SemaOverload.cpp revision c5d12db8396180a6a84e82caac1e11709f29da03
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad();
457    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
458    return ICS;
459  }
460
461  OverloadCandidateSet Conversions(From->getExprLoc());
462  OverloadingResult UserDefResult
463    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
464                              !SuppressUserConversions, AllowExplicit,
465                              ForceRValue, UserCast);
466
467  if (UserDefResult == OR_Success) {
468    ICS.setUserDefined();
469    // C++ [over.ics.user]p4:
470    //   A conversion of an expression of class type to the same class
471    //   type is given Exact Match rank, and a conversion of an
472    //   expression of class type to a base class of that type is
473    //   given Conversion rank, in spite of the fact that a copy
474    //   constructor (i.e., a user-defined conversion function) is
475    //   called for those cases.
476    if (CXXConstructorDecl *Constructor
477          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
478      QualType FromCanon
479        = Context.getCanonicalType(From->getType().getUnqualifiedType());
480      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
481      if (Constructor->isCopyConstructor() &&
482          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
483        // Turn this into a "standard" conversion sequence, so that it
484        // gets ranked with standard conversion sequences.
485        ICS.setStandard();
486        ICS.Standard.setAsIdentityConversion();
487        ICS.Standard.setFromType(From->getType());
488        ICS.Standard.setAllToTypes(ToType);
489        ICS.Standard.CopyConstructor = Constructor;
490        if (ToCanon != FromCanon)
491          ICS.Standard.Second = ICK_Derived_To_Base;
492      }
493    }
494
495    // C++ [over.best.ics]p4:
496    //   However, when considering the argument of a user-defined
497    //   conversion function that is a candidate by 13.3.1.3 when
498    //   invoked for the copying of the temporary in the second step
499    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
500    //   13.3.1.6 in all cases, only standard conversion sequences and
501    //   ellipsis conversion sequences are allowed.
502    if (SuppressUserConversions && ICS.isUserDefined()) {
503      ICS.setBad();
504      ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType);
505    }
506  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
507    ICS.setAmbiguous();
508    ICS.Ambiguous.setFromType(From->getType());
509    ICS.Ambiguous.setToType(ToType);
510    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
511         Cand != Conversions.end(); ++Cand)
512      if (Cand->Viable)
513        ICS.Ambiguous.addConversion(Cand->Function);
514  } else {
515    ICS.setBad();
516    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
517  }
518
519  return ICS;
520}
521
522/// \brief Determine whether the conversion from FromType to ToType is a valid
523/// conversion that strips "noreturn" off the nested function type.
524static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
525                                 QualType ToType, QualType &ResultTy) {
526  if (Context.hasSameUnqualifiedType(FromType, ToType))
527    return false;
528
529  // Strip the noreturn off the type we're converting from; noreturn can
530  // safely be removed.
531  FromType = Context.getNoReturnType(FromType, false);
532  if (!Context.hasSameUnqualifiedType(FromType, ToType))
533    return false;
534
535  ResultTy = FromType;
536  return true;
537}
538
539/// IsStandardConversion - Determines whether there is a standard
540/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
541/// expression From to the type ToType. Standard conversion sequences
542/// only consider non-class types; for conversions that involve class
543/// types, use TryImplicitConversion. If a conversion exists, SCS will
544/// contain the standard conversion sequence required to perform this
545/// conversion and this routine will return true. Otherwise, this
546/// routine will return false and the value of SCS is unspecified.
547bool
548Sema::IsStandardConversion(Expr* From, QualType ToType,
549                           bool InOverloadResolution,
550                           StandardConversionSequence &SCS) {
551  QualType FromType = From->getType();
552
553  // Standard conversions (C++ [conv])
554  SCS.setAsIdentityConversion();
555  SCS.Deprecated = false;
556  SCS.IncompatibleObjC = false;
557  SCS.setFromType(FromType);
558  SCS.CopyConstructor = 0;
559
560  // There are no standard conversions for class types in C++, so
561  // abort early. When overloading in C, however, we do permit
562  if (FromType->isRecordType() || ToType->isRecordType()) {
563    if (getLangOptions().CPlusPlus)
564      return false;
565
566    // When we're overloading in C, we allow, as standard conversions,
567  }
568
569  // The first conversion can be an lvalue-to-rvalue conversion,
570  // array-to-pointer conversion, or function-to-pointer conversion
571  // (C++ 4p1).
572
573  // Lvalue-to-rvalue conversion (C++ 4.1):
574  //   An lvalue (3.10) of a non-function, non-array type T can be
575  //   converted to an rvalue.
576  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
577  if (argIsLvalue == Expr::LV_Valid &&
578      !FromType->isFunctionType() && !FromType->isArrayType() &&
579      Context.getCanonicalType(FromType) != Context.OverloadTy) {
580    SCS.First = ICK_Lvalue_To_Rvalue;
581
582    // If T is a non-class type, the type of the rvalue is the
583    // cv-unqualified version of T. Otherwise, the type of the rvalue
584    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
585    // just strip the qualifiers because they don't matter.
586    FromType = FromType.getUnqualifiedType();
587  } else if (FromType->isArrayType()) {
588    // Array-to-pointer conversion (C++ 4.2)
589    SCS.First = ICK_Array_To_Pointer;
590
591    // An lvalue or rvalue of type "array of N T" or "array of unknown
592    // bound of T" can be converted to an rvalue of type "pointer to
593    // T" (C++ 4.2p1).
594    FromType = Context.getArrayDecayedType(FromType);
595
596    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
597      // This conversion is deprecated. (C++ D.4).
598      SCS.Deprecated = true;
599
600      // For the purpose of ranking in overload resolution
601      // (13.3.3.1.1), this conversion is considered an
602      // array-to-pointer conversion followed by a qualification
603      // conversion (4.4). (C++ 4.2p2)
604      SCS.Second = ICK_Identity;
605      SCS.Third = ICK_Qualification;
606      SCS.setAllToTypes(FromType);
607      return true;
608    }
609  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
610    // Function-to-pointer conversion (C++ 4.3).
611    SCS.First = ICK_Function_To_Pointer;
612
613    // An lvalue of function type T can be converted to an rvalue of
614    // type "pointer to T." The result is a pointer to the
615    // function. (C++ 4.3p1).
616    FromType = Context.getPointerType(FromType);
617  } else if (FunctionDecl *Fn
618               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
619    // Address of overloaded function (C++ [over.over]).
620    SCS.First = ICK_Function_To_Pointer;
621
622    // We were able to resolve the address of the overloaded function,
623    // so we can convert to the type of that function.
624    FromType = Fn->getType();
625    if (ToType->isLValueReferenceType())
626      FromType = Context.getLValueReferenceType(FromType);
627    else if (ToType->isRValueReferenceType())
628      FromType = Context.getRValueReferenceType(FromType);
629    else if (ToType->isMemberPointerType()) {
630      // Resolve address only succeeds if both sides are member pointers,
631      // but it doesn't have to be the same class. See DR 247.
632      // Note that this means that the type of &Derived::fn can be
633      // Ret (Base::*)(Args) if the fn overload actually found is from the
634      // base class, even if it was brought into the derived class via a
635      // using declaration. The standard isn't clear on this issue at all.
636      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
637      FromType = Context.getMemberPointerType(FromType,
638                    Context.getTypeDeclType(M->getParent()).getTypePtr());
639    } else
640      FromType = Context.getPointerType(FromType);
641  } else {
642    // We don't require any conversions for the first step.
643    SCS.First = ICK_Identity;
644  }
645  SCS.setToType(0, FromType);
646
647  // The second conversion can be an integral promotion, floating
648  // point promotion, integral conversion, floating point conversion,
649  // floating-integral conversion, pointer conversion,
650  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
651  // For overloading in C, this can also be a "compatible-type"
652  // conversion.
653  bool IncompatibleObjC = false;
654  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
655    // The unqualified versions of the types are the same: there's no
656    // conversion to do.
657    SCS.Second = ICK_Identity;
658  } else if (IsIntegralPromotion(From, FromType, ToType)) {
659    // Integral promotion (C++ 4.5).
660    SCS.Second = ICK_Integral_Promotion;
661    FromType = ToType.getUnqualifiedType();
662  } else if (IsFloatingPointPromotion(FromType, ToType)) {
663    // Floating point promotion (C++ 4.6).
664    SCS.Second = ICK_Floating_Promotion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (IsComplexPromotion(FromType, ToType)) {
667    // Complex promotion (Clang extension)
668    SCS.Second = ICK_Complex_Promotion;
669    FromType = ToType.getUnqualifiedType();
670  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
671           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
672    // Integral conversions (C++ 4.7).
673    SCS.Second = ICK_Integral_Conversion;
674    FromType = ToType.getUnqualifiedType();
675  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
676    // Floating point conversions (C++ 4.8).
677    SCS.Second = ICK_Floating_Conversion;
678    FromType = ToType.getUnqualifiedType();
679  } else if (FromType->isComplexType() && ToType->isComplexType()) {
680    // Complex conversions (C99 6.3.1.6)
681    SCS.Second = ICK_Complex_Conversion;
682    FromType = ToType.getUnqualifiedType();
683  } else if ((FromType->isFloatingType() &&
684              ToType->isIntegralType() && (!ToType->isBooleanType() &&
685                                           !ToType->isEnumeralType())) ||
686             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
687              ToType->isFloatingType())) {
688    // Floating-integral conversions (C++ 4.9).
689    SCS.Second = ICK_Floating_Integral;
690    FromType = ToType.getUnqualifiedType();
691  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
692             (ToType->isComplexType() && FromType->isArithmeticType())) {
693    // Complex-real conversions (C99 6.3.1.7)
694    SCS.Second = ICK_Complex_Real;
695    FromType = ToType.getUnqualifiedType();
696  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
697                                 FromType, IncompatibleObjC)) {
698    // Pointer conversions (C++ 4.10).
699    SCS.Second = ICK_Pointer_Conversion;
700    SCS.IncompatibleObjC = IncompatibleObjC;
701  } else if (IsMemberPointerConversion(From, FromType, ToType,
702                                       InOverloadResolution, FromType)) {
703    // Pointer to member conversions (4.11).
704    SCS.Second = ICK_Pointer_Member;
705  } else if (ToType->isBooleanType() &&
706             (FromType->isArithmeticType() ||
707              FromType->isEnumeralType() ||
708              FromType->isAnyPointerType() ||
709              FromType->isBlockPointerType() ||
710              FromType->isMemberPointerType() ||
711              FromType->isNullPtrType())) {
712    // Boolean conversions (C++ 4.12).
713    SCS.Second = ICK_Boolean_Conversion;
714    FromType = Context.BoolTy;
715  } else if (!getLangOptions().CPlusPlus &&
716             Context.typesAreCompatible(ToType, FromType)) {
717    // Compatible conversions (Clang extension for C function overloading)
718    SCS.Second = ICK_Compatible_Conversion;
719  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
720    // Treat a conversion that strips "noreturn" as an identity conversion.
721    SCS.Second = ICK_NoReturn_Adjustment;
722  } else {
723    // No second conversion required.
724    SCS.Second = ICK_Identity;
725  }
726  SCS.setToType(1, FromType);
727
728  QualType CanonFrom;
729  QualType CanonTo;
730  // The third conversion can be a qualification conversion (C++ 4p1).
731  if (IsQualificationConversion(FromType, ToType)) {
732    SCS.Third = ICK_Qualification;
733    FromType = ToType;
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736  } else {
737    // No conversion required
738    SCS.Third = ICK_Identity;
739
740    // C++ [over.best.ics]p6:
741    //   [...] Any difference in top-level cv-qualification is
742    //   subsumed by the initialization itself and does not constitute
743    //   a conversion. [...]
744    CanonFrom = Context.getCanonicalType(FromType);
745    CanonTo = Context.getCanonicalType(ToType);
746    if (CanonFrom.getLocalUnqualifiedType()
747                                       == CanonTo.getLocalUnqualifiedType() &&
748        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
749      FromType = ToType;
750      CanonFrom = CanonTo;
751    }
752  }
753  SCS.setToType(2, FromType);
754
755  // If we have not converted the argument type to the parameter type,
756  // this is a bad conversion sequence.
757  if (CanonFrom != CanonTo)
758    return false;
759
760  return true;
761}
762
763/// IsIntegralPromotion - Determines whether the conversion from the
764/// expression From (whose potentially-adjusted type is FromType) to
765/// ToType is an integral promotion (C++ 4.5). If so, returns true and
766/// sets PromotedType to the promoted type.
767bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
768  const BuiltinType *To = ToType->getAs<BuiltinType>();
769  // All integers are built-in.
770  if (!To) {
771    return false;
772  }
773
774  // An rvalue of type char, signed char, unsigned char, short int, or
775  // unsigned short int can be converted to an rvalue of type int if
776  // int can represent all the values of the source type; otherwise,
777  // the source rvalue can be converted to an rvalue of type unsigned
778  // int (C++ 4.5p1).
779  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
780      !FromType->isEnumeralType()) {
781    if (// We can promote any signed, promotable integer type to an int
782        (FromType->isSignedIntegerType() ||
783         // We can promote any unsigned integer type whose size is
784         // less than int to an int.
785         (!FromType->isSignedIntegerType() &&
786          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
787      return To->getKind() == BuiltinType::Int;
788    }
789
790    return To->getKind() == BuiltinType::UInt;
791  }
792
793  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
794  // can be converted to an rvalue of the first of the following types
795  // that can represent all the values of its underlying type: int,
796  // unsigned int, long, or unsigned long (C++ 4.5p2).
797
798  // We pre-calculate the promotion type for enum types.
799  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
800    if (ToType->isIntegerType())
801      return Context.hasSameUnqualifiedType(ToType,
802                                FromEnumType->getDecl()->getPromotionType());
803
804  if (FromType->isWideCharType() && ToType->isIntegerType()) {
805    // Determine whether the type we're converting from is signed or
806    // unsigned.
807    bool FromIsSigned;
808    uint64_t FromSize = Context.getTypeSize(FromType);
809
810    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
811    FromIsSigned = true;
812
813    // The types we'll try to promote to, in the appropriate
814    // order. Try each of these types.
815    QualType PromoteTypes[6] = {
816      Context.IntTy, Context.UnsignedIntTy,
817      Context.LongTy, Context.UnsignedLongTy ,
818      Context.LongLongTy, Context.UnsignedLongLongTy
819    };
820    for (int Idx = 0; Idx < 6; ++Idx) {
821      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
822      if (FromSize < ToSize ||
823          (FromSize == ToSize &&
824           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
825        // We found the type that we can promote to. If this is the
826        // type we wanted, we have a promotion. Otherwise, no
827        // promotion.
828        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
829      }
830    }
831  }
832
833  // An rvalue for an integral bit-field (9.6) can be converted to an
834  // rvalue of type int if int can represent all the values of the
835  // bit-field; otherwise, it can be converted to unsigned int if
836  // unsigned int can represent all the values of the bit-field. If
837  // the bit-field is larger yet, no integral promotion applies to
838  // it. If the bit-field has an enumerated type, it is treated as any
839  // other value of that type for promotion purposes (C++ 4.5p3).
840  // FIXME: We should delay checking of bit-fields until we actually perform the
841  // conversion.
842  using llvm::APSInt;
843  if (From)
844    if (FieldDecl *MemberDecl = From->getBitField()) {
845      APSInt BitWidth;
846      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
847          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
848        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
849        ToSize = Context.getTypeSize(ToType);
850
851        // Are we promoting to an int from a bitfield that fits in an int?
852        if (BitWidth < ToSize ||
853            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
854          return To->getKind() == BuiltinType::Int;
855        }
856
857        // Are we promoting to an unsigned int from an unsigned bitfield
858        // that fits into an unsigned int?
859        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
860          return To->getKind() == BuiltinType::UInt;
861        }
862
863        return false;
864      }
865    }
866
867  // An rvalue of type bool can be converted to an rvalue of type int,
868  // with false becoming zero and true becoming one (C++ 4.5p4).
869  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
870    return true;
871  }
872
873  return false;
874}
875
876/// IsFloatingPointPromotion - Determines whether the conversion from
877/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
878/// returns true and sets PromotedType to the promoted type.
879bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
880  /// An rvalue of type float can be converted to an rvalue of type
881  /// double. (C++ 4.6p1).
882  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
883    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
884      if (FromBuiltin->getKind() == BuiltinType::Float &&
885          ToBuiltin->getKind() == BuiltinType::Double)
886        return true;
887
888      // C99 6.3.1.5p1:
889      //   When a float is promoted to double or long double, or a
890      //   double is promoted to long double [...].
891      if (!getLangOptions().CPlusPlus &&
892          (FromBuiltin->getKind() == BuiltinType::Float ||
893           FromBuiltin->getKind() == BuiltinType::Double) &&
894          (ToBuiltin->getKind() == BuiltinType::LongDouble))
895        return true;
896    }
897
898  return false;
899}
900
901/// \brief Determine if a conversion is a complex promotion.
902///
903/// A complex promotion is defined as a complex -> complex conversion
904/// where the conversion between the underlying real types is a
905/// floating-point or integral promotion.
906bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
907  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
908  if (!FromComplex)
909    return false;
910
911  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
912  if (!ToComplex)
913    return false;
914
915  return IsFloatingPointPromotion(FromComplex->getElementType(),
916                                  ToComplex->getElementType()) ||
917    IsIntegralPromotion(0, FromComplex->getElementType(),
918                        ToComplex->getElementType());
919}
920
921/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
922/// the pointer type FromPtr to a pointer to type ToPointee, with the
923/// same type qualifiers as FromPtr has on its pointee type. ToType,
924/// if non-empty, will be a pointer to ToType that may or may not have
925/// the right set of qualifiers on its pointee.
926static QualType
927BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
928                                   QualType ToPointee, QualType ToType,
929                                   ASTContext &Context) {
930  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
931  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
932  Qualifiers Quals = CanonFromPointee.getQualifiers();
933
934  // Exact qualifier match -> return the pointer type we're converting to.
935  if (CanonToPointee.getLocalQualifiers() == Quals) {
936    // ToType is exactly what we need. Return it.
937    if (!ToType.isNull())
938      return ToType;
939
940    // Build a pointer to ToPointee. It has the right qualifiers
941    // already.
942    return Context.getPointerType(ToPointee);
943  }
944
945  // Just build a canonical type that has the right qualifiers.
946  return Context.getPointerType(
947         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
948                                  Quals));
949}
950
951/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
952/// the FromType, which is an objective-c pointer, to ToType, which may or may
953/// not have the right set of qualifiers.
954static QualType
955BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
956                                             QualType ToType,
957                                             ASTContext &Context) {
958  QualType CanonFromType = Context.getCanonicalType(FromType);
959  QualType CanonToType = Context.getCanonicalType(ToType);
960  Qualifiers Quals = CanonFromType.getQualifiers();
961
962  // Exact qualifier match -> return the pointer type we're converting to.
963  if (CanonToType.getLocalQualifiers() == Quals)
964    return ToType;
965
966  // Just build a canonical type that has the right qualifiers.
967  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
968}
969
970static bool isNullPointerConstantForConversion(Expr *Expr,
971                                               bool InOverloadResolution,
972                                               ASTContext &Context) {
973  // Handle value-dependent integral null pointer constants correctly.
974  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
975  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
976      Expr->getType()->isIntegralType())
977    return !InOverloadResolution;
978
979  return Expr->isNullPointerConstant(Context,
980                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
981                                        : Expr::NPC_ValueDependentIsNull);
982}
983
984/// IsPointerConversion - Determines whether the conversion of the
985/// expression From, which has the (possibly adjusted) type FromType,
986/// can be converted to the type ToType via a pointer conversion (C++
987/// 4.10). If so, returns true and places the converted type (that
988/// might differ from ToType in its cv-qualifiers at some level) into
989/// ConvertedType.
990///
991/// This routine also supports conversions to and from block pointers
992/// and conversions with Objective-C's 'id', 'id<protocols...>', and
993/// pointers to interfaces. FIXME: Once we've determined the
994/// appropriate overloading rules for Objective-C, we may want to
995/// split the Objective-C checks into a different routine; however,
996/// GCC seems to consider all of these conversions to be pointer
997/// conversions, so for now they live here. IncompatibleObjC will be
998/// set if the conversion is an allowed Objective-C conversion that
999/// should result in a warning.
1000bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1001                               bool InOverloadResolution,
1002                               QualType& ConvertedType,
1003                               bool &IncompatibleObjC) {
1004  IncompatibleObjC = false;
1005  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1006    return true;
1007
1008  // Conversion from a null pointer constant to any Objective-C pointer type.
1009  if (ToType->isObjCObjectPointerType() &&
1010      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1011    ConvertedType = ToType;
1012    return true;
1013  }
1014
1015  // Blocks: Block pointers can be converted to void*.
1016  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1017      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1018    ConvertedType = ToType;
1019    return true;
1020  }
1021  // Blocks: A null pointer constant can be converted to a block
1022  // pointer type.
1023  if (ToType->isBlockPointerType() &&
1024      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1025    ConvertedType = ToType;
1026    return true;
1027  }
1028
1029  // If the left-hand-side is nullptr_t, the right side can be a null
1030  // pointer constant.
1031  if (ToType->isNullPtrType() &&
1032      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1033    ConvertedType = ToType;
1034    return true;
1035  }
1036
1037  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1038  if (!ToTypePtr)
1039    return false;
1040
1041  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1042  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1043    ConvertedType = ToType;
1044    return true;
1045  }
1046
1047  // Beyond this point, both types need to be pointers
1048  // , including objective-c pointers.
1049  QualType ToPointeeType = ToTypePtr->getPointeeType();
1050  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1051    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1052                                                       ToType, Context);
1053    return true;
1054
1055  }
1056  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1057  if (!FromTypePtr)
1058    return false;
1059
1060  QualType FromPointeeType = FromTypePtr->getPointeeType();
1061
1062  // An rvalue of type "pointer to cv T," where T is an object type,
1063  // can be converted to an rvalue of type "pointer to cv void" (C++
1064  // 4.10p2).
1065  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1066    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1067                                                       ToPointeeType,
1068                                                       ToType, Context);
1069    return true;
1070  }
1071
1072  // When we're overloading in C, we allow a special kind of pointer
1073  // conversion for compatible-but-not-identical pointee types.
1074  if (!getLangOptions().CPlusPlus &&
1075      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1076    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1077                                                       ToPointeeType,
1078                                                       ToType, Context);
1079    return true;
1080  }
1081
1082  // C++ [conv.ptr]p3:
1083  //
1084  //   An rvalue of type "pointer to cv D," where D is a class type,
1085  //   can be converted to an rvalue of type "pointer to cv B," where
1086  //   B is a base class (clause 10) of D. If B is an inaccessible
1087  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1088  //   necessitates this conversion is ill-formed. The result of the
1089  //   conversion is a pointer to the base class sub-object of the
1090  //   derived class object. The null pointer value is converted to
1091  //   the null pointer value of the destination type.
1092  //
1093  // Note that we do not check for ambiguity or inaccessibility
1094  // here. That is handled by CheckPointerConversion.
1095  if (getLangOptions().CPlusPlus &&
1096      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1097      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1098      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1099    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1100                                                       ToPointeeType,
1101                                                       ToType, Context);
1102    return true;
1103  }
1104
1105  return false;
1106}
1107
1108/// isObjCPointerConversion - Determines whether this is an
1109/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1110/// with the same arguments and return values.
1111bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1112                                   QualType& ConvertedType,
1113                                   bool &IncompatibleObjC) {
1114  if (!getLangOptions().ObjC1)
1115    return false;
1116
1117  // First, we handle all conversions on ObjC object pointer types.
1118  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1119  const ObjCObjectPointerType *FromObjCPtr =
1120    FromType->getAs<ObjCObjectPointerType>();
1121
1122  if (ToObjCPtr && FromObjCPtr) {
1123    // Objective C++: We're able to convert between "id" or "Class" and a
1124    // pointer to any interface (in both directions).
1125    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1126      ConvertedType = ToType;
1127      return true;
1128    }
1129    // Conversions with Objective-C's id<...>.
1130    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1131         ToObjCPtr->isObjCQualifiedIdType()) &&
1132        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1133                                                  /*compare=*/false)) {
1134      ConvertedType = ToType;
1135      return true;
1136    }
1137    // Objective C++: We're able to convert from a pointer to an
1138    // interface to a pointer to a different interface.
1139    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143
1144    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1145      // Okay: this is some kind of implicit downcast of Objective-C
1146      // interfaces, which is permitted. However, we're going to
1147      // complain about it.
1148      IncompatibleObjC = true;
1149      ConvertedType = FromType;
1150      return true;
1151    }
1152  }
1153  // Beyond this point, both types need to be C pointers or block pointers.
1154  QualType ToPointeeType;
1155  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1156    ToPointeeType = ToCPtr->getPointeeType();
1157  else if (const BlockPointerType *ToBlockPtr =
1158            ToType->getAs<BlockPointerType>()) {
1159    // Objective C++: We're able to convert from a pointer to any object
1160    // to a block pointer type.
1161    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1162      ConvertedType = ToType;
1163      return true;
1164    }
1165    ToPointeeType = ToBlockPtr->getPointeeType();
1166  }
1167  else if (FromType->getAs<BlockPointerType>() &&
1168           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1169    // Objective C++: We're able to convert from a block pointer type to a
1170    // pointer to any object.
1171    ConvertedType = ToType;
1172    return true;
1173  }
1174  else
1175    return false;
1176
1177  QualType FromPointeeType;
1178  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1179    FromPointeeType = FromCPtr->getPointeeType();
1180  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1181    FromPointeeType = FromBlockPtr->getPointeeType();
1182  else
1183    return false;
1184
1185  // If we have pointers to pointers, recursively check whether this
1186  // is an Objective-C conversion.
1187  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1188      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1189                              IncompatibleObjC)) {
1190    // We always complain about this conversion.
1191    IncompatibleObjC = true;
1192    ConvertedType = ToType;
1193    return true;
1194  }
1195  // Allow conversion of pointee being objective-c pointer to another one;
1196  // as in I* to id.
1197  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1198      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1199      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1200                              IncompatibleObjC)) {
1201    ConvertedType = ToType;
1202    return true;
1203  }
1204
1205  // If we have pointers to functions or blocks, check whether the only
1206  // differences in the argument and result types are in Objective-C
1207  // pointer conversions. If so, we permit the conversion (but
1208  // complain about it).
1209  const FunctionProtoType *FromFunctionType
1210    = FromPointeeType->getAs<FunctionProtoType>();
1211  const FunctionProtoType *ToFunctionType
1212    = ToPointeeType->getAs<FunctionProtoType>();
1213  if (FromFunctionType && ToFunctionType) {
1214    // If the function types are exactly the same, this isn't an
1215    // Objective-C pointer conversion.
1216    if (Context.getCanonicalType(FromPointeeType)
1217          == Context.getCanonicalType(ToPointeeType))
1218      return false;
1219
1220    // Perform the quick checks that will tell us whether these
1221    // function types are obviously different.
1222    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1223        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1224        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1225      return false;
1226
1227    bool HasObjCConversion = false;
1228    if (Context.getCanonicalType(FromFunctionType->getResultType())
1229          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1230      // Okay, the types match exactly. Nothing to do.
1231    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1232                                       ToFunctionType->getResultType(),
1233                                       ConvertedType, IncompatibleObjC)) {
1234      // Okay, we have an Objective-C pointer conversion.
1235      HasObjCConversion = true;
1236    } else {
1237      // Function types are too different. Abort.
1238      return false;
1239    }
1240
1241    // Check argument types.
1242    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1243         ArgIdx != NumArgs; ++ArgIdx) {
1244      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1245      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1246      if (Context.getCanonicalType(FromArgType)
1247            == Context.getCanonicalType(ToArgType)) {
1248        // Okay, the types match exactly. Nothing to do.
1249      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1250                                         ConvertedType, IncompatibleObjC)) {
1251        // Okay, we have an Objective-C pointer conversion.
1252        HasObjCConversion = true;
1253      } else {
1254        // Argument types are too different. Abort.
1255        return false;
1256      }
1257    }
1258
1259    if (HasObjCConversion) {
1260      // We had an Objective-C conversion. Allow this pointer
1261      // conversion, but complain about it.
1262      ConvertedType = ToType;
1263      IncompatibleObjC = true;
1264      return true;
1265    }
1266  }
1267
1268  return false;
1269}
1270
1271/// CheckPointerConversion - Check the pointer conversion from the
1272/// expression From to the type ToType. This routine checks for
1273/// ambiguous or inaccessible derived-to-base pointer
1274/// conversions for which IsPointerConversion has already returned
1275/// true. It returns true and produces a diagnostic if there was an
1276/// error, or returns false otherwise.
1277bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1278                                  CastExpr::CastKind &Kind,
1279                                  bool IgnoreBaseAccess) {
1280  QualType FromType = From->getType();
1281
1282  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1283    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1284      QualType FromPointeeType = FromPtrType->getPointeeType(),
1285               ToPointeeType   = ToPtrType->getPointeeType();
1286
1287      if (FromPointeeType->isRecordType() &&
1288          ToPointeeType->isRecordType()) {
1289        // We must have a derived-to-base conversion. Check an
1290        // ambiguous or inaccessible conversion.
1291        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1292                                         From->getExprLoc(),
1293                                         From->getSourceRange(),
1294                                         IgnoreBaseAccess))
1295          return true;
1296
1297        // The conversion was successful.
1298        Kind = CastExpr::CK_DerivedToBase;
1299      }
1300    }
1301  if (const ObjCObjectPointerType *FromPtrType =
1302        FromType->getAs<ObjCObjectPointerType>())
1303    if (const ObjCObjectPointerType *ToPtrType =
1304          ToType->getAs<ObjCObjectPointerType>()) {
1305      // Objective-C++ conversions are always okay.
1306      // FIXME: We should have a different class of conversions for the
1307      // Objective-C++ implicit conversions.
1308      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1309        return false;
1310
1311  }
1312  return false;
1313}
1314
1315/// IsMemberPointerConversion - Determines whether the conversion of the
1316/// expression From, which has the (possibly adjusted) type FromType, can be
1317/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1318/// If so, returns true and places the converted type (that might differ from
1319/// ToType in its cv-qualifiers at some level) into ConvertedType.
1320bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1321                                     QualType ToType,
1322                                     bool InOverloadResolution,
1323                                     QualType &ConvertedType) {
1324  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1325  if (!ToTypePtr)
1326    return false;
1327
1328  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1329  if (From->isNullPointerConstant(Context,
1330                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1331                                        : Expr::NPC_ValueDependentIsNull)) {
1332    ConvertedType = ToType;
1333    return true;
1334  }
1335
1336  // Otherwise, both types have to be member pointers.
1337  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1338  if (!FromTypePtr)
1339    return false;
1340
1341  // A pointer to member of B can be converted to a pointer to member of D,
1342  // where D is derived from B (C++ 4.11p2).
1343  QualType FromClass(FromTypePtr->getClass(), 0);
1344  QualType ToClass(ToTypePtr->getClass(), 0);
1345  // FIXME: What happens when these are dependent? Is this function even called?
1346
1347  if (IsDerivedFrom(ToClass, FromClass)) {
1348    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1349                                                 ToClass.getTypePtr());
1350    return true;
1351  }
1352
1353  return false;
1354}
1355
1356/// CheckMemberPointerConversion - Check the member pointer conversion from the
1357/// expression From to the type ToType. This routine checks for ambiguous or
1358/// virtual or inaccessible base-to-derived member pointer conversions
1359/// for which IsMemberPointerConversion has already returned true. It returns
1360/// true and produces a diagnostic if there was an error, or returns false
1361/// otherwise.
1362bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1363                                        CastExpr::CastKind &Kind,
1364                                        bool IgnoreBaseAccess) {
1365  QualType FromType = From->getType();
1366  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1367  if (!FromPtrType) {
1368    // This must be a null pointer to member pointer conversion
1369    assert(From->isNullPointerConstant(Context,
1370                                       Expr::NPC_ValueDependentIsNull) &&
1371           "Expr must be null pointer constant!");
1372    Kind = CastExpr::CK_NullToMemberPointer;
1373    return false;
1374  }
1375
1376  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1377  assert(ToPtrType && "No member pointer cast has a target type "
1378                      "that is not a member pointer.");
1379
1380  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1381  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1382
1383  // FIXME: What about dependent types?
1384  assert(FromClass->isRecordType() && "Pointer into non-class.");
1385  assert(ToClass->isRecordType() && "Pointer into non-class.");
1386
1387  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1388                     /*DetectVirtual=*/true);
1389  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1390  assert(DerivationOkay &&
1391         "Should not have been called if derivation isn't OK.");
1392  (void)DerivationOkay;
1393
1394  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1395                                  getUnqualifiedType())) {
1396    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1397    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1398      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1399    return true;
1400  }
1401
1402  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1403    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1404      << FromClass << ToClass << QualType(VBase, 0)
1405      << From->getSourceRange();
1406    return true;
1407  }
1408
1409  if (!IgnoreBaseAccess)
1410    CheckBaseClassAccess(From->getExprLoc(), /*BaseToDerived*/ true,
1411                         FromClass, ToClass, Paths.front());
1412
1413  // Must be a base to derived member conversion.
1414  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1415  return false;
1416}
1417
1418/// IsQualificationConversion - Determines whether the conversion from
1419/// an rvalue of type FromType to ToType is a qualification conversion
1420/// (C++ 4.4).
1421bool
1422Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1423  FromType = Context.getCanonicalType(FromType);
1424  ToType = Context.getCanonicalType(ToType);
1425
1426  // If FromType and ToType are the same type, this is not a
1427  // qualification conversion.
1428  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1429    return false;
1430
1431  // (C++ 4.4p4):
1432  //   A conversion can add cv-qualifiers at levels other than the first
1433  //   in multi-level pointers, subject to the following rules: [...]
1434  bool PreviousToQualsIncludeConst = true;
1435  bool UnwrappedAnyPointer = false;
1436  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1437    // Within each iteration of the loop, we check the qualifiers to
1438    // determine if this still looks like a qualification
1439    // conversion. Then, if all is well, we unwrap one more level of
1440    // pointers or pointers-to-members and do it all again
1441    // until there are no more pointers or pointers-to-members left to
1442    // unwrap.
1443    UnwrappedAnyPointer = true;
1444
1445    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1446    //      2,j, and similarly for volatile.
1447    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1448      return false;
1449
1450    //   -- if the cv 1,j and cv 2,j are different, then const is in
1451    //      every cv for 0 < k < j.
1452    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1453        && !PreviousToQualsIncludeConst)
1454      return false;
1455
1456    // Keep track of whether all prior cv-qualifiers in the "to" type
1457    // include const.
1458    PreviousToQualsIncludeConst
1459      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1460  }
1461
1462  // We are left with FromType and ToType being the pointee types
1463  // after unwrapping the original FromType and ToType the same number
1464  // of types. If we unwrapped any pointers, and if FromType and
1465  // ToType have the same unqualified type (since we checked
1466  // qualifiers above), then this is a qualification conversion.
1467  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1468}
1469
1470/// Determines whether there is a user-defined conversion sequence
1471/// (C++ [over.ics.user]) that converts expression From to the type
1472/// ToType. If such a conversion exists, User will contain the
1473/// user-defined conversion sequence that performs such a conversion
1474/// and this routine will return true. Otherwise, this routine returns
1475/// false and User is unspecified.
1476///
1477/// \param AllowConversionFunctions true if the conversion should
1478/// consider conversion functions at all. If false, only constructors
1479/// will be considered.
1480///
1481/// \param AllowExplicit  true if the conversion should consider C++0x
1482/// "explicit" conversion functions as well as non-explicit conversion
1483/// functions (C++0x [class.conv.fct]p2).
1484///
1485/// \param ForceRValue  true if the expression should be treated as an rvalue
1486/// for overload resolution.
1487/// \param UserCast true if looking for user defined conversion for a static
1488/// cast.
1489OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1490                                          UserDefinedConversionSequence& User,
1491                                            OverloadCandidateSet& CandidateSet,
1492                                                bool AllowConversionFunctions,
1493                                                bool AllowExplicit,
1494                                                bool ForceRValue,
1495                                                bool UserCast) {
1496  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1497    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1498      // We're not going to find any constructors.
1499    } else if (CXXRecordDecl *ToRecordDecl
1500                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1501      // C++ [over.match.ctor]p1:
1502      //   When objects of class type are direct-initialized (8.5), or
1503      //   copy-initialized from an expression of the same or a
1504      //   derived class type (8.5), overload resolution selects the
1505      //   constructor. [...] For copy-initialization, the candidate
1506      //   functions are all the converting constructors (12.3.1) of
1507      //   that class. The argument list is the expression-list within
1508      //   the parentheses of the initializer.
1509      bool SuppressUserConversions = !UserCast;
1510      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1511          IsDerivedFrom(From->getType(), ToType)) {
1512        SuppressUserConversions = false;
1513        AllowConversionFunctions = false;
1514      }
1515
1516      DeclarationName ConstructorName
1517        = Context.DeclarationNames.getCXXConstructorName(
1518                          Context.getCanonicalType(ToType).getUnqualifiedType());
1519      DeclContext::lookup_iterator Con, ConEnd;
1520      for (llvm::tie(Con, ConEnd)
1521             = ToRecordDecl->lookup(ConstructorName);
1522           Con != ConEnd; ++Con) {
1523        // Find the constructor (which may be a template).
1524        CXXConstructorDecl *Constructor = 0;
1525        FunctionTemplateDecl *ConstructorTmpl
1526          = dyn_cast<FunctionTemplateDecl>(*Con);
1527        if (ConstructorTmpl)
1528          Constructor
1529            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1530        else
1531          Constructor = cast<CXXConstructorDecl>(*Con);
1532
1533        if (!Constructor->isInvalidDecl() &&
1534            Constructor->isConvertingConstructor(AllowExplicit)) {
1535          if (ConstructorTmpl)
1536            AddTemplateOverloadCandidate(ConstructorTmpl,
1537                                         ConstructorTmpl->getAccess(),
1538                                         /*ExplicitArgs*/ 0,
1539                                         &From, 1, CandidateSet,
1540                                         SuppressUserConversions, ForceRValue);
1541          else
1542            // Allow one user-defined conversion when user specifies a
1543            // From->ToType conversion via an static cast (c-style, etc).
1544            AddOverloadCandidate(Constructor, Constructor->getAccess(),
1545                                 &From, 1, CandidateSet,
1546                                 SuppressUserConversions, ForceRValue);
1547        }
1548      }
1549    }
1550  }
1551
1552  if (!AllowConversionFunctions) {
1553    // Don't allow any conversion functions to enter the overload set.
1554  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1555                                 PDiag(0)
1556                                   << From->getSourceRange())) {
1557    // No conversion functions from incomplete types.
1558  } else if (const RecordType *FromRecordType
1559               = From->getType()->getAs<RecordType>()) {
1560    if (CXXRecordDecl *FromRecordDecl
1561         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1562      // Add all of the conversion functions as candidates.
1563      const UnresolvedSetImpl *Conversions
1564        = FromRecordDecl->getVisibleConversionFunctions();
1565      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1566             E = Conversions->end(); I != E; ++I) {
1567        NamedDecl *D = *I;
1568        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1569        if (isa<UsingShadowDecl>(D))
1570          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1571
1572        CXXConversionDecl *Conv;
1573        FunctionTemplateDecl *ConvTemplate;
1574        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1575          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1576        else
1577          Conv = dyn_cast<CXXConversionDecl>(*I);
1578
1579        if (AllowExplicit || !Conv->isExplicit()) {
1580          if (ConvTemplate)
1581            AddTemplateConversionCandidate(ConvTemplate, I.getAccess(),
1582                                           ActingContext, From, ToType,
1583                                           CandidateSet);
1584          else
1585            AddConversionCandidate(Conv, I.getAccess(), ActingContext,
1586                                   From, ToType, CandidateSet);
1587        }
1588      }
1589    }
1590  }
1591
1592  OverloadCandidateSet::iterator Best;
1593  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1594    case OR_Success:
1595      // Record the standard conversion we used and the conversion function.
1596      if (CXXConstructorDecl *Constructor
1597            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1598        // C++ [over.ics.user]p1:
1599        //   If the user-defined conversion is specified by a
1600        //   constructor (12.3.1), the initial standard conversion
1601        //   sequence converts the source type to the type required by
1602        //   the argument of the constructor.
1603        //
1604        QualType ThisType = Constructor->getThisType(Context);
1605        if (Best->Conversions[0].isEllipsis())
1606          User.EllipsisConversion = true;
1607        else {
1608          User.Before = Best->Conversions[0].Standard;
1609          User.EllipsisConversion = false;
1610        }
1611        User.ConversionFunction = Constructor;
1612        User.After.setAsIdentityConversion();
1613        User.After.setFromType(
1614          ThisType->getAs<PointerType>()->getPointeeType());
1615        User.After.setAllToTypes(ToType);
1616        return OR_Success;
1617      } else if (CXXConversionDecl *Conversion
1618                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1619        // C++ [over.ics.user]p1:
1620        //
1621        //   [...] If the user-defined conversion is specified by a
1622        //   conversion function (12.3.2), the initial standard
1623        //   conversion sequence converts the source type to the
1624        //   implicit object parameter of the conversion function.
1625        User.Before = Best->Conversions[0].Standard;
1626        User.ConversionFunction = Conversion;
1627        User.EllipsisConversion = false;
1628
1629        // C++ [over.ics.user]p2:
1630        //   The second standard conversion sequence converts the
1631        //   result of the user-defined conversion to the target type
1632        //   for the sequence. Since an implicit conversion sequence
1633        //   is an initialization, the special rules for
1634        //   initialization by user-defined conversion apply when
1635        //   selecting the best user-defined conversion for a
1636        //   user-defined conversion sequence (see 13.3.3 and
1637        //   13.3.3.1).
1638        User.After = Best->FinalConversion;
1639        return OR_Success;
1640      } else {
1641        assert(false && "Not a constructor or conversion function?");
1642        return OR_No_Viable_Function;
1643      }
1644
1645    case OR_No_Viable_Function:
1646      return OR_No_Viable_Function;
1647    case OR_Deleted:
1648      // No conversion here! We're done.
1649      return OR_Deleted;
1650
1651    case OR_Ambiguous:
1652      return OR_Ambiguous;
1653    }
1654
1655  return OR_No_Viable_Function;
1656}
1657
1658bool
1659Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1660  ImplicitConversionSequence ICS;
1661  OverloadCandidateSet CandidateSet(From->getExprLoc());
1662  OverloadingResult OvResult =
1663    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1664                            CandidateSet, true, false, false);
1665  if (OvResult == OR_Ambiguous)
1666    Diag(From->getSourceRange().getBegin(),
1667         diag::err_typecheck_ambiguous_condition)
1668          << From->getType() << ToType << From->getSourceRange();
1669  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1670    Diag(From->getSourceRange().getBegin(),
1671         diag::err_typecheck_nonviable_condition)
1672    << From->getType() << ToType << From->getSourceRange();
1673  else
1674    return false;
1675  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1676  return true;
1677}
1678
1679/// CompareImplicitConversionSequences - Compare two implicit
1680/// conversion sequences to determine whether one is better than the
1681/// other or if they are indistinguishable (C++ 13.3.3.2).
1682ImplicitConversionSequence::CompareKind
1683Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1684                                         const ImplicitConversionSequence& ICS2)
1685{
1686  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1687  // conversion sequences (as defined in 13.3.3.1)
1688  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1689  //      conversion sequence than a user-defined conversion sequence or
1690  //      an ellipsis conversion sequence, and
1691  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1692  //      conversion sequence than an ellipsis conversion sequence
1693  //      (13.3.3.1.3).
1694  //
1695  // C++0x [over.best.ics]p10:
1696  //   For the purpose of ranking implicit conversion sequences as
1697  //   described in 13.3.3.2, the ambiguous conversion sequence is
1698  //   treated as a user-defined sequence that is indistinguishable
1699  //   from any other user-defined conversion sequence.
1700  if (ICS1.getKind() < ICS2.getKind()) {
1701    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1702      return ImplicitConversionSequence::Better;
1703  } else if (ICS2.getKind() < ICS1.getKind()) {
1704    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1705      return ImplicitConversionSequence::Worse;
1706  }
1707
1708  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1709    return ImplicitConversionSequence::Indistinguishable;
1710
1711  // Two implicit conversion sequences of the same form are
1712  // indistinguishable conversion sequences unless one of the
1713  // following rules apply: (C++ 13.3.3.2p3):
1714  if (ICS1.isStandard())
1715    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1716  else if (ICS1.isUserDefined()) {
1717    // User-defined conversion sequence U1 is a better conversion
1718    // sequence than another user-defined conversion sequence U2 if
1719    // they contain the same user-defined conversion function or
1720    // constructor and if the second standard conversion sequence of
1721    // U1 is better than the second standard conversion sequence of
1722    // U2 (C++ 13.3.3.2p3).
1723    if (ICS1.UserDefined.ConversionFunction ==
1724          ICS2.UserDefined.ConversionFunction)
1725      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1726                                                ICS2.UserDefined.After);
1727  }
1728
1729  return ImplicitConversionSequence::Indistinguishable;
1730}
1731
1732// Per 13.3.3.2p3, compare the given standard conversion sequences to
1733// determine if one is a proper subset of the other.
1734static ImplicitConversionSequence::CompareKind
1735compareStandardConversionSubsets(ASTContext &Context,
1736                                 const StandardConversionSequence& SCS1,
1737                                 const StandardConversionSequence& SCS2) {
1738  ImplicitConversionSequence::CompareKind Result
1739    = ImplicitConversionSequence::Indistinguishable;
1740
1741  if (SCS1.Second != SCS2.Second) {
1742    if (SCS1.Second == ICK_Identity)
1743      Result = ImplicitConversionSequence::Better;
1744    else if (SCS2.Second == ICK_Identity)
1745      Result = ImplicitConversionSequence::Worse;
1746    else
1747      return ImplicitConversionSequence::Indistinguishable;
1748  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1749    return ImplicitConversionSequence::Indistinguishable;
1750
1751  if (SCS1.Third == SCS2.Third) {
1752    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1753                             : ImplicitConversionSequence::Indistinguishable;
1754  }
1755
1756  if (SCS1.Third == ICK_Identity)
1757    return Result == ImplicitConversionSequence::Worse
1758             ? ImplicitConversionSequence::Indistinguishable
1759             : ImplicitConversionSequence::Better;
1760
1761  if (SCS2.Third == ICK_Identity)
1762    return Result == ImplicitConversionSequence::Better
1763             ? ImplicitConversionSequence::Indistinguishable
1764             : ImplicitConversionSequence::Worse;
1765
1766  return ImplicitConversionSequence::Indistinguishable;
1767}
1768
1769/// CompareStandardConversionSequences - Compare two standard
1770/// conversion sequences to determine whether one is better than the
1771/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1772ImplicitConversionSequence::CompareKind
1773Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1774                                         const StandardConversionSequence& SCS2)
1775{
1776  // Standard conversion sequence S1 is a better conversion sequence
1777  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1778
1779  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1780  //     sequences in the canonical form defined by 13.3.3.1.1,
1781  //     excluding any Lvalue Transformation; the identity conversion
1782  //     sequence is considered to be a subsequence of any
1783  //     non-identity conversion sequence) or, if not that,
1784  if (ImplicitConversionSequence::CompareKind CK
1785        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1786    return CK;
1787
1788  //  -- the rank of S1 is better than the rank of S2 (by the rules
1789  //     defined below), or, if not that,
1790  ImplicitConversionRank Rank1 = SCS1.getRank();
1791  ImplicitConversionRank Rank2 = SCS2.getRank();
1792  if (Rank1 < Rank2)
1793    return ImplicitConversionSequence::Better;
1794  else if (Rank2 < Rank1)
1795    return ImplicitConversionSequence::Worse;
1796
1797  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1798  // are indistinguishable unless one of the following rules
1799  // applies:
1800
1801  //   A conversion that is not a conversion of a pointer, or
1802  //   pointer to member, to bool is better than another conversion
1803  //   that is such a conversion.
1804  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1805    return SCS2.isPointerConversionToBool()
1806             ? ImplicitConversionSequence::Better
1807             : ImplicitConversionSequence::Worse;
1808
1809  // C++ [over.ics.rank]p4b2:
1810  //
1811  //   If class B is derived directly or indirectly from class A,
1812  //   conversion of B* to A* is better than conversion of B* to
1813  //   void*, and conversion of A* to void* is better than conversion
1814  //   of B* to void*.
1815  bool SCS1ConvertsToVoid
1816    = SCS1.isPointerConversionToVoidPointer(Context);
1817  bool SCS2ConvertsToVoid
1818    = SCS2.isPointerConversionToVoidPointer(Context);
1819  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1820    // Exactly one of the conversion sequences is a conversion to
1821    // a void pointer; it's the worse conversion.
1822    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1823                              : ImplicitConversionSequence::Worse;
1824  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1825    // Neither conversion sequence converts to a void pointer; compare
1826    // their derived-to-base conversions.
1827    if (ImplicitConversionSequence::CompareKind DerivedCK
1828          = CompareDerivedToBaseConversions(SCS1, SCS2))
1829      return DerivedCK;
1830  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1831    // Both conversion sequences are conversions to void
1832    // pointers. Compare the source types to determine if there's an
1833    // inheritance relationship in their sources.
1834    QualType FromType1 = SCS1.getFromType();
1835    QualType FromType2 = SCS2.getFromType();
1836
1837    // Adjust the types we're converting from via the array-to-pointer
1838    // conversion, if we need to.
1839    if (SCS1.First == ICK_Array_To_Pointer)
1840      FromType1 = Context.getArrayDecayedType(FromType1);
1841    if (SCS2.First == ICK_Array_To_Pointer)
1842      FromType2 = Context.getArrayDecayedType(FromType2);
1843
1844    QualType FromPointee1
1845      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1846    QualType FromPointee2
1847      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1848
1849    if (IsDerivedFrom(FromPointee2, FromPointee1))
1850      return ImplicitConversionSequence::Better;
1851    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1852      return ImplicitConversionSequence::Worse;
1853
1854    // Objective-C++: If one interface is more specific than the
1855    // other, it is the better one.
1856    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1857    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1858    if (FromIface1 && FromIface1) {
1859      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1860        return ImplicitConversionSequence::Better;
1861      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1862        return ImplicitConversionSequence::Worse;
1863    }
1864  }
1865
1866  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1867  // bullet 3).
1868  if (ImplicitConversionSequence::CompareKind QualCK
1869        = CompareQualificationConversions(SCS1, SCS2))
1870    return QualCK;
1871
1872  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1873    // C++0x [over.ics.rank]p3b4:
1874    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1875    //      implicit object parameter of a non-static member function declared
1876    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1877    //      rvalue and S2 binds an lvalue reference.
1878    // FIXME: We don't know if we're dealing with the implicit object parameter,
1879    // or if the member function in this case has a ref qualifier.
1880    // (Of course, we don't have ref qualifiers yet.)
1881    if (SCS1.RRefBinding != SCS2.RRefBinding)
1882      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1883                              : ImplicitConversionSequence::Worse;
1884
1885    // C++ [over.ics.rank]p3b4:
1886    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1887    //      which the references refer are the same type except for
1888    //      top-level cv-qualifiers, and the type to which the reference
1889    //      initialized by S2 refers is more cv-qualified than the type
1890    //      to which the reference initialized by S1 refers.
1891    QualType T1 = SCS1.getToType(2);
1892    QualType T2 = SCS2.getToType(2);
1893    T1 = Context.getCanonicalType(T1);
1894    T2 = Context.getCanonicalType(T2);
1895    Qualifiers T1Quals, T2Quals;
1896    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1897    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1898    if (UnqualT1 == UnqualT2) {
1899      // If the type is an array type, promote the element qualifiers to the type
1900      // for comparison.
1901      if (isa<ArrayType>(T1) && T1Quals)
1902        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1903      if (isa<ArrayType>(T2) && T2Quals)
1904        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1905      if (T2.isMoreQualifiedThan(T1))
1906        return ImplicitConversionSequence::Better;
1907      else if (T1.isMoreQualifiedThan(T2))
1908        return ImplicitConversionSequence::Worse;
1909    }
1910  }
1911
1912  return ImplicitConversionSequence::Indistinguishable;
1913}
1914
1915/// CompareQualificationConversions - Compares two standard conversion
1916/// sequences to determine whether they can be ranked based on their
1917/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1918ImplicitConversionSequence::CompareKind
1919Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1920                                      const StandardConversionSequence& SCS2) {
1921  // C++ 13.3.3.2p3:
1922  //  -- S1 and S2 differ only in their qualification conversion and
1923  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1924  //     cv-qualification signature of type T1 is a proper subset of
1925  //     the cv-qualification signature of type T2, and S1 is not the
1926  //     deprecated string literal array-to-pointer conversion (4.2).
1927  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1928      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1929    return ImplicitConversionSequence::Indistinguishable;
1930
1931  // FIXME: the example in the standard doesn't use a qualification
1932  // conversion (!)
1933  QualType T1 = SCS1.getToType(2);
1934  QualType T2 = SCS2.getToType(2);
1935  T1 = Context.getCanonicalType(T1);
1936  T2 = Context.getCanonicalType(T2);
1937  Qualifiers T1Quals, T2Quals;
1938  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1939  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1940
1941  // If the types are the same, we won't learn anything by unwrapped
1942  // them.
1943  if (UnqualT1 == UnqualT2)
1944    return ImplicitConversionSequence::Indistinguishable;
1945
1946  // If the type is an array type, promote the element qualifiers to the type
1947  // for comparison.
1948  if (isa<ArrayType>(T1) && T1Quals)
1949    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1950  if (isa<ArrayType>(T2) && T2Quals)
1951    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1952
1953  ImplicitConversionSequence::CompareKind Result
1954    = ImplicitConversionSequence::Indistinguishable;
1955  while (UnwrapSimilarPointerTypes(T1, T2)) {
1956    // Within each iteration of the loop, we check the qualifiers to
1957    // determine if this still looks like a qualification
1958    // conversion. Then, if all is well, we unwrap one more level of
1959    // pointers or pointers-to-members and do it all again
1960    // until there are no more pointers or pointers-to-members left
1961    // to unwrap. This essentially mimics what
1962    // IsQualificationConversion does, but here we're checking for a
1963    // strict subset of qualifiers.
1964    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1965      // The qualifiers are the same, so this doesn't tell us anything
1966      // about how the sequences rank.
1967      ;
1968    else if (T2.isMoreQualifiedThan(T1)) {
1969      // T1 has fewer qualifiers, so it could be the better sequence.
1970      if (Result == ImplicitConversionSequence::Worse)
1971        // Neither has qualifiers that are a subset of the other's
1972        // qualifiers.
1973        return ImplicitConversionSequence::Indistinguishable;
1974
1975      Result = ImplicitConversionSequence::Better;
1976    } else if (T1.isMoreQualifiedThan(T2)) {
1977      // T2 has fewer qualifiers, so it could be the better sequence.
1978      if (Result == ImplicitConversionSequence::Better)
1979        // Neither has qualifiers that are a subset of the other's
1980        // qualifiers.
1981        return ImplicitConversionSequence::Indistinguishable;
1982
1983      Result = ImplicitConversionSequence::Worse;
1984    } else {
1985      // Qualifiers are disjoint.
1986      return ImplicitConversionSequence::Indistinguishable;
1987    }
1988
1989    // If the types after this point are equivalent, we're done.
1990    if (Context.hasSameUnqualifiedType(T1, T2))
1991      break;
1992  }
1993
1994  // Check that the winning standard conversion sequence isn't using
1995  // the deprecated string literal array to pointer conversion.
1996  switch (Result) {
1997  case ImplicitConversionSequence::Better:
1998    if (SCS1.Deprecated)
1999      Result = ImplicitConversionSequence::Indistinguishable;
2000    break;
2001
2002  case ImplicitConversionSequence::Indistinguishable:
2003    break;
2004
2005  case ImplicitConversionSequence::Worse:
2006    if (SCS2.Deprecated)
2007      Result = ImplicitConversionSequence::Indistinguishable;
2008    break;
2009  }
2010
2011  return Result;
2012}
2013
2014/// CompareDerivedToBaseConversions - Compares two standard conversion
2015/// sequences to determine whether they can be ranked based on their
2016/// various kinds of derived-to-base conversions (C++
2017/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2018/// conversions between Objective-C interface types.
2019ImplicitConversionSequence::CompareKind
2020Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2021                                      const StandardConversionSequence& SCS2) {
2022  QualType FromType1 = SCS1.getFromType();
2023  QualType ToType1 = SCS1.getToType(1);
2024  QualType FromType2 = SCS2.getFromType();
2025  QualType ToType2 = SCS2.getToType(1);
2026
2027  // Adjust the types we're converting from via the array-to-pointer
2028  // conversion, if we need to.
2029  if (SCS1.First == ICK_Array_To_Pointer)
2030    FromType1 = Context.getArrayDecayedType(FromType1);
2031  if (SCS2.First == ICK_Array_To_Pointer)
2032    FromType2 = Context.getArrayDecayedType(FromType2);
2033
2034  // Canonicalize all of the types.
2035  FromType1 = Context.getCanonicalType(FromType1);
2036  ToType1 = Context.getCanonicalType(ToType1);
2037  FromType2 = Context.getCanonicalType(FromType2);
2038  ToType2 = Context.getCanonicalType(ToType2);
2039
2040  // C++ [over.ics.rank]p4b3:
2041  //
2042  //   If class B is derived directly or indirectly from class A and
2043  //   class C is derived directly or indirectly from B,
2044  //
2045  // For Objective-C, we let A, B, and C also be Objective-C
2046  // interfaces.
2047
2048  // Compare based on pointer conversions.
2049  if (SCS1.Second == ICK_Pointer_Conversion &&
2050      SCS2.Second == ICK_Pointer_Conversion &&
2051      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2052      FromType1->isPointerType() && FromType2->isPointerType() &&
2053      ToType1->isPointerType() && ToType2->isPointerType()) {
2054    QualType FromPointee1
2055      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2056    QualType ToPointee1
2057      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2058    QualType FromPointee2
2059      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2060    QualType ToPointee2
2061      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2062
2063    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2064    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2065    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2066    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2067
2068    //   -- conversion of C* to B* is better than conversion of C* to A*,
2069    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2070      if (IsDerivedFrom(ToPointee1, ToPointee2))
2071        return ImplicitConversionSequence::Better;
2072      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2073        return ImplicitConversionSequence::Worse;
2074
2075      if (ToIface1 && ToIface2) {
2076        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2077          return ImplicitConversionSequence::Better;
2078        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2079          return ImplicitConversionSequence::Worse;
2080      }
2081    }
2082
2083    //   -- conversion of B* to A* is better than conversion of C* to A*,
2084    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2085      if (IsDerivedFrom(FromPointee2, FromPointee1))
2086        return ImplicitConversionSequence::Better;
2087      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2088        return ImplicitConversionSequence::Worse;
2089
2090      if (FromIface1 && FromIface2) {
2091        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2092          return ImplicitConversionSequence::Better;
2093        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2094          return ImplicitConversionSequence::Worse;
2095      }
2096    }
2097  }
2098
2099  // Compare based on reference bindings.
2100  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
2101      SCS1.Second == ICK_Derived_To_Base) {
2102    //   -- binding of an expression of type C to a reference of type
2103    //      B& is better than binding an expression of type C to a
2104    //      reference of type A&,
2105    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2106        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2107      if (IsDerivedFrom(ToType1, ToType2))
2108        return ImplicitConversionSequence::Better;
2109      else if (IsDerivedFrom(ToType2, ToType1))
2110        return ImplicitConversionSequence::Worse;
2111    }
2112
2113    //   -- binding of an expression of type B to a reference of type
2114    //      A& is better than binding an expression of type C to a
2115    //      reference of type A&,
2116    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2117        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2118      if (IsDerivedFrom(FromType2, FromType1))
2119        return ImplicitConversionSequence::Better;
2120      else if (IsDerivedFrom(FromType1, FromType2))
2121        return ImplicitConversionSequence::Worse;
2122    }
2123  }
2124
2125  // Ranking of member-pointer types.
2126  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2127      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2128      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2129    const MemberPointerType * FromMemPointer1 =
2130                                        FromType1->getAs<MemberPointerType>();
2131    const MemberPointerType * ToMemPointer1 =
2132                                          ToType1->getAs<MemberPointerType>();
2133    const MemberPointerType * FromMemPointer2 =
2134                                          FromType2->getAs<MemberPointerType>();
2135    const MemberPointerType * ToMemPointer2 =
2136                                          ToType2->getAs<MemberPointerType>();
2137    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2138    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2139    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2140    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2141    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2142    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2143    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2144    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2145    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2146    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2147      if (IsDerivedFrom(ToPointee1, ToPointee2))
2148        return ImplicitConversionSequence::Worse;
2149      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2150        return ImplicitConversionSequence::Better;
2151    }
2152    // conversion of B::* to C::* is better than conversion of A::* to C::*
2153    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2154      if (IsDerivedFrom(FromPointee1, FromPointee2))
2155        return ImplicitConversionSequence::Better;
2156      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2157        return ImplicitConversionSequence::Worse;
2158    }
2159  }
2160
2161  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2162      SCS1.Second == ICK_Derived_To_Base) {
2163    //   -- conversion of C to B is better than conversion of C to A,
2164    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2165        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2166      if (IsDerivedFrom(ToType1, ToType2))
2167        return ImplicitConversionSequence::Better;
2168      else if (IsDerivedFrom(ToType2, ToType1))
2169        return ImplicitConversionSequence::Worse;
2170    }
2171
2172    //   -- conversion of B to A is better than conversion of C to A.
2173    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2174        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2175      if (IsDerivedFrom(FromType2, FromType1))
2176        return ImplicitConversionSequence::Better;
2177      else if (IsDerivedFrom(FromType1, FromType2))
2178        return ImplicitConversionSequence::Worse;
2179    }
2180  }
2181
2182  return ImplicitConversionSequence::Indistinguishable;
2183}
2184
2185/// TryCopyInitialization - Try to copy-initialize a value of type
2186/// ToType from the expression From. Return the implicit conversion
2187/// sequence required to pass this argument, which may be a bad
2188/// conversion sequence (meaning that the argument cannot be passed to
2189/// a parameter of this type). If @p SuppressUserConversions, then we
2190/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2191/// then we treat @p From as an rvalue, even if it is an lvalue.
2192ImplicitConversionSequence
2193Sema::TryCopyInitialization(Expr *From, QualType ToType,
2194                            bool SuppressUserConversions, bool ForceRValue,
2195                            bool InOverloadResolution) {
2196  if (ToType->isReferenceType()) {
2197    ImplicitConversionSequence ICS;
2198    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
2199    CheckReferenceInit(From, ToType,
2200                       /*FIXME:*/From->getLocStart(),
2201                       SuppressUserConversions,
2202                       /*AllowExplicit=*/false,
2203                       ForceRValue,
2204                       &ICS);
2205    return ICS;
2206  } else {
2207    return TryImplicitConversion(From, ToType,
2208                                 SuppressUserConversions,
2209                                 /*AllowExplicit=*/false,
2210                                 ForceRValue,
2211                                 InOverloadResolution);
2212  }
2213}
2214
2215/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2216/// the expression @p From. Returns true (and emits a diagnostic) if there was
2217/// an error, returns false if the initialization succeeded. Elidable should
2218/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2219/// differently in C++0x for this case.
2220bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2221                                     AssignmentAction Action, bool Elidable) {
2222  if (!getLangOptions().CPlusPlus) {
2223    // In C, argument passing is the same as performing an assignment.
2224    QualType FromType = From->getType();
2225
2226    AssignConvertType ConvTy =
2227      CheckSingleAssignmentConstraints(ToType, From);
2228    if (ConvTy != Compatible &&
2229        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2230      ConvTy = Compatible;
2231
2232    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2233                                    FromType, From, Action);
2234  }
2235
2236  if (ToType->isReferenceType())
2237    return CheckReferenceInit(From, ToType,
2238                              /*FIXME:*/From->getLocStart(),
2239                              /*SuppressUserConversions=*/false,
2240                              /*AllowExplicit=*/false,
2241                              /*ForceRValue=*/false);
2242
2243  if (!PerformImplicitConversion(From, ToType, Action,
2244                                 /*AllowExplicit=*/false, Elidable))
2245    return false;
2246  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2247    return Diag(From->getSourceRange().getBegin(),
2248                diag::err_typecheck_convert_incompatible)
2249      << ToType << From->getType() << Action << From->getSourceRange();
2250  return true;
2251}
2252
2253/// TryObjectArgumentInitialization - Try to initialize the object
2254/// parameter of the given member function (@c Method) from the
2255/// expression @p From.
2256ImplicitConversionSequence
2257Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2258                                      CXXMethodDecl *Method,
2259                                      CXXRecordDecl *ActingContext) {
2260  QualType ClassType = Context.getTypeDeclType(ActingContext);
2261  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2262  //                 const volatile object.
2263  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2264    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2265  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2266
2267  // Set up the conversion sequence as a "bad" conversion, to allow us
2268  // to exit early.
2269  ImplicitConversionSequence ICS;
2270  ICS.Standard.setAsIdentityConversion();
2271  ICS.setBad();
2272
2273  // We need to have an object of class type.
2274  QualType FromType = OrigFromType;
2275  if (const PointerType *PT = FromType->getAs<PointerType>())
2276    FromType = PT->getPointeeType();
2277
2278  assert(FromType->isRecordType());
2279
2280  // The implicit object parameter is has the type "reference to cv X",
2281  // where X is the class of which the function is a member
2282  // (C++ [over.match.funcs]p4). However, when finding an implicit
2283  // conversion sequence for the argument, we are not allowed to
2284  // create temporaries or perform user-defined conversions
2285  // (C++ [over.match.funcs]p5). We perform a simplified version of
2286  // reference binding here, that allows class rvalues to bind to
2287  // non-constant references.
2288
2289  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2290  // with the implicit object parameter (C++ [over.match.funcs]p5).
2291  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2292  if (ImplicitParamType.getCVRQualifiers()
2293                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2294      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2295    ICS.Bad.init(BadConversionSequence::bad_qualifiers,
2296                 OrigFromType, ImplicitParamType);
2297    return ICS;
2298  }
2299
2300  // Check that we have either the same type or a derived type. It
2301  // affects the conversion rank.
2302  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2303  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2304    ICS.Standard.Second = ICK_Identity;
2305  else if (IsDerivedFrom(FromType, ClassType))
2306    ICS.Standard.Second = ICK_Derived_To_Base;
2307  else {
2308    ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType);
2309    return ICS;
2310  }
2311
2312  // Success. Mark this as a reference binding.
2313  ICS.setStandard();
2314  ICS.Standard.setFromType(FromType);
2315  ICS.Standard.setAllToTypes(ImplicitParamType);
2316  ICS.Standard.ReferenceBinding = true;
2317  ICS.Standard.DirectBinding = true;
2318  ICS.Standard.RRefBinding = false;
2319  return ICS;
2320}
2321
2322/// PerformObjectArgumentInitialization - Perform initialization of
2323/// the implicit object parameter for the given Method with the given
2324/// expression.
2325bool
2326Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2327  QualType FromRecordType, DestType;
2328  QualType ImplicitParamRecordType  =
2329    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2330
2331  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2332    FromRecordType = PT->getPointeeType();
2333    DestType = Method->getThisType(Context);
2334  } else {
2335    FromRecordType = From->getType();
2336    DestType = ImplicitParamRecordType;
2337  }
2338
2339  // Note that we always use the true parent context when performing
2340  // the actual argument initialization.
2341  ImplicitConversionSequence ICS
2342    = TryObjectArgumentInitialization(From->getType(), Method,
2343                                      Method->getParent());
2344  if (ICS.isBad())
2345    return Diag(From->getSourceRange().getBegin(),
2346                diag::err_implicit_object_parameter_init)
2347       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2348
2349  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2350      CheckDerivedToBaseConversion(FromRecordType,
2351                                   ImplicitParamRecordType,
2352                                   From->getSourceRange().getBegin(),
2353                                   From->getSourceRange()))
2354    return true;
2355
2356  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2357                    /*isLvalue=*/true);
2358  return false;
2359}
2360
2361/// TryContextuallyConvertToBool - Attempt to contextually convert the
2362/// expression From to bool (C++0x [conv]p3).
2363ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2364  return TryImplicitConversion(From, Context.BoolTy,
2365                               // FIXME: Are these flags correct?
2366                               /*SuppressUserConversions=*/false,
2367                               /*AllowExplicit=*/true,
2368                               /*ForceRValue=*/false,
2369                               /*InOverloadResolution=*/false);
2370}
2371
2372/// PerformContextuallyConvertToBool - Perform a contextual conversion
2373/// of the expression From to bool (C++0x [conv]p3).
2374bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2375  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2376  if (!ICS.isBad())
2377    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2378
2379  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2380    return  Diag(From->getSourceRange().getBegin(),
2381                 diag::err_typecheck_bool_condition)
2382                  << From->getType() << From->getSourceRange();
2383  return true;
2384}
2385
2386/// AddOverloadCandidate - Adds the given function to the set of
2387/// candidate functions, using the given function call arguments.  If
2388/// @p SuppressUserConversions, then don't allow user-defined
2389/// conversions via constructors or conversion operators.
2390/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2391/// hacky way to implement the overloading rules for elidable copy
2392/// initialization in C++0x (C++0x 12.8p15).
2393///
2394/// \para PartialOverloading true if we are performing "partial" overloading
2395/// based on an incomplete set of function arguments. This feature is used by
2396/// code completion.
2397void
2398Sema::AddOverloadCandidate(FunctionDecl *Function,
2399                           AccessSpecifier Access,
2400                           Expr **Args, unsigned NumArgs,
2401                           OverloadCandidateSet& CandidateSet,
2402                           bool SuppressUserConversions,
2403                           bool ForceRValue,
2404                           bool PartialOverloading) {
2405  const FunctionProtoType* Proto
2406    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2407  assert(Proto && "Functions without a prototype cannot be overloaded");
2408  assert(!Function->getDescribedFunctionTemplate() &&
2409         "Use AddTemplateOverloadCandidate for function templates");
2410
2411  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2412    if (!isa<CXXConstructorDecl>(Method)) {
2413      // If we get here, it's because we're calling a member function
2414      // that is named without a member access expression (e.g.,
2415      // "this->f") that was either written explicitly or created
2416      // implicitly. This can happen with a qualified call to a member
2417      // function, e.g., X::f(). We use an empty type for the implied
2418      // object argument (C++ [over.call.func]p3), and the acting context
2419      // is irrelevant.
2420      AddMethodCandidate(Method, Access, Method->getParent(),
2421                         QualType(), Args, NumArgs, CandidateSet,
2422                         SuppressUserConversions, ForceRValue);
2423      return;
2424    }
2425    // We treat a constructor like a non-member function, since its object
2426    // argument doesn't participate in overload resolution.
2427  }
2428
2429  if (!CandidateSet.isNewCandidate(Function))
2430    return;
2431
2432  // Overload resolution is always an unevaluated context.
2433  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2434
2435  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2436    // C++ [class.copy]p3:
2437    //   A member function template is never instantiated to perform the copy
2438    //   of a class object to an object of its class type.
2439    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2440    if (NumArgs == 1 &&
2441        Constructor->isCopyConstructorLikeSpecialization() &&
2442        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2443      return;
2444  }
2445
2446  // Add this candidate
2447  CandidateSet.push_back(OverloadCandidate());
2448  OverloadCandidate& Candidate = CandidateSet.back();
2449  Candidate.Function = Function;
2450  Candidate.Access = Access;
2451  Candidate.Viable = true;
2452  Candidate.IsSurrogate = false;
2453  Candidate.IgnoreObjectArgument = false;
2454
2455  unsigned NumArgsInProto = Proto->getNumArgs();
2456
2457  // (C++ 13.3.2p2): A candidate function having fewer than m
2458  // parameters is viable only if it has an ellipsis in its parameter
2459  // list (8.3.5).
2460  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2461      !Proto->isVariadic()) {
2462    Candidate.Viable = false;
2463    Candidate.FailureKind = ovl_fail_too_many_arguments;
2464    return;
2465  }
2466
2467  // (C++ 13.3.2p2): A candidate function having more than m parameters
2468  // is viable only if the (m+1)st parameter has a default argument
2469  // (8.3.6). For the purposes of overload resolution, the
2470  // parameter list is truncated on the right, so that there are
2471  // exactly m parameters.
2472  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2473  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2474    // Not enough arguments.
2475    Candidate.Viable = false;
2476    Candidate.FailureKind = ovl_fail_too_few_arguments;
2477    return;
2478  }
2479
2480  // Determine the implicit conversion sequences for each of the
2481  // arguments.
2482  Candidate.Conversions.resize(NumArgs);
2483  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2484    if (ArgIdx < NumArgsInProto) {
2485      // (C++ 13.3.2p3): for F to be a viable function, there shall
2486      // exist for each argument an implicit conversion sequence
2487      // (13.3.3.1) that converts that argument to the corresponding
2488      // parameter of F.
2489      QualType ParamType = Proto->getArgType(ArgIdx);
2490      Candidate.Conversions[ArgIdx]
2491        = TryCopyInitialization(Args[ArgIdx], ParamType,
2492                                SuppressUserConversions, ForceRValue,
2493                                /*InOverloadResolution=*/true);
2494      if (Candidate.Conversions[ArgIdx].isBad()) {
2495        Candidate.Viable = false;
2496        Candidate.FailureKind = ovl_fail_bad_conversion;
2497        break;
2498      }
2499    } else {
2500      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2501      // argument for which there is no corresponding parameter is
2502      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2503      Candidate.Conversions[ArgIdx].setEllipsis();
2504    }
2505  }
2506}
2507
2508/// \brief Add all of the function declarations in the given function set to
2509/// the overload canddiate set.
2510void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2511                                 Expr **Args, unsigned NumArgs,
2512                                 OverloadCandidateSet& CandidateSet,
2513                                 bool SuppressUserConversions) {
2514  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2515    // FIXME: using declarations
2516    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2517      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2518        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getAccess(),
2519                           cast<CXXMethodDecl>(FD)->getParent(),
2520                           Args[0]->getType(), Args + 1, NumArgs - 1,
2521                           CandidateSet, SuppressUserConversions);
2522      else
2523        AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
2524                             SuppressUserConversions);
2525    } else {
2526      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2527      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2528          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2529        AddMethodTemplateCandidate(FunTmpl, F.getAccess(),
2530                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2531                                   /*FIXME: explicit args */ 0,
2532                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2533                                   CandidateSet,
2534                                   SuppressUserConversions);
2535      else
2536        AddTemplateOverloadCandidate(FunTmpl, AS_none,
2537                                     /*FIXME: explicit args */ 0,
2538                                     Args, NumArgs, CandidateSet,
2539                                     SuppressUserConversions);
2540    }
2541  }
2542}
2543
2544/// AddMethodCandidate - Adds a named decl (which is some kind of
2545/// method) as a method candidate to the given overload set.
2546void Sema::AddMethodCandidate(NamedDecl *Decl,
2547                              AccessSpecifier Access,
2548                              QualType ObjectType,
2549                              Expr **Args, unsigned NumArgs,
2550                              OverloadCandidateSet& CandidateSet,
2551                              bool SuppressUserConversions, bool ForceRValue) {
2552  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2553
2554  if (isa<UsingShadowDecl>(Decl))
2555    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2556
2557  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2558    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2559           "Expected a member function template");
2560    AddMethodTemplateCandidate(TD, Access, ActingContext, /*ExplicitArgs*/ 0,
2561                               ObjectType, Args, NumArgs,
2562                               CandidateSet,
2563                               SuppressUserConversions,
2564                               ForceRValue);
2565  } else {
2566    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Access, ActingContext,
2567                       ObjectType, Args, NumArgs,
2568                       CandidateSet, SuppressUserConversions, ForceRValue);
2569  }
2570}
2571
2572/// AddMethodCandidate - Adds the given C++ member function to the set
2573/// of candidate functions, using the given function call arguments
2574/// and the object argument (@c Object). For example, in a call
2575/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2576/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2577/// allow user-defined conversions via constructors or conversion
2578/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2579/// a slightly hacky way to implement the overloading rules for elidable copy
2580/// initialization in C++0x (C++0x 12.8p15).
2581void
2582Sema::AddMethodCandidate(CXXMethodDecl *Method, AccessSpecifier Access,
2583                         CXXRecordDecl *ActingContext, QualType ObjectType,
2584                         Expr **Args, unsigned NumArgs,
2585                         OverloadCandidateSet& CandidateSet,
2586                         bool SuppressUserConversions, bool ForceRValue) {
2587  const FunctionProtoType* Proto
2588    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2589  assert(Proto && "Methods without a prototype cannot be overloaded");
2590  assert(!isa<CXXConstructorDecl>(Method) &&
2591         "Use AddOverloadCandidate for constructors");
2592
2593  if (!CandidateSet.isNewCandidate(Method))
2594    return;
2595
2596  // Overload resolution is always an unevaluated context.
2597  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2598
2599  // Add this candidate
2600  CandidateSet.push_back(OverloadCandidate());
2601  OverloadCandidate& Candidate = CandidateSet.back();
2602  Candidate.Function = Method;
2603  Candidate.Access = Access;
2604  Candidate.IsSurrogate = false;
2605  Candidate.IgnoreObjectArgument = false;
2606
2607  unsigned NumArgsInProto = Proto->getNumArgs();
2608
2609  // (C++ 13.3.2p2): A candidate function having fewer than m
2610  // parameters is viable only if it has an ellipsis in its parameter
2611  // list (8.3.5).
2612  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2613    Candidate.Viable = false;
2614    Candidate.FailureKind = ovl_fail_too_many_arguments;
2615    return;
2616  }
2617
2618  // (C++ 13.3.2p2): A candidate function having more than m parameters
2619  // is viable only if the (m+1)st parameter has a default argument
2620  // (8.3.6). For the purposes of overload resolution, the
2621  // parameter list is truncated on the right, so that there are
2622  // exactly m parameters.
2623  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2624  if (NumArgs < MinRequiredArgs) {
2625    // Not enough arguments.
2626    Candidate.Viable = false;
2627    Candidate.FailureKind = ovl_fail_too_few_arguments;
2628    return;
2629  }
2630
2631  Candidate.Viable = true;
2632  Candidate.Conversions.resize(NumArgs + 1);
2633
2634  if (Method->isStatic() || ObjectType.isNull())
2635    // The implicit object argument is ignored.
2636    Candidate.IgnoreObjectArgument = true;
2637  else {
2638    // Determine the implicit conversion sequence for the object
2639    // parameter.
2640    Candidate.Conversions[0]
2641      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2642    if (Candidate.Conversions[0].isBad()) {
2643      Candidate.Viable = false;
2644      Candidate.FailureKind = ovl_fail_bad_conversion;
2645      return;
2646    }
2647  }
2648
2649  // Determine the implicit conversion sequences for each of the
2650  // arguments.
2651  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2652    if (ArgIdx < NumArgsInProto) {
2653      // (C++ 13.3.2p3): for F to be a viable function, there shall
2654      // exist for each argument an implicit conversion sequence
2655      // (13.3.3.1) that converts that argument to the corresponding
2656      // parameter of F.
2657      QualType ParamType = Proto->getArgType(ArgIdx);
2658      Candidate.Conversions[ArgIdx + 1]
2659        = TryCopyInitialization(Args[ArgIdx], ParamType,
2660                                SuppressUserConversions, ForceRValue,
2661                                /*InOverloadResolution=*/true);
2662      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2663        Candidate.Viable = false;
2664        Candidate.FailureKind = ovl_fail_bad_conversion;
2665        break;
2666      }
2667    } else {
2668      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2669      // argument for which there is no corresponding parameter is
2670      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2671      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2672    }
2673  }
2674}
2675
2676/// \brief Add a C++ member function template as a candidate to the candidate
2677/// set, using template argument deduction to produce an appropriate member
2678/// function template specialization.
2679void
2680Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2681                                 AccessSpecifier Access,
2682                                 CXXRecordDecl *ActingContext,
2683                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2684                                 QualType ObjectType,
2685                                 Expr **Args, unsigned NumArgs,
2686                                 OverloadCandidateSet& CandidateSet,
2687                                 bool SuppressUserConversions,
2688                                 bool ForceRValue) {
2689  if (!CandidateSet.isNewCandidate(MethodTmpl))
2690    return;
2691
2692  // C++ [over.match.funcs]p7:
2693  //   In each case where a candidate is a function template, candidate
2694  //   function template specializations are generated using template argument
2695  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2696  //   candidate functions in the usual way.113) A given name can refer to one
2697  //   or more function templates and also to a set of overloaded non-template
2698  //   functions. In such a case, the candidate functions generated from each
2699  //   function template are combined with the set of non-template candidate
2700  //   functions.
2701  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2702  FunctionDecl *Specialization = 0;
2703  if (TemplateDeductionResult Result
2704      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2705                                Args, NumArgs, Specialization, Info)) {
2706        // FIXME: Record what happened with template argument deduction, so
2707        // that we can give the user a beautiful diagnostic.
2708        (void)Result;
2709        return;
2710      }
2711
2712  // Add the function template specialization produced by template argument
2713  // deduction as a candidate.
2714  assert(Specialization && "Missing member function template specialization?");
2715  assert(isa<CXXMethodDecl>(Specialization) &&
2716         "Specialization is not a member function?");
2717  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Access,
2718                     ActingContext, ObjectType, Args, NumArgs,
2719                     CandidateSet, SuppressUserConversions, ForceRValue);
2720}
2721
2722/// \brief Add a C++ function template specialization as a candidate
2723/// in the candidate set, using template argument deduction to produce
2724/// an appropriate function template specialization.
2725void
2726Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2727                                   AccessSpecifier Access,
2728                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2729                                   Expr **Args, unsigned NumArgs,
2730                                   OverloadCandidateSet& CandidateSet,
2731                                   bool SuppressUserConversions,
2732                                   bool ForceRValue) {
2733  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2734    return;
2735
2736  // C++ [over.match.funcs]p7:
2737  //   In each case where a candidate is a function template, candidate
2738  //   function template specializations are generated using template argument
2739  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2740  //   candidate functions in the usual way.113) A given name can refer to one
2741  //   or more function templates and also to a set of overloaded non-template
2742  //   functions. In such a case, the candidate functions generated from each
2743  //   function template are combined with the set of non-template candidate
2744  //   functions.
2745  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2746  FunctionDecl *Specialization = 0;
2747  if (TemplateDeductionResult Result
2748        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2749                                  Args, NumArgs, Specialization, Info)) {
2750    CandidateSet.push_back(OverloadCandidate());
2751    OverloadCandidate &Candidate = CandidateSet.back();
2752    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2753    Candidate.Access = Access;
2754    Candidate.Viable = false;
2755    Candidate.FailureKind = ovl_fail_bad_deduction;
2756    Candidate.IsSurrogate = false;
2757    Candidate.IgnoreObjectArgument = false;
2758
2759    // TODO: record more information about failed template arguments
2760    Candidate.DeductionFailure.Result = Result;
2761    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2762    return;
2763  }
2764
2765  // Add the function template specialization produced by template argument
2766  // deduction as a candidate.
2767  assert(Specialization && "Missing function template specialization?");
2768  AddOverloadCandidate(Specialization, Access, Args, NumArgs, CandidateSet,
2769                       SuppressUserConversions, ForceRValue);
2770}
2771
2772/// AddConversionCandidate - Add a C++ conversion function as a
2773/// candidate in the candidate set (C++ [over.match.conv],
2774/// C++ [over.match.copy]). From is the expression we're converting from,
2775/// and ToType is the type that we're eventually trying to convert to
2776/// (which may or may not be the same type as the type that the
2777/// conversion function produces).
2778void
2779Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2780                             AccessSpecifier Access,
2781                             CXXRecordDecl *ActingContext,
2782                             Expr *From, QualType ToType,
2783                             OverloadCandidateSet& CandidateSet) {
2784  assert(!Conversion->getDescribedFunctionTemplate() &&
2785         "Conversion function templates use AddTemplateConversionCandidate");
2786
2787  if (!CandidateSet.isNewCandidate(Conversion))
2788    return;
2789
2790  // Overload resolution is always an unevaluated context.
2791  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2792
2793  // Add this candidate
2794  CandidateSet.push_back(OverloadCandidate());
2795  OverloadCandidate& Candidate = CandidateSet.back();
2796  Candidate.Function = Conversion;
2797  Candidate.Access = Access;
2798  Candidate.IsSurrogate = false;
2799  Candidate.IgnoreObjectArgument = false;
2800  Candidate.FinalConversion.setAsIdentityConversion();
2801  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2802  Candidate.FinalConversion.setAllToTypes(ToType);
2803
2804  // Determine the implicit conversion sequence for the implicit
2805  // object parameter.
2806  Candidate.Viable = true;
2807  Candidate.Conversions.resize(1);
2808  Candidate.Conversions[0]
2809    = TryObjectArgumentInitialization(From->getType(), Conversion,
2810                                      ActingContext);
2811  // Conversion functions to a different type in the base class is visible in
2812  // the derived class.  So, a derived to base conversion should not participate
2813  // in overload resolution.
2814  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2815    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2816  if (Candidate.Conversions[0].isBad()) {
2817    Candidate.Viable = false;
2818    Candidate.FailureKind = ovl_fail_bad_conversion;
2819    return;
2820  }
2821
2822  // We won't go through a user-define type conversion function to convert a
2823  // derived to base as such conversions are given Conversion Rank. They only
2824  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2825  QualType FromCanon
2826    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2827  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2828  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2829    Candidate.Viable = false;
2830    Candidate.FailureKind = ovl_fail_trivial_conversion;
2831    return;
2832  }
2833
2834
2835  // To determine what the conversion from the result of calling the
2836  // conversion function to the type we're eventually trying to
2837  // convert to (ToType), we need to synthesize a call to the
2838  // conversion function and attempt copy initialization from it. This
2839  // makes sure that we get the right semantics with respect to
2840  // lvalues/rvalues and the type. Fortunately, we can allocate this
2841  // call on the stack and we don't need its arguments to be
2842  // well-formed.
2843  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2844                            From->getLocStart());
2845  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2846                                CastExpr::CK_FunctionToPointerDecay,
2847                                &ConversionRef, false);
2848
2849  // Note that it is safe to allocate CallExpr on the stack here because
2850  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2851  // allocator).
2852  CallExpr Call(Context, &ConversionFn, 0, 0,
2853                Conversion->getConversionType().getNonReferenceType(),
2854                From->getLocStart());
2855  ImplicitConversionSequence ICS =
2856    TryCopyInitialization(&Call, ToType,
2857                          /*SuppressUserConversions=*/true,
2858                          /*ForceRValue=*/false,
2859                          /*InOverloadResolution=*/false);
2860
2861  switch (ICS.getKind()) {
2862  case ImplicitConversionSequence::StandardConversion:
2863    Candidate.FinalConversion = ICS.Standard;
2864    break;
2865
2866  case ImplicitConversionSequence::BadConversion:
2867    Candidate.Viable = false;
2868    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2869    break;
2870
2871  default:
2872    assert(false &&
2873           "Can only end up with a standard conversion sequence or failure");
2874  }
2875}
2876
2877/// \brief Adds a conversion function template specialization
2878/// candidate to the overload set, using template argument deduction
2879/// to deduce the template arguments of the conversion function
2880/// template from the type that we are converting to (C++
2881/// [temp.deduct.conv]).
2882void
2883Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2884                                     AccessSpecifier Access,
2885                                     CXXRecordDecl *ActingDC,
2886                                     Expr *From, QualType ToType,
2887                                     OverloadCandidateSet &CandidateSet) {
2888  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2889         "Only conversion function templates permitted here");
2890
2891  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2892    return;
2893
2894  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2895  CXXConversionDecl *Specialization = 0;
2896  if (TemplateDeductionResult Result
2897        = DeduceTemplateArguments(FunctionTemplate, ToType,
2898                                  Specialization, Info)) {
2899    // FIXME: Record what happened with template argument deduction, so
2900    // that we can give the user a beautiful diagnostic.
2901    (void)Result;
2902    return;
2903  }
2904
2905  // Add the conversion function template specialization produced by
2906  // template argument deduction as a candidate.
2907  assert(Specialization && "Missing function template specialization?");
2908  AddConversionCandidate(Specialization, Access, ActingDC, From, ToType,
2909                         CandidateSet);
2910}
2911
2912/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2913/// converts the given @c Object to a function pointer via the
2914/// conversion function @c Conversion, and then attempts to call it
2915/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2916/// the type of function that we'll eventually be calling.
2917void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2918                                 AccessSpecifier Access,
2919                                 CXXRecordDecl *ActingContext,
2920                                 const FunctionProtoType *Proto,
2921                                 QualType ObjectType,
2922                                 Expr **Args, unsigned NumArgs,
2923                                 OverloadCandidateSet& CandidateSet) {
2924  if (!CandidateSet.isNewCandidate(Conversion))
2925    return;
2926
2927  // Overload resolution is always an unevaluated context.
2928  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2929
2930  CandidateSet.push_back(OverloadCandidate());
2931  OverloadCandidate& Candidate = CandidateSet.back();
2932  Candidate.Function = 0;
2933  Candidate.Access = Access;
2934  Candidate.Surrogate = Conversion;
2935  Candidate.Viable = true;
2936  Candidate.IsSurrogate = true;
2937  Candidate.IgnoreObjectArgument = false;
2938  Candidate.Conversions.resize(NumArgs + 1);
2939
2940  // Determine the implicit conversion sequence for the implicit
2941  // object parameter.
2942  ImplicitConversionSequence ObjectInit
2943    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2944  if (ObjectInit.isBad()) {
2945    Candidate.Viable = false;
2946    Candidate.FailureKind = ovl_fail_bad_conversion;
2947    Candidate.Conversions[0] = ObjectInit;
2948    return;
2949  }
2950
2951  // The first conversion is actually a user-defined conversion whose
2952  // first conversion is ObjectInit's standard conversion (which is
2953  // effectively a reference binding). Record it as such.
2954  Candidate.Conversions[0].setUserDefined();
2955  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2956  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2957  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2958  Candidate.Conversions[0].UserDefined.After
2959    = Candidate.Conversions[0].UserDefined.Before;
2960  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2961
2962  // Find the
2963  unsigned NumArgsInProto = Proto->getNumArgs();
2964
2965  // (C++ 13.3.2p2): A candidate function having fewer than m
2966  // parameters is viable only if it has an ellipsis in its parameter
2967  // list (8.3.5).
2968  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2969    Candidate.Viable = false;
2970    Candidate.FailureKind = ovl_fail_too_many_arguments;
2971    return;
2972  }
2973
2974  // Function types don't have any default arguments, so just check if
2975  // we have enough arguments.
2976  if (NumArgs < NumArgsInProto) {
2977    // Not enough arguments.
2978    Candidate.Viable = false;
2979    Candidate.FailureKind = ovl_fail_too_few_arguments;
2980    return;
2981  }
2982
2983  // Determine the implicit conversion sequences for each of the
2984  // arguments.
2985  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2986    if (ArgIdx < NumArgsInProto) {
2987      // (C++ 13.3.2p3): for F to be a viable function, there shall
2988      // exist for each argument an implicit conversion sequence
2989      // (13.3.3.1) that converts that argument to the corresponding
2990      // parameter of F.
2991      QualType ParamType = Proto->getArgType(ArgIdx);
2992      Candidate.Conversions[ArgIdx + 1]
2993        = TryCopyInitialization(Args[ArgIdx], ParamType,
2994                                /*SuppressUserConversions=*/false,
2995                                /*ForceRValue=*/false,
2996                                /*InOverloadResolution=*/false);
2997      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2998        Candidate.Viable = false;
2999        Candidate.FailureKind = ovl_fail_bad_conversion;
3000        break;
3001      }
3002    } else {
3003      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3004      // argument for which there is no corresponding parameter is
3005      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3006      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3007    }
3008  }
3009}
3010
3011// FIXME: This will eventually be removed, once we've migrated all of the
3012// operator overloading logic over to the scheme used by binary operators, which
3013// works for template instantiation.
3014void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3015                                 SourceLocation OpLoc,
3016                                 Expr **Args, unsigned NumArgs,
3017                                 OverloadCandidateSet& CandidateSet,
3018                                 SourceRange OpRange) {
3019  UnresolvedSet<16> Fns;
3020
3021  QualType T1 = Args[0]->getType();
3022  QualType T2;
3023  if (NumArgs > 1)
3024    T2 = Args[1]->getType();
3025
3026  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3027  if (S)
3028    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3029  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3030  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3031                                       CandidateSet);
3032  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3033  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3034}
3035
3036/// \brief Add overload candidates for overloaded operators that are
3037/// member functions.
3038///
3039/// Add the overloaded operator candidates that are member functions
3040/// for the operator Op that was used in an operator expression such
3041/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3042/// CandidateSet will store the added overload candidates. (C++
3043/// [over.match.oper]).
3044void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3045                                       SourceLocation OpLoc,
3046                                       Expr **Args, unsigned NumArgs,
3047                                       OverloadCandidateSet& CandidateSet,
3048                                       SourceRange OpRange) {
3049  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3050
3051  // C++ [over.match.oper]p3:
3052  //   For a unary operator @ with an operand of a type whose
3053  //   cv-unqualified version is T1, and for a binary operator @ with
3054  //   a left operand of a type whose cv-unqualified version is T1 and
3055  //   a right operand of a type whose cv-unqualified version is T2,
3056  //   three sets of candidate functions, designated member
3057  //   candidates, non-member candidates and built-in candidates, are
3058  //   constructed as follows:
3059  QualType T1 = Args[0]->getType();
3060  QualType T2;
3061  if (NumArgs > 1)
3062    T2 = Args[1]->getType();
3063
3064  //     -- If T1 is a class type, the set of member candidates is the
3065  //        result of the qualified lookup of T1::operator@
3066  //        (13.3.1.1.1); otherwise, the set of member candidates is
3067  //        empty.
3068  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3069    // Complete the type if it can be completed. Otherwise, we're done.
3070    if (RequireCompleteType(OpLoc, T1, PDiag()))
3071      return;
3072
3073    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3074    LookupQualifiedName(Operators, T1Rec->getDecl());
3075    Operators.suppressDiagnostics();
3076
3077    for (LookupResult::iterator Oper = Operators.begin(),
3078                             OperEnd = Operators.end();
3079         Oper != OperEnd;
3080         ++Oper)
3081      AddMethodCandidate(*Oper, Oper.getAccess(), Args[0]->getType(),
3082                         Args + 1, NumArgs - 1, CandidateSet,
3083                         /* SuppressUserConversions = */ false);
3084  }
3085}
3086
3087/// AddBuiltinCandidate - Add a candidate for a built-in
3088/// operator. ResultTy and ParamTys are the result and parameter types
3089/// of the built-in candidate, respectively. Args and NumArgs are the
3090/// arguments being passed to the candidate. IsAssignmentOperator
3091/// should be true when this built-in candidate is an assignment
3092/// operator. NumContextualBoolArguments is the number of arguments
3093/// (at the beginning of the argument list) that will be contextually
3094/// converted to bool.
3095void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3096                               Expr **Args, unsigned NumArgs,
3097                               OverloadCandidateSet& CandidateSet,
3098                               bool IsAssignmentOperator,
3099                               unsigned NumContextualBoolArguments) {
3100  // Overload resolution is always an unevaluated context.
3101  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3102
3103  // Add this candidate
3104  CandidateSet.push_back(OverloadCandidate());
3105  OverloadCandidate& Candidate = CandidateSet.back();
3106  Candidate.Function = 0;
3107  Candidate.Access = AS_none;
3108  Candidate.IsSurrogate = false;
3109  Candidate.IgnoreObjectArgument = false;
3110  Candidate.BuiltinTypes.ResultTy = ResultTy;
3111  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3112    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3113
3114  // Determine the implicit conversion sequences for each of the
3115  // arguments.
3116  Candidate.Viable = true;
3117  Candidate.Conversions.resize(NumArgs);
3118  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3119    // C++ [over.match.oper]p4:
3120    //   For the built-in assignment operators, conversions of the
3121    //   left operand are restricted as follows:
3122    //     -- no temporaries are introduced to hold the left operand, and
3123    //     -- no user-defined conversions are applied to the left
3124    //        operand to achieve a type match with the left-most
3125    //        parameter of a built-in candidate.
3126    //
3127    // We block these conversions by turning off user-defined
3128    // conversions, since that is the only way that initialization of
3129    // a reference to a non-class type can occur from something that
3130    // is not of the same type.
3131    if (ArgIdx < NumContextualBoolArguments) {
3132      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3133             "Contextual conversion to bool requires bool type");
3134      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3135    } else {
3136      Candidate.Conversions[ArgIdx]
3137        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3138                                ArgIdx == 0 && IsAssignmentOperator,
3139                                /*ForceRValue=*/false,
3140                                /*InOverloadResolution=*/false);
3141    }
3142    if (Candidate.Conversions[ArgIdx].isBad()) {
3143      Candidate.Viable = false;
3144      Candidate.FailureKind = ovl_fail_bad_conversion;
3145      break;
3146    }
3147  }
3148}
3149
3150/// BuiltinCandidateTypeSet - A set of types that will be used for the
3151/// candidate operator functions for built-in operators (C++
3152/// [over.built]). The types are separated into pointer types and
3153/// enumeration types.
3154class BuiltinCandidateTypeSet  {
3155  /// TypeSet - A set of types.
3156  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3157
3158  /// PointerTypes - The set of pointer types that will be used in the
3159  /// built-in candidates.
3160  TypeSet PointerTypes;
3161
3162  /// MemberPointerTypes - The set of member pointer types that will be
3163  /// used in the built-in candidates.
3164  TypeSet MemberPointerTypes;
3165
3166  /// EnumerationTypes - The set of enumeration types that will be
3167  /// used in the built-in candidates.
3168  TypeSet EnumerationTypes;
3169
3170  /// Sema - The semantic analysis instance where we are building the
3171  /// candidate type set.
3172  Sema &SemaRef;
3173
3174  /// Context - The AST context in which we will build the type sets.
3175  ASTContext &Context;
3176
3177  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3178                                               const Qualifiers &VisibleQuals);
3179  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3180
3181public:
3182  /// iterator - Iterates through the types that are part of the set.
3183  typedef TypeSet::iterator iterator;
3184
3185  BuiltinCandidateTypeSet(Sema &SemaRef)
3186    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3187
3188  void AddTypesConvertedFrom(QualType Ty,
3189                             SourceLocation Loc,
3190                             bool AllowUserConversions,
3191                             bool AllowExplicitConversions,
3192                             const Qualifiers &VisibleTypeConversionsQuals);
3193
3194  /// pointer_begin - First pointer type found;
3195  iterator pointer_begin() { return PointerTypes.begin(); }
3196
3197  /// pointer_end - Past the last pointer type found;
3198  iterator pointer_end() { return PointerTypes.end(); }
3199
3200  /// member_pointer_begin - First member pointer type found;
3201  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3202
3203  /// member_pointer_end - Past the last member pointer type found;
3204  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3205
3206  /// enumeration_begin - First enumeration type found;
3207  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3208
3209  /// enumeration_end - Past the last enumeration type found;
3210  iterator enumeration_end() { return EnumerationTypes.end(); }
3211};
3212
3213/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3214/// the set of pointer types along with any more-qualified variants of
3215/// that type. For example, if @p Ty is "int const *", this routine
3216/// will add "int const *", "int const volatile *", "int const
3217/// restrict *", and "int const volatile restrict *" to the set of
3218/// pointer types. Returns true if the add of @p Ty itself succeeded,
3219/// false otherwise.
3220///
3221/// FIXME: what to do about extended qualifiers?
3222bool
3223BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3224                                             const Qualifiers &VisibleQuals) {
3225
3226  // Insert this type.
3227  if (!PointerTypes.insert(Ty))
3228    return false;
3229
3230  const PointerType *PointerTy = Ty->getAs<PointerType>();
3231  assert(PointerTy && "type was not a pointer type!");
3232
3233  QualType PointeeTy = PointerTy->getPointeeType();
3234  // Don't add qualified variants of arrays. For one, they're not allowed
3235  // (the qualifier would sink to the element type), and for another, the
3236  // only overload situation where it matters is subscript or pointer +- int,
3237  // and those shouldn't have qualifier variants anyway.
3238  if (PointeeTy->isArrayType())
3239    return true;
3240  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3241  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3242    BaseCVR = Array->getElementType().getCVRQualifiers();
3243  bool hasVolatile = VisibleQuals.hasVolatile();
3244  bool hasRestrict = VisibleQuals.hasRestrict();
3245
3246  // Iterate through all strict supersets of BaseCVR.
3247  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3248    if ((CVR | BaseCVR) != CVR) continue;
3249    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3250    // in the types.
3251    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3252    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3253    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3254    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3255  }
3256
3257  return true;
3258}
3259
3260/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3261/// to the set of pointer types along with any more-qualified variants of
3262/// that type. For example, if @p Ty is "int const *", this routine
3263/// will add "int const *", "int const volatile *", "int const
3264/// restrict *", and "int const volatile restrict *" to the set of
3265/// pointer types. Returns true if the add of @p Ty itself succeeded,
3266/// false otherwise.
3267///
3268/// FIXME: what to do about extended qualifiers?
3269bool
3270BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3271    QualType Ty) {
3272  // Insert this type.
3273  if (!MemberPointerTypes.insert(Ty))
3274    return false;
3275
3276  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3277  assert(PointerTy && "type was not a member pointer type!");
3278
3279  QualType PointeeTy = PointerTy->getPointeeType();
3280  // Don't add qualified variants of arrays. For one, they're not allowed
3281  // (the qualifier would sink to the element type), and for another, the
3282  // only overload situation where it matters is subscript or pointer +- int,
3283  // and those shouldn't have qualifier variants anyway.
3284  if (PointeeTy->isArrayType())
3285    return true;
3286  const Type *ClassTy = PointerTy->getClass();
3287
3288  // Iterate through all strict supersets of the pointee type's CVR
3289  // qualifiers.
3290  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3291  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3292    if ((CVR | BaseCVR) != CVR) continue;
3293
3294    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3295    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3296  }
3297
3298  return true;
3299}
3300
3301/// AddTypesConvertedFrom - Add each of the types to which the type @p
3302/// Ty can be implicit converted to the given set of @p Types. We're
3303/// primarily interested in pointer types and enumeration types. We also
3304/// take member pointer types, for the conditional operator.
3305/// AllowUserConversions is true if we should look at the conversion
3306/// functions of a class type, and AllowExplicitConversions if we
3307/// should also include the explicit conversion functions of a class
3308/// type.
3309void
3310BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3311                                               SourceLocation Loc,
3312                                               bool AllowUserConversions,
3313                                               bool AllowExplicitConversions,
3314                                               const Qualifiers &VisibleQuals) {
3315  // Only deal with canonical types.
3316  Ty = Context.getCanonicalType(Ty);
3317
3318  // Look through reference types; they aren't part of the type of an
3319  // expression for the purposes of conversions.
3320  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3321    Ty = RefTy->getPointeeType();
3322
3323  // We don't care about qualifiers on the type.
3324  Ty = Ty.getLocalUnqualifiedType();
3325
3326  // If we're dealing with an array type, decay to the pointer.
3327  if (Ty->isArrayType())
3328    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3329
3330  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3331    QualType PointeeTy = PointerTy->getPointeeType();
3332
3333    // Insert our type, and its more-qualified variants, into the set
3334    // of types.
3335    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3336      return;
3337  } else if (Ty->isMemberPointerType()) {
3338    // Member pointers are far easier, since the pointee can't be converted.
3339    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3340      return;
3341  } else if (Ty->isEnumeralType()) {
3342    EnumerationTypes.insert(Ty);
3343  } else if (AllowUserConversions) {
3344    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3345      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3346        // No conversion functions in incomplete types.
3347        return;
3348      }
3349
3350      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3351      const UnresolvedSetImpl *Conversions
3352        = ClassDecl->getVisibleConversionFunctions();
3353      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3354             E = Conversions->end(); I != E; ++I) {
3355
3356        // Skip conversion function templates; they don't tell us anything
3357        // about which builtin types we can convert to.
3358        if (isa<FunctionTemplateDecl>(*I))
3359          continue;
3360
3361        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3362        if (AllowExplicitConversions || !Conv->isExplicit()) {
3363          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3364                                VisibleQuals);
3365        }
3366      }
3367    }
3368  }
3369}
3370
3371/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3372/// the volatile- and non-volatile-qualified assignment operators for the
3373/// given type to the candidate set.
3374static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3375                                                   QualType T,
3376                                                   Expr **Args,
3377                                                   unsigned NumArgs,
3378                                    OverloadCandidateSet &CandidateSet) {
3379  QualType ParamTypes[2];
3380
3381  // T& operator=(T&, T)
3382  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3383  ParamTypes[1] = T;
3384  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3385                        /*IsAssignmentOperator=*/true);
3386
3387  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3388    // volatile T& operator=(volatile T&, T)
3389    ParamTypes[0]
3390      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3391    ParamTypes[1] = T;
3392    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3393                          /*IsAssignmentOperator=*/true);
3394  }
3395}
3396
3397/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3398/// if any, found in visible type conversion functions found in ArgExpr's type.
3399static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3400    Qualifiers VRQuals;
3401    const RecordType *TyRec;
3402    if (const MemberPointerType *RHSMPType =
3403        ArgExpr->getType()->getAs<MemberPointerType>())
3404      TyRec = cast<RecordType>(RHSMPType->getClass());
3405    else
3406      TyRec = ArgExpr->getType()->getAs<RecordType>();
3407    if (!TyRec) {
3408      // Just to be safe, assume the worst case.
3409      VRQuals.addVolatile();
3410      VRQuals.addRestrict();
3411      return VRQuals;
3412    }
3413
3414    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3415    if (!ClassDecl->hasDefinition())
3416      return VRQuals;
3417
3418    const UnresolvedSetImpl *Conversions =
3419      ClassDecl->getVisibleConversionFunctions();
3420
3421    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3422           E = Conversions->end(); I != E; ++I) {
3423      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3424        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3425        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3426          CanTy = ResTypeRef->getPointeeType();
3427        // Need to go down the pointer/mempointer chain and add qualifiers
3428        // as see them.
3429        bool done = false;
3430        while (!done) {
3431          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3432            CanTy = ResTypePtr->getPointeeType();
3433          else if (const MemberPointerType *ResTypeMPtr =
3434                CanTy->getAs<MemberPointerType>())
3435            CanTy = ResTypeMPtr->getPointeeType();
3436          else
3437            done = true;
3438          if (CanTy.isVolatileQualified())
3439            VRQuals.addVolatile();
3440          if (CanTy.isRestrictQualified())
3441            VRQuals.addRestrict();
3442          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3443            return VRQuals;
3444        }
3445      }
3446    }
3447    return VRQuals;
3448}
3449
3450/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3451/// operator overloads to the candidate set (C++ [over.built]), based
3452/// on the operator @p Op and the arguments given. For example, if the
3453/// operator is a binary '+', this routine might add "int
3454/// operator+(int, int)" to cover integer addition.
3455void
3456Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3457                                   SourceLocation OpLoc,
3458                                   Expr **Args, unsigned NumArgs,
3459                                   OverloadCandidateSet& CandidateSet) {
3460  // The set of "promoted arithmetic types", which are the arithmetic
3461  // types are that preserved by promotion (C++ [over.built]p2). Note
3462  // that the first few of these types are the promoted integral
3463  // types; these types need to be first.
3464  // FIXME: What about complex?
3465  const unsigned FirstIntegralType = 0;
3466  const unsigned LastIntegralType = 13;
3467  const unsigned FirstPromotedIntegralType = 7,
3468                 LastPromotedIntegralType = 13;
3469  const unsigned FirstPromotedArithmeticType = 7,
3470                 LastPromotedArithmeticType = 16;
3471  const unsigned NumArithmeticTypes = 16;
3472  QualType ArithmeticTypes[NumArithmeticTypes] = {
3473    Context.BoolTy, Context.CharTy, Context.WCharTy,
3474// FIXME:   Context.Char16Ty, Context.Char32Ty,
3475    Context.SignedCharTy, Context.ShortTy,
3476    Context.UnsignedCharTy, Context.UnsignedShortTy,
3477    Context.IntTy, Context.LongTy, Context.LongLongTy,
3478    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3479    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3480  };
3481  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3482         "Invalid first promoted integral type");
3483  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3484           == Context.UnsignedLongLongTy &&
3485         "Invalid last promoted integral type");
3486  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3487         "Invalid first promoted arithmetic type");
3488  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3489            == Context.LongDoubleTy &&
3490         "Invalid last promoted arithmetic type");
3491
3492  // Find all of the types that the arguments can convert to, but only
3493  // if the operator we're looking at has built-in operator candidates
3494  // that make use of these types.
3495  Qualifiers VisibleTypeConversionsQuals;
3496  VisibleTypeConversionsQuals.addConst();
3497  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3498    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3499
3500  BuiltinCandidateTypeSet CandidateTypes(*this);
3501  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3502      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3503      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3504      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3505      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3506      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3507    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3508      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3509                                           OpLoc,
3510                                           true,
3511                                           (Op == OO_Exclaim ||
3512                                            Op == OO_AmpAmp ||
3513                                            Op == OO_PipePipe),
3514                                           VisibleTypeConversionsQuals);
3515  }
3516
3517  bool isComparison = false;
3518  switch (Op) {
3519  case OO_None:
3520  case NUM_OVERLOADED_OPERATORS:
3521    assert(false && "Expected an overloaded operator");
3522    break;
3523
3524  case OO_Star: // '*' is either unary or binary
3525    if (NumArgs == 1)
3526      goto UnaryStar;
3527    else
3528      goto BinaryStar;
3529    break;
3530
3531  case OO_Plus: // '+' is either unary or binary
3532    if (NumArgs == 1)
3533      goto UnaryPlus;
3534    else
3535      goto BinaryPlus;
3536    break;
3537
3538  case OO_Minus: // '-' is either unary or binary
3539    if (NumArgs == 1)
3540      goto UnaryMinus;
3541    else
3542      goto BinaryMinus;
3543    break;
3544
3545  case OO_Amp: // '&' is either unary or binary
3546    if (NumArgs == 1)
3547      goto UnaryAmp;
3548    else
3549      goto BinaryAmp;
3550
3551  case OO_PlusPlus:
3552  case OO_MinusMinus:
3553    // C++ [over.built]p3:
3554    //
3555    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3556    //   is either volatile or empty, there exist candidate operator
3557    //   functions of the form
3558    //
3559    //       VQ T&      operator++(VQ T&);
3560    //       T          operator++(VQ T&, int);
3561    //
3562    // C++ [over.built]p4:
3563    //
3564    //   For every pair (T, VQ), where T is an arithmetic type other
3565    //   than bool, and VQ is either volatile or empty, there exist
3566    //   candidate operator functions of the form
3567    //
3568    //       VQ T&      operator--(VQ T&);
3569    //       T          operator--(VQ T&, int);
3570    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3571         Arith < NumArithmeticTypes; ++Arith) {
3572      QualType ArithTy = ArithmeticTypes[Arith];
3573      QualType ParamTypes[2]
3574        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3575
3576      // Non-volatile version.
3577      if (NumArgs == 1)
3578        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3579      else
3580        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3581      // heuristic to reduce number of builtin candidates in the set.
3582      // Add volatile version only if there are conversions to a volatile type.
3583      if (VisibleTypeConversionsQuals.hasVolatile()) {
3584        // Volatile version
3585        ParamTypes[0]
3586          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3587        if (NumArgs == 1)
3588          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3589        else
3590          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3591      }
3592    }
3593
3594    // C++ [over.built]p5:
3595    //
3596    //   For every pair (T, VQ), where T is a cv-qualified or
3597    //   cv-unqualified object type, and VQ is either volatile or
3598    //   empty, there exist candidate operator functions of the form
3599    //
3600    //       T*VQ&      operator++(T*VQ&);
3601    //       T*VQ&      operator--(T*VQ&);
3602    //       T*         operator++(T*VQ&, int);
3603    //       T*         operator--(T*VQ&, int);
3604    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3605         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3606      // Skip pointer types that aren't pointers to object types.
3607      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3608        continue;
3609
3610      QualType ParamTypes[2] = {
3611        Context.getLValueReferenceType(*Ptr), Context.IntTy
3612      };
3613
3614      // Without volatile
3615      if (NumArgs == 1)
3616        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3617      else
3618        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3619
3620      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3621          VisibleTypeConversionsQuals.hasVolatile()) {
3622        // With volatile
3623        ParamTypes[0]
3624          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3625        if (NumArgs == 1)
3626          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3627        else
3628          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3629      }
3630    }
3631    break;
3632
3633  UnaryStar:
3634    // C++ [over.built]p6:
3635    //   For every cv-qualified or cv-unqualified object type T, there
3636    //   exist candidate operator functions of the form
3637    //
3638    //       T&         operator*(T*);
3639    //
3640    // C++ [over.built]p7:
3641    //   For every function type T, there exist candidate operator
3642    //   functions of the form
3643    //       T&         operator*(T*);
3644    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3645         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3646      QualType ParamTy = *Ptr;
3647      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3648      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3649                          &ParamTy, Args, 1, CandidateSet);
3650    }
3651    break;
3652
3653  UnaryPlus:
3654    // C++ [over.built]p8:
3655    //   For every type T, there exist candidate operator functions of
3656    //   the form
3657    //
3658    //       T*         operator+(T*);
3659    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3660         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3661      QualType ParamTy = *Ptr;
3662      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3663    }
3664
3665    // Fall through
3666
3667  UnaryMinus:
3668    // C++ [over.built]p9:
3669    //  For every promoted arithmetic type T, there exist candidate
3670    //  operator functions of the form
3671    //
3672    //       T         operator+(T);
3673    //       T         operator-(T);
3674    for (unsigned Arith = FirstPromotedArithmeticType;
3675         Arith < LastPromotedArithmeticType; ++Arith) {
3676      QualType ArithTy = ArithmeticTypes[Arith];
3677      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3678    }
3679    break;
3680
3681  case OO_Tilde:
3682    // C++ [over.built]p10:
3683    //   For every promoted integral type T, there exist candidate
3684    //   operator functions of the form
3685    //
3686    //        T         operator~(T);
3687    for (unsigned Int = FirstPromotedIntegralType;
3688         Int < LastPromotedIntegralType; ++Int) {
3689      QualType IntTy = ArithmeticTypes[Int];
3690      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3691    }
3692    break;
3693
3694  case OO_New:
3695  case OO_Delete:
3696  case OO_Array_New:
3697  case OO_Array_Delete:
3698  case OO_Call:
3699    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3700    break;
3701
3702  case OO_Comma:
3703  UnaryAmp:
3704  case OO_Arrow:
3705    // C++ [over.match.oper]p3:
3706    //   -- For the operator ',', the unary operator '&', or the
3707    //      operator '->', the built-in candidates set is empty.
3708    break;
3709
3710  case OO_EqualEqual:
3711  case OO_ExclaimEqual:
3712    // C++ [over.match.oper]p16:
3713    //   For every pointer to member type T, there exist candidate operator
3714    //   functions of the form
3715    //
3716    //        bool operator==(T,T);
3717    //        bool operator!=(T,T);
3718    for (BuiltinCandidateTypeSet::iterator
3719           MemPtr = CandidateTypes.member_pointer_begin(),
3720           MemPtrEnd = CandidateTypes.member_pointer_end();
3721         MemPtr != MemPtrEnd;
3722         ++MemPtr) {
3723      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3724      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3725    }
3726
3727    // Fall through
3728
3729  case OO_Less:
3730  case OO_Greater:
3731  case OO_LessEqual:
3732  case OO_GreaterEqual:
3733    // C++ [over.built]p15:
3734    //
3735    //   For every pointer or enumeration type T, there exist
3736    //   candidate operator functions of the form
3737    //
3738    //        bool       operator<(T, T);
3739    //        bool       operator>(T, T);
3740    //        bool       operator<=(T, T);
3741    //        bool       operator>=(T, T);
3742    //        bool       operator==(T, T);
3743    //        bool       operator!=(T, T);
3744    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3745         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3746      QualType ParamTypes[2] = { *Ptr, *Ptr };
3747      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3748    }
3749    for (BuiltinCandidateTypeSet::iterator Enum
3750           = CandidateTypes.enumeration_begin();
3751         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3752      QualType ParamTypes[2] = { *Enum, *Enum };
3753      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3754    }
3755
3756    // Fall through.
3757    isComparison = true;
3758
3759  BinaryPlus:
3760  BinaryMinus:
3761    if (!isComparison) {
3762      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3763
3764      // C++ [over.built]p13:
3765      //
3766      //   For every cv-qualified or cv-unqualified object type T
3767      //   there exist candidate operator functions of the form
3768      //
3769      //      T*         operator+(T*, ptrdiff_t);
3770      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3771      //      T*         operator-(T*, ptrdiff_t);
3772      //      T*         operator+(ptrdiff_t, T*);
3773      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3774      //
3775      // C++ [over.built]p14:
3776      //
3777      //   For every T, where T is a pointer to object type, there
3778      //   exist candidate operator functions of the form
3779      //
3780      //      ptrdiff_t  operator-(T, T);
3781      for (BuiltinCandidateTypeSet::iterator Ptr
3782             = CandidateTypes.pointer_begin();
3783           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3784        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3785
3786        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3787        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3788
3789        if (Op == OO_Plus) {
3790          // T* operator+(ptrdiff_t, T*);
3791          ParamTypes[0] = ParamTypes[1];
3792          ParamTypes[1] = *Ptr;
3793          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3794        } else {
3795          // ptrdiff_t operator-(T, T);
3796          ParamTypes[1] = *Ptr;
3797          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3798                              Args, 2, CandidateSet);
3799        }
3800      }
3801    }
3802    // Fall through
3803
3804  case OO_Slash:
3805  BinaryStar:
3806  Conditional:
3807    // C++ [over.built]p12:
3808    //
3809    //   For every pair of promoted arithmetic types L and R, there
3810    //   exist candidate operator functions of the form
3811    //
3812    //        LR         operator*(L, R);
3813    //        LR         operator/(L, R);
3814    //        LR         operator+(L, R);
3815    //        LR         operator-(L, R);
3816    //        bool       operator<(L, R);
3817    //        bool       operator>(L, R);
3818    //        bool       operator<=(L, R);
3819    //        bool       operator>=(L, R);
3820    //        bool       operator==(L, R);
3821    //        bool       operator!=(L, R);
3822    //
3823    //   where LR is the result of the usual arithmetic conversions
3824    //   between types L and R.
3825    //
3826    // C++ [over.built]p24:
3827    //
3828    //   For every pair of promoted arithmetic types L and R, there exist
3829    //   candidate operator functions of the form
3830    //
3831    //        LR       operator?(bool, L, R);
3832    //
3833    //   where LR is the result of the usual arithmetic conversions
3834    //   between types L and R.
3835    // Our candidates ignore the first parameter.
3836    for (unsigned Left = FirstPromotedArithmeticType;
3837         Left < LastPromotedArithmeticType; ++Left) {
3838      for (unsigned Right = FirstPromotedArithmeticType;
3839           Right < LastPromotedArithmeticType; ++Right) {
3840        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3841        QualType Result
3842          = isComparison
3843          ? Context.BoolTy
3844          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3845        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3846      }
3847    }
3848    break;
3849
3850  case OO_Percent:
3851  BinaryAmp:
3852  case OO_Caret:
3853  case OO_Pipe:
3854  case OO_LessLess:
3855  case OO_GreaterGreater:
3856    // C++ [over.built]p17:
3857    //
3858    //   For every pair of promoted integral types L and R, there
3859    //   exist candidate operator functions of the form
3860    //
3861    //      LR         operator%(L, R);
3862    //      LR         operator&(L, R);
3863    //      LR         operator^(L, R);
3864    //      LR         operator|(L, R);
3865    //      L          operator<<(L, R);
3866    //      L          operator>>(L, R);
3867    //
3868    //   where LR is the result of the usual arithmetic conversions
3869    //   between types L and R.
3870    for (unsigned Left = FirstPromotedIntegralType;
3871         Left < LastPromotedIntegralType; ++Left) {
3872      for (unsigned Right = FirstPromotedIntegralType;
3873           Right < LastPromotedIntegralType; ++Right) {
3874        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3875        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3876            ? LandR[0]
3877            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3878        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3879      }
3880    }
3881    break;
3882
3883  case OO_Equal:
3884    // C++ [over.built]p20:
3885    //
3886    //   For every pair (T, VQ), where T is an enumeration or
3887    //   pointer to member type and VQ is either volatile or
3888    //   empty, there exist candidate operator functions of the form
3889    //
3890    //        VQ T&      operator=(VQ T&, T);
3891    for (BuiltinCandidateTypeSet::iterator
3892           Enum = CandidateTypes.enumeration_begin(),
3893           EnumEnd = CandidateTypes.enumeration_end();
3894         Enum != EnumEnd; ++Enum)
3895      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3896                                             CandidateSet);
3897    for (BuiltinCandidateTypeSet::iterator
3898           MemPtr = CandidateTypes.member_pointer_begin(),
3899         MemPtrEnd = CandidateTypes.member_pointer_end();
3900         MemPtr != MemPtrEnd; ++MemPtr)
3901      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3902                                             CandidateSet);
3903      // Fall through.
3904
3905  case OO_PlusEqual:
3906  case OO_MinusEqual:
3907    // C++ [over.built]p19:
3908    //
3909    //   For every pair (T, VQ), where T is any type and VQ is either
3910    //   volatile or empty, there exist candidate operator functions
3911    //   of the form
3912    //
3913    //        T*VQ&      operator=(T*VQ&, T*);
3914    //
3915    // C++ [over.built]p21:
3916    //
3917    //   For every pair (T, VQ), where T is a cv-qualified or
3918    //   cv-unqualified object type and VQ is either volatile or
3919    //   empty, there exist candidate operator functions of the form
3920    //
3921    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3922    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3923    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3924         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3925      QualType ParamTypes[2];
3926      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3927
3928      // non-volatile version
3929      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3930      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3931                          /*IsAssigmentOperator=*/Op == OO_Equal);
3932
3933      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3934          VisibleTypeConversionsQuals.hasVolatile()) {
3935        // volatile version
3936        ParamTypes[0]
3937          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3938        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3939                            /*IsAssigmentOperator=*/Op == OO_Equal);
3940      }
3941    }
3942    // Fall through.
3943
3944  case OO_StarEqual:
3945  case OO_SlashEqual:
3946    // C++ [over.built]p18:
3947    //
3948    //   For every triple (L, VQ, R), where L is an arithmetic type,
3949    //   VQ is either volatile or empty, and R is a promoted
3950    //   arithmetic type, there exist candidate operator functions of
3951    //   the form
3952    //
3953    //        VQ L&      operator=(VQ L&, R);
3954    //        VQ L&      operator*=(VQ L&, R);
3955    //        VQ L&      operator/=(VQ L&, R);
3956    //        VQ L&      operator+=(VQ L&, R);
3957    //        VQ L&      operator-=(VQ L&, R);
3958    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3959      for (unsigned Right = FirstPromotedArithmeticType;
3960           Right < LastPromotedArithmeticType; ++Right) {
3961        QualType ParamTypes[2];
3962        ParamTypes[1] = ArithmeticTypes[Right];
3963
3964        // Add this built-in operator as a candidate (VQ is empty).
3965        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3966        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3967                            /*IsAssigmentOperator=*/Op == OO_Equal);
3968
3969        // Add this built-in operator as a candidate (VQ is 'volatile').
3970        if (VisibleTypeConversionsQuals.hasVolatile()) {
3971          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3972          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3973          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3974                              /*IsAssigmentOperator=*/Op == OO_Equal);
3975        }
3976      }
3977    }
3978    break;
3979
3980  case OO_PercentEqual:
3981  case OO_LessLessEqual:
3982  case OO_GreaterGreaterEqual:
3983  case OO_AmpEqual:
3984  case OO_CaretEqual:
3985  case OO_PipeEqual:
3986    // C++ [over.built]p22:
3987    //
3988    //   For every triple (L, VQ, R), where L is an integral type, VQ
3989    //   is either volatile or empty, and R is a promoted integral
3990    //   type, there exist candidate operator functions of the form
3991    //
3992    //        VQ L&       operator%=(VQ L&, R);
3993    //        VQ L&       operator<<=(VQ L&, R);
3994    //        VQ L&       operator>>=(VQ L&, R);
3995    //        VQ L&       operator&=(VQ L&, R);
3996    //        VQ L&       operator^=(VQ L&, R);
3997    //        VQ L&       operator|=(VQ L&, R);
3998    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3999      for (unsigned Right = FirstPromotedIntegralType;
4000           Right < LastPromotedIntegralType; ++Right) {
4001        QualType ParamTypes[2];
4002        ParamTypes[1] = ArithmeticTypes[Right];
4003
4004        // Add this built-in operator as a candidate (VQ is empty).
4005        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4006        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4007        if (VisibleTypeConversionsQuals.hasVolatile()) {
4008          // Add this built-in operator as a candidate (VQ is 'volatile').
4009          ParamTypes[0] = ArithmeticTypes[Left];
4010          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4011          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4012          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4013        }
4014      }
4015    }
4016    break;
4017
4018  case OO_Exclaim: {
4019    // C++ [over.operator]p23:
4020    //
4021    //   There also exist candidate operator functions of the form
4022    //
4023    //        bool        operator!(bool);
4024    //        bool        operator&&(bool, bool);     [BELOW]
4025    //        bool        operator||(bool, bool);     [BELOW]
4026    QualType ParamTy = Context.BoolTy;
4027    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4028                        /*IsAssignmentOperator=*/false,
4029                        /*NumContextualBoolArguments=*/1);
4030    break;
4031  }
4032
4033  case OO_AmpAmp:
4034  case OO_PipePipe: {
4035    // C++ [over.operator]p23:
4036    //
4037    //   There also exist candidate operator functions of the form
4038    //
4039    //        bool        operator!(bool);            [ABOVE]
4040    //        bool        operator&&(bool, bool);
4041    //        bool        operator||(bool, bool);
4042    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4043    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4044                        /*IsAssignmentOperator=*/false,
4045                        /*NumContextualBoolArguments=*/2);
4046    break;
4047  }
4048
4049  case OO_Subscript:
4050    // C++ [over.built]p13:
4051    //
4052    //   For every cv-qualified or cv-unqualified object type T there
4053    //   exist candidate operator functions of the form
4054    //
4055    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4056    //        T&         operator[](T*, ptrdiff_t);
4057    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4058    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4059    //        T&         operator[](ptrdiff_t, T*);
4060    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4061         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4062      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4063      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4064      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4065
4066      // T& operator[](T*, ptrdiff_t)
4067      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4068
4069      // T& operator[](ptrdiff_t, T*);
4070      ParamTypes[0] = ParamTypes[1];
4071      ParamTypes[1] = *Ptr;
4072      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4073    }
4074    break;
4075
4076  case OO_ArrowStar:
4077    // C++ [over.built]p11:
4078    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4079    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4080    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4081    //    there exist candidate operator functions of the form
4082    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4083    //    where CV12 is the union of CV1 and CV2.
4084    {
4085      for (BuiltinCandidateTypeSet::iterator Ptr =
4086             CandidateTypes.pointer_begin();
4087           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4088        QualType C1Ty = (*Ptr);
4089        QualType C1;
4090        QualifierCollector Q1;
4091        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4092          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4093          if (!isa<RecordType>(C1))
4094            continue;
4095          // heuristic to reduce number of builtin candidates in the set.
4096          // Add volatile/restrict version only if there are conversions to a
4097          // volatile/restrict type.
4098          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4099            continue;
4100          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4101            continue;
4102        }
4103        for (BuiltinCandidateTypeSet::iterator
4104             MemPtr = CandidateTypes.member_pointer_begin(),
4105             MemPtrEnd = CandidateTypes.member_pointer_end();
4106             MemPtr != MemPtrEnd; ++MemPtr) {
4107          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4108          QualType C2 = QualType(mptr->getClass(), 0);
4109          C2 = C2.getUnqualifiedType();
4110          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4111            break;
4112          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4113          // build CV12 T&
4114          QualType T = mptr->getPointeeType();
4115          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4116              T.isVolatileQualified())
4117            continue;
4118          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4119              T.isRestrictQualified())
4120            continue;
4121          T = Q1.apply(T);
4122          QualType ResultTy = Context.getLValueReferenceType(T);
4123          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4124        }
4125      }
4126    }
4127    break;
4128
4129  case OO_Conditional:
4130    // Note that we don't consider the first argument, since it has been
4131    // contextually converted to bool long ago. The candidates below are
4132    // therefore added as binary.
4133    //
4134    // C++ [over.built]p24:
4135    //   For every type T, where T is a pointer or pointer-to-member type,
4136    //   there exist candidate operator functions of the form
4137    //
4138    //        T        operator?(bool, T, T);
4139    //
4140    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4141         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4142      QualType ParamTypes[2] = { *Ptr, *Ptr };
4143      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4144    }
4145    for (BuiltinCandidateTypeSet::iterator Ptr =
4146           CandidateTypes.member_pointer_begin(),
4147         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4148      QualType ParamTypes[2] = { *Ptr, *Ptr };
4149      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4150    }
4151    goto Conditional;
4152  }
4153}
4154
4155/// \brief Add function candidates found via argument-dependent lookup
4156/// to the set of overloading candidates.
4157///
4158/// This routine performs argument-dependent name lookup based on the
4159/// given function name (which may also be an operator name) and adds
4160/// all of the overload candidates found by ADL to the overload
4161/// candidate set (C++ [basic.lookup.argdep]).
4162void
4163Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4164                                           bool Operator,
4165                                           Expr **Args, unsigned NumArgs,
4166                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4167                                           OverloadCandidateSet& CandidateSet,
4168                                           bool PartialOverloading) {
4169  ADLResult Fns;
4170
4171  // FIXME: This approach for uniquing ADL results (and removing
4172  // redundant candidates from the set) relies on pointer-equality,
4173  // which means we need to key off the canonical decl.  However,
4174  // always going back to the canonical decl might not get us the
4175  // right set of default arguments.  What default arguments are
4176  // we supposed to consider on ADL candidates, anyway?
4177
4178  // FIXME: Pass in the explicit template arguments?
4179  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4180
4181  // Erase all of the candidates we already knew about.
4182  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4183                                   CandEnd = CandidateSet.end();
4184       Cand != CandEnd; ++Cand)
4185    if (Cand->Function) {
4186      Fns.erase(Cand->Function);
4187      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4188        Fns.erase(FunTmpl);
4189    }
4190
4191  // For each of the ADL candidates we found, add it to the overload
4192  // set.
4193  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4194    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4195      if (ExplicitTemplateArgs)
4196        continue;
4197
4198      AddOverloadCandidate(FD, AS_none, Args, NumArgs, CandidateSet,
4199                           false, false, PartialOverloading);
4200    } else
4201      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4202                                   AS_none, ExplicitTemplateArgs,
4203                                   Args, NumArgs, CandidateSet);
4204  }
4205}
4206
4207/// isBetterOverloadCandidate - Determines whether the first overload
4208/// candidate is a better candidate than the second (C++ 13.3.3p1).
4209bool
4210Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4211                                const OverloadCandidate& Cand2,
4212                                SourceLocation Loc) {
4213  // Define viable functions to be better candidates than non-viable
4214  // functions.
4215  if (!Cand2.Viable)
4216    return Cand1.Viable;
4217  else if (!Cand1.Viable)
4218    return false;
4219
4220  // C++ [over.match.best]p1:
4221  //
4222  //   -- if F is a static member function, ICS1(F) is defined such
4223  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4224  //      any function G, and, symmetrically, ICS1(G) is neither
4225  //      better nor worse than ICS1(F).
4226  unsigned StartArg = 0;
4227  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4228    StartArg = 1;
4229
4230  // C++ [over.match.best]p1:
4231  //   A viable function F1 is defined to be a better function than another
4232  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4233  //   conversion sequence than ICSi(F2), and then...
4234  unsigned NumArgs = Cand1.Conversions.size();
4235  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4236  bool HasBetterConversion = false;
4237  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4238    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4239                                               Cand2.Conversions[ArgIdx])) {
4240    case ImplicitConversionSequence::Better:
4241      // Cand1 has a better conversion sequence.
4242      HasBetterConversion = true;
4243      break;
4244
4245    case ImplicitConversionSequence::Worse:
4246      // Cand1 can't be better than Cand2.
4247      return false;
4248
4249    case ImplicitConversionSequence::Indistinguishable:
4250      // Do nothing.
4251      break;
4252    }
4253  }
4254
4255  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4256  //       ICSj(F2), or, if not that,
4257  if (HasBetterConversion)
4258    return true;
4259
4260  //     - F1 is a non-template function and F2 is a function template
4261  //       specialization, or, if not that,
4262  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4263      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4264    return true;
4265
4266  //   -- F1 and F2 are function template specializations, and the function
4267  //      template for F1 is more specialized than the template for F2
4268  //      according to the partial ordering rules described in 14.5.5.2, or,
4269  //      if not that,
4270  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4271      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4272    if (FunctionTemplateDecl *BetterTemplate
4273          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4274                                       Cand2.Function->getPrimaryTemplate(),
4275                                       Loc,
4276                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4277                                                             : TPOC_Call))
4278      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4279
4280  //   -- the context is an initialization by user-defined conversion
4281  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4282  //      from the return type of F1 to the destination type (i.e.,
4283  //      the type of the entity being initialized) is a better
4284  //      conversion sequence than the standard conversion sequence
4285  //      from the return type of F2 to the destination type.
4286  if (Cand1.Function && Cand2.Function &&
4287      isa<CXXConversionDecl>(Cand1.Function) &&
4288      isa<CXXConversionDecl>(Cand2.Function)) {
4289    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4290                                               Cand2.FinalConversion)) {
4291    case ImplicitConversionSequence::Better:
4292      // Cand1 has a better conversion sequence.
4293      return true;
4294
4295    case ImplicitConversionSequence::Worse:
4296      // Cand1 can't be better than Cand2.
4297      return false;
4298
4299    case ImplicitConversionSequence::Indistinguishable:
4300      // Do nothing
4301      break;
4302    }
4303  }
4304
4305  return false;
4306}
4307
4308/// \brief Computes the best viable function (C++ 13.3.3)
4309/// within an overload candidate set.
4310///
4311/// \param CandidateSet the set of candidate functions.
4312///
4313/// \param Loc the location of the function name (or operator symbol) for
4314/// which overload resolution occurs.
4315///
4316/// \param Best f overload resolution was successful or found a deleted
4317/// function, Best points to the candidate function found.
4318///
4319/// \returns The result of overload resolution.
4320OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4321                                           SourceLocation Loc,
4322                                        OverloadCandidateSet::iterator& Best) {
4323  // Find the best viable function.
4324  Best = CandidateSet.end();
4325  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4326       Cand != CandidateSet.end(); ++Cand) {
4327    if (Cand->Viable) {
4328      if (Best == CandidateSet.end() ||
4329          isBetterOverloadCandidate(*Cand, *Best, Loc))
4330        Best = Cand;
4331    }
4332  }
4333
4334  // If we didn't find any viable functions, abort.
4335  if (Best == CandidateSet.end())
4336    return OR_No_Viable_Function;
4337
4338  // Make sure that this function is better than every other viable
4339  // function. If not, we have an ambiguity.
4340  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4341       Cand != CandidateSet.end(); ++Cand) {
4342    if (Cand->Viable &&
4343        Cand != Best &&
4344        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4345      Best = CandidateSet.end();
4346      return OR_Ambiguous;
4347    }
4348  }
4349
4350  // Best is the best viable function.
4351  if (Best->Function &&
4352      (Best->Function->isDeleted() ||
4353       Best->Function->getAttr<UnavailableAttr>()))
4354    return OR_Deleted;
4355
4356  // C++ [basic.def.odr]p2:
4357  //   An overloaded function is used if it is selected by overload resolution
4358  //   when referred to from a potentially-evaluated expression. [Note: this
4359  //   covers calls to named functions (5.2.2), operator overloading
4360  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4361  //   placement new (5.3.4), as well as non-default initialization (8.5).
4362  if (Best->Function)
4363    MarkDeclarationReferenced(Loc, Best->Function);
4364  return OR_Success;
4365}
4366
4367namespace {
4368
4369enum OverloadCandidateKind {
4370  oc_function,
4371  oc_method,
4372  oc_constructor,
4373  oc_function_template,
4374  oc_method_template,
4375  oc_constructor_template,
4376  oc_implicit_default_constructor,
4377  oc_implicit_copy_constructor,
4378  oc_implicit_copy_assignment
4379};
4380
4381OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4382                                                FunctionDecl *Fn,
4383                                                std::string &Description) {
4384  bool isTemplate = false;
4385
4386  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4387    isTemplate = true;
4388    Description = S.getTemplateArgumentBindingsText(
4389      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4390  }
4391
4392  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4393    if (!Ctor->isImplicit())
4394      return isTemplate ? oc_constructor_template : oc_constructor;
4395
4396    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4397                                     : oc_implicit_default_constructor;
4398  }
4399
4400  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4401    // This actually gets spelled 'candidate function' for now, but
4402    // it doesn't hurt to split it out.
4403    if (!Meth->isImplicit())
4404      return isTemplate ? oc_method_template : oc_method;
4405
4406    assert(Meth->isCopyAssignment()
4407           && "implicit method is not copy assignment operator?");
4408    return oc_implicit_copy_assignment;
4409  }
4410
4411  return isTemplate ? oc_function_template : oc_function;
4412}
4413
4414} // end anonymous namespace
4415
4416// Notes the location of an overload candidate.
4417void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4418  std::string FnDesc;
4419  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4420  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4421    << (unsigned) K << FnDesc;
4422}
4423
4424/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4425/// "lead" diagnostic; it will be given two arguments, the source and
4426/// target types of the conversion.
4427void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4428                                       SourceLocation CaretLoc,
4429                                       const PartialDiagnostic &PDiag) {
4430  Diag(CaretLoc, PDiag)
4431    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4432  for (AmbiguousConversionSequence::const_iterator
4433         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4434    NoteOverloadCandidate(*I);
4435  }
4436}
4437
4438namespace {
4439
4440void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4441  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4442  assert(Conv.isBad());
4443  assert(Cand->Function && "for now, candidate must be a function");
4444  FunctionDecl *Fn = Cand->Function;
4445
4446  // There's a conversion slot for the object argument if this is a
4447  // non-constructor method.  Note that 'I' corresponds the
4448  // conversion-slot index.
4449  bool isObjectArgument = false;
4450  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4451    if (I == 0)
4452      isObjectArgument = true;
4453    else
4454      I--;
4455  }
4456
4457  std::string FnDesc;
4458  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4459
4460  Expr *FromExpr = Conv.Bad.FromExpr;
4461  QualType FromTy = Conv.Bad.getFromType();
4462  QualType ToTy = Conv.Bad.getToType();
4463
4464  if (FromTy == S.Context.OverloadTy) {
4465    assert(FromExpr);
4466    Expr *E = FromExpr->IgnoreParens();
4467    if (isa<UnaryOperator>(E))
4468      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4469    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4470
4471    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4472      << (unsigned) FnKind << FnDesc
4473      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4474      << ToTy << Name << I+1;
4475    return;
4476  }
4477
4478  // Do some hand-waving analysis to see if the non-viability is due
4479  // to a qualifier mismatch.
4480  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4481  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4482  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4483    CToTy = RT->getPointeeType();
4484  else {
4485    // TODO: detect and diagnose the full richness of const mismatches.
4486    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4487      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4488        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4489  }
4490
4491  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4492      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4493    // It is dumb that we have to do this here.
4494    while (isa<ArrayType>(CFromTy))
4495      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4496    while (isa<ArrayType>(CToTy))
4497      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4498
4499    Qualifiers FromQs = CFromTy.getQualifiers();
4500    Qualifiers ToQs = CToTy.getQualifiers();
4501
4502    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4503      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4504        << (unsigned) FnKind << FnDesc
4505        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4506        << FromTy
4507        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4508        << (unsigned) isObjectArgument << I+1;
4509      return;
4510    }
4511
4512    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4513    assert(CVR && "unexpected qualifiers mismatch");
4514
4515    if (isObjectArgument) {
4516      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4517        << (unsigned) FnKind << FnDesc
4518        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4519        << FromTy << (CVR - 1);
4520    } else {
4521      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4522        << (unsigned) FnKind << FnDesc
4523        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4524        << FromTy << (CVR - 1) << I+1;
4525    }
4526    return;
4527  }
4528
4529  // Diagnose references or pointers to incomplete types differently,
4530  // since it's far from impossible that the incompleteness triggered
4531  // the failure.
4532  QualType TempFromTy = FromTy.getNonReferenceType();
4533  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4534    TempFromTy = PTy->getPointeeType();
4535  if (TempFromTy->isIncompleteType()) {
4536    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4537      << (unsigned) FnKind << FnDesc
4538      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4539      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4540    return;
4541  }
4542
4543  // TODO: specialize more based on the kind of mismatch
4544  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4545    << (unsigned) FnKind << FnDesc
4546    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4547    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4548}
4549
4550void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4551                           unsigned NumFormalArgs) {
4552  // TODO: treat calls to a missing default constructor as a special case
4553
4554  FunctionDecl *Fn = Cand->Function;
4555  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4556
4557  unsigned MinParams = Fn->getMinRequiredArguments();
4558
4559  // at least / at most / exactly
4560  unsigned mode, modeCount;
4561  if (NumFormalArgs < MinParams) {
4562    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4563    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4564      mode = 0; // "at least"
4565    else
4566      mode = 2; // "exactly"
4567    modeCount = MinParams;
4568  } else {
4569    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4570    if (MinParams != FnTy->getNumArgs())
4571      mode = 1; // "at most"
4572    else
4573      mode = 2; // "exactly"
4574    modeCount = FnTy->getNumArgs();
4575  }
4576
4577  std::string Description;
4578  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4579
4580  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4581    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4582}
4583
4584/// Diagnose a failed template-argument deduction.
4585void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4586                          Expr **Args, unsigned NumArgs) {
4587  FunctionDecl *Fn = Cand->Function; // pattern
4588
4589  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4590                                   Cand->DeductionFailure.TemplateParameter);
4591
4592  switch (Cand->DeductionFailure.Result) {
4593  case Sema::TDK_Success:
4594    llvm_unreachable("TDK_success while diagnosing bad deduction");
4595
4596  case Sema::TDK_Incomplete: {
4597    NamedDecl *ParamD;
4598    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4599    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4600    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4601    assert(ParamD && "no parameter found for incomplete deduction result");
4602    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4603      << ParamD->getDeclName();
4604    return;
4605  }
4606
4607  // TODO: diagnose these individually, then kill off
4608  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4609  case Sema::TDK_InstantiationDepth:
4610  case Sema::TDK_Inconsistent:
4611  case Sema::TDK_InconsistentQuals:
4612  case Sema::TDK_SubstitutionFailure:
4613  case Sema::TDK_NonDeducedMismatch:
4614  case Sema::TDK_TooManyArguments:
4615  case Sema::TDK_TooFewArguments:
4616  case Sema::TDK_InvalidExplicitArguments:
4617  case Sema::TDK_FailedOverloadResolution:
4618    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4619    return;
4620  }
4621}
4622
4623/// Generates a 'note' diagnostic for an overload candidate.  We've
4624/// already generated a primary error at the call site.
4625///
4626/// It really does need to be a single diagnostic with its caret
4627/// pointed at the candidate declaration.  Yes, this creates some
4628/// major challenges of technical writing.  Yes, this makes pointing
4629/// out problems with specific arguments quite awkward.  It's still
4630/// better than generating twenty screens of text for every failed
4631/// overload.
4632///
4633/// It would be great to be able to express per-candidate problems
4634/// more richly for those diagnostic clients that cared, but we'd
4635/// still have to be just as careful with the default diagnostics.
4636void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4637                           Expr **Args, unsigned NumArgs) {
4638  FunctionDecl *Fn = Cand->Function;
4639
4640  // Note deleted candidates, but only if they're viable.
4641  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4642    std::string FnDesc;
4643    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4644
4645    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4646      << FnKind << FnDesc << Fn->isDeleted();
4647    return;
4648  }
4649
4650  // We don't really have anything else to say about viable candidates.
4651  if (Cand->Viable) {
4652    S.NoteOverloadCandidate(Fn);
4653    return;
4654  }
4655
4656  switch (Cand->FailureKind) {
4657  case ovl_fail_too_many_arguments:
4658  case ovl_fail_too_few_arguments:
4659    return DiagnoseArityMismatch(S, Cand, NumArgs);
4660
4661  case ovl_fail_bad_deduction:
4662    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4663
4664  case ovl_fail_trivial_conversion:
4665  case ovl_fail_bad_final_conversion:
4666    return S.NoteOverloadCandidate(Fn);
4667
4668  case ovl_fail_bad_conversion:
4669    for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I)
4670      if (Cand->Conversions[I].isBad())
4671        return DiagnoseBadConversion(S, Cand, I);
4672
4673    // FIXME: this currently happens when we're called from SemaInit
4674    // when user-conversion overload fails.  Figure out how to handle
4675    // those conditions and diagnose them well.
4676    return S.NoteOverloadCandidate(Fn);
4677  }
4678}
4679
4680void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4681  // Desugar the type of the surrogate down to a function type,
4682  // retaining as many typedefs as possible while still showing
4683  // the function type (and, therefore, its parameter types).
4684  QualType FnType = Cand->Surrogate->getConversionType();
4685  bool isLValueReference = false;
4686  bool isRValueReference = false;
4687  bool isPointer = false;
4688  if (const LValueReferenceType *FnTypeRef =
4689        FnType->getAs<LValueReferenceType>()) {
4690    FnType = FnTypeRef->getPointeeType();
4691    isLValueReference = true;
4692  } else if (const RValueReferenceType *FnTypeRef =
4693               FnType->getAs<RValueReferenceType>()) {
4694    FnType = FnTypeRef->getPointeeType();
4695    isRValueReference = true;
4696  }
4697  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4698    FnType = FnTypePtr->getPointeeType();
4699    isPointer = true;
4700  }
4701  // Desugar down to a function type.
4702  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4703  // Reconstruct the pointer/reference as appropriate.
4704  if (isPointer) FnType = S.Context.getPointerType(FnType);
4705  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4706  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4707
4708  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4709    << FnType;
4710}
4711
4712void NoteBuiltinOperatorCandidate(Sema &S,
4713                                  const char *Opc,
4714                                  SourceLocation OpLoc,
4715                                  OverloadCandidate *Cand) {
4716  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4717  std::string TypeStr("operator");
4718  TypeStr += Opc;
4719  TypeStr += "(";
4720  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4721  if (Cand->Conversions.size() == 1) {
4722    TypeStr += ")";
4723    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4724  } else {
4725    TypeStr += ", ";
4726    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4727    TypeStr += ")";
4728    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4729  }
4730}
4731
4732void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4733                                  OverloadCandidate *Cand) {
4734  unsigned NoOperands = Cand->Conversions.size();
4735  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4736    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4737    if (ICS.isBad()) break; // all meaningless after first invalid
4738    if (!ICS.isAmbiguous()) continue;
4739
4740    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4741                              PDiag(diag::note_ambiguous_type_conversion));
4742  }
4743}
4744
4745SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4746  if (Cand->Function)
4747    return Cand->Function->getLocation();
4748  if (Cand->IsSurrogate)
4749    return Cand->Surrogate->getLocation();
4750  return SourceLocation();
4751}
4752
4753struct CompareOverloadCandidatesForDisplay {
4754  Sema &S;
4755  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4756
4757  bool operator()(const OverloadCandidate *L,
4758                  const OverloadCandidate *R) {
4759    // Fast-path this check.
4760    if (L == R) return false;
4761
4762    // Order first by viability.
4763    if (L->Viable) {
4764      if (!R->Viable) return true;
4765
4766      // TODO: introduce a tri-valued comparison for overload
4767      // candidates.  Would be more worthwhile if we had a sort
4768      // that could exploit it.
4769      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4770      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4771    } else if (R->Viable)
4772      return false;
4773
4774    assert(L->Viable == R->Viable);
4775
4776    // Criteria by which we can sort non-viable candidates:
4777    if (!L->Viable) {
4778      // 1. Arity mismatches come after other candidates.
4779      if (L->FailureKind == ovl_fail_too_many_arguments ||
4780          L->FailureKind == ovl_fail_too_few_arguments)
4781        return false;
4782      if (R->FailureKind == ovl_fail_too_many_arguments ||
4783          R->FailureKind == ovl_fail_too_few_arguments)
4784        return true;
4785
4786      // 2. Bad conversions come first and are ordered by the number
4787      // of bad conversions and quality of good conversions.
4788      if (L->FailureKind == ovl_fail_bad_conversion) {
4789        if (R->FailureKind != ovl_fail_bad_conversion)
4790          return true;
4791
4792        // If there's any ordering between the defined conversions...
4793        // FIXME: this might not be transitive.
4794        assert(L->Conversions.size() == R->Conversions.size());
4795
4796        int leftBetter = 0;
4797        for (unsigned I = 0, E = L->Conversions.size(); I != E; ++I) {
4798          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4799                                                       R->Conversions[I])) {
4800          case ImplicitConversionSequence::Better:
4801            leftBetter++;
4802            break;
4803
4804          case ImplicitConversionSequence::Worse:
4805            leftBetter--;
4806            break;
4807
4808          case ImplicitConversionSequence::Indistinguishable:
4809            break;
4810          }
4811        }
4812        if (leftBetter > 0) return true;
4813        if (leftBetter < 0) return false;
4814
4815      } else if (R->FailureKind == ovl_fail_bad_conversion)
4816        return false;
4817
4818      // TODO: others?
4819    }
4820
4821    // Sort everything else by location.
4822    SourceLocation LLoc = GetLocationForCandidate(L);
4823    SourceLocation RLoc = GetLocationForCandidate(R);
4824
4825    // Put candidates without locations (e.g. builtins) at the end.
4826    if (LLoc.isInvalid()) return false;
4827    if (RLoc.isInvalid()) return true;
4828
4829    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4830  }
4831};
4832
4833/// CompleteNonViableCandidate - Normally, overload resolution only
4834/// computes up to the first
4835void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4836                                Expr **Args, unsigned NumArgs) {
4837  assert(!Cand->Viable);
4838
4839  // Don't do anything on failures other than bad conversion.
4840  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4841
4842  // Skip forward to the first bad conversion.
4843  unsigned ConvIdx = 0;
4844  unsigned ConvCount = Cand->Conversions.size();
4845  while (true) {
4846    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4847    ConvIdx++;
4848    if (Cand->Conversions[ConvIdx - 1].isBad())
4849      break;
4850  }
4851
4852  if (ConvIdx == ConvCount)
4853    return;
4854
4855  // FIXME: these should probably be preserved from the overload
4856  // operation somehow.
4857  bool SuppressUserConversions = false;
4858  bool ForceRValue = false;
4859
4860  const FunctionProtoType* Proto;
4861  unsigned ArgIdx = ConvIdx;
4862
4863  if (Cand->IsSurrogate) {
4864    QualType ConvType
4865      = Cand->Surrogate->getConversionType().getNonReferenceType();
4866    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4867      ConvType = ConvPtrType->getPointeeType();
4868    Proto = ConvType->getAs<FunctionProtoType>();
4869    ArgIdx--;
4870  } else if (Cand->Function) {
4871    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4872    if (isa<CXXMethodDecl>(Cand->Function) &&
4873        !isa<CXXConstructorDecl>(Cand->Function))
4874      ArgIdx--;
4875  } else {
4876    // Builtin binary operator with a bad first conversion.
4877    assert(ConvCount <= 3);
4878    for (; ConvIdx != ConvCount; ++ConvIdx)
4879      Cand->Conversions[ConvIdx]
4880        = S.TryCopyInitialization(Args[ConvIdx],
4881                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4882                                  SuppressUserConversions, ForceRValue,
4883                                  /*InOverloadResolution*/ true);
4884    return;
4885  }
4886
4887  // Fill in the rest of the conversions.
4888  unsigned NumArgsInProto = Proto->getNumArgs();
4889  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4890    if (ArgIdx < NumArgsInProto)
4891      Cand->Conversions[ConvIdx]
4892        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4893                                  SuppressUserConversions, ForceRValue,
4894                                  /*InOverloadResolution=*/true);
4895    else
4896      Cand->Conversions[ConvIdx].setEllipsis();
4897  }
4898}
4899
4900} // end anonymous namespace
4901
4902/// PrintOverloadCandidates - When overload resolution fails, prints
4903/// diagnostic messages containing the candidates in the candidate
4904/// set.
4905void
4906Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4907                              OverloadCandidateDisplayKind OCD,
4908                              Expr **Args, unsigned NumArgs,
4909                              const char *Opc,
4910                              SourceLocation OpLoc) {
4911  // Sort the candidates by viability and position.  Sorting directly would
4912  // be prohibitive, so we make a set of pointers and sort those.
4913  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4914  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4915  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4916                                  LastCand = CandidateSet.end();
4917       Cand != LastCand; ++Cand) {
4918    if (Cand->Viable)
4919      Cands.push_back(Cand);
4920    else if (OCD == OCD_AllCandidates) {
4921      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4922      Cands.push_back(Cand);
4923    }
4924  }
4925
4926  std::sort(Cands.begin(), Cands.end(),
4927            CompareOverloadCandidatesForDisplay(*this));
4928
4929  bool ReportedAmbiguousConversions = false;
4930
4931  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4932  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4933    OverloadCandidate *Cand = *I;
4934
4935    if (Cand->Function)
4936      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4937    else if (Cand->IsSurrogate)
4938      NoteSurrogateCandidate(*this, Cand);
4939
4940    // This a builtin candidate.  We do not, in general, want to list
4941    // every possible builtin candidate.
4942    else if (Cand->Viable) {
4943      // Generally we only see ambiguities including viable builtin
4944      // operators if overload resolution got screwed up by an
4945      // ambiguous user-defined conversion.
4946      //
4947      // FIXME: It's quite possible for different conversions to see
4948      // different ambiguities, though.
4949      if (!ReportedAmbiguousConversions) {
4950        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4951        ReportedAmbiguousConversions = true;
4952      }
4953
4954      // If this is a viable builtin, print it.
4955      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4956    }
4957  }
4958}
4959
4960static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, NamedDecl *D,
4961                                  AccessSpecifier AS) {
4962  if (isa<UnresolvedLookupExpr>(E))
4963    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D, AS);
4964
4965  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D, AS);
4966}
4967
4968/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4969/// an overloaded function (C++ [over.over]), where @p From is an
4970/// expression with overloaded function type and @p ToType is the type
4971/// we're trying to resolve to. For example:
4972///
4973/// @code
4974/// int f(double);
4975/// int f(int);
4976///
4977/// int (*pfd)(double) = f; // selects f(double)
4978/// @endcode
4979///
4980/// This routine returns the resulting FunctionDecl if it could be
4981/// resolved, and NULL otherwise. When @p Complain is true, this
4982/// routine will emit diagnostics if there is an error.
4983FunctionDecl *
4984Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4985                                         bool Complain) {
4986  QualType FunctionType = ToType;
4987  bool IsMember = false;
4988  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4989    FunctionType = ToTypePtr->getPointeeType();
4990  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4991    FunctionType = ToTypeRef->getPointeeType();
4992  else if (const MemberPointerType *MemTypePtr =
4993                    ToType->getAs<MemberPointerType>()) {
4994    FunctionType = MemTypePtr->getPointeeType();
4995    IsMember = true;
4996  }
4997
4998  // We only look at pointers or references to functions.
4999  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5000  if (!FunctionType->isFunctionType())
5001    return 0;
5002
5003  // Find the actual overloaded function declaration.
5004  if (From->getType() != Context.OverloadTy)
5005    return 0;
5006
5007  // C++ [over.over]p1:
5008  //   [...] [Note: any redundant set of parentheses surrounding the
5009  //   overloaded function name is ignored (5.1). ]
5010  // C++ [over.over]p1:
5011  //   [...] The overloaded function name can be preceded by the &
5012  //   operator.
5013  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5014  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5015  if (OvlExpr->hasExplicitTemplateArgs()) {
5016    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5017    ExplicitTemplateArgs = &ETABuffer;
5018  }
5019
5020  // Look through all of the overloaded functions, searching for one
5021  // whose type matches exactly.
5022  UnresolvedSet<4> Matches;  // contains only FunctionDecls
5023  bool FoundNonTemplateFunction = false;
5024  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5025         E = OvlExpr->decls_end(); I != E; ++I) {
5026    // Look through any using declarations to find the underlying function.
5027    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5028
5029    // C++ [over.over]p3:
5030    //   Non-member functions and static member functions match
5031    //   targets of type "pointer-to-function" or "reference-to-function."
5032    //   Nonstatic member functions match targets of
5033    //   type "pointer-to-member-function."
5034    // Note that according to DR 247, the containing class does not matter.
5035
5036    if (FunctionTemplateDecl *FunctionTemplate
5037          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5038      if (CXXMethodDecl *Method
5039            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5040        // Skip non-static function templates when converting to pointer, and
5041        // static when converting to member pointer.
5042        if (Method->isStatic() == IsMember)
5043          continue;
5044      } else if (IsMember)
5045        continue;
5046
5047      // C++ [over.over]p2:
5048      //   If the name is a function template, template argument deduction is
5049      //   done (14.8.2.2), and if the argument deduction succeeds, the
5050      //   resulting template argument list is used to generate a single
5051      //   function template specialization, which is added to the set of
5052      //   overloaded functions considered.
5053      // FIXME: We don't really want to build the specialization here, do we?
5054      FunctionDecl *Specialization = 0;
5055      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5056      if (TemplateDeductionResult Result
5057            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5058                                      FunctionType, Specialization, Info)) {
5059        // FIXME: make a note of the failed deduction for diagnostics.
5060        (void)Result;
5061      } else {
5062        // FIXME: If the match isn't exact, shouldn't we just drop this as
5063        // a candidate? Find a testcase before changing the code.
5064        assert(FunctionType
5065                 == Context.getCanonicalType(Specialization->getType()));
5066        Matches.addDecl(cast<FunctionDecl>(Specialization->getCanonicalDecl()),
5067                        I.getAccess());
5068      }
5069
5070      continue;
5071    }
5072
5073    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5074      // Skip non-static functions when converting to pointer, and static
5075      // when converting to member pointer.
5076      if (Method->isStatic() == IsMember)
5077        continue;
5078
5079      // If we have explicit template arguments, skip non-templates.
5080      if (OvlExpr->hasExplicitTemplateArgs())
5081        continue;
5082    } else if (IsMember)
5083      continue;
5084
5085    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5086      QualType ResultTy;
5087      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5088          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5089                               ResultTy)) {
5090        Matches.addDecl(cast<FunctionDecl>(FunDecl->getCanonicalDecl()),
5091                        I.getAccess());
5092        FoundNonTemplateFunction = true;
5093      }
5094    }
5095  }
5096
5097  // If there were 0 or 1 matches, we're done.
5098  if (Matches.empty())
5099    return 0;
5100  else if (Matches.size() == 1) {
5101    FunctionDecl *Result = cast<FunctionDecl>(*Matches.begin());
5102    MarkDeclarationReferenced(From->getLocStart(), Result);
5103    if (Complain)
5104      CheckUnresolvedAccess(*this, OvlExpr, Result, Matches.begin().getAccess());
5105    return Result;
5106  }
5107
5108  // C++ [over.over]p4:
5109  //   If more than one function is selected, [...]
5110  if (!FoundNonTemplateFunction) {
5111    //   [...] and any given function template specialization F1 is
5112    //   eliminated if the set contains a second function template
5113    //   specialization whose function template is more specialized
5114    //   than the function template of F1 according to the partial
5115    //   ordering rules of 14.5.5.2.
5116
5117    // The algorithm specified above is quadratic. We instead use a
5118    // two-pass algorithm (similar to the one used to identify the
5119    // best viable function in an overload set) that identifies the
5120    // best function template (if it exists).
5121
5122    UnresolvedSetIterator Result =
5123        getMostSpecialized(Matches.begin(), Matches.end(),
5124                           TPOC_Other, From->getLocStart(),
5125                           PDiag(),
5126                           PDiag(diag::err_addr_ovl_ambiguous)
5127                               << Matches[0]->getDeclName(),
5128                           PDiag(diag::note_ovl_candidate)
5129                               << (unsigned) oc_function_template);
5130    assert(Result != Matches.end() && "no most-specialized template");
5131    MarkDeclarationReferenced(From->getLocStart(), *Result);
5132    if (Complain)
5133      CheckUnresolvedAccess(*this, OvlExpr, *Result, Result.getAccess());
5134    return cast<FunctionDecl>(*Result);
5135  }
5136
5137  //   [...] any function template specializations in the set are
5138  //   eliminated if the set also contains a non-template function, [...]
5139  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5140    if (cast<FunctionDecl>(Matches[I].getDecl())->getPrimaryTemplate() == 0)
5141      ++I;
5142    else {
5143      Matches.erase(I);
5144      --N;
5145    }
5146  }
5147
5148  // [...] After such eliminations, if any, there shall remain exactly one
5149  // selected function.
5150  if (Matches.size() == 1) {
5151    UnresolvedSetIterator Match = Matches.begin();
5152    MarkDeclarationReferenced(From->getLocStart(), *Match);
5153    if (Complain)
5154      CheckUnresolvedAccess(*this, OvlExpr, *Match, Match.getAccess());
5155    return cast<FunctionDecl>(*Match);
5156  }
5157
5158  // FIXME: We should probably return the same thing that BestViableFunction
5159  // returns (even if we issue the diagnostics here).
5160  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5161    << Matches[0]->getDeclName();
5162  for (UnresolvedSetIterator I = Matches.begin(),
5163         E = Matches.end(); I != E; ++I)
5164    NoteOverloadCandidate(cast<FunctionDecl>(*I));
5165  return 0;
5166}
5167
5168/// \brief Given an expression that refers to an overloaded function, try to
5169/// resolve that overloaded function expression down to a single function.
5170///
5171/// This routine can only resolve template-ids that refer to a single function
5172/// template, where that template-id refers to a single template whose template
5173/// arguments are either provided by the template-id or have defaults,
5174/// as described in C++0x [temp.arg.explicit]p3.
5175FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5176  // C++ [over.over]p1:
5177  //   [...] [Note: any redundant set of parentheses surrounding the
5178  //   overloaded function name is ignored (5.1). ]
5179  // C++ [over.over]p1:
5180  //   [...] The overloaded function name can be preceded by the &
5181  //   operator.
5182
5183  if (From->getType() != Context.OverloadTy)
5184    return 0;
5185
5186  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5187
5188  // If we didn't actually find any template-ids, we're done.
5189  if (!OvlExpr->hasExplicitTemplateArgs())
5190    return 0;
5191
5192  TemplateArgumentListInfo ExplicitTemplateArgs;
5193  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5194
5195  // Look through all of the overloaded functions, searching for one
5196  // whose type matches exactly.
5197  FunctionDecl *Matched = 0;
5198  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5199         E = OvlExpr->decls_end(); I != E; ++I) {
5200    // C++0x [temp.arg.explicit]p3:
5201    //   [...] In contexts where deduction is done and fails, or in contexts
5202    //   where deduction is not done, if a template argument list is
5203    //   specified and it, along with any default template arguments,
5204    //   identifies a single function template specialization, then the
5205    //   template-id is an lvalue for the function template specialization.
5206    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5207
5208    // C++ [over.over]p2:
5209    //   If the name is a function template, template argument deduction is
5210    //   done (14.8.2.2), and if the argument deduction succeeds, the
5211    //   resulting template argument list is used to generate a single
5212    //   function template specialization, which is added to the set of
5213    //   overloaded functions considered.
5214    FunctionDecl *Specialization = 0;
5215    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5216    if (TemplateDeductionResult Result
5217          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5218                                    Specialization, Info)) {
5219      // FIXME: make a note of the failed deduction for diagnostics.
5220      (void)Result;
5221      continue;
5222    }
5223
5224    // Multiple matches; we can't resolve to a single declaration.
5225    if (Matched)
5226      return 0;
5227
5228    Matched = Specialization;
5229  }
5230
5231  return Matched;
5232}
5233
5234/// \brief Add a single candidate to the overload set.
5235static void AddOverloadedCallCandidate(Sema &S,
5236                                       NamedDecl *Callee,
5237                                       AccessSpecifier Access,
5238                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5239                                       Expr **Args, unsigned NumArgs,
5240                                       OverloadCandidateSet &CandidateSet,
5241                                       bool PartialOverloading) {
5242  if (isa<UsingShadowDecl>(Callee))
5243    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5244
5245  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5246    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5247    S.AddOverloadCandidate(Func, Access, Args, NumArgs, CandidateSet,
5248                           false, false, PartialOverloading);
5249    return;
5250  }
5251
5252  if (FunctionTemplateDecl *FuncTemplate
5253      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5254    S.AddTemplateOverloadCandidate(FuncTemplate, Access, ExplicitTemplateArgs,
5255                                   Args, NumArgs, CandidateSet);
5256    return;
5257  }
5258
5259  assert(false && "unhandled case in overloaded call candidate");
5260
5261  // do nothing?
5262}
5263
5264/// \brief Add the overload candidates named by callee and/or found by argument
5265/// dependent lookup to the given overload set.
5266void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5267                                       Expr **Args, unsigned NumArgs,
5268                                       OverloadCandidateSet &CandidateSet,
5269                                       bool PartialOverloading) {
5270
5271#ifndef NDEBUG
5272  // Verify that ArgumentDependentLookup is consistent with the rules
5273  // in C++0x [basic.lookup.argdep]p3:
5274  //
5275  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5276  //   and let Y be the lookup set produced by argument dependent
5277  //   lookup (defined as follows). If X contains
5278  //
5279  //     -- a declaration of a class member, or
5280  //
5281  //     -- a block-scope function declaration that is not a
5282  //        using-declaration, or
5283  //
5284  //     -- a declaration that is neither a function or a function
5285  //        template
5286  //
5287  //   then Y is empty.
5288
5289  if (ULE->requiresADL()) {
5290    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5291           E = ULE->decls_end(); I != E; ++I) {
5292      assert(!(*I)->getDeclContext()->isRecord());
5293      assert(isa<UsingShadowDecl>(*I) ||
5294             !(*I)->getDeclContext()->isFunctionOrMethod());
5295      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5296    }
5297  }
5298#endif
5299
5300  // It would be nice to avoid this copy.
5301  TemplateArgumentListInfo TABuffer;
5302  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5303  if (ULE->hasExplicitTemplateArgs()) {
5304    ULE->copyTemplateArgumentsInto(TABuffer);
5305    ExplicitTemplateArgs = &TABuffer;
5306  }
5307
5308  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5309         E = ULE->decls_end(); I != E; ++I)
5310    AddOverloadedCallCandidate(*this, *I, I.getAccess(), ExplicitTemplateArgs,
5311                               Args, NumArgs, CandidateSet,
5312                               PartialOverloading);
5313
5314  if (ULE->requiresADL())
5315    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5316                                         Args, NumArgs,
5317                                         ExplicitTemplateArgs,
5318                                         CandidateSet,
5319                                         PartialOverloading);
5320}
5321
5322static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5323                                      Expr **Args, unsigned NumArgs) {
5324  Fn->Destroy(SemaRef.Context);
5325  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5326    Args[Arg]->Destroy(SemaRef.Context);
5327  return SemaRef.ExprError();
5328}
5329
5330/// Attempts to recover from a call where no functions were found.
5331///
5332/// Returns true if new candidates were found.
5333static Sema::OwningExprResult
5334BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5335                      UnresolvedLookupExpr *ULE,
5336                      SourceLocation LParenLoc,
5337                      Expr **Args, unsigned NumArgs,
5338                      SourceLocation *CommaLocs,
5339                      SourceLocation RParenLoc) {
5340
5341  CXXScopeSpec SS;
5342  if (ULE->getQualifier()) {
5343    SS.setScopeRep(ULE->getQualifier());
5344    SS.setRange(ULE->getQualifierRange());
5345  }
5346
5347  TemplateArgumentListInfo TABuffer;
5348  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5349  if (ULE->hasExplicitTemplateArgs()) {
5350    ULE->copyTemplateArgumentsInto(TABuffer);
5351    ExplicitTemplateArgs = &TABuffer;
5352  }
5353
5354  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5355                 Sema::LookupOrdinaryName);
5356  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5357    return Destroy(SemaRef, Fn, Args, NumArgs);
5358
5359  assert(!R.empty() && "lookup results empty despite recovery");
5360
5361  // Build an implicit member call if appropriate.  Just drop the
5362  // casts and such from the call, we don't really care.
5363  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5364  if ((*R.begin())->isCXXClassMember())
5365    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5366  else if (ExplicitTemplateArgs)
5367    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5368  else
5369    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5370
5371  if (NewFn.isInvalid())
5372    return Destroy(SemaRef, Fn, Args, NumArgs);
5373
5374  Fn->Destroy(SemaRef.Context);
5375
5376  // This shouldn't cause an infinite loop because we're giving it
5377  // an expression with non-empty lookup results, which should never
5378  // end up here.
5379  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5380                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5381                               CommaLocs, RParenLoc);
5382}
5383
5384/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5385/// (which eventually refers to the declaration Func) and the call
5386/// arguments Args/NumArgs, attempt to resolve the function call down
5387/// to a specific function. If overload resolution succeeds, returns
5388/// the function declaration produced by overload
5389/// resolution. Otherwise, emits diagnostics, deletes all of the
5390/// arguments and Fn, and returns NULL.
5391Sema::OwningExprResult
5392Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5393                              SourceLocation LParenLoc,
5394                              Expr **Args, unsigned NumArgs,
5395                              SourceLocation *CommaLocs,
5396                              SourceLocation RParenLoc) {
5397#ifndef NDEBUG
5398  if (ULE->requiresADL()) {
5399    // To do ADL, we must have found an unqualified name.
5400    assert(!ULE->getQualifier() && "qualified name with ADL");
5401
5402    // We don't perform ADL for implicit declarations of builtins.
5403    // Verify that this was correctly set up.
5404    FunctionDecl *F;
5405    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5406        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5407        F->getBuiltinID() && F->isImplicit())
5408      assert(0 && "performing ADL for builtin");
5409
5410    // We don't perform ADL in C.
5411    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5412  }
5413#endif
5414
5415  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5416
5417  // Add the functions denoted by the callee to the set of candidate
5418  // functions, including those from argument-dependent lookup.
5419  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5420
5421  // If we found nothing, try to recover.
5422  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5423  // bailout out if it fails.
5424  if (CandidateSet.empty())
5425    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5426                                 CommaLocs, RParenLoc);
5427
5428  OverloadCandidateSet::iterator Best;
5429  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5430  case OR_Success: {
5431    FunctionDecl *FDecl = Best->Function;
5432    CheckUnresolvedLookupAccess(ULE, FDecl, Best->getAccess());
5433    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5434    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5435  }
5436
5437  case OR_No_Viable_Function:
5438    Diag(Fn->getSourceRange().getBegin(),
5439         diag::err_ovl_no_viable_function_in_call)
5440      << ULE->getName() << Fn->getSourceRange();
5441    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5442    break;
5443
5444  case OR_Ambiguous:
5445    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5446      << ULE->getName() << Fn->getSourceRange();
5447    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5448    break;
5449
5450  case OR_Deleted:
5451    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5452      << Best->Function->isDeleted()
5453      << ULE->getName()
5454      << Fn->getSourceRange();
5455    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5456    break;
5457  }
5458
5459  // Overload resolution failed. Destroy all of the subexpressions and
5460  // return NULL.
5461  Fn->Destroy(Context);
5462  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5463    Args[Arg]->Destroy(Context);
5464  return ExprError();
5465}
5466
5467static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5468  return Functions.size() > 1 ||
5469    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5470}
5471
5472/// \brief Create a unary operation that may resolve to an overloaded
5473/// operator.
5474///
5475/// \param OpLoc The location of the operator itself (e.g., '*').
5476///
5477/// \param OpcIn The UnaryOperator::Opcode that describes this
5478/// operator.
5479///
5480/// \param Functions The set of non-member functions that will be
5481/// considered by overload resolution. The caller needs to build this
5482/// set based on the context using, e.g.,
5483/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5484/// set should not contain any member functions; those will be added
5485/// by CreateOverloadedUnaryOp().
5486///
5487/// \param input The input argument.
5488Sema::OwningExprResult
5489Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5490                              const UnresolvedSetImpl &Fns,
5491                              ExprArg input) {
5492  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5493  Expr *Input = (Expr *)input.get();
5494
5495  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5496  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5497  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5498
5499  Expr *Args[2] = { Input, 0 };
5500  unsigned NumArgs = 1;
5501
5502  // For post-increment and post-decrement, add the implicit '0' as
5503  // the second argument, so that we know this is a post-increment or
5504  // post-decrement.
5505  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5506    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5507    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5508                                           SourceLocation());
5509    NumArgs = 2;
5510  }
5511
5512  if (Input->isTypeDependent()) {
5513    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5514    UnresolvedLookupExpr *Fn
5515      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5516                                     0, SourceRange(), OpName, OpLoc,
5517                                     /*ADL*/ true, IsOverloaded(Fns));
5518    Fn->addDecls(Fns.begin(), Fns.end());
5519
5520    input.release();
5521    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5522                                                   &Args[0], NumArgs,
5523                                                   Context.DependentTy,
5524                                                   OpLoc));
5525  }
5526
5527  // Build an empty overload set.
5528  OverloadCandidateSet CandidateSet(OpLoc);
5529
5530  // Add the candidates from the given function set.
5531  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5532
5533  // Add operator candidates that are member functions.
5534  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5535
5536  // Add candidates from ADL.
5537  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5538                                       Args, NumArgs,
5539                                       /*ExplicitTemplateArgs*/ 0,
5540                                       CandidateSet);
5541
5542  // Add builtin operator candidates.
5543  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5544
5545  // Perform overload resolution.
5546  OverloadCandidateSet::iterator Best;
5547  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5548  case OR_Success: {
5549    // We found a built-in operator or an overloaded operator.
5550    FunctionDecl *FnDecl = Best->Function;
5551
5552    if (FnDecl) {
5553      // We matched an overloaded operator. Build a call to that
5554      // operator.
5555
5556      // Convert the arguments.
5557      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5558        CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5559
5560        if (PerformObjectArgumentInitialization(Input, Method))
5561          return ExprError();
5562      } else {
5563        // Convert the arguments.
5564        OwningExprResult InputInit
5565          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5566                                                      FnDecl->getParamDecl(0)),
5567                                      SourceLocation(),
5568                                      move(input));
5569        if (InputInit.isInvalid())
5570          return ExprError();
5571
5572        input = move(InputInit);
5573        Input = (Expr *)input.get();
5574      }
5575
5576      // Determine the result type
5577      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5578
5579      // Build the actual expression node.
5580      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5581                                               SourceLocation());
5582      UsualUnaryConversions(FnExpr);
5583
5584      input.release();
5585      Args[0] = Input;
5586      ExprOwningPtr<CallExpr> TheCall(this,
5587        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5588                                          Args, NumArgs, ResultTy, OpLoc));
5589
5590      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5591                              FnDecl))
5592        return ExprError();
5593
5594      return MaybeBindToTemporary(TheCall.release());
5595    } else {
5596      // We matched a built-in operator. Convert the arguments, then
5597      // break out so that we will build the appropriate built-in
5598      // operator node.
5599        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5600                                      Best->Conversions[0], AA_Passing))
5601          return ExprError();
5602
5603        break;
5604      }
5605    }
5606
5607    case OR_No_Viable_Function:
5608      // No viable function; fall through to handling this as a
5609      // built-in operator, which will produce an error message for us.
5610      break;
5611
5612    case OR_Ambiguous:
5613      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5614          << UnaryOperator::getOpcodeStr(Opc)
5615          << Input->getSourceRange();
5616      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5617                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5618      return ExprError();
5619
5620    case OR_Deleted:
5621      Diag(OpLoc, diag::err_ovl_deleted_oper)
5622        << Best->Function->isDeleted()
5623        << UnaryOperator::getOpcodeStr(Opc)
5624        << Input->getSourceRange();
5625      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5626      return ExprError();
5627    }
5628
5629  // Either we found no viable overloaded operator or we matched a
5630  // built-in operator. In either case, fall through to trying to
5631  // build a built-in operation.
5632  input.release();
5633  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5634}
5635
5636/// \brief Create a binary operation that may resolve to an overloaded
5637/// operator.
5638///
5639/// \param OpLoc The location of the operator itself (e.g., '+').
5640///
5641/// \param OpcIn The BinaryOperator::Opcode that describes this
5642/// operator.
5643///
5644/// \param Functions The set of non-member functions that will be
5645/// considered by overload resolution. The caller needs to build this
5646/// set based on the context using, e.g.,
5647/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5648/// set should not contain any member functions; those will be added
5649/// by CreateOverloadedBinOp().
5650///
5651/// \param LHS Left-hand argument.
5652/// \param RHS Right-hand argument.
5653Sema::OwningExprResult
5654Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5655                            unsigned OpcIn,
5656                            const UnresolvedSetImpl &Fns,
5657                            Expr *LHS, Expr *RHS) {
5658  Expr *Args[2] = { LHS, RHS };
5659  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5660
5661  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5662  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5663  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5664
5665  // If either side is type-dependent, create an appropriate dependent
5666  // expression.
5667  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5668    if (Fns.empty()) {
5669      // If there are no functions to store, just build a dependent
5670      // BinaryOperator or CompoundAssignment.
5671      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5672        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5673                                                  Context.DependentTy, OpLoc));
5674
5675      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5676                                                        Context.DependentTy,
5677                                                        Context.DependentTy,
5678                                                        Context.DependentTy,
5679                                                        OpLoc));
5680    }
5681
5682    // FIXME: save results of ADL from here?
5683    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5684    UnresolvedLookupExpr *Fn
5685      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5686                                     0, SourceRange(), OpName, OpLoc,
5687                                     /*ADL*/ true, IsOverloaded(Fns));
5688
5689    Fn->addDecls(Fns.begin(), Fns.end());
5690    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5691                                                   Args, 2,
5692                                                   Context.DependentTy,
5693                                                   OpLoc));
5694  }
5695
5696  // If this is the .* operator, which is not overloadable, just
5697  // create a built-in binary operator.
5698  if (Opc == BinaryOperator::PtrMemD)
5699    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5700
5701  // If this is the assignment operator, we only perform overload resolution
5702  // if the left-hand side is a class or enumeration type. This is actually
5703  // a hack. The standard requires that we do overload resolution between the
5704  // various built-in candidates, but as DR507 points out, this can lead to
5705  // problems. So we do it this way, which pretty much follows what GCC does.
5706  // Note that we go the traditional code path for compound assignment forms.
5707  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5708    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5709
5710  // Build an empty overload set.
5711  OverloadCandidateSet CandidateSet(OpLoc);
5712
5713  // Add the candidates from the given function set.
5714  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5715
5716  // Add operator candidates that are member functions.
5717  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5718
5719  // Add candidates from ADL.
5720  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5721                                       Args, 2,
5722                                       /*ExplicitTemplateArgs*/ 0,
5723                                       CandidateSet);
5724
5725  // Add builtin operator candidates.
5726  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5727
5728  // Perform overload resolution.
5729  OverloadCandidateSet::iterator Best;
5730  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5731    case OR_Success: {
5732      // We found a built-in operator or an overloaded operator.
5733      FunctionDecl *FnDecl = Best->Function;
5734
5735      if (FnDecl) {
5736        // We matched an overloaded operator. Build a call to that
5737        // operator.
5738
5739        // Convert the arguments.
5740        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5741          // Best->Access is only meaningful for class members.
5742          CheckMemberOperatorAccess(OpLoc, Args[0], Method, Best->getAccess());
5743
5744          OwningExprResult Arg1
5745            = PerformCopyInitialization(
5746                                        InitializedEntity::InitializeParameter(
5747                                                        FnDecl->getParamDecl(0)),
5748                                        SourceLocation(),
5749                                        Owned(Args[1]));
5750          if (Arg1.isInvalid())
5751            return ExprError();
5752
5753          if (PerformObjectArgumentInitialization(Args[0], Method))
5754            return ExprError();
5755
5756          Args[1] = RHS = Arg1.takeAs<Expr>();
5757        } else {
5758          // Convert the arguments.
5759          OwningExprResult Arg0
5760            = PerformCopyInitialization(
5761                                        InitializedEntity::InitializeParameter(
5762                                                        FnDecl->getParamDecl(0)),
5763                                        SourceLocation(),
5764                                        Owned(Args[0]));
5765          if (Arg0.isInvalid())
5766            return ExprError();
5767
5768          OwningExprResult Arg1
5769            = PerformCopyInitialization(
5770                                        InitializedEntity::InitializeParameter(
5771                                                        FnDecl->getParamDecl(1)),
5772                                        SourceLocation(),
5773                                        Owned(Args[1]));
5774          if (Arg1.isInvalid())
5775            return ExprError();
5776          Args[0] = LHS = Arg0.takeAs<Expr>();
5777          Args[1] = RHS = Arg1.takeAs<Expr>();
5778        }
5779
5780        // Determine the result type
5781        QualType ResultTy
5782          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5783        ResultTy = ResultTy.getNonReferenceType();
5784
5785        // Build the actual expression node.
5786        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5787                                                 OpLoc);
5788        UsualUnaryConversions(FnExpr);
5789
5790        ExprOwningPtr<CXXOperatorCallExpr>
5791          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5792                                                          Args, 2, ResultTy,
5793                                                          OpLoc));
5794
5795        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5796                                FnDecl))
5797          return ExprError();
5798
5799        return MaybeBindToTemporary(TheCall.release());
5800      } else {
5801        // We matched a built-in operator. Convert the arguments, then
5802        // break out so that we will build the appropriate built-in
5803        // operator node.
5804        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5805                                      Best->Conversions[0], AA_Passing) ||
5806            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5807                                      Best->Conversions[1], AA_Passing))
5808          return ExprError();
5809
5810        break;
5811      }
5812    }
5813
5814    case OR_No_Viable_Function: {
5815      // C++ [over.match.oper]p9:
5816      //   If the operator is the operator , [...] and there are no
5817      //   viable functions, then the operator is assumed to be the
5818      //   built-in operator and interpreted according to clause 5.
5819      if (Opc == BinaryOperator::Comma)
5820        break;
5821
5822      // For class as left operand for assignment or compound assigment operator
5823      // do not fall through to handling in built-in, but report that no overloaded
5824      // assignment operator found
5825      OwningExprResult Result = ExprError();
5826      if (Args[0]->getType()->isRecordType() &&
5827          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5828        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5829             << BinaryOperator::getOpcodeStr(Opc)
5830             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5831      } else {
5832        // No viable function; try to create a built-in operation, which will
5833        // produce an error. Then, show the non-viable candidates.
5834        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5835      }
5836      assert(Result.isInvalid() &&
5837             "C++ binary operator overloading is missing candidates!");
5838      if (Result.isInvalid())
5839        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5840                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5841      return move(Result);
5842    }
5843
5844    case OR_Ambiguous:
5845      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5846          << BinaryOperator::getOpcodeStr(Opc)
5847          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5848      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5849                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5850      return ExprError();
5851
5852    case OR_Deleted:
5853      Diag(OpLoc, diag::err_ovl_deleted_oper)
5854        << Best->Function->isDeleted()
5855        << BinaryOperator::getOpcodeStr(Opc)
5856        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5857      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5858      return ExprError();
5859  }
5860
5861  // We matched a built-in operator; build it.
5862  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5863}
5864
5865Action::OwningExprResult
5866Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5867                                         SourceLocation RLoc,
5868                                         ExprArg Base, ExprArg Idx) {
5869  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5870                    static_cast<Expr*>(Idx.get()) };
5871  DeclarationName OpName =
5872      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5873
5874  // If either side is type-dependent, create an appropriate dependent
5875  // expression.
5876  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5877
5878    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5879    UnresolvedLookupExpr *Fn
5880      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5881                                     0, SourceRange(), OpName, LLoc,
5882                                     /*ADL*/ true, /*Overloaded*/ false);
5883    // Can't add any actual overloads yet
5884
5885    Base.release();
5886    Idx.release();
5887    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5888                                                   Args, 2,
5889                                                   Context.DependentTy,
5890                                                   RLoc));
5891  }
5892
5893  // Build an empty overload set.
5894  OverloadCandidateSet CandidateSet(LLoc);
5895
5896  // Subscript can only be overloaded as a member function.
5897
5898  // Add operator candidates that are member functions.
5899  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5900
5901  // Add builtin operator candidates.
5902  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5903
5904  // Perform overload resolution.
5905  OverloadCandidateSet::iterator Best;
5906  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5907    case OR_Success: {
5908      // We found a built-in operator or an overloaded operator.
5909      FunctionDecl *FnDecl = Best->Function;
5910
5911      if (FnDecl) {
5912        // We matched an overloaded operator. Build a call to that
5913        // operator.
5914
5915        CheckMemberOperatorAccess(LLoc, Args[0], FnDecl, Best->getAccess());
5916
5917        // Convert the arguments.
5918        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5919        if (PerformObjectArgumentInitialization(Args[0], Method))
5920          return ExprError();
5921
5922        // Convert the arguments.
5923        OwningExprResult InputInit
5924          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5925                                                      FnDecl->getParamDecl(0)),
5926                                      SourceLocation(),
5927                                      Owned(Args[1]));
5928        if (InputInit.isInvalid())
5929          return ExprError();
5930
5931        Args[1] = InputInit.takeAs<Expr>();
5932
5933        // Determine the result type
5934        QualType ResultTy
5935          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5936        ResultTy = ResultTy.getNonReferenceType();
5937
5938        // Build the actual expression node.
5939        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5940                                                 LLoc);
5941        UsualUnaryConversions(FnExpr);
5942
5943        Base.release();
5944        Idx.release();
5945        ExprOwningPtr<CXXOperatorCallExpr>
5946          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5947                                                          FnExpr, Args, 2,
5948                                                          ResultTy, RLoc));
5949
5950        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5951                                FnDecl))
5952          return ExprError();
5953
5954        return MaybeBindToTemporary(TheCall.release());
5955      } else {
5956        // We matched a built-in operator. Convert the arguments, then
5957        // break out so that we will build the appropriate built-in
5958        // operator node.
5959        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5960                                      Best->Conversions[0], AA_Passing) ||
5961            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5962                                      Best->Conversions[1], AA_Passing))
5963          return ExprError();
5964
5965        break;
5966      }
5967    }
5968
5969    case OR_No_Viable_Function: {
5970      if (CandidateSet.empty())
5971        Diag(LLoc, diag::err_ovl_no_oper)
5972          << Args[0]->getType() << /*subscript*/ 0
5973          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5974      else
5975        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5976          << Args[0]->getType()
5977          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5978      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5979                              "[]", LLoc);
5980      return ExprError();
5981    }
5982
5983    case OR_Ambiguous:
5984      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5985          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5986      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5987                              "[]", LLoc);
5988      return ExprError();
5989
5990    case OR_Deleted:
5991      Diag(LLoc, diag::err_ovl_deleted_oper)
5992        << Best->Function->isDeleted() << "[]"
5993        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5994      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5995                              "[]", LLoc);
5996      return ExprError();
5997    }
5998
5999  // We matched a built-in operator; build it.
6000  Base.release();
6001  Idx.release();
6002  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6003                                         Owned(Args[1]), RLoc);
6004}
6005
6006/// BuildCallToMemberFunction - Build a call to a member
6007/// function. MemExpr is the expression that refers to the member
6008/// function (and includes the object parameter), Args/NumArgs are the
6009/// arguments to the function call (not including the object
6010/// parameter). The caller needs to validate that the member
6011/// expression refers to a member function or an overloaded member
6012/// function.
6013Sema::OwningExprResult
6014Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6015                                SourceLocation LParenLoc, Expr **Args,
6016                                unsigned NumArgs, SourceLocation *CommaLocs,
6017                                SourceLocation RParenLoc) {
6018  // Dig out the member expression. This holds both the object
6019  // argument and the member function we're referring to.
6020  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6021
6022  MemberExpr *MemExpr;
6023  CXXMethodDecl *Method = 0;
6024  if (isa<MemberExpr>(NakedMemExpr)) {
6025    MemExpr = cast<MemberExpr>(NakedMemExpr);
6026    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6027  } else {
6028    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6029
6030    QualType ObjectType = UnresExpr->getBaseType();
6031
6032    // Add overload candidates
6033    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6034
6035    // FIXME: avoid copy.
6036    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6037    if (UnresExpr->hasExplicitTemplateArgs()) {
6038      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6039      TemplateArgs = &TemplateArgsBuffer;
6040    }
6041
6042    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6043           E = UnresExpr->decls_end(); I != E; ++I) {
6044
6045      NamedDecl *Func = *I;
6046      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6047      if (isa<UsingShadowDecl>(Func))
6048        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6049
6050      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6051        // If explicit template arguments were provided, we can't call a
6052        // non-template member function.
6053        if (TemplateArgs)
6054          continue;
6055
6056        AddMethodCandidate(Method, I.getAccess(), ActingDC, ObjectType,
6057                           Args, NumArgs,
6058                           CandidateSet, /*SuppressUserConversions=*/false);
6059      } else {
6060        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6061                                   I.getAccess(), ActingDC, TemplateArgs,
6062                                   ObjectType, Args, NumArgs,
6063                                   CandidateSet,
6064                                   /*SuppressUsedConversions=*/false);
6065      }
6066    }
6067
6068    DeclarationName DeclName = UnresExpr->getMemberName();
6069
6070    OverloadCandidateSet::iterator Best;
6071    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6072    case OR_Success:
6073      Method = cast<CXXMethodDecl>(Best->Function);
6074      CheckUnresolvedMemberAccess(UnresExpr, Method, Best->getAccess());
6075      break;
6076
6077    case OR_No_Viable_Function:
6078      Diag(UnresExpr->getMemberLoc(),
6079           diag::err_ovl_no_viable_member_function_in_call)
6080        << DeclName << MemExprE->getSourceRange();
6081      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6082      // FIXME: Leaking incoming expressions!
6083      return ExprError();
6084
6085    case OR_Ambiguous:
6086      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6087        << DeclName << MemExprE->getSourceRange();
6088      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6089      // FIXME: Leaking incoming expressions!
6090      return ExprError();
6091
6092    case OR_Deleted:
6093      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6094        << Best->Function->isDeleted()
6095        << DeclName << MemExprE->getSourceRange();
6096      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6097      // FIXME: Leaking incoming expressions!
6098      return ExprError();
6099    }
6100
6101    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6102
6103    // If overload resolution picked a static member, build a
6104    // non-member call based on that function.
6105    if (Method->isStatic()) {
6106      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6107                                   Args, NumArgs, RParenLoc);
6108    }
6109
6110    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6111  }
6112
6113  assert(Method && "Member call to something that isn't a method?");
6114  ExprOwningPtr<CXXMemberCallExpr>
6115    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6116                                                  NumArgs,
6117                                  Method->getResultType().getNonReferenceType(),
6118                                  RParenLoc));
6119
6120  // Check for a valid return type.
6121  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6122                          TheCall.get(), Method))
6123    return ExprError();
6124
6125  // Convert the object argument (for a non-static member function call).
6126  Expr *ObjectArg = MemExpr->getBase();
6127  if (!Method->isStatic() &&
6128      PerformObjectArgumentInitialization(ObjectArg, Method))
6129    return ExprError();
6130  MemExpr->setBase(ObjectArg);
6131
6132  // Convert the rest of the arguments
6133  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6134  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6135                              RParenLoc))
6136    return ExprError();
6137
6138  if (CheckFunctionCall(Method, TheCall.get()))
6139    return ExprError();
6140
6141  return MaybeBindToTemporary(TheCall.release());
6142}
6143
6144/// BuildCallToObjectOfClassType - Build a call to an object of class
6145/// type (C++ [over.call.object]), which can end up invoking an
6146/// overloaded function call operator (@c operator()) or performing a
6147/// user-defined conversion on the object argument.
6148Sema::ExprResult
6149Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6150                                   SourceLocation LParenLoc,
6151                                   Expr **Args, unsigned NumArgs,
6152                                   SourceLocation *CommaLocs,
6153                                   SourceLocation RParenLoc) {
6154  assert(Object->getType()->isRecordType() && "Requires object type argument");
6155  const RecordType *Record = Object->getType()->getAs<RecordType>();
6156
6157  // C++ [over.call.object]p1:
6158  //  If the primary-expression E in the function call syntax
6159  //  evaluates to a class object of type "cv T", then the set of
6160  //  candidate functions includes at least the function call
6161  //  operators of T. The function call operators of T are obtained by
6162  //  ordinary lookup of the name operator() in the context of
6163  //  (E).operator().
6164  OverloadCandidateSet CandidateSet(LParenLoc);
6165  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6166
6167  if (RequireCompleteType(LParenLoc, Object->getType(),
6168                          PartialDiagnostic(diag::err_incomplete_object_call)
6169                          << Object->getSourceRange()))
6170    return true;
6171
6172  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6173  LookupQualifiedName(R, Record->getDecl());
6174  R.suppressDiagnostics();
6175
6176  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6177       Oper != OperEnd; ++Oper) {
6178    AddMethodCandidate(*Oper, Oper.getAccess(), Object->getType(),
6179                       Args, NumArgs, CandidateSet,
6180                       /*SuppressUserConversions=*/ false);
6181  }
6182
6183  // C++ [over.call.object]p2:
6184  //   In addition, for each conversion function declared in T of the
6185  //   form
6186  //
6187  //        operator conversion-type-id () cv-qualifier;
6188  //
6189  //   where cv-qualifier is the same cv-qualification as, or a
6190  //   greater cv-qualification than, cv, and where conversion-type-id
6191  //   denotes the type "pointer to function of (P1,...,Pn) returning
6192  //   R", or the type "reference to pointer to function of
6193  //   (P1,...,Pn) returning R", or the type "reference to function
6194  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6195  //   is also considered as a candidate function. Similarly,
6196  //   surrogate call functions are added to the set of candidate
6197  //   functions for each conversion function declared in an
6198  //   accessible base class provided the function is not hidden
6199  //   within T by another intervening declaration.
6200  const UnresolvedSetImpl *Conversions
6201    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6202  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6203         E = Conversions->end(); I != E; ++I) {
6204    NamedDecl *D = *I;
6205    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6206    if (isa<UsingShadowDecl>(D))
6207      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6208
6209    // Skip over templated conversion functions; they aren't
6210    // surrogates.
6211    if (isa<FunctionTemplateDecl>(D))
6212      continue;
6213
6214    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6215
6216    // Strip the reference type (if any) and then the pointer type (if
6217    // any) to get down to what might be a function type.
6218    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6219    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6220      ConvType = ConvPtrType->getPointeeType();
6221
6222    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6223      AddSurrogateCandidate(Conv, I.getAccess(), ActingContext, Proto,
6224                            Object->getType(), Args, NumArgs,
6225                            CandidateSet);
6226  }
6227
6228  // Perform overload resolution.
6229  OverloadCandidateSet::iterator Best;
6230  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6231  case OR_Success:
6232    // Overload resolution succeeded; we'll build the appropriate call
6233    // below.
6234    break;
6235
6236  case OR_No_Viable_Function:
6237    if (CandidateSet.empty())
6238      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6239        << Object->getType() << /*call*/ 1
6240        << Object->getSourceRange();
6241    else
6242      Diag(Object->getSourceRange().getBegin(),
6243           diag::err_ovl_no_viable_object_call)
6244        << Object->getType() << Object->getSourceRange();
6245    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6246    break;
6247
6248  case OR_Ambiguous:
6249    Diag(Object->getSourceRange().getBegin(),
6250         diag::err_ovl_ambiguous_object_call)
6251      << Object->getType() << Object->getSourceRange();
6252    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6253    break;
6254
6255  case OR_Deleted:
6256    Diag(Object->getSourceRange().getBegin(),
6257         diag::err_ovl_deleted_object_call)
6258      << Best->Function->isDeleted()
6259      << Object->getType() << Object->getSourceRange();
6260    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6261    break;
6262  }
6263
6264  if (Best == CandidateSet.end()) {
6265    // We had an error; delete all of the subexpressions and return
6266    // the error.
6267    Object->Destroy(Context);
6268    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6269      Args[ArgIdx]->Destroy(Context);
6270    return true;
6271  }
6272
6273  if (Best->Function == 0) {
6274    // Since there is no function declaration, this is one of the
6275    // surrogate candidates. Dig out the conversion function.
6276    CXXConversionDecl *Conv
6277      = cast<CXXConversionDecl>(
6278                         Best->Conversions[0].UserDefined.ConversionFunction);
6279
6280    CheckMemberOperatorAccess(LParenLoc, Object, Conv, Best->getAccess());
6281
6282    // We selected one of the surrogate functions that converts the
6283    // object parameter to a function pointer. Perform the conversion
6284    // on the object argument, then let ActOnCallExpr finish the job.
6285
6286    // Create an implicit member expr to refer to the conversion operator.
6287    // and then call it.
6288    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6289
6290    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6291                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6292                         CommaLocs, RParenLoc).release();
6293  }
6294
6295  CheckMemberOperatorAccess(LParenLoc, Object,
6296                            Best->Function, Best->getAccess());
6297
6298  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6299  // that calls this method, using Object for the implicit object
6300  // parameter and passing along the remaining arguments.
6301  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6302  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6303
6304  unsigned NumArgsInProto = Proto->getNumArgs();
6305  unsigned NumArgsToCheck = NumArgs;
6306
6307  // Build the full argument list for the method call (the
6308  // implicit object parameter is placed at the beginning of the
6309  // list).
6310  Expr **MethodArgs;
6311  if (NumArgs < NumArgsInProto) {
6312    NumArgsToCheck = NumArgsInProto;
6313    MethodArgs = new Expr*[NumArgsInProto + 1];
6314  } else {
6315    MethodArgs = new Expr*[NumArgs + 1];
6316  }
6317  MethodArgs[0] = Object;
6318  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6319    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6320
6321  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6322                                          SourceLocation());
6323  UsualUnaryConversions(NewFn);
6324
6325  // Once we've built TheCall, all of the expressions are properly
6326  // owned.
6327  QualType ResultTy = Method->getResultType().getNonReferenceType();
6328  ExprOwningPtr<CXXOperatorCallExpr>
6329    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6330                                                    MethodArgs, NumArgs + 1,
6331                                                    ResultTy, RParenLoc));
6332  delete [] MethodArgs;
6333
6334  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6335                          Method))
6336    return true;
6337
6338  // We may have default arguments. If so, we need to allocate more
6339  // slots in the call for them.
6340  if (NumArgs < NumArgsInProto)
6341    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6342  else if (NumArgs > NumArgsInProto)
6343    NumArgsToCheck = NumArgsInProto;
6344
6345  bool IsError = false;
6346
6347  // Initialize the implicit object parameter.
6348  IsError |= PerformObjectArgumentInitialization(Object, Method);
6349  TheCall->setArg(0, Object);
6350
6351
6352  // Check the argument types.
6353  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6354    Expr *Arg;
6355    if (i < NumArgs) {
6356      Arg = Args[i];
6357
6358      // Pass the argument.
6359
6360      OwningExprResult InputInit
6361        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6362                                                    Method->getParamDecl(i)),
6363                                    SourceLocation(), Owned(Arg));
6364
6365      IsError |= InputInit.isInvalid();
6366      Arg = InputInit.takeAs<Expr>();
6367    } else {
6368      OwningExprResult DefArg
6369        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6370      if (DefArg.isInvalid()) {
6371        IsError = true;
6372        break;
6373      }
6374
6375      Arg = DefArg.takeAs<Expr>();
6376    }
6377
6378    TheCall->setArg(i + 1, Arg);
6379  }
6380
6381  // If this is a variadic call, handle args passed through "...".
6382  if (Proto->isVariadic()) {
6383    // Promote the arguments (C99 6.5.2.2p7).
6384    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6385      Expr *Arg = Args[i];
6386      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6387      TheCall->setArg(i + 1, Arg);
6388    }
6389  }
6390
6391  if (IsError) return true;
6392
6393  if (CheckFunctionCall(Method, TheCall.get()))
6394    return true;
6395
6396  return MaybeBindToTemporary(TheCall.release()).release();
6397}
6398
6399/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6400///  (if one exists), where @c Base is an expression of class type and
6401/// @c Member is the name of the member we're trying to find.
6402Sema::OwningExprResult
6403Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6404  Expr *Base = static_cast<Expr *>(BaseIn.get());
6405  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6406
6407  SourceLocation Loc = Base->getExprLoc();
6408
6409  // C++ [over.ref]p1:
6410  //
6411  //   [...] An expression x->m is interpreted as (x.operator->())->m
6412  //   for a class object x of type T if T::operator->() exists and if
6413  //   the operator is selected as the best match function by the
6414  //   overload resolution mechanism (13.3).
6415  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6416  OverloadCandidateSet CandidateSet(Loc);
6417  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6418
6419  if (RequireCompleteType(Loc, Base->getType(),
6420                          PDiag(diag::err_typecheck_incomplete_tag)
6421                            << Base->getSourceRange()))
6422    return ExprError();
6423
6424  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6425  LookupQualifiedName(R, BaseRecord->getDecl());
6426  R.suppressDiagnostics();
6427
6428  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6429       Oper != OperEnd; ++Oper) {
6430    NamedDecl *D = *Oper;
6431    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6432    if (isa<UsingShadowDecl>(D))
6433      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6434
6435    AddMethodCandidate(cast<CXXMethodDecl>(D), Oper.getAccess(), ActingContext,
6436                       Base->getType(), 0, 0, CandidateSet,
6437                       /*SuppressUserConversions=*/false);
6438  }
6439
6440  // Perform overload resolution.
6441  OverloadCandidateSet::iterator Best;
6442  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6443  case OR_Success:
6444    // Overload resolution succeeded; we'll build the call below.
6445    break;
6446
6447  case OR_No_Viable_Function:
6448    if (CandidateSet.empty())
6449      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6450        << Base->getType() << Base->getSourceRange();
6451    else
6452      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6453        << "operator->" << Base->getSourceRange();
6454    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6455    return ExprError();
6456
6457  case OR_Ambiguous:
6458    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6459      << "->" << Base->getSourceRange();
6460    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6461    return ExprError();
6462
6463  case OR_Deleted:
6464    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6465      << Best->Function->isDeleted()
6466      << "->" << Base->getSourceRange();
6467    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6468    return ExprError();
6469  }
6470
6471  // Convert the object parameter.
6472  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6473  if (PerformObjectArgumentInitialization(Base, Method))
6474    return ExprError();
6475
6476  // No concerns about early exits now.
6477  BaseIn.release();
6478
6479  // Build the operator call.
6480  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6481                                           SourceLocation());
6482  UsualUnaryConversions(FnExpr);
6483
6484  QualType ResultTy = Method->getResultType().getNonReferenceType();
6485  ExprOwningPtr<CXXOperatorCallExpr>
6486    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6487                                                    &Base, 1, ResultTy, OpLoc));
6488
6489  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6490                          Method))
6491          return ExprError();
6492  return move(TheCall);
6493}
6494
6495/// FixOverloadedFunctionReference - E is an expression that refers to
6496/// a C++ overloaded function (possibly with some parentheses and
6497/// perhaps a '&' around it). We have resolved the overloaded function
6498/// to the function declaration Fn, so patch up the expression E to
6499/// refer (possibly indirectly) to Fn. Returns the new expr.
6500Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6501  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6502    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6503    if (SubExpr == PE->getSubExpr())
6504      return PE->Retain();
6505
6506    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6507  }
6508
6509  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6510    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6511    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6512                               SubExpr->getType()) &&
6513           "Implicit cast type cannot be determined from overload");
6514    if (SubExpr == ICE->getSubExpr())
6515      return ICE->Retain();
6516
6517    return new (Context) ImplicitCastExpr(ICE->getType(),
6518                                          ICE->getCastKind(),
6519                                          SubExpr,
6520                                          ICE->isLvalueCast());
6521  }
6522
6523  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6524    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6525           "Can only take the address of an overloaded function");
6526    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6527      if (Method->isStatic()) {
6528        // Do nothing: static member functions aren't any different
6529        // from non-member functions.
6530      } else {
6531        // Fix the sub expression, which really has to be an
6532        // UnresolvedLookupExpr holding an overloaded member function
6533        // or template.
6534        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6535        if (SubExpr == UnOp->getSubExpr())
6536          return UnOp->Retain();
6537
6538        assert(isa<DeclRefExpr>(SubExpr)
6539               && "fixed to something other than a decl ref");
6540        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6541               && "fixed to a member ref with no nested name qualifier");
6542
6543        // We have taken the address of a pointer to member
6544        // function. Perform the computation here so that we get the
6545        // appropriate pointer to member type.
6546        QualType ClassType
6547          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6548        QualType MemPtrType
6549          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6550
6551        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6552                                           MemPtrType, UnOp->getOperatorLoc());
6553      }
6554    }
6555    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6556    if (SubExpr == UnOp->getSubExpr())
6557      return UnOp->Retain();
6558
6559    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6560                                     Context.getPointerType(SubExpr->getType()),
6561                                       UnOp->getOperatorLoc());
6562  }
6563
6564  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6565    // FIXME: avoid copy.
6566    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6567    if (ULE->hasExplicitTemplateArgs()) {
6568      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6569      TemplateArgs = &TemplateArgsBuffer;
6570    }
6571
6572    return DeclRefExpr::Create(Context,
6573                               ULE->getQualifier(),
6574                               ULE->getQualifierRange(),
6575                               Fn,
6576                               ULE->getNameLoc(),
6577                               Fn->getType(),
6578                               TemplateArgs);
6579  }
6580
6581  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6582    // FIXME: avoid copy.
6583    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6584    if (MemExpr->hasExplicitTemplateArgs()) {
6585      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6586      TemplateArgs = &TemplateArgsBuffer;
6587    }
6588
6589    Expr *Base;
6590
6591    // If we're filling in
6592    if (MemExpr->isImplicitAccess()) {
6593      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6594        return DeclRefExpr::Create(Context,
6595                                   MemExpr->getQualifier(),
6596                                   MemExpr->getQualifierRange(),
6597                                   Fn,
6598                                   MemExpr->getMemberLoc(),
6599                                   Fn->getType(),
6600                                   TemplateArgs);
6601      } else {
6602        SourceLocation Loc = MemExpr->getMemberLoc();
6603        if (MemExpr->getQualifier())
6604          Loc = MemExpr->getQualifierRange().getBegin();
6605        Base = new (Context) CXXThisExpr(Loc,
6606                                         MemExpr->getBaseType(),
6607                                         /*isImplicit=*/true);
6608      }
6609    } else
6610      Base = MemExpr->getBase()->Retain();
6611
6612    return MemberExpr::Create(Context, Base,
6613                              MemExpr->isArrow(),
6614                              MemExpr->getQualifier(),
6615                              MemExpr->getQualifierRange(),
6616                              Fn,
6617                              MemExpr->getMemberLoc(),
6618                              TemplateArgs,
6619                              Fn->getType());
6620  }
6621
6622  assert(false && "Invalid reference to overloaded function");
6623  return E->Retain();
6624}
6625
6626Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6627                                                            FunctionDecl *Fn) {
6628  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6629}
6630
6631} // end namespace clang
6632