Idx) {
1065      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1066      if (FromSize < ToSize ||
1067          (FromSize == ToSize &&
1068           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1069        // We found the type that we can promote to. If this is the
1070        // type we wanted, we have a promotion. Otherwise, no
1071        // promotion.
1072        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1073      }
1074    }
1075  }
1076
1077  // An rvalue for an integral bit-field (9.6) can be converted to an
1078  // rvalue of type int if int can represent all the values of the
1079  // bit-field; otherwise, it can be converted to unsigned int if
1080  // unsigned int can represent all the values of the bit-field. If
1081  // the bit-field is larger yet, no integral promotion applies to
1082  // it. If the bit-field has an enumerated type, it is treated as any
1083  // other value of that type for promotion purposes (C++ 4.5p3).
1084  // FIXME: We should delay checking of bit-fields until we actually perform the
1085  // conversion.
1086  using llvm::APSInt;
1087  if (From)
1088    if (FieldDecl *MemberDecl = From->getBitField()) {
1089      APSInt BitWidth;
1090      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
1091          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1092        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1093        ToSize = Context.getTypeSize(ToType);
1094
1095        // Are we promoting to an int from a bitfield that fits in an int?
1096        if (BitWidth < ToSize ||
1097            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1098          return To->getKind() == BuiltinType::Int;
1099        }
1100
1101        // Are we promoting to an unsigned int from an unsigned bitfield
1102        // that fits into an unsigned int?
1103        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1104          return To->getKind() == BuiltinType::UInt;
1105        }
1106
1107        return false;
1108      }
1109    }
1110
1111  // An rvalue of type bool can be converted to an rvalue of type int,
1112  // with false becoming zero and true becoming one (C++ 4.5p4).
1113  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1114    return true;
1115  }
1116
1117  return false;
1118}
1119
1120/// IsFloatingPointPromotion - Determines whether the conversion from
1121/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1122/// returns true and sets PromotedType to the promoted type.
1123bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1124  /// An rvalue of type float can be converted to an rvalue of type
1125  /// double. (C++ 4.6p1).
1126  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1127    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1128      if (FromBuiltin->getKind() == BuiltinType::Float &&
1129          ToBuiltin->getKind() == BuiltinType::Double)
1130        return true;
1131
1132      // C99 6.3.1.5p1:
1133      //   When a float is promoted to double or long double, or a
1134      //   double is promoted to long double [...].
1135      if (!getLangOptions().CPlusPlus &&
1136          (FromBuiltin->getKind() == BuiltinType::Float ||
1137           FromBuiltin->getKind() == BuiltinType::Double) &&
1138          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1139        return true;
1140    }
1141
1142  return false;
1143}
1144
1145/// \brief Determine if a conversion is a complex promotion.
1146///
1147/// A complex promotion is defined as a complex -> complex conversion
1148/// where the conversion between the underlying real types is a
1149/// floating-point or integral promotion.
1150bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1151  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1152  if (!FromComplex)
1153    return false;
1154
1155  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1156  if (!ToComplex)
1157    return false;
1158
1159  return IsFloatingPointPromotion(FromComplex->getElementType(),
1160                                  ToComplex->getElementType()) ||
1161    IsIntegralPromotion(0, FromComplex->getElementType(),
1162                        ToComplex->getElementType());
1163}
1164
1165/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1166/// the pointer type FromPtr to a pointer to type ToPointee, with the
1167/// same type qualifiers as FromPtr has on its pointee type. ToType,
1168/// if non-empty, will be a pointer to ToType that may or may not have
1169/// the right set of qualifiers on its pointee.
1170static QualType
1171BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
1172                                   QualType ToPointee, QualType ToType,
1173                                   ASTContext &Context) {
1174  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
1175  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1176  Qualifiers Quals = CanonFromPointee.getQualifiers();
1177
1178  // Exact qualifier match -> return the pointer type we're converting to.
1179  if (CanonToPointee.getLocalQualifiers() == Quals) {
1180    // ToType is exactly what we need. Return it.
1181    if (!ToType.isNull())
1182      return ToType;
1183
1184    // Build a pointer to ToPointee. It has the right qualifiers
1185    // already.
1186    return Context.getPointerType(ToPointee);
1187  }
1188
1189  // Just build a canonical type that has the right qualifiers.
1190  return Context.getPointerType(
1191         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1192                                  Quals));
1193}
1194
1195/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1196/// the FromType, which is an objective-c pointer, to ToType, which may or may
1197/// not have the right set of qualifiers.
1198static QualType
1199BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1200                                             QualType ToType,
1201                                             ASTContext &Context) {
1202  QualType CanonFromType = Context.getCanonicalType(FromType);
1203  QualType CanonToType = Context.getCanonicalType(ToType);
1204  Qualifiers Quals = CanonFromType.getQualifiers();
1205
1206  // Exact qualifier match -> return the pointer type we're converting to.
1207  if (CanonToType.getLocalQualifiers() == Quals)
1208    return ToType;
1209
1210  // Just build a canonical type that has the right qualifiers.
1211  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1212}
1213
1214static bool isNullPointerConstantForConversion(Expr *Expr,
1215                                               bool InOverloadResolution,
1216                                               ASTContext &Context) {
1217  // Handle value-dependent integral null pointer constants correctly.
1218  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1219  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1220      Expr->getType()->isIntegralType())
1221    return !InOverloadResolution;
1222
1223  return Expr->isNullPointerConstant(Context,
1224                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1225                                        : Expr::NPC_ValueDependentIsNull);
1226}
1227
1228/// IsPointerConversion - Determines whether the conversion of the
1229/// expression From, which has the (possibly adjusted) type FromType,
1230/// can be converted to the type ToType via a pointer conversion (C++
1231/// 4.10). If so, returns true and places the converted type (that
1232/// might differ from ToType in its cv-qualifiers at some level) into
1233/// ConvertedType.
1234///
1235/// This routine also supports conversions to and from block pointers
1236/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1237/// pointers to interfaces. FIXME: Once we've determined the
1238/// appropriate overloading rules for Objective-C, we may want to
1239/// split the Objective-C checks into a different routine; however,
1240/// GCC seems to consider all of these conversions to be pointer
1241/// conversions, so for now they live here. IncompatibleObjC will be
1242/// set if the conversion is an allowed Objective-C conversion that
1243/// should result in a warning.
1244bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1245                               bool InOverloadResolution,
1246                               QualType& ConvertedType,
1247                               bool &IncompatibleObjC) {
1248  IncompatibleObjC = false;
1249  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1250    return true;
1251
1252  // Conversion from a null pointer constant to any Objective-C pointer type.
1253  if (ToType->isObjCObjectPointerType() &&
1254      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1255    ConvertedType = ToType;
1256    return true;
1257  }
1258
1259  // Blocks: Block pointers can be converted to void*.
1260  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1261      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1262    ConvertedType = ToType;
1263    return true;
1264  }
1265  // Blocks: A null pointer constant can be converted to a block
1266  // pointer type.
1267  if (ToType->isBlockPointerType() &&
1268      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1269    ConvertedType = ToType;
1270    return true;
1271  }
1272
1273  // If the left-hand-side is nullptr_t, the right side can be a null
1274  // pointer constant.
1275  if (ToType->isNullPtrType() &&
1276      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1277    ConvertedType = ToType;
1278    return true;
1279  }
1280
1281  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1282  if (!ToTypePtr)
1283    return false;
1284
1285  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1286  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1287    ConvertedType = ToType;
1288    return true;
1289  }
1290
1291  // Beyond this point, both types need to be pointers
1292  // , including objective-c pointers.
1293  QualType ToPointeeType = ToTypePtr->getPointeeType();
1294  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1295    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1296                                                       ToType, Context);
1297    return true;
1298
1299  }
1300  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1301  if (!FromTypePtr)
1302    return false;
1303
1304  QualType FromPointeeType = FromTypePtr->getPointeeType();
1305
1306  // An rvalue of type "pointer to cv T," where T is an object type,
1307  // can be converted to an rvalue of type "pointer to cv void" (C++
1308  // 4.10p2).
1309  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1310    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1311                                                       ToPointeeType,
1312                                                       ToType, Context);
1313    return true;
1314  }
1315
1316  // When we're overloading in C, we allow a special kind of pointer
1317  // conversion for compatible-but-not-identical pointee types.
1318  if (!getLangOptions().CPlusPlus &&
1319      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1320    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1321                                                       ToPointeeType,
1322                                                       ToType, Context);
1323    return true;
1324  }
1325
1326  // C++ [conv.ptr]p3:
1327  //
1328  //   An rvalue of type "pointer to cv D," where D is a class type,
1329  //   can be converted to an rvalue of type "pointer to cv B," where
1330  //   B is a base class (clause 10) of D. If B is an inaccessible
1331  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1332  //   necessitates this conversion is ill-formed. The result of the
1333  //   conversion is a pointer to the base class sub-object of the
1334  //   derived class object. The null pointer value is converted to
1335  //   the null pointer value of the destination type.
1336  //
1337  // Note that we do not check for ambiguity or inaccessibility
1338  // here. That is handled by CheckPointerConversion.
1339  if (getLangOptions().CPlusPlus &&
1340      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1341      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1342      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1343      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1344    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1345                                                       ToPointeeType,
1346                                                       ToType, Context);
1347    return true;
1348  }
1349
1350  return false;
1351}
1352
1353/// isObjCPointerConversion - Determines whether this is an
1354/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1355/// with the same arguments and return values.
1356bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1357                                   QualType& ConvertedType,
1358                                   bool &IncompatibleObjC) {
1359  if (!getLangOptions().ObjC1)
1360    return false;
1361
1362  // First, we handle all conversions on ObjC object pointer types.
1363  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1364  const ObjCObjectPointerType *FromObjCPtr =
1365    FromType->getAs<ObjCObjectPointerType>();
1366
1367  if (ToObjCPtr && FromObjCPtr) {
1368    // Objective C++: We're able to convert between "id" or "Class" and a
1369    // pointer to any interface (in both directions).
1370    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1371      ConvertedType = ToType;
1372      return true;
1373    }
1374    // Conversions with Objective-C's id<...>.
1375    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1376         ToObjCPtr->isObjCQualifiedIdType()) &&
1377        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1378                                                  /*compare=*/false)) {
1379      ConvertedType = ToType;
1380      return true;
1381    }
1382    // Objective C++: We're able to convert from a pointer to an
1383    // interface to a pointer to a different interface.
1384    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1385      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1386      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1387      if (getLangOptions().CPlusPlus && LHS && RHS &&
1388          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1389                                                FromObjCPtr->getPointeeType()))
1390        return false;
1391      ConvertedType = ToType;
1392      return true;
1393    }
1394
1395    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1396      // Okay: this is some kind of implicit downcast of Objective-C
1397      // interfaces, which is permitted. However, we're going to
1398      // complain about it.
1399      IncompatibleObjC = true;
1400      ConvertedType = FromType;
1401      return true;
1402    }
1403  }
1404  // Beyond this point, both types need to be C pointers or block pointers.
1405  QualType ToPointeeType;
1406  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1407    ToPointeeType = ToCPtr->getPointeeType();
1408  else if (const BlockPointerType *ToBlockPtr =
1409            ToType->getAs<BlockPointerType>()) {
1410    // Objective C++: We're able to convert from a pointer to any object
1411    // to a block pointer type.
1412    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1413      ConvertedType = ToType;
1414      return true;
1415    }
1416    ToPointeeType = ToBlockPtr->getPointeeType();
1417  }
1418  else if (FromType->getAs<BlockPointerType>() &&
1419           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1420    // Objective C++: We're able to convert from a block pointer type to a
1421    // pointer to any object.
1422    ConvertedType = ToType;
1423    return true;
1424  }
1425  else
1426    return false;
1427
1428  QualType FromPointeeType;
1429  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1430    FromPointeeType = FromCPtr->getPointeeType();
1431  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1432    FromPointeeType = FromBlockPtr->getPointeeType();
1433  else
1434    return false;
1435
1436  // If we have pointers to pointers, recursively check whether this
1437  // is an Objective-C conversion.
1438  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1439      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1440                              IncompatibleObjC)) {
1441    // We always complain about this conversion.
1442    IncompatibleObjC = true;
1443    ConvertedType = ToType;
1444    return true;
1445  }
1446  // Allow conversion of pointee being objective-c pointer to another one;
1447  // as in I* to id.
1448  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1449      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1450      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1451                              IncompatibleObjC)) {
1452    ConvertedType = ToType;
1453    return true;
1454  }
1455
1456  // If we have pointers to functions or blocks, check whether the only
1457  // differences in the argument and result types are in Objective-C
1458  // pointer conversions. If so, we permit the conversion (but
1459  // complain about it).
1460  const FunctionProtoType *FromFunctionType
1461    = FromPointeeType->getAs<FunctionProtoType>();
1462  const FunctionProtoType *ToFunctionType
1463    = ToPointeeType->getAs<FunctionProtoType>();
1464  if (FromFunctionType && ToFunctionType) {
1465    // If the function types are exactly the same, this isn't an
1466    // Objective-C pointer conversion.
1467    if (Context.getCanonicalType(FromPointeeType)
1468          == Context.getCanonicalType(ToPointeeType))
1469      return false;
1470
1471    // Perform the quick checks that will tell us whether these
1472    // function types are obviously different.
1473    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1474        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1475        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1476      return false;
1477
1478    bool HasObjCConversion = false;
1479    if (Context.getCanonicalType(FromFunctionType->getResultType())
1480          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1481      // Okay, the types match exactly. Nothing to do.
1482    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1483                                       ToFunctionType->getResultType(),
1484                                       ConvertedType, IncompatibleObjC)) {
1485      // Okay, we have an Objective-C pointer conversion.
1486      HasObjCConversion = true;
1487    } else {
1488      // Function types are too different. Abort.
1489      return false;
1490    }
1491
1492    // Check argument types.
1493    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1494         ArgIdx != NumArgs; ++ArgIdx) {
1495      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1496      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1497      if (Context.getCanonicalType(FromArgType)
1498            == Context.getCanonicalType(ToArgType)) {
1499        // Okay, the types match exactly. Nothing to do.
1500      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1501                                         ConvertedType, IncompatibleObjC)) {
1502        // Okay, we have an Objective-C pointer conversion.
1503        HasObjCConversion = true;
1504      } else {
1505        // Argument types are too different. Abort.
1506        return false;
1507      }
1508    }
1509
1510    if (HasObjCConversion) {
1511      // We had an Objective-C conversion. Allow this pointer
1512      // conversion, but complain about it.
1513      ConvertedType = ToType;
1514      IncompatibleObjC = true;
1515      return true;
1516    }
1517  }
1518
1519  return false;
1520}
1521
1522/// FunctionArgTypesAreEqual - This routine checks two function proto types
1523/// for equlity of their argument types. Caller has already checked that
1524/// they have same number of arguments. This routine assumes that Objective-C
1525/// pointer types which only differ in their protocol qualifiers are equal.
1526bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,
1527                            FunctionProtoType*  NewType){
1528  if (!getLangOptions().ObjC1)
1529    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1530                      NewType->arg_type_begin());
1531
1532  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1533       N = NewType->arg_type_begin(),
1534       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1535    QualType ToType = (*O);
1536    QualType FromType = (*N);
1537    if (ToType != FromType) {
1538      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1539        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1540          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1541               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1542              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1543               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1544            continue;
1545      }
1546      else if (const ObjCObjectPointerType *PTTo =
1547                 ToType->getAs<ObjCObjectPointerType>()) {
1548        if (const ObjCObjectPointerType *PTFr =
1549              FromType->getAs<ObjCObjectPointerType>())
1550          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1551            continue;
1552      }
1553      return false;
1554    }
1555  }
1556  return true;
1557}
1558
1559/// CheckPointerConversion - Check the pointer conversion from the
1560/// expression From to the type ToType. This routine checks for
1561/// ambiguous or inaccessible derived-to-base pointer
1562/// conversions for which IsPointerConversion has already returned
1563/// true. It returns true and produces a diagnostic if there was an
1564/// error, or returns false otherwise.
1565bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1566                                  CastExpr::CastKind &Kind,
1567                                  CXXBaseSpecifierArray& BasePath,
1568                                  bool IgnoreBaseAccess) {
1569  QualType FromType = From->getType();
1570
1571  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1572    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1573      QualType FromPointeeType = FromPtrType->getPointeeType(),
1574               ToPointeeType   = ToPtrType->getPointeeType();
1575
1576      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1577          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1578        // We must have a derived-to-base conversion. Check an
1579        // ambiguous or inaccessible conversion.
1580        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1581                                         From->getExprLoc(),
1582                                         From->getSourceRange(), &BasePath,
1583                                         IgnoreBaseAccess))
1584          return true;
1585
1586        // The conversion was successful.
1587        Kind = CastExpr::CK_DerivedToBase;
1588      }
1589    }
1590  if (const ObjCObjectPointerType *FromPtrType =
1591        FromType->getAs<ObjCObjectPointerType>())
1592    if (const ObjCObjectPointerType *ToPtrType =
1593          ToType->getAs<ObjCObjectPointerType>()) {
1594      // Objective-C++ conversions are always okay.
1595      // FIXME: We should have a different class of conversions for the
1596      // Objective-C++ implicit conversions.
1597      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1598        return false;
1599
1600  }
1601  return false;
1602}
1603
1604/// IsMemberPointerConversion - Determines whether the conversion of the
1605/// expression From, which has the (possibly adjusted) type FromType, can be
1606/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1607/// If so, returns true and places the converted type (that might differ from
1608/// ToType in its cv-qualifiers at some level) into ConvertedType.
1609bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1610                                     QualType ToType,
1611                                     bool InOverloadResolution,
1612                                     QualType &ConvertedType) {
1613  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1614  if (!ToTypePtr)
1615    return false;
1616
1617  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1618  if (From->isNullPointerConstant(Context,
1619                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1620                                        : Expr::NPC_ValueDependentIsNull)) {
1621    ConvertedType = ToType;
1622    return true;
1623  }
1624
1625  // Otherwise, both types have to be member pointers.
1626  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1627  if (!FromTypePtr)
1628    return false;
1629
1630  // A pointer to member of B can be converted to a pointer to member of D,
1631  // where D is derived from B (C++ 4.11p2).
1632  QualType FromClass(FromTypePtr->getClass(), 0);
1633  QualType ToClass(ToTypePtr->getClass(), 0);
1634  // FIXME: What happens when these are dependent? Is this function even called?
1635
1636  if (IsDerivedFrom(ToClass, FromClass)) {
1637    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1638                                                 ToClass.getTypePtr());
1639    return true;
1640  }
1641
1642  return false;
1643}
1644
1645/// CheckMemberPointerConversion - Check the member pointer conversion from the
1646/// expression From to the type ToType. This routine checks for ambiguous or
1647/// virtual or inaccessible base-to-derived member pointer conversions
1648/// for which IsMemberPointerConversion has already returned true. It returns
1649/// true and produces a diagnostic if there was an error, or returns false
1650/// otherwise.
1651bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1652                                        CastExpr::CastKind &Kind,
1653                                        CXXBaseSpecifierArray &BasePath,
1654                                        bool IgnoreBaseAccess) {
1655  QualType FromType = From->getType();
1656  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1657  if (!FromPtrType) {
1658    // This must be a null pointer to member pointer conversion
1659    assert(From->isNullPointerConstant(Context,
1660                                       Expr::NPC_ValueDependentIsNull) &&
1661           "Expr must be null pointer constant!");
1662    Kind = CastExpr::CK_NullToMemberPointer;
1663    return false;
1664  }
1665
1666  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1667  assert(ToPtrType && "No member pointer cast has a target type "
1668                      "that is not a member pointer.");
1669
1670  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1671  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1672
1673  // FIXME: What about dependent types?
1674  assert(FromClass->isRecordType() && "Pointer into non-class.");
1675  assert(ToClass->isRecordType() && "Pointer into non-class.");
1676
1677  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1678                     /*DetectVirtual=*/true);
1679  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1680  assert(DerivationOkay &&
1681         "Should not have been called if derivation isn't OK.");
1682  (void)DerivationOkay;
1683
1684  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1685                                  getUnqualifiedType())) {
1686    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1687    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1688      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1689    return true;
1690  }
1691
1692  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1693    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1694      << FromClass << ToClass << QualType(VBase, 0)
1695      << From->getSourceRange();
1696    return true;
1697  }
1698
1699  if (!IgnoreBaseAccess)
1700    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1701                         Paths.front(),
1702                         diag::err_downcast_from_inaccessible_base);
1703
1704  // Must be a base to derived member conversion.
1705  BuildBasePathArray(Paths, BasePath);
1706  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1707  return false;
1708}
1709
1710/// IsQualificationConversion - Determines whether the conversion from
1711/// an rvalue of type FromType to ToType is a qualification conversion
1712/// (C++ 4.4).
1713bool
1714Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1715  FromType = Context.getCanonicalType(FromType);
1716  ToType = Context.getCanonicalType(ToType);
1717
1718  // If FromType and ToType are the same type, this is not a
1719  // qualification conversion.
1720  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1721    return false;
1722
1723  // (C++ 4.4p4):
1724  //   A conversion can add cv-qualifiers at levels other than the first
1725  //   in multi-level pointers, subject to the following rules: [...]
1726  bool PreviousToQualsIncludeConst = true;
1727  bool UnwrappedAnyPointer = false;
1728  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1729    // Within each iteration of the loop, we check the qualifiers to
1730    // determine if this still looks like a qualification
1731    // conversion. Then, if all is well, we unwrap one more level of
1732    // pointers or pointers-to-members and do it all again
1733    // until there are no more pointers or pointers-to-members left to
1734    // unwrap.
1735    UnwrappedAnyPointer = true;
1736
1737    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1738    //      2,j, and similarly for volatile.
1739    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1740      return false;
1741
1742    //   -- if the cv 1,j and cv 2,j are different, then const is in
1743    //      every cv for 0 < k < j.
1744    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1745        && !PreviousToQualsIncludeConst)
1746      return false;
1747
1748    // Keep track of whether all prior cv-qualifiers in the "to" type
1749    // include const.
1750    PreviousToQualsIncludeConst
1751      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1752  }
1753
1754  // We are left with FromType and ToType being the pointee types
1755  // after unwrapping the original FromType and ToType the same number
1756  // of types. If we unwrapped any pointers, and if FromType and
1757  // ToType have the same unqualified type (since we checked
1758  // qualifiers above), then this is a qualification conversion.
1759  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1760}
1761
1762/// Determines whether there is a user-defined conversion sequence
1763/// (C++ [over.ics.user]) that converts expression From to the type
1764/// ToType. If such a conversion exists, User will contain the
1765/// user-defined conversion sequence that performs such a conversion
1766/// and this routine will return true. Otherwise, this routine returns
1767/// false and User is unspecified.
1768///
1769/// \param AllowExplicit  true if the conversion should consider C++0x
1770/// "explicit" conversion functions as well as non-explicit conversion
1771/// functions (C++0x [class.conv.fct]p2).
1772OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1773                                          UserDefinedConversionSequence& User,
1774                                           OverloadCandidateSet& CandidateSet,
1775                                                bool AllowExplicit) {
1776  // Whether we will only visit constructors.
1777  bool ConstructorsOnly = false;
1778
1779  // If the type we are conversion to is a class type, enumerate its
1780  // constructors.
1781  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1782    // C++ [over.match.ctor]p1:
1783    //   When objects of class type are direct-initialized (8.5), or
1784    //   copy-initialized from an expression of the same or a
1785    //   derived class type (8.5), overload resolution selects the
1786    //   constructor. [...] For copy-initialization, the candidate
1787    //   functions are all the converting constructors (12.3.1) of
1788    //   that class. The argument list is the expression-list within
1789    //   the parentheses of the initializer.
1790    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1791        (From->getType()->getAs<RecordType>() &&
1792         IsDerivedFrom(From->getType(), ToType)))
1793      ConstructorsOnly = true;
1794
1795    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1796      // We're not going to find any constructors.
1797    } else if (CXXRecordDecl *ToRecordDecl
1798                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1799      DeclarationName ConstructorName
1800        = Context.DeclarationNames.getCXXConstructorName(
1801                       Context.getCanonicalType(ToType).getUnqualifiedType());
1802      DeclContext::lookup_iterator Con, ConEnd;
1803      for (llvm::tie(Con, ConEnd)
1804             = ToRecordDecl->lookup(ConstructorName);
1805           Con != ConEnd; ++Con) {
1806        NamedDecl *D = *Con;
1807        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1808
1809        // Find the constructor (which may be a template).
1810        CXXConstructorDecl *Constructor = 0;
1811        FunctionTemplateDecl *ConstructorTmpl
1812          = dyn_cast<FunctionTemplateDecl>(D);
1813        if (ConstructorTmpl)
1814          Constructor
1815            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1816        else
1817          Constructor = cast<CXXConstructorDecl>(D);
1818
1819        if (!Constructor->isInvalidDecl() &&
1820            Constructor->isConvertingConstructor(AllowExplicit)) {
1821          if (ConstructorTmpl)
1822            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1823                                         /*ExplicitArgs*/ 0,
1824                                         &From, 1, CandidateSet,
1825                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1826          else
1827            // Allow one user-defined conversion when user specifies a
1828            // From->ToType conversion via an static cast (c-style, etc).
1829            AddOverloadCandidate(Constructor, FoundDecl,
1830                                 &From, 1, CandidateSet,
1831                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1832        }
1833      }
1834    }
1835  }
1836
1837  // Enumerate conversion functions, if we're allowed to.
1838  if (ConstructorsOnly) {
1839  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1840                          PDiag(0) << From->getSourceRange())) {
1841    // No conversion functions from incomplete types.
1842  } else if (const RecordType *FromRecordType
1843                                   = From->getType()->getAs<RecordType>()) {
1844    if (CXXRecordDecl *FromRecordDecl
1845         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1846      // Add all of the conversion functions as candidates.
1847      const UnresolvedSetImpl *Conversions
1848        = FromRecordDecl->getVisibleConversionFunctions();
1849      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1850             E = Conversions->end(); I != E; ++I) {
1851        DeclAccessPair FoundDecl = I.getPair();
1852        NamedDecl *D = FoundDecl.getDecl();
1853        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1854        if (isa<UsingShadowDecl>(D))
1855          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1856
1857        CXXConversionDecl *Conv;
1858        FunctionTemplateDecl *ConvTemplate;
1859        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1860          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1861        else
1862          Conv = cast<CXXConversionDecl>(D);
1863
1864        if (AllowExplicit || !Conv->isExplicit()) {
1865          if (ConvTemplate)
1866            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1867                                           ActingContext, From, ToType,
1868                                           CandidateSet);
1869          else
1870            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1871                                   From, ToType, CandidateSet);
1872        }
1873      }
1874    }
1875  }
1876
1877  OverloadCandidateSet::iterator Best;
1878  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1879    case OR_Success:
1880      // Record the standard conversion we used and the conversion function.
1881      if (CXXConstructorDecl *Constructor
1882            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1883        // C++ [over.ics.user]p1:
1884        //   If the user-defined conversion is specified by a
1885        //   constructor (12.3.1), the initial standard conversion
1886        //   sequence converts the source type to the type required by
1887        //   the argument of the constructor.
1888        //
1889        QualType ThisType = Constructor->getThisType(Context);
1890        if (Best->Conversions[0].isEllipsis())
1891          User.EllipsisConversion = true;
1892        else {
1893          User.Before = Best->Conversions[0].Standard;
1894          User.EllipsisConversion = false;
1895        }
1896        User.ConversionFunction = Constructor;
1897        User.After.setAsIdentityConversion();
1898        User.After.setFromType(
1899          ThisType->getAs<PointerType>()->getPointeeType());
1900        User.After.setAllToTypes(ToType);
1901        return OR_Success;
1902      } else if (CXXConversionDecl *Conversion
1903                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1904        // C++ [over.ics.user]p1:
1905        //
1906        //   [...] If the user-defined conversion is specified by a
1907        //   conversion function (12.3.2), the initial standard
1908        //   conversion sequence converts the source type to the
1909        //   implicit object parameter of the conversion function.
1910        User.Before = Best->Conversions[0].Standard;
1911        User.ConversionFunction = Conversion;
1912        User.EllipsisConversion = false;
1913
1914        // C++ [over.ics.user]p2:
1915        //   The second standard conversion sequence converts the
1916        //   result of the user-defined conversion to the target type
1917        //   for the sequence. Since an implicit conversion sequence
1918        //   is an initialization, the special rules for
1919        //   initialization by user-defined conversion apply when
1920        //   selecting the best user-defined conversion for a
1921        //   user-defined conversion sequence (see 13.3.3 and
1922        //   13.3.3.1).
1923        User.After = Best->FinalConversion;
1924        return OR_Success;
1925      } else {
1926        assert(false && "Not a constructor or conversion function?");
1927        return OR_No_Viable_Function;
1928      }
1929
1930    case OR_No_Viable_Function:
1931      return OR_No_Viable_Function;
1932    case OR_Deleted:
1933      // No conversion here! We're done.
1934      return OR_Deleted;
1935
1936    case OR_Ambiguous:
1937      return OR_Ambiguous;
1938    }
1939
1940  return OR_No_Viable_Function;
1941}
1942
1943bool
1944Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1945  ImplicitConversionSequence ICS;
1946  OverloadCandidateSet CandidateSet(From->getExprLoc());
1947  OverloadingResult OvResult =
1948    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1949                            CandidateSet, false);
1950  if (OvResult == OR_Ambiguous)
1951    Diag(From->getSourceRange().getBegin(),
1952         diag::err_typecheck_ambiguous_condition)
1953          << From->getType() << ToType << From->getSourceRange();
1954  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1955    Diag(From->getSourceRange().getBegin(),
1956         diag::err_typecheck_nonviable_condition)
1957    << From->getType() << ToType << From->getSourceRange();
1958  else
1959    return false;
1960  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1961  return true;
1962}
1963
1964/// CompareImplicitConversionSequences - Compare two implicit
1965/// conversion sequences to determine whether one is better than the
1966/// other or if they are indistinguishable (C++ 13.3.3.2).
1967ImplicitConversionSequence::CompareKind
1968Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1969                                         const ImplicitConversionSequence& ICS2)
1970{
1971  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1972  // conversion sequences (as defined in 13.3.3.1)
1973  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1974  //      conversion sequence than a user-defined conversion sequence or
1975  //      an ellipsis conversion sequence, and
1976  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1977  //      conversion sequence than an ellipsis conversion sequence
1978  //      (13.3.3.1.3).
1979  //
1980  // C++0x [over.best.ics]p10:
1981  //   For the purpose of ranking implicit conversion sequences as
1982  //   described in 13.3.3.2, the ambiguous conversion sequence is
1983  //   treated as a user-defined sequence that is indistinguishable
1984  //   from any other user-defined conversion sequence.
1985  if (ICS1.getKindRank() < ICS2.getKindRank())
1986    return ImplicitConversionSequence::Better;
1987  else if (ICS2.getKindRank() < ICS1.getKindRank())
1988    return ImplicitConversionSequence::Worse;
1989
1990  // The following checks require both conversion sequences to be of
1991  // the same kind.
1992  if (ICS1.getKind() != ICS2.getKind())
1993    return ImplicitConversionSequence::Indistinguishable;
1994
1995  // Two implicit conversion sequences of the same form are
1996  // indistinguishable conversion sequences unless one of the
1997  // following rules apply: (C++ 13.3.3.2p3):
1998  if (ICS1.isStandard())
1999    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
2000  else if (ICS1.isUserDefined()) {
2001    // User-defined conversion sequence U1 is a better conversion
2002    // sequence than another user-defined conversion sequence U2 if
2003    // they contain the same user-defined conversion function or
2004    // constructor and if the second standard conversion sequence of
2005    // U1 is better than the second standard conversion sequence of
2006    // U2 (C++ 13.3.3.2p3).
2007    if (ICS1.UserDefined.ConversionFunction ==
2008          ICS2.UserDefined.ConversionFunction)
2009      return CompareStandardConversionSequences(ICS1.UserDefined.After,
2010                                                ICS2.UserDefined.After);
2011  }
2012
2013  return ImplicitConversionSequence::Indistinguishable;
2014}
2015
2016// Per 13.3.3.2p3, compare the given standard conversion sequences to
2017// determine if one is a proper subset of the other.
2018static ImplicitConversionSequence::CompareKind
2019compareStandardConversionSubsets(ASTContext &Context,
2020                                 const StandardConversionSequence& SCS1,
2021                                 const StandardConversionSequence& SCS2) {
2022  ImplicitConversionSequence::CompareKind Result
2023    = ImplicitConversionSequence::Indistinguishable;
2024
2025  if (SCS1.Second != SCS2.Second) {
2026    if (SCS1.Second == ICK_Identity)
2027      Result = ImplicitConversionSequence::Better;
2028    else if (SCS2.Second == ICK_Identity)
2029      Result = ImplicitConversionSequence::Worse;
2030    else
2031      return ImplicitConversionSequence::Indistinguishable;
2032  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
2033    return ImplicitConversionSequence::Indistinguishable;
2034
2035  if (SCS1.Third == SCS2.Third) {
2036    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2037                             : ImplicitConversionSequence::Indistinguishable;
2038  }
2039
2040  if (SCS1.Third == ICK_Identity)
2041    return Result == ImplicitConversionSequence::Worse
2042             ? ImplicitConversionSequence::Indistinguishable
2043             : ImplicitConversionSequence::Better;
2044
2045  if (SCS2.Third == ICK_Identity)
2046    return Result == ImplicitConversionSequence::Better
2047             ? ImplicitConversionSequence::Indistinguishable
2048             : ImplicitConversionSequence::Worse;
2049
2050  return ImplicitConversionSequence::Indistinguishable;
2051}
2052
2053/// CompareStandardConversionSequences - Compare two standard
2054/// conversion sequences to determine whether one is better than the
2055/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2056ImplicitConversionSequence::CompareKind
2057Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
2058                                         const StandardConversionSequence& SCS2)
2059{
2060  // Standard conversion sequence S1 is a better conversion sequence
2061  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2062
2063  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2064  //     sequences in the canonical form defined by 13.3.3.1.1,
2065  //     excluding any Lvalue Transformation; the identity conversion
2066  //     sequence is considered to be a subsequence of any
2067  //     non-identity conversion sequence) or, if not that,
2068  if (ImplicitConversionSequence::CompareKind CK
2069        = compareStandardConversionSubsets(Context, SCS1, SCS2))
2070    return CK;
2071
2072  //  -- the rank of S1 is better than the rank of S2 (by the rules
2073  //     defined below), or, if not that,
2074  ImplicitConversionRank Rank1 = SCS1.getRank();
2075  ImplicitConversionRank Rank2 = SCS2.getRank();
2076  if (Rank1 < Rank2)
2077    return ImplicitConversionSequence::Better;
2078  else if (Rank2 < Rank1)
2079    return ImplicitConversionSequence::Worse;
2080
2081  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2082  // are indistinguishable unless one of the following rules
2083  // applies:
2084
2085  //   A conversion that is not a conversion of a pointer, or
2086  //   pointer to member, to bool is better than another conversion
2087  //   that is such a conversion.
2088  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2089    return SCS2.isPointerConversionToBool()
2090             ? ImplicitConversionSequence::Better
2091             : ImplicitConversionSequence::Worse;
2092
2093  // C++ [over.ics.rank]p4b2:
2094  //
2095  //   If class B is derived directly or indirectly from class A,
2096  //   conversion of B* to A* is better than conversion of B* to
2097  //   void*, and conversion of A* to void* is better than conversion
2098  //   of B* to void*.
2099  bool SCS1ConvertsToVoid
2100    = SCS1.isPointerConversionToVoidPointer(Context);
2101  bool SCS2ConvertsToVoid
2102    = SCS2.isPointerConversionToVoidPointer(Context);
2103  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2104    // Exactly one of the conversion sequences is a conversion to
2105    // a void pointer; it's the worse conversion.
2106    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2107                              : ImplicitConversionSequence::Worse;
2108  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2109    // Neither conversion sequence converts to a void pointer; compare
2110    // their derived-to-base conversions.
2111    if (ImplicitConversionSequence::CompareKind DerivedCK
2112          = CompareDerivedToBaseConversions(SCS1, SCS2))
2113      return DerivedCK;
2114  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2115    // Both conversion sequences are conversions to void
2116    // pointers. Compare the source types to determine if there's an
2117    // inheritance relationship in their sources.
2118    QualType FromType1 = SCS1.getFromType();
2119    QualType FromType2 = SCS2.getFromType();
2120
2121    // Adjust the types we're converting from via the array-to-pointer
2122    // conversion, if we need to.
2123    if (SCS1.First == ICK_Array_To_Pointer)
2124      FromType1 = Context.getArrayDecayedType(FromType1);
2125    if (SCS2.First == ICK_Array_To_Pointer)
2126      FromType2 = Context.getArrayDecayedType(FromType2);
2127
2128    QualType FromPointee1
2129      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2130    QualType FromPointee2
2131      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2132
2133    if (IsDerivedFrom(FromPointee2, FromPointee1))
2134      return ImplicitConversionSequence::Better;
2135    else if (IsDerivedFrom(FromPointee1, FromPointee2))
2136      return ImplicitConversionSequence::Worse;
2137
2138    // Objective-C++: If one interface is more specific than the
2139    // other, it is the better one.
2140    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2141    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2142    if (FromIface1 && FromIface1) {
2143      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2144        return ImplicitConversionSequence::Better;
2145      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2146        return ImplicitConversionSequence::Worse;
2147    }
2148  }
2149
2150  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2151  // bullet 3).
2152  if (ImplicitConversionSequence::CompareKind QualCK
2153        = CompareQualificationConversions(SCS1, SCS2))
2154    return QualCK;
2155
2156  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2157    // C++0x [over.ics.rank]p3b4:
2158    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2159    //      implicit object parameter of a non-static member function declared
2160    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2161    //      rvalue and S2 binds an lvalue reference.
2162    // FIXME: We don't know if we're dealing with the implicit object parameter,
2163    // or if the member function in this case has a ref qualifier.
2164    // (Of course, we don't have ref qualifiers yet.)
2165    if (SCS1.RRefBinding != SCS2.RRefBinding)
2166      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2167                              : ImplicitConversionSequence::Worse;
2168
2169    // C++ [over.ics.rank]p3b4:
2170    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2171    //      which the references refer are the same type except for
2172    //      top-level cv-qualifiers, and the type to which the reference
2173    //      initialized by S2 refers is more cv-qualified than the type
2174    //      to which the reference initialized by S1 refers.
2175    QualType T1 = SCS1.getToType(2);
2176    QualType T2 = SCS2.getToType(2);
2177    T1 = Context.getCanonicalType(T1);
2178    T2 = Context.getCanonicalType(T2);
2179    Qualifiers T1Quals, T2Quals;
2180    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2181    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2182    if (UnqualT1 == UnqualT2) {
2183      // If the type is an array type, promote the element qualifiers to the type
2184      // for comparison.
2185      if (isa<ArrayType>(T1) && T1Quals)
2186        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2187      if (isa<ArrayType>(T2) && T2Quals)
2188        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2189      if (T2.isMoreQualifiedThan(T1))
2190        return ImplicitConversionSequence::Better;
2191      else if (T1.isMoreQualifiedThan(T2))
2192        return ImplicitConversionSequence::Worse;
2193    }
2194  }
2195
2196  return ImplicitConversionSequence::Indistinguishable;
2197}
2198
2199/// CompareQualificationConversions - Compares two standard conversion
2200/// sequences to determine whether they can be ranked based on their
2201/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2202ImplicitConversionSequence::CompareKind
2203Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
2204                                      const StandardConversionSequence& SCS2) {
2205  // C++ 13.3.3.2p3:
2206  //  -- S1 and S2 differ only in their qualification conversion and
2207  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2208  //     cv-qualification signature of type T1 is a proper subset of
2209  //     the cv-qualification signature of type T2, and S1 is not the
2210  //     deprecated string literal array-to-pointer conversion (4.2).
2211  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2212      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2213    return ImplicitConversionSequence::Indistinguishable;
2214
2215  // FIXME: the example in the standard doesn't use a qualification
2216  // conversion (!)
2217  QualType T1 = SCS1.getToType(2);
2218  QualType T2 = SCS2.getToType(2);
2219  T1 = Context.getCanonicalType(T1);
2220  T2 = Context.getCanonicalType(T2);
2221  Qualifiers T1Quals, T2Quals;
2222  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2223  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2224
2225  // If the types are the same, we won't learn anything by unwrapped
2226  // them.
2227  if (UnqualT1 == UnqualT2)
2228    return ImplicitConversionSequence::Indistinguishable;
2229
2230  // If the type is an array type, promote the element qualifiers to the type
2231  // for comparison.
2232  if (isa<ArrayType>(T1) && T1Quals)
2233    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2234  if (isa<ArrayType>(T2) && T2Quals)
2235    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2236
2237  ImplicitConversionSequence::CompareKind Result
2238    = ImplicitConversionSequence::Indistinguishable;
2239  while (UnwrapSimilarPointerTypes(T1, T2)) {
2240    // Within each iteration of the loop, we check the qualifiers to
2241    // determine if this still looks like a qualification
2242    // conversion. Then, if all is well, we unwrap one more level of
2243    // pointers or pointers-to-members and do it all again
2244    // until there are no more pointers or pointers-to-members left
2245    // to unwrap. This essentially mimics what
2246    // IsQualificationConversion does, but here we're checking for a
2247    // strict subset of qualifiers.
2248    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2249      // The qualifiers are the same, so this doesn't tell us anything
2250      // about how the sequences rank.
2251      ;
2252    else if (T2.isMoreQualifiedThan(T1)) {
2253      // T1 has fewer qualifiers, so it could be the better sequence.
2254      if (Result == ImplicitConversionSequence::Worse)
2255        // Neither has qualifiers that are a subset of the other's
2256        // qualifiers.
2257        return ImplicitConversionSequence::Indistinguishable;
2258
2259      Result = ImplicitConversionSequence::Better;
2260    } else if (T1.isMoreQualifiedThan(T2)) {
2261      // T2 has fewer qualifiers, so it could be the better sequence.
2262      if (Result == ImplicitConversionSequence::Better)
2263        // Neither has qualifiers that are a subset of the other's
2264        // qualifiers.
2265        return ImplicitConversionSequence::Indistinguishable;
2266
2267      Result = ImplicitConversionSequence::Worse;
2268    } else {
2269      // Qualifiers are disjoint.
2270      return ImplicitConversionSequence::Indistinguishable;
2271    }
2272
2273    // If the types after this point are equivalent, we're done.
2274    if (Context.hasSameUnqualifiedType(T1, T2))
2275      break;
2276  }
2277
2278  // Check that the winning standard conversion sequence isn't using
2279  // the deprecated string literal array to pointer conversion.
2280  switch (Result) {
2281  case ImplicitConversionSequence::Better:
2282    if (SCS1.DeprecatedStringLiteralToCharPtr)
2283      Result = ImplicitConversionSequence::Indistinguishable;
2284    break;
2285
2286  case ImplicitConversionSequence::Indistinguishable:
2287    break;
2288
2289  case ImplicitConversionSequence::Worse:
2290    if (SCS2.DeprecatedStringLiteralToCharPtr)
2291      Result = ImplicitConversionSequence::Indistinguishable;
2292    break;
2293  }
2294
2295  return Result;
2296}
2297
2298/// CompareDerivedToBaseConversions - Compares two standard conversion
2299/// sequences to determine whether they can be ranked based on their
2300/// various kinds of derived-to-base conversions (C++
2301/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2302/// conversions between Objective-C interface types.
2303ImplicitConversionSequence::CompareKind
2304Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2305                                      const StandardConversionSequence& SCS2) {
2306  QualType FromType1 = SCS1.getFromType();
2307  QualType ToType1 = SCS1.getToType(1);
2308  QualType FromType2 = SCS2.getFromType();
2309  QualType ToType2 = SCS2.getToType(1);
2310
2311  // Adjust the types we're converting from via the array-to-pointer
2312  // conversion, if we need to.
2313  if (SCS1.First == ICK_Array_To_Pointer)
2314    FromType1 = Context.getArrayDecayedType(FromType1);
2315  if (SCS2.First == ICK_Array_To_Pointer)
2316    FromType2 = Context.getArrayDecayedType(FromType2);
2317
2318  // Canonicalize all of the types.
2319  FromType1 = Context.getCanonicalType(FromType1);
2320  ToType1 = Context.getCanonicalType(ToType1);
2321  FromType2 = Context.getCanonicalType(FromType2);
2322  ToType2 = Context.getCanonicalType(ToType2);
2323
2324  // C++ [over.ics.rank]p4b3:
2325  //
2326  //   If class B is derived directly or indirectly from class A and
2327  //   class C is derived directly or indirectly from B,
2328  //
2329  // For Objective-C, we let A, B, and C also be Objective-C
2330  // interfaces.
2331
2332  // Compare based on pointer conversions.
2333  if (SCS1.Second == ICK_Pointer_Conversion &&
2334      SCS2.Second == ICK_Pointer_Conversion &&
2335      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2336      FromType1->isPointerType() && FromType2->isPointerType() &&
2337      ToType1->isPointerType() && ToType2->isPointerType()) {
2338    QualType FromPointee1
2339      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2340    QualType ToPointee1
2341      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2342    QualType FromPointee2
2343      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2344    QualType ToPointee2
2345      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2346
2347    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2348    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2349    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2350    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2351
2352    //   -- conversion of C* to B* is better than conversion of C* to A*,
2353    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2354      if (IsDerivedFrom(ToPointee1, ToPointee2))
2355        return ImplicitConversionSequence::Better;
2356      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2357        return ImplicitConversionSequence::Worse;
2358
2359      if (ToIface1 && ToIface2) {
2360        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2361          return ImplicitConversionSequence::Better;
2362        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2363          return ImplicitConversionSequence::Worse;
2364      }
2365    }
2366
2367    //   -- conversion of B* to A* is better than conversion of C* to A*,
2368    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2369      if (IsDerivedFrom(FromPointee2, FromPointee1))
2370        return ImplicitConversionSequence::Better;
2371      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2372        return ImplicitConversionSequence::Worse;
2373
2374      if (FromIface1 && FromIface2) {
2375        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2376          return ImplicitConversionSequence::Better;
2377        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2378          return ImplicitConversionSequence::Worse;
2379      }
2380    }
2381  }
2382
2383  // Ranking of member-pointer types.
2384  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2385      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2386      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2387    const MemberPointerType * FromMemPointer1 =
2388                                        FromType1->getAs<MemberPointerType>();
2389    const MemberPointerType * ToMemPointer1 =
2390                                          ToType1->getAs<MemberPointerType>();
2391    const MemberPointerType * FromMemPointer2 =
2392                                          FromType2->getAs<MemberPointerType>();
2393    const MemberPointerType * ToMemPointer2 =
2394                                          ToType2->getAs<MemberPointerType>();
2395    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2396    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2397    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2398    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2399    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2400    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2401    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2402    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2403    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2404    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2405      if (IsDerivedFrom(ToPointee1, ToPointee2))
2406        return ImplicitConversionSequence::Worse;
2407      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2408        return ImplicitConversionSequence::Better;
2409    }
2410    // conversion of B::* to C::* is better than conversion of A::* to C::*
2411    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2412      if (IsDerivedFrom(FromPointee1, FromPointee2))
2413        return ImplicitConversionSequence::Better;
2414      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2415        return ImplicitConversionSequence::Worse;
2416    }
2417  }
2418
2419  if (SCS1.Second == ICK_Derived_To_Base) {
2420    //   -- conversion of C to B is better than conversion of C to A,
2421    //   -- binding of an expression of type C to a reference of type
2422    //      B& is better than binding an expression of type C to a
2423    //      reference of type A&,
2424    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2425        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2426      if (IsDerivedFrom(ToType1, ToType2))
2427        return ImplicitConversionSequence::Better;
2428      else if (IsDerivedFrom(ToType2, ToType1))
2429        return ImplicitConversionSequence::Worse;
2430    }
2431
2432    //   -- conversion of B to A is better than conversion of C to A.
2433    //   -- binding of an expression of type B to a reference of type
2434    //      A& is better than binding an expression of type C to a
2435    //      reference of type A&,
2436    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2437        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2438      if (IsDerivedFrom(FromType2, FromType1))
2439        return ImplicitConversionSequence::Better;
2440      else if (IsDerivedFrom(FromType1, FromType2))
2441        return ImplicitConversionSequence::Worse;
2442    }
2443  }
2444
2445  return ImplicitConversionSequence::Indistinguishable;
2446}
2447
2448/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2449/// determine whether they are reference-related,
2450/// reference-compatible, reference-compatible with added
2451/// qualification, or incompatible, for use in C++ initialization by
2452/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2453/// type, and the first type (T1) is the pointee type of the reference
2454/// type being initialized.
2455Sema::ReferenceCompareResult
2456Sema::CompareReferenceRelationship(SourceLocation Loc,
2457                                   QualType OrigT1, QualType OrigT2,
2458                                   bool& DerivedToBase) {
2459  assert(!OrigT1->isReferenceType() &&
2460    "T1 must be the pointee type of the reference type");
2461  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2462
2463  QualType T1 = Context.getCanonicalType(OrigT1);
2464  QualType T2 = Context.getCanonicalType(OrigT2);
2465  Qualifiers T1Quals, T2Quals;
2466  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2467  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2468
2469  // C++ [dcl.init.ref]p4:
2470  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2471  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2472  //   T1 is a base class of T2.
2473  if (UnqualT1 == UnqualT2)
2474    DerivedToBase = false;
2475  else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2476           IsDerivedFrom(UnqualT2, UnqualT1))
2477    DerivedToBase = true;
2478  else
2479    return Ref_Incompatible;
2480
2481  // At this point, we know that T1 and T2 are reference-related (at
2482  // least).
2483
2484  // If the type is an array type, promote the element qualifiers to the type
2485  // for comparison.
2486  if (isa<ArrayType>(T1) && T1Quals)
2487    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2488  if (isa<ArrayType>(T2) && T2Quals)
2489    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2490
2491  // C++ [dcl.init.ref]p4:
2492  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2493  //   reference-related to T2 and cv1 is the same cv-qualification
2494  //   as, or greater cv-qualification than, cv2. For purposes of
2495  //   overload resolution, cases for which cv1 is greater
2496  //   cv-qualification than cv2 are identified as
2497  //   reference-compatible with added qualification (see 13.3.3.2).
2498  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2499    return Ref_Compatible;
2500  else if (T1.isMoreQualifiedThan(T2))
2501    return Ref_Compatible_With_Added_Qualification;
2502  else
2503    return Ref_Related;
2504}
2505
2506/// \brief Compute an implicit conversion sequence for reference
2507/// initialization.
2508static ImplicitConversionSequence
2509TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2510                 SourceLocation DeclLoc,
2511                 bool SuppressUserConversions,
2512                 bool AllowExplicit) {
2513  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2514
2515  // Most paths end in a failed conversion.
2516  ImplicitConversionSequence ICS;
2517  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2518
2519  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2520  QualType T2 = Init->getType();
2521
2522  // If the initializer is the address of an overloaded function, try
2523  // to resolve the overloaded function. If all goes well, T2 is the
2524  // type of the resulting function.
2525  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2526    DeclAccessPair Found;
2527    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2528                                                                false, Found))
2529      T2 = Fn->getType();
2530  }
2531
2532  // Compute some basic properties of the types and the initializer.
2533  bool isRValRef = DeclType->isRValueReferenceType();
2534  bool DerivedToBase = false;
2535  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2536  Sema::ReferenceCompareResult RefRelationship
2537    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2538
2539
2540  // C++ [over.ics.ref]p3:
2541  //   Except for an implicit object parameter, for which see 13.3.1,
2542  //   a standard conversion sequence cannot be formed if it requires
2543  //   binding an lvalue reference to non-const to an rvalue or
2544  //   binding an rvalue reference to an lvalue.
2545  //
2546  // FIXME: DPG doesn't trust this code. It seems far too early to
2547  // abort because of a binding of an rvalue reference to an lvalue.
2548  if (isRValRef && InitLvalue == Expr::LV_Valid)
2549    return ICS;
2550
2551  // C++0x [dcl.init.ref]p16:
2552  //   A reference to type "cv1 T1" is initialized by an expression
2553  //   of type "cv2 T2" as follows:
2554
2555  //     -- If the initializer expression
2556  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2557  //          reference-compatible with "cv2 T2," or
2558  //
2559  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2560  if (InitLvalue == Expr::LV_Valid &&
2561      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2562    // C++ [over.ics.ref]p1:
2563    //   When a parameter of reference type binds directly (8.5.3)
2564    //   to an argument expression, the implicit conversion sequence
2565    //   is the identity conversion, unless the argument expression
2566    //   has a type that is a derived class of the parameter type,
2567    //   in which case the implicit conversion sequence is a
2568    //   derived-to-base Conversion (13.3.3.1).
2569    ICS.setStandard();
2570    ICS.Standard.First = ICK_Identity;
2571    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2572    ICS.Standard.Third = ICK_Identity;
2573    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2574    ICS.Standard.setToType(0, T2);
2575    ICS.Standard.setToType(1, T1);
2576    ICS.Standard.setToType(2, T1);
2577    ICS.Standard.ReferenceBinding = true;
2578    ICS.Standard.DirectBinding = true;
2579    ICS.Standard.RRefBinding = false;
2580    ICS.Standard.CopyConstructor = 0;
2581
2582    // Nothing more to do: the inaccessibility/ambiguity check for
2583    // derived-to-base conversions is suppressed when we're
2584    // computing the implicit conversion sequence (C++
2585    // [over.best.ics]p2).
2586    return ICS;
2587  }
2588
2589  //       -- has a class type (i.e., T2 is a class type), where T1 is
2590  //          not reference-related to T2, and can be implicitly
2591  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2592  //          is reference-compatible with "cv3 T3" 92) (this
2593  //          conversion is selected by enumerating the applicable
2594  //          conversion functions (13.3.1.6) and choosing the best
2595  //          one through overload resolution (13.3)),
2596  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2597      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2598      RefRelationship == Sema::Ref_Incompatible) {
2599    CXXRecordDecl *T2RecordDecl
2600      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2601
2602    OverloadCandidateSet CandidateSet(DeclLoc);
2603    const UnresolvedSetImpl *Conversions
2604      = T2RecordDecl->getVisibleConversionFunctions();
2605    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2606           E = Conversions->end(); I != E; ++I) {
2607      NamedDecl *D = *I;
2608      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2609      if (isa<UsingShadowDecl>(D))
2610        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2611
2612      FunctionTemplateDecl *ConvTemplate
2613        = dyn_cast<FunctionTemplateDecl>(D);
2614      CXXConversionDecl *Conv;
2615      if (ConvTemplate)
2616        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2617      else
2618        Conv = cast<CXXConversionDecl>(D);
2619
2620      // If the conversion function doesn't return a reference type,
2621      // it can't be considered for this conversion.
2622      if (Conv->getConversionType()->isLValueReferenceType() &&
2623          (AllowExplicit || !Conv->isExplicit())) {
2624        if (ConvTemplate)
2625          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2626                                         Init, DeclType, CandidateSet);
2627        else
2628          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2629                                 DeclType, CandidateSet);
2630      }
2631    }
2632
2633    OverloadCandidateSet::iterator Best;
2634    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2635    case OR_Success:
2636      // C++ [over.ics.ref]p1:
2637      //
2638      //   [...] If the parameter binds directly to the result of
2639      //   applying a conversion function to the argument
2640      //   expression, the implicit conversion sequence is a
2641      //   user-defined conversion sequence (13.3.3.1.2), with the
2642      //   second standard conversion sequence either an identity
2643      //   conversion or, if the conversion function returns an
2644      //   entity of a type that is a derived class of the parameter
2645      //   type, a derived-to-base Conversion.
2646      if (!Best->FinalConversion.DirectBinding)
2647        break;
2648
2649      ICS.setUserDefined();
2650      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2651      ICS.UserDefined.After = Best->FinalConversion;
2652      ICS.UserDefined.ConversionFunction = Best->Function;
2653      ICS.UserDefined.EllipsisConversion = false;
2654      assert(ICS.UserDefined.After.ReferenceBinding &&
2655             ICS.UserDefined.After.DirectBinding &&
2656             "Expected a direct reference binding!");
2657      return ICS;
2658
2659    case OR_Ambiguous:
2660      ICS.setAmbiguous();
2661      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2662           Cand != CandidateSet.end(); ++Cand)
2663        if (Cand->Viable)
2664          ICS.Ambiguous.addConversion(Cand->Function);
2665      return ICS;
2666
2667    case OR_No_Viable_Function:
2668    case OR_Deleted:
2669      // There was no suitable conversion, or we found a deleted
2670      // conversion; continue with other checks.
2671      break;
2672    }
2673  }
2674
2675  //     -- Otherwise, the reference shall be to a non-volatile const
2676  //        type (i.e., cv1 shall be const), or the reference shall be an
2677  //        rvalue reference and the initializer expression shall be an rvalue.
2678  //
2679  // We actually handle one oddity of C++ [over.ics.ref] at this
2680  // point, which is that, due to p2 (which short-circuits reference
2681  // binding by only attempting a simple conversion for non-direct
2682  // bindings) and p3's strange wording, we allow a const volatile
2683  // reference to bind to an rvalue. Hence the check for the presence
2684  // of "const" rather than checking for "const" being the only
2685  // qualifier.
2686  if (!isRValRef && !T1.isConstQualified())
2687    return ICS;
2688
2689  //       -- if T2 is a class type and
2690  //          -- the initializer expression is an rvalue and "cv1 T1"
2691  //             is reference-compatible with "cv2 T2," or
2692  //
2693  //          -- T1 is not reference-related to T2 and the initializer
2694  //             expression can be implicitly converted to an rvalue
2695  //             of type "cv3 T3" (this conversion is selected by
2696  //             enumerating the applicable conversion functions
2697  //             (13.3.1.6) and choosing the best one through overload
2698  //             resolution (13.3)),
2699  //
2700  //          then the reference is bound to the initializer
2701  //          expression rvalue in the first case and to the object
2702  //          that is the result of the conversion in the second case
2703  //          (or, in either case, to the appropriate base class
2704  //          subobject of the object).
2705  //
2706  // We're only checking the first case here, which is a direct
2707  // binding in C++0x but not in C++03.
2708  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2709      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2710    ICS.setStandard();
2711    ICS.Standard.First = ICK_Identity;
2712    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2713    ICS.Standard.Third = ICK_Identity;
2714    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2715    ICS.Standard.setToType(0, T2);
2716    ICS.Standard.setToType(1, T1);
2717    ICS.Standard.setToType(2, T1);
2718    ICS.Standard.ReferenceBinding = true;
2719    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2720    ICS.Standard.RRefBinding = isRValRef;
2721    ICS.Standard.CopyConstructor = 0;
2722    return ICS;
2723  }
2724
2725  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2726  //          initialized from the initializer expression using the
2727  //          rules for a non-reference copy initialization (8.5). The
2728  //          reference is then bound to the temporary. If T1 is
2729  //          reference-related to T2, cv1 must be the same
2730  //          cv-qualification as, or greater cv-qualification than,
2731  //          cv2; otherwise, the program is ill-formed.
2732  if (RefRelationship == Sema::Ref_Related) {
2733    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2734    // we would be reference-compatible or reference-compatible with
2735    // added qualification. But that wasn't the case, so the reference
2736    // initialization fails.
2737    return ICS;
2738  }
2739
2740  // If at least one of the types is a class type, the types are not
2741  // related, and we aren't allowed any user conversions, the
2742  // reference binding fails. This case is important for breaking
2743  // recursion, since TryImplicitConversion below will attempt to
2744  // create a temporary through the use of a copy constructor.
2745  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2746      (T1->isRecordType() || T2->isRecordType()))
2747    return ICS;
2748
2749  // C++ [over.ics.ref]p2:
2750  //   When a parameter of reference type is not bound directly to
2751  //   an argument expression, the conversion sequence is the one
2752  //   required to convert the argument expression to the
2753  //   underlying type of the reference according to
2754  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2755  //   to copy-initializing a temporary of the underlying type with
2756  //   the argument expression. Any difference in top-level
2757  //   cv-qualification is subsumed by the initialization itself
2758  //   and does not constitute a conversion.
2759  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2760                                /*AllowExplicit=*/false,
2761                                /*InOverloadResolution=*/false);
2762
2763  // Of course, that's still a reference binding.
2764  if (ICS.isStandard()) {
2765    ICS.Standard.ReferenceBinding = true;
2766    ICS.Standard.RRefBinding = isRValRef;
2767  } else if (ICS.isUserDefined()) {
2768    ICS.UserDefined.After.ReferenceBinding = true;
2769    ICS.UserDefined.After.RRefBinding = isRValRef;
2770  }
2771  return ICS;
2772}
2773
2774/// TryCopyInitialization - Try to copy-initialize a value of type
2775/// ToType from the expression From. Return the implicit conversion
2776/// sequence required to pass this argument, which may be a bad
2777/// conversion sequence (meaning that the argument cannot be passed to
2778/// a parameter of this type). If @p SuppressUserConversions, then we
2779/// do not permit any user-defined conversion sequences.
2780static ImplicitConversionSequence
2781TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2782                      bool SuppressUserConversions,
2783                      bool InOverloadResolution) {
2784  if (ToType->isReferenceType())
2785    return TryReferenceInit(S, From, ToType,
2786                            /*FIXME:*/From->getLocStart(),
2787                            SuppressUserConversions,
2788                            /*AllowExplicit=*/false);
2789
2790  return S.TryImplicitConversion(From, ToType,
2791                                 SuppressUserConversions,
2792                                 /*AllowExplicit=*/false,
2793                                 InOverloadResolution);
2794}
2795
2796/// TryObjectArgumentInitialization - Try to initialize the object
2797/// parameter of the given member function (@c Method) from the
2798/// expression @p From.
2799ImplicitConversionSequence
2800Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2801                                      CXXMethodDecl *Method,
2802                                      CXXRecordDecl *ActingContext) {
2803  QualType ClassType = Context.getTypeDeclType(ActingContext);
2804  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2805  //                 const volatile object.
2806  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2807    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2808  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2809
2810  // Set up the conversion sequence as a "bad" conversion, to allow us
2811  // to exit early.
2812  ImplicitConversionSequence ICS;
2813
2814  // We need to have an object of class type.
2815  QualType FromType = OrigFromType;
2816  if (const PointerType *PT = FromType->getAs<PointerType>())
2817    FromType = PT->getPointeeType();
2818
2819  assert(FromType->isRecordType());
2820
2821  // The implicit object parameter is has the type "reference to cv X",
2822  // where X is the class of which the function is a member
2823  // (C++ [over.match.funcs]p4). However, when finding an implicit
2824  // conversion sequence for the argument, we are not allowed to
2825  // create temporaries or perform user-defined conversions
2826  // (C++ [over.match.funcs]p5). We perform a simplified version of
2827  // reference binding here, that allows class rvalues to bind to
2828  // non-constant references.
2829
2830  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2831  // with the implicit object parameter (C++ [over.match.funcs]p5).
2832  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2833  if (ImplicitParamType.getCVRQualifiers()
2834                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2835      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2836    ICS.setBad(BadConversionSequence::bad_qualifiers,
2837               OrigFromType, ImplicitParamType);
2838    return ICS;
2839  }
2840
2841  // Check that we have either the same type or a derived type. It
2842  // affects the conversion rank.
2843  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2844  ImplicitConversionKind SecondKind;
2845  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2846    SecondKind = ICK_Identity;
2847  } else if (IsDerivedFrom(FromType, ClassType))
2848    SecondKind = ICK_Derived_To_Base;
2849  else {
2850    ICS.setBad(BadConversionSequence::unrelated_class,
2851               FromType, ImplicitParamType);
2852    return ICS;
2853  }
2854
2855  // Success. Mark this as a reference binding.
2856  ICS.setStandard();
2857  ICS.Standard.setAsIdentityConversion();
2858  ICS.Standard.Second = SecondKind;
2859  ICS.Standard.setFromType(FromType);
2860  ICS.Standard.setAllToTypes(ImplicitParamType);
2861  ICS.Standard.ReferenceBinding = true;
2862  ICS.Standard.DirectBinding = true;
2863  ICS.Standard.RRefBinding = false;
2864  return ICS;
2865}
2866
2867/// PerformObjectArgumentInitialization - Perform initialization of
2868/// the implicit object parameter for the given Method with the given
2869/// expression.
2870bool
2871Sema::PerformObjectArgumentInitialization(Expr *&From,
2872                                          NestedNameSpecifier *Qualifier,
2873                                          NamedDecl *FoundDecl,
2874                                          CXXMethodDecl *Method) {
2875  QualType FromRecordType, DestType;
2876  QualType ImplicitParamRecordType  =
2877    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2878
2879  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2880    FromRecordType = PT->getPointeeType();
2881    DestType = Method->getThisType(Context);
2882  } else {
2883    FromRecordType = From->getType();
2884    DestType = ImplicitParamRecordType;
2885  }
2886
2887  // Note that we always use the true parent context when performing
2888  // the actual argument initialization.
2889  ImplicitConversionSequence ICS
2890    = TryObjectArgumentInitialization(From->getType(), Method,
2891                                      Method->getParent());
2892  if (ICS.isBad())
2893    return Diag(From->getSourceRange().getBegin(),
2894                diag::err_implicit_object_parameter_init)
2895       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2896
2897  if (ICS.Standard.Second == ICK_Derived_To_Base)
2898    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2899
2900  if (!Context.hasSameType(From->getType(), DestType))
2901    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2902                      /*isLvalue=*/!From->getType()->isPointerType());
2903  return false;
2904}
2905
2906/// TryContextuallyConvertToBool - Attempt to contextually convert the
2907/// expression From to bool (C++0x [conv]p3).
2908ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2909  // FIXME: This is pretty broken.
2910  return TryImplicitConversion(From, Context.BoolTy,
2911                               // FIXME: Are these flags correct?
2912                               /*SuppressUserConversions=*/false,
2913                               /*AllowExplicit=*/true,
2914                               /*InOverloadResolution=*/false);
2915}
2916
2917/// PerformContextuallyConvertToBool - Perform a contextual conversion
2918/// of the expression From to bool (C++0x [conv]p3).
2919bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2920  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2921  if (!ICS.isBad())
2922    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2923
2924  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2925    return  Diag(From->getSourceRange().getBegin(),
2926                 diag::err_typecheck_bool_condition)
2927                  << From->getType() << From->getSourceRange();
2928  return true;
2929}
2930
2931/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
2932/// expression From to 'id'.
2933ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
2934  QualType Ty = Context.getObjCIdType();
2935  return TryImplicitConversion(From, Ty,
2936                                 // FIXME: Are these flags correct?
2937                                 /*SuppressUserConversions=*/false,
2938                                 /*AllowExplicit=*/true,
2939                                 /*InOverloadResolution=*/false);
2940}
2941
2942/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
2943/// of the expression From to 'id'.
2944bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
2945  QualType Ty = Context.getObjCIdType();
2946  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
2947  if (!ICS.isBad())
2948    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
2949  return true;
2950}
2951
2952/// AddOverloadCandidate - Adds the given function to the set of
2953/// candidate functions, using the given function call arguments.  If
2954/// @p SuppressUserConversions, then don't allow user-defined
2955/// conversions via constructors or conversion operators.
2956///
2957/// \para PartialOverloading true if we are performing "partial" overloading
2958/// based on an incomplete set of function arguments. This feature is used by
2959/// code completion.
2960void
2961Sema::AddOverloadCandidate(FunctionDecl *Function,
2962                           DeclAccessPair FoundDecl,
2963                           Expr **Args, unsigned NumArgs,
2964                           OverloadCandidateSet& CandidateSet,
2965                           bool SuppressUserConversions,
2966                           bool PartialOverloading) {
2967  const FunctionProtoType* Proto
2968    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2969  assert(Proto && "Functions without a prototype cannot be overloaded");
2970  assert(!Function->getDescribedFunctionTemplate() &&
2971         "Use AddTemplateOverloadCandidate for function templates");
2972
2973  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2974    if (!isa<CXXConstructorDecl>(Method)) {
2975      // If we get here, it's because we're calling a member function
2976      // that is named without a member access expression (e.g.,
2977      // "this->f") that was either written explicitly or created
2978      // implicitly. This can happen with a qualified call to a member
2979      // function, e.g., X::f(). We use an empty type for the implied
2980      // object argument (C++ [over.call.func]p3), and the acting context
2981      // is irrelevant.
2982      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2983                         QualType(), Args, NumArgs, CandidateSet,
2984                         SuppressUserConversions);
2985      return;
2986    }
2987    // We treat a constructor like a non-member function, since its object
2988    // argument doesn't participate in overload resolution.
2989  }
2990
2991  if (!CandidateSet.isNewCandidate(Function))
2992    return;
2993
2994  // Overload resolution is always an unevaluated context.
2995  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2996
2997  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2998    // C++ [class.copy]p3:
2999    //   A member function template is never instantiated to perform the copy
3000    //   of a class object to an object of its class type.
3001    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3002    if (NumArgs == 1 &&
3003        Constructor->isCopyConstructorLikeSpecialization() &&
3004        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3005         IsDerivedFrom(Args[0]->getType(), ClassType)))
3006      return;
3007  }
3008
3009  // Add this candidate
3010  CandidateSet.push_back(OverloadCandidate());
3011  OverloadCandidate& Candidate = CandidateSet.back();
3012  Candidate.FoundDecl = FoundDecl;
3013  Candidate.Function = Function;
3014  Candidate.Viable = true;
3015  Candidate.IsSurrogate = false;
3016  Candidate.IgnoreObjectArgument = false;
3017
3018  unsigned NumArgsInProto = Proto->getNumArgs();
3019
3020  // (C++ 13.3.2p2): A candidate function having fewer than m
3021  // parameters is viable only if it has an ellipsis in its parameter
3022  // list (8.3.5).
3023  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3024      !Proto->isVariadic()) {
3025    Candidate.Viable = false;
3026    Candidate.FailureKind = ovl_fail_too_many_arguments;
3027    return;
3028  }
3029
3030  // (C++ 13.3.2p2): A candidate function having more than m parameters
3031  // is viable only if the (m+1)st parameter has a default argument
3032  // (8.3.6). For the purposes of overload resolution, the
3033  // parameter list is truncated on the right, so that there are
3034  // exactly m parameters.
3035  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3036  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3037    // Not enough arguments.
3038    Candidate.Viable = false;
3039    Candidate.FailureKind = ovl_fail_too_few_arguments;
3040    return;
3041  }
3042
3043  // Determine the implicit conversion sequences for each of the
3044  // arguments.
3045  Candidate.Conversions.resize(NumArgs);
3046  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3047    if (ArgIdx < NumArgsInProto) {
3048      // (C++ 13.3.2p3): for F to be a viable function, there shall
3049      // exist for each argument an implicit conversion sequence
3050      // (13.3.3.1) that converts that argument to the corresponding
3051      // parameter of F.
3052      QualType ParamType = Proto->getArgType(ArgIdx);
3053      Candidate.Conversions[ArgIdx]
3054        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3055                                SuppressUserConversions,
3056                                /*InOverloadResolution=*/true);
3057      if (Candidate.Conversions[ArgIdx].isBad()) {
3058        Candidate.Viable = false;
3059        Candidate.FailureKind = ovl_fail_bad_conversion;
3060        break;
3061      }
3062    } else {
3063      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3064      // argument for which there is no corresponding parameter is
3065      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3066      Candidate.Conversions[ArgIdx].setEllipsis();
3067    }
3068  }
3069}
3070
3071/// \brief Add all of the function declarations in the given function set to
3072/// the overload canddiate set.
3073void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3074                                 Expr **Args, unsigned NumArgs,
3075                                 OverloadCandidateSet& CandidateSet,
3076                                 bool SuppressUserConversions) {
3077  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3078    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3079    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3080      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3081        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3082                           cast<CXXMethodDecl>(FD)->getParent(),
3083                           Args[0]->getType(), Args + 1, NumArgs - 1,
3084                           CandidateSet, SuppressUserConversions);
3085      else
3086        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3087                             SuppressUserConversions);
3088    } else {
3089      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3090      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3091          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3092        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3093                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3094                                   /*FIXME: explicit args */ 0,
3095                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3096                                   CandidateSet,
3097                                   SuppressUserConversions);
3098      else
3099        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3100                                     /*FIXME: explicit args */ 0,
3101                                     Args, NumArgs, CandidateSet,
3102                                     SuppressUserConversions);
3103    }
3104  }
3105}
3106
3107/// AddMethodCandidate - Adds a named decl (which is some kind of
3108/// method) as a method candidate to the given overload set.
3109void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3110                              QualType ObjectType,
3111                              Expr **Args, unsigned NumArgs,
3112                              OverloadCandidateSet& CandidateSet,
3113                              bool SuppressUserConversions) {
3114  NamedDecl *Decl = FoundDecl.getDecl();
3115  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3116
3117  if (isa<UsingShadowDecl>(Decl))
3118    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3119
3120  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3121    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3122           "Expected a member function template");
3123    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3124                               /*ExplicitArgs*/ 0,
3125                               ObjectType, Args, NumArgs,
3126                               CandidateSet,
3127                               SuppressUserConversions);
3128  } else {
3129    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3130                       ObjectType, Args, NumArgs,
3131                       CandidateSet, SuppressUserConversions);
3132  }
3133}
3134
3135/// AddMethodCandidate - Adds the given C++ member function to the set
3136/// of candidate functions, using the given function call arguments
3137/// and the object argument (@c Object). For example, in a call
3138/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3139/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3140/// allow user-defined conversions via constructors or conversion
3141/// operators.
3142void
3143Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3144                         CXXRecordDecl *ActingContext, QualType ObjectType,
3145                         Expr **Args, unsigned NumArgs,
3146                         OverloadCandidateSet& CandidateSet,
3147                         bool SuppressUserConversions) {
3148  const FunctionProtoType* Proto
3149    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3150  assert(Proto && "Methods without a prototype cannot be overloaded");
3151  assert(!isa<CXXConstructorDecl>(Method) &&
3152         "Use AddOverloadCandidate for constructors");
3153
3154  if (!CandidateSet.isNewCandidate(Method))
3155    return;
3156
3157  // Overload resolution is always an unevaluated context.
3158  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3159
3160  // Add this candidate
3161  CandidateSet.push_back(OverloadCandidate());
3162  OverloadCandidate& Candidate = CandidateSet.back();
3163  Candidate.FoundDecl = FoundDecl;
3164  Candidate.Function = Method;
3165  Candidate.IsSurrogate = false;
3166  Candidate.IgnoreObjectArgument = false;
3167
3168  unsigned NumArgsInProto = Proto->getNumArgs();
3169
3170  // (C++ 13.3.2p2): A candidate function having fewer than m
3171  // parameters is viable only if it has an ellipsis in its parameter
3172  // list (8.3.5).
3173  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3174    Candidate.Viable = false;
3175    Candidate.FailureKind = ovl_fail_too_many_arguments;
3176    return;
3177  }
3178
3179  // (C++ 13.3.2p2): A candidate function having more than m parameters
3180  // is viable only if the (m+1)st parameter has a default argument
3181  // (8.3.6). For the purposes of overload resolution, the
3182  // parameter list is truncated on the right, so that there are
3183  // exactly m parameters.
3184  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3185  if (NumArgs < MinRequiredArgs) {
3186    // Not enough arguments.
3187    Candidate.Viable = false;
3188    Candidate.FailureKind = ovl_fail_too_few_arguments;
3189    return;
3190  }
3191
3192  Candidate.Viable = true;
3193  Candidate.Conversions.resize(NumArgs + 1);
3194
3195  if (Method->isStatic() || ObjectType.isNull())
3196    // The implicit object argument is ignored.
3197    Candidate.IgnoreObjectArgument = true;
3198  else {
3199    // Determine the implicit conversion sequence for the object
3200    // parameter.
3201    Candidate.Conversions[0]
3202      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
3203    if (Candidate.Conversions[0].isBad()) {
3204      Candidate.Viable = false;
3205      Candidate.FailureKind = ovl_fail_bad_conversion;
3206      return;
3207    }
3208  }
3209
3210  // Determine the implicit conversion sequences for each of the
3211  // arguments.
3212  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3213    if (ArgIdx < NumArgsInProto) {
3214      // (C++ 13.3.2p3): for F to be a viable function, there shall
3215      // exist for each argument an implicit conversion sequence
3216      // (13.3.3.1) that converts that argument to the corresponding
3217      // parameter of F.
3218      QualType ParamType = Proto->getArgType(ArgIdx);
3219      Candidate.Conversions[ArgIdx + 1]
3220        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3221                                SuppressUserConversions,
3222                                /*InOverloadResolution=*/true);
3223      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3224        Candidate.Viable = false;
3225        Candidate.FailureKind = ovl_fail_bad_conversion;
3226        break;
3227      }
3228    } else {
3229      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3230      // argument for which there is no corresponding parameter is
3231      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3232      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3233    }
3234  }
3235}
3236
3237/// \brief Add a C++ member function template as a candidate to the candidate
3238/// set, using template argument deduction to produce an appropriate member
3239/// function template specialization.
3240void
3241Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3242                                 DeclAccessPair FoundDecl,
3243                                 CXXRecordDecl *ActingContext,
3244                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3245                                 QualType ObjectType,
3246                                 Expr **Args, unsigned NumArgs,
3247                                 OverloadCandidateSet& CandidateSet,
3248                                 bool SuppressUserConversions) {
3249  if (!CandidateSet.isNewCandidate(MethodTmpl))
3250    return;
3251
3252  // C++ [over.match.funcs]p7:
3253  //   In each case where a candidate is a function template, candidate
3254  //   function template specializations are generated using template argument
3255  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3256  //   candidate functions in the usual way.113) A given name can refer to one
3257  //   or more function templates and also to a set of overloaded non-template
3258  //   functions. In such a case, the candidate functions generated from each
3259  //   function template are combined with the set of non-template candidate
3260  //   functions.
3261  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3262  FunctionDecl *Specialization = 0;
3263  if (TemplateDeductionResult Result
3264      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3265                                Args, NumArgs, Specialization, Info)) {
3266    CandidateSet.push_back(OverloadCandidate());
3267    OverloadCandidate &Candidate = CandidateSet.back();
3268    Candidate.FoundDecl = FoundDecl;
3269    Candidate.Function = MethodTmpl->getTemplatedDecl();
3270    Candidate.Viable = false;
3271    Candidate.FailureKind = ovl_fail_bad_deduction;
3272    Candidate.IsSurrogate = false;
3273    Candidate.IgnoreObjectArgument = false;
3274    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3275                                                          Info);
3276    return;
3277  }
3278
3279  // Add the function template specialization produced by template argument
3280  // deduction as a candidate.
3281  assert(Specialization && "Missing member function template specialization?");
3282  assert(isa<CXXMethodDecl>(Specialization) &&
3283         "Specialization is not a member function?");
3284  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3285                     ActingContext, ObjectType, Args, NumArgs,
3286                     CandidateSet, SuppressUserConversions);
3287}
3288
3289/// \brief Add a C++ function template specialization as a candidate
3290/// in the candidate set, using template argument deduction to produce
3291/// an appropriate function template specialization.
3292void
3293Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3294                                   DeclAccessPair FoundDecl,
3295                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3296                                   Expr **Args, unsigned NumArgs,
3297                                   OverloadCandidateSet& CandidateSet,
3298                                   bool SuppressUserConversions) {
3299  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3300    return;
3301
3302  // C++ [over.match.funcs]p7:
3303  //   In each case where a candidate is a function template, candidate
3304  //   function template specializations are generated using template argument
3305  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3306  //   candidate functions in the usual way.113) A given name can refer to one
3307  //   or more function templates and also to a set of overloaded non-template
3308  //   functions. In such a case, the candidate functions generated from each
3309  //   function template are combined with the set of non-template candidate
3310  //   functions.
3311  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3312  FunctionDecl *Specialization = 0;
3313  if (TemplateDeductionResult Result
3314        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3315                                  Args, NumArgs, Specialization, Info)) {
3316    CandidateSet.push_back(OverloadCandidate());
3317    OverloadCandidate &Candidate = CandidateSet.back();
3318    Candidate.FoundDecl = FoundDecl;
3319    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3320    Candidate.Viable = false;
3321    Candidate.FailureKind = ovl_fail_bad_deduction;
3322    Candidate.IsSurrogate = false;
3323    Candidate.IgnoreObjectArgument = false;
3324    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3325                                                          Info);
3326    return;
3327  }
3328
3329  // Add the function template specialization produced by template argument
3330  // deduction as a candidate.
3331  assert(Specialization && "Missing function template specialization?");
3332  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3333                       SuppressUserConversions);
3334}
3335
3336/// AddConversionCandidate - Add a C++ conversion function as a
3337/// candidate in the candidate set (C++ [over.match.conv],
3338/// C++ [over.match.copy]). From is the expression we're converting from,
3339/// and ToType is the type that we're eventually trying to convert to
3340/// (which may or may not be the same type as the type that the
3341/// conversion function produces).
3342void
3343Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3344                             DeclAccessPair FoundDecl,
3345                             CXXRecordDecl *ActingContext,
3346                             Expr *From, QualType ToType,
3347                             OverloadCandidateSet& CandidateSet) {
3348  assert(!Conversion->getDescribedFunctionTemplate() &&
3349         "Conversion function templates use AddTemplateConversionCandidate");
3350  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3351  if (!CandidateSet.isNewCandidate(Conversion))
3352    return;
3353
3354  // Overload resolution is always an unevaluated context.
3355  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3356
3357  // Add this candidate
3358  CandidateSet.push_back(OverloadCandidate());
3359  OverloadCandidate& Candidate = CandidateSet.back();
3360  Candidate.FoundDecl = FoundDecl;
3361  Candidate.Function = Conversion;
3362  Candidate.IsSurrogate = false;
3363  Candidate.IgnoreObjectArgument = false;
3364  Candidate.FinalConversion.setAsIdentityConversion();
3365  Candidate.FinalConversion.setFromType(ConvType);
3366  Candidate.FinalConversion.setAllToTypes(ToType);
3367
3368  // Determine the implicit conversion sequence for the implicit
3369  // object parameter.
3370  Candidate.Viable = true;
3371  Candidate.Conversions.resize(1);
3372  Candidate.Conversions[0]
3373    = TryObjectArgumentInitialization(From->getType(), Conversion,
3374                                      ActingContext);
3375  // Conversion functions to a different type in the base class is visible in
3376  // the derived class.  So, a derived to base conversion should not participate
3377  // in overload resolution.
3378  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3379    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3380  if (Candidate.Conversions[0].isBad()) {
3381    Candidate.Viable = false;
3382    Candidate.FailureKind = ovl_fail_bad_conversion;
3383    return;
3384  }
3385
3386  // We won't go through a user-define type conversion function to convert a
3387  // derived to base as such conversions are given Conversion Rank. They only
3388  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3389  QualType FromCanon
3390    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3391  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3392  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3393    Candidate.Viable = false;
3394    Candidate.FailureKind = ovl_fail_trivial_conversion;
3395    return;
3396  }
3397
3398  // To determine what the conversion from the result of calling the
3399  // conversion function to the type we're eventually trying to
3400  // convert to (ToType), we need to synthesize a call to the
3401  // conversion function and attempt copy initialization from it. This
3402  // makes sure that we get the right semantics with respect to
3403  // lvalues/rvalues and the type. Fortunately, we can allocate this
3404  // call on the stack and we don't need its arguments to be
3405  // well-formed.
3406  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3407                            From->getLocStart());
3408  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3409                                CastExpr::CK_FunctionToPointerDecay,
3410                                &ConversionRef, CXXBaseSpecifierArray(), false);
3411
3412  // Note that it is safe to allocate CallExpr on the stack here because
3413  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3414  // allocator).
3415  CallExpr Call(Context, &ConversionFn, 0, 0,
3416                Conversion->getConversionType().getNonReferenceType(),
3417                From->getLocStart());
3418  ImplicitConversionSequence ICS =
3419    TryCopyInitialization(*this, &Call, ToType,
3420                          /*SuppressUserConversions=*/true,
3421                          /*InOverloadResolution=*/false);
3422
3423  switch (ICS.getKind()) {
3424  case ImplicitConversionSequence::StandardConversion:
3425    Candidate.FinalConversion = ICS.Standard;
3426
3427    // C++ [over.ics.user]p3:
3428    //   If the user-defined conversion is specified by a specialization of a
3429    //   conversion function template, the second standard conversion sequence
3430    //   shall have exact match rank.
3431    if (Conversion->getPrimaryTemplate() &&
3432        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3433      Candidate.Viable = false;
3434      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3435    }
3436
3437    break;
3438
3439  case ImplicitConversionSequence::BadConversion:
3440    Candidate.Viable = false;
3441    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3442    break;
3443
3444  default:
3445    assert(false &&
3446           "Can only end up with a standard conversion sequence or failure");
3447  }
3448}
3449
3450/// \brief Adds a conversion function template specialization
3451/// candidate to the overload set, using template argument deduction
3452/// to deduce the template arguments of the conversion function
3453/// template from the type that we are converting to (C++
3454/// [temp.deduct.conv]).
3455void
3456Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3457                                     DeclAccessPair FoundDecl,
3458                                     CXXRecordDecl *ActingDC,
3459                                     Expr *From, QualType ToType,
3460                                     OverloadCandidateSet &CandidateSet) {
3461  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3462         "Only conversion function templates permitted here");
3463
3464  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3465    return;
3466
3467  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3468  CXXConversionDecl *Specialization = 0;
3469  if (TemplateDeductionResult Result
3470        = DeduceTemplateArguments(FunctionTemplate, ToType,
3471                                  Specialization, Info)) {
3472    CandidateSet.push_back(OverloadCandidate());
3473    OverloadCandidate &Candidate = CandidateSet.back();
3474    Candidate.FoundDecl = FoundDecl;
3475    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3476    Candidate.Viable = false;
3477    Candidate.FailureKind = ovl_fail_bad_deduction;
3478    Candidate.IsSurrogate = false;
3479    Candidate.IgnoreObjectArgument = false;
3480    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3481                                                          Info);
3482    return;
3483  }
3484
3485  // Add the conversion function template specialization produced by
3486  // template argument deduction as a candidate.
3487  assert(Specialization && "Missing function template specialization?");
3488  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3489                         CandidateSet);
3490}
3491
3492/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3493/// converts the given @c Object to a function pointer via the
3494/// conversion function @c Conversion, and then attempts to call it
3495/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3496/// the type of function that we'll eventually be calling.
3497void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3498                                 DeclAccessPair FoundDecl,
3499                                 CXXRecordDecl *ActingContext,
3500                                 const FunctionProtoType *Proto,
3501                                 QualType ObjectType,
3502                                 Expr **Args, unsigned NumArgs,
3503                                 OverloadCandidateSet& CandidateSet) {
3504  if (!CandidateSet.isNewCandidate(Conversion))
3505    return;
3506
3507  // Overload resolution is always an unevaluated context.
3508  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3509
3510  CandidateSet.push_back(OverloadCandidate());
3511  OverloadCandidate& Candidate = CandidateSet.back();
3512  Candidate.FoundDecl = FoundDecl;
3513  Candidate.Function = 0;
3514  Candidate.Surrogate = Conversion;
3515  Candidate.Viable = true;
3516  Candidate.IsSurrogate = true;
3517  Candidate.IgnoreObjectArgument = false;
3518  Candidate.Conversions.resize(NumArgs + 1);
3519
3520  // Determine the implicit conversion sequence for the implicit
3521  // object parameter.
3522  ImplicitConversionSequence ObjectInit
3523    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3524  if (ObjectInit.isBad()) {
3525    Candidate.Viable = false;
3526    Candidate.FailureKind = ovl_fail_bad_conversion;
3527    Candidate.Conversions[0] = ObjectInit;
3528    return;
3529  }
3530
3531  // The first conversion is actually a user-defined conversion whose
3532  // first conversion is ObjectInit's standard conversion (which is
3533  // effectively a reference binding). Record it as such.
3534  Candidate.Conversions[0].setUserDefined();
3535  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3536  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3537  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3538  Candidate.Conversions[0].UserDefined.After
3539    = Candidate.Conversions[0].UserDefined.Before;
3540  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3541
3542  // Find the
3543  unsigned NumArgsInProto = Proto->getNumArgs();
3544
3545  // (C++ 13.3.2p2): A candidate function having fewer than m
3546  // parameters is viable only if it has an ellipsis in its parameter
3547  // list (8.3.5).
3548  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3549    Candidate.Viable = false;
3550    Candidate.FailureKind = ovl_fail_too_many_arguments;
3551    return;
3552  }
3553
3554  // Function types don't have any default arguments, so just check if
3555  // we have enough arguments.
3556  if (NumArgs < NumArgsInProto) {
3557    // Not enough arguments.
3558    Candidate.Viable = false;
3559    Candidate.FailureKind = ovl_fail_too_few_arguments;
3560    return;
3561  }
3562
3563  // Determine the implicit conversion sequences for each of the
3564  // arguments.
3565  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3566    if (ArgIdx < NumArgsInProto) {
3567      // (C++ 13.3.2p3): for F to be a viable function, there shall
3568      // exist for each argument an implicit conversion sequence
3569      // (13.3.3.1) that converts that argument to the corresponding
3570      // parameter of F.
3571      QualType ParamType = Proto->getArgType(ArgIdx);
3572      Candidate.Conversions[ArgIdx + 1]
3573        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3574                                /*SuppressUserConversions=*/false,
3575                                /*InOverloadResolution=*/false);
3576      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3577        Candidate.Viable = false;
3578        Candidate.FailureKind = ovl_fail_bad_conversion;
3579        break;
3580      }
3581    } else {
3582      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3583      // argument for which there is no corresponding parameter is
3584      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3585      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3586    }
3587  }
3588}
3589
3590/// \brief Add overload candidates for overloaded operators that are
3591/// member functions.
3592///
3593/// Add the overloaded operator candidates that are member functions
3594/// for the operator Op that was used in an operator expression such
3595/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3596/// CandidateSet will store the added overload candidates. (C++
3597/// [over.match.oper]).
3598void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3599                                       SourceLocation OpLoc,
3600                                       Expr **Args, unsigned NumArgs,
3601                                       OverloadCandidateSet& CandidateSet,
3602                                       SourceRange OpRange) {
3603  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3604
3605  // C++ [over.match.oper]p3:
3606  //   For a unary operator @ with an operand of a type whose
3607  //   cv-unqualified version is T1, and for a binary operator @ with
3608  //   a left operand of a type whose cv-unqualified version is T1 and
3609  //   a right operand of a type whose cv-unqualified version is T2,
3610  //   three sets of candidate functions, designated member
3611  //   candidates, non-member candidates and built-in candidates, are
3612  //   constructed as follows:
3613  QualType T1 = Args[0]->getType();
3614  QualType T2;
3615  if (NumArgs > 1)
3616    T2 = Args[1]->getType();
3617
3618  //     -- If T1 is a class type, the set of member candidates is the
3619  //        result of the qualified lookup of T1::operator@
3620  //        (13.3.1.1.1); otherwise, the set of member candidates is
3621  //        empty.
3622  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3623    // Complete the type if it can be completed. Otherwise, we're done.
3624    if (RequireCompleteType(OpLoc, T1, PDiag()))
3625      return;
3626
3627    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3628    LookupQualifiedName(Operators, T1Rec->getDecl());
3629    Operators.suppressDiagnostics();
3630
3631    for (LookupResult::iterator Oper = Operators.begin(),
3632                             OperEnd = Operators.end();
3633         Oper != OperEnd;
3634         ++Oper)
3635      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3636                         Args + 1, NumArgs - 1, CandidateSet,
3637                         /* SuppressUserConversions = */ false);
3638  }
3639}
3640
3641/// AddBuiltinCandidate - Add a candidate for a built-in
3642/// operator. ResultTy and ParamTys are the result and parameter types
3643/// of the built-in candidate, respectively. Args and NumArgs are the
3644/// arguments being passed to the candidate. IsAssignmentOperator
3645/// should be true when this built-in candidate is an assignment
3646/// operator. NumContextualBoolArguments is the number of arguments
3647/// (at the beginning of the argument list) that will be contextually
3648/// converted to bool.
3649void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3650                               Expr **Args, unsigned NumArgs,
3651                               OverloadCandidateSet& CandidateSet,
3652                               bool IsAssignmentOperator,
3653                               unsigned NumContextualBoolArguments) {
3654  // Overload resolution is always an unevaluated context.
3655  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3656
3657  // Add this candidate
3658  CandidateSet.push_back(OverloadCandidate());
3659  OverloadCandidate& Candidate = CandidateSet.back();
3660  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3661  Candidate.Function = 0;
3662  Candidate.IsSurrogate = false;
3663  Candidate.IgnoreObjectArgument = false;
3664  Candidate.BuiltinTypes.ResultTy = ResultTy;
3665  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3666    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3667
3668  // Determine the implicit conversion sequences for each of the
3669  // arguments.
3670  Candidate.Viable = true;
3671  Candidate.Conversions.resize(NumArgs);
3672  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3673    // C++ [over.match.oper]p4:
3674    //   For the built-in assignment operators, conversions of the
3675    //   left operand are restricted as follows:
3676    //     -- no temporaries are introduced to hold the left operand, and
3677    //     -- no user-defined conversions are applied to the left
3678    //        operand to achieve a type match with the left-most
3679    //        parameter of a built-in candidate.
3680    //
3681    // We block these conversions by turning off user-defined
3682    // conversions, since that is the only way that initialization of
3683    // a reference to a non-class type can occur from something that
3684    // is not of the same type.
3685    if (ArgIdx < NumContextualBoolArguments) {
3686      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3687             "Contextual conversion to bool requires bool type");
3688      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3689    } else {
3690      Candidate.Conversions[ArgIdx]
3691        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3692                                ArgIdx == 0 && IsAssignmentOperator,
3693                                /*InOverloadResolution=*/false);
3694    }
3695    if (Candidate.Conversions[ArgIdx].isBad()) {
3696      Candidate.Viable = false;
3697      Candidate.FailureKind = ovl_fail_bad_conversion;
3698      break;
3699    }
3700  }
3701}
3702
3703/// BuiltinCandidateTypeSet - A set of types that will be used for the
3704/// candidate operator functions for built-in operators (C++
3705/// [over.built]). The types are separated into pointer types and
3706/// enumeration types.
3707class BuiltinCandidateTypeSet  {
3708  /// TypeSet - A set of types.
3709  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3710
3711  /// PointerTypes - The set of pointer types that will be used in the
3712  /// built-in candidates.
3713  TypeSet PointerTypes;
3714
3715  /// MemberPointerTypes - The set of member pointer types that will be
3716  /// used in the built-in candidates.
3717  TypeSet MemberPointerTypes;
3718
3719  /// EnumerationTypes - The set of enumeration types that will be
3720  /// used in the built-in candidates.
3721  TypeSet EnumerationTypes;
3722
3723  /// Sema - The semantic analysis instance where we are building the
3724  /// candidate type set.
3725  Sema &SemaRef;
3726
3727  /// Context - The AST context in which we will build the type sets.
3728  ASTContext &Context;
3729
3730  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3731                                               const Qualifiers &VisibleQuals);
3732  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3733
3734public:
3735  /// iterator - Iterates through the types that are part of the set.
3736  typedef TypeSet::iterator iterator;
3737
3738  BuiltinCandidateTypeSet(Sema &SemaRef)
3739    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3740
3741  void AddTypesConvertedFrom(QualType Ty,
3742                             SourceLocation Loc,
3743                             bool AllowUserConversions,
3744                             bool AllowExplicitConversions,
3745                             const Qualifiers &VisibleTypeConversionsQuals);
3746
3747  /// pointer_begin - First pointer type found;
3748  iterator pointer_begin() { return PointerTypes.begin(); }
3749
3750  /// pointer_end - Past the last pointer type found;
3751  iterator pointer_end() { return PointerTypes.end(); }
3752
3753  /// member_pointer_begin - First member pointer type found;
3754  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3755
3756  /// member_pointer_end - Past the last member pointer type found;
3757  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3758
3759  /// enumeration_begin - First enumeration type found;
3760  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3761
3762  /// enumeration_end - Past the last enumeration type found;
3763  iterator enumeration_end() { return EnumerationTypes.end(); }
3764};
3765
3766/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3767/// the set of pointer types along with any more-qualified variants of
3768/// that type. For example, if @p Ty is "int const *", this routine
3769/// will add "int const *", "int const volatile *", "int const
3770/// restrict *", and "int const volatile restrict *" to the set of
3771/// pointer types. Returns true if the add of @p Ty itself succeeded,
3772/// false otherwise.
3773///
3774/// FIXME: what to do about extended qualifiers?
3775bool
3776BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3777                                             const Qualifiers &VisibleQuals) {
3778
3779  // Insert this type.
3780  if (!PointerTypes.insert(Ty))
3781    return false;
3782
3783  const PointerType *PointerTy = Ty->getAs<PointerType>();
3784  assert(PointerTy && "type was not a pointer type!");
3785
3786  QualType PointeeTy = PointerTy->getPointeeType();
3787  // Don't add qualified variants of arrays. For one, they're not allowed
3788  // (the qualifier would sink to the element type), and for another, the
3789  // only overload situation where it matters is subscript or pointer +- int,
3790  // and those shouldn't have qualifier variants anyway.
3791  if (PointeeTy->isArrayType())
3792    return true;
3793  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3794  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3795    BaseCVR = Array->getElementType().getCVRQualifiers();
3796  bool hasVolatile = VisibleQuals.hasVolatile();
3797  bool hasRestrict = VisibleQuals.hasRestrict();
3798
3799  // Iterate through all strict supersets of BaseCVR.
3800  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3801    if ((CVR | BaseCVR) != CVR) continue;
3802    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3803    // in the types.
3804    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3805    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3806    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3807    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3808  }
3809
3810  return true;
3811}
3812
3813/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3814/// to the set of pointer types along with any more-qualified variants of
3815/// that type. For example, if @p Ty is "int const *", this routine
3816/// will add "int const *", "int const volatile *", "int const
3817/// restrict *", and "int const volatile restrict *" to the set of
3818/// pointer types. Returns true if the add of @p Ty itself succeeded,
3819/// false otherwise.
3820///
3821/// FIXME: what to do about extended qualifiers?
3822bool
3823BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3824    QualType Ty) {
3825  // Insert this type.
3826  if (!MemberPointerTypes.insert(Ty))
3827    return false;
3828
3829  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3830  assert(PointerTy && "type was not a member pointer type!");
3831
3832  QualType PointeeTy = PointerTy->getPointeeType();
3833  // Don't add qualified variants of arrays. For one, they're not allowed
3834  // (the qualifier would sink to the element type), and for another, the
3835  // only overload situation where it matters is subscript or pointer +- int,
3836  // and those shouldn't have qualifier variants anyway.
3837  if (PointeeTy->isArrayType())
3838    return true;
3839  const Type *ClassTy = PointerTy->getClass();
3840
3841  // Iterate through all strict supersets of the pointee type's CVR
3842  // qualifiers.
3843  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3844  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3845    if ((CVR | BaseCVR) != CVR) continue;
3846
3847    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3848    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3849  }
3850
3851  return true;
3852}
3853
3854/// AddTypesConvertedFrom - Add each of the types to which the type @p
3855/// Ty can be implicit converted to the given set of @p Types. We're
3856/// primarily interested in pointer types and enumeration types. We also
3857/// take member pointer types, for the conditional operator.
3858/// AllowUserConversions is true if we should look at the conversion
3859/// functions of a class type, and AllowExplicitConversions if we
3860/// should also include the explicit conversion functions of a class
3861/// type.
3862void
3863BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3864                                               SourceLocation Loc,
3865                                               bool AllowUserConversions,
3866                                               bool AllowExplicitConversions,
3867                                               const Qualifiers &VisibleQuals) {
3868  // Only deal with canonical types.
3869  Ty = Context.getCanonicalType(Ty);
3870
3871  // Look through reference types; they aren't part of the type of an
3872  // expression for the purposes of conversions.
3873  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3874    Ty = RefTy->getPointeeType();
3875
3876  // We don't care about qualifiers on the type.
3877  Ty = Ty.getLocalUnqualifiedType();
3878
3879  // If we're dealing with an array type, decay to the pointer.
3880  if (Ty->isArrayType())
3881    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3882
3883  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3884    QualType PointeeTy = PointerTy->getPointeeType();
3885
3886    // Insert our type, and its more-qualified variants, into the set
3887    // of types.
3888    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3889      return;
3890  } else if (Ty->isMemberPointerType()) {
3891    // Member pointers are far easier, since the pointee can't be converted.
3892    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3893      return;
3894  } else if (Ty->isEnumeralType()) {
3895    EnumerationTypes.insert(Ty);
3896  } else if (AllowUserConversions) {
3897    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3898      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3899        // No conversion functions in incomplete types.
3900        return;
3901      }
3902
3903      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3904      const UnresolvedSetImpl *Conversions
3905        = ClassDecl->getVisibleConversionFunctions();
3906      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3907             E = Conversions->end(); I != E; ++I) {
3908        NamedDecl *D = I.getDecl();
3909        if (isa<UsingShadowDecl>(D))
3910          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3911
3912        // Skip conversion function templates; they don't tell us anything
3913        // about which builtin types we can convert to.
3914        if (isa<FunctionTemplateDecl>(D))
3915          continue;
3916
3917        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3918        if (AllowExplicitConversions || !Conv->isExplicit()) {
3919          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3920                                VisibleQuals);
3921        }
3922      }
3923    }
3924  }
3925}
3926
3927/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3928/// the volatile- and non-volatile-qualified assignment operators for the
3929/// given type to the candidate set.
3930static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3931                                                   QualType T,
3932                                                   Expr **Args,
3933                                                   unsigned NumArgs,
3934                                    OverloadCandidateSet &CandidateSet) {
3935  QualType ParamTypes[2];
3936
3937  // T& operator=(T&, T)
3938  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3939  ParamTypes[1] = T;
3940  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3941                        /*IsAssignmentOperator=*/true);
3942
3943  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3944    // volatile T& operator=(volatile T&, T)
3945    ParamTypes[0]
3946      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3947    ParamTypes[1] = T;
3948    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3949                          /*IsAssignmentOperator=*/true);
3950  }
3951}
3952
3953/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3954/// if any, found in visible type conversion functions found in ArgExpr's type.
3955static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3956    Qualifiers VRQuals;
3957    const RecordType *TyRec;
3958    if (const MemberPointerType *RHSMPType =
3959        ArgExpr->getType()->getAs<MemberPointerType>())
3960      TyRec = RHSMPType->getClass()->getAs<RecordType>();
3961    else
3962      TyRec = ArgExpr->getType()->getAs<RecordType>();
3963    if (!TyRec) {
3964      // Just to be safe, assume the worst case.
3965      VRQuals.addVolatile();
3966      VRQuals.addRestrict();
3967      return VRQuals;
3968    }
3969
3970    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3971    if (!ClassDecl->hasDefinition())
3972      return VRQuals;
3973
3974    const UnresolvedSetImpl *Conversions =
3975      ClassDecl->getVisibleConversionFunctions();
3976
3977    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3978           E = Conversions->end(); I != E; ++I) {
3979      NamedDecl *D = I.getDecl();
3980      if (isa<UsingShadowDecl>(D))
3981        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3982      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3983        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3984        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3985          CanTy = ResTypeRef->getPointeeType();
3986        // Need to go down the pointer/mempointer chain and add qualifiers
3987        // as see them.
3988        bool done = false;
3989        while (!done) {
3990          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3991            CanTy = ResTypePtr->getPointeeType();
3992          else if (const MemberPointerType *ResTypeMPtr =
3993                CanTy->getAs<MemberPointerType>())
3994            CanTy = ResTypeMPtr->getPointeeType();
3995          else
3996            done = true;
3997          if (CanTy.isVolatileQualified())
3998            VRQuals.addVolatile();
3999          if (CanTy.isRestrictQualified())
4000            VRQuals.addRestrict();
4001          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4002            return VRQuals;
4003        }
4004      }
4005    }
4006    return VRQuals;
4007}
4008
4009/// AddBuiltinOperatorCandidates - Add the appropriate built-in
4010/// operator overloads to the candidate set (C++ [over.built]), based
4011/// on the operator @p Op and the arguments given. For example, if the
4012/// operator is a binary '+', this routine might add "int
4013/// operator+(int, int)" to cover integer addition.
4014void
4015Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
4016                                   SourceLocation OpLoc,
4017                                   Expr **Args, unsigned NumArgs,
4018                                   OverloadCandidateSet& CandidateSet) {
4019  // The set of "promoted arithmetic types", which are the arithmetic
4020  // types are that preserved by promotion (C++ [over.built]p2). Note
4021  // that the first few of these types are the promoted integral
4022  // types; these types need to be first.
4023  // FIXME: What about complex?
4024  const unsigned FirstIntegralType = 0;
4025  const unsigned LastIntegralType = 13;
4026  const unsigned FirstPromotedIntegralType = 7,
4027                 LastPromotedIntegralType = 13;
4028  const unsigned FirstPromotedArithmeticType = 7,
4029                 LastPromotedArithmeticType = 16;
4030  const unsigned NumArithmeticTypes = 16;
4031  QualType ArithmeticTypes[NumArithmeticTypes] = {
4032    Context.BoolTy, Context.CharTy, Context.WCharTy,
4033// FIXME:   Context.Char16Ty, Context.Char32Ty,
4034    Context.SignedCharTy, Context.ShortTy,
4035    Context.UnsignedCharTy, Context.UnsignedShortTy,
4036    Context.IntTy, Context.LongTy, Context.LongLongTy,
4037    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
4038    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
4039  };
4040  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
4041         "Invalid first promoted integral type");
4042  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
4043           == Context.UnsignedLongLongTy &&
4044         "Invalid last promoted integral type");
4045  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
4046         "Invalid first promoted arithmetic type");
4047  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
4048            == Context.LongDoubleTy &&
4049         "Invalid last promoted arithmetic type");
4050
4051  // Find all of the types that the arguments can convert to, but only
4052  // if the operator we're looking at has built-in operator candidates
4053  // that make use of these types.
4054  Qualifiers VisibleTypeConversionsQuals;
4055  VisibleTypeConversionsQuals.addConst();
4056  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4057    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
4058
4059  BuiltinCandidateTypeSet CandidateTypes(*this);
4060  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
4061      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
4062      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
4063      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
4064      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
4065      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
4066    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4067      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
4068                                           OpLoc,
4069                                           true,
4070                                           (Op == OO_Exclaim ||
4071                                            Op == OO_AmpAmp ||
4072                                            Op == OO_PipePipe),
4073                                           VisibleTypeConversionsQuals);
4074  }
4075
4076  bool isComparison = false;
4077  switch (Op) {
4078  case OO_None:
4079  case NUM_OVERLOADED_OPERATORS:
4080    assert(false && "Expected an overloaded operator");
4081    break;
4082
4083  case OO_Star: // '*' is either unary or binary
4084    if (NumArgs == 1)
4085      goto UnaryStar;
4086    else
4087      goto BinaryStar;
4088    break;
4089
4090  case OO_Plus: // '+' is either unary or binary
4091    if (NumArgs == 1)
4092      goto UnaryPlus;
4093    else
4094      goto BinaryPlus;
4095    break;
4096
4097  case OO_Minus: // '-' is either unary or binary
4098    if (NumArgs == 1)
4099      goto UnaryMinus;
4100    else
4101      goto BinaryMinus;
4102    break;
4103
4104  case OO_Amp: // '&' is either unary or binary
4105    if (NumArgs == 1)
4106      goto UnaryAmp;
4107    else
4108      goto BinaryAmp;
4109
4110  case OO_PlusPlus:
4111  case OO_MinusMinus:
4112    // C++ [over.built]p3:
4113    //
4114    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4115    //   is either volatile or empty, there exist candidate operator
4116    //   functions of the form
4117    //
4118    //       VQ T&      operator++(VQ T&);
4119    //       T          operator++(VQ T&, int);
4120    //
4121    // C++ [over.built]p4:
4122    //
4123    //   For every pair (T, VQ), where T is an arithmetic type other
4124    //   than bool, and VQ is either volatile or empty, there exist
4125    //   candidate operator functions of the form
4126    //
4127    //       VQ T&      operator--(VQ T&);
4128    //       T          operator--(VQ T&, int);
4129    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4130         Arith < NumArithmeticTypes; ++Arith) {
4131      QualType ArithTy = ArithmeticTypes[Arith];
4132      QualType ParamTypes[2]
4133        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
4134
4135      // Non-volatile version.
4136      if (NumArgs == 1)
4137        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4138      else
4139        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4140      // heuristic to reduce number of builtin candidates in the set.
4141      // Add volatile version only if there are conversions to a volatile type.
4142      if (VisibleTypeConversionsQuals.hasVolatile()) {
4143        // Volatile version
4144        ParamTypes[0]
4145          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
4146        if (NumArgs == 1)
4147          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4148        else
4149          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4150      }
4151    }
4152
4153    // C++ [over.built]p5:
4154    //
4155    //   For every pair (T, VQ), where T is a cv-qualified or
4156    //   cv-unqualified object type, and VQ is either volatile or
4157    //   empty, there exist candidate operator functions of the form
4158    //
4159    //       T*VQ&      operator++(T*VQ&);
4160    //       T*VQ&      operator--(T*VQ&);
4161    //       T*         operator++(T*VQ&, int);
4162    //       T*         operator--(T*VQ&, int);
4163    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4164         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4165      // Skip pointer types that aren't pointers to object types.
4166      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
4167        continue;
4168
4169      QualType ParamTypes[2] = {
4170        Context.getLValueReferenceType(*Ptr), Context.IntTy
4171      };
4172
4173      // Without volatile
4174      if (NumArgs == 1)
4175        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4176      else
4177        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4178
4179      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4180          VisibleTypeConversionsQuals.hasVolatile()) {
4181        // With volatile
4182        ParamTypes[0]
4183          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4184        if (NumArgs == 1)
4185          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4186        else
4187          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4188      }
4189    }
4190    break;
4191
4192  UnaryStar:
4193    // C++ [over.built]p6:
4194    //   For every cv-qualified or cv-unqualified object type T, there
4195    //   exist candidate operator functions of the form
4196    //
4197    //       T&         operator*(T*);
4198    //
4199    // C++ [over.built]p7:
4200    //   For every function type T, there exist candidate operator
4201    //   functions of the form
4202    //       T&         operator*(T*);
4203    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4204         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4205      QualType ParamTy = *Ptr;
4206      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
4207      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
4208                          &ParamTy, Args, 1, CandidateSet);
4209    }
4210    break;
4211
4212  UnaryPlus:
4213    // C++ [over.built]p8:
4214    //   For every type T, there exist candidate operator functions of
4215    //   the form
4216    //
4217    //       T*         operator+(T*);
4218    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4219         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4220      QualType ParamTy = *Ptr;
4221      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4222    }
4223
4224    // Fall through
4225
4226  UnaryMinus:
4227    // C++ [over.built]p9:
4228    //  For every promoted arithmetic type T, there exist candidate
4229    //  operator functions of the form
4230    //
4231    //       T         operator+(T);
4232    //       T         operator-(T);
4233    for (unsigned Arith = FirstPromotedArithmeticType;
4234         Arith < LastPromotedArithmeticType; ++Arith) {
4235      QualType ArithTy = ArithmeticTypes[Arith];
4236      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4237    }
4238    break;
4239
4240  case OO_Tilde:
4241    // C++ [over.built]p10:
4242    //   For every promoted integral type T, there exist candidate
4243    //   operator functions of the form
4244    //
4245    //        T         operator~(T);
4246    for (unsigned Int = FirstPromotedIntegralType;
4247         Int < LastPromotedIntegralType; ++Int) {
4248      QualType IntTy = ArithmeticTypes[Int];
4249      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4250    }
4251    break;
4252
4253  case OO_New:
4254  case OO_Delete:
4255  case OO_Array_New:
4256  case OO_Array_Delete:
4257  case OO_Call:
4258    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4259    break;
4260
4261  case OO_Comma:
4262  UnaryAmp:
4263  case OO_Arrow:
4264    // C++ [over.match.oper]p3:
4265    //   -- For the operator ',', the unary operator '&', or the
4266    //      operator '->', the built-in candidates set is empty.
4267    break;
4268
4269  case OO_EqualEqual:
4270  case OO_ExclaimEqual:
4271    // C++ [over.match.oper]p16:
4272    //   For every pointer to member type T, there exist candidate operator
4273    //   functions of the form
4274    //
4275    //        bool operator==(T,T);
4276    //        bool operator!=(T,T);
4277    for (BuiltinCandidateTypeSet::iterator
4278           MemPtr = CandidateTypes.member_pointer_begin(),
4279           MemPtrEnd = CandidateTypes.member_pointer_end();
4280         MemPtr != MemPtrEnd;
4281         ++MemPtr) {
4282      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4283      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4284    }
4285
4286    // Fall through
4287
4288  case OO_Less:
4289  case OO_Greater:
4290  case OO_LessEqual:
4291  case OO_GreaterEqual:
4292    // C++ [over.built]p15:
4293    //
4294    //   For every pointer or enumeration type T, there exist
4295    //   candidate operator functions of the form
4296    //
4297    //        bool       operator<(T, T);
4298    //        bool       operator>(T, T);
4299    //        bool       operator<=(T, T);
4300    //        bool       operator>=(T, T);
4301    //        bool       operator==(T, T);
4302    //        bool       operator!=(T, T);
4303    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4304         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4305      QualType ParamTypes[2] = { *Ptr, *Ptr };
4306      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4307    }
4308    for (BuiltinCandidateTypeSet::iterator Enum
4309           = CandidateTypes.enumeration_begin();
4310         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4311      QualType ParamTypes[2] = { *Enum, *Enum };
4312      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4313    }
4314
4315    // Fall through.
4316    isComparison = true;
4317
4318  BinaryPlus:
4319  BinaryMinus:
4320    if (!isComparison) {
4321      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4322
4323      // C++ [over.built]p13:
4324      //
4325      //   For every cv-qualified or cv-unqualified object type T
4326      //   there exist candidate operator functions of the form
4327      //
4328      //      T*         operator+(T*, ptrdiff_t);
4329      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4330      //      T*         operator-(T*, ptrdiff_t);
4331      //      T*         operator+(ptrdiff_t, T*);
4332      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4333      //
4334      // C++ [over.built]p14:
4335      //
4336      //   For every T, where T is a pointer to object type, there
4337      //   exist candidate operator functions of the form
4338      //
4339      //      ptrdiff_t  operator-(T, T);
4340      for (BuiltinCandidateTypeSet::iterator Ptr
4341             = CandidateTypes.pointer_begin();
4342           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4343        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4344
4345        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4346        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4347
4348        if (Op == OO_Plus) {
4349          // T* operator+(ptrdiff_t, T*);
4350          ParamTypes[0] = ParamTypes[1];
4351          ParamTypes[1] = *Ptr;
4352          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4353        } else {
4354          // ptrdiff_t operator-(T, T);
4355          ParamTypes[1] = *Ptr;
4356          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4357                              Args, 2, CandidateSet);
4358        }
4359      }
4360    }
4361    // Fall through
4362
4363  case OO_Slash:
4364  BinaryStar:
4365  Conditional:
4366    // C++ [over.built]p12:
4367    //
4368    //   For every pair of promoted arithmetic types L and R, there
4369    //   exist candidate operator functions of the form
4370    //
4371    //        LR         operator*(L, R);
4372    //        LR         operator/(L, R);
4373    //        LR         operator+(L, R);
4374    //        LR         operator-(L, R);
4375    //        bool       operator<(L, R);
4376    //        bool       operator>(L, R);
4377    //        bool       operator<=(L, R);
4378    //        bool       operator>=(L, R);
4379    //        bool       operator==(L, R);
4380    //        bool       operator!=(L, R);
4381    //
4382    //   where LR is the result of the usual arithmetic conversions
4383    //   between types L and R.
4384    //
4385    // C++ [over.built]p24:
4386    //
4387    //   For every pair of promoted arithmetic types L and R, there exist
4388    //   candidate operator functions of the form
4389    //
4390    //        LR       operator?(bool, L, R);
4391    //
4392    //   where LR is the result of the usual arithmetic conversions
4393    //   between types L and R.
4394    // Our candidates ignore the first parameter.
4395    for (unsigned Left = FirstPromotedArithmeticType;
4396         Left < LastPromotedArithmeticType; ++Left) {
4397      for (unsigned Right = FirstPromotedArithmeticType;
4398           Right < LastPromotedArithmeticType; ++Right) {
4399        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4400        QualType Result
4401          = isComparison
4402          ? Context.BoolTy
4403          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4404        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4405      }
4406    }
4407    break;
4408
4409  case OO_Percent:
4410  BinaryAmp:
4411  case OO_Caret:
4412  case OO_Pipe:
4413  case OO_LessLess:
4414  case OO_GreaterGreater:
4415    // C++ [over.built]p17:
4416    //
4417    //   For every pair of promoted integral types L and R, there
4418    //   exist candidate operator functions of the form
4419    //
4420    //      LR         operator%(L, R);
4421    //      LR         operator&(L, R);
4422    //      LR         operator^(L, R);
4423    //      LR         operator|(L, R);
4424    //      L          operator<<(L, R);
4425    //      L          operator>>(L, R);
4426    //
4427    //   where LR is the result of the usual arithmetic conversions
4428    //   between types L and R.
4429    for (unsigned Left = FirstPromotedIntegralType;
4430         Left < LastPromotedIntegralType; ++Left) {
4431      for (unsigned Right = FirstPromotedIntegralType;
4432           Right < LastPromotedIntegralType; ++Right) {
4433        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4434        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4435            ? LandR[0]
4436            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4437        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4438      }
4439    }
4440    break;
4441
4442  case OO_Equal:
4443    // C++ [over.built]p20:
4444    //
4445    //   For every pair (T, VQ), where T is an enumeration or
4446    //   pointer to member type and VQ is either volatile or
4447    //   empty, there exist candidate operator functions of the form
4448    //
4449    //        VQ T&      operator=(VQ T&, T);
4450    for (BuiltinCandidateTypeSet::iterator
4451           Enum = CandidateTypes.enumeration_begin(),
4452           EnumEnd = CandidateTypes.enumeration_end();
4453         Enum != EnumEnd; ++Enum)
4454      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4455                                             CandidateSet);
4456    for (BuiltinCandidateTypeSet::iterator
4457           MemPtr = CandidateTypes.member_pointer_begin(),
4458         MemPtrEnd = CandidateTypes.member_pointer_end();
4459         MemPtr != MemPtrEnd; ++MemPtr)
4460      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4461                                             CandidateSet);
4462      // Fall through.
4463
4464  case OO_PlusEqual:
4465  case OO_MinusEqual:
4466    // C++ [over.built]p19:
4467    //
4468    //   For every pair (T, VQ), where T is any type and VQ is either
4469    //   volatile or empty, there exist candidate operator functions
4470    //   of the form
4471    //
4472    //        T*VQ&      operator=(T*VQ&, T*);
4473    //
4474    // C++ [over.built]p21:
4475    //
4476    //   For every pair (T, VQ), where T is a cv-qualified or
4477    //   cv-unqualified object type and VQ is either volatile or
4478    //   empty, there exist candidate operator functions of the form
4479    //
4480    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4481    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4482    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4483         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4484      QualType ParamTypes[2];
4485      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4486
4487      // non-volatile version
4488      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4489      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4490                          /*IsAssigmentOperator=*/Op == OO_Equal);
4491
4492      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4493          VisibleTypeConversionsQuals.hasVolatile()) {
4494        // volatile version
4495        ParamTypes[0]
4496          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4497        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4498                            /*IsAssigmentOperator=*/Op == OO_Equal);
4499      }
4500    }
4501    // Fall through.
4502
4503  case OO_StarEqual:
4504  case OO_SlashEqual:
4505    // C++ [over.built]p18:
4506    //
4507    //   For every triple (L, VQ, R), where L is an arithmetic type,
4508    //   VQ is either volatile or empty, and R is a promoted
4509    //   arithmetic type, there exist candidate operator functions of
4510    //   the form
4511    //
4512    //        VQ L&      operator=(VQ L&, R);
4513    //        VQ L&      operator*=(VQ L&, R);
4514    //        VQ L&      operator/=(VQ L&, R);
4515    //        VQ L&      operator+=(VQ L&, R);
4516    //        VQ L&      operator-=(VQ L&, R);
4517    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4518      for (unsigned Right = FirstPromotedArithmeticType;
4519           Right < LastPromotedArithmeticType; ++Right) {
4520        QualType ParamTypes[2];
4521        ParamTypes[1] = ArithmeticTypes[Right];
4522
4523        // Add this built-in operator as a candidate (VQ is empty).
4524        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4525        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4526                            /*IsAssigmentOperator=*/Op == OO_Equal);
4527
4528        // Add this built-in operator as a candidate (VQ is 'volatile').
4529        if (VisibleTypeConversionsQuals.hasVolatile()) {
4530          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4531          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4532          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4533                              /*IsAssigmentOperator=*/Op == OO_Equal);
4534        }
4535      }
4536    }
4537    break;
4538
4539  case OO_PercentEqual:
4540  case OO_LessLessEqual:
4541  case OO_GreaterGreaterEqual:
4542  case OO_AmpEqual:
4543  case OO_CaretEqual:
4544  case OO_PipeEqual:
4545    // C++ [over.built]p22:
4546    //
4547    //   For every triple (L, VQ, R), where L is an integral type, VQ
4548    //   is either volatile or empty, and R is a promoted integral
4549    //   type, there exist candidate operator functions of the form
4550    //
4551    //        VQ L&       operator%=(VQ L&, R);
4552    //        VQ L&       operator<<=(VQ L&, R);
4553    //        VQ L&       operator>>=(VQ L&, R);
4554    //        VQ L&       operator&=(VQ L&, R);
4555    //        VQ L&       operator^=(VQ L&, R);
4556    //        VQ L&       operator|=(VQ L&, R);
4557    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4558      for (unsigned Right = FirstPromotedIntegralType;
4559           Right < LastPromotedIntegralType; ++Right) {
4560        QualType ParamTypes[2];
4561        ParamTypes[1] = ArithmeticTypes[Right];
4562
4563        // Add this built-in operator as a candidate (VQ is empty).
4564        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4565        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4566        if (VisibleTypeConversionsQuals.hasVolatile()) {
4567          // Add this built-in operator as a candidate (VQ is 'volatile').
4568          ParamTypes[0] = ArithmeticTypes[Left];
4569          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4570          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4571          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4572        }
4573      }
4574    }
4575    break;
4576
4577  case OO_Exclaim: {
4578    // C++ [over.operator]p23:
4579    //
4580    //   There also exist candidate operator functions of the form
4581    //
4582    //        bool        operator!(bool);
4583    //        bool        operator&&(bool, bool);     [BELOW]
4584    //        bool        operator||(bool, bool);     [BELOW]
4585    QualType ParamTy = Context.BoolTy;
4586    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4587                        /*IsAssignmentOperator=*/false,
4588                        /*NumContextualBoolArguments=*/1);
4589    break;
4590  }
4591
4592  case OO_AmpAmp:
4593  case OO_PipePipe: {
4594    // C++ [over.operator]p23:
4595    //
4596    //   There also exist candidate operator functions of the form
4597    //
4598    //        bool        operator!(bool);            [ABOVE]
4599    //        bool        operator&&(bool, bool);
4600    //        bool        operator||(bool, bool);
4601    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4602    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4603                        /*IsAssignmentOperator=*/false,
4604                        /*NumContextualBoolArguments=*/2);
4605    break;
4606  }
4607
4608  case OO_Subscript:
4609    // C++ [over.built]p13:
4610    //
4611    //   For every cv-qualified or cv-unqualified object type T there
4612    //   exist candidate operator functions of the form
4613    //
4614    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4615    //        T&         operator[](T*, ptrdiff_t);
4616    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4617    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4618    //        T&         operator[](ptrdiff_t, T*);
4619    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4620         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4621      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4622      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4623      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4624
4625      // T& operator[](T*, ptrdiff_t)
4626      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4627
4628      // T& operator[](ptrdiff_t, T*);
4629      ParamTypes[0] = ParamTypes[1];
4630      ParamTypes[1] = *Ptr;
4631      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4632    }
4633    break;
4634
4635  case OO_ArrowStar:
4636    // C++ [over.built]p11:
4637    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4638    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4639    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4640    //    there exist candidate operator functions of the form
4641    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4642    //    where CV12 is the union of CV1 and CV2.
4643    {
4644      for (BuiltinCandidateTypeSet::iterator Ptr =
4645             CandidateTypes.pointer_begin();
4646           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4647        QualType C1Ty = (*Ptr);
4648        QualType C1;
4649        QualifierCollector Q1;
4650        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4651          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4652          if (!isa<RecordType>(C1))
4653            continue;
4654          // heuristic to reduce number of builtin candidates in the set.
4655          // Add volatile/restrict version only if there are conversions to a
4656          // volatile/restrict type.
4657          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4658            continue;
4659          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4660            continue;
4661        }
4662        for (BuiltinCandidateTypeSet::iterator
4663             MemPtr = CandidateTypes.member_pointer_begin(),
4664             MemPtrEnd = CandidateTypes.member_pointer_end();
4665             MemPtr != MemPtrEnd; ++MemPtr) {
4666          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4667          QualType C2 = QualType(mptr->getClass(), 0);
4668          C2 = C2.getUnqualifiedType();
4669          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4670            break;
4671          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4672          // build CV12 T&
4673          QualType T = mptr->getPointeeType();
4674          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4675              T.isVolatileQualified())
4676            continue;
4677          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4678              T.isRestrictQualified())
4679            continue;
4680          T = Q1.apply(T);
4681          QualType ResultTy = Context.getLValueReferenceType(T);
4682          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4683        }
4684      }
4685    }
4686    break;
4687
4688  case OO_Conditional:
4689    // Note that we don't consider the first argument, since it has been
4690    // contextually converted to bool long ago. The candidates below are
4691    // therefore added as binary.
4692    //
4693    // C++ [over.built]p24:
4694    //   For every type T, where T is a pointer or pointer-to-member type,
4695    //   there exist candidate operator functions of the form
4696    //
4697    //        T        operator?(bool, T, T);
4698    //
4699    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4700         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4701      QualType ParamTypes[2] = { *Ptr, *Ptr };
4702      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4703    }
4704    for (BuiltinCandidateTypeSet::iterator Ptr =
4705           CandidateTypes.member_pointer_begin(),
4706         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4707      QualType ParamTypes[2] = { *Ptr, *Ptr };
4708      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4709    }
4710    goto Conditional;
4711  }
4712}
4713
4714/// \brief Add function candidates found via argument-dependent lookup
4715/// to the set of overloading candidates.
4716///
4717/// This routine performs argument-dependent name lookup based on the
4718/// given function name (which may also be an operator name) and adds
4719/// all of the overload candidates found by ADL to the overload
4720/// candidate set (C++ [basic.lookup.argdep]).
4721void
4722Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4723                                           bool Operator,
4724                                           Expr **Args, unsigned NumArgs,
4725                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4726                                           OverloadCandidateSet& CandidateSet,
4727                                           bool PartialOverloading) {
4728  ADLResult Fns;
4729
4730  // FIXME: This approach for uniquing ADL results (and removing
4731  // redundant candidates from the set) relies on pointer-equality,
4732  // which means we need to key off the canonical decl.  However,
4733  // always going back to the canonical decl might not get us the
4734  // right set of default arguments.  What default arguments are
4735  // we supposed to consider on ADL candidates, anyway?
4736
4737  // FIXME: Pass in the explicit template arguments?
4738  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4739
4740  // Erase all of the candidates we already knew about.
4741  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4742                                   CandEnd = CandidateSet.end();
4743       Cand != CandEnd; ++Cand)
4744    if (Cand->Function) {
4745      Fns.erase(Cand->Function);
4746      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4747        Fns.erase(FunTmpl);
4748    }
4749
4750  // For each of the ADL candidates we found, add it to the overload
4751  // set.
4752  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4753    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4754    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4755      if (ExplicitTemplateArgs)
4756        continue;
4757
4758      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4759                           false, PartialOverloading);
4760    } else
4761      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4762                                   FoundDecl, ExplicitTemplateArgs,
4763                                   Args, NumArgs, CandidateSet);
4764  }
4765}
4766
4767/// isBetterOverloadCandidate - Determines whether the first overload
4768/// candidate is a better candidate than the second (C++ 13.3.3p1).
4769bool
4770Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4771                                const OverloadCandidate& Cand2,
4772                                SourceLocation Loc) {
4773  // Define viable functions to be better candidates than non-viable
4774  // functions.
4775  if (!Cand2.Viable)
4776    return Cand1.Viable;
4777  else if (!Cand1.Viable)
4778    return false;
4779
4780  // C++ [over.match.best]p1:
4781  //
4782  //   -- if F is a static member function, ICS1(F) is defined such
4783  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4784  //      any function G, and, symmetrically, ICS1(G) is neither
4785  //      better nor worse than ICS1(F).
4786  unsigned StartArg = 0;
4787  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4788    StartArg = 1;
4789
4790  // C++ [over.match.best]p1:
4791  //   A viable function F1 is defined to be a better function than another
4792  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4793  //   conversion sequence than ICSi(F2), and then...
4794  unsigned NumArgs = Cand1.Conversions.size();
4795  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4796  bool HasBetterConversion = false;
4797  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4798    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4799                                               Cand2.Conversions[ArgIdx])) {
4800    case ImplicitConversionSequence::Better:
4801      // Cand1 has a better conversion sequence.
4802      HasBetterConversion = true;
4803      break;
4804
4805    case ImplicitConversionSequence::Worse:
4806      // Cand1 can't be better than Cand2.
4807      return false;
4808
4809    case ImplicitConversionSequence::Indistinguishable:
4810      // Do nothing.
4811      break;
4812    }
4813  }
4814
4815  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4816  //       ICSj(F2), or, if not that,
4817  if (HasBetterConversion)
4818    return true;
4819
4820  //     - F1 is a non-template function and F2 is a function template
4821  //       specialization, or, if not that,
4822  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4823      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4824    return true;
4825
4826  //   -- F1 and F2 are function template specializations, and the function
4827  //      template for F1 is more specialized than the template for F2
4828  //      according to the partial ordering rules described in 14.5.5.2, or,
4829  //      if not that,
4830  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4831      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4832    if (FunctionTemplateDecl *BetterTemplate
4833          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4834                                       Cand2.Function->getPrimaryTemplate(),
4835                                       Loc,
4836                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4837                                                             : TPOC_Call))
4838      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4839
4840  //   -- the context is an initialization by user-defined conversion
4841  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4842  //      from the return type of F1 to the destination type (i.e.,
4843  //      the type of the entity being initialized) is a better
4844  //      conversion sequence than the standard conversion sequence
4845  //      from the return type of F2 to the destination type.
4846  if (Cand1.Function && Cand2.Function &&
4847      isa<CXXConversionDecl>(Cand1.Function) &&
4848      isa<CXXConversionDecl>(Cand2.Function)) {
4849    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4850                                               Cand2.FinalConversion)) {
4851    case ImplicitConversionSequence::Better:
4852      // Cand1 has a better conversion sequence.
4853      return true;
4854
4855    case ImplicitConversionSequence::Worse:
4856      // Cand1 can't be better than Cand2.
4857      return false;
4858
4859    case ImplicitConversionSequence::Indistinguishable:
4860      // Do nothing
4861      break;
4862    }
4863  }
4864
4865  return false;
4866}
4867
4868/// \brief Computes the best viable function (C++ 13.3.3)
4869/// within an overload candidate set.
4870///
4871/// \param CandidateSet the set of candidate functions.
4872///
4873/// \param Loc the location of the function name (or operator symbol) for
4874/// which overload resolution occurs.
4875///
4876/// \param Best f overload resolution was successful or found a deleted
4877/// function, Best points to the candidate function found.
4878///
4879/// \returns The result of overload resolution.
4880OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4881                                           SourceLocation Loc,
4882                                        OverloadCandidateSet::iterator& Best) {
4883  // Find the best viable function.
4884  Best = CandidateSet.end();
4885  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4886       Cand != CandidateSet.end(); ++Cand) {
4887    if (Cand->Viable) {
4888      if (Best == CandidateSet.end() ||
4889          isBetterOverloadCandidate(*Cand, *Best, Loc))
4890        Best = Cand;
4891    }
4892  }
4893
4894  // If we didn't find any viable functions, abort.
4895  if (Best == CandidateSet.end())
4896    return OR_No_Viable_Function;
4897
4898  // Make sure that this function is better than every other viable
4899  // function. If not, we have an ambiguity.
4900  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4901       Cand != CandidateSet.end(); ++Cand) {
4902    if (Cand->Viable &&
4903        Cand != Best &&
4904        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4905      Best = CandidateSet.end();
4906      return OR_Ambiguous;
4907    }
4908  }
4909
4910  // Best is the best viable function.
4911  if (Best->Function &&
4912      (Best->Function->isDeleted() ||
4913       Best->Function->getAttr<UnavailableAttr>()))
4914    return OR_Deleted;
4915
4916  // C++ [basic.def.odr]p2:
4917  //   An overloaded function is used if it is selected by overload resolution
4918  //   when referred to from a potentially-evaluated expression. [Note: this
4919  //   covers calls to named functions (5.2.2), operator overloading
4920  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4921  //   placement new (5.3.4), as well as non-default initialization (8.5).
4922  if (Best->Function)
4923    MarkDeclarationReferenced(Loc, Best->Function);
4924  return OR_Success;
4925}
4926
4927namespace {
4928
4929enum OverloadCandidateKind {
4930  oc_function,
4931  oc_method,
4932  oc_constructor,
4933  oc_function_template,
4934  oc_method_template,
4935  oc_constructor_template,
4936  oc_implicit_default_constructor,
4937  oc_implicit_copy_constructor,
4938  oc_implicit_copy_assignment
4939};
4940
4941OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4942                                                FunctionDecl *Fn,
4943                                                std::string &Description) {
4944  bool isTemplate = false;
4945
4946  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4947    isTemplate = true;
4948    Description = S.getTemplateArgumentBindingsText(
4949      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4950  }
4951
4952  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4953    if (!Ctor->isImplicit())
4954      return isTemplate ? oc_constructor_template : oc_constructor;
4955
4956    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4957                                     : oc_implicit_default_constructor;
4958  }
4959
4960  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4961    // This actually gets spelled 'candidate function' for now, but
4962    // it doesn't hurt to split it out.
4963    if (!Meth->isImplicit())
4964      return isTemplate ? oc_method_template : oc_method;
4965
4966    assert(Meth->isCopyAssignment()
4967           && "implicit method is not copy assignment operator?");
4968    return oc_implicit_copy_assignment;
4969  }
4970
4971  return isTemplate ? oc_function_template : oc_function;
4972}
4973
4974} // end anonymous namespace
4975
4976// Notes the location of an overload candidate.
4977void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4978  std::string FnDesc;
4979  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4980  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4981    << (unsigned) K << FnDesc;
4982}
4983
4984/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4985/// "lead" diagnostic; it will be given two arguments, the source and
4986/// target types of the conversion.
4987void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4988                                       SourceLocation CaretLoc,
4989                                       const PartialDiagnostic &PDiag) {
4990  Diag(CaretLoc, PDiag)
4991    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4992  for (AmbiguousConversionSequence::const_iterator
4993         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4994    NoteOverloadCandidate(*I);
4995  }
4996}
4997
4998namespace {
4999
5000void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
5001  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
5002  assert(Conv.isBad());
5003  assert(Cand->Function && "for now, candidate must be a function");
5004  FunctionDecl *Fn = Cand->Function;
5005
5006  // There's a conversion slot for the object argument if this is a
5007  // non-constructor method.  Note that 'I' corresponds the
5008  // conversion-slot index.
5009  bool isObjectArgument = false;
5010  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
5011    if (I == 0)
5012      isObjectArgument = true;
5013    else
5014      I--;
5015  }
5016
5017  std::string FnDesc;
5018  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5019
5020  Expr *FromExpr = Conv.Bad.FromExpr;
5021  QualType FromTy = Conv.Bad.getFromType();
5022  QualType ToTy = Conv.Bad.getToType();
5023
5024  if (FromTy == S.Context.OverloadTy) {
5025    assert(FromExpr && "overload set argument came from implicit argument?");
5026    Expr *E = FromExpr->IgnoreParens();
5027    if (isa<UnaryOperator>(E))
5028      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
5029    DeclarationName Name = cast<OverloadExpr>(E)->getName();
5030
5031    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
5032      << (unsigned) FnKind << FnDesc
5033      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5034      << ToTy << Name << I+1;
5035    return;
5036  }
5037
5038  // Do some hand-waving analysis to see if the non-viability is due
5039  // to a qualifier mismatch.
5040  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
5041  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
5042  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
5043    CToTy = RT->getPointeeType();
5044  else {
5045    // TODO: detect and diagnose the full richness of const mismatches.
5046    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
5047      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
5048        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
5049  }
5050
5051  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
5052      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
5053    // It is dumb that we have to do this here.
5054    while (isa<ArrayType>(CFromTy))
5055      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
5056    while (isa<ArrayType>(CToTy))
5057      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
5058
5059    Qualifiers FromQs = CFromTy.getQualifiers();
5060    Qualifiers ToQs = CToTy.getQualifiers();
5061
5062    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
5063      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
5064        << (unsigned) FnKind << FnDesc
5065        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5066        << FromTy
5067        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
5068        << (unsigned) isObjectArgument << I+1;
5069      return;
5070    }
5071
5072    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5073    assert(CVR && "unexpected qualifiers mismatch");
5074
5075    if (isObjectArgument) {
5076      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
5077        << (unsigned) FnKind << FnDesc
5078        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5079        << FromTy << (CVR - 1);
5080    } else {
5081      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
5082        << (unsigned) FnKind << FnDesc
5083        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5084        << FromTy << (CVR - 1) << I+1;
5085    }
5086    return;
5087  }
5088
5089  // Diagnose references or pointers to incomplete types differently,
5090  // since it's far from impossible that the incompleteness triggered
5091  // the failure.
5092  QualType TempFromTy = FromTy.getNonReferenceType();
5093  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
5094    TempFromTy = PTy->getPointeeType();
5095  if (TempFromTy->isIncompleteType()) {
5096    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
5097      << (unsigned) FnKind << FnDesc
5098      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5099      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5100    return;
5101  }
5102
5103  // TODO: specialize more based on the kind of mismatch
5104  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
5105    << (unsigned) FnKind << FnDesc
5106    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5107    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5108}
5109
5110void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
5111                           unsigned NumFormalArgs) {
5112  // TODO: treat calls to a missing default constructor as a special case
5113
5114  FunctionDecl *Fn = Cand->Function;
5115  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
5116
5117  unsigned MinParams = Fn->getMinRequiredArguments();
5118
5119  // at least / at most / exactly
5120  // FIXME: variadic templates "at most" should account for parameter packs
5121  unsigned mode, modeCount;
5122  if (NumFormalArgs < MinParams) {
5123    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
5124           (Cand->FailureKind == ovl_fail_bad_deduction &&
5125            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
5126    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
5127      mode = 0; // "at least"
5128    else
5129      mode = 2; // "exactly"
5130    modeCount = MinParams;
5131  } else {
5132    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
5133           (Cand->FailureKind == ovl_fail_bad_deduction &&
5134            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
5135    if (MinParams != FnTy->getNumArgs())
5136      mode = 1; // "at most"
5137    else
5138      mode = 2; // "exactly"
5139    modeCount = FnTy->getNumArgs();
5140  }
5141
5142  std::string Description;
5143  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
5144
5145  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
5146    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
5147    << modeCount << NumFormalArgs;
5148}
5149
5150/// Diagnose a failed template-argument deduction.
5151void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
5152                          Expr **Args, unsigned NumArgs) {
5153  FunctionDecl *Fn = Cand->Function; // pattern
5154
5155  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
5156  NamedDecl *ParamD;
5157  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
5158  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
5159  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
5160  switch (Cand->DeductionFailure.Result) {
5161  case Sema::TDK_Success:
5162    llvm_unreachable("TDK_success while diagnosing bad deduction");
5163
5164  case Sema::TDK_Incomplete: {
5165    assert(ParamD && "no parameter found for incomplete deduction result");
5166    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
5167      << ParamD->getDeclName();
5168    return;
5169  }
5170
5171  case Sema::TDK_Inconsistent:
5172  case Sema::TDK_InconsistentQuals: {
5173    assert(ParamD && "no parameter found for inconsistent deduction result");
5174    int which = 0;
5175    if (isa<TemplateTypeParmDecl>(ParamD))
5176      which = 0;
5177    else if (isa<NonTypeTemplateParmDecl>(ParamD))
5178      which = 1;
5179    else {
5180      which = 2;
5181    }
5182
5183    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
5184      << which << ParamD->getDeclName()
5185      << *Cand->DeductionFailure.getFirstArg()
5186      << *Cand->DeductionFailure.getSecondArg();
5187    return;
5188  }
5189
5190  case Sema::TDK_InvalidExplicitArguments:
5191    assert(ParamD && "no parameter found for invalid explicit arguments");
5192    if (ParamD->getDeclName())
5193      S.Diag(Fn->getLocation(),
5194             diag::note_ovl_candidate_explicit_arg_mismatch_named)
5195        << ParamD->getDeclName();
5196    else {
5197      int index = 0;
5198      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
5199        index = TTP->getIndex();
5200      else if (NonTypeTemplateParmDecl *NTTP
5201                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
5202        index = NTTP->getIndex();
5203      else
5204        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
5205      S.Diag(Fn->getLocation(),
5206             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
5207        << (index + 1);
5208    }
5209    return;
5210
5211  case Sema::TDK_TooManyArguments:
5212  case Sema::TDK_TooFewArguments:
5213    DiagnoseArityMismatch(S, Cand, NumArgs);
5214    return;
5215
5216  case Sema::TDK_InstantiationDepth:
5217    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
5218    return;
5219
5220  case Sema::TDK_SubstitutionFailure: {
5221    std::string ArgString;
5222    if (TemplateArgumentList *Args
5223                            = Cand->DeductionFailure.getTemplateArgumentList())
5224      ArgString = S.getTemplateArgumentBindingsText(
5225                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
5226                                                    *Args);
5227    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
5228      << ArgString;
5229    return;
5230  }
5231
5232  // TODO: diagnose these individually, then kill off
5233  // note_ovl_candidate_bad_deduction, which is uselessly vague.
5234  case Sema::TDK_NonDeducedMismatch:
5235  case Sema::TDK_FailedOverloadResolution:
5236    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
5237    return;
5238  }
5239}
5240
5241/// Generates a 'note' diagnostic for an overload candidate.  We've
5242/// already generated a primary error at the call site.
5243///
5244/// It really does need to be a single diagnostic with its caret
5245/// pointed at the candidate declaration.  Yes, this creates some
5246/// major challenges of technical writing.  Yes, this makes pointing
5247/// out problems with specific arguments quite awkward.  It's still
5248/// better than generating twenty screens of text for every failed
5249/// overload.
5250///
5251/// It would be great to be able to express per-candidate problems
5252/// more richly for those diagnostic clients that cared, but we'd
5253/// still have to be just as careful with the default diagnostics.
5254void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
5255                           Expr **Args, unsigned NumArgs) {
5256  FunctionDecl *Fn = Cand->Function;
5257
5258  // Note deleted candidates, but only if they're viable.
5259  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
5260    std::string FnDesc;
5261    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5262
5263    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
5264      << FnKind << FnDesc << Fn->isDeleted();
5265    return;
5266  }
5267
5268  // We don't really have anything else to say about viable candidates.
5269  if (Cand->Viable) {
5270    S.NoteOverloadCandidate(Fn);
5271    return;
5272  }
5273
5274  switch (Cand->FailureKind) {
5275  case ovl_fail_too_many_arguments:
5276  case ovl_fail_too_few_arguments:
5277    return DiagnoseArityMismatch(S, Cand, NumArgs);
5278
5279  case ovl_fail_bad_deduction:
5280    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
5281
5282  case ovl_fail_trivial_conversion:
5283  case ovl_fail_bad_final_conversion:
5284  case ovl_fail_final_conversion_not_exact:
5285    return S.NoteOverloadCandidate(Fn);
5286
5287  case ovl_fail_bad_conversion: {
5288    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
5289    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
5290      if (Cand->Conversions[I].isBad())
5291        return DiagnoseBadConversion(S, Cand, I);
5292
5293    // FIXME: this currently happens when we're called from SemaInit
5294    // when user-conversion overload fails.  Figure out how to handle
5295    // those conditions and diagnose them well.
5296    return S.NoteOverloadCandidate(Fn);
5297  }
5298  }
5299}
5300
5301void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
5302  // Desugar the type of the surrogate down to a function type,
5303  // retaining as many typedefs as possible while still showing
5304  // the function type (and, therefore, its parameter types).
5305  QualType FnType = Cand->Surrogate->getConversionType();
5306  bool isLValueReference = false;
5307  bool isRValueReference = false;
5308  bool isPointer = false;
5309  if (const LValueReferenceType *FnTypeRef =
5310        FnType->getAs<LValueReferenceType>()) {
5311    FnType = FnTypeRef->getPointeeType();
5312    isLValueReference = true;
5313  } else if (const RValueReferenceType *FnTypeRef =
5314               FnType->getAs<RValueReferenceType>()) {
5315    FnType = FnTypeRef->getPointeeType();
5316    isRValueReference = true;
5317  }
5318  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5319    FnType = FnTypePtr->getPointeeType();
5320    isPointer = true;
5321  }
5322  // Desugar down to a function type.
5323  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5324  // Reconstruct the pointer/reference as appropriate.
5325  if (isPointer) FnType = S.Context.getPointerType(FnType);
5326  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5327  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5328
5329  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5330    << FnType;
5331}
5332
5333void NoteBuiltinOperatorCandidate(Sema &S,
5334                                  const char *Opc,
5335                                  SourceLocation OpLoc,
5336                                  OverloadCandidate *Cand) {
5337  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5338  std::string TypeStr("operator");
5339  TypeStr += Opc;
5340  TypeStr += "(";
5341  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5342  if (Cand->Conversions.size() == 1) {
5343    TypeStr += ")";
5344    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5345  } else {
5346    TypeStr += ", ";
5347    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5348    TypeStr += ")";
5349    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5350  }
5351}
5352
5353void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5354                                  OverloadCandidate *Cand) {
5355  unsigned NoOperands = Cand->Conversions.size();
5356  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5357    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5358    if (ICS.isBad()) break; // all meaningless after first invalid
5359    if (!ICS.isAmbiguous()) continue;
5360
5361    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5362                              S.PDiag(diag::note_ambiguous_type_conversion));
5363  }
5364}
5365
5366SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5367  if (Cand->Function)
5368    return Cand->Function->getLocation();
5369  if (Cand->IsSurrogate)
5370    return Cand->Surrogate->getLocation();
5371  return SourceLocation();
5372}
5373
5374struct CompareOverloadCandidatesForDisplay {
5375  Sema &S;
5376  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5377
5378  bool operator()(const OverloadCandidate *L,
5379                  const OverloadCandidate *R) {
5380    // Fast-path this check.
5381    if (L == R) return false;
5382
5383    // Order first by viability.
5384    if (L->Viable) {
5385      if (!R->Viable) return true;
5386
5387      // TODO: introduce a tri-valued comparison for overload
5388      // candidates.  Would be more worthwhile if we had a sort
5389      // that could exploit it.
5390      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5391      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5392    } else if (R->Viable)
5393      return false;
5394
5395    assert(L->Viable == R->Viable);
5396
5397    // Criteria by which we can sort non-viable candidates:
5398    if (!L->Viable) {
5399      // 1. Arity mismatches come after other candidates.
5400      if (L->FailureKind == ovl_fail_too_many_arguments ||
5401          L->FailureKind == ovl_fail_too_few_arguments)
5402        return false;
5403      if (R->FailureKind == ovl_fail_too_many_arguments ||
5404          R->FailureKind == ovl_fail_too_few_arguments)
5405        return true;
5406
5407      // 2. Bad conversions come first and are ordered by the number
5408      // of bad conversions and quality of good conversions.
5409      if (L->FailureKind == ovl_fail_bad_conversion) {
5410        if (R->FailureKind != ovl_fail_bad_conversion)
5411          return true;
5412
5413        // If there's any ordering between the defined conversions...
5414        // FIXME: this might not be transitive.
5415        assert(L->Conversions.size() == R->Conversions.size());
5416
5417        int leftBetter = 0;
5418        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5419        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5420          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5421                                                       R->Conversions[I])) {
5422          case ImplicitConversionSequence::Better:
5423            leftBetter++;
5424            break;
5425
5426          case ImplicitConversionSequence::Worse:
5427            leftBetter--;
5428            break;
5429
5430          case ImplicitConversionSequence::Indistinguishable:
5431            break;
5432          }
5433        }
5434        if (leftBetter > 0) return true;
5435        if (leftBetter < 0) return false;
5436
5437      } else if (R->FailureKind == ovl_fail_bad_conversion)
5438        return false;
5439
5440      // TODO: others?
5441    }
5442
5443    // Sort everything else by location.
5444    SourceLocation LLoc = GetLocationForCandidate(L);
5445    SourceLocation RLoc = GetLocationForCandidate(R);
5446
5447    // Put candidates without locations (e.g. builtins) at the end.
5448    if (LLoc.isInvalid()) return false;
5449    if (RLoc.isInvalid()) return true;
5450
5451    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5452  }
5453};
5454
5455/// CompleteNonViableCandidate - Normally, overload resolution only
5456/// computes up to the first
5457void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5458                                Expr **Args, unsigned NumArgs) {
5459  assert(!Cand->Viable);
5460
5461  // Don't do anything on failures other than bad conversion.
5462  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5463
5464  // Skip forward to the first bad conversion.
5465  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5466  unsigned ConvCount = Cand->Conversions.size();
5467  while (true) {
5468    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5469    ConvIdx++;
5470    if (Cand->Conversions[ConvIdx - 1].isBad())
5471      break;
5472  }
5473
5474  if (ConvIdx == ConvCount)
5475    return;
5476
5477  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5478         "remaining conversion is initialized?");
5479
5480  // FIXME: this should probably be preserved from the overload
5481  // operation somehow.
5482  bool SuppressUserConversions = false;
5483
5484  const FunctionProtoType* Proto;
5485  unsigned ArgIdx = ConvIdx;
5486
5487  if (Cand->IsSurrogate) {
5488    QualType ConvType
5489      = Cand->Surrogate->getConversionType().getNonReferenceType();
5490    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5491      ConvType = ConvPtrType->getPointeeType();
5492    Proto = ConvType->getAs<FunctionProtoType>();
5493    ArgIdx--;
5494  } else if (Cand->Function) {
5495    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5496    if (isa<CXXMethodDecl>(Cand->Function) &&
5497        !isa<CXXConstructorDecl>(Cand->Function))
5498      ArgIdx--;
5499  } else {
5500    // Builtin binary operator with a bad first conversion.
5501    assert(ConvCount <= 3);
5502    for (; ConvIdx != ConvCount; ++ConvIdx)
5503      Cand->Conversions[ConvIdx]
5504        = TryCopyInitialization(S, Args[ConvIdx],
5505                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5506                                SuppressUserConversions,
5507                                /*InOverloadResolution*/ true);
5508    return;
5509  }
5510
5511  // Fill in the rest of the conversions.
5512  unsigned NumArgsInProto = Proto->getNumArgs();
5513  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5514    if (ArgIdx < NumArgsInProto)
5515      Cand->Conversions[ConvIdx]
5516        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5517                                SuppressUserConversions,
5518                                /*InOverloadResolution=*/true);
5519    else
5520      Cand->Conversions[ConvIdx].setEllipsis();
5521  }
5522}
5523
5524} // end anonymous namespace
5525
5526/// PrintOverloadCandidates - When overload resolution fails, prints
5527/// diagnostic messages containing the candidates in the candidate
5528/// set.
5529void
5530Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5531                              OverloadCandidateDisplayKind OCD,
5532                              Expr **Args, unsigned NumArgs,
5533                              const char *Opc,
5534                              SourceLocation OpLoc) {
5535  // Sort the candidates by viability and position.  Sorting directly would
5536  // be prohibitive, so we make a set of pointers and sort those.
5537  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5538  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5539  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5540                                  LastCand = CandidateSet.end();
5541       Cand != LastCand; ++Cand) {
5542    if (Cand->Viable)
5543      Cands.push_back(Cand);
5544    else if (OCD == OCD_AllCandidates) {
5545      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5546      Cands.push_back(Cand);
5547    }
5548  }
5549
5550  std::sort(Cands.begin(), Cands.end(),
5551            CompareOverloadCandidatesForDisplay(*this));
5552
5553  bool ReportedAmbiguousConversions = false;
5554
5555  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5556  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5557    OverloadCandidate *Cand = *I;
5558
5559    if (Cand->Function)
5560      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5561    else if (Cand->IsSurrogate)
5562      NoteSurrogateCandidate(*this, Cand);
5563
5564    // This a builtin candidate.  We do not, in general, want to list
5565    // every possible builtin candidate.
5566    else if (Cand->Viable) {
5567      // Generally we only see ambiguities including viable builtin
5568      // operators if overload resolution got screwed up by an
5569      // ambiguous user-defined conversion.
5570      //
5571      // FIXME: It's quite possible for different conversions to see
5572      // different ambiguities, though.
5573      if (!ReportedAmbiguousConversions) {
5574        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5575        ReportedAmbiguousConversions = true;
5576      }
5577
5578      // If this is a viable builtin, print it.
5579      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5580    }
5581  }
5582}
5583
5584static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5585  if (isa<UnresolvedLookupExpr>(E))
5586    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5587
5588  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5589}
5590
5591/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5592/// an overloaded function (C++ [over.over]), where @p From is an
5593/// expression with overloaded function type and @p ToType is the type
5594/// we're trying to resolve to. For example:
5595///
5596/// @code
5597/// int f(double);
5598/// int f(int);
5599///
5600/// int (*pfd)(double) = f; // selects f(double)
5601/// @endcode
5602///
5603/// This routine returns the resulting FunctionDecl if it could be
5604/// resolved, and NULL otherwise. When @p Complain is true, this
5605/// routine will emit diagnostics if there is an error.
5606FunctionDecl *
5607Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5608                                         bool Complain,
5609                                         DeclAccessPair &FoundResult) {
5610  QualType FunctionType = ToType;
5611  bool IsMember = false;
5612  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5613    FunctionType = ToTypePtr->getPointeeType();
5614  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5615    FunctionType = ToTypeRef->getPointeeType();
5616  else if (const MemberPointerType *MemTypePtr =
5617                    ToType->getAs<MemberPointerType>()) {
5618    FunctionType = MemTypePtr->getPointeeType();
5619    IsMember = true;
5620  }
5621
5622  // C++ [over.over]p1:
5623  //   [...] [Note: any redundant set of parentheses surrounding the
5624  //   overloaded function name is ignored (5.1). ]
5625  // C++ [over.over]p1:
5626  //   [...] The overloaded function name can be preceded by the &
5627  //   operator.
5628  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5629  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5630  if (OvlExpr->hasExplicitTemplateArgs()) {
5631    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5632    ExplicitTemplateArgs = &ETABuffer;
5633  }
5634
5635  // We expect a pointer or reference to function, or a function pointer.
5636  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5637  if (!FunctionType->isFunctionType()) {
5638    if (Complain)
5639      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5640        << OvlExpr->getName() << ToType;
5641
5642    return 0;
5643  }
5644
5645  assert(From->getType() == Context.OverloadTy);
5646
5647  // Look through all of the overloaded functions, searching for one
5648  // whose type matches exactly.
5649  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5650  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5651
5652  bool FoundNonTemplateFunction = false;
5653  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5654         E = OvlExpr->decls_end(); I != E; ++I) {
5655    // Look through any using declarations to find the underlying function.
5656    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5657
5658    // C++ [over.over]p3:
5659    //   Non-member functions and static member functions match
5660    //   targets of type "pointer-to-function" or "reference-to-function."
5661    //   Nonstatic member functions match targets of
5662    //   type "pointer-to-member-function."
5663    // Note that according to DR 247, the containing class does not matter.
5664
5665    if (FunctionTemplateDecl *FunctionTemplate
5666          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5667      if (CXXMethodDecl *Method
5668            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5669        // Skip non-static function templates when converting to pointer, and
5670        // static when converting to member pointer.
5671        if (Method->isStatic() == IsMember)
5672          continue;
5673      } else if (IsMember)
5674        continue;
5675
5676      // C++ [over.over]p2:
5677      //   If the name is a function template, template argument deduction is
5678      //   done (14.8.2.2), and if the argument deduction succeeds, the
5679      //   resulting template argument list is used to generate a single
5680      //   function template specialization, which is added to the set of
5681      //   overloaded functions considered.
5682      // FIXME: We don't really want to build the specialization here, do we?
5683      FunctionDecl *Specialization = 0;
5684      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5685      if (TemplateDeductionResult Result
5686            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5687                                      FunctionType, Specialization, Info)) {
5688        // FIXME: make a note of the failed deduction for diagnostics.
5689        (void)Result;
5690      } else {
5691        // FIXME: If the match isn't exact, shouldn't we just drop this as
5692        // a candidate? Find a testcase before changing the code.
5693        assert(FunctionType
5694                 == Context.getCanonicalType(Specialization->getType()));
5695        Matches.push_back(std::make_pair(I.getPair(),
5696                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5697      }
5698
5699      continue;
5700    }
5701
5702    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5703      // Skip non-static functions when converting to pointer, and static
5704      // when converting to member pointer.
5705      if (Method->isStatic() == IsMember)
5706        continue;
5707
5708      // If we have explicit template arguments, skip non-templates.
5709      if (OvlExpr->hasExplicitTemplateArgs())
5710        continue;
5711    } else if (IsMember)
5712      continue;
5713
5714    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5715      QualType ResultTy;
5716      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5717          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5718                               ResultTy)) {
5719        Matches.push_back(std::make_pair(I.getPair(),
5720                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5721        FoundNonTemplateFunction = true;
5722      }
5723    }
5724  }
5725
5726  // If there were 0 or 1 matches, we're done.
5727  if (Matches.empty()) {
5728    if (Complain) {
5729      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5730        << OvlExpr->getName() << FunctionType;
5731      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5732                                 E = OvlExpr->decls_end();
5733           I != E; ++I)
5734        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5735          NoteOverloadCandidate(F);
5736    }
5737
5738    return 0;
5739  } else if (Matches.size() == 1) {
5740    FunctionDecl *Result = Matches[0].second;
5741    FoundResult = Matches[0].first;
5742    MarkDeclarationReferenced(From->getLocStart(), Result);
5743    if (Complain)
5744      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5745    return Result;
5746  }
5747
5748  // C++ [over.over]p4:
5749  //   If more than one function is selected, [...]
5750  if (!FoundNonTemplateFunction) {
5751    //   [...] and any given function template specialization F1 is
5752    //   eliminated if the set contains a second function template
5753    //   specialization whose function template is more specialized
5754    //   than the function template of F1 according to the partial
5755    //   ordering rules of 14.5.5.2.
5756
5757    // The algorithm specified above is quadratic. We instead use a
5758    // two-pass algorithm (similar to the one used to identify the
5759    // best viable function in an overload set) that identifies the
5760    // best function template (if it exists).
5761
5762    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5763    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5764      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5765
5766    UnresolvedSetIterator Result =
5767        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5768                           TPOC_Other, From->getLocStart(),
5769                           PDiag(),
5770                           PDiag(diag::err_addr_ovl_ambiguous)
5771                               << Matches[0].second->getDeclName(),
5772                           PDiag(diag::note_ovl_candidate)
5773                               << (unsigned) oc_function_template);
5774    assert(Result != MatchesCopy.end() && "no most-specialized template");
5775    MarkDeclarationReferenced(From->getLocStart(), *Result);
5776    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5777    if (Complain) {
5778      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5779      DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
5780    }
5781    return cast<FunctionDecl>(*Result);
5782  }
5783
5784  //   [...] any function template specializations in the set are
5785  //   eliminated if the set also contains a non-template function, [...]
5786  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5787    if (Matches[I].second->getPrimaryTemplate() == 0)
5788      ++I;
5789    else {
5790      Matches[I] = Matches[--N];
5791      Matches.set_size(N);
5792    }
5793  }
5794
5795  // [...] After such eliminations, if any, there shall remain exactly one
5796  // selected function.
5797  if (Matches.size() == 1) {
5798    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5799    FoundResult = Matches[0].first;
5800    if (Complain) {
5801      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5802      DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
5803    }
5804    return cast<FunctionDecl>(Matches[0].second);
5805  }
5806
5807  // FIXME: We should probably return the same thing that BestViableFunction
5808  // returns (even if we issue the diagnostics here).
5809  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5810    << Matches[0].second->getDeclName();
5811  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5812    NoteOverloadCandidate(Matches[I].second);
5813  return 0;
5814}
5815
5816/// \brief Given an expression that refers to an overloaded function, try to
5817/// resolve that overloaded function expression down to a single function.
5818///
5819/// This routine can only resolve template-ids that refer to a single function
5820/// template, where that template-id refers to a single template whose template
5821/// arguments are either provided by the template-id or have defaults,
5822/// as described in C++0x [temp.arg.explicit]p3.
5823FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5824  // C++ [over.over]p1:
5825  //   [...] [Note: any redundant set of parentheses surrounding the
5826  //   overloaded function name is ignored (5.1). ]
5827  // C++ [over.over]p1:
5828  //   [...] The overloaded function name can be preceded by the &
5829  //   operator.
5830
5831  if (From->getType() != Context.OverloadTy)
5832    return 0;
5833
5834  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5835
5836  // If we didn't actually find any template-ids, we're done.
5837  if (!OvlExpr->hasExplicitTemplateArgs())
5838    return 0;
5839
5840  TemplateArgumentListInfo ExplicitTemplateArgs;
5841  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5842
5843  // Look through all of the overloaded functions, searching for one
5844  // whose type matches exactly.
5845  FunctionDecl *Matched = 0;
5846  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5847         E = OvlExpr->decls_end(); I != E; ++I) {
5848    // C++0x [temp.arg.explicit]p3:
5849    //   [...] In contexts where deduction is done and fails, or in contexts
5850    //   where deduction is not done, if a template argument list is
5851    //   specified and it, along with any default template arguments,
5852    //   identifies a single function template specialization, then the
5853    //   template-id is an lvalue for the function template specialization.
5854    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5855
5856    // C++ [over.over]p2:
5857    //   If the name is a function template, template argument deduction is
5858    //   done (14.8.2.2), and if the argument deduction succeeds, the
5859    //   resulting template argument list is used to generate a single
5860    //   function template specialization, which is added to the set of
5861    //   overloaded functions considered.
5862    FunctionDecl *Specialization = 0;
5863    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5864    if (TemplateDeductionResult Result
5865          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5866                                    Specialization, Info)) {
5867      // FIXME: make a note of the failed deduction for diagnostics.
5868      (void)Result;
5869      continue;
5870    }
5871
5872    // Multiple matches; we can't resolve to a single declaration.
5873    if (Matched)
5874      return 0;
5875
5876    Matched = Specialization;
5877  }
5878
5879  return Matched;
5880}
5881
5882/// \brief Add a single candidate to the overload set.
5883static void AddOverloadedCallCandidate(Sema &S,
5884                                       DeclAccessPair FoundDecl,
5885                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5886                                       Expr **Args, unsigned NumArgs,
5887                                       OverloadCandidateSet &CandidateSet,
5888                                       bool PartialOverloading) {
5889  NamedDecl *Callee = FoundDecl.getDecl();
5890  if (isa<UsingShadowDecl>(Callee))
5891    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5892
5893  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5894    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5895    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5896                           false, PartialOverloading);
5897    return;
5898  }
5899
5900  if (FunctionTemplateDecl *FuncTemplate
5901      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5902    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5903                                   ExplicitTemplateArgs,
5904                                   Args, NumArgs, CandidateSet);
5905    return;
5906  }
5907
5908  assert(false && "unhandled case in overloaded call candidate");
5909
5910  // do nothing?
5911}
5912
5913/// \brief Add the overload candidates named by callee and/or found by argument
5914/// dependent lookup to the given overload set.
5915void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5916                                       Expr **Args, unsigned NumArgs,
5917                                       OverloadCandidateSet &CandidateSet,
5918                                       bool PartialOverloading) {
5919
5920#ifndef NDEBUG
5921  // Verify that ArgumentDependentLookup is consistent with the rules
5922  // in C++0x [basic.lookup.argdep]p3:
5923  //
5924  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5925  //   and let Y be the lookup set produced by argument dependent
5926  //   lookup (defined as follows). If X contains
5927  //
5928  //     -- a declaration of a class member, or
5929  //
5930  //     -- a block-scope function declaration that is not a
5931  //        using-declaration, or
5932  //
5933  //     -- a declaration that is neither a function or a function
5934  //        template
5935  //
5936  //   then Y is empty.
5937
5938  if (ULE->requiresADL()) {
5939    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5940           E = ULE->decls_end(); I != E; ++I) {
5941      assert(!(*I)->getDeclContext()->isRecord());
5942      assert(isa<UsingShadowDecl>(*I) ||
5943             !(*I)->getDeclContext()->isFunctionOrMethod());
5944      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5945    }
5946  }
5947#endif
5948
5949  // It would be nice to avoid this copy.
5950  TemplateArgumentListInfo TABuffer;
5951  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5952  if (ULE->hasExplicitTemplateArgs()) {
5953    ULE->copyTemplateArgumentsInto(TABuffer);
5954    ExplicitTemplateArgs = &TABuffer;
5955  }
5956
5957  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5958         E = ULE->decls_end(); I != E; ++I)
5959    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5960                               Args, NumArgs, CandidateSet,
5961                               PartialOverloading);
5962
5963  if (ULE->requiresADL())
5964    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5965                                         Args, NumArgs,
5966                                         ExplicitTemplateArgs,
5967                                         CandidateSet,
5968                                         PartialOverloading);
5969}
5970
5971static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5972                                      Expr **Args, unsigned NumArgs) {
5973  Fn->Destroy(SemaRef.Context);
5974  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5975    Args[Arg]->Destroy(SemaRef.Context);
5976  return SemaRef.ExprError();
5977}
5978
5979/// Attempts to recover from a call where no functions were found.
5980///
5981/// Returns true if new candidates were found.
5982static Sema::OwningExprResult
5983BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5984                      UnresolvedLookupExpr *ULE,
5985                      SourceLocation LParenLoc,
5986                      Expr **Args, unsigned NumArgs,
5987                      SourceLocation *CommaLocs,
5988                      SourceLocation RParenLoc) {
5989
5990  CXXScopeSpec SS;
5991  if (ULE->getQualifier()) {
5992    SS.setScopeRep(ULE->getQualifier());
5993    SS.setRange(ULE->getQualifierRange());
5994  }
5995
5996  TemplateArgumentListInfo TABuffer;
5997  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5998  if (ULE->hasExplicitTemplateArgs()) {
5999    ULE->copyTemplateArgumentsInto(TABuffer);
6000    ExplicitTemplateArgs = &TABuffer;
6001  }
6002
6003  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
6004                 Sema::LookupOrdinaryName);
6005  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
6006    return Destroy(SemaRef, Fn, Args, NumArgs);
6007
6008  assert(!R.empty() && "lookup results empty despite recovery");
6009
6010  // Build an implicit member call if appropriate.  Just drop the
6011  // casts and such from the call, we don't really care.
6012  Sema::OwningExprResult NewFn = SemaRef.ExprError();
6013  if ((*R.begin())->isCXXClassMember())
6014    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
6015  else if (ExplicitTemplateArgs)
6016    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
6017  else
6018    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
6019
6020  if (NewFn.isInvalid())
6021    return Destroy(SemaRef, Fn, Args, NumArgs);
6022
6023  Fn->Destroy(SemaRef.Context);
6024
6025  // This shouldn't cause an infinite loop because we're giving it
6026  // an expression with non-empty lookup results, which should never
6027  // end up here.
6028  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
6029                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
6030                               CommaLocs, RParenLoc);
6031}
6032
6033/// ResolveOverloadedCallFn - Given the call expression that calls Fn
6034/// (which eventually refers to the declaration Func) and the call
6035/// arguments Args/NumArgs, attempt to resolve the function call down
6036/// to a specific function. If overload resolution succeeds, returns
6037/// the function declaration produced by overload
6038/// resolution. Otherwise, emits diagnostics, deletes all of the
6039/// arguments and Fn, and returns NULL.
6040Sema::OwningExprResult
6041Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
6042                              SourceLocation LParenLoc,
6043                              Expr **Args, unsigned NumArgs,
6044                              SourceLocation *CommaLocs,
6045                              SourceLocation RParenLoc) {
6046#ifndef NDEBUG
6047  if (ULE->requiresADL()) {
6048    // To do ADL, we must have found an unqualified name.
6049    assert(!ULE->getQualifier() && "qualified name with ADL");
6050
6051    // We don't perform ADL for implicit declarations of builtins.
6052    // Verify that this was correctly set up.
6053    FunctionDecl *F;
6054    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
6055        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
6056        F->getBuiltinID() && F->isImplicit())
6057      assert(0 && "performing ADL for builtin");
6058
6059    // We don't perform ADL in C.
6060    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
6061  }
6062#endif
6063
6064  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
6065
6066  // Add the functions denoted by the callee to the set of candidate
6067  // functions, including those from argument-dependent lookup.
6068  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
6069
6070  // If we found nothing, try to recover.
6071  // AddRecoveryCallCandidates diagnoses the error itself, so we just
6072  // bailout out if it fails.
6073  if (CandidateSet.empty())
6074    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
6075                                 CommaLocs, RParenLoc);
6076
6077  OverloadCandidateSet::iterator Best;
6078  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
6079  case OR_Success: {
6080    FunctionDecl *FDecl = Best->Function;
6081    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
6082    DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
6083    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
6084    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
6085  }
6086
6087  case OR_No_Viable_Function:
6088    Diag(Fn->getSourceRange().getBegin(),
6089         diag::err_ovl_no_viable_function_in_call)
6090      << ULE->getName() << Fn->getSourceRange();
6091    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6092    break;
6093
6094  case OR_Ambiguous:
6095    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
6096      << ULE->getName() << Fn->getSourceRange();
6097    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6098    break;
6099
6100  case OR_Deleted:
6101    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
6102      << Best->Function->isDeleted()
6103      << ULE->getName()
6104      << Fn->getSourceRange();
6105    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6106    break;
6107  }
6108
6109  // Overload resolution failed. Destroy all of the subexpressions and
6110  // return NULL.
6111  Fn->Destroy(Context);
6112  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6113    Args[Arg]->Destroy(Context);
6114  return ExprError();
6115}
6116
6117static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
6118  return Functions.size() > 1 ||
6119    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
6120}
6121
6122/// \brief Create a unary operation that may resolve to an overloaded
6123/// operator.
6124///
6125/// \param OpLoc The location of the operator itself (e.g., '*').
6126///
6127/// \param OpcIn The UnaryOperator::Opcode that describes this
6128/// operator.
6129///
6130/// \param Functions The set of non-member functions that will be
6131/// considered by overload resolution. The caller needs to build this
6132/// set based on the context using, e.g.,
6133/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6134/// set should not contain any member functions; those will be added
6135/// by CreateOverloadedUnaryOp().
6136///
6137/// \param input The input argument.
6138Sema::OwningExprResult
6139Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
6140                              const UnresolvedSetImpl &Fns,
6141                              ExprArg input) {
6142  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6143  Expr *Input = (Expr *)input.get();
6144
6145  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
6146  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
6147  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6148
6149  Expr *Args[2] = { Input, 0 };
6150  unsigned NumArgs = 1;
6151
6152  // For post-increment and post-decrement, add the implicit '0' as
6153  // the second argument, so that we know this is a post-increment or
6154  // post-decrement.
6155  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
6156    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
6157    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
6158                                           SourceLocation());
6159    NumArgs = 2;
6160  }
6161
6162  if (Input->isTypeDependent()) {
6163    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6164    UnresolvedLookupExpr *Fn
6165      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6166                                     0, SourceRange(), OpName, OpLoc,
6167                                     /*ADL*/ true, IsOverloaded(Fns));
6168    Fn->addDecls(Fns.begin(), Fns.end());
6169
6170    input.release();
6171    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6172                                                   &Args[0], NumArgs,
6173                                                   Context.DependentTy,
6174                                                   OpLoc));
6175  }
6176
6177  // Build an empty overload set.
6178  OverloadCandidateSet CandidateSet(OpLoc);
6179
6180  // Add the candidates from the given function set.
6181  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
6182
6183  // Add operator candidates that are member functions.
6184  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6185
6186  // Add candidates from ADL.
6187  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6188                                       Args, NumArgs,
6189                                       /*ExplicitTemplateArgs*/ 0,
6190                                       CandidateSet);
6191
6192  // Add builtin operator candidates.
6193  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6194
6195  // Perform overload resolution.
6196  OverloadCandidateSet::iterator Best;
6197  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6198  case OR_Success: {
6199    // We found a built-in operator or an overloaded operator.
6200    FunctionDecl *FnDecl = Best->Function;
6201
6202    if (FnDecl) {
6203      // We matched an overloaded operator. Build a call to that
6204      // operator.
6205
6206      // Convert the arguments.
6207      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6208        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
6209
6210        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
6211                                                Best->FoundDecl, Method))
6212          return ExprError();
6213      } else {
6214        // Convert the arguments.
6215        OwningExprResult InputInit
6216          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6217                                                      FnDecl->getParamDecl(0)),
6218                                      SourceLocation(),
6219                                      move(input));
6220        if (InputInit.isInvalid())
6221          return ExprError();
6222
6223        input = move(InputInit);
6224        Input = (Expr *)input.get();
6225      }
6226
6227      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6228
6229      // Determine the result type
6230      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
6231
6232      // Build the actual expression node.
6233      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6234                                               SourceLocation());
6235      UsualUnaryConversions(FnExpr);
6236
6237      input.release();
6238      Args[0] = Input;
6239      ExprOwningPtr<CallExpr> TheCall(this,
6240        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6241                                          Args, NumArgs, ResultTy, OpLoc));
6242
6243      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6244                              FnDecl))
6245        return ExprError();
6246
6247      return MaybeBindToTemporary(TheCall.release());
6248    } else {
6249      // We matched a built-in operator. Convert the arguments, then
6250      // break out so that we will build the appropriate built-in
6251      // operator node.
6252        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
6253                                      Best->Conversions[0], AA_Passing))
6254          return ExprError();
6255
6256        break;
6257      }
6258    }
6259
6260    case OR_No_Viable_Function:
6261      // No viable function; fall through to handling this as a
6262      // built-in operator, which will produce an error message for us.
6263      break;
6264
6265    case OR_Ambiguous:
6266      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6267          << UnaryOperator::getOpcodeStr(Opc)
6268          << Input->getSourceRange();
6269      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
6270                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
6271      return ExprError();
6272
6273    case OR_Deleted:
6274      Diag(OpLoc, diag::err_ovl_deleted_oper)
6275        << Best->Function->isDeleted()
6276        << UnaryOperator::getOpcodeStr(Opc)
6277        << Input->getSourceRange();
6278      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6279      return ExprError();
6280    }
6281
6282  // Either we found no viable overloaded operator or we matched a
6283  // built-in operator. In either case, fall through to trying to
6284  // build a built-in operation.
6285  input.release();
6286  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
6287}
6288
6289/// \brief Create a binary operation that may resolve to an overloaded
6290/// operator.
6291///
6292/// \param OpLoc The location of the operator itself (e.g., '+').
6293///
6294/// \param OpcIn The BinaryOperator::Opcode that describes this
6295/// operator.
6296///
6297/// \param Functions The set of non-member functions that will be
6298/// considered by overload resolution. The caller needs to build this
6299/// set based on the context using, e.g.,
6300/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6301/// set should not contain any member functions; those will be added
6302/// by CreateOverloadedBinOp().
6303///
6304/// \param LHS Left-hand argument.
6305/// \param RHS Right-hand argument.
6306Sema::OwningExprResult
6307Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
6308                            unsigned OpcIn,
6309                            const UnresolvedSetImpl &Fns,
6310                            Expr *LHS, Expr *RHS) {
6311  Expr *Args[2] = { LHS, RHS };
6312  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
6313
6314  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
6315  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
6316  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6317
6318  // If either side is type-dependent, create an appropriate dependent
6319  // expression.
6320  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6321    if (Fns.empty()) {
6322      // If there are no functions to store, just build a dependent
6323      // BinaryOperator or CompoundAssignment.
6324      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6325        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6326                                                  Context.DependentTy, OpLoc));
6327
6328      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6329                                                        Context.DependentTy,
6330                                                        Context.DependentTy,
6331                                                        Context.DependentTy,
6332                                                        OpLoc));
6333    }
6334
6335    // FIXME: save results of ADL from here?
6336    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6337    UnresolvedLookupExpr *Fn
6338      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6339                                     0, SourceRange(), OpName, OpLoc,
6340                                     /*ADL*/ true, IsOverloaded(Fns));
6341
6342    Fn->addDecls(Fns.begin(), Fns.end());
6343    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6344                                                   Args, 2,
6345                                                   Context.DependentTy,
6346                                                   OpLoc));
6347  }
6348
6349  // If this is the .* operator, which is not overloadable, just
6350  // create a built-in binary operator.
6351  if (Opc == BinaryOperator::PtrMemD)
6352    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6353
6354  // If this is the assignment operator, we only perform overload resolution
6355  // if the left-hand side is a class or enumeration type. This is actually
6356  // a hack. The standard requires that we do overload resolution between the
6357  // various built-in candidates, but as DR507 points out, this can lead to
6358  // problems. So we do it this way, which pretty much follows what GCC does.
6359  // Note that we go the traditional code path for compound assignment forms.
6360  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6361    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6362
6363  // Build an empty overload set.
6364  OverloadCandidateSet CandidateSet(OpLoc);
6365
6366  // Add the candidates from the given function set.
6367  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6368
6369  // Add operator candidates that are member functions.
6370  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6371
6372  // Add candidates from ADL.
6373  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6374                                       Args, 2,
6375                                       /*ExplicitTemplateArgs*/ 0,
6376                                       CandidateSet);
6377
6378  // Add builtin operator candidates.
6379  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6380
6381  // Perform overload resolution.
6382  OverloadCandidateSet::iterator Best;
6383  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6384    case OR_Success: {
6385      // We found a built-in operator or an overloaded operator.
6386      FunctionDecl *FnDecl = Best->Function;
6387
6388      if (FnDecl) {
6389        // We matched an overloaded operator. Build a call to that
6390        // operator.
6391
6392        // Convert the arguments.
6393        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6394          // Best->Access is only meaningful for class members.
6395          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6396
6397          OwningExprResult Arg1
6398            = PerformCopyInitialization(
6399                                        InitializedEntity::InitializeParameter(
6400                                                        FnDecl->getParamDecl(0)),
6401                                        SourceLocation(),
6402                                        Owned(Args[1]));
6403          if (Arg1.isInvalid())
6404            return ExprError();
6405
6406          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6407                                                  Best->FoundDecl, Method))
6408            return ExprError();
6409
6410          Args[1] = RHS = Arg1.takeAs<Expr>();
6411        } else {
6412          // Convert the arguments.
6413          OwningExprResult Arg0
6414            = PerformCopyInitialization(
6415                                        InitializedEntity::InitializeParameter(
6416                                                        FnDecl->getParamDecl(0)),
6417                                        SourceLocation(),
6418                                        Owned(Args[0]));
6419          if (Arg0.isInvalid())
6420            return ExprError();
6421
6422          OwningExprResult Arg1
6423            = PerformCopyInitialization(
6424                                        InitializedEntity::InitializeParameter(
6425                                                        FnDecl->getParamDecl(1)),
6426                                        SourceLocation(),
6427                                        Owned(Args[1]));
6428          if (Arg1.isInvalid())
6429            return ExprError();
6430          Args[0] = LHS = Arg0.takeAs<Expr>();
6431          Args[1] = RHS = Arg1.takeAs<Expr>();
6432        }
6433
6434        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6435
6436        // Determine the result type
6437        QualType ResultTy
6438          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6439        ResultTy = ResultTy.getNonReferenceType();
6440
6441        // Build the actual expression node.
6442        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6443                                                 OpLoc);
6444        UsualUnaryConversions(FnExpr);
6445
6446        ExprOwningPtr<CXXOperatorCallExpr>
6447          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6448                                                          Args, 2, ResultTy,
6449                                                          OpLoc));
6450
6451        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6452                                FnDecl))
6453          return ExprError();
6454
6455        return MaybeBindToTemporary(TheCall.release());
6456      } else {
6457        // We matched a built-in operator. Convert the arguments, then
6458        // break out so that we will build the appropriate built-in
6459        // operator node.
6460        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6461                                      Best->Conversions[0], AA_Passing) ||
6462            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6463                                      Best->Conversions[1], AA_Passing))
6464          return ExprError();
6465
6466        break;
6467      }
6468    }
6469
6470    case OR_No_Viable_Function: {
6471      // C++ [over.match.oper]p9:
6472      //   If the operator is the operator , [...] and there are no
6473      //   viable functions, then the operator is assumed to be the
6474      //   built-in operator and interpreted according to clause 5.
6475      if (Opc == BinaryOperator::Comma)
6476        break;
6477
6478      // For class as left operand for assignment or compound assigment operator
6479      // do not fall through to handling in built-in, but report that no overloaded
6480      // assignment operator found
6481      OwningExprResult Result = ExprError();
6482      if (Args[0]->getType()->isRecordType() &&
6483          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6484        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6485             << BinaryOperator::getOpcodeStr(Opc)
6486             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6487      } else {
6488        // No viable function; try to create a built-in operation, which will
6489        // produce an error. Then, show the non-viable candidates.
6490        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6491      }
6492      assert(Result.isInvalid() &&
6493             "C++ binary operator overloading is missing candidates!");
6494      if (Result.isInvalid())
6495        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6496                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6497      return move(Result);
6498    }
6499
6500    case OR_Ambiguous:
6501      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6502          << BinaryOperator::getOpcodeStr(Opc)
6503          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6504      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6505                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6506      return ExprError();
6507
6508    case OR_Deleted:
6509      Diag(OpLoc, diag::err_ovl_deleted_oper)
6510        << Best->Function->isDeleted()
6511        << BinaryOperator::getOpcodeStr(Opc)
6512        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6513      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6514      return ExprError();
6515  }
6516
6517  // We matched a built-in operator; build it.
6518  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6519}
6520
6521Action::OwningExprResult
6522Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6523                                         SourceLocation RLoc,
6524                                         ExprArg Base, ExprArg Idx) {
6525  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6526                    static_cast<Expr*>(Idx.get()) };
6527  DeclarationName OpName =
6528      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6529
6530  // If either side is type-dependent, create an appropriate dependent
6531  // expression.
6532  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6533
6534    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6535    UnresolvedLookupExpr *Fn
6536      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6537                                     0, SourceRange(), OpName, LLoc,
6538                                     /*ADL*/ true, /*Overloaded*/ false);
6539    // Can't add any actual overloads yet
6540
6541    Base.release();
6542    Idx.release();
6543    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6544                                                   Args, 2,
6545                                                   Context.DependentTy,
6546                                                   RLoc));
6547  }
6548
6549  // Build an empty overload set.
6550  OverloadCandidateSet CandidateSet(LLoc);
6551
6552  // Subscript can only be overloaded as a member function.
6553
6554  // Add operator candidates that are member functions.
6555  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6556
6557  // Add builtin operator candidates.
6558  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6559
6560  // Perform overload resolution.
6561  OverloadCandidateSet::iterator Best;
6562  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6563    case OR_Success: {
6564      // We found a built-in operator or an overloaded operator.
6565      FunctionDecl *FnDecl = Best->Function;
6566
6567      if (FnDecl) {
6568        // We matched an overloaded operator. Build a call to that
6569        // operator.
6570
6571        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6572        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
6573
6574        // Convert the arguments.
6575        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6576        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6577                                                Best->FoundDecl, Method))
6578          return ExprError();
6579
6580        // Convert the arguments.
6581        OwningExprResult InputInit
6582          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6583                                                      FnDecl->getParamDecl(0)),
6584                                      SourceLocation(),
6585                                      Owned(Args[1]));
6586        if (InputInit.isInvalid())
6587          return ExprError();
6588
6589        Args[1] = InputInit.takeAs<Expr>();
6590
6591        // Determine the result type
6592        QualType ResultTy
6593          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6594        ResultTy = ResultTy.getNonReferenceType();
6595
6596        // Build the actual expression node.
6597        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6598                                                 LLoc);
6599        UsualUnaryConversions(FnExpr);
6600
6601        Base.release();
6602        Idx.release();
6603        ExprOwningPtr<CXXOperatorCallExpr>
6604          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6605                                                          FnExpr, Args, 2,
6606                                                          ResultTy, RLoc));
6607
6608        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6609                                FnDecl))
6610          return ExprError();
6611
6612        return MaybeBindToTemporary(TheCall.release());
6613      } else {
6614        // We matched a built-in operator. Convert the arguments, then
6615        // break out so that we will build the appropriate built-in
6616        // operator node.
6617        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6618                                      Best->Conversions[0], AA_Passing) ||
6619            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6620                                      Best->Conversions[1], AA_Passing))
6621          return ExprError();
6622
6623        break;
6624      }
6625    }
6626
6627    case OR_No_Viable_Function: {
6628      if (CandidateSet.empty())
6629        Diag(LLoc, diag::err_ovl_no_oper)
6630          << Args[0]->getType() << /*subscript*/ 0
6631          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6632      else
6633        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6634          << Args[0]->getType()
6635          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6636      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6637                              "[]", LLoc);
6638      return ExprError();
6639    }
6640
6641    case OR_Ambiguous:
6642      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6643          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6644      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6645                              "[]", LLoc);
6646      return ExprError();
6647
6648    case OR_Deleted:
6649      Diag(LLoc, diag::err_ovl_deleted_oper)
6650        << Best->Function->isDeleted() << "[]"
6651        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6652      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6653                              "[]", LLoc);
6654      return ExprError();
6655    }
6656
6657  // We matched a built-in operator; build it.
6658  Base.release();
6659  Idx.release();
6660  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6661                                         Owned(Args[1]), RLoc);
6662}
6663
6664/// BuildCallToMemberFunction - Build a call to a member
6665/// function. MemExpr is the expression that refers to the member
6666/// function (and includes the object parameter), Args/NumArgs are the
6667/// arguments to the function call (not including the object
6668/// parameter). The caller needs to validate that the member
6669/// expression refers to a member function or an overloaded member
6670/// function.
6671Sema::OwningExprResult
6672Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6673                                SourceLocation LParenLoc, Expr **Args,
6674                                unsigned NumArgs, SourceLocation *CommaLocs,
6675                                SourceLocation RParenLoc) {
6676  // Dig out the member expression. This holds both the object
6677  // argument and the member function we're referring to.
6678  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6679
6680  MemberExpr *MemExpr;
6681  CXXMethodDecl *Method = 0;
6682  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6683  NestedNameSpecifier *Qualifier = 0;
6684  if (isa<MemberExpr>(NakedMemExpr)) {
6685    MemExpr = cast<MemberExpr>(NakedMemExpr);
6686    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6687    FoundDecl = MemExpr->getFoundDecl();
6688    Qualifier = MemExpr->getQualifier();
6689  } else {
6690    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6691    Qualifier = UnresExpr->getQualifier();
6692
6693    QualType ObjectType = UnresExpr->getBaseType();
6694
6695    // Add overload candidates
6696    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6697
6698    // FIXME: avoid copy.
6699    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6700    if (UnresExpr->hasExplicitTemplateArgs()) {
6701      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6702      TemplateArgs = &TemplateArgsBuffer;
6703    }
6704
6705    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6706           E = UnresExpr->decls_end(); I != E; ++I) {
6707
6708      NamedDecl *Func = *I;
6709      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6710      if (isa<UsingShadowDecl>(Func))
6711        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6712
6713      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6714        // If explicit template arguments were provided, we can't call a
6715        // non-template member function.
6716        if (TemplateArgs)
6717          continue;
6718
6719        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6720                           Args, NumArgs,
6721                           CandidateSet, /*SuppressUserConversions=*/false);
6722      } else {
6723        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6724                                   I.getPair(), ActingDC, TemplateArgs,
6725                                   ObjectType, Args, NumArgs,
6726                                   CandidateSet,
6727                                   /*SuppressUsedConversions=*/false);
6728      }
6729    }
6730
6731    DeclarationName DeclName = UnresExpr->getMemberName();
6732
6733    OverloadCandidateSet::iterator Best;
6734    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6735    case OR_Success:
6736      Method = cast<CXXMethodDecl>(Best->Function);
6737      FoundDecl = Best->FoundDecl;
6738      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6739      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
6740      break;
6741
6742    case OR_No_Viable_Function:
6743      Diag(UnresExpr->getMemberLoc(),
6744           diag::err_ovl_no_viable_member_function_in_call)
6745        << DeclName << MemExprE->getSourceRange();
6746      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6747      // FIXME: Leaking incoming expressions!
6748      return ExprError();
6749
6750    case OR_Ambiguous:
6751      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6752        << DeclName << MemExprE->getSourceRange();
6753      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6754      // FIXME: Leaking incoming expressions!
6755      return ExprError();
6756
6757    case OR_Deleted:
6758      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6759        << Best->Function->isDeleted()
6760        << DeclName << MemExprE->getSourceRange();
6761      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6762      // FIXME: Leaking incoming expressions!
6763      return ExprError();
6764    }
6765
6766    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6767
6768    // If overload resolution picked a static member, build a
6769    // non-member call based on that function.
6770    if (Method->isStatic()) {
6771      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6772                                   Args, NumArgs, RParenLoc);
6773    }
6774
6775    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6776  }
6777
6778  assert(Method && "Member call to something that isn't a method?");
6779  ExprOwningPtr<CXXMemberCallExpr>
6780    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6781                                                  NumArgs,
6782                                  Method->getResultType().getNonReferenceType(),
6783                                  RParenLoc));
6784
6785  // Check for a valid return type.
6786  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6787                          TheCall.get(), Method))
6788    return ExprError();
6789
6790  // Convert the object argument (for a non-static member function call).
6791  // We only need to do this if there was actually an overload; otherwise
6792  // it was done at lookup.
6793  Expr *ObjectArg = MemExpr->getBase();
6794  if (!Method->isStatic() &&
6795      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6796                                          FoundDecl, Method))
6797    return ExprError();
6798  MemExpr->setBase(ObjectArg);
6799
6800  // Convert the rest of the arguments
6801  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6802  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6803                              RParenLoc))
6804    return ExprError();
6805
6806  if (CheckFunctionCall(Method, TheCall.get()))
6807    return ExprError();
6808
6809  return MaybeBindToTemporary(TheCall.release());
6810}
6811
6812/// BuildCallToObjectOfClassType - Build a call to an object of class
6813/// type (C++ [over.call.object]), which can end up invoking an
6814/// overloaded function call operator (@c operator()) or performing a
6815/// user-defined conversion on the object argument.
6816Sema::ExprResult
6817Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6818                                   SourceLocation LParenLoc,
6819                                   Expr **Args, unsigned NumArgs,
6820                                   SourceLocation *CommaLocs,
6821                                   SourceLocation RParenLoc) {
6822  assert(Object->getType()->isRecordType() && "Requires object type argument");
6823  const RecordType *Record = Object->getType()->getAs<RecordType>();
6824
6825  // C++ [over.call.object]p1:
6826  //  If the primary-expression E in the function call syntax
6827  //  evaluates to a class object of type "cv T", then the set of
6828  //  candidate functions includes at least the function call
6829  //  operators of T. The function call operators of T are obtained by
6830  //  ordinary lookup of the name operator() in the context of
6831  //  (E).operator().
6832  OverloadCandidateSet CandidateSet(LParenLoc);
6833  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6834
6835  if (RequireCompleteType(LParenLoc, Object->getType(),
6836                          PDiag(diag::err_incomplete_object_call)
6837                          << Object->getSourceRange()))
6838    return true;
6839
6840  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6841  LookupQualifiedName(R, Record->getDecl());
6842  R.suppressDiagnostics();
6843
6844  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6845       Oper != OperEnd; ++Oper) {
6846    AddMethodCandidate(Oper.getPair(), Object->getType(),
6847                       Args, NumArgs, CandidateSet,
6848                       /*SuppressUserConversions=*/ false);
6849  }
6850
6851  // C++ [over.call.object]p2:
6852  //   In addition, for each conversion function declared in T of the
6853  //   form
6854  //
6855  //        operator conversion-type-id () cv-qualifier;
6856  //
6857  //   where cv-qualifier is the same cv-qualification as, or a
6858  //   greater cv-qualification than, cv, and where conversion-type-id
6859  //   denotes the type "pointer to function of (P1,...,Pn) returning
6860  //   R", or the type "reference to pointer to function of
6861  //   (P1,...,Pn) returning R", or the type "reference to function
6862  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6863  //   is also considered as a candidate function. Similarly,
6864  //   surrogate call functions are added to the set of candidate
6865  //   functions for each conversion function declared in an
6866  //   accessible base class provided the function is not hidden
6867  //   within T by another intervening declaration.
6868  const UnresolvedSetImpl *Conversions
6869    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6870  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6871         E = Conversions->end(); I != E; ++I) {
6872    NamedDecl *D = *I;
6873    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6874    if (isa<UsingShadowDecl>(D))
6875      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6876
6877    // Skip over templated conversion functions; they aren't
6878    // surrogates.
6879    if (isa<FunctionTemplateDecl>(D))
6880      continue;
6881
6882    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6883
6884    // Strip the reference type (if any) and then the pointer type (if
6885    // any) to get down to what might be a function type.
6886    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6887    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6888      ConvType = ConvPtrType->getPointeeType();
6889
6890    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6891      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6892                            Object->getType(), Args, NumArgs,
6893                            CandidateSet);
6894  }
6895
6896  // Perform overload resolution.
6897  OverloadCandidateSet::iterator Best;
6898  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6899  case OR_Success:
6900    // Overload resolution succeeded; we'll build the appropriate call
6901    // below.
6902    break;
6903
6904  case OR_No_Viable_Function:
6905    if (CandidateSet.empty())
6906      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6907        << Object->getType() << /*call*/ 1
6908        << Object->getSourceRange();
6909    else
6910      Diag(Object->getSourceRange().getBegin(),
6911           diag::err_ovl_no_viable_object_call)
6912        << Object->getType() << Object->getSourceRange();
6913    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6914    break;
6915
6916  case OR_Ambiguous:
6917    Diag(Object->getSourceRange().getBegin(),
6918         diag::err_ovl_ambiguous_object_call)
6919      << Object->getType() << Object->getSourceRange();
6920    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6921    break;
6922
6923  case OR_Deleted:
6924    Diag(Object->getSourceRange().getBegin(),
6925         diag::err_ovl_deleted_object_call)
6926      << Best->Function->isDeleted()
6927      << Object->getType() << Object->getSourceRange();
6928    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6929    break;
6930  }
6931
6932  if (Best == CandidateSet.end()) {
6933    // We had an error; delete all of the subexpressions and return
6934    // the error.
6935    Object->Destroy(Context);
6936    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6937      Args[ArgIdx]->Destroy(Context);
6938    return true;
6939  }
6940
6941  if (Best->Function == 0) {
6942    // Since there is no function declaration, this is one of the
6943    // surrogate candidates. Dig out the conversion function.
6944    CXXConversionDecl *Conv
6945      = cast<CXXConversionDecl>(
6946                         Best->Conversions[0].UserDefined.ConversionFunction);
6947
6948    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6949    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
6950
6951    // We selected one of the surrogate functions that converts the
6952    // object parameter to a function pointer. Perform the conversion
6953    // on the object argument, then let ActOnCallExpr finish the job.
6954
6955    // Create an implicit member expr to refer to the conversion operator.
6956    // and then call it.
6957    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6958                                                   Conv);
6959
6960    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6961                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6962                         CommaLocs, RParenLoc).result();
6963  }
6964
6965  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6966  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
6967
6968  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6969  // that calls this method, using Object for the implicit object
6970  // parameter and passing along the remaining arguments.
6971  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6972  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6973
6974  unsigned NumArgsInProto = Proto->getNumArgs();
6975  unsigned NumArgsToCheck = NumArgs;
6976
6977  // Build the full argument list for the method call (the
6978  // implicit object parameter is placed at the beginning of the
6979  // list).
6980  Expr **MethodArgs;
6981  if (NumArgs < NumArgsInProto) {
6982    NumArgsToCheck = NumArgsInProto;
6983    MethodArgs = new Expr*[NumArgsInProto + 1];
6984  } else {
6985    MethodArgs = new Expr*[NumArgs + 1];
6986  }
6987  MethodArgs[0] = Object;
6988  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6989    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6990
6991  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6992                                          SourceLocation());
6993  UsualUnaryConversions(NewFn);
6994
6995  // Once we've built TheCall, all of the expressions are properly
6996  // owned.
6997  QualType ResultTy = Method->getResultType().getNonReferenceType();
6998  ExprOwningPtr<CXXOperatorCallExpr>
6999    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
7000                                                    MethodArgs, NumArgs + 1,
7001                                                    ResultTy, RParenLoc));
7002  delete [] MethodArgs;
7003
7004  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
7005                          Method))
7006    return true;
7007
7008  // We may have default arguments. If so, we need to allocate more
7009  // slots in the call for them.
7010  if (NumArgs < NumArgsInProto)
7011    TheCall->setNumArgs(Context, NumArgsInProto + 1);
7012  else if (NumArgs > NumArgsInProto)
7013    NumArgsToCheck = NumArgsInProto;
7014
7015  bool IsError = false;
7016
7017  // Initialize the implicit object parameter.
7018  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
7019                                                 Best->FoundDecl, Method);
7020  TheCall->setArg(0, Object);
7021
7022
7023  // Check the argument types.
7024  for (unsigned i = 0; i != NumArgsToCheck; i++) {
7025    Expr *Arg;
7026    if (i < NumArgs) {
7027      Arg = Args[i];
7028
7029      // Pass the argument.
7030
7031      OwningExprResult InputInit
7032        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7033                                                    Method->getParamDecl(i)),
7034                                    SourceLocation(), Owned(Arg));
7035
7036      IsError |= InputInit.isInvalid();
7037      Arg = InputInit.takeAs<Expr>();
7038    } else {
7039      OwningExprResult DefArg
7040        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
7041      if (DefArg.isInvalid()) {
7042        IsError = true;
7043        break;
7044      }
7045
7046      Arg = DefArg.takeAs<Expr>();
7047    }
7048
7049    TheCall->setArg(i + 1, Arg);
7050  }
7051
7052  // If this is a variadic call, handle args passed through "...".
7053  if (Proto->isVariadic()) {
7054    // Promote the arguments (C99 6.5.2.2p7).
7055    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
7056      Expr *Arg = Args[i];
7057      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
7058      TheCall->setArg(i + 1, Arg);
7059    }
7060  }
7061
7062  if (IsError) return true;
7063
7064  if (CheckFunctionCall(Method, TheCall.get()))
7065    return true;
7066
7067  return MaybeBindToTemporary(TheCall.release()).result();
7068}
7069
7070/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
7071///  (if one exists), where @c Base is an expression of class type and
7072/// @c Member is the name of the member we're trying to find.
7073Sema::OwningExprResult
7074Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
7075  Expr *Base = static_cast<Expr *>(BaseIn.get());
7076  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
7077
7078  SourceLocation Loc = Base->getExprLoc();
7079
7080  // C++ [over.ref]p1:
7081  //
7082  //   [...] An expression x->m is interpreted as (x.operator->())->m
7083  //   for a class object x of type T if T::operator->() exists and if
7084  //   the operator is selected as the best match function by the
7085  //   overload resolution mechanism (13.3).
7086  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
7087  OverloadCandidateSet CandidateSet(Loc);
7088  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
7089
7090  if (RequireCompleteType(Loc, Base->getType(),
7091                          PDiag(diag::err_typecheck_incomplete_tag)
7092                            << Base->getSourceRange()))
7093    return ExprError();
7094
7095  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
7096  LookupQualifiedName(R, BaseRecord->getDecl());
7097  R.suppressDiagnostics();
7098
7099  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7100       Oper != OperEnd; ++Oper) {
7101    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
7102                       /*SuppressUserConversions=*/false);
7103  }
7104
7105  // Perform overload resolution.
7106  OverloadCandidateSet::iterator Best;
7107  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
7108  case OR_Success:
7109    // Overload resolution succeeded; we'll build the call below.
7110    break;
7111
7112  case OR_No_Viable_Function:
7113    if (CandidateSet.empty())
7114      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7115        << Base->getType() << Base->getSourceRange();
7116    else
7117      Diag(OpLoc, diag::err_ovl_no_viable_oper)
7118        << "operator->" << Base->getSourceRange();
7119    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7120    return ExprError();
7121
7122  case OR_Ambiguous:
7123    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7124      << "->" << Base->getSourceRange();
7125    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
7126    return ExprError();
7127
7128  case OR_Deleted:
7129    Diag(OpLoc,  diag::err_ovl_deleted_oper)
7130      << Best->Function->isDeleted()
7131      << "->" << Base->getSourceRange();
7132    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7133    return ExprError();
7134  }
7135
7136  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
7137  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7138
7139  // Convert the object parameter.
7140  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7141  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
7142                                          Best->FoundDecl, Method))
7143    return ExprError();
7144
7145  // No concerns about early exits now.
7146  BaseIn.release();
7147
7148  // Build the operator call.
7149  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
7150                                           SourceLocation());
7151  UsualUnaryConversions(FnExpr);
7152
7153  QualType ResultTy = Method->getResultType().getNonReferenceType();
7154  ExprOwningPtr<CXXOperatorCallExpr>
7155    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
7156                                                    &Base, 1, ResultTy, OpLoc));
7157
7158  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
7159                          Method))
7160          return ExprError();
7161  return move(TheCall);
7162}
7163
7164/// FixOverloadedFunctionReference - E is an expression that refers to
7165/// a C++ overloaded function (possibly with some parentheses and
7166/// perhaps a '&' around it). We have resolved the overloaded function
7167/// to the function declaration Fn, so patch up the expression E to
7168/// refer (possibly indirectly) to Fn. Returns the new expr.
7169Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
7170                                           FunctionDecl *Fn) {
7171  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7172    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
7173                                                   Found, Fn);
7174    if (SubExpr == PE->getSubExpr())
7175      return PE->Retain();
7176
7177    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
7178  }
7179
7180  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7181    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
7182                                                   Found, Fn);
7183    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
7184                               SubExpr->getType()) &&
7185           "Implicit cast type cannot be determined from overload");
7186    if (SubExpr == ICE->getSubExpr())
7187      return ICE->Retain();
7188
7189    return new (Context) ImplicitCastExpr(ICE->getType(),
7190                                          ICE->getCastKind(),
7191                                          SubExpr, CXXBaseSpecifierArray(),
7192                                          ICE->isLvalueCast());
7193  }
7194
7195  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
7196    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
7197           "Can only take the address of an overloaded function");
7198    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7199      if (Method->isStatic()) {
7200        // Do nothing: static member functions aren't any different
7201        // from non-member functions.
7202      } else {
7203        // Fix the sub expression, which really has to be an
7204        // UnresolvedLookupExpr holding an overloaded member function
7205        // or template.
7206        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7207                                                       Found, Fn);
7208        if (SubExpr == UnOp->getSubExpr())
7209          return UnOp->Retain();
7210
7211        assert(isa<DeclRefExpr>(SubExpr)
7212               && "fixed to something other than a decl ref");
7213        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
7214               && "fixed to a member ref with no nested name qualifier");
7215
7216        // We have taken the address of a pointer to member
7217        // function. Perform the computation here so that we get the
7218        // appropriate pointer to member type.
7219        QualType ClassType
7220          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
7221        QualType MemPtrType
7222          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
7223
7224        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7225                                           MemPtrType, UnOp->getOperatorLoc());
7226      }
7227    }
7228    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7229                                                   Found, Fn);
7230    if (SubExpr == UnOp->getSubExpr())
7231      return UnOp->Retain();
7232
7233    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7234                                     Context.getPointerType(SubExpr->getType()),
7235                                       UnOp->getOperatorLoc());
7236  }
7237
7238  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
7239    // FIXME: avoid copy.
7240    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7241    if (ULE->hasExplicitTemplateArgs()) {
7242      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
7243      TemplateArgs = &TemplateArgsBuffer;
7244    }
7245
7246    return DeclRefExpr::Create(Context,
7247                               ULE->getQualifier(),
7248                               ULE->getQualifierRange(),
7249                               Fn,
7250                               ULE->getNameLoc(),
7251                               Fn->getType(),
7252                               TemplateArgs);
7253  }
7254
7255  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
7256    // FIXME: avoid copy.
7257    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7258    if (MemExpr->hasExplicitTemplateArgs()) {
7259      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7260      TemplateArgs = &TemplateArgsBuffer;
7261    }
7262
7263    Expr *Base;
7264
7265    // If we're filling in
7266    if (MemExpr->isImplicitAccess()) {
7267      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
7268        return DeclRefExpr::Create(Context,
7269                                   MemExpr->getQualifier(),
7270                                   MemExpr->getQualifierRange(),
7271                                   Fn,
7272                                   MemExpr->getMemberLoc(),
7273                                   Fn->getType(),
7274                                   TemplateArgs);
7275      } else {
7276        SourceLocation Loc = MemExpr->getMemberLoc();
7277        if (MemExpr->getQualifier())
7278          Loc = MemExpr->getQualifierRange().getBegin();
7279        Base = new (Context) CXXThisExpr(Loc,
7280                                         MemExpr->getBaseType(),
7281                                         /*isImplicit=*/true);
7282      }
7283    } else
7284      Base = MemExpr->getBase()->Retain();
7285
7286    return MemberExpr::Create(Context, Base,
7287                              MemExpr->isArrow(),
7288                              MemExpr->getQualifier(),
7289                              MemExpr->getQualifierRange(),
7290                              Fn,
7291                              Found,
7292                              MemExpr->getMemberLoc(),
7293                              TemplateArgs,
7294                              Fn->getType());
7295  }
7296
7297  assert(false && "Invalid reference to overloaded function");
7298  return E->Retain();
7299}
7300
7301Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
7302                                                          DeclAccessPair Found,
7303                                                            FunctionDecl *Fn) {
7304  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
7305}
7306
7307} // end namespace clang
7308